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Summary

The geometry of wind turbine blades is characterised by the aerodynamic lift generat-
ing surface which results in lengthwise geometrical variations (LGVs), namely tapered
and twisted cross sections and precurved longitudinal axis. In particular, a tapered
beam presents cross-section dimensions which smoothly vary along its longitudinal
span and affects the behaviour of the structure. Hence, the stress distributions in
tapered structures can be at significant variance with the ones occurring in prismatic
beams. The early stages of wind turbine blade design are based on simplified beam
models to reduce the computational cost otherwise entailed by 3D full finite element
models. The cross-section stiffness properties required for aeroelastic analysis and
the prediction of the strains/stresses for structural design and optimization purposes
are provided by cross-section analysis methods. Nowadays, the available cross-section
analysis methods are based on prismatic hypothesis and consequently the aforemen-
tioned taper effects are ignored, notwithstanding the available scientific literature on
this matter.

The first part of the thesis sheds light on the effects of taper on the stresses in thin-
walled isotropic beams with circular and rectangular cross sections. Elasticity theory
is employed to derive closed-form analytical solutions which are compared to 3D fi-
nite element models for validation purposes. The analytical equations of the Cauchy
stress components provide an insight into the role of taper in the beam behaviour.
Indeed, taper evokes geometrical couplings which considerably affect the stress state
of the beam. Particularly, shear-axial and shear-bending contributes to the defini-
tion of the in-plane shear component and significantly affect the in-plane shear both
qualitatively and quantitatively. For instance, neglecting taper effect in structures
such as wind turbine blades could result in underestimating the shear components
in the proximity of the web adhesive joints, and, therefore, to detrimental designs.
In addition, the provided closed-form solutions could be employed for validation of
tapered cross-sectional analysis tools. In addition, the provided expressions could be
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used for validation of tapered cross-sectional analysis tools.

The second part of the thesis investigates an alternative finite element method which
suits for cross-section analysis of tapered beams. It models the beam cross-section
as a tapered slice consisting of one-layered of solid finite elements. The nodal forces
equivalent to axial, bending and shear are derived from the assumed surface traction
acting on the two faces of the slice. In addition, constraint equations for the six
rigid body modes, namely three translations and three rotations, are enforced via the
Lagrange multiplier method. Parametric studies of the relation between the stresses
and the magnitude of the taper angles and the thickness of the slice are conducted on
a planar isotropic wedge, whose closed-form solutions in terms of stresses are known.
Results reveal the ability of the slice method to predict approximately the stresses in
the tapered cross-sections of the wedge.

The present study underlines the importance of the taper effects on the stress com-
ponents of a tapered beam. Neglecting taper effects can result in a inaccurate stress
prediction and accordingly lifetime calculation of tapered beams. The outcome of
this project places the foundations for the development of a new advanced tapered
cross-section analysis tool where a more accurate prediction of the stress components
and lifetime of tapered structures is achieved without exploiting high computational
tools.
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Resumé (Danish)

Geometrien af en vindmølle vinge er karakteriseret ved de aerodynamiske profiler,
hvilket resulterer i længdevise geometriske variationer (LGV); aftrappede og twistede
flader ud af planen for vingens tværsnit, samt en krum længdevis akse for vingens
geometri. Dvs, at vingen er repræsenteret ved en aftrappet bjælke hvis tværsnit
dimensioner varierer gradvist langs vingen. Dette påvirker strukturens opførsel.
Spændingsfordelingen for en aftrappet bjælke kan variere væsentligt fra en prisma-
tisk bjælke. De indledende stadier af vingedesignet er typisk baseret på simplificerede
bjælkemodeller for at begrænse beregningstiden sammenlignet med 3D finite element
modeller. Tværsnitsegenskaberne til anvendelse ved aero-elastiske beregninger og
spændings/tøjnings beregningerne til styrkeoptimering er genererede ud fra tværsnits
beregningsmetoder. Indtil nu, er de tilrådighedsværende tværsnitsberegningsmetoder
baserede på antagelse om prismatisk geometri, og således er de førnævnte effekter
af aftrappende geometri ignoreret, til trods for den tilgængelig videnskabelige litter-
atur på dette område. Den første del af rapporten belyser effekten af aftrapning
på spændinger i tyndvæggede bjælker med isotropiske materialer og cirkulære eller
rektangulære tværsnit. Elasticitetsteori er anvendt til at udlede analytiske løsninger
som er sammenlignet med 3D finite-element modeller for validering. De analytiske
ligninger for Cauchy spændings komponenten giver indsigt i effekten af aftrapning for
en bjælke struktur. Det viser sig at at aftrapning leder til en geometrisk kobling som
i væsentligt grad påvirker spændings tilstanden for bjælken. Specielt shear-axielt og
shear-udbøjning indgår i definition for tværsnits-shear, både kvalitativt og kvantita-
tivt. For eksampel, hvis effekten af aftrapning er ignoreret kan det medføre en under-
estimering af shear i nærheden af web samlingen, hvilket ville være en kritisk fejl i de-
signet. Ydermere, kunne den analytiske løsning blive brugt som validering af tværsnits
analyse-værktøjer. Den anden del af rapporten undersøger en alternativ metode som
egner sig til tværsnitsberegninger på en aftrappet bjælke. Den modellerer tværsnit-
tet som en aftrappet skive bestående af et-lags 3D FE elementer. Knudekræfterne
repræsenterer rene aksiale kræfter, bøningsmoment og tværkræfter som optræder i
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snitfladerne på skivemodellen. Desuden er randbetingelser for de 6 stivlegemeflyt-
ninger pålagt ved hjælp af Lagrange Multipliers. Parametriske studier af størrelsen
af aftrapningsvinklerne og tykkelsen af den modellerede skive er udført på en plan
kile som har en kendt analytisk løsning. Resultatet bekræfter metodens evne til at
beregne størrelsen af spændingerne i de aftrappede tværsnit af kilen. Dette studie
understreger vigtigheden aftrapnings effekten på stress komponenterne for en aftrap-
pende bjælke. Hvis aftrapning er ignoreres, kan det medføre unøjagtige spændings
beregninger med konsekvenser for levetid for bjælker som er aftrappende. Udkommet
af dette projekt er er de grundlæggende komponenter til at udvikle avanceret tværsnits
beregninger for af trappende bjælker med en mere præcis beregning af spændingen i
en aftrappende bjælke samt dens levetid, uden brug af beregnings tunge metoder.
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Chapter 1

Introduction

One of the main aims of the past decades has been the shift to clean and renewable
sources of energy to reduce the carbon dioxide emission and meet the goals from the
Paris Agreement, e.g. improvement of air quality by cutting greenhouse gas emissions
and to mitigate the effect of climate change. Among the forms of renewable energy
currently available, wind is probably the fastest-growing technology. According to
the International Renewable Energy Agency (IRENA)’s latest data [33], the capacity
of onshore and offshore wind farms has increased by a factor of 75 in two decades,
specifically from 7.5 GW in 1997 to 564 GW in 2018. However, in order for wind
energy to be competitive in the global market, improvement of both the wind turbine
technology and the supply chain are necessary to further reduce its CoE (Cost of
Energy). IRENA predicts a reduction in the electricity cost to less than 3 and 7 cents
per kilowatt-hour [kWh] by 2050 respectively in the onshore and offshore wind farms
production [33]. It is important to recall that the CoE [34] is defined as

CoE =
CoT + CoI + CoM

PP

where CoT is the cost of the structural parts of the turbine, i.e. foundation, tower and
blades, CoI is the cost of installation and transportation, CoM is the cost of operation
and maintenance during the life-time of the turbine, and PP is the power produced
during the turbine life-time. Hence, it measures the overall cost of the wind turbine
per kilowatt-hour produced. From the perspective of the wind turbine blade design, a
reduction of the CoE can be achieved by either decreasing the nominator term CoT,
e.g. reducing the amount of material employed and optimising the manufacturing
process, or by increasing the denominator PP. The latter is proportional to the rotor
dimension, hence to the square of the blade length. Currently, the swept area of wind
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Figure 1-1: Development of the dimensions of LM Wind Power blades in the past
years. The numbers below the turbines refer to the blade length and the numbers on
top are the rotor diameter in meter and the rated power output from the turbine in
watt. Courtesy of LM Wind Power.

turbine rotors has reached significantly greater sizes than a decade ago, especially in
offshore applications. The blades manufactured by LM Wind Power are an evident
proof of this trend, as illustrated in Fig. 1-1. The latest achievement in LM Wind
Power is the 107 meters long blade installed on the GE’s Haliade-X 12 MW in 2019
[1]. Nevertheless, the design of longer blades entails new challenges not only from a
logistic point of view, i.e. manufacturing of the blades, transportation and installa-
tion, but also at a structural level. For instance, containing the gravity forces without
affecting the structural reliability of the blades becomes a critical task in the design
process [21]. Such a compromise is met by employing high-performance engineer-
ing materials. The main properties sought for when defining the materials for wind
turbine blades are the following: high strength and fatigue resistance to endure aero-
dynamic and cyclic loads during the blade operating life; high stiffness-to-mass ratio
to ensure the stability of the blade profile without increasing the gravity loads [51].
Moreover, the material should suit with the manufacturing of complex blade-shape
structures. Composite materials fulfil all the above-mentioned requirements [49]. In
addition, the stacking sequence and fibre architecture of the composite material can
be designed to improve the blade behaviour. For instance, to reduce ultimately the
fatigue load of the blade, the bend-twist coupling can be achieved by rotating the
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fibre of the unidirectional lamina located in the spar caps [17]. Consequently, fun-
damental technological developments have been achieved in the past decades and,
nowadays, the versatility of composite materials is exploited to meet high structural
requirements at competitive prices. The methodology employed at LM Wind Power is
based on glass fibre infused with polyester resin. Nonetheless, the growth of the blade
dimensions in recent years has led to the development of hybrid carbon technologies
which results in higher strength-to-mass ratio.

From a geometrical point of view, wind turbine blades exhibit an aerodynamic
profile, which is characterised by a circular cross section at the root, and extends till
the tip following an aerodynamic profile similar to the one shown in Fig. 1-2. The
surface of a typical wind turbine blade presents lengthwise geometrical variations
(LGVs). Two main geometrical features are taper and twist of the cross section.
The former refers to the variation of the airfoil dimensions along the blade span;
the latter is the rotation between the airfoil chord line and the rotor plane before
deformation, and it is designed in order to increase the lift-to-drag ratio [13]. In
addition, the blade longitudinal axis presents a precurved design prior deformation to
increase the tower-tip clearance and, therefore, to reduce the required blade stiffness.
However, the structural response occurring in straight, untwisted and prismatic beams
may be affected by LGVs. Consequently, classic beam theory does not suffice for
accurate stress analysis of complex structures, and entails the development of advance
beam theories. Because of the rapid advancement of wind technology in the global
market and the consequent increase of the costumers’ demand for new blade designs
in shortened time, computationally efficient blade design tool have been developed in
the past decades and further investigations are required to include LGVs effects and
to obtain accurate and optimal structural designs.

1.1 Motivation

Full 3D finite element models are able to describe the behaviour of complex struc-
tures, such as wind turbine blades and plane wings. Particularly, they can take into
consideration the effects of material and geometrical couplings due to the anisotropic
materials and the LGVs. Figure 1-3 shows an example of a wind turbine blade profile
and its cross section. Notwithstanding the above-mentioned capabilities of 3D finite
element models, they do not suit in the early stages of the design process, when con-
ceptual aerodynamic and structural studies are performed, and thousands load cases
analysed. Indeed, the high number of degrees of freedom of 3D finite element models
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Figure 1-2: The 107-meter blade manufactured by LM Wind Power for GE’s Haliade-
X 12 MW offshore wind turbine. In the foreground, the 5.4 m diameter root and the
trailing edge. Courtesy of LM Wind Power.

is several orders of magnitude more computationally expensive than simplified anal-
yses [59]. In addition, geometrical and material details have to be defined prior to
running the finite element analysis [16]. Even more, nowadays that the wind energy
market is quickly expanding and blade designs are constantly changing to match the
costumers’ new requirements for longer and highly performing structures, the high
computational demand is a killing drawback of the adopted analysis methods. On
the other hand, wind turbine blades and plane wings can certainly be modelled as
slender structures, given their high length-to-height and length-to-width ratios. For
instance, the LM Wind Power 107 meters long blade has a slenderness ratio around
19:1 at the root which has a diameter of 5.4 meters [1]. In solid mechanics, the com-
putational cost of a full 3D finite element analysis of a slender beam is reduced by
several orders of magnitude if simplified one-dimensional beam models are employed
[57]. Therefore, the design strategy of such structures typically employs simplified
beam models in the early stages of the design where conceptual and optimisation
studies are performed. Only when a rough optimised material and structural design
are defined, a 3D finite element model of the final design is run for further studies,
e.g buckling. Simplified beam models consist of cross-sectional analysis and one-
dimensional analysis of the global response of the beam, as illustrated in Fig. 1-4.
The blade is modelled as beam elements in its longitudinal direction as shown in 1-4-
b. In order to represent properly the 3D structure and to derive correctly the global
nodal displacements, the cross-sectional stiffness properties and the coordinates of
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Figure 1-3: (a) Outer surface of an exemplary wind turbine blade where transition
zone from the root to the max chord, and the longitudinal taper angle 𝛼(𝑧) are
highlighted. (b) Typical cross-section geometry of a wind turbine blade comprised
of the lift generating airfoil made of sandwich material (black areas) and laminate
(white areas). Two shear webs are adhesively connected to the spar caps forming
the load-carrying box girder. The latter can be imagined as a thin-walled tapered
cantilever beam with rectangular cross section. From [27].

shear and elastic centre have to be provided in the beam model. Moreover, the cross-
section properties vary at each cross section of non-prismatic and anisotropic beam.
Generally, cross-section analysis is defined from cross-section equilibrium equations
and several methods are available in the literature. Cross-section analysis methods
aim to (i) derive the cross-section stiffness and inertia properties at each cross sec-
tion, and (ii) recover the cross-section stresses and strains evoked by the cross-section
forces stemming from aeroelastic simulations. The focus of the present work is di-
rected solely to cross-section analysis. Cross-section analysis methods are generally
based on the assumption of small strains and displacements. Advanced cross-section
analysis methods do not have any restrictions on the material or geometrical proper-
ties of the cross-section and, therefore, find application in composite design. Wang
et al. classify the available methods in three groups [56]. The first group is based
on 3D finite elements. These methods certainly provide accurate results in terms of
stress and displacement, but at the same time, they are computationally expensive.
Furthermore, supplementary post-processing methods, such as the Blade Properties
Extractor (BPE), are required to obtain the cross-section properties from a FEM [41].
The second group is based on classical lamination theory (CLT). An example is the
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Figure 1-4: The simplified beam model for a wind turbine rotor blade consists of
(a) the cross-section analysis, where the stiffness properties of each cross section are
derived, and (b) the one-dimensional beam analysis, where one-dimensional elements
are employed along the longitudinal direction of the blade. Only lastly (c) the 3D
finite element model of the entire structure is analysed. Figures from [10].

cross-section analysis tool Farob [39]. It assumes a thin-walled multi-cell structure,
where stiffness properties of a layup are derived from CLT and collected together
to obtain the properties of the entire cross-section [16]. 3D laminate theories have
also been employed in cross-section analysis resulting however in an overestimated
prediction of the torsional stiffness of 50-80 times [8]. The third group is based on 2D
finite element models of the beam cross section. Among them, it is worth recalling the
Variational Asymptotic Beam Sectional analysis (VABS) and the BEam Cross-section
Analysis Software (BECAS), which are both widely employed in rotor blades design
given their capability to model geometrical and material couplings within the cross
sections. In addition, the latter group is significantly less computationally expensive
than 3D FEM, as shown in the stress analysis of a generic cross section performed by
Hodges and Yu [58] via a 3D FEM (25600 brick elements) and the cross-section model
in VABS (640 quadratic elements). The former required about one hour, whereas the
latter only about 2 seconds. The anisotropic beam theory developed by Giavotto et
al. [26] is based on the hypothesis that the warping of the cross section is decoupled
from the rigid global displacement of the beam, as sketched in Fig. 1-5. In a 2D finite
element context, the theory distinguishes two types of solution for the cross-section
equilibrium equations, namely the homogeneous and particular solution. Employ-
ing de Saint-Venant principle, the particular solution refers to the extremities of the
beam where the loads are applied, whereas the homogeneous solution is the central
solutions from which the cross-section properties are derived [30]. The theory was
implemented in BECAS by Blasques [10] and in the ANisotropic Beam Analysis tool
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Figure 1-5: Sketch of the rigid and warping displacements in prismatic beam. The
rigid displacement accounts for the rigid translation and rotation of the cross sections.
The warping refers to the cross-section deformation. From Blasques [10].

(ANBA) developed by Morandini et al. [44]. As already mentioned previously, the
mass and stiffness matrices are used in the one-dimensional beam analysis to run
aeroelastic analyses, which will provide also the nodal forces of the beam elements.
Then, the same cross-section analysis tool is employed to derive the strain and stress
fields at the analysed cross section.

The cross-section commercial software VABS has been developed over the past
decades by Hodges and his collaborators [15] and it is widely employed in academia
and industry. It employs a variational method to calculate the stiffness cross-section
properties and the stress and strain fields in a generic cross section made of anisotropic
material [43]. Specifically, the Variational Asymptotic Method (VAM) by Berdichevskii
[5] is exploited. In a functional depending on small parameters, the VAM represents a
mathematical methodology exploited to derive its stationary points by dropping the
higher order terms. Consequently, it suits with elastic problems which are stated from
minimisation of the energy [30]. Order analysis has a key role in the method. To
explain it, a continuous differentiable function 𝑓(𝑧) ∈ [𝑎, 𝑏] whose order is named
𝑓 is considered. Then, the order of 𝑑𝑓/𝑑𝑧 is 𝑑𝑓/𝑑𝑧 𝑓/(𝑏 − 𝑎). Then, the gov-
erning equation of 3D elasticity is derived from the Hamilton’s extended principle∫︀ 𝑡2
𝑡1

[𝛿(𝐾 − 𝑈) + ¯𝛿𝑊 ] 𝑑𝑡 = 0, where 𝐾 and 𝑈 are the kinetic and strain energies,
𝛿𝑊 is the virtual work resulted from the external loads [59]. In order to apply the
VAM, each of the energy terms, 𝐾, 𝑈, 𝑊 , must be all written as function of the
displacement, i.e. warping and rigid body displacements. Moreover, exploiting the
slenderness of the analysed beams, the expression for the Hemilton principle can be
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Figure 1-6: Schematic representation of a step-wise prismatic approximation of a
tapered beam. The beam is modelled as a discrete sequence of n segments of length
∆z and height H(z). The taper angle 𝛼 is locally defined as the angle between the
tangent at to the beam surface at (𝑥, 𝑦, 𝑧𝑖) and the longitudinal axis of the beam.

reduced to one-dimensional variational statement
∫︁ 𝑡2

𝑡1

∫︁ 𝐿

0

[𝛿(𝐾 − 𝑈) + ¯𝛿𝑊 ] 𝑑𝑧 𝑑𝑡 = 0 , (1.1)

where 𝑧 is the longitudinal axis as shown in Fig. 1-3. In particular, assuming linear
elastic material and small strains and local rotations, the strain energy is written per
unit length. The kinetic energy term is decoupled to kinetic energy associated with
warping and rigid body displacement. Using the VAM and minimising the potential
energy, the warping displacements are obtained. More details of the method can be
found in [59, 29, 48].

The drawback of cross-section analysis methods lies in their prismatic beam as-
sumptions. Indeed, the analysed blade cross section is modelled as part of an equiv-
alent prismatic beam. In other words, the 3D structures are approximated as a
step-wise prismatic beam, namely as a sequence of prismatic slices characterised by
the dimensions and material properties of the cross section located at the correspond-
ing beam node, as shown in Fig. 1-6. In other words, each cross section is analysed
independently from the others. Although such a simplification drastically reduces the
computational time, the cross-section analysis ignores the material and geometrical
couplings due to the longitudinal direction. For instance stress concentration due to
ply-drops or lengthwise-taper effects are not depicted by the cross-section analysis
tools in their current state. To the author’s best knowledge, even though in the last
decade several researchers have addressed the effects of LGVs on beam behaviour, as
it will be described in the following chapters, implementation of LGVs in cross-section
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analysis tools is not documented in the literature and it is licit to assume that the
cross-section analysis tools are still based on step-wise prismatic models. Among the
existing LGVs, i.e. taper, twist of the cross section and precurved beam axis, this
work focuses on taper, which is generally defined as the variation of the cross-sectional
dimensions along the beam axis as depicted in Fig. 1-3. Taper in wind turbine blades
can reach amplitude up to 12∘ at the transition zone Fig. 1-3. The main consequences
of ignoring taper effects in cross-section analysis are demonstrated in [P3], where the
Cauchy stresses were computed through the 2D cross-sectional analysis tool BECAS,
3D brick finite element models, and, where available, closed-form analytical solutions.
The comparison sheds light on the deviation in terms of magnitude and distribution
of the stresses computed with the three different methods. Details on the geometry
and load conditions are available in [P3]. Particularly, the stresses computed through
the cross-section analysis are not faithful in tapered structures, in fact, some of the
stress components deviate in magnitude and others are not captured by the numer-
ical cross-section analysis. Such a disagreement could have a significant impact on
the fatigue life design of the composite laminate and it might lead to a structural
design which is distant from the optimal one. For example, Fig. 1-7-b shows the
through-thickness shear component along the web of the rectangular cross section in
Fig. 1-7-a. The flanges of the cross section are made of uniaxial E-glass/epoxy lami-
nate and the webs [+45∘ -45∘ +45∘] laminate. The cross-section forces are shear and
bending moment. The results in Fig. 1-7-b shows that BECAS predicts zero shear
𝜎23, where 0123 is the local coordinate system, whereas the results of the analytical
and 3D finite element models demonstrate that it is not zero because of the lengthwise
taper.

1.2 Outline of the thesis

The objective of the present work is to investigate efficient computational methods for
tapered beams design, which find application in several engineering fields from wind
energy to civil engineering. The final goal is a more accurate analysis of the struc-
tural design during the initial design phase, where conceptual studies and structural
optimisation are carried out. New analytical and numerical methods are proposed
which lead to a more refined prediction of the stresses acting on the cross-section of
tapered beams to improve the design reliability and reduce the cost.

The thesis consists in a collection of papers and it is structured in two parts. Part
I is an extended summary outlining the main aspects of the studies and the methods
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(a) (b)

Figure 1-7: (a) Geometry of a rectangular cross section of a tapered beam loaded at
the tip by a shear force. The internal forces at the cross section are shear force and
bending moment. The flanges are uniaxial E-glass/epoxy laminate and the webs are
[+45∘ -45∘ +45∘] laminate. (b) Shear stress component 𝜎23 in local csys along half of
the web. From [P3].

developed during the entire project. Specifically, in chapter 2 the taper effects are
analysed analytically. After a literature review on the analytical studies on tapered
beams, the method to derive analytical solutions of the Cauchy stress components
in 3D tapered beams with circular and rectangular cross sections is described. The
method is part of [P1] and [P2]. In chapter 3 the numerical method presented in [P4]
is extensively reported. The numerical cross-section analysis method consists in one-
layered tapered slice of solid elements and its derivation, implementation, validation
in MATLAB is described. In chapter 4 the discussion of the entire study is presented
to underline the contributions and limitations of both the analytical and numerical
methods. Lastly, in chapter 5 the main conclusions of this project are drawn and
topics for further research are suggested.

Part II consists of four research articles. Specifically three journal articles ([P1]
and [P2] published, and [P4] to be submitted), and a conference paper [P3].
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Chapter 2

Analytical solution for the stresses in
tapered beams

Slender structures are often designed in order to distribute the material based on the
governing internal forces. Therefore, it is not rare to obtain beam characterised by
non-prismatic geometries. Generally, beams can exhibit prior to deformation length-
wise geometrical variations (LGVs) to achieve higher aeroelastic performance in wind
turbine blades or plane wings, and higher stiffness-to-mass ratio in the girder deck
of bridges for example. For instance, the dimensions of the cross-section in a tapered
beam as the one in Fig. 2-1-a vary as function of 𝛼(𝑥, 𝑦, 𝑧), which will be defined in
the next section. Beams are twisted if the principal axes of the cross section rotate
around the longitudinal axis by a twist angle 𝜃(𝑧), as shown in Fig. 2-1-b. Beams are
defined as precurved when the longitudinal axis is not straight Fig. 2-1-c. A similar
classification of the beams based on their LGVs is provided in Balduzzi et al. [3]. In
general, a non-prismatic beam is characterised by one or more LGVs.

Slender structures are analysed as beam models, such as the classic Euler-Bernoulli
or Timoshenko beam theories [53]. When the structure exhibits LGVs, it is common
practice to further simplify the forenamed beams as stepwise prismatic, i.e. as a
sequence of prismatic beams with varying cross-section dimensions, as shown in Fig.
1-6. This method is based on the idea that the narrower the segments the smaller
the error. This work will shed light on why prismatic beam theory does not hold in
tapered beams and therefore the step-wise prismatic approach predicts strains and
stresses which can be strongly at variance with the real ones.

Particularly, this section presents an analytical method to calculate the solution in
terms of stress components in tapered beams. Closed-form solutions for thin-walled
beams with rectangular and circular cross sections, modelled under the hypotheses of
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(a) (b) (c)

Figure 2-1: Sketches of (a) constant tapered beam with circular cross section, (b)
twisted beam, where 𝜃(𝑧) is the twist angle and (c) precurved beams with a not
straight centre-line.

small strain and small displacements, and homogeneous, isotropic, linear elastic ma-
terial behaviour are presented. Although closed-form solutions are solely valid under
strict and fixed assumptions related to geometry, material and boundary conditions,
they provide the researchers with a deeper and solid understanding of the beam be-
haviour. Moreover, they can assess the accuracy of other tapered beam models and
cross-section analysis methods for in the real of tapered beams.

2.1 Literature review

Wind turbine blades exhibit all of the described LGVs. Taper along the trailing
edge of a wind turbine blade is zero in the proximity of the root and drastically
increases at the max-chord, and becomes almost constant towards the tip. The taper
factor is a function of the taper angle 𝛼(𝑥, 𝑦, 𝑧) highlighted in Fig. 1-6. In a beam
with straight centreline taper is defined as the angle between the beam longitudinal
axis and the tangent plane to the surface of the beam [7]. In the general case of a
non-constant tapered beam, the taper angle varies along the beam span, 𝛼 = 𝛼(𝑧).
Otherwise, the taper angle is constant, 𝛼 = 𝛼0. The effects of LGVs, in particular
taper, to the stress distribution have been long known. Since the beginning of the
20𝑡ℎ century, scientists started investigating beam theories of tapered beams and
developing analytical solutions. One of the first investigations on the stresses of a
tapered beam was presented by Michell [42] and Carothers [14] who employed the
elasticity theory and the plane stress state to study the behaviour of an isotropic
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planar infinite wedge loaded at its tip by a concentrated force and couple, respectively.
Both works provided the expressions of the stress components in polar coordinate
system. Exploiting the linearity of the problem and employing the superposition of
the two solutions, Galerkin [24] and, later, Knops and Villaggio [38] provided the
solutions of the stresses in a planar truncated wedge. Later, the hypotheses of linear
elasticity behind the above-mentioned studies were exploited by other researchers,
from Timoshenko and Gere [55] to more recently Bertolini [6] and Taglialegne [50],
to derive the solutions also in terms of strains and displacements, restraining the
wedge at the root as a cantilever planar wedge. The above-mentioned solutions show
that the in-plane shear components are the one most affected by taper. On the other
hand, the normal stresses are at small deviance from the ones described by the Navier
equation in a prismatic beam [55]. Given the Cartesian coordinate system depicted
in Fig. 2-1, Navier’s equation is given by

𝜎𝑧𝑧 =
𝐹𝑧

𝐴
+

𝑀𝑥

𝐼𝑥
𝑦 , (2.1)

where 𝐹𝑧 and 𝑀𝑥 are the internal axial force and bending moment, 𝐴 is the cross-
section area and 𝐼𝑥 the second moment of area. Under the Navier hypotheses, Bleich
[11] pursued an approach similar to the one employed by Jourawsky [54] to derive the
well-known formula for shear stresses in prismatic beams, which is given by

𝜎𝑦𝑧 =
𝐹𝑦 𝑆𝑥

𝐵 𝐼𝑥
, (2.2)

where the coordinate system in Fig. 2-1 is considered, 𝐹𝑦 is the internal shear force,
𝑆𝑥 is the first moment of area of the cross section, and 𝐵 the thickness of the beam.
In this approach, the Cauchy equilibrium is imposed to an infinitesimal portion of a
planar tapered beam where bending and shear are considered as internal tractions.
Assuming the Navier linear distribution for the normal stresses, in the resulting shear
stress formula shear and bending are coupled as function of the taper angle. Bleich’s
formula, which was derived for homogeneous isotropic beams, was extended to bilinear
elastic material by Jadan [35]. Later Paglietti and Carta [45] pointed out that the
maximum shear stress can occur at the centreline or at the edges in a tapered beam.
Furthermore, Zhou et al. [60] pointed out that the same shear-bending coupling is self-
balanced, hence it influences the stress distribution, but not the resultant at the cross
section. To strengthen the validity of the analytical and numerical solutions cited in
this survey, a few experiments are presented in the literature. For example, a recent
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experiment on concrete-encased beam with corrugated steel webs was performed by
Zhou et al. [61] and corroborated the fact that shear stresses are affected by the
introduction of taper in the lengthwise direction. In [P1] and [P2] an analytical
formulation of the six Cauchy stress components in 3D tapered beams is derived and
validated and it will be presented in the following sections. The method is based
on linear elasticity hypothesis and assumes that cross sections remain plane after
deformation. The formulation holds in straight, untwisted beams with a constant
taper along their longitudinal axis and thin-walled cross sections. Although closed-
form solutions in continuum mechanics are applicable only to ad hoc problems, they
are a valuable tool to get a deeper understanding of the beam behaviour and to
validate other simplified and approximate beam models. Nonetheless, the suggested
method is potentially extendable to more complex geometries. For further details,
the reader is encouraged to refer to [P1] and [P2].

2.2 Method description

In linear isotropic prismatic beams, the analytical solution of the Cauchy stress ten-
sor is determined through the classical linear elasticity theory. In other words, the
problem is described by the Cauchy equilibrium equations, the compatibility equa-
tions, and the constitutive relations together with the definition of a consistent set
of boundary conditions. A prismatic beam with homogeneous isotropic and linear
elastic material is considered. The cross section has two axes of symmetry to remove
couplings between the cross-section forces, which are axial force 𝐹𝑧 and bending mo-
ment 𝑀𝑥. the normal stresses of the problem above-mentioned are described by the
Navier formula (2.1). Boley [12] and more recently Bennati et al. [4] state that in a
tapered beam the normal stresses predicted through the Navier formula are at small
variance with the real values, for moderated amplitude of the taper angles. Contrar-
ily, the well-known Jourawsky formula Eq. (2.2) for the in-plane shear stress solution
in prismatic beams, does not hold when taper is introduced. An extension of the
aforesaid Jourawsky formula is derived from Cauchy equilibrium considerations on
the infinitesimal portion of length 𝑑𝑧 of the tapered beam in Fig. 2-2-a. The beam
has length 𝐿 and it is characterised by a constant taper angle 𝛼(𝑧) = 𝛼 and straight
longitudinal axis. The cross sections of the beam have two axes of symmetry, hence
it is defined in a principle axes coordinate system 𝑂𝑥𝑦𝑧 with origin at the left end-
section and the 𝑧−axis defined as the line of centroids of the cross sections. Moreover,
the symmetry removes the couplings between the cross-section forces and allows to
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study each case independently. The loading condition of the tapered beam results in
in-plane cross-section tractions whose integral over the cross-section area is equivalent
to the internal axial force, shear force and bending moment.

(a) (b)

Figure 2-2: (a) Segment of length 𝑑𝑧 of a general tapered beam. (b) Cross section of
the tapered beam cut by a chord of length 𝑐 and local abscissa 𝜂. From [P1].

The beam is divided into two complementary portions by a chord of length 𝑐

whose normal abscissa 𝜂 lies on the 𝑥𝑦−plane as illustrated in Fig. 2-2-b. Then,
the stress equilibrium in the 𝑧−direction of the cut portion highlighted in Fig. 2-2-a
is imposed. The stresses involved in the equilibrium are the normal stresses 𝜎𝑧𝑧(𝑧)

at 𝑧, 𝜎𝑧𝑧(𝑧 + 𝑑𝑧) at 𝑧 + 𝑑𝑧, and the shear stress 𝜎𝑧𝜂 along the cut surface of length
𝑑𝑧. Distributed axial, 𝑝, transverse, 𝑞, and couples, 𝑚, st the beam centreline are
considered as surface integrals of the body forces 𝑝𝑧(𝑧) and 𝑝𝑦(𝑧). The equilibrium in
the 𝑧−direction can be written as

∫︁

𝐴*(𝑧)

𝜎𝑧𝑧 𝑑𝐴+𝜎𝑧𝜂
𝑐 + (𝑐 + 𝑑𝑐)

2
𝑑𝑧−

𝑧+𝑑𝑧∫︁

𝑧

∫︁

𝐴*(𝑧)

𝑝𝑧
𝐴
𝑑𝐴𝑑𝑧 =

∫︁

𝐴*(𝑧+𝑑𝑧)

(𝜎𝑧𝑧 +𝑑𝜎𝑧𝑧) 𝑑𝐴 . (2.3)

Several mathematical artifices, which are described in details in [P1], lead to the
following expression of the in-plane shear component

𝜎𝑧𝜂 =
1

𝑐

[︂
𝐹𝑧

𝑑

𝑑𝑧

(︂
𝐴*

𝐴

)︂
+ (𝐹𝑦 −𝑚𝑥)

𝑆*
𝑥

𝐼𝑥
+ 𝑀𝑥

𝑑

𝑑𝑧

(︂
𝑆*
𝑥

𝐼𝑥

)︂]︂
, (2.4)

where 𝑚𝑥(𝑧) is the distributed bending couple. Equation (2.4) is an extended version
of Jourawsky’s equation(2.2), where the variation of the cross-section dimensions
along the longitudinal beam axis, represented by the term 𝑑/𝑑𝑧, is taken into account.
In the prismatic case, i.e. 𝑑/𝑑𝑧 = 0, Eq. (2.4) correctly reduces to Eq. (2.2).
Moreover, it is also a generalisation of the Bleich formula, since it accounts for the
shear-axial coupling. The axial force and the bending moment appear as function of

15



𝑑/𝑑𝑧. Specifically, the internal axial force is responsible for shear stress which varies
linearly with the variation of the area of the cross section, and the bending moment
causes shear stress as function of the variation of the first moment of area with respect
to the second moment of area.

The expressions of the normal stress 𝜎𝑧𝑧 and shear stress 𝜎𝑧𝜂 work for the general
case of tapered beams with doubly symmetric cross sections in the linear elastic
domain. In the following part, the thin-wall theory is employed. The lateral surfaces
of the beam are assumed in plane-stress state and a local reference system 𝑂123 can
be defined in such a way that the through-thickness stress components are zero. The
local coordinate system is tangent to the middle-wall of the beam, with the 2−axis
tangent to the wall and the 3−axis outward normal to the same surface of the beam,
as shown in Fig. 2-4. Given a taper angle 𝛼, a rotation matrix R can be defined to
transform the local coordinate systems 𝑂123 to the global 𝑂𝑥𝑦𝑧. The rotation matrix
R allows to transform the stress components from the local coordinate system to the
global one through the relation 𝜎(𝑥, 𝑦, 𝑧) = R𝑇 𝜎(1, 2, 3)R. The latter consists in
a set of six linearly independent equations whose solution provide the expressions of
the three through-thickness stress components in the global coordinate system.

Lastly, to determine the remaining stress component the following Cauchy equi-
librium equations are employed:

∇𝜎 = 0 . (2.5)

Equation (2.5) in three-dimensional problems defined in the Cartesian reference sys-
tem consists of partial differential equations. Consequently, the solutions are defined
up to a constant of integration. The latter can be defined by imposing the stress
equilibrium of an infinitesimal portion of length 𝑑𝑧 of the cross section anew. More
details are provided in the example described in the following section.

2.3 Application

Tapered box girders find several applications in the civil and aerospace field. The deck
girders of a bridge or the main spar of a wind turbine blade are typically designed
as vertically or doubly tapered thin-walled beams with rectangular or I-shaped cross
section. Structures such as bridge piers or the towers of wind turbines are designed as
conical beams. Therefore, the present method is applied to three specific geometries
inspired by real applications. Hence, closed-form solutions for conical beams and
tapered box girders are derived and compared to the results from 3D finite element
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models based on linear eight-noded elements to corroborate the validity of the derived
analytical solutions. The solution for the thin-walled doubly tapered cantilever beam
in Fig. 2-3 presented in [P2] will be derived as an example. The conical beam and
vertically tapered beam are instead treated in [P1].

(a) (b)

(c) (d)

Figure 2-3: (a) Side and (b) top view of a tapered cantilever box girder. The beam
has length 𝐿 and presents a vertically and horizontally tapered profile. Specifically,
constant vertical taper angle 𝛼 and constant horizontal taper angle 𝛽. (c) Front view
and (d) exemplary cross section of the doubly tapered box beam, where the projected
thicknesses of the flanges and webs are highlighted. From [P2].

In order to solve the structure, support conditions are necessarily defined, but at
the same time, they are not bound to the method. Thence, the beam is model as a
cantilever beam with a clamped end at 𝑧 = 0 and free tip at 𝑧 = 𝐿, where 𝑧 is the
longitudinal beam axis and 𝐿 is its total length, as shown in Fig. 2-3. The box girder
presents a constant vertical taper 𝛼 and a constant horizontal taper 𝛽. The former
is defined as the angle between the 𝑥𝑧− and the flange planes and the latter is the
angle between the 𝑦𝑧− and webs planes. In the following, superscript 𝑓 and 𝑤 refers
to the flange and web respectively. The taper angles are constant, hence the width
2𝑏(𝑧) and the height 2ℎ(𝑧) of the beam cross section constantly vary along the beam
span decreasing from the root (𝑧 = 0) to the tip 𝑧 = 𝐿. Specifically, the following
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linear relations uniquely define each point of the cross section:

𝑏(𝑧) = 𝑏0 − 𝑧 tan 𝛽 , ℎ(𝑧) = ℎ0 − 𝑧 tan𝛼 . (2.6)

where 𝑏0 and ℎ0 are the width and the height of the cross section at the root. Because
of the horizontal and vertical taper, the thickness of the webs and flanges, i.e. 𝑡*𝑤 and
𝑡*𝑓 , is projected on the 𝑥𝑦−plane as

𝑡𝑤 =
𝑡*𝑤

cos 𝛽
, 𝑡𝑓 =

𝑡*𝑓
cos𝛼

. (2.7)

The external forces accounted for are the concentrated bending moment around the
𝑥−axis 𝑀𝑥 and a concentrated force 𝐹𝑒 arbitrarily directed. They are applied at
the centroid of the cross section located at 𝑧 = 𝐿. By exploiting the superposition
principle, the concentrated force 𝐹𝑒 is decomposed along the 𝑥− and 𝑦− axes in
axial 𝐹𝑧 and shear 𝐹𝑦 components. Once the beam geometry, load conditions and
boundary conditions are defined, the above-described method can be applied to derive
the Cauchy stresses at a specific cross section. Firstly, the normal stresses are directly
determined through Navier’s equation Eq. (2.1). Then, the shear stress distribution
in tapered beams is given by Eq. (2.4). To apply the latter equation, a cut through
the walls whose local abscissa 𝜂 is chosen moving clock-wise has to be defined. Since
the cross section has two axes of symmetry, the in-plane shear component is zero at
the middle of the flanges (𝑥 = 0, 𝑦 = ±ℎ) for stress equilibrium. Therefore, the cut
is chosen to have the origin at the centre of the flange and the area and first moment
of area are given in the flanges as

𝐴* = 𝑥 𝑡𝑓 , 𝑆*
𝑥 = 𝑥ℎ(𝑧) 𝑡𝑓 , (2.8)

𝐴* = [ℎ(𝑧) − 𝑦] 𝑡𝑤 + 𝑏(𝑧) 𝑡𝑓 , 𝑆*
𝑥 = 𝑏(𝑧)ℎ(𝑧) 𝑡𝑓 + [ℎ(𝑧)2 − 𝑦(𝑧)2]

𝑡𝑤
2
. (2.9)

A local coordinate system 𝑂123 can be defined in both the flanges and the webs,
in such a way that the 2−axis is in parallel to 𝑥− and 𝑦−direction respectively
and the 3−axis is outward normal to the related planes, as illustrated in Fig. 2-4.
Therefore, two rotation matrices should be defined to transform the stresses from
the local to the global reference system. The transformation provides the through-
thickness stress components in global coordinate system as functions of the normal
and shear components scaled by a function of the taper angles. The solutions for the
flanges and webs are obtained as functions of the taper angle and the normal and
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Figure 2-4: Local coordinates systems 𝑂1𝑤2𝑤3𝑤 and 𝑂1𝑓2𝑓3𝑓 defined on the webs
and the flanges of a doubly tapered box girder. The webs and flanges have thicknesses
𝑡𝑤 and 𝑡𝑓 respectively. The 2−axis is parallel to 𝑥− and 𝑦−direction respectively and
the 3−axis is outward normal to the related planes. From [P2].

shear components.

𝑅𝑓 =

⎡
⎢⎣

0 − sin𝛼 cos𝛼

1 0 0

0 cos𝛼 sin𝛼

⎤
⎥⎦ , 𝑅𝑤 =

⎡
⎢⎣
− sin 𝛽 0 cos 𝛽

0 1 0

cos 𝛽 0 sin 𝛽

⎤
⎥⎦ . (2.10)

Lastly, from the first and second Cauchy equilibrium equations given in Eq. (2.11)
the two missing stress components 𝜎𝑓

𝑥𝑥 and 𝜎𝑤
𝑦𝑦 can be derived:

𝜎𝑤
𝑦𝑦 = −

𝑦∫︁

0

𝜕𝜎𝑤
𝑦𝑧

𝜕𝑧
𝑑𝑦 + 𝜎𝑤

𝑦𝑦

⃒⃒
𝑦=0

, 𝜎𝑓
𝑥𝑥 = −

𝑥∫︁

0

𝜕𝜎𝑓
𝑧𝑥

𝜕𝑧
𝑑𝑥 + 𝜎𝑓

𝑥𝑥

⃒⃒
𝑥=0

. (2.11)

However, two constants of integration 𝜎𝑤
𝑦𝑦|𝑦=0 and 𝜎𝑓

𝑥𝑥|𝑥=0 have to be determined. The
expedient exploited to find the constants of integration is based on the equilibrium
in the 𝑥− and 𝑦−directions of the intersection between the flange and the web of
infinitesimal length 𝑑𝑧 which is shown in Fig. 2-5. The stress components are then
compared to the ones predicted in an equivalent 3D finite element model for validation
purposes. Such a comparison shows a good agreement between the two methods.
Hence, the analytical method predicts with good approximation the Cauchy stresses
in tapered beam within its boundaries of applicability.

The closed-form solutions of the six Cauchy stresses are then derived for a doubly
tapered box girder made of homogeneous isotropic beam. The expressions are not
reported for the sake of brevity, but they are available in [P1] and [P2]. The following
points are worth to be discussed.
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The Navier formula

The method is developed from the key-assumption that the normal stresses in tapered
beams can be described with good approximation by the Navier formula. Surely,
employing the Navier formula represents a favourable expedient to derive accurate
results through a handy methodology. However, it is worth underlining that Navier’s
formula does not retrieve the exact normal stresses distribution in tapered beams. If
a planar wedge is considered, the exact normal stresses follow a quadratic distribution
as demonstrated in [4] and as it will be shown numerically in chapter 3. However, the
error committed in approximating it to a linear distribution is small and acceptable
for moderate taper angles ( 10∘) [50].

Stresses distribution

Besides the normal stress components, which are assumed to be defined as in prismatic
beams, the remaining stress components are functions of the vertical or horizontal
taper angles. Among them, the in-plane shear stress given by Eq. (2.4) is mostly
affected by taper. Taper induces a shear-axial coupling as function of 𝑑/𝑑𝑧(𝐴*/𝐴),
and a shear-bending coupling proportional to 𝑑/𝑑𝑧(𝑆*

𝑥/𝐼𝑥), which might result in
a counterintuitive shear stress distribution. Indeed, if the shear-bending coupling
prevails over the pure shear term, the curvature of the shear distribution is affected.
For example, Figures 2-6 shows how a horizontal or vertical taper angle, which has
the same amplitude of 4.3∘, modifies the in-plane shear stress distribution 𝜎𝑦𝑧 along
the web. An internal shear force 𝐹𝑦 and an internal bending moment around the
𝑥−direction, 𝑀𝑥, are assumed to occur at the analysed cross section, hence the first

(a) (b)

Figure 2-5: Cauchy stresses in the (a) 𝑥− and (b) 𝑦− direction on an infinitesimal
portion 𝑑𝑧 of the corner between the flange and the web of a doubly tapered beam.
From [P2].
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Figure 2-6: In-plane shear stress distribution along half of the web of the box girder of
Fig. 2-3 where (a) 𝛼 = 0 and 𝛽 = 𝛽0 ̸= 0 (horizontal taper angle), (b) 𝛼 = 𝛼0 ̸= and
𝛽 = 0 (vertical taper angle) tapered box girder. In both cases the same amplitude of
the taper angle is considered 𝛽0 = 𝛼0 = 4.3∘. From [P2].

term in Eq. (2.4) is zero. Figure 2.4 shows the shear stress along half of the web of
the box girder. In addition, the shear distribution due to the second and the third
term of Eq. (2.4), i.e. "pure shear" and "pure bending" respectively, are reported
separately. Figure 2-6-a refers to the horizontally tapered box girder, whereas Figure
2-6-b to the vertically one. Both cases exhibit the same pure shear stress distribution
since it is not a function of the taper angle. On the other hand, the pure bending
considerably depends on the taper angle and has a stronger influence in the vertically
tapered case where, because of taper, the maximum shear stress occurs at the edge
(𝑦 =500 mm) and the minimum at the centre (𝑦 = 0). It is worth noting that
the stress components in global coordinate system, none of which is zero in doubly
tapered beams, are derived from the Cauchy equilibrium. Hence, they are expressed
as functions of the normal and/or the in-plane shear and the tangent of the taper
angles. In addition, since the magnitude of the internal shear-bending force varies
along 𝑧, so does the curvature of the in-plane shear stress distribution. As an example,
Fig. 2-7 shows the variation of the shear stress distribution at several cross section
of a doubly tapered beam loaded by a shear force at its tip.
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Figure 2-7: In-plane shear stress along the webs at seven cross sections of a tapered
box girder subjected to 𝐹𝑦 = 1 kN. The stresses at location 1 −−6 are characterised
by a convex distribution with maximum values at the edges of the webs. This is in
contrast to the shear stress distribution in prismatic beam, where the shear has a
concave distribution with maximum value at the centre and minimum at the edges.
Only section 7, i.e. where the shear force is applied, has a concave distribution.
Indeed, the shear-bending coupling evoked by taper is zero at that specific cross
section. From [P2].

Taper effects on the design

The analytical expressions derived in this chapter show that the stress components
are altered by the taper, and, moreover, contrarily to what expected in prismatic
beams, the stress tensor can be fully populated in a doubly tapered box girder as the
one in Fig. 2-3. Therefore, if a tapered beam is approximated as a stepwise prismatic
beam, the stress analysis produces results which are at strong variance with the real
stresses. In particular, as already pointed out, taper evokes shear-bending coupling
which is responsible for a counterintuitive distribution of the in-plane shear stress,
as shown in Fig. 2-6-b. Indeed, under the hypotheses of symmetric cross-sections
and homogeneous isotropic material, the maximum shear in a tapered box girder
does not necessarily occur in the elastic centre, as expected in a prismatic box girder,
but it might occur at the web-joints due to the shear-bending effect. Moreover,
in the global coordinate system taper induces through-thickness shear components
which would not occur in prismatic beams. Neglecting the effects of transverse shear
components and underestimating the in-plane shear stress at the flange-web joints,
could be detrimental in composite tapered box girder design, such as wind turbine
blades. The outer shell and shear webs of the blades are generally assembled through
adhesive bonded joints [37]. Adhesive bonded joints are prone to debonding failure
and delamination [47], which are mainly governed by transverse shear. Hence, a wrong
prediction of the in-plane and through thickness shear could affect the performance
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of the entire structure. In addition, providing the designer with more accurate stress
analysis solution, would increase the design reliability and, ultimately, lowering the
safety factors. The latter would have an important impact on the blade mass and
costs. In addition, transversely oriented cracks which occur in the adhesive joints of
rotor blades could be caused by the through thickness stresses due to taper. Eder et
al. [22] pointed out the possible relation between the cracks and LGVs.

Since taper modifies the entire stress tensor, also failure and fatigue designs are
affected by it. Employing the provided analytical solutions, such effects can be eval-
uated by applying, for example, the von Mises failure criterion [36] to derive the
equivalent stress in isotropic beams. The von Mises stress is given as

𝜎𝑣𝑀 =

√︂
1

2

[︀
(𝜎𝑥𝑥 − 𝜎𝑦𝑦)

2 + (𝜎𝑦𝑦 − 𝜎𝑧𝑧)
2 + (𝜎𝑧𝑧 − 𝜎𝑥𝑥)2 + 6

(︀
𝜎2
𝑥𝑦 + 𝜎2

𝑥𝑧 + 𝜎2
𝑦𝑧

)︀]︀
.

(2.12)
If the maximum equivalent stresses in tapered and in prismatic beams are compared,
as shown in Fig. 18 of [P2], taper effects are not so severe, especially in bending-
dominated problems. Indeed, it is worth recalling that the normal stresses in tapered
beams are approximated with the prismatic distribution given by Navier’s equation
(2.1). On the other hand, even a small variation of the equivalent stress leads to a
strong deviance in terms of fatigue, since the stress amplitude and the number of
cycles to failure are related with a power-law relation [2]. To provide the reader with
an example, a box girder loaded by a shear force at its tip is vertically and horizontally
tapered with a taper angle equal to 5∘, the von Mises stress results to be the 3% lower
than in a prismatic beam. However, if the same von Mises stress is employed in the
fatigue design, the number of cycles to failure calculated by means of Basquin’s law of
fatigue [2] are about 15% lower than in the prismatic case. Consequently, the fatigue
design might be underestimated.

It is licit to expect that taper evokes all the six stress components also in tapered
composite beams, which are strongly susceptible to transverse stresses [46, 23]. Also
in case of composite materials, a fully populated stress tensor could have detrimental
effects on the failure design and the fatigue performance. Therefore, since taper
induces a complex multiaxial stress state, accurate stress analysis inclusive of taper
effects is necessary to avoid an overestimation of the number of cycles to failure.
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Chapter 3

Numerical analysis for the stresses in
tapered slices

The analytical studies illustrated in the previous chapter prove that taper has a key
role in the analysis of tapered beams. Indeed, the variation of the dimensions in the
beam lengthwise direction affects the stress distributions at each cross section. As ex-
plained in the introduction of this thesis, aircraft wings and wind turbine towers and
blades are modelled as slender structures which are designed to endure cyclic aerody-
namic loads to prevent failure and fatigue damage. Whilst 3D finite element models
would provide an accurate description of the behaviour of such structures, simplified
models are required to shorten the computational time and to allow iterative analysis.
Exploiting the slenderness of the above-mentioned structures, the 3D real beam can
be modelled by means of beam elements. Wind turbine blade design process consists
of several phases that are executed sequentially. Given the material and geometrical
properties of the airfoil and internal webs in Fig. 1-3, cross-section analysis is em-
ployed to compute the stiffness and mass matrices and the elastic and shear centres
of the considered cross section. This information is necessary in aeroelastic analysis,
where the entire wind turbine is modelled via beam elements [52]. The aeroelastic
analysis is carried out to provide the time history of the nodal beam forces. The latter
are then used in the same cross-section analysis tool to obtain the strain, stress and
displacement of the cross sections. The cross-section analysis tools have therefore two
scopes: (i) evaluation of the cross-section stiffness properties and (ii) recovering the
stress and strain tensors in the nodes of the elements discretizing the cross section.
The cross-section analysis methods employed in composite structure design have the
capabilities to deal with material anisotropy and complex cross-section geometries,
but they generally ignore the geometrical variations in the lengthwise direction, e.g
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taper. However, as described in previous chapters, tapered beams present a different
behaviour than prismatic beams. In particular, the stress components can be strongly
affected and, consequently, neglecting taper effects could lead to non-accurate design.
The goal of this chapter is to investigate an alternative cross-section analysis method
which takes into account the lengthwise taper of the beam. The work presented here
is supplementary to the manuscript [P4].

3.1 Literature review

To the author’s best knowledge, most of the cross-section analysis tools available
in the literature are based on the step-wise prismatic assumption [29], namely the
cross-section material and geometrical properties are assumed to be constant along
the beam longitudinal axis as shown in Fig. 1-6. Such an approximation as been
long supported by the idea that narrower prismatic steps, would capture the correct
tapered beam behaviour. Results shown in chapters 1 and 2 demonstrate that it
is not the case since taper induces geometrical couplings in the stress components.
However, including taper in the current cross-section methods is a non-trivial task,
as will be explicated in the following. For instance, the theory behind BECAS, i.e.
the anisotropic beam theory from Giavotto et al. [26], is considered. The theory is
based on the prismatic beam assumption, i.e. the geometrical and material proper-
ties of the cross section do not vary in the longitudinal direction. In other words,
the nonprismatic beam is simplified as stepwise prismatic, as shown in Fig. 1-6.
The internal work of a prismatic beam is also constant in the longitudinal direction,
hence it can be defined as the surface integral of strain energy per unit length as
𝜕𝑊𝑖𝑛𝑡/𝜕𝑧 =

∫︀
𝐴
𝜀𝑇 𝜎 𝑑𝐴. Furthermore, decoupling the rigid body motions and warp-

ing, as explained in [26], allows the application of the Euler-Bernoulli theory where
the cross-section forces can be directly coupled to the cross-section displacements.
Nonetheless, if LGVs are included in the formulation of the internal work, the strain
energy cannot be defined per unit length but the volume integral, 𝑊𝑖𝑛𝑡 =

∫︀
𝑉
𝜀𝑇 𝜎 𝑑𝑉 ,

must be considered to include the variation of the geometrical properties in the longi-
tudinal direction. Attempts to extend the 2D cross-section analysis methods in that
direction are available. It is worth mentioning two studies on tapered beams that
were published from the VABS research group, where taper is introduced in the for-
mulation [31, 32]. A 2D tapered beam model is developed through the application of
the variational asymptotic method, VAM, namely the mathematical strategy applied
also in VABS and introduced in section 1.1 of chapter 1. Although the importance
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of including a taper-correction factor in the stress recovery and stiffness properties
is underlined, the theory is not fully developed [29] nor documented in the scientific
literature [48].

The current chapter lays the foundation for a cross-section analysis method which
accounts for taper effects. Differently from BECAS and VABS, where the cross sec-
tion is modelled as a 2D model, 3D solid finite elements are employed. Certainly, solid
elements have the disadvantage of increasing the size of the finite element problem
by introducing more nodes in the model. On the other hand, they allow to model
lengthwise geometrical variation such as taper and to consider the geometrical cou-
plings introduced by taper itself. Two cross-section analysis methods based on 3D
solid finite element model are already available in the literature and will be addressed
in the following. Ghiringhelli and Mantegazza [25] derived the cross-sectional proper-
ties of a prismatic linear, and untwisted beam from the 3D model of the cross section.
The cross section is modelled using one layer in the longitudinal direction of standard
solid elements and the equilibrium solution is derived following the anisotropic beam
theory developed by Giavotto et al. [26]. One of the issues faced in the derivation
of the solution for the 3D finite element model in [25] is related to the thickness of
the model in the longitudinal direction. Nonetheless, it was concluded that the best
compromise is obtained by choosing slice thicknesses equal to the averaged elements
dimensions. More recently, Couturier and Krenk [19] have suggested the derivation of
the cross-section stiffness properties and the stress components by modelling the cross
section as a single-layered slice of solid element defined by Hermitian shape-function
in the longitudinal direction. The finite element problem is defined by imposing six
deformation modes corresponding to extension, torsion, and shear and bending in two
directions.

The novelty of the method illustrated in this chapter is the introduction of taper in
the finite element formulation, in order to include the geometrical couplings which are
completely ignored otherwise. In other words, the step-wise prismatic approximation
assumed in classic cross-section analysis methods and shown in Fig. 1-6 will be
replaced by the step-wise tapered approximation as sketched in Fig. 3-1. The finite
element model is based on serendipity linear shape-function. Three internal tractions,
whose integral over the cross-section area corresponds to axial, shear and bending,
are implemented. They are assumed to be defined under the Navier assumptions.
Then, the advantages and disadvantages of such assumptions are probed. In addition,
the six rigid-body degrees of freedom, i.e. three translations and three rotations, are
constrained through the Lagrange multiplier method. Results will show the capability
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Figure 3-1: Sketch of a step-wise tapered beam whose outer surface is defined by
𝑠(𝑧). The 3D tapered beam is approximated as a sequence of stepwise tapered beams
of length 𝑙. Each step has a constant taper angle defined as the angle between the
tangent at 𝑠(𝑧𝑖) and the beam longitudinal axis.

of the method to retrieve qualitative correct stresses in tapered slices. Moreover, the
dependency on the slice thickness is underlined and investigated through parametric
studies.

3.2 Method description

The cross section located at 𝑧 of the tapered beam shown in Fig. 3-2 is studied in
here. To define the 3D finite element model of the cross section, the slice of the
tapered beam with thickness ∆ is considered and consists of a single-layered slice
in the 𝑧−direction. The mesh topology in the 𝑥𝑦−plane is instead defined through
standard finite element convergence studies. To develop the finite element method for

Figure 3-2: Geometry and coordinate system of a beam with constant taper and
generic cross section. The highlighted cross-section slice has thickness ∆ and its
mid-cross section is located at the beam mid-span 𝑧 = 𝐿/2.

the slice, the force equilibrium of the 3D slice is imposed. The presented formulation
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is based on first-order approximation, hence geometrical and material nonlinearity
cannot be considered in the current formulation. The strains and stresses at each
point of the beam are expressed as six-terms vectors 𝜀 and 𝜎,

𝜀 = [𝜀𝑥𝑥 𝜀𝑦𝑦 𝜀𝑧𝑧 2𝜀𝑥𝑧 2𝜀𝑦𝑧 2𝜀𝑥𝑦]
𝑇 , 𝜎 = [𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑧𝑧 𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑥𝑦]

𝑇 . (3.1)

Under the assumption of linear elastic material, the strain and stress vectors are
related by the 6 × 6 material constitutive matrix 𝐸 as follows

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑧𝑧

𝜎𝑥𝑧

𝜎𝑦𝑧

𝜎𝑥𝑦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2𝜇 + 𝜆 𝜆 𝜆 0 0 0

𝜆 2𝜇 + 𝜆 𝜆 0 0 0

𝜆 𝜆 2𝜇 + 𝜆 0 0 0

0 0 0 𝜇 0 0

0 0 0 0 𝜇 0

0 0 0 0 0 𝜇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧

2𝜀𝑥𝑧

2𝜀𝑦𝑧

2𝜀𝑥𝑦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.2)

where the Lamé constants 𝜇 and 𝜆 are employed. The strain components at a point
of the cross section are defined as

𝜀 = �̂� 𝑟 , (3.3)

where 𝑟 = [𝑟𝑥 𝑟𝑦 𝑟𝑧]
𝑇 is the displacement vector of a point of the cross section and

�̂� is defined as [18]

�̂� =

⎡
⎢⎣

𝜕
𝜕𝑥

0 0 𝜕
𝜕𝑦

0 𝜕
𝜕𝑧

0 𝜕
𝜕𝑦

0 𝜕
𝜕𝑥

𝜕
𝜕𝑧

0

0 0 𝜕
𝜕𝑧

0 𝜕
𝜕𝑦

𝜕
𝜕𝑥

⎤
⎥⎦

𝑇

. (3.4)

In the finite element procedure, the 3D slice is discretised into 𝑛𝑒 elements. Therefore,
the displacement vector 𝑟 can be approximated through the element shape-functions
𝑁 and the nodal displacements 𝑢(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) = [𝑢𝑥𝑖 𝑢𝑦𝑖 𝑢𝑧𝑖]

𝑇 , where 𝑖 = 1...𝑛𝑛𝑜𝑑𝑒𝑠 ∈ N
as follows

𝑟 ≈𝑁 𝑢(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) . (3.5)

Substitution of Eq. (3.5) in Eq. (3.3) provides the strain components as function of
the nodal displacements

𝜀 = 𝐵𝑢(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) , (3.6)

where 𝐵 = �̂� 𝑁 is the 6 × 3 strain-displacement matrix. The elastic equilibrium of
the cross section is enforced through the virtual work principle [43]. The variation of
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the virtual work is given as

𝛿𝑊 = 𝛿𝑊𝑖𝑛𝑡 + 𝛿𝑊𝑒𝑥𝑡 , (3.7)

where 𝛿𝑊𝑖𝑛𝑡 and 𝛿𝑊𝑒𝑥𝑡 are the virtual variations of the internal and external work.
The internal virtual work represents the variation in strain energy:

𝛿𝑊𝑖𝑛𝑡 =

∫︁

𝑉

𝛿𝜀𝑇 𝜎 𝑑𝑉 , (3.8)

where 𝑉 is the volume. Recasting Eq. (3.2) and (3.6) in Eq. (3.8), leads to

𝛿𝑊𝑖𝑛𝑡 =

∫︁

𝑉

𝛿 𝜀𝑇 𝜎 𝑑𝑉 =

∫︁

𝑉

𝛿 𝜀𝑇 𝐸 𝜀 𝑑𝑉 =

∫︁

𝑉

𝛿𝑢𝑇 𝐵𝑇 𝐸𝐵𝑢 𝑑𝑉 . (3.9)

Neglecting the volume and surface forces, the external work is defined from the surface
integral of the shape-functions and the internal tractions 𝑝 = [𝜎𝑦𝑦 𝜎𝑦𝑧 𝜎𝑧𝑧]

𝑇 as

𝛿𝑊𝑒𝑥𝑡 = −
∫︁

𝐴

𝛿𝑟𝑇 𝑝 𝑑𝐴 = −
∫︁

𝐴

𝛿𝑢𝑇 𝑁𝑇 𝑝 𝑑𝐴 . (3.10)

Equations (3.9) and (3.10) are substituted in Eq. (3.7). Since the virtual work must
be satisfied for any virtual displacement 𝛿𝑢, a necessary and sufficient equilibrium
conditions is that 𝛿𝑊 = 0, hence 𝛿𝑊𝑖𝑛𝑡 = −𝛿𝑊𝑒𝑥𝑡. By integration over the element,
Eq. (3.7) becomes

∫︁

𝑉 𝑒

𝛿𝑢𝑇 𝐵𝑇 𝐸𝐵𝑢 𝑑𝑉 =

∫︁

𝐴𝑒

𝛿𝑢𝑇 𝑁𝑇𝑝 𝑑𝐴. (3.11)

The element stiffness matrix 𝐾𝑒 and the nodal forces vector applied by elements
𝑓 𝑒 = [𝑓𝑥, 𝑓𝑦, 𝑓𝑧]

𝑇 can be defined as

𝐾𝑒 =

∫︁

𝑉 𝑒

𝐵𝑇 𝐸𝐵 𝑑𝑉 , 𝑓 𝑒 =

∫︁

𝐴𝑒

𝑁𝑇 𝑝 𝑑𝐴 . (3.12)

Finally, the element stiffness matrices and the element nodal forces vectors are assem-
bled in the global stiffness matrix and global nodal force vector following the typical
finite element procedure,

𝐾 =
𝑛𝑒∑︁

𝑖=1

𝐾𝑒
𝑖 , 𝑓 =

𝑛𝑒∑︁

𝑖=1

𝑓 𝑒
𝑖 , (3.13)
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Figure 3-3: (a) Coordinates of the isoparametric element with centre in (𝜉0, 𝜂0, 𝜁0).
(b) Real tapered element of height 𝐻, width 𝐵 and taper angle 𝛼 with centre in
𝑥0, 𝑦0, 𝑧0. The transformation between the two system is performed through the
Jacobian matrix J.

where 𝑛𝑒 is the number of elements in the cross sections and
∑︀

𝑒 stands for the
assembling procedure. The weak form of the equilibrium defining a finite element
problem is stated by:

𝐾𝑢 = 𝑓 , (3.14)

where the stiffness matrix 𝐾 relates the nodal forces 𝑓 to the nodal displacements
𝑢. The assembled stiffness matrix 𝐾 obtained from (3.13) is singular hence not
invertible. To solve the system in (3.14) six constrains related to the six rigid body
motions have to be imposed, as illustrated in section 3.2.3.

3.2.1 The isoparametric formulation

The above-mentioned finite element formulation is defined in global Cartesian coor-
dinate (𝑂𝑥𝑦𝑧), but it is standard practice to set and solve a finite element problem in
the isoparametric coordinate system (𝑂𝜉𝜂𝜁) where the isoparametric element in Fig.
3-3 has dimensions −1 < 𝜉, 𝜂, 𝜁 < 1 in natural coordinates. The nodal coordinates
are mapped from the Cartesian to the isoparametric coordinate system and vice versa
through the application of the Jacobian matrix 𝐽 , which is defined as the gradient of
the global coordinates of the element with respect to the isoparametric coordinates
as shown below

𝐽 =

⎡
⎢⎣

𝜕𝑥
𝜕𝜉

𝜕𝑦
𝜕𝜉

𝜕𝑧
𝜕𝜉

𝜕𝑥
𝜕𝜂

𝜕𝑦
𝜕𝜂

𝜕𝑧
𝜕𝜂

𝜕𝑥
𝜕𝜁

𝜕𝑦
𝜕𝜁

𝜕𝑧
𝜕𝜁

⎤
⎥⎦ . (3.15)
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(a) (b)

Figure 3-4: (a) Representation and node-numbering of an eight-noded element, which
has nodes located only at the corners of the element. (b) The 2 × 2 × 2 Gaussian
integration scheme, where the Gauss points have coordinates

(︁
± 1√

3
, ± 1√

3
, ± 1√

3

)︁
.

Eight-noded elements have been implemented [20]. The nodal numbering and the
integration scheme are based on the standard convention illustrated in Fig. 3-4. The
eight-noded elements are defined by linear serendipity shape-functions [18], whose
expressions are reported below in the isoparametric coordinate system.

𝑁𝑖 =
1

8
(1 + 𝜉𝑖 𝜉) (1 + 𝜂𝑖 𝜂) (1 + 𝜁𝑖 𝜁) , (3.16)

where 𝑖 = 1...8 is the number of nodes per element.

The volume integrals in the finite element problem stated by Eq. (3.14) was
solved numerically [18] using 2 × 2 × 2 Gauss quadrature for the eight-noded ele-
ments. The coordinates of the Gauss points in the isoparametric coordinate system
are

(︁
± 1√

3
, ± 1√

3
, ± 1√

3

)︁
and the weight factors are equal to one.

In addition, the Jacobian is employed in the definition of the strain-displacement
matrix 𝐵 = �̂� 𝑁 in Eq. (3.6). Indeed, �̂� contains the derivatives with respect
to the global coordinates 𝑥, 𝑦, 𝑧, whereas the shape-functions are in isoparametric
coordinates 𝜉, 𝜂, 𝜁. Therefore, the derivatives in �̂� are converted by means of the
chain rule, as follows:

⎡
⎢⎣

𝜕𝑁𝑖

𝜕𝜉
𝜕𝑁𝑖

𝜕𝜂
𝜕𝑁𝑖

𝜕𝜁

⎤
⎥⎦ =

⎡
⎢⎣

𝜕𝑥
𝜕𝜉

𝜕𝑦
𝜕𝜉

𝜕𝑧
𝜕𝜉

𝜕𝑥
𝜕𝜂

𝜕𝑦
𝜕𝜂

𝜕𝑧
𝜕𝜂

𝜕𝑥
𝜕𝜁

𝜕𝑦
𝜕𝜁

𝜕𝑧
𝜕𝜁

⎤
⎥⎦

⎡
⎢⎣

𝜕𝑁𝑖

𝜕𝑥
𝜕𝑁𝑖

𝜕𝑦
𝜕𝑁𝑖

𝜕𝑧

⎤
⎥⎦ = 𝐽

⎡
⎢⎣

𝜕𝑁𝑖

𝜕𝑥
𝜕𝑁𝑖

𝜕𝑦
𝜕𝑁𝑖

𝜕𝑧

⎤
⎥⎦ . (3.17)

Hence, the opposite transformation, i.e from global to isoparametric, is computed by
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means of the inverse of the Jacobian and, therefore, expressed as:

⎡
⎢⎣

𝜕𝑁𝑖

𝜕𝑥
𝜕𝑁𝑖

𝜕𝑦
𝜕𝑁𝑖

𝜕𝑧

⎤
⎥⎦ = 𝐽−1

⎡
⎢⎣

𝜕𝑁𝑖

𝜕𝜉
𝜕𝑁𝑖

𝜕𝜂
𝜕𝑁𝑖

𝜕𝜁

⎤
⎥⎦ . (3.18)

Two critical points are encountered in the proposed finite element formulation. First,
the derivation of the nodal forces vector 𝑓 equivalent to the cross-section traction
distributions. Second, the definition and enforcement of the boundary condition.
Before probing the two points mentioned above, an investigation on the effects of
taper to the Jacobian matrix is shown.

The role of the Jacobian matrix in cross-section analysis

The Jacobian matrix is the expedient employed to map the nodal coordinates between
two reference systems. The lengthwise taper of the beam enters in the finite element
formulation by means of the same Jacobian matrix. Given a tapered element whose
nodal coordinates are defined as function of the taper angles, i.e. (𝑥(𝛼, 𝛽) , 𝑦(𝛼, 𝛽) , 𝑧),
the taper factor appears in the partial derivatives related to the correlated taper
direction. To give an example, the 3D finite element in Fig. 3-3 is considered. It is
modelled with eight-noded solid elements and it is vertically and horizontally tapered
with constant taper angles 𝛼 and 𝛽 respectively. Hence, the nodal coordinates at
𝑧 = −∆/2 are defined as 𝑥 = �̂� + ∆ tan 𝛽 and 𝑦 = 𝑦 + ∆ tan𝛼. For simplicity, the
front face has fixed dimensions equal to 𝐻 = 𝐵 = 𝐿 =2 m. The Jacobian matrix is
modified accordingly as follows

𝐽3𝐷(𝛼, 𝛽) =

⎡
⎢⎣

1 − 𝜁 tan (𝛽) 0 0

0 1 − 𝜁 tan (𝛼) 0

−𝜉 tan (𝛽) −𝜂 tan (𝛼) 1

⎤
⎥⎦ . (3.19)

The horizontal taper 𝛽 enters in the components involving a derivative of 𝑥 with
respect to 𝜉 and 𝜁, whereas the vertical taper 𝛼 affects the terms related to the
derivative of 𝑦 with respect to 𝜂 and 𝜁. As previously mentioned, 2D cross-section
analysis tools such as BECAS are based on prismatic assumptions. Consequently, the
analysed cross section is assumed to be taken from a prismatic beam with constant
geometrical and material properties in the longitudinal direction. As a consequence,
the Jacobian matrix employed in the 2D finite element formulation presents 𝐽(3, 1) =
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𝐽(3, 2) = 𝐽(1, 3) = 𝐽(2, 3) = 0. in other words:

𝐽2𝐷 =

⎡
⎢⎣

𝜕𝑥
𝜕𝜉

𝜕𝑦
𝜕𝜉

0
𝜕𝑥
𝜕𝜂

𝜕𝑦
𝜕𝜂

0

0 0 1

⎤
⎥⎦ . (3.20)

At first glance, it could be licit to assume that taper effects could be captured in
the classic cross-section analysis, e.g. in BECAS, by introducing the taper factors
directly in the Jacobian matrix, namely by imposing 𝐽2𝐷 = 𝐽3𝐷. Such a conjecture
was examined, but the shortcut did not succeed. Indeed, to account for taper effects,
the general definition of the strain energy, i.e. as volume integral and not per unit
length, is required as explained in section 3.1.

3.2.2 Equivalent nodal forces

The cross-section analysis aims to provide the cross-section stiffness properties which
are necessary to perform aeroelastic analysis of the simplified one-dimensional beam
model. The latter analysis provides the internal forces at the nodes of the beam
elements, which are then included in the cross-section analysis as internal forces to
recover the strains and stresses. In the finite element formulation, the right-hand-
side of Eq. (3.14) consists of the nodal forces vector 𝑓 , which can be obtained from
integration of the shape-functions and the internal tractions at the two cross-section
faces. The issue encountered at this point is that the aeroelastic analysis gives the
internal forces 𝜃 = [𝐹𝑧, 𝐹𝑦, 𝐹𝑥, 𝑀𝑧, 𝑀𝑦, 𝑀𝑥]𝑇 , whereas the distribution law of the
corresponding cross-section tractions remains unknown. In other words, the internal
force vector needs to be coupled to the nodal force vector: 𝜃1×6 ⇒ 𝑓1×𝑛, where n is
the total number of degrees of freedom.

Nodal forces in BECAS

Cross-section analysis tools, such as BECAS, are based on favourable 2D theories
which are able to solve the equilibrium equations employing only the internal forces.
In BECAS, for example, the expedient employed to circumvent the derivation of
the internal tractions distribution is part of the anisotropic beam theory developed
by Giavotto et al. [26] and it will be illustrated in the following. The Cartesian
coordinate system used in the formulation is given in Fig. 3-5.

The equilibrium equations of the finite element formulation are invoked from the
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Figure 3-5: Global reference system 0𝑥𝑦𝑧 of a prismatic beam. From Blasques [10].

virtual work principle, which is defined as

𝛿
𝜕𝑊

𝜕𝑧
= 𝛿

𝜕𝑊𝑖𝑛𝑡

𝜕𝑧
+ 𝛿

𝜕𝑊𝑒𝑥𝑡

𝜕𝑧
, (3.21)

where 𝑊𝑖𝑛𝑡 and 𝑊𝑒𝑥𝑡 are the internal and external work per unit length. The entire
theory is built on the hypothesis that the analysed cross section belong to a prismatic
beam, namely the material and geometrical properties of the cross section do not vary
along the beam span. The strain and stress vectors are named 𝜀 and 𝜎, whereas the
displacement and traction vectors are 𝑟 and 𝑝. Necessary and sufficient equilibrium
condition is that 𝛿𝑊 = 0, therefore Eq. (3.21) becomes

∫︁

𝐴

𝛿𝜀𝑇 𝜎 𝑑𝐴 =

∫︁

𝐴

𝜕(𝛿𝑟𝑇 𝑝)

𝜕 𝑧
𝑑𝐴 (3.22)

The displacement vector 𝑟 is defined by two terms: 𝜓 and 𝑔. The former is the
vector of the section strain parameters, i.e. the strain provoked by the rigid displace-
ment, and it is defined as 𝜓 = [𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧 , 𝜒𝑥 , 𝜒𝑦 , 𝜒𝑧]

𝑇 . The latter, 𝑔, is the warping
displacement vector, which can be written as 𝑔 = 𝑁𝑢 in the finite element discretiza-
tion, where 𝑁 is the shape functions matrix and 𝑢 is the nodal displacement vector.
After decoupling the warping and the rigid displacement, the variables of the system
of equilibrium equations are 𝑢, 𝜕𝑢

𝜕𝑧
, and 𝜓. The reader can find the whole procedure

which leads to the following system on page 11-16 of [9], which is not reported here
for the sake of brevity. The final system of the equilibrium equations becomes:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

𝑀 𝜕𝑢
𝜕𝑧

+𝐶𝑢+𝐿𝜓 = 𝑓

𝐶 𝜕𝑢
𝜕𝑧

+𝐸𝑢+𝑅𝜓 = 𝜕𝑓
𝜕𝑧

𝐿𝜕𝑢
𝜕𝑧

+𝑅𝑢+𝐴𝜓 = 𝜃

𝜕𝜃
𝜕𝑧

= 𝑇 𝑇
𝑟 𝜃

(3.23)
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where, 𝜃 is the section forces vector, and 𝑀 , 𝐸, 𝐴, 𝐶, 𝐿, 𝑅 are 6 × 6 stiffness
matrices defined on page 15 of [9]. It is worth noting that if the warping is assumed
equal to zero, 𝑢 = 0, the third equilibrium equation in (3.23) reduces to the Euler-
Bernoulli theory, 𝐴𝜓 = 𝜃, where 𝐴 represents the cross-section stiffness matrix. The
nodal force vector 𝑓 appears at the right-hand-side of the first two equations. It can
be noted that, if the left- and right-hand sides of the first equation are derived with
respect to 𝑧, and subsequently it is subtracted from the second equation, the nodal
force vector disappears:
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

𝑀 𝜕2𝑢
𝜕𝑧2

+𝐶 𝜕𝑢
𝜕𝑧

+𝐿𝜕𝜓
𝜕𝑧

= 𝜕𝑓
𝜕𝑧

𝐶 𝜕𝑢
𝜕𝑧

+𝐸𝑢+𝑅𝜓 = 𝜕𝑓
𝜕𝑧

𝐿𝜕𝑢
𝜕𝑧

+𝑅𝑢+𝐴𝜓 = 𝜃

𝜕𝜃
𝜕𝑧

= 𝑇 𝑇
𝑟 𝜃

⇒

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

𝑀 𝜕2𝑢
𝜕𝑧2

+ (𝐶 −𝐶𝑇 )𝜕𝑢
𝜕𝑧

+𝐿𝜕𝜓
𝜕𝑧

−𝐸𝑢−𝑅𝜓 = 0

𝐿𝜕𝑢
𝜕𝑧

+𝑅𝑢+𝐴𝜓 = 𝜃

𝜕𝜃
𝜕𝑧

= 𝑇 𝑇
𝑟 𝜃

(3.24)
Consequently, the nodal forces vector does not explicitly appear in the finite element
formulation and its derivation is not required.

Differently, the presented 3D finite element method of the tapered slice requires the
definition of the nodal forces to solve Eq. (3.14), hence the distribution of the internal
tractions must be defined. A first attempt to solve the finite element problem of the
tapered slice described above is investigated for the case of a rectangular cross section
with constant vertical taper 𝛼. In the derivation of the analytical method in chapter 2,
it was demonstrated that a tapered beam behaviour can be described, with acceptable
approximation, by the Navier hypotheses. Hence, the normal stresses in a tapered
beam follow a similar distribution to the stresses in prismatic beam given by Eq.
(2.1). Such an assumption allows the derivation of the whole Cauchy stress tensor by
imposing the equilibrium of an infinitesimal portion of the tapered beam. Exploiting
this outcome, the internal tractions of the finite element model are applied based
on prismatic assumptions. Similarly, it is assumed that the pure shear traction due
to the internal shear force is also defined from the Jourawsky equation (2.2) which
only holds in prismatic beams. In other words, the stress distribution is assumed
according to prismatic theory and the three internal load conditions, i.e. extension,
shear and bending, are modelled at the two faces of the slice as represented in Fig.
3-6. Once the traction distributions at the two faces of the slice are assumed, the
shape-functions are employed to derive the equivalent nodal forces by integrating over
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(a) (b) (c)

Figure 3-6: Assumed cross-section tractions acting at the two faces + and − of the
beam slice of thickness ∆ and related internal forces. The latter are the integral over
the face surface of the internal tractions. Three load cases are considered, namely (a)
axial force 𝐹𝑧, (b) shear force 𝐹𝑦, and (c) bending moment around the 𝑥−axis 𝑀𝑥.

the area 𝐴 of the related face:

𝑓 =

∫︁

𝐴

𝑁𝑇 (𝜉, 𝜂, 𝜁)𝑝(𝑥, 𝑦, 𝑧) 𝑑𝐴 , (3.25)

where 𝑝(𝑥, 𝑦, 𝑧) to the surface tractions in the global coordinate system, and𝑁 (𝜉, 𝜂, 𝜁)

to the shape-functions evaluated at 𝜁 = ±1, namely at the front and back face of the
isoparametric element. A change of coordinates is required in Eq. (3.25), since the
shape-functions are in the natural coordinates system whereas the internal traction
𝑝(𝑥, 𝑦, 𝑧) and the area 𝐴(𝑥, 𝑦, 𝑧) are in the global coordinate system. As explained
earlier, the transformation between two coordinate systems can be performed through
the Jacobian matrix given in Eq. (3.15), assuming 𝜁 = ±1. Moreover, the Jacobian
itself is responsible for introducing the taper-parameters, as shown in Eq. (3.19).
Since each component of the Jacobian matrix gives the relation between global and
natural coordinates, the cross-section area can be directly expressed as

𝑑𝐴 = 𝑑𝑥 𝑑𝑦 = |𝐽 | 𝑑𝜉 𝑑𝜂 , (3.26)

where |𝐽 | is the determinant of the Jacobian matrix. In case of a slice with a rectangu-
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lar cross section, the internal tractions are defined as functions of 𝑦. The 𝑦−coordinate
has to be transformed to the natural coordinates. It can be done from the definition
of the component 𝐽(2, 2), which gives 𝑑𝑦 = 𝐽(2, 2) 𝑑𝜂. Substitution of the latter
equations into Eq. (3.25) provides the required transformation as

𝑦 =

∫︁
𝐽(2, 2) 𝑑𝜂 = 𝐽(2, 2) 𝜂 + 𝑐𝑦 , (3.27)

where 𝑐𝑦 is the integration constant. The latter can be derived by imposing the
equivalence between the coordinates at the centre of the real element (𝑥0 , 𝑦0 , 𝑧0) and
at the centre of the isoparametric element 𝜉0, 𝜂0 , 𝜁0. The latter coordinates are always
equal to 𝜉 = 0, 𝜂 = 0 , 𝜁 = 0 from the isoparametric element definition as shown in
Fig. 3-3. Moreover, if the slice is only vertically tapered, i.e. 𝛽 = 0 in Fig. 3-3, the
effects of taper are introduced in the formulation through the Jacobian component
𝐽(2, 2) = 1 − 𝜁 tan (𝛼).

The above-mentioned procedure can be applied to the axial, shear and bending
cases and gives the expressions for the equivalent nodal forces. In the particular case
of rectangular cross section they become

pure axial: 𝑓𝑖 = 𝐹𝑧

∫︁ 1

−1

∫︁ 1

−1

𝑁𝑖(𝜉, 𝜂)

𝐴
|𝐽 | 𝑑𝜉 𝑑𝜂 , (3.28)

pure bending: 𝑓𝑖 = 𝐹𝑦

∫︁ 1

−1

∫︁ 1

−1

𝑁𝑖(𝜉, 𝜂)

𝐼𝑥
[𝐽(2, 2) 𝜂 + 𝑦] |𝐽 | 𝑑𝜉 𝑑𝜂 , (3.29)

pure shear: 𝑓𝑖 = 𝑀𝑥

∫︁ 1

−1

∫︁ 1

−1

𝑁𝑖(𝜉, 𝜂)

𝐼𝑥

[︂
𝐻2

8
− (𝐽(2, 2) 𝜂 + 𝑦)2

2

]︂
|𝐽 | 𝑑𝜉 𝑑𝜂 . (3.30)

where 𝐴, 𝐻 and 𝐼𝑥 are the area, height and the second moment of area of the cross
section, 𝐹𝑧, 𝐹𝑦, 𝑀𝑥 are the cross-section forces, 𝑦 the 𝑦−coordinate of the centre of
the element (𝑥0, 𝑦0, 𝑧0). The surface integrals above are solved numerically through
a Gauss quadrature. In case of eight-noded elements, the 2 × 2 schema is applied.
The Gauss points coordinates and weights are the same mentioned in the previous
section.

3.2.3 Boundary conditions

The global stiffness matrix K becomes singular after assembling, meaning that the
system is unstable due to zero-energy modes and cannot be solved. Nonetheless, in
order to solve the equilibrium system in Eq. (3.14) the stiffness matrix has to be
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definite positive. Eigenvalue analysis shows that six free body modes occur and they
correspond to three rigid translations and three rigid rotations. Hence, six constraints
need to be enforced to remove the rigid body modes from the solution [18]. In order
to apply the six rigid body motions without restraining the warping, the summation
of the nodal displacements and the rotations, i.e. the average rotation of the cross
section, are imposed to be zero [10]. In other words:

𝑛𝑛∑︁

𝑖=1

𝑢(𝑖)
𝑥 = 0,

𝑛𝑛∑︁

𝑖=1

𝑢(𝑖)
𝑦 = 0,

𝑛𝑛∑︁

𝑖=1

𝑢(𝑖)
𝑧 = 0 , (3.31)

𝑛𝑛∑︁

𝑖=1

−𝑧𝑖 𝑢
(𝑖)
𝑦 + 𝑦𝑖 𝑢

(𝑖)
𝑧 = 0,

𝑛𝑛∑︁

𝑖=1

𝑧𝑖 𝑢
(𝑖)
𝑥 − 𝑥𝑖 𝑢

(𝑖)
𝑧 = 0,

𝑛𝑛∑︁

𝑖=1

−𝑦𝑖 𝑢
(𝑖)
𝑥 + 𝑥𝑖 𝑢

(𝑖)
𝑦 = 0 . (3.32)

where 𝑛𝑛 is the total number of nodes, (𝑢
(𝑖)
𝑥 , 𝑢

(𝑖)
𝑦 , 𝑢

(𝑖)
𝑧 ) are the nodal displacements in

the three directions 𝑥, 𝑦, 𝑧, and (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) are the nodal coordinates expressed in the
global coordinate system for the 𝑖𝑡ℎ node [10].

Referring to Eqs. (3.31) and (3.32), it is noteworthy to mention that the boundary
conditions are not explicit and they can be applied through the Lagrange multipliers
method, which imposes the constraints directly in the virtual work principle. The
homogeneous equation 𝐶 𝑢 = 0 includes the constraints given in Eqs. (3.31) and
(3.32). They are collected in the constraints matrix 𝐶 which is defined as follows

𝐶 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 ... 0 0 1

0 0 𝑦1 0 0 𝑦𝑛𝑛

0 0 −𝑥1 0 0 −𝑥𝑛𝑛

−𝑦1 𝑥1 0 ... −𝑦𝑛𝑛 𝑥𝑛𝑛 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.33)

The constraint relation can be multiplied by the row vector 𝜆 that comprises the
Lagrange multipliers 𝜆𝑖 in the same number as the constraints equation, i.e. six in
this case:

𝜆(𝐶𝑢) = 0 . (3.34)

The potential energy can be defined and the constraints relation Eq. (3.34) can be
added to it without affecting the energy [18]:

Π𝑃 =
1

2

(︀
𝑢𝑇𝐾𝑢− 𝑢𝑇𝑓

)︀
+ 𝜆(𝐶𝑢) = 0 (3.35)
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The solution of Eq. (3.35) can be obtained by minimisation of the potential energy,
∇
𝑢,𝜆

Π𝑃 = 0:

𝜕Π𝑃

𝜕𝑢
𝛿𝑢+

𝜕Π𝑃

𝜕𝜆
𝛿𝜆 = 0 , (3.36)

which must hold for any arbitrary 𝛿𝑢 and 𝛿𝜆. In other words:

𝜕Π𝑃

𝜕𝑢
= 0 ,

𝜕Π𝑃

𝜕𝜆
= 0 . (3.37)

Expressing the latter system in a matrix form leads to the new formulation of the
equilibrium system where constraints are enforced:

[︃
K C𝑇

C 0

]︃[︃
u
𝜆

]︃
=

[︃
f
0

]︃
. (3.38)

The solution to the system of equations provides the displacement row vector 𝑢
which occurs under the imposed boundary conditions, and the Lagrange multipliers,
which can be interpreted as forces applied to impose the constraints. Although the
versatility of the Lagrange multipliers method, it increases the number of variables
in the system of equation, hence higher order. In addition, since zero entries appear
on the diagonal of the matrix in the left hand-side of Eq. (3.38), the matrix becomes
positive semi-definite and the system of equations cannot be solved directly through
e.g. the Cholesky factorisation method. Other factorisation and iterative methods
can be employed [28].

At this point, the system of equations comprehensive of the constraints can be
solved for the nodal displacements u. Then, strains and stresses are obtained through
numerical integration, i.e. they are evaluated at the Gauss points. For validation
purposes, the numerical stresses are compared with the analytical ones. Therefore, the
nodal stresses are derived through interpolation of the shape-functions as in standard
procedure, and then, the interpolated values are averaged to get the stress at the
centre of each element, as pointed out in Fig. 3-8.

Pseudo code of the FE implementation

In this section, the procedure implemented in MATLAB is presented in Table 3.2.3.
The number of degrees of freedom per node, 𝑛𝑑𝑜𝑓 , is equal to 3. The number of
elements of the model is 𝑛𝑒. The number of nodes per element is 8 and the total
number of nodes is 𝑛𝑛𝑜𝑑𝑒𝑠. The dimensions of the matrices and vectors are reported
in brackets.
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Table 3.1: Procedure to derive the assembling matrix adof, the stiffness matrix K𝑎,
equivalent nodal forces f𝑎

ASSEMBLY PROCEDURE

(1) Initialise list vector of dof for the model tdof, (1 × ndof · n𝑛𝑜𝑑𝑒𝑠)

(2) loop over 𝑖 = 1...(8 · 𝑛𝑑𝑜𝑓 · 𝑛𝑒)

(3) loop over 𝑗 = 1...(𝑛𝑑𝑜𝑓 · 𝑛𝑛𝑜𝑑𝑒𝑠)

if j = tdof(i), adof(i,j) = 1

else, adof(i,j) = 0

ELEMENT STIFFNESS MATRIX

(1) Initialise K𝑎 (ndof · n𝑒)

(2) Loop over elements 𝑛𝑒

Calculate the Jacobian matrix with differentiation of shape-functions

(3) Loop over the element nodes
Assemble the strain-displacement matrix B

(4) Loop over the Gauss points
Calculate 𝐾 = 𝐵𝑇 𝐸𝐵 |𝐽 |

(5) Assemble to global stiffness matrix (𝑑𝑜𝑓 · 𝑛𝑛𝑜𝑑𝑒𝑠 × 𝑑𝑜𝑓 · 𝑛𝑛𝑜𝑑𝑒𝑠)
𝐾𝑎 =adof𝑇 𝐾𝑒 adof

NODAL FORCES VECTOR

(1) Loop over elements 𝑛𝑒

Calculate the Jacobian matrix with differentiation of shape-functions

(2) Select the load case (axial, bending, shear)

(3) Loop over the element nodes 𝑖 located at 𝜁 = ±1

(4) Loop over Gauss points

Evaluate the equivalent nodal forces in a vector 𝑓𝑒 (1 × 𝑑𝑜𝑓 · 𝑛𝑛𝑜𝑑𝑒𝑠 · 𝑛𝑒)

𝑓𝑖 = 𝐹𝑧/𝐴𝑁𝑖 |𝐽 | when considering axial force

𝑓𝑖 = 𝑀𝑥/𝐼𝑥 𝑦 𝑁(𝑖) |𝐽 | when considering bending moment

𝑓𝑖 = 𝐹𝑦/𝐵 𝐼𝑥 𝑆𝑥 |𝐽 | when considering internal shear force

(5) Assemble the global force vector 𝑓𝑎 =adof𝑇 𝑓 𝑒 (𝑑𝑜𝑓 · 𝑛𝑛𝑜𝑑𝑒𝑠 × 1)
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3.3 Application

The method presented above is implemented in MATLAB and uses an LU factori-
sation , i.e. lower upper triangular matrix. The capabilities and limitations of the
method are assessed for the planar cantilever wedge clamped at the root and loaded
at its tip as shown in Fig. 3-7. Analytical exact [42, 14] and approximated [50] solu-

Figure 3-7: Geometry and coordinate system of a 2D planar wedge with taper angle
𝛼. A bending moment around the 𝑥−axis 𝑀𝑥 and a generic force 𝐹𝑒 are applied at
the tip of the wedge. The highlighted cross-section slice has depth ∆ and is located
at 𝑧 = 𝐿/2.

tions of a planar isotropic wedge loaded at the tip with concentrated forces 𝐹𝑧 and 𝐹𝑦

and bending moment 𝑀𝑥 are available in the literature and they are summarised in
[P4]. Therefore, the planar wedge can be used as a benchmark example to evaluate
the accuracy of the tapered slice method. To avoid end-effects altering the results,
the cross-section analysis is performed at a control cross section which is defined at
the wedge mid-span, 𝑧 = 𝐿/2, where 𝑧 is the beam longitudinal axis and 𝐿 the total
length of the wedge. The equivalent numerical model is the slice of the wedge defined
between (𝐿/2 − ∆/2) and (𝐿/2 + ∆/2), as shown in Fig. 3-7. The slice has been
modelled by means of eight-noded elements. Only one solid element is used in the
longitudinal direction, namely along the thickness of the slice, whereas the number of
elements in the 𝑦−direction is established after a standard converge study, as shown
in Fig. 3-8. The finite element model used in the presented study has 30 eight-noded
elements and 372 degrees of freedom.

The control cross section has fixed dimensions 𝐻 =2 m, 𝐵 =0.1 m, and the taper
angle is taken equal to 𝛼 = 𝐻 =5.7∘. A homogeneous isotropic material is assumed
with Young modulus 𝐸 =100 Pa and Poisson ration 𝜈 = 0.3. Firstly, the method
was validated against the analytical solution of a prismatic slice. Figure 3-9 shows
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Figure 3-8: Model of an exemplary slice of a wedge. The coordinate system 𝑂𝑥𝑦𝑧, the
dimensions and the mesh discretisation are highlighted. Moreover, the eight-noded
solid elements are illustrated on the right. The internal red dot shows the location at
which the average displacement, strain, and stress values are considered.

the results of the three loading cases. It is worth noting that the case of axial and
shear are well predicted. However, the model of the slice based on the eight-noded
elements, i.e. linear shape-functions, suffered from shear-locking in the bending case,
as shown in Fig. 3-9-b. In order to mitigate the shear locking problem, the slice
was modelled through twenty-noded elements defined by quadratic serendipity shape-
functions [20]. Contrarily to the eight-noded model, the twenty-noded can correctly
depict the stress distribution under bending. Moreover, the solutions of the prismatic
slice are independent from the dimension of the slice thickness. On the other hand,
the solutions of the tapered slice are influenced by the magnitude of both the taper
angle and the thickness of the slice. Whilst these parameters are interconnected, their
effects are addressed separately in the following sections.

Stresses distribution

First, the stresses evaluated in the tapered slice modelled with eight-noded elements
are compared to the analytical solutions. The stress components in the finite element
analysis are evaluated at the Gauss points. In order to carry out the comparison
against the analytical solutions, the nodal stresses are firstly extrapolated by means
of the shape-functions. Then, the values at the back and front face are averaged
and applied at the centre of the element (red dot in Fig. 3-8). The cross section
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Figure 3-9: (a) Normal stress due to extension, (b) bending, and (c) shear stress
due to shear along half of the prismatic slice. Numerical results refer to different
mesh-topology and element type and are compared to analytical solutions. Eight-
and twenty-noded elements are employed. The number of elements in each model is
indicated in the Legend after #. Q and L stand for quadratic and linear elements,
respectively.

forces applied at the models are reported in table 3.3. Figures 3-10, 3-11 and 3-
12 show the stresses at the control cross-section and respectively due to axial force,
bending moment and shear force applied at the tip of the wedge. The presented
numerical model exhibits the capability to capture taper effects. It is worth noting
that, although the internal tractions of the slice model are assumed based on the
prismatic formulation, the normal stresses 𝜎𝑧𝑧 resulting under axial, bending and
shear do not exhibit the linear Navier distribution. In fact, they follow the quadratic
distribution predicted by the exact analytical solutions that account for taper. In
other words, the formulation retrieves the out-of-plane warping which characterises
the tapered beam behaviour.

Table 3.2: Axial force, shear force and bending moment applied at the tip of the
wedge and respective internal forces at the middle cross-section.

Tip loads Mid-span c.s.

𝐹𝑧 [N] 𝐹𝑦 [N] 𝑀𝑥 [N m] 𝐹𝑧 [N] 𝐹𝑦 [N] 𝑀𝑥 [N m]

Shear 10 - - 10 - -10L/2
Extension - 10 - - 10 -
Bending - - 10 - - 10
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Figure 3-12 shows the Cauchy stresses at the control cross section of the wedge
loaded at its tip by a shear force. Consequently, the internal forces are both shear and
bending. Given the linearity of the problem, the superposition principle is applied to
Eqs. (3.29) and (3.30). The effects of taper to the shear stress distribution, which
have been widely described in chapter 2, are depicted also in the tapered slice model.
In fact, the vertical taper angle is introduced in the Jacobian matrix as the component
𝐽(2, 2) = 1 − 𝜁 tan𝛼, as it was described in section 3.2.2. It is also worth noting in
Fig. 3-11-b that the tapered slice model, which is based on eight-noded elements,
does not show the shear-locking deviation that was observed in the prismatic case
Fig. 3-9-b. Hence, the taper slice was modelled only with eight-noded elements as
they have advantages over the twenty-noded elements in terms of computational cost.

(a) (b) (c)

Figure 3-10: Cauchy stress components, namely (a) 𝜎𝑦𝑦, (b) 𝜎𝑧𝑧, and (c) 𝜎𝑦𝑧, in a
planar tapered slice loaded by an axial tip force. The shown results are from analyt-
ical and numerical solutions. The numerical solution refers to three slice thicknesses,
∆ = 0.03, 0.09,0.5 m
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(a) (b) (c)

Figure 3-11: Cauchy stress components, namely (a) 𝜎𝑦𝑦, (b) 𝜎𝑧𝑧, and (c) 𝜎𝑦𝑧, in a
tapered slice loaded at its tip by a bending moment. The results refer to the ana-
lytical and numerical solutions. The latter considers three different slice thicknesses,
∆ = 0.03, 0.09, 0.5m.

(a) (b) (c)

Figure 3-12: Cauchy stress components, namely (a) 𝜎𝑦𝑦, (b) 𝜎𝑧𝑧, and (c) 𝜎𝑦𝑧, in a
tapered slice loaded at its tip by a shear external force. Results are from analytical
and numerical solutions. The latter considers three different slice thicknesses, ∆ =
0.03, 0.09, 0.5m.

The effects of the slice thickness

As already pointed out in Ghiringhelli and Mantegazza [25], the thickness of the slice
plays an important role in defining the accuracy of the results. Even though the
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distribution of the stress components is qualitatively depicted by the tapered slice
analysis, the magnitude of the stresses strongly depends on the slice thickness ∆.
A parametric study on the error between the numerical and analytical stresses that
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Figure 3-13: Normalised Cauchy’s stress components (numerical-to-analytical) along
the central slice of a wedge for different thickness of the slice. The values are compared
at 𝑦 = 0 and 𝑦 = 𝐻/2. Only in (b) and (d) the stresses are zero at 𝑦 = 0 and therefore
the comparison is carried out at ℎ = 𝐻/3. The results are due to axial force on the
left and to bending on the right.

occurs for different slice thicknesses ∆ is conducted. The stresses are evaluated at the
control cross section of the wedge in Fig. 3-7. Values of the slice thickness varying
between [0, 0.5m] are considered. In addition, the comparison is carried out for stress
values evaluated at two different points of the slice. Figure 3-13 shows the parametric
study for the cases of axial force on the left and bending force on the right. The three
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stress components due to extension are characterised by the same asymptotically
distribution, which converges for thicker slices. Contrarily, in case of bending the
thinner the slice the more accurate the numerical stresses. However, for both the
axial and bending load case, the distribution of the error rapidly convergences for
slice thickness ∆ =0.1 m in the presented case.

The magnitude of taper angle

The magnitude of the beam taper angle has certainly an influence on the beam be-
haviour. The role of taper in defining the Cauchy’s stresses can be studied when
closed-form analytical expressions are available, e.g. in the examples presented in
Chapter 2. The analysis of such equations leads to the conclusion that various am-
plitude of taper differently affects both the magnitude of the stresses as well as their
distribution. Similar behaviour is expected in tapered beams in general. In addi-
tion, again the analytical studies [12] show that assuming the Navier distribution
of the normal stresses gives an acceptable approximation when small taper angles
are considered. Since in the present method the internal tractions are imposed from
Navier equation, the variation of the results with the taper angle is studied through
a parametric study. Figure 3-14 shows that, as expected, the deviation increases
with greater taper angles. At the same time, the deviation can be limited if the slice
thickness is properly chosen.
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Figure 3-14: Numerical-to-analytical stresses due to axial traction. The stresses are
evaluated at the slice of the control cross-section of four wedges characterised by
the following taper angles (𝛼 = 2∘, 5.7∘, 10∘, 20∘). The ratio involves the stresses
at 𝑦 = 0 and 𝑦 = 𝐻/2 of the control cross section. Several slice thicknesses are
considered ∆ = 0.03, 0.09, 0.5m.
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Chapter 4

Discussion

This work focuses on the structural behaviour of tapered beams and investigates the
effects of taper in terms of Cauchy stresses from an analytical and numerical point of
view. Taper in a straight beam is defined as the angle between the tangent plane to a
point of the beam surface and the longitudinal beam axis. Tapered beams have been
widely employed in many engineering sectors to meet architectural, structural and
aerodynamic requirements. For example, in civil engineering beam framing, towers
and bridges are often designed with tapered beams to reduce the mass-to-stiffness ra-
tio and, ultimately, to distribute the material in a more optimal way. More recently,
with the advancements in aeronautic and wind energy, structures as wings and blades
are nonprismatic to meet aerodynamic requirements. Yet, taper significantly affects
the global beam behaviour in terms of stiffness of the structure, strain and stress
distributions, and deformation modes. Although taper effects are emphasised for
large amplitude of the taper angle, they appear even in moderately tapered beams.
Because of the many applications of tapered beams, they have been long studied in
the past century and hence the effects of taper long known in scientific literature.
Nonetheless, many numerical methods employed in academia and industries simplify
tapered beams with stepwise prismatic models and neglecting taper effects. For in-
stance, 2D cross-section analysis methods, e.g. BECAS and VABS, are based on
theories where prismatic assumptions are made, hence they do not account for taper
effects. A comparison is shown in the introduction of this thesis to highlight the
deviation in terms of Cauchy stresses when a tapered beam is simplified as stepwise
prismatic. The above-mentioned results clearly stress the necessity of including taper
in structural design to gain a more accurate beam analysis. In the context of rotor
blade design, many uncertainties are still on the table and exploiting the effects of the
geometrical variations which are currently neglected in cross-section analysis, could
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ultimately increase the reliability of the blades.

An analytical solution of the Cauchy stresses is developed to provide analytical
closed-form equations that can be used for validation of approximated cross-section
analysis methods of tapered structures. Moreover, they help understanding how taper
enters in the beam formulation. The analytical approach for tapered slender beam
analysis was developed for homogeneous isotropic material tapered beams with sym-
metric, thin-walled cross sections. Under the assumption of cross section remaining
plane after deformation, the Cauchy normal stress was assumed to follow the Navier
equation (2.1). This assumption was supported and shown to be acceptable for ta-
per angles smaller than 10∘ by previous studies available in the scientific literature
[12, 4]. The analytical method developed in this work is built on this assumption.
Indeed, once the normal stresses are given, the whole stress tensor can be determined
from the Cauchy equilibrium of an infinitesimal portion of the tapered beam. The
analytical solutions are in good agreement with the stresses computed in 3D finite
element models even though the whole method is based on the approximation of the
axial stresses to the prismatic ones. In fact, the exact distribution of the axial stresses
is not linear, as assumed in slender beams by Navier, but quadratic, as depicted by
the numerical cross-section analysis method developed in the last part of the thesis.
Differently than what expected in prismatic beams, the stress tensor can be fully
populated in tapered beams. For instance, 𝜎𝑥𝑦, 𝜎𝑥𝑧, 𝜎𝑥𝑥 would be zero in the webs of
a prismatic box girder, whereas they occur in the tapered box girder in Fig. 2-3. In
other words, taper evokes through thickness, for components which instead are zero
in the prismatic beams. Specifically, the through thickness stresses are derived as
functions of the normal and/or the shear stress and the taper angles. Since the tan-
gent of the taper angles enters in the equations, the magnitude of such components
will always be less than the 25% of the normal/shear component for taper angles
up to 15∘. Even though these stresses are smaller than the axial and in-plane shear
ones, it is important to underline that through thickness stress components have a
crucial impact on the design of weak zones, such as the joints, especially in composite
beams. Indeed, delamination of laminates and debonding of the adhesive joint are
triggered by the through thickness stress components. It could be argued that the so-
lutions provided are solely valid for homogeneous isotropic and symmetric problems.
Nonetheless, it is licit to assume that the couplings between extension and shear, and
bending and shear which characterised the in-plane shear of tapered beams, would
occur independently from the material properties, hence also in composite structures.
Also, the comparison illustrated in the introduction and related to [P4] shows taper
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effects in composite cross sections.

An analytical analysis of more complex cross sections could be addressed with the
present method after extending the Navier equation in order to account for multi-
cell, asymmetric cross sections or even anisotropic materials. Anyway, they could be
useful only for analysis of a limited number of geometries and the related expressions
would not be handy. Furthermore, the analytical solutions of more complex problems
might not exist at all. An analytical analysis of more complex and certainly more
realistic cross sections could be addressed with the present method after extending
the Navier equation in order to account for asymmetric cross sections and anisotropic
materials. Nevertheless, closed-form solutions would never be derived for real complex
structures such as rotor blades, but for simplified blade-like structures. Hence they
would be useful to describe only a limited number of geometries, and, in addition, the
expressions would not be handy. Numerical methods are therefore essential in cross-
section analysis of anisotropic beams with generic cross-section geometry. Widely
employed in rotor blade design are cross-section analysis methods, such as VABS and
BECAS to name a few, which are based on a 2D finite element formulation. They are
generally based on the prismatic assumption, which greatly simplifies the theoretical
formulation. Indeed, if the material and geometrical properties do not change in the
longitudinal direction, the equilibrium can be imposed from the definition of the strain
energy per unit length, Eq. (3.21). In other words, any lengthwise geometrical and
material variations are ignored. Exploiting the finite element model of solid tapered
elements, taper was noted to enter in the finite element formulation through the
Jacobian matrix 𝐽 , i.e. the matrix of the partial derivatives of the shape-functions.
For instance, in the vertically tapered beam in Fig. 3-7 the taper angle appears
in the Jacobian components involving a derivative of the 𝑦−coordinate. Based on
such an observation, taper was directly introduced into the 2D cross-section analysis
tool BECAS by modifying the Jacobian matrix given by Eq. (3.20) with its tapered
version in Eq. (3.19). The results were not satisfactory. In fact, as explained above,
the classic 2D formulation behind BECAS is developed from the strain energy per
unit length, whereas, in order to include lengthwise taper variations, the complete
strain energy has to be considered over the volume

∫︀
𝑉
𝜀𝑇𝜎 𝑑𝑉 . In other words, the

whole 2D theory and not solely the Jacobian should have been re-developed to include
taper and capture taper effects.

An alternative approach for cross-section analysis of tapered beams based on 3D
finite element model was suggested. Contrarily to BECAS, the cross section is mod-
elled as a one-layered tapered slice of solid elements, following the study of Ghiringhelli
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and Mantegazza [25] and Couturier and Krenk [40]. Employing solid elements, i.e.
eight-noded and linear shape-functions, lengthwise taper can be modelled. In the
derivation and implementation of this approach, three main issues were faced: (a)
imposing of boundary conditions, (b) coupling between cross-section forces and nodal
forces, and (c) slice thickness dependency of the results.

(a) The finite element method provides the cross-section stiffness matrix𝐾, which
results to be singular, hence the equilibrium is unstable due to the six free body modes
corresponding to three rigid translation and three rigid rotations of the cross section.
This issue is addressed by imposing boundary conditions to the system. In classic
finite element analysis discrete boundary conditions are directly imposed. However,
such expedient cannot be employed in the proposed cross-section analysis because it
would restrain the cross-section warping deformation and, hence, affect the results.
Therefore, the boundary conditions described as a set of constraints are imposed
through the Lagrange multipliers method. It has the advantage to cancel out the
six rigid body motions without employing discrete constraints, which would prevent
cross-section warping deformation.

(b) Another crucial point was the coupling between the internal forces and the
nodal forces, which appears on the right-hand side of the equilibrium 𝐾𝑢 = 𝑓 . The
equivalent nodal forces are obtained from interpolation of the internal tractions with
the shape functions by Gauss integration over the cross-section surface. Whereas the
cross-section forces are given by the aeroelastic design of rotor blades, the information
about the required internal tractions is not available. For instance, the 2D cross-
section analysis tools BECAS is based on the anisotropic beam theory by Giavotto et
al. [26] in which the energy equilibrium equations are formulated in such a way that
the internal nodal tractions are not required to be explicitly determined. Nonetheless,
the same approach cannot be directly extended to tapered beams because it develops
from a definition of the strain energy per unit length, which holds if the cross-section
properties do not change in the beam longitudinal direction, i. e. prismatic beams.
Therefore, the slice method approach is employed to investigate the stress analysis of
tapered cross sections. In chapter 2 the Navier equation (2.1) was supposed to hold in
moderately tapered beams for the derivation of the analytical solutions. Similarly, for
homogeneous isotropic and symmetric slice of the cross-sections, the bending internal
tractions are assumed to follow the linear distribution given by the Navier equation.
In order to evaluate the accuracy of this assumption, the method is applied to the cross
section of a cantilever isotropic wedge, whose exact solutions for the Cauchy stresses
were derived analytically. Indeed, although the internal tractions are assumed to
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follow the Navier (2.1) and Jourawsky (2.2) equations which are valid in prismatic
beams, the developed finite element analysis depicts the distribution expected from
the exact analytical solutions, qualitatively. For instance, in a tapered slice subjected
to bending 𝑀𝑥, the latter is assumed to be the integral over the surface 𝐴 of the Navier
linear stress 𝜎𝑧𝑧 = (𝑀𝑥/𝐴)𝑦. However, the normal stresses evoked by such internal
traction have the quadratic distribution predicted by the exact analytical solutions.
However, the magnitude of the numerical results is affected by the slice thickness, as
will be discussed later. Taper effects are depicted by means of the Jacobian matrix.
Indeed, taper enters in the Jacobian matrix, as already illustrated above, and the
Jacobian is employed in the derivation of the nodal forces. (c) Lastly, the role of the
slice thickness in the whole formulation is investigated. It was stated in (b) that the
finite element analysis of the tapered slice is able to depict the stresses distribution.
However, the magnitude of the predicted stresses is strongly affected by the chosen
tapered slice thickness, wheres it does not affect the results from a prismatic slice. A
parametric study is therefore carried out to study how the stresses deviation changes
with the various slice thickness. The study refers to extension, shear and bending
separately. Both the axial and shear problems are characterised by a similar tendency
and converge to the analytical values for larger slice thicknesses. On the contrary, if a
slice is subjected to bending, the thinner the slice thickness, the little the deviation.
However, all the three load cases converge at the proximity of slice thickness equal to
the other element dimensions. Hence, it would be worth investigating the effects of
the aspect ratio. Lastly, it is worth mentioning that, as expected, the 3D prismatic
slice modelled with eight-noded elements suffers from shear locking under bending.
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Chapter 5

Conclusions

The present thesis contributes to cross-section analysis of tapered beams. In the
first part, analytical closed-form solutions of the Cauchy stresses were developed for
homogeneous isotropic, symmetric thin-walled tapered beams. The analytical studies
shed light on the role of taper in the structural behaviour of tapered beams and on the
potential implications of taper on structural design. In the second part, a novel cross-
section analysis method for tapered slices is presented and represents an advancement
of the existing stepwise prismatic methods. The derivation of the method, namely
imposition of Dirichlet boundary conditions, the coupling of the cross-section forces
to the cross-section slice and its implementation in MATLAB were presented. The
method represents a first attempt to model tapered 3D slices in the realm of cross-
section analysis. The main conclusions of the work are summarised in the following:

∙ Even a small taper angle affects the stresses distribution, which, therefore, differ
from the ones derived in equivalent prismatic beams.

∙ In homogeneous isotropic slender beams with symmetric cross section, the
Navier formula for normal stresses represents a good approximation in mod-
erately tapered beams (<10∘).

∙ The Navier approximation allows to obtain the remaining Cauchy stress tensor
components in tapered beams with good agreement.

∙ The in-plane shear stress component is mostly affected by taper. Indeed, taper
may evoke shear-axial and shear-bending couplings which do not exist in pris-
matic beams. In other words, axial force or bending moment provokes shear
stresses in tapered beams.
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∙ In global coordinate system, through thickness stress components are derived
as functions of the normal and/or shear stress components scaled by the taper
angle. Therefore, they always occur in tapered beams.

∙ Taper evokes through thickness shear components which play a crucial role
in the design of tapered beams. Especially in composite structures which are
susceptible to delaminate in multiaxial stress states, or in adhesive joints where
the prevention of debonding has a key role, taper effects must be considered for
accurate stress analysis leading to reliable designs.

From the stress analysis of the 3D tapered slice, the following conclusions are
drawn:

∙ A step-wise prismatic approach is generally adopted in 2D cross-section analysis
employed in academia and industries. Because of this approach, lengthwise
taper cannot be modelled and, consequently, taper effects are not depicted.

∙ Cross-section analysis methods aim to (1) provide the cross-section stiffness
properties, and (2) to evaluate the strains and stresses. Neglecting taper ef-
fects is reflected in an inaccurate prediction of the cross-section behaviour, in
particular in terms of stress and strain.

∙ 3D formulation of the finite element cross-section analysis is necessary to con-
sider taper in the lengthwise direction. Hence, the stepwise prismatic approx-
imation could be replaced by a stepwise tapered simplification to provide a
better approximation.

∙ It was demonstrated that assuming the prismatic stress distribution as internal
traction in a 3D tapered slice, the cross-section analysis is capable of predicting
taper effects in the stress analysis, qualitatively.

∙ The larger the taper angle, the larger the error induced by the assumption of
prismatic internal traction.

∙ Also the thickness of the modelled slice strongly affects the discrepancy between
the numerical and analytical results. In the bending load case the thinner the
slice the smaller the error, whereas it is vice versa in shear and axial load cases.

The above-mentioned conclusions shed light on the potential of the 3D cross section
analysis of the tapered slice, which, differently from the methods currently available
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in the literature, is able to predict the stress and the strain tensor and the warping in
the cross-section of tapered beams. Indeed, the presented work places the foundation
for further developments in the fields of analytical tapered beam analysis and cross-
section analysis of tapered slices.

Opportunities for future work

In the author’s opinion, the following open questions deserve further attention and,
therefore, are recommended for future studies. The analytical solution described
in chapter 2 refers solely to the Cauchy stress components, but it could be extended
to the strain and displacement components by employing elasticity relations. The
current version of the method develops from the Navier equation and, consequently,
it is restricted to symmetric cross-section. However, extension of the Navier equa-
tion to non-symmetric cross sections could then be similarly employed in the an-
alytical method presented and provides the stress analysis of tapered beam with
non-symmetric cross sections. In addition, all the geometrical properties, i.e. walls
thickness or taper angles, could be implemented as non-constant variables in the
lengthwise direction without any significant modification in the method. Lastly, the
hypothesis of isotropic material could be also removed by generalising the Navier
formula in such a way that the material couplings are taken into account.

The stress analysis performed through the cross-section analysis of the 3D ta-
pered slice analysis shows the potential of the method, which paves the way for
further studies in tapered cross-section analysis. As mentioned before, the main lim-
itation associated with the tapered slice method was the requirement for calculation
of the nodal forces, f. However, to solve the taper problem, the virtual work equation
for 3D tapered geometry should be solved where an approach similar to [26] could be
employed to cancel out the nodal forces from the equilibrium equations. It requires
overcoming mathematical complexity associated with the 3D taper solution. Cur-
rently, the tapered slice method is validated for the case of a planar wedge and the
internal forces are coupled to the internal tractions by assuming a prismatic stress
distribution of the tractions. More complex benchmark examples can be provided to
validate the slice method. For instance, the thin-walled tapered beams with rectan-
gular and circular cross-sections, whose analytical solutions were derived in chapter 2
could be employed for further validation of the tapered slice method. The validity of
assuming prismatic internal tractions should be investigated for non-symmetric cross
sections. Also, nonsymmetric tapered beams should be studied. The present method

59



is based on eight-noded elements and linear shape-functions. Higher order elements
could be implemented to account for the effects of non-constant taper angles 𝛼(𝑧),
hence curvature of the beam surface.
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A B S T R A C T

Tapered beams are widely employed in efficient flexure dominated structures. In this paper, analytical ex-
pressions are derived for the six Cauchy stress components in untwisted, straight, thin-walled beams with rec-
tangular and circular cross sections characterised by constant taper and subjected to three cross-section forces.
These expressions pertain to homogeneous, isotropic, linear elastic materials and small strains. In fact, taper not
only alters stress magnitudes and distributions but also evokes stress components, which are zero in prismatic
beams. A parametric study shows that increasing taper decreases the von Mises stress based fatigue life, sug-
gesting that step-wise prismatic approximations entail non-conservative designs.

Nomenclature

Symbol Unit Description
A m2 area of cross section
A* m2 area of hatched cross section
b m half width of box girder cross section
bx, by, bz N/m3 body forces in Cartesian coordinates
br , b , bz N/m3 body forces in cylindrical coordinates
c m chord length
C Basquin's constant
e m eccentricity
E Pa Young's modulus
Fy, Fz N shear and axial forces

Fy
L, Fz

L N shear and axial forces at =z L

Fy
0, Fz

0 N shear and axial forces at =z 0

h m half height of box beam cross section
h0 m half height of box beam cross section at =z 0
Ix m4 second moment of area of cross section
J2 Pa2 second deviatoric invariant
L m beam length
mx N distributed couple per unit length
Mx Nm bending moment
Mx

L Nm bending moment at =z L

Mx
0 Nm bending moment at =z 0

n Basquin's constant
N number of cycles to failure
Ñ normalised number of cycles to failure (cone over cylinder)
O origin of reference system

py, pz N/m distributed loads per unit length
R m radius of conical beam cross section
R0 m radius of conical beam cross section at =z 0
S*x m3 first moment of area of hatched cross section
t m thickness of conical beam wall
tf m thickness of box beam flange
tp m projected wall thickness
tw m thickness of box beam web
V m3 volume
x y z, , Cartesian coordinates
1, 2, 3 local reference axes

rad angle of taper
m local abscissa
rad polar angle

Poisson's ratio
ij Pa stress tensor components
vM Pa equivalent von Mises stress
vM
norm normalised von Mises stress (cone over cylinder)

vM normalised von Mises stress (negative over positive angle)

1. Introduction

The reduction of mass and the consequent savings in manufacturing
costs are an increasingly important and compelling aspect of structural
optimisation. A well-established means to increase the stiffness-to-mass
ratio of beam type structures is the introduction of lengthwise geome-
trical variations. The probably most widely employed expedient – in
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this paper denoted as taper – refers to a variation of the cross-section
height and/or width along the beam axis according to the governing
internal force distribution. Some prominent examples of tapered beams
are bridge girders at intermediate supports, frame/truss structures for
industrial halls and hangars, aircraft wings, wind turbine towers, and
wind turbine rotor blades [1–3].

In a beam with a straight centreline and variable cross section, the
angle of taper, , can be defined as the angle enclosed by the local
tangent plane to the beam lateral surface and the beam axis i.e. the
lengthwise gradient of the lateral surface with respect to the beam axis.
In general, the angle of taper will be a pointwise function. In the sim-
plest case – herein referred to as constant taper – the angle of taper does
not change along the beam axis [4].

It is well-known in literature that beams with variable cross sections
show a significantly different behaviour in contrast to prismatic beams.
Variable cross-section beams exhibit a non-trivial stress distribution. In
particular, the shear stresses evoked are counter intuitive and hardly
predictable by the classical theory for prismatic beams [5,6].

The effects of taper on the shear stress distribution in simple planar
non-prismatic beams were already investigated by Timoshenko [7].
Bleich [8] derived a closed-form solution showing that in tapered
beams shear stresses are induced not only by shear forces, but also by
axial forces and bending moments. Unfortunately, Bleich was misled by
the analogy with prismatic beams and referred to the centreline as the
locus of maximum shear stresses. Later, Paglietti and Carta [9] de-
monstrated that the maximum shear stress does not necessarily occur at
the elastic centre of the cross-section.

Atkin proposed a different approach based on classical elasticity,
defining proper stress functions for specific aeronautical problems
[10,11]. Subsequently, Krahula [12] compared the predictions of
Bleich's formula – even though not citing directly [8] but referring to
Timoshenko and Gere [13] – and the solution of a two-dimensional
elasticity problem for a tapered cantilever beam loaded by a con-
centrated shear force at its free end. Elasticity theory has been used to
model tapered beams also by Knops and Villaggio [14], and more re-
cently by Trahair and Ansourian [15].

The behaviour of tapered beams under bending and torsion was
extensively investigated by Lee and Szabo [16] and Lee et al. [17].

Chong et al. [18] showed by means of simplified mechanical models
that the shear stress in the webs of I- and box girders strongly depends
on both the sign of the taper, i.e. the positive or negative slope, and the
direction of the shear force.

With the rise of structural optimisation in the past decades, research
increasingly focused on the development of computationally efficient
semi-analytical numerical methods for tapered elastic 2D beams with
solid rectangular cross sections. Hodges et al. [19,20] and Rajagopal
[21] developed the variational-asymptotic method, which is capable of
providing a full elasticity solution in terms of stresses, strains, and
displacements for 2D beams with constant taper subjected to shear and
axial forces, and bending moments. Balduzzi et al. [22] derived a non-
prismatic planar beam element from a 2D elastic solution. More re-
cently, Balduzzi et al. [23] extended the approach also to multilayer
planar non-prismatic beams.

Taglialegne [6] derived an exact analytical elastic solution for a
tapered planar beam subject to shear and axial forces, and bending
moment based on the solution of the wedge proposed by Michell [24]
and Carothers [25]. Bennati et al. [4,26] showed that the shear stress
distribution – also numerically predicted by Balduzzi et al. [22] – may
be a satisfactory approximation of the exact solution.

It is noteworthy to mention that the optimisation of tapered beams
comprising of complex thin-walled single- or multi-cellular hollow
sections gained a lot of attention, especially in the industry. Topology
optimisation techniques rely on computationally efficient stress ana-
lysis tools which usually exclude the use of computationally demanding
3D finite element models. As a remedy, the so-called cross-sectional
analysis tools, such as BECAS [27] and VABS [28], have been developed

for the efficient analysis of slender beam-type structures. However,
many cross-sectional analysis tools as well as beam elements intended
for the use of modelling tapered hollow sections approximate the ta-
pered beams to step-wise prismatic beams.

This paper provides analytical expressions for the six Cauchy stress
tensor components occurring in tapered beams with thin-walled rec-
tangular and circular cross-sections, shortly referred to in the following
as tapered box beam and thin-walled conical beam, respectively. The de-
rivation is carried out in the hypothesis of homogeneous, isotropic,
linear elastic material behaviour and first-order Euler-Bernoulli beam
theory. First, an extension of Jourawski's formula for shear stresses is
deduced for straight and untwisted beams with doubly-symmetric
variable cross sections, subjected to distributed loads producing axial
force, shear forces, and bending moment (in a symmetry plane of the
cross section). The deduction assumes that Navier's formula yields a
good approximation of the normal stresses in variable cross-section
beams with moderate taper angles. (for a deeper discussion of this issue
the reader is referred to Boley [29]). Subsequently, the extended
Jourawski's formula is specialised to the tapered box beam and thin-
walled conical beam, under the assumed absence of distributed loads.
The remaining stress components are obtained through the assumption
of plane stress in the thin cross-section walls by integration of the
Cauchy equilibrium differential equations.

The analytical solutions are validated against 3D finite element
analyses for constant-taper cantilever beams clamped at one end (the
root section) and loaded at the free end (the tip section). The numerical
results show that already small taper angles (in the order of few de-
grees) not only considerably alter the stress distributions obtained from
prismatic beam theory, but can evoke stress components which are zero
otherwise. The potential implications of the effects of taper on beam
designs have to date not been investigated to the best knowledge of the
authors. Therefore, the analytically derived solutions were used in a
comprehensive parametric study to shed light on the effect of constant
taper on the von Mises stress and consequently on the fatigue life of
thin-walled conical beams.

2. Analytical solution

2.1. Extended shear formula

A variable cross-section beam of length L, having a straight cen-
treline and a doubly symmetric cross section (Fig. 1) is considered. A
global Cartesian reference systemOxyz is fixed with the origin O located
in the centre of one of the end sections; the x- and y-axes are aligned
with the cross-section principal axes of inertia (coincident with the
symmetry axes), while the z-axis is coincident with the beam centreline.
Here, it is stipulated that the beam is not twisted, i.e. that the principal
directions of inertia of each cross section are parallel to the x- and y-
axes.

The beam is subjected to distributed loads, p z( )y and p z( )z , acting in
the y- and z-directions, respectively, and to a distributed bending

Fig. 1. (a) Beam with variable cross section subjected to distributed axial and
transverse loads, and bending couple. (b) Generic cross section with two axes of
symmetry.
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couple, m z( )x . With the above assumptions, the internal forces acting
on each cross section will be the shear force, F z( )y , axial force, F z( )z ,
and bending moment, M z( )x . Local equilibrium demands that:

+ = + = + =F z
z

p z
F z

z
p z M z

z
m z F zd ( )

d
( ) 0,

d ( )
d

( ) 0, d ( )
d

( ) ( )z
z

y
y

x
x y

(1)

Global equilibrium of the beam requires also concentrated forces
=F F (0)y y

0 , =F F (0)z z
0 , and =M M (0)x x

0 to be applied at =z 0 and
=F F L( )y

L
y , =F F L( )z

L
z , and =M M L( )x

L
x at =z L.

In a prismatic beam, under the assumptions that plane cross sections
remain plane after deformation and that the material is homogeneous,
isotropic, and linearly elastic [30], Navier's formula furnishes the
normal stresses on cross sections notably:

= +F
A

M
I

yzz
z x

x (2)

where A and Ix respectively are the area and second moment of area
with respect to the x-axis of the cross section. Here and in the following,
the dependency upon z will be omitted if not strictly necessary.

Here, it is assumed that Navier's Eq. (2) holds also for beams of
variable cross section. The validity of this assumption has been in-
vestigated by Boley [29], where a good approximation is obtained for
moderate taper angles: for example, if = 10°, the error is around 7.5%.

Firstly, the infinitesimal segment of a variable cross-section beam
slice between two cross sections located at z and +z zd as shown in
Fig. 1(a), is considered. Fig. 2(a) illustrates the uniform and linearly
variable normal stress distributions respectively induced by the axial
force and bending moment acting on the infinitesimal beam segment.
Secondly, a generic straight chord of length c is introduced, which
subdivides the cross section into two complementary parts. Further-
more, a local abscissa denoted as aligned orthogonal to the chord
direction is introduced as shown in Fig. 2(b). Consequently, the in-
finitesimal beam segment itself turns out to be subdivided into two
parts. The ensuing focus is put on the ‘hatched’ part associated with the
side of positive . The corresponding cross-section area is denoted as A*.

In order to determine an expression for the shear stresses acting on
the cross section in the direction orthogonal to the chord, z , the
equilibrium is imposed to the ‘hatched’ part of the beam segment de-
picted in Fig. 3. Assuming that the axial loads, pz, are uniformly dis-
tributed on the cross section, the equilibrium in the z-direction can be
written as:

+ + +

= +

+

+

A c c c z
p
A

A z

A

d ( d )
2

d d d

( d )d
A z

zz z
z

z z

A z

z

A z z
zz zz

* ( )

d

* ( )

* ( d ) (3)

Following Taglialegne [6], Eq. (3) can be expanded and higher-
order infinitesimal terms neglected. Hence,

= +
c z

A
c

p
A

A1 d
d

d 1 dz A
zz z

A* * (4)

By substituting Eqs. (1) and (2) into (4), after simplification, the
general solution for the cross-section shear stress component is ob-
tained:

= + +
c

F
z

A
A

F m S
I

M
z

S
I

1 d
d

* ( )
* d

d
*

z z y x
x

x
x

x

x (5)

where S*x is the first moment of area of the ‘hatched’ part of the cross
section with respect to the x-axis.

It is worth noting that Eq. (5) can be considered as a generalisation
of a similar formula that Bleich [8] derived for a beam with constant
width and variable height for the specific case that =F zd /d 0z .

2.2. Vertically tapered box beam

The extended shear formula Eq. (5) can be specialised to the ver-
tically tapered box beam shown in Fig. 4. The cantilever beam studied
in this paper is exemplary. However, the assumed support conditions do
not pose any restriction to the validity of these specialised equations.
The cross-section width, b2 , is constant, while the cross-section height,

h z2 ( ), varies linearly with the z-coordinate according to:

=h z h z( ) tan0 (6)

where h0 denotes the half height of the root section and is the angle of
taper. The thicknesses of the flanges, tf , and webs, tw, are assumed to be
constant along the z-coordinate and small with respect to the cross-
section dimensions. According to the defined geometry, the Cartesian
coordinates of the thin wall mid-surface vary within the following
limits:

b x b h z y h z z L, ( ) ( ) , 0 (7)

The flange thickness projected in the cross-section plane is

=t
t

cosp
f

(8)

Fig. 2. (a) Infinitesimal beam segment of length zd . (b) Cross section with generic chord of length b and local abscissa .

Fig. 3. Equilibrium in the z-direction of the ‘hatched’ part of the infinitesimal
beam segment of length zd .
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Hence, the cross-section area and second moment of area with re-
spect to the x-axis are respectively:

= +A b t t h z4[ ( )]p w (9)

= +I b t h z t h z4 ( ) 1
3

( )x p w
2 3

(10)

Utilising symmetry, the solution can be reduced to a quarter of the
cross section. In what follows, the stress fields are evaluated separately
in the half flange and half web of the positive quadrant, x 0 and
y 0.

2.2.1. Stress components in the flange
The half flange defined by x b0 and =y h z( ) is considered.

Here, the normal stress component is directly determined by sub-
stituting Eqs. (9) and (10) into (2):

=
+

+
+

F
b t t h z

M
b t h z t h z

1
4 ( )

3
3 ( ) ( )zz

f z

p w

x

p w
2 (11)

The area and first moment of area with respect to the x-axis of the
‘hatched’ portion of cross section on the flange (see Fig. 5) with

= b x , can be written as follows:

=A x t* p (12)

=S x t h z* ( )x p (13)

Subsequently, by substituting Eqs. (9), (10), (12) and (13) into (5),
with =c tp, the shear stress component on the flange is obtained:

=
+

+
+

+
+

+

x F t
b t t h z

F
b t h z t h z

M tan b t t h z
h z b t t h z

1
4

tan
[ ( )]

3
3 ( ) ( )

3 [3 2 ( )]
( ) [3 ( )]

zx
f z w

p w

y

p w

x p w

p w

2 2

2 2
(14)

To determine the remaining stress components, first a local co-
ordinate system 123 is defined such that the 2-axis is parallel to the x-
axis and the 3-axis is the outward normal to the flange as illustrated in
Fig. 6.

The stress components in the local and global reference systems can

be related by introducing a rotation matrix as follows:

=
0 sin cos
1 0 0
0 cos sin

0 1 0
sin 0 cos

cos 0 sin

f f f

f f f

f f f

xx
f

xy
f

xz
f

yx
f

yy
f

yz
f

zx
f

zy
f

zz
f

11 12 13

21 22 23

31 32 33

(15)

Accordingly, under the assumption of a plane stress state in the flange,
the local stress component condition = = = 0f f f

31 32 33 must hold.
Consequently, Eqs. (15) yield:

= tanyy
f

zz
f 2 (16)

= tanxy
f

zx
f (17)

= tanyz
f

zz
f (18)

The last unknown stress component is obtained by integrating the
first Cauchy equilibrium equation, Eq. (A.1), assuming null body forces:

= + =z
xdxx

f
x

zx
f

xx
f

x
0

0
(19)

where =xx
f

x 0 represents an integration constant which can be de-
termined after deduction of the solution for the stresses in the web.

2.2.2. Stress components in the web
In the following the half web, defined by =x b and y h z0 ( ), is

considered. The normal stress component is directly determined by
substituting Eqs. (9) and (10) into (2):

=
+

+
+

F
b t t h z

M y
b t h z t h z

1
4 ( )

3
3 ( ) ( )zz

w z

p w

x

p w
2 3 (20)

Fig. 4. (a) Side and (b) front views of a thin-walled vertically tapered cantilever box beam of length L and taper angle . (c) Arbitrary cross section, where the
projected flange thickness, tp, and web thickness, tw, are highlighted.

Fig. 5. Hatched portion of cross section on the flange.

Fig. 6. Quarter of an infinitesimal segment of the vertically tapered box beam
with global, xyz, and local, 123, reference systems.
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On the web, the ‘hatched’ portion of cross section includes the half
flange and a part of the web, with = y, as illustrated in Fig. 7. The
area and moment of inertia with respect to the x-axis are respectively:

= +A b t t h z y* [ ( ) ]p w (21)

= +S b t h z t h z y* ( )
2

[ ( ) ]x p
w 2 2

(22)

By substituting Eqs. (9), (10), (21) and (22) into (5), with =c tw, the
shear stress component on the web is obtained as follows:

= + +F F Myz
w A y z

z
A y z

t y
A y z

t x
( , )
4

3 ( , )
8

3 ( , )
8w w

1 2 3
(23)

where

=
+

=
+

+

=
+

+ +

A y z t y
b t t h z

A y z
b t h z t h z y
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The webs are assumed to be in a plane-stress state. Consequently,
= = = 0xx

w
xy
w

xz
w . The last unknown stress component is obtained by

integration of the second Cauchy equilibrium equation, Eq. (A.2), as-
suming null body forces:

= + =z
ydyy

w
y

yz
w

yy
w

y
0

0 (24)

where =yy
w

y 0 is an integration constant.

2.2.3. Equilibrium conditions on edges
The solution for the stress distribution in the box beam is already

completely determined, except for the two integration constants, =xx
f

x 0
and =yy

w
y 0. The latter can be calculated by imposing the equilibrium of

an infinitesimal edge portion of length zd connecting the flange and
web as shown in Fig. 8. Neglecting higher-order infinitesimal terms,
equilibrium in the x-direction gives:

+ + == = =t z t z t zd
cos

d tan d 0f xx
f

x b w xy
w

y h w zx
w

y h (25)

and equilibrium in the y-direction gives:

+ + == = =t z t z t zd
cos

d tan d 0.f xy
f

x b w yy
w

y h w yz
w

y h (26)

By substituting Eqs. (19) and (24) into (25) and (26) respectively,
results in:

= += = =z
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f

w
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f

x b0
0 (28)

Due to the complexity of the mathematical expressions involved, it
is convenient to solve Eqs. (27) and (28) numerically at each cross
section to determine the values of the integration constants and com-
plete the determination of the stress distribution in the beam.

2.3. Thin-walled conical beam

Fig. 9 shows a thin-walled conical cantilever beam. The radius de-
fining the wall mid-surface can be written as:

=R z R z( ) tan0 (29)

where is the taper angle and R0 is the root radius. The polar angle, ,
is measured counterclockwise from the x-axis.

The wall thickness, t, is assumed to be constant with the z-co-
ordinate and small with respect to the cross-section radius. The pro-
jected wall thickness, cross-sectional area and second moment of area
with respect to the x-axis respectively are:

=t t
cosp (30)

=A t R z2 ( )p (31)

= =I t R z t R z2 sin ( )d ( )x p p0
2 3 3

(32)

The normal stress on the cross section is directly obtained by sub-
stituting Eqs. (31) and (32) into (2) with =y R zsin ( ):

= +F
t R z

M
t R z

cos
2 ( )

cos sin
( )zz z x 2 (33)

The area and first moment of area of the ‘hatched’ part of the conical

Fig. 7. Hatched portion of cross section on the web.

Fig. 8. Stresses acting in the (a) x- and (b) y-directions on an infinitesimal edge portion between the flange and web of the box beam.
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cross section defined by = R z( ) and illustrated in Fig. 10, are re-
spectively given by:

= =A t R z t R z* ( )d ( ) ( )p p
/2

(34)

= =S t R z t R z* sin ( )d cos ( )x p p
/2 2 2

(35)

The circumferential shear stress is determined by substituting Eqs.
(31), (32), (34) and (35) into (5), with =c tp:

= +F
t R z

M
t R z

cos cos
( )

sin cos
( )z y x 2 (36)

Fig. 11 shows the three different coordinate systems (CSYS) defined
in a conical beam segment: the global CSYS, xyz , the cylindrical CSYS,
r z , and the local CSYS, 123. The latter is oriented such that the 12-
plane is tangent to the thin wall mid-surface with the 2-axis opposite to
and with the 3-axis pointing in the outer normal direction.
Thus, the stress tensor components in the cylindrical and local re-

ference systems can be related as follows:

=
sin 0 cos

0 1 0
cos 0 sin

sin 0 cos
0 1 0
cos 0 sin

rr r rz
r z

zr z zz
T

11 12 13
21 22 23
31 32 33 (37)

Under the assumption of plane stress in the wall, the local stress
components 31, 32, and 33 are identically null. Consequently, Eqs. (37)
produce a set of three linear equations for the unknowns rr , r , and rz:

= =
= + =
= + + =

2 cos 2 ( ) sin 2 0
cos sin 0
cos sin 2 sin 0

zr rr zz

r z

rr zr zz

31

32

33
2 2 (38)

The solution of the linear set of equations is:

= tanrr zz
2 (39)

= tanr z (40)

= tanzr zz (41)

Finally, the hoop stress component, , is immediately derived from
the first of the local equilibrium equations for a hollow thin conical
element, whose derivation is presented in Appendix B. Substituting Eqs.
(41) and (37) into (B.5) leads to = 0 for all the loading conditions
considered.

3. Numerical analysis

The analytical solutions of the two described geometries were
compared with finite element models for verification. Two cantilever
beams, namely the rectangular beam and the conical beam, were mod-
elled inside the commercial finite element package Abaqus 2017 [31].
The mesh topology of these models is depicted in Fig. 12.

A control section perpendicular to the beam z-axis at the mid-span
cross section was used for validation. Following Saint-Venant's principle
the control section was chosen sufficiently far away from the root and
tip sections in order to avoid boundary effects affecting the far-field
solutions derived. The geometrical properties of the two models are
listed in Table 1.

Homogeneous, isotropic, linear elastic material properties for steel
were assigned with an elastic modulus of =E 210 GPa and a Poisson's
ratio of = 0.3. The models were discretized by enriched eight-noded
solid elements (Abaqus element type C3D8R) as given by Table 2. The
wall was discretised with two elements through the thickness.

A convergence study of different mesh densities was performed and
the numerical results presented are obtained from sufficiently dis-
cretized models.

The kinematic (rigid) coupling constraints applied to the nodes of
both ends of the beam, were coupled to a master node located in the
elastic centre of the cross sections. The model was loaded at the master
node located at the tip through application of concentrated forces, Fy

L,

Fig. 9. (a) Side and (b) frontal views of a thin-walled conical cantilever beam of length L and taper angle . (c) Arbitrary cross section, where the projected wall
thickness tp is highlighted.

Fig. 10. Hatched portion of conical cross section.

Fig. 11. Global coordinates x y z, , , cylindrical coordinates r z, , , and local
coordinates 1, 2, 3 in a conical beam.
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Fz
L, and/or bending moment, Mx

L. Table 3 lists the single load cases used
in this study. All six degrees of freedom of the master node of the root
section were restrained such that the beam was fully clamped. A direct
solution strategy was used (Abaqus linear perturbation). Results were
extracted in global coordinates along node-paths located in the wall
mid-surface at the control cross section.

4. Results

4.1. Stress analysis

The six components of the stress field produced by the axial and
shear loads, and bending moment were evaluated via both the analy-
tical solutions derived in Section 2 and the numerical finite element
analysis for the two geometries previously described. Because of sym-
metry in the x and y direction, the stresses were evaluated along the
centre line of a quarter of the control cross section. In Figs. 13–20, the
label An indicates the stresses evaluated through the analytical solu-
tions, whereas the label Num indicates the FE results. Moreover, the
deviation between the numerical and the analytical results is given by

the Normalised Mean Square Error (NMSE) [32] in Tables 4–6.

4.1.1. Vertically tapered box beam
The plots concerning the rectangular beams show the stresses

evaluated along the mid-surface of half flange ( x b0 ) and half
web ( y h0 ). Figs. 13–15 depict the stresses distribution along the
flange, while Figs. 16 and 17 along the web. The stress components xx ,

xy, and xz are zero along the web and have therefore been omitted. The
stress singularity induced by the sharp corner in the FE models can be
noted in Figs. 14–16 when x and y approach 0.5 m. The singularity
effect of the corner is not considered in the analytical expressions which
explains the deviations between the latter and the numerical predic-
tions when approaching the corner.

4.1.2. Thin-walled conical beam
Figs. 18–20 compare the five analytically and numerically obtained

stress components in cylindrical coordinates. The stresses were eval-
uated in the first quadrant, 0 /2, utilising the cross section
symmetry. Moreover, the numerical stress field was extracted after
transformation from global Cartesian to cylindrical coordinates in
Abaqus. The numerical results of the hoop stress component are not
reported, since it is equal to zero along the cross section wall.

4.2. Parametric study

In order to highlight the impact of the taper on design applications,
a parametric study of the taper affecting the equivalent stress of a beam
under different loads condition is presented. Since a linear isotropic
material is considered, the equivalent stress is evaluated through the
von Mises criterion, = J3vM 2 , where J2 is the second deviatoric stress
invariant [13]. It considers all stress components and it is invariant with
respect to rotation of the coordinates system: in this way the global
stress tensor could directly be used without the necessity of transfor-
mation into the local material stress tensor. The parametric study
compares a thin-walled cylinder of radius =R2 1 m to a set of thin-
walled cones having a fixed control section of radius =R2 1 m. The
loads are introduced through the eccentricity, which is defined as the
ratio between the bending moment and the shear force at the cross
section. The study also includes cones with negative taper, as the one
shown in Fig. 21: the analytical solution derived in Section 2 is still
valid and only the stress components which are function of sin and
tan change when the taper is negative. The variables of this study are
chosen as the taper angle, [ 15°; 15°], and the eccentricity para-
meter e [ 15 m; 15 m]. Furthermore, the von Mises criterion, here
employed in cylindrical coordinates, is used to evaluate the variation of
the number of cycles in fatigue, when the taper effects are not ne-
glected. The number of cycles to failure N can be determined by em-
ploying the well-known Basquin law [33]. The material used in this
study is steel, whose Basquin's constants, defined from the ultimate
tensile strength and the endurance limit of the material, are

= ×C 4.56 1030, and =n 9.84 [34].

Fig. 12. 3D finite element model of (a) the
tapered rectangular beam, and (b) the cone. In
both figures the loads and the boundary con-
ditions are applied at a reference point, which
is linked through a rigid coupling constraint to
the tip or root cross section. In Figure (a) the
detail of the mesh refinement at the corner is
illustrated.

Table 1
Geometrical properties of the rectangular and conical beam models.

Beam Mid-span cross section

L tf tw t h2 b2 R2
[m] [deg.] [mm] [mm] [mm] [m] [m] [m]

Rectangular 10.0 4.0 10.0 10.0 – 1.0 1.0 –
Conical 10.0 4.0 – – 10.0 – – 1.0

Table 2
Mesh discretisation and model size parameters of the two numerical models.
The fourth and fifth columns refer to the largest and smallest transverse element
sizes measured in the cross-section plane. The rectangular model has a higher
mesh density because of the higher resolution required at the corners.

# of el. # of nodes max el. size [m] min el. size [m]

Rectangular 134,400 202,104 ×49.25 10 3 ×5.00 10 3

Conical 128,000 216,720 ×27.14 10 3 ×5.43 10 3

Table 3
Load cases applied to both models in order to investigate the effect of taper
under shear-bending, pure axial force and pure bending, and cross-section
forces at mid-span. The applied bending moment is comparable to the resulting
shear bending.

Case Tip loads Internal forces at the mid-span

Fy [N] Fz [N] Mx [Nm] Fy [N] Fz [N] Mx [Nm]

Shear 1000 – – 1000 – −5000
Extension – 1000 – – 1000 –
Bending – – 5000 – – 5000
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4.2.1. Von Mises stress
The von Mises stresses were evaluated along the control cross sec-

tion for 0 /2, and the maximum stress was subsequently
normalised with the maximum von Mises stress in the cylindrical beam.

Fig. 22 (a) shows the variation of the normalised von Mises stresses
within the eccentricity for two different taper angles, 0.5°, 15°. Four
zones are highlighted in the legend. Zone 1 presents constant lines: the
von Mises stresses are not a function of the eccentricity and they in-
crease quadratically with the taper angle, as shown by the continuous
line in Fig. 22 (b). In zone 2 only negative eccentricities are involved
and the von Mises stresses augment when e 0. The sensitivity of the
von Mises stress towards the eccentricity is proportional to the taper
angle. The dashed line in Fig. 22 (b) shows that in a cone with a taper
angle of = 15°, an eccentricity =e 1m causes an increase of 20% of
the equivalent stress. Between zone 2 and zone 3 a local maximum
occurs. Zone 3 includes positive and negative eccentricities and in here
the equivalent stresses decrease to a local minimum at =e 0.5m. In the
range e0 0.5m, the taper reduces the von Mises stress in the cy-
linder, as shown by the point-dashed line in Fig. 22 (b). Finally, in zone
4 the von Mises stresses increase again.

4.2.2. Fatigue life
The aforementioned maximum equivalent stresses were employed

to investigate the relation between the taper angle variation and the
fatigue behaviour. In this case, the number of cycles to failure was
evaluated for the set of cones previously defined and then normalised to
the number of cycles to failure in the respective cylindrical beam. Since
the number of cycles to failure is inversely proportional to the
equivalent stress [33], in Fig. 23 (a) the same four zones can be dis-
tinguished. Zone 1 is not a function of the eccentricity and the

normalised number of cycles decreases with the increase of the taper, as
shown by the continuous line in Fig. 23 (b). Zone 2 extends in the
negative eccentricities and presents a decrement of Ñ with the eccen-
tricity. As expected, the smaller the taper is, the smaller the eccentricity
has to be to affect Ñ . For example, in Fig. 23 (b), for =e 0.2 m and

= 5°, Ñ decreases already of approximately 10%. In zone 3, Ñ moves
from a local minimum in the negative eccentricity zone, to a local
maximum at =e 0.5 m. In the range e0 0.5 m the number of cycles
to failure significantly increases. Fig. 23 (b) shows that Ñ doubles when
=e 0.2m and = 5°. Finally, Ñ decreases in zone 4.

4.2.3. Negative taper
Lastly, the effects of the sign of the taper on the maximum

equivalent stress that occur in a cross section of a conical beam were
studied. The normalised parameter vM was defined as ratio between
the maximum von Mises stress in a negatively and a positively tapered
beam. In Fig. 24 (a) the variation of the equivalent stress with the ec-
centricity is shown for = ± 0.5° and = ± 15° and four different
zones are distinguished in the legend. In zone 1, the sign of the taper
does not affect the maximum von Mises stress. Zone 2 extends in the
negative eccentricities. In here, a positive taper causes a higher stress
than the same negative taper. For example, Fig. 24 (b) shows that for

=e 0.5 m, a taper = 5° produces a von Mises stress 20% higher than
= 5°. Furthermore, the less pronounced the taper is, the smaller the

eccentricity has to be to have the sign affecting the equivalent stress.
Zone 3 extends from the local maximum in the negative eccentricities to
the local minimum in the positive eccentricities, passing by = 1vM
where the eccentricity is zero. Negative tapers have a worst effect when
positive eccentricities occur. Zone 4 has the same properties as zone 2,
but it refers to positive eccentricities and negative tapers.

Fig. 13. (a) xx and (b) zz stress distributions along the flange.

Fig. 14. (a) yy and (b) yz stress distributions along the flange.
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5. Discussion

Although the analytical solutions presented in this article are an
approximation due to the adoption of Navier's equation (i.e. strictly
speaking Navier does not hold in tapered cross-sections), good agree-
ment was found between the analytically and numerically predicted
stress components. It is noteworthy that the validity of the provided
solutions is restricted to moderately tapered cross sections in suffi-
ciently slender beams where the axial stress component zz follows a
quasi-linear distribution.

In the case of the vertically tapered box beam, all six Cauchy stress
components are induced in the flange. Fig. 13 a shows the xx parabolic
distribution with zero magnitude at the corners i.e. = ±x b, and
maximum at =x 0: shear load and bending result in a concave dis-
tribution whereas axial loading causes a convex distribution. The zz
component is not a function of the taper angle, therefore it has the same
distribution as in a classic prismatic beam. Interestingly, the compo-
nents yz and yy in the flange are proportional to the zz component and
has, therefore, a constant distribution, as shown in Figs. 14. In Fig. 15 b,
the component xz is not only induced by the shear load, as in a pris-
matic beam, but also by bending moment and axial load. In all cases,
the stress exhibits a linear distribution with a zero transition at =x 0.
The in-plane shear stress component xy in Fig. 15 a presents a similar
behaviour. It is worth noting that the maximum stress varies with the
sign of the applied forces. In the web of a vertically tapered beam it was
found that only the components zz, yz and yy are non-zero. The
normal stress in Fig. 15 a has the same linear distribution as evident in
the prismatic case. The out-of-plane shear stress component yz in

Fig. 15 b, follows a quadratic distribution under shear load and bending
moment, and a linear distribution under axial load. In a tapered beam
under shear load, yz follows the classic concave quadratic distribution,
with its maximum at =y 0; conversely, the application of a bending
moment can result in a convex stress distribution. In the latter case, it is
possible that the shear stress distribution attains its maximum at

= ±y h. Fig. 15 shows that the axial and shear loads induce a convex
quadratic yy distribution whereas bending causes a concave cubic
stress distribution.

In the case of a conical beam only the hoop stress component is
zero. The axial stress component zz in a conical has the same

Fig. 15. (a) xy and (b) xz stress distributions along the flange.

Fig. 16. (a) zz and (b) yz distributions along the web.

Fig. 17. yy stress distribution along the web.
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distribution than in a cylindrical beam as stipulated in the derivation.
Both the shear stress zr and the through thickness rr in Fig. 18 are
proportional to the axial stress component zz. In contrast to the cy-
lindrical beam, the shear stress z , and r , are functions of all the three
cross section forces. Their distributions are trigonometric and both of
which attain their maximum at = 0 and their zero values at

= ± /2, as shown in Fig. 19.
The parametric study shows that neglecting the taper leads to an

over- or underestimation of the stresses in the cross section. The
equivalent stress always increases when a cylindrical beam is tapered,
except in the range < <e0 0.5m, as shown in Fig. 19 a. As previously
mentioned, the study is based on the comparison between the max-
imum equivalent stress that occurs in a conical beam and the one in a
cylindrical beam. It is important to highlight that, when the eccentricity
approaches zero, the maximum von Mises stresses occur at different
locations of the cross sections in the cylindrical beam and in the cone,
resulting in the four behaviours of the equivalent stress ratio high-
lighted in Fig. 22. In zone 1, the maximum von Mises stress occurs at

= 90°; consequently, in the set of Eqs. (35)–(43) all the terms which
are multiplied by cos vanish, and the ratio of the equivalent stresses
between cone and cylinder are no longer a function of the eccentricity.
In zone 2, the maximum equivalent stress occurs at = 0° in the conical
beams and = 90° in the cylinder for negative e; otherwise for positive
e. Lastly, the drop in zone 3 is caused by the maximum equivalent stress
occurring at = 0° in both conical and cylindrical beams. The max-
imum von Mises stress moves from = 90° to = 0° in zone 4.

Eventually it can be concluded that neglecting the taper effects leads

to an overestimation of the number of cycles to failure, except for the
known range e0 0.5m. When a conical beam has a negative taper,
both r and z are affected since they are functions of sin . The sign of
the taper, together with the loading direction leads to critical designs.
In particular, when a negative eccentricity is applied, a negative taper
halves the equivalent stress caused by the equivalent positive taper;
vice-versa when a positive eccentricity is applied. Nonetheless, the
equivalent stress is not affected by the orientation of the taper in zone 1.

Fig. 18. (a) rr and (b) rz stress distributions along a quarter of a cone.

Fig. 19. (a) r and (b) z stress distributions along a quarter of a cone.

Fig. 20. zz stress distribution along a quarter of a cone.
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6. Conclusions

The following conclusions can be drawn from the analytical stress
solutions and the parametric studies conducted:

i. The introduction of taper into beams can potentially evoke all six
stress components already at seemingly small taper angles.

ii. In principle all three cross section forces are highly coupled to the
stress components in tapered beams. That is to say, a decoupling of
shear force from bending and axial force as in prismatic beams is
not per-se admissible in tapered beams.

iii. Application of prismatic solutions such as Jourawski's shear stress
formula to tapered beams can lead to results which are significantly
at variance with the real stress states. In contrast to the widely and
erroneously established assumption in engineering practice, the
stress state in tapered beams cannot be obtained by pure stress
tensor transformation of the prismatic solution into a local co-
ordinate system.

iv. Ignoring the taper can lead to an underestimation of the von Mises
stress representing a non-conservative assumption. In the present
study of a conical cantilever beam – considering static loading
conditions – the von Mises stress increased less than 1% for

8°and exceeded 10% for 25°.
v. Ignoring the taper can lead to a significant overestimation of the
fatigue life. In the present study of a conical beam the number of
cycles to failure decreased by 10% for = 5° and decreased by 40%
for = 25°.

vi. The analytical solutions and the parametric study in this article
were based on isotropic material properties. However, it is deemed
that additional stress components similarly to those presented will
also be evoked in tapered beams with anisotropic material beha-
viour, such as fibre reinforced composites. Bearing in mind that
composite materials are highly susceptible to failure owing to inter-
fibre stress components, emphasises the importance of an accurate
prediction of the stress components especially in tapered beams.

Possible future developments of the present work include the deri-
vation of closed-form solutions in terms of strains and displacements for
the analysed cases, as well as the solution for stresses in horizontally
tapered and doubly tapered box girders. Moreover, the extended
Jourawski's formula could be further extended to beams with non-
symmetric or non-homogeneous (e.g. laminated) cross sections.

Table 4
NMSE along the flange of a vertically tapered beam. It was evaluated after
excluding the three points closer to the cross section corner, where a singularity
occurs.

Flange xx xy xz

Fz ×1.31 10 5 ×6.76 10 6 ×7.33 10 6

Fy ×1.35 10 4 ×7.43 10 5 ×7.47 10 5

Mx ×9.88 10 5 ×7.70 10 5 ×1.85 10 5

yz yy zz

Fz ×2.77 10 5 ×9.66 10 5 ×2.61 10 6

Fy ×1.05 10 5 ×2.00 10 5 ×5.92 10 6

Mx ×1.75 10 4 ×5.91 10 4 ×1.65 10 5

Table 5
NMSE along the web of a vertically tapered beam. It was evaluated after ex-
cluding the three points closer to the cross section corner, where a singularity
occurs.

Web zz yz yy

Fz ×1.11 10 5 ×7.37 10 6 ×1.84 10 4

Fy ×4.30 10 6 ×1.32 10 6 ×2.16 10 6

Mx ×3.80 10 5 ×1.44 10 5 ×2.31 10 5

Table 6
NMSE along a quarter of a conical beam.

zz rz z r rr

Fz ×1.31 10 5 ×4.07 10 6 – – ×1.97 10 6

Fy ×2.70 10 3 ×2.79 10 3 ×3.08 10 3 ×3.06 10 3 ×2.85 10 3

Mx ×2.70 10 3 ×2.58 10 3 ×2.56 10 3 ×2.56 10 4 ×1.97 10 6

Fig. 21. Conical cantilever beam tapered by a constant negative angle, [0°
; 15°].

Fig. 22. (a) Normalised von Mises stresses variation (conical over cylindrical) with eccentricity for different taper angles; (b) Normalised von Mises stresses variation
(conical over cylindrical) with for different eccentricities.
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Appendix A. Cauchy's equilibrium equations in Cartesian coordinates

The well-known Cauchy's differential equations expressing local equilibrium in Cartesian coordinates are [30]:

+ + + =
x y z

b 0xx xy xz
x (A.1)

+ + + =
x y z

b 0yx yy yz
y (A.2)

+ + + =
x y z

b 0zz zy zz
z (A.3)

where bx, by, bz are the body forces in Cartesian coordinates.

Appendix B. Cauchy equilibrium equations for a thin-walled conical element

The volume of an infinitesimally small thin-walled cone element (Fig. B.25) can be obtained – under consideration of small angles d – by the
trapezoidal equation as follows:

= + + =V t R R R z R t zd 1
2

[ d ( d )d ] d
cos

d df p (B.1)

Translatory equilibrium is imposed in the three main directions as follows. In the r direction:

Fig. 23. (a) Normalised number of cycles to failure variation with the eccentricity for different taper angles; (b) normalised number of cycles to failure variation with
the taper angle for different eccentricities.

Fig. 24. The parameter vM shows the effects of negative in comparison with positive . (a) Its variation with is shown for different eccentricities; (b) Its variation
with e is shown for different .
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+ + +

+ =

Rt R R t

t z t z
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In direction:

+ + +

+ + + + + + =

t z t z t z R t

t z R R t b R t z

cos d
2

d sin d
2

d ( d ) cos d
2

d d

( d ) sin d
2

d ( d )( d ) d d d 0

p r p p z p

r r p z z p p (B.3)

In z direction:

+ + +
+ + + =

R t R R t t z
t z b R t dz

d ( d )( d ) d d
( d ) d d 0

zz p zz zz p z p

z z p z p (B.4)

After some manipulation of the set of Eqs. (B.2), (B.4) and by using Eq. (B.1) the Cauchy equilibrium equations for a conical beam in cylindrical
coordinates are the following:

+ + + + =
R

R
z z

b1 d
d

0rz
r rz

r (B.5)

+ + + + =
R

R
z z

b1 d
d

0r z
z

(B.6)

+ + + =
R

R
z z

b1 d
d

0zz
z zz

z (B.7)
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A B S T R A C T

Lengthwise geometrical variations such as taper, are widely employed in engineering structures, e.g. in wind
turbine blades, aircraft wings and bridges. Notwithstanding the effects of taper on the mechanical behaviour
of beams, it is common design procedure to model such structures as prismatic beams. Indeed, the derivation
of analytical solution of the stress components in tapered beams is not a trivial task. This work provides the
above-mentioned analytical solution of the stresses in tapered box girders, whose width and height are varying
along the longitudinal axis of the beam. The proposed solution deals with any arbitrarily oriented external
forces and it is based on the hypothesis of homogeneous isotropic material. The analytical solution shows
that a combination of even small vertical and horizontal tapers highly influences the stress distribution. A
parametric study of the relation between taper and the von Mises stress was investigated. Furthermore, it is
evinced that disregarding taper effects might lead to an overestimation of the fatigue lifetime of the structures
up to 12%.

1. Introduction

Non-prismatic beams are commonly used in modern design to re-
spond to structural, aerodynamic, and architectural requirements. For
example, to reduce the stiffness-to-mass ratio, beams with tapered webs
are often employed in the deck of steel and concrete bridges (Zevallos
et al., 2016), and in metal or glued laminated beam framing. In
aerospace and wind energy, aircraft structures and wind turbine blades
are designed as slender structures with aerodynamic profiles. These
beams have lengthwise geometrical variations, such as twisted and
tapered cross-sections, and curved longitudinal axis. The variation of
the cross-section dimensions along the beam-span can be identified
through taper angles. The latter are defined in a straight beam as
the angles between the tangent of the beam lateral surface and the
longitudinal axis (Bertolini et al., 2019). This paper addresses the
general case of doubly tapered beams, characterised by vertical and
horizontal taper. Vertical taper 𝛼 refers to the angle enclosed between
the flange and the longitudinal axis, whereas the horizontal taper 𝛽
to the one between the web and the longitudinal axis. Real structures
such as wind turbine blades, are often characterised by both verti-
cal and horizontal taper angles, which can vary from 0◦ at the root
to 4◦ and 12◦ at max-chord respectively (Bak et al., 2012). Nowa-
days that wind turbine blades have impressive dimensions, e.g. the
107 metre long wind turbine blade designed by LM Wind Power, the

∗ Corresponding author at: LM Wind Power, Jupitervej 6, 6000 Kolding, Denmark.
E-mail addresses: paober@dtu.dk (P. Bertolini), l.taglialegne@ing.unipi.it (L. Taglialegne).

demand for more accurate stress analysis is crucial in their structural
design.

Stress components which are zero in prismatic beams, arise in ta-
pered beams under the same loading conditions. This fact has been long
known in the scientific literature. For example, Timoshenko (1923) de-
rived the in-plain shear distribution in a 2D truncated wedge subjected
to a shear force. Bleich (1932) derived a closed-form solution for the
in-plane shear stress in tapered beams under not only shear force, but
also axial force and bending moment. Some of the effects due to the
lengthwise geometrical variations are taken into account in the analysis
of 3D finite elements models. Nonetheless, they are ignored in the early
stages of the design, when the structure is simplified as a step-wise
prismatic beam. In the past decade, many researchers, e.g. Paglietti
and Carta (2009), showed how such an approximation could lead to an
incorrect stress analysis. Therefore, new advance analytical theories,
which are inclusive of the effects lengthwise geometrical variations
need to be developed.

The variation of the stresses distribution in linearly tapered planar
beams has been studied by Bennati et al. (2016), Balduzzi et al.
(2016), and Hodges et al. (2010). Taglialegne (2018) derived an exten-
sion to Bleich’s shear stress equation. Bertolini et al. (2019) provided
closed-form solutions of isotropic vertically tapered beams with thin-
walled rectangular and circular cross-sections. The latter presents a

https://doi.org/10.1016/j.euromechsol.2020.103969
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Fig. 1. (a) Side and (b) top view of a thin-walled tapered cantilever box beam of length 𝐿 with vertical taper angle 𝛼 and horizontal taper angle 𝛽.

Nomenclature

𝑂𝑥𝑦𝑧 Cartesian coordinates (−)
𝑂123 Local coordinates system (−)
ℎ(𝑧) Half height of the cross section (m)
ℎ0 Half height of the root cross section (m)
𝑏(𝑧) Half width of the cross section (m)
𝑏0 Half width of the root cross section (m)
𝛼, 𝛽 Vertical and horizontal taper angles (deg)
𝐿 Total length of the beam (m)
𝑡𝑤, 𝑡𝑓 Projected thickness of the web and the

flange (m)
𝑡∗𝑤, 𝑡∗𝑓 Thickness of the web and the flange (m)
𝐴(𝑧) Area of the cross section (m2)
𝐼𝑥 Second moment of area of the cross section

(m4)
𝜎𝑖𝑗 Stress tensor components (Pa)
𝐹𝑦, 𝐹𝑧 Internal shear and axial forces (N)
𝑀𝑥 Internal bending moment (N m)
𝑆𝑥 First moment of area (m3)
R Rotation matrix (–)
𝐸 Young modulus (Pa)
𝜈 Poisson ratio (−)
𝑁 , 𝑄 Axial and shear forces (N)
𝑀 Bending moment (N m)
𝐶, 𝑛 Basquin constants (–)
𝜎𝑒𝑞 Von Mises stress (Pa)

comprehensive overview of the state-of-the-art of analysis of tapered
beams.

The case of beams with tapered flanges and webs, named doubly
tapered beams, has been investigated by Kuś (2015) for the analysis
of lateral–torsional buckling. Here, it was concluded that the critical
moment can be increased by tapering the flanges rather than the webs
or both simultaneously. To the authors’ best knowledge, the latter is
the only investigation on doubly tapered beams.

This paper is a generalisation of the method proposed in Bertolini
et al. (2019). In particular, it provides closed-form solution of the
stresses in doubly tapered beams subjected to forces with arbitrary
directions. The previous work addressed the analytical solution for
vertically tapered beams subjected to restricted load cases. The method
is based on the Euler–Bernoulli hypotheses. The validity of the provided
analytical solutions is proven by comparison to 3D finite element mod-
els of tapered box girders clamped at one end loaded at the other one.
The closed-form solutions are employed in a parametric study between
the taper angles and the equivalent von Mises stress and between the
taper angles and the fatigue lifetime of similar structures.

Fig. 2. (a) Front view of a thin-walled tapered cantilever box beam and (b) arbitrary
cross section, where the projected web thickness, 𝑡𝑤, and flange thickness, 𝑡𝑓 , are
highlighted.

2. Analytical solutions of the stress components

The full stress Cauchy’s tensor is determined for the homogeneous
isotropic doubly tapered thin-walled beam shown in Figs. 1 and 2. The
cantilever support condition is chosen as an example and it does not
limit the validity of the method.

The width and the height of the cross sections are defined from the
centre line of the flange and web. They are written as functions of the
longitudinal coordinate 𝑧, the vertical taper angle 𝛼, and the horizontal
taper angle 𝛽 as follows

ℎ (𝑧) = ℎ0 − 𝑧 tan 𝛼, 𝑏 (𝑧) = 𝑏0 − 𝑧 tan 𝛽,

where ℎ0 and 𝑏0 are respectively half of the height and of the width of
the root section. The Cartesian coordinates of the wall mid-surface are
defined within the limits

−𝑏(𝑧) ≤ 𝑥(𝑧) ≤ 𝑏(𝑧), −ℎ(𝑧) ≤ 𝑦(𝑧) ≤ ℎ(𝑧), 0 ≤ 𝑧 ≤ 𝐿.

Two local coordinate systems, named 𝑂1𝑓 2𝑓 3𝑓 and 𝑂1𝑤2𝑤3𝑤, are
defined in the flanges and webs respectively, as illustrated in Fig. 3. In
both cases, the 3-axis is the outer normal to the flange and web, and the
2-axis lies on the 𝑥𝑦−plane. Thus, the 1-axis is defined in accordance
with those assumptions.

The thickness of the web and flange projected onto the cross-section
plane are

𝑡𝑤 =
𝑡∗𝑤

cos 𝛽
, 𝑡𝑓 =

𝑡∗𝑓
cos 𝛼

.

The cross-sectional area, 𝐴(𝑧), and the second moment of area with
respect to the 𝑥-axis, 𝐼𝑥(𝑧), are

𝐴(𝑧) = 4[ℎ(𝑧) 𝑡𝑤 + 𝑏(𝑧)𝑡𝑓 ], 𝐼𝑥(𝑧) = 4
[
𝑏(𝑧) 𝑡𝑓 ℎ(𝑧)2 + 1

3
𝑡𝑤 ℎ(𝑧)3

]
. (1)

Shear force 𝐹𝑦(𝑧), axial force 𝐹𝑧(𝑧), and bending moment 𝑀𝑥(𝑧) are
considered as internal forces acting at each cross section. The depen-
dency on 𝑧 will be omitted for brevity. Assuming that any plane section
remains plane after deformation and recalling Navier formula (Timo-
shenko and Goodier, 1951), the normal stresses are determined with
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Fig. 3. Quarter of an infinitesimal segment of the tapered box beam with global, 𝑂𝑥𝑦𝑧,
and local, 1𝑓 2𝑓 3𝑓 in the flange and 1𝑤 2𝑤 3𝑤 in the web, reference systems.

Eq. (2). The latter is valid also in moderately tapered beams, as verified
by Boley (1963).

𝜎𝑧𝑧 =
𝐹𝑧
𝐴

+
𝑀𝑥
𝐼𝑥

𝑦. (2)

Under the above-mentioned assumptions, the extended in-plane
shear expression derived in Eq. 5 in Bertolini et al. (2019) is valid.
Assuming null distributed forces and moments, the equation simplifies
to

𝜎𝑧𝑖 =
1
𝑡

[
𝐹𝑧

d
d𝑧

(
𝐴∗

𝐴

)
+ 𝐹𝑦

𝑆∗
𝑥

𝐼𝑥
+𝑀𝑥

d
d𝑧

(𝑆∗
𝑥

𝐼𝑥

)]
, 𝑖 = 𝑥, 𝑦. (3)

where 𝑡 is the thickness of the cross section, 𝐴∗ and 𝑆∗
𝑥 is the area and

first moment of area with respect to the 𝑥-axis of the portion of the
cross section where the stress is analysed.

Because of the symmetry of the analysed cross section, this study
refers to half of the flange (0 ≤ 𝑥 ≤ 𝑏(𝑧), 𝑦 = ℎ(𝑧)), and half of the web
(0 ≤ 𝑦 ≤ ℎ(𝑧), 𝑥 = 𝑏(𝑧)).

2.1. Stress components in the flange

The normal stress component in the flange, 𝜎𝑓𝑧𝑧, is directly deter-
mined by substituting Eqs. (1) into Eq. (2), resulting in

𝜎𝑓𝑧𝑧 =
1
4

[
𝐹𝑧

𝑡𝑓 𝑏 + 𝑡𝑤 ℎ
−

3𝑀𝑥
(3 𝑏 𝑡𝑓 + ℎ 𝑡𝑤)ℎ

]
. (4)

The out-of-plane component 𝜎𝑧𝑥 in the web is derived from Eq. (3),
imposing the equilibrium of the ‘hatched’ portion on the flange in
Fig. 4, where 𝜂 = 𝑏− 𝑥. The area and first moment of area with respect
to the 𝑥-axis of such ‘hatched’ area are

𝐴∗ = 𝑥 𝑡𝑓 , 𝑆∗
𝑥 = 𝑥ℎ 𝑡𝑓 . (5)

Then, after substituting Eqs. (5) in Eq. (3), it is obtained that

𝜎𝑓𝑥𝑧 =
𝑥
4

{
𝐹𝑧 (𝑡𝑓 tan 𝛽 + 𝑡𝑤 tan 𝛼)

(𝑡𝑓 𝑏 + 𝑡𝑤 ℎ)2
+

3𝐹𝑦

(3 𝑡𝑓 𝑏 + 𝑡𝑤 ℎ)ℎ

+
3𝑀𝑥[(3 𝑡𝑓 𝑏 + 2 𝑡𝑤 ℎ) tan 𝛼 + 3 𝑡𝑓 ℎ tan 𝛽]

(3 𝑡𝑓 𝑏 + 𝑡𝑤 ℎ)2

}
. (6)

It is worth noting how both taper angles contribute to the stress
distribution.

When 𝛼 ≠ 0 and 𝛽 = 0, i.e. when the beam is vertically tapered, Eq.
(6) becomes identical to Eq. (16) in Bertolini et al. (2019). When 𝛼 = 0
and 𝛽 ≠ 0, i.e. when the beam is horizontally tapered, Eq. (6) reduces
to

𝜎𝑓𝑥𝑧 ∣𝛼=0 =
𝑥
4

[
𝐹𝑧 𝑡𝑓 tan 𝛽

(𝑡𝑓 𝑏 + 𝑡𝑤 ℎ)2
+

3𝐹𝑦

(3 𝑡∗𝑓 𝑏 + 𝑡𝑤 ℎ)ℎ
+

9𝑀𝑥 𝑡∗𝑓 ℎ tan 𝛽

(3 𝑡∗𝑓 𝑏 + 𝑡𝑤 ℎ)2

]
.

Fig. 4. Hatched portion of cross section on the flange.

Fig. 5. Hatched portion of cross section on the web.

Moreover, when 𝛼 = 𝛽 = 0 the beam is prismatic and Eq. (6) reduces
to the classic Jourawski’s equation (Timoshenko and Goodier, 1951)

𝜎𝑓𝑥𝑧 ∣𝛼=𝛽=0 =
𝐹𝑦 𝑥

4 (𝑡∗𝑓 𝑏 ℎ + 𝑡∗𝑤
ℎ2
3 )

.

The stresses in the global reference system are rotated into the
flange local CSYS through the rotation matrix 𝐑𝑓 as follows

⎡⎢⎢⎢⎣

𝜎𝑓11 𝜎𝑓12 𝜎𝑓13
𝜎𝑓21 𝜎𝑓22 𝜎𝑓23
𝜎𝑓31 𝜎𝑓32 𝜎𝑓33

⎤⎥⎥⎥⎦
=
⎡
⎢⎢⎣

0 − sin 𝛼 cos 𝛼
1 0 0
0 cos 𝛼 sin 𝛼

⎤
⎥⎥⎦

⎡⎢⎢⎢⎣

𝜎𝑓𝑥𝑥 𝜎𝑓𝑥𝑦 𝜎𝑓𝑥𝑧
𝜎𝑓𝑦𝑥 𝜎𝑓𝑦𝑦 𝜎𝑓𝑦𝑧
𝜎𝑓𝑧𝑥 𝜎𝑓𝑧𝑦 𝜎𝑓𝑧𝑧

⎤⎥⎥⎥⎦

⎡
⎢⎢⎣

0 − sin 𝛼 cos 𝛼
1 0 0
0 cos 𝛼 sin 𝛼

⎤
⎥⎥⎦

𝑇

(7)

Under the hypothesis of thin-walled beam, the flange is in plane
stress state in local coordinate system, meaning that 𝜎𝑓33 = 𝜎𝑓13 = 𝜎𝑓23 = 0.
Expanding and manipulating the system of Eqs. 7, leads to the following
expressions for the stresses

𝜎𝑓𝑦𝑦 = 𝜎𝑓𝑧𝑧 tan2 𝛼, (8)

𝜎𝑓𝑥𝑦 = −𝜎𝑓𝑧𝑥 tan 𝛼, (9)

𝜎𝑓𝑦𝑧 = −𝜎𝑓𝑧𝑧 tan 𝛼. (10)

The first Cauchy’s equation (𝜕𝜎𝑥𝑥,𝑥 + 𝜕𝜎𝑥𝑦,𝑦 + 𝜕𝜎𝑥𝑧,𝑧 = 0) is used to
determine the missing component 𝜎𝑓𝑥𝑥

𝜎𝑓𝑥𝑥 = −∫
𝑏(𝑧)

𝑥

𝜕𝜎𝑓𝑧𝑥
𝜕𝑧

+
𝜕𝜎𝑓𝑥𝑦
𝜕𝑦

𝑑𝑥 + 𝜎𝑓𝑥𝑥|𝑥=𝑏 (11)

The term 𝜎𝑓𝑥𝑥|𝑥=𝑏 is a constant of integration. It can be determined
by imposing the horizontal equilibrium at the corner of the rectangular
cross section once the stress field of the web is determined.

2.2. Stress components in the web

The normal stress component 𝜎𝑤𝑧𝑧 in the web is directly determined
by substituting Eqs. (1) into (2) which gives

𝜎𝑤𝑧𝑧 =
1
4

[
𝐹𝑧

𝑡𝑓 𝑏 + 𝑡𝑤 ℎ
+

3𝑀𝑥 𝑦
ℎ2(3 𝑡𝑓 𝑏 + 𝑡𝑤 ℎ)

]
. (12)
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The ‘hatched’ portion of cross section in Fig. 5 in the web includes
the half flange and a part of the web, with 𝜂 = 𝑦. The area and the first
moment of area of the hatched part with respect to the 𝑥-axis are

𝐴∗ = (ℎ − 𝑦) 𝑡𝑤 + 𝑏 𝑡𝑓 , 𝑆∗
𝑥 = 𝑏 ℎ 𝑡𝑓 +

𝑡𝑤
2

(ℎ2 − 𝑦2). (13)

Therefore, substituting Eqs. (13) in Eq. (3) results in

𝜎𝑤𝑧𝑦 = −
𝐹𝑧 (𝑡𝑓 tan 𝛽 + 𝑡𝑤 tan 𝛼) 𝑦

4 (𝑡𝑓 𝑏 + 𝑡𝑤 ℎ)2
+

3𝐹𝑦 [2 𝑡𝑓 ℎ 𝑏 + 𝑡𝑤 (ℎ2 − 𝑦2)]
8 𝑡𝑤 ℎ2 (3 𝑡𝑓 𝑏 + 𝑡𝑤 ℎ)

(14)

+
3𝑀𝑥

8ℎ3 𝑡𝑤(3 𝑡𝑓 𝑏 + ℎ 𝑡𝑤)2
{ℎ 𝑡𝑓 𝑡𝑤(ℎ2 − 3 𝑦2) tan 𝛽

+ [ℎ (ℎ2 − 3 𝑦2) 𝑡2𝑤 + 2 𝑡𝑓 𝑡𝑤 𝑏 (2ℎ2 − 3𝑦2) + 6 𝑡2𝑓 𝑏2 ℎ] tan 𝛼}.

Once again, both the horizontal and vertical taper affect the shear
stress distribution.

When 𝛼 ≠ 0 and 𝛽 = 0, i.e. when the beam is vertically tapered, Eq.
(14) is identical to Eq. (25) in Bertolini et al. (2019). When 𝛼 = 0 and
𝛽 ≠ 0, i.e. in a horizontally tapered beam, Eq. (14) becomes

𝜎𝑤𝑧𝑦 ∣𝛼=0= −
𝐹𝑧 𝑡∗𝑓 𝑦 tan 𝛽

4 (𝑡∗𝑓 𝑏 + 𝑡𝑤 ℎ)2
+

3𝐹𝑦 [2 𝑡∗𝑓 ℎ 𝑏 + 𝑡𝑤 (ℎ2 − 𝑦2)]

8 𝑡𝑤 ℎ2 (3 𝑡∗𝑓 𝑏 + 𝑡𝑤 ℎ)
(15)

+
3𝑀𝑥 ℎ 𝑡∗𝑓 𝑡𝑤(ℎ2 − 3 𝑦2) tan 𝛽

8ℎ3 𝑡𝑤(3 𝑡∗𝑓 𝑏 + ℎ 𝑡𝑤)2
.

In addition, when 𝛼 = 𝛽 = 0, i.e. in a prismatic beam, Eq. (6) reduces
to Jourawski equation

𝜎𝑤𝑧𝑦 ∣𝛼=𝛽=0=
3𝐹𝑦 [2 𝑡∗𝑓 ℎ 𝑏 + 𝑡∗𝑤 (ℎ2 − 𝑦2)]

8 𝑡∗𝑤 ℎ2 (3 𝑡∗𝑓 𝑏 + 𝑡∗𝑤 ℎ)
.

The stress components on the web can be rotated from the global
reference system to the local one by means of the rotation matrix 𝐑𝐰

as follows

⎡⎢⎢⎣

𝜎𝑤11 𝜎𝑤12 𝜎𝑤13
𝜎𝑤21 𝜎𝑤22 𝜎𝑤23
𝜎𝑤31 𝜎𝑤32 𝜎𝑤33

⎤⎥⎥⎦
=
⎡⎢⎢⎣

− sin 𝛼 0 cos 𝛼
0 1 0

cos 𝛼 0 sin 𝛼

⎤⎥⎥⎦

⎡
⎢⎢⎢⎣

𝜎𝑤𝑥𝑥 𝜎𝑤𝑥𝑦 𝜎𝑤𝑥𝑧
𝜎𝑤𝑦𝑥 𝜎𝑤𝑦𝑦 𝜎𝑤𝑦𝑧
𝜎𝑤𝑧𝑥 𝜎𝑤𝑧𝑦 𝜎𝑤𝑧𝑧

⎤
⎥⎥⎥⎦

⎡⎢⎢⎣

− sin 𝛼 0 cos 𝛼
0 1 0

cos 𝛼 0 sin 𝛼

⎤⎥⎥⎦

𝑇

(16)

In local coordinates, the web is assumed to be in plane stress state,
i.e. 𝜎𝑤13 = 𝜎𝑤23 = 𝜎𝑤33 = 0. Therefore, Eqs. 16 reduces to

𝜎𝑤𝑥𝑥 = 𝜎𝑤𝑧𝑧 tan
2 𝛽, (17)

𝜎𝑤𝑥𝑧 = −𝜎𝑤𝑧𝑧 tan 𝛽, (18)

𝜎𝑤𝑥𝑦 = −𝜎𝑤𝑧𝑦 tan 𝛽. (19)

Lastly, the missing stress component 𝜎𝑤𝑦𝑦 is determined from inte-
gration of the second Cauchy’s equation (𝜕𝜎𝑦𝑥,𝑥 + 𝜕𝜎𝑦𝑦,𝑦 + 𝜕𝜎𝑦𝑧,𝑧 = 0)

𝜎𝑤𝑦𝑦 = −∫
ℎ(𝑧)

𝑦

𝜕𝜎𝑤𝑥𝑦
𝜕𝑥

+
𝜕𝜎𝑤𝑧𝑦
𝜕𝑧

𝑑𝑦 + 𝜎𝑤𝑦𝑦|𝑦=ℎ. (20)

where 𝜎𝑤𝑦𝑦|𝑦=ℎ is a constant of integration. It is determined from the
vertical equilibrium of the stresses at the corner of the cross section.

2.3. Vertical and horizontal equilibrium at the corners

To determine the constants of integration 𝜎𝑓𝑥𝑥|𝑥=𝑏 in Eq. (11) and
𝜎𝑤𝑦𝑦|𝑦=ℎ in Eq. (20), the horizontal and vertical equilibrium of an in-
finitesimal portion of the corner of the beam is imposed, as shown in
Fig. 6. The equilibrium in the 𝑥−direction and in the 𝑦−direction are
respectively given by

𝑡𝑓 𝜎𝑓𝑥𝑥|𝑥=𝑏 𝑑𝑧 + 𝑡𝑓 𝜎𝑓𝑧𝑥|𝑥=𝑏 𝑑𝑧 tan 𝛽 + 𝑡𝑤 𝜎𝑤𝑥𝑧|𝑦=ℎ 𝑑𝑧 tan 𝛼 + 𝑡𝑤 𝜎𝑤𝑥𝑦|𝑦=ℎ 𝑑𝑧 = 0

(21)

𝑡𝑤 𝜎𝑤𝑦𝑦|𝑦=ℎ 𝑑𝑧 + 𝑡𝑤 𝜎𝑤𝑦𝑧|𝑦=ℎ 𝑑𝑧 tan 𝛼 + 𝑡𝑓 𝜎𝑓𝑥𝑦|𝑥=𝑏𝑑𝑧 + 𝑡𝑓 𝜎𝑓𝑦𝑧|𝑥=𝑏 𝑑𝑧 tan 𝛽 = 0

(22)

Table 1
Values of the external loads applied at one end of the box girder together with the
resulting internal forces at the control section. The external forces are the axial load
𝑁 , the shear load 𝑄 and the bending moment 𝑀 . The bending moment is chosen in
such a way that it is comparable to the resulting shear-coupled bending.

Case External loads Internal forces at the mid-span

𝑁 [N] 𝑄 [N] 𝑀 [Nm] 𝐹𝑦 [N] 𝐹𝑧 [N] 𝑀𝑥 [Nm]

Shear 1000 – – 1000 – −5000
Extension – 1000 – – 1000 –
Bending – – 5000 – – 5000

Table 2
Geometrical dimensions of the beam model used for comparison between analytical
and numerical stress solution.
𝐿 [m] 𝛼 [deg] 𝛽 [deg] ℎ [m] 𝑏 [m] 𝑡𝑓 [mm] 𝑡𝑤 [mm]

10.0 5.0 2.0 0.5 0.55 10.0 10.0

Table 3
Mesh discretisation and element sizes. The third and fourth columns refer to the largest
and smallest transverse element size measured in the cross-section plane.

# of el. max el. size [m] min el. size [m]

103 200 92.54 × 10−3 5.00 × 10−3

The equations above can be directly solved with Maple (Maple
2017, 2018) to determine the constants of integration and, conse-
quently, the stress components 𝜎𝑓𝑥𝑥 and 𝜎𝑤𝑦𝑦. The expressions of the
stresses can be found in the Appendix as Eqs. (A.1) and (A.3).

3. Finite element model

The correctness of the presented method was evaluated by com-
parison against finite element models. The cantilever beam in Fig. 7
was modelled inside the commercial finite element package ABAQUS
(2017). The comparison between analytical and numerical solutions
was performed at the ‘control cross section’, which is located the mid-
span cross section. Such a control section is perpendicular to the beam
𝑧-axis and located at 𝑧 = 𝐿∕2, in order to avoid the influence of
boundary effects at the clamped root and at the loaded tip. The applied
external loads and the internal forces at the control cross section, are
listed in Table 1. The material of the beam has Young modulus 𝐸 =
210GPa, and Poisson ratio 𝜈 = 0.3. The geometrical dimensions of the
entire beam and of the control cross section are summarised in Table 2.

The finite element model was discretised by enriched eight-noded
solid elements (Abaqus element type C3D8R) as described in Table 3.
The mesh is finer at the proximity of the control section, and two
elements were imposed through the thickness of the walls. A conver-
gence study of different mesh densities justifies the discretisation of the
model.

To reproduce the clamped conditions the master node of the root
section had all the six degrees of freedom restrained. A direct solution
strategy was used (Abaqus linear perturbation). Results were extracted
in global coordinates along node-paths located in the wall mid-surface
at the control cross section.

4. Results and discussion

The stresses at the control section of the finite element model are
compared to the ones derived analytically to evaluate the accuracy
of the presented method. Specifically, Figs. 8–10 show all six Cauchy
stress distributions along half of the flange (0≤ 𝑥≤ 𝑏), and Figs. 11–13
along half of the flange, 0≤ 𝑦≤ℎ. The label ‘An’ and ‘Num’ indicate
respectively the results from the analytical and numerical analysis. The
deviation between the two methods is evaluated as relative percentage
error for each stress component. In addition, the Normalised Mean
Square Error (NMSE) (Poli and Cirillo, 1993) is calculated and reported
in Tables 4 and 5.
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Fig. 6. (a) Horizontal and (b) vertical equilibrium of the stresses acting in the web and flange of an infinitesimal portion of the corner of a tapered beam.

Fig. 7. 3D finite element model (Abaqus) loaded at the master node located at the
tip through application of concentrated forces, 𝐹𝑦, 𝐹𝑧, and bending moment, 𝑀𝑥. The
loads and the boundary conditions are applied at a reference point located in the elastic
centre of the cross sections, which is linked through a kinematic (rigid) coupling to
the tip or root cross section. The mesh of the cross section is refined at its corners, as
illustrated in the detail.

4.1. Stress components in the flange and web

The normal stress distributions in both the flange and the web are
shown in Figs. 8(a) and 11(a). The good agreement between numerical
and analytical distributions supports the correctness of assuming Navier
equation in slightly tapered beams.

In the flange the stress components 𝜎𝑓𝑦𝑦 in Fig. 8(b), and 𝜎𝑓𝑦𝑧, 𝜎
𝑓
𝑥𝑦 in

Fig. 9 vanish only when 𝛼 is zero. In the web the stress components
𝜎𝑤𝑥𝑥 in Fig. 11(b), and 𝜎𝑤𝑥𝑧, 𝜎𝑤𝑥𝑦 in Fig. 12 appear when 𝛽 is not zero.
Consequently, a constant stress component 𝜎𝑓𝑦𝑧 and 𝜎𝑤𝑥𝑧 always arises
through the thickness in thin-walled tapered beams.

The normal stress component 𝜎𝑓𝑥𝑥 in Fig. 10(b) has a quadratic
distribution under all the three load conditions. The maximum stress
occurs at the corner (𝑥 = 𝑏) under shear force and the stress changes
sign under pure-bending and axial force.

In the web, the normal component 𝜎𝑤𝑦𝑦 in Fig. 13(b) arises to
guarantee the equilibrium. Under shear load, the maximum value of
𝜎𝑤𝑦𝑦 occurs at the corner, meanwhile under pure bending the maximum
is located at 400mm from the mid-plane of the web.

It is worth noting that when the axial force is considered, the stress
𝜎𝑓𝑥𝑥 and 𝜎𝑤𝑦𝑦 approach zero at circa 220mm from the centre of the flange
and web respectively. The relative errors at these points reach the peak
of 10%. However, because of the small values of the stresses at these
locations, the absolute errors are negligible, as shown also in Tables 4,
5.

The in-plane shear stress 𝜎𝑤𝑦𝑧 in the web is shown in Fig. 13(a). It
follows a linear distribution with zero stress at 𝑦 = 0 under axial force,
and a parabolic distribution in the other cases. It is worth noting that
under shear force the maximum stress occurs at 𝑦 = ℎ, and not at 𝑦 = 0
as expected from the classic Jourawski’s formula.

Table 4
NMSE along the flange evaluated after excluding the three points closer to the cross
section corner, where a singularity occurs.

Flange 𝜎𝑥𝑥 𝜎𝑧𝑧 𝜎𝑥𝑧
𝐹𝑧 0.24 × 10−3 0.72 × 10−3 2.17 × 10−6
𝐹𝑦 1.58 × 10−4 1.33 × 10−5 4.61 × 10−6
𝑀𝑥 7.04 × 10−5 9.19 × 10−5 2.34 × 10−5

𝜎𝑦𝑦 𝜎𝑥𝑦 𝜎𝑦𝑧
𝐹𝑧 6.89 × 10−6 3.23 × 10−6 6.42 × 10−6
𝐹𝑦 1.35 × 10−5 4.58 × 10−6 1.33 × 10−5
𝑀𝑥 9.69 × 10−5 2.71 × 10−5 8.48 × 10−5

Table 5
NMSE along the web evaluated after excluding the three points closer to the cross
section corner, where a singularity occurs.

Web 𝜎𝑥𝑥 𝜎𝑧𝑧 𝜎𝑥𝑧
𝐹𝑧 1.99 × 10−4 0.74 × 10−3 5.73 × 10−5
𝐹𝑦 2.51 × 10−5 6.88 × 10−6 6.91 × 10−6
𝑀𝑥 1.04 × 10−3 1.13 × 10−4 1.79 × 10−4

𝜎𝑦𝑦 𝜎𝑥𝑦 𝜎𝑦𝑧
𝐹𝑧 1.56 × 10−5 1.32 × 10−4 1.03 × 10−6
𝐹𝑦 1.83 × 10−7 3.92 × 10−6 4.14 × 10−6
𝑀𝑥 3.16 × 10−5 6.82 × 10−4 2.57 × 10−5

4.1.1. In-plane shear stress distributions along the span of a beam
Seven cross sections of the tapered box girder shown in Fig. 1 are

considered. They are located at a distance of 1.6m from each other
and are defined in the plane perpendicular to the 𝑧-axis of the beam.
The in-plane shear stresses evoked by the axial and shear forces, and
bending moment are evaluated by means of the analytical solutions and
of the FE model already described in Section 3. Figs. 14(a), 15(a), 16(a)
show the stress distribution along the flange of the beam, whereas the
others along the web. It is worth noting that the analytical solutions
are in good agreement with the numerical results in the central cross
sections, namely the ones far from the boundaries. As expected, the two
methods deviates at sections 1, root of the beam, and 7, its tip, since
the boundary conditions and the external forces are applied at those
locations. The stresses at the root and tip sections are differently scaled
for readability.

4.1.2. In-plane shear stress: a comparison between vertical and horizontal
taper

Vertical and horizontal taper influence the in-plane shear behaviour
differently. Two homogeneous isotropic beams with rectangular cross
sections and subjected to a shear load 𝑄 at their tips are compared.
The vertically tapered beam is Case a, whereas the horizontally tapered
beam is Case b. Their geometrical properties are listed in Table 6 and
have been chosen in such a way that the two control cross-sections have
the same dimensions.

Fig. 17 shows the in-plane shear distribution along the web. The
contributions of the pure shear and the pure bending are isolated to
clarify the different behaviours. The dashed-lines, representative of the
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Fig. 8. Distribution of the stress components (a) 𝜎𝑧𝑧 and (b) 𝜎𝑦𝑦 derived from analytical and numerical analysis, and relative error. The results refer to half of the flange of the
control cross section. The three cases of axial force, shear force and bending moment are shown.

Fig. 9. Distribution of the stress components (a) 𝜎𝑦𝑧 and (b) 𝜎𝑥𝑦 derived from analytical and numerical analysis, and relative error. The results refer to half of the flange of the
control cross section. The three cases of axial force, shear force and bending moment are shown.

Table 6
Geometrical dimensions of the vertically 𝑎 and the horizontally 𝑏 tapered beams.

Case 𝐿 [m] 𝛼 [deg] 𝛽 [deg] ℎ [mm] 𝑏 [mm] 𝑡𝑓 [mm] 𝑡𝑤 [mm]

a 10.0 4.0 0.0 500 500 10.0 10.0
b 10.0 0.0 4.0 500 500 10.0 10.0

pure-shear, have the same distribution and values in both cases. On
the contrary, the shear-bending (point-dashed-lines) has much higher
values in case 𝑎 that the maximum stress occurs at the corner of the
cross section and not at the centre.

4.2. Parametric study of the equivalent stress

A parametric study on the variation of the equivalent stress in
tapered beams is carried out. The von Mises criterion is used (Timo-
shenko and Goodier, 1951). Such parametric study is carried out by

analysing a series of different tapered beams. Such beams present the
same material, load conditions, beam length, and dimensions of the
control cross section, which is located at 𝐿∕2. Specifically, 𝐿 = 10m,
2ℎ = 2 𝑏 = 1m. Then, for each beam, the number of cycles to failure
is calculated using Basquin’s law (Basquin, 1910). The material chosen
in this example is steel with Basquin’s constants 𝐶 = 4.56 ⋅ 1030 and
𝑛 = −9.84 (Li et al., 2017).

Fig. 18(a) shows the variation of the maximum von Mises stress for
beams with 𝛼 and 𝛽 varying in the range [−10◦, +10◦] with respect
to the prismatic case. When 𝛼 = 0◦ and 𝛽 > 0◦, the equivalent stress
increases. Otherwise when 𝛽 < 0◦. When 𝛽 = 0◦ and the beam is
vertically taper, the equivalent stress increases independently of the
sign of 𝛼. Note that, even if the von Mises stress increases of maximum
4% when 𝛼 = ± 10◦ and 𝛽 = 8◦, the number of cycles to failure reduces
up to 20% as shown in Fig. 18(b).
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Fig. 10. Distribution of the stress components (a) 𝜎𝑥𝑧 and (b) 𝜎𝑥𝑥 derived from analytical and numerical analysis, and relative error. The results refer to half of the flange of the
control cross section. The three cases of axial force, shear force and bending moment are shown. A peak of 10% relative error occurs in (b), axial force 𝐹𝑧 because 𝜎𝑥𝑥 is equal to
zero at 𝑥 = 230mm.

Fig. 11. Stress distributions along the web (a) 𝜎𝑧𝑧 and (b) 𝜎𝑥𝑥 together with the relative error between the analytical and numerical values.

5. Conclusions

This paper presents an extension of the method derived in Bertolini
et al. (2019) to doubly tapered beams. Results show the accuracy of
the solutions to predict the Cauchy’s stress field of an arbitrary homo-
geneous isotropic tapered beam with rectangular cross-section. These
closed-form solutions could be used for stress analysis in structural
design of similar cross sections. Particularly, the following conclusions
are drawn:

1. The classic Jourawski’s formula for prismatic beams is not valid
for arbitrary tapered beams. Taper causes a redistribution of the
in-plane shear stress which could lead to non-optimal design.

2. Through-thickness shear stress appears in beams with vertical
and/or horizontal taper. Specifically, this shear component is

given from the product of the normal stress and the tangent of
the taper angle. Consequently, the more the beam is tapered, the
higher the component becomes.

3. The proposed solution is also applicable to the case of shear
force and bending moment applied in any direction within the
cross section. This can be achieved through the superposition
principle, by decomposing the force and the moment along the
principal directions.

4. The provided analytical solution for stress tensor analysis guar-
antees an accurate prediction of the fatigue lifetime. For example
in a beam with vertical and horizontal taper of 4 degrees, the
number of cycle to failure reduces up to 12% than in a prismatic
beam of comparable size.

The current method can be directly applied to any tapered thin-
walled beams with symmetric cross-section. Minor modifications to
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Fig. 12. Stress distributions along the web (a) 𝜎𝑥𝑧 and (b) 𝜎𝑥𝑦 together with the relative error between the analytical and numerical values.

Fig. 13. Stress distributions along the web(a) 𝜎𝑦𝑧 and (b) 𝜎𝑦𝑦 together with the relative error between the analytical and numerical values. Under axial load, the web is in
compression at its centre and in tension in the outer part. Where the stress approaches zero (𝑥 = 210mm), the relative error reaches 9%. Because of the small values, the absolute
error is negligible.

the current approach will provide the solution for beams with vari-
able thickness along the 𝑧-direction. Further extension will regard
variable thickness within the cross section. Moreover, a generalisa-
tion of Navier’s formula will allow to derive the solution of beams
with asymmetric cross-section. Also the introduction of anisotropic and
inhomogeneous materials will be a great benefit.
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Appendix. Analytical expressions for the normal stress compo-
nents 𝝈𝒇

𝒙𝒙 in the flange and 𝝈𝒘
𝒚𝒚 in the web

The expressions for the normal stress components determined in
Section 2.3 by imposing the vertical and horizontal equilibrium of the
stresses acting at an infinitesimal part of the corner of the cross section
are presented in here for completeness.

In the flange, Eq. (21) is substituted in Eq. (11). Then, after some
manipulation, the stress components 𝜎𝑓𝑥𝑥 become
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Fig. 14. In-plane shear stress 𝜎𝑦𝑧 along (a) the flange and (b) the web of seven cross sections of a doubly tapered box girders. The axial force 𝐹𝑧 = 1 kN is applied at the tip.
Legend: 𝑥 = numerical solution; − = analytical solution.

Fig. 15. In-plane shear stress 𝜎𝑦𝑧 along (a) the flange and (b) the web of seven cross sections of a doubly tapered box girders. The shear force 𝐹𝑦 = 1 kN is applied at the tip.
Legend: 𝑥 = numerical solution; − = analytical solution.

𝜎𝑓𝑥𝑥 =
𝐹𝑧 𝑡𝑤

4 (𝑏 𝑡𝑓 + ℎ 𝑡𝑤)3
{
𝑥2 (𝑡𝑓 tan 𝛽 + 𝑡𝑤 tan 𝛼)2 (A.1)

[
(ℎ2 𝑡𝑤 + 2 𝑏 ℎ 𝑡𝑓 ) tan 𝛽2 − 2 tan 𝛽 tan 𝛼 𝑏2 𝑡𝑓 − 𝑏2 𝑡𝑤 tan 𝛼2

]
𝑡𝑤
}

−
3𝐹𝑦

4ℎ2(3 𝑏 𝑡𝑓 + ℎ 𝑡𝑤)2
{
𝑥2 [3ℎ 𝑡𝑓 tan 𝛽 + (3 𝑏 𝑡𝑓 + 2ℎ 𝑡𝑤) tan 𝛼]

+𝑏 (3 𝑏 𝑡𝑓 + 2ℎ 𝑡𝑤)(ℎ tan 𝛽 − 𝑏 tan 𝛼)
}

−
3𝑀𝑥

4ℎ2(3 𝑏 𝑡𝑓 + ℎ 𝑡𝑤)2

{
𝑥2

[
tan 𝛼2(3 𝑏 𝑡𝑓 + ℎ 𝑡𝑤)

ℎ

+
3 𝑡𝑓 tan 𝛽 + 𝑡𝑤 tan 𝛼

(3 𝑏 𝑡𝑓 + ℎ 𝑡𝑤)
(3 𝑡𝑓 tan 𝛽 tan 𝛼 + 𝑡𝑤 tan 𝛼2 + 3ℎ 𝑡𝑓 tan 𝛽)

]

− 1
ℎ (3 𝑏 𝑡𝑓 + ℎ 𝑡𝑤)

[
ℎ4𝑡2𝑤 tan 𝛽2 + 3 (3 𝑏4 𝑡2𝑓

+ 3 𝑏3 ℎ 𝑡𝑓 𝑡𝑤 + 𝑏2 ℎ2 𝑡2𝑤) tan 𝛼
2

−9ℎ 𝑏 (𝑏2 𝑡2𝑓 + ℎ 𝑏 𝑡𝑓 𝑡𝑤 + 4
9
ℎ2 𝑡2𝑤) tan 𝛼 tan 𝛽

]}
.

Note that when 𝛼 = 𝛽 = 0, i.e. when the beam is prismatic, Eq. (A.1)
reduces to zero. Moreover, when 𝛽 = 0 and 𝛼 ≠ 0 it simplifies to

𝜎𝑓𝑥𝑥|𝛽=0 =
(𝑥2 − 𝑏2) tan 𝛼

4

[
𝐹𝑧 𝑡2𝑤 tan 𝛼
(𝑏 𝑡𝑓 + ℎ 𝑡𝑤)3

−
3𝐹𝑦 (3 𝑏 𝑡𝑓 + 2ℎ 𝑡𝑤)
ℎ2 (3 𝑏 𝑡𝑓 + ℎ 𝑡𝑤)2

(A.2)

−
3𝑀𝑥 (3 𝑡2𝑓 𝑏2 + 3ℎ 𝑏 𝑡𝑓 𝑡𝑤 + ℎ2 𝑡2𝑤) tan 𝛼

ℎ3 (3 𝑏 𝑡𝑓 + ℎ 𝑡𝑤)3

]
,

which corresponds to Eq. 27 in Bertolini et al. (2019).
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Fig. 16. In-plane shear stress 𝜎𝑦𝑧 along (a) the flange and (b) the web of seven cross sections of a doubly tapered box girders. The bending moment 𝑀𝑥 = 5 kN m is applied at
the tip. Legend: 𝑥 = numerical solution; − = analytical solution.

Fig. 17. 𝜎𝑦𝑧 distribution along the web of a (a) vertically and (b) horizontally tapered cantilever beam. The 1m × 1m cross section is located at 5m from the root and the tip. In
both cases the taper angle is equal to 4.3 deg.

Fig. 18. Ratio with respect to a prismatic beam of (a) the von Mises stress distribution and (b) the number of cycle to failure in cantilever beams with vertical taper angle 𝛼 and
horizontal taper 𝛽.
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Along the web, the missing stress component 𝜎𝑤𝑦𝑦 is obtained after
substituting Eq. (22) in Eq. (20)

𝜎𝑤𝑦𝑦 =
3𝐹𝑦 𝑦

4ℎ3 𝑡𝑤 (3 𝑏 𝑡𝑓 + ℎ 𝑡𝑤)2
{
ℎ 𝑡𝑓 𝑡𝑤 (ℎ2 − 𝑦2) tan 𝛽 (A.3)

+ [𝑡2𝑤 (ℎ3 − ℎ 𝑦2) + 2 𝑏 𝑡𝑓 𝑡𝑤 (2ℎ2 − 𝑦2) + 6 𝑏2 ℎ 𝑡2𝑓 ] tan 𝛼
}

+
𝐹𝑧

4 𝑡𝑤 (𝑏 𝑡𝑓 + ℎ 𝑡𝑤)3
[
𝑡2𝑤 (𝑡𝑤 𝑦2 + 2 𝑏 ℎ 𝑡𝑓 ) + 𝑡𝑤 𝑡2𝑓 (𝑏2 − ℎ2 + 𝑦2)

+
𝑡𝑤 𝑡2𝑓 (ℎ2 − 𝑦2)

cos 𝛽2
−
(

𝑡𝑤
cos 𝛼2

+ 2 𝑡𝑓 tan 𝛼 tan 𝛽
)

(
𝑏2 𝑡2𝑓 + 2 𝑏 ℎ 𝑡𝑓 𝑡𝑤 + 𝑡2𝑤 𝑦2

)]

−
3𝑀𝑥 𝑦

4ℎ4 𝑡𝑤(3 𝑏 𝑡𝑓 + ℎ 𝑡𝑤)3
{
2ℎ 𝑡𝑓 𝑡𝑤 [3 𝑏 𝑡𝑓 𝑦2 + ℎ 𝑡𝑤 (2 𝑦2 − ℎ2)]

tan 𝛼 tan 𝛽

+ 3 𝑡2𝑓 𝑡𝑤 [ℎ4 + ℎ2(6 𝑏2 − 𝑦2) − 3 𝑏2 𝑦2] + 1
cos 𝛼2

[ℎ2 𝑡3𝑤 (2 𝑦2 − ℎ2)

+ ℎ2 𝑡3𝑤 (ℎ2 − 2 𝑦2) + 2ℎ 𝑏 𝑡𝑓 𝑡2𝑤 (3ℎ2 − 4 𝑦2) + 18ℎ 𝑏3 𝑡3𝑓

−
3ℎ2 𝑡2𝑓 𝑡𝑤 (ℎ2 − 𝑦2)

cos 𝛽2

−2ℎ 𝑏 𝑡𝑓 𝑡2𝑤 (3ℎ2 − 4𝑦2) − 9 𝑏2 𝑡2𝑓 𝑡𝑤 (2ℎ2 − 𝑦2) − 18 𝑏3 ℎ 𝑡3𝑓 ]
}
.

When 𝛼 = 𝛽 = 0 the stress component 𝜎𝑤𝑦𝑦 is zero, as expected in
prismatic beams. When 𝛽 = 0 and 𝛼 ≠ 0, i.e. when the beam is vertically
tapered, this expressions simplifies to Eq. (A.4), which corresponds to
Eq. 28 in Bertolini et al. (2019).

𝜎𝑤𝑦𝑦 =
3𝐹𝑦 𝑦 tan 𝛼

4ℎ3 𝑡𝑤 (3 𝑏 𝑡𝑓 + ℎ 𝑡𝑤)2
(A.4)

[𝑡2𝑤 (ℎ3 − ℎ 𝑦2) + 2 𝑏 𝑡𝑓 𝑡𝑤 (2ℎ2 − 𝑦2) + 6 𝑏2 ℎ 𝑡2𝑓 ]

+
𝐹𝑧

4 𝑡𝑤 (𝑏 𝑡𝑓 + ℎ 𝑡𝑤)3
(𝑏2 𝑡2𝑓 + 2 𝑏 ℎ 𝑡𝑓 𝑡𝑤 + 𝑡2𝑤 𝑦2)

(
1 − 1

cos 𝛼2

)

−
3𝑀𝑥 𝑦

4ℎ4 𝑡𝑤(3 𝑏 𝑡𝑓 + ℎ 𝑡𝑤)3
{
3 𝑡2𝑓 𝑡𝑤 [ℎ4 + ℎ2(6 𝑏2 − 𝑦2) − 3 𝑏2 𝑦2]

+ 1
cos 𝛼2

[ℎ2 𝑡3𝑤 (2 𝑦2 − ℎ2) − 2ℎ 𝑏 𝑡𝑓 𝑡2𝑤 (3ℎ2 − 4 𝑦2)

− 9 𝑏2 𝑡2𝑓 𝑡𝑤 (2ℎ2 − 𝑦2) − 18 𝑏3 ℎ 𝑡3𝑓 ] − 3ℎ2 𝑡2𝑓 𝑡𝑤 (ℎ2 − 𝑦2)

+ 3 𝑡𝑤 𝑡2𝑓 (ℎ4 + ℎ2 (6 𝑏2 − 𝑦2) − 3 𝑏2 𝑦2)

+2ℎ 𝑏 𝑡𝑓 𝑡2𝑤 (3ℎ2 − 4 𝑦2) + ℎ2 𝑡3𝑤 (ℎ2 − 2𝑦2) + 18 𝑏3 ℎ 𝑡3𝑓
}
.
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ABSTRACT 

While the demand for new and longer wind turbine blades is increasing, time for their design and 

production is shortening. 3D finite element models generally have the capability of providing a 

complete and detailed analysis of the behaviour of such structures. Nonetheless, computationally 
efficient and accurate cross-section analysis tools are required to improve the efficiency of the 

workflow in the conceptual design phase. Several cross-section analysis software, such as BEam 

Cross-Section Analysis Software BECAS, have been developed for analysis of prismatic beams. As a 

result, structures which are tapered along their longitudinal axis, i.e. aircraft wings or wind turbine 
blades, are modelled as step-wise prismatic beams and the known effects on stresses due to taper are 

ignored. This study provides a numerical comparison of the Cauchy’s stress components evaluated 

with both 3D finite element and cross-section analysis consisting of linear elastic isotropic and 
anisotropic materials. Results highlight how every cross-section formulation that relies on the step-

wise prismatic assumption lacks the capability to correctly recover the stresses in tapered beams.  

 

1 INTRODUCTION 

Nowadays, aerospace and wind energy industries are facing new challenges related to an upscaling 

tendency of aircrafts and wind turbine rotors, where low costs of production and optimal structural 

designs must be assured. In such cases, advanced composite materials and lengthwise geometrical 
variations (LGVs) play a key role. Aircraft structures and wind turbine blades are typically made from 

glass/carbon-fibre polymer composite beams and comprise of lengthwise geometrical variations LGVs 

such as pre-curved beam axis and twist and variation of the dimensions of their cross section from the 
root to the tip, i.e. taper [1]. Material anisotropy and LGVs induce material and geometry coupling, 

respectively. This study is concerned only with geometrical coupling due to taper.  

Among the LGVs, taper is defined as the variation of the dimensions of the cross section along the 

longitudinal axis of the beam [2]. The effects of taper in beams have been noticed since the last 
century, when studies on a planar isotropic wedge loaded at its tip showed a non-trivial shear stress 

distribution [3, 4]. Recently, Bennati et al. [5] focused on the analysis of a planar truncated isotropic 

beam under axial and shear load as well as bending moment, highlighting how the maximum shear 
stress does not necessarily occur at the cross-section centre-line in tapered beams. Bertolini et al. [2] 

derived a methodology to describe the full Cauchy’s stress field in thin-walled tapered beams. 

Balduzzi et al. [6] studied the variation of the stress distribution in planar anisotropic tapered beams. 
The aforementioned studies revealed that taper effects are not negligible in beam design and that they 

are not captured in classic beam models.  

In wind turbine manufactory industries, the blade designs are constantly and rapidly changing to 

answer to the costumers’ demand. For this reason, accurate and computationally efficient analysis 
tools to perform aero-elastic and structural analysis are required. Even though 3D finite element 

analyses are able to model LGVs, they are too computationally expensive to be employed in the 

above-mentioned analyses. Since wind turbine blades have a high length-to-height and length-to-width 
ratio, they can be modelled as slender beams. 
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Nowadays the above-mentioned cross-section analysis can be accomplished by different design 

tools, such as VABS [7], which is based on the variational asymptotic method, ANBA [8] and BECAS 
[9], which are both based on the anisotropic beam theory developed by Giavotto et al. [10]. They 

provide the six-by-six stiffness matrix of the cross-section of a slender linear elastic anisotropic 

prismatic beam for small strains and displacements used for aeroelastic analysis. On the other hand, 

they can be used to recover stresses and strains in cross sections when the internal forces are known 
e.g. from aeroelastic analysis. The aforementioned cross-section analysis tools use the definition of the 

energy per unit beam length under the assumption of prismatic beam geometries. Therefore, tapered 

beams are approximated as step-wise prismatic beams and the recovered stress field lacks the effects 
of taper previously mentioned.  

The objective of the present work is to investigate how cross-section analysis could over/under-

estimate the stress field in a tapered beam. Tapered homogeneous isotropic and anisotropic beams 

with four different cross-sections and subjected to an external shear force are modelled with 3D finite 
element and cross-section analyses to compute the Cauchy’s stress components. The numerical 

comparison between the two solutions highlight how the latter fails to capture some of the stress 

components as well as to predict the stress distribution correctly. 

2 METHOD 

A 3D finite element model of a tapered cantilever beam loaded by an external shear force is created 

to extract the stresses at its middle section. The results are numerically compared with the ones 
evaluated by cross section analysis in the cross section at the mid-span. The latter is subjected to the 

internal forces induced by externally applied load. The software BECAS developed at DTU Wind 

Energy is used for cross-section analysis and the commercial finite element package Abaqus [11] for 

the numerical analysis of the 3D finite element model. 

Four tapered cantilever beams are considered. They are represented in the coordinate system Oxyz 
as illustrated in Fig. 1. The beams have length L and constant vertical and horizontal taper angles, 

named  and  respectively. As demonstrated in Bertolini et al. [2], a thin-walled tapered 

homogeneous isotropic beam exhibits taper effects under axial or shear force or bending moment. 

Aircraft wings and wind turbine blades experience a combination of aerodynamic-gravitational-inertial 

loads during operation life [1]. Bending in the direction perpendicular to the blade axis (flapwise) is 
one of the main load cases. Therefore, for simplicity, this paper analyses cross sections which are 

subjected only to an internal shear force and bending moment. Small taper angles (see Table 2) have 

been used to allow the comparison of the isotropic thin-walled rectangular model with the analytical 
solution provided in [12]. 

The analysed tapered beams involve four different cross sections, as described in the following. 

Two homogeneous isotropic tapered beams with solid rectangular cross section (ISR) and thin-walled 

rectangular cross section (ITWR); two anisotropic tapered beams with thin-walled rectangular cross 
section (CTWR) and with blade-like cross section (CB). The latter is a combination of a semicircle 

and a trapezoid. 

In order to solely investigate the geometrical coupling caused by taper, the fibre directions in the 
rectangular cross section are chosen in such a way to eliminate any source of anisotropy material 

Figure 1: Side and top view of the analyzed doubly tapered beams. The beam presents a constant 

vertical taper  and horizontal taper . The DOFs in the plane at z = 0 are constrained and the 

load is applied at z = L. 
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coupling. Moreover, analytical solutions for ITWR tapered beams are available in the literature [2, 12] 

and they will be used for comparison in this study. The blade-like cross section is chosen to analyse a 
more realistic example. Aluminum, which is widely used in aircraft industries, and E-glass/epoxy 

lamina, which is typically used in wind turbine blades, are employed to investigate the relation 

between taper and linear isotropic and linear anisotropic materials, respectively. The properties of the 

two materials are listed in Table 1. For simplicity, the flanges of CTWR as well as the flanges and the 
leading edge of CB are uniaxial E-glass/epoxy laminate and the webs of both models are [+45° -45° 

+45°] laminate. 

Material E11 E22=E33 G12 =G13 G23 12 = 13 23  
 [GPa] [GPa] [GPa] [GPa]   [Kg/m3] 

Aluminium 70 70 26 26 0.3 0.3 2700 

E-glass/ epoxy 39.5 12.10 4.54 4.54 0.275 0.333 1845 

Table 1: Properties of the isotropic (aluminium) and of the composite materials (E-glass/ epoxy [1]). 

In order for the model from BECAS to be comparable to the one from Abaqus, a reference cross 

section located at the midspan of each cantilever beam is considered. Being the reference cross section 
sufficiently far from the clamped root and the loaded tip, the influence of the boundary effects 

becomes negligible. Moreover, the reference cross sections are chosen perpendicular to the beam axis 

and located at z = 5 m. Their geometrical dimensions are given in Table 2.  

  

 

 

 

 

The mesh discretization of the four models is shown in Fig. 2 and 3. The number of elements in 

each part of the cross section and the total number of elements of the Abaqus and BECAS models are 
given in Table 3. 

Model L B H t   

 [m] [mm] [mm] [mm] [deg] [deg] 

ITWR 10 1000 1200 24 2.5 1.5 

CTWR 10 1000 1200 24 2.5 1.5 

ISR 10 1000 1175 - 2.5 1.5 

CB 10 300 600 24 1.2 3.4 

Table 2: Geometrical dimensions of the four beams. 

 (a)                                                                    (b) 
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x 

Figure 2: Finite element mesh of the cross sections (a) ISR and (b) ITWR. The local directions x 

and y indicates the directions of the paths along which the stresses are extracted. 
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2.1 3D finite element model 

The 3D finite element models were discretised with incompatible mode eight-noded brick elements 
(Abaqus element type C3D8I). Convergence studies were performed by refining the mesh until a 

mesh-independent solution was achieved. They are omitted in this paper for the sake of brevity. As 

shown in Fig. 2 and 3, the mesh of the cross sections was refined close to the corners to increase the 

accuracy of the evaluated stress field in the proximity of the singularities. For the two examples 
CTWR and CB, each laminate was modelled from partitioning the wall thickness in the three laminae 

and by assigning the material orientation as designed. The materials properties are defined in Table 1. 

The external load and the clamped condition were applied through a reference point located at the 
geometrical centroid of the tip and the root. These reference points were then constrained to the 

surfaces at the tip and the root using kinematic couplings. The Abaqus linear perturbation solver was 

used. After defining a nodal path, the stresses were extracted in global coordinates in ISR and ITWR, 
and in the material coordinates in CTWR and CB, as defined in the Results Section. 

 

 ISR ITWR CTWR CB 

 # el bias-ratio # el bias-ratio # el bias-ratio # el bias-ratio 

Flange 40 3 40 2 40 2 50 2 

Flatback 40 3 40 2 40 2 20 1 

Internal web - - - - - - 50 2 

Leading edge - - - - - - 80 2 

Length 180 4 180 4 180 4 120 2 

Total #el in Abaqus  80 000 51 600 51 600 46 080 

Total #el in BECAS 1 600 516 516 576 

Table 3: Number of elements and ratio of the size of the coarsest element to the size of the finest element 

(bias-ratio) in each part of the cross sections. ‘Length’ refers to the number of elements along the span of 

the beam. The total number of elements in the two models is also given. 

   (a)                                                                         (b) 
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Figure 3: Finite element mesh of the cross sections (a) CTWR and (b) CB. The coloured webs have 

direction [+45° -45° +45°]. The local directions x, y, sf, and sl indicates the directions of the paths 

along which the stresses are extracted. 
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2.2 Cross section model 

The software BECAS provides the six-by-six cross-section stiffness matrix, the shear and elastic 
centres of any anisotropic cross-section and arbitrary geometry. Given as input the geometry of a cross 

section, the properties of the materials and the internal forces, a finite element model of the cross 

section was created and analysed. The cross sections of this study were modelled with four-noded 2D 

plane elements (Q4), coherently with the chosen linear elements used in the Abaqus model. The 
applied internal forces were equivalent to the ones caused by the tip load applied in the models in 

Abaqus and they are given in Table 4.  

 

 

 

3 RESULTS AND DISCUSSION 

The Cauchy’s stresses were evaluated at the centroid of each element in the 3D FEM from Abaqus 
and in the model from BECAS. To validate the models from BECAS, each cross section was modelled 

as prismatic 3D finite element in Abaqus. The stress components in the three different models provide 

a numerical comparison of the effects of LGVs.  

The cross sections of ISR, ITWR, CTWR have two axes of symmetry, therefore the stress 
distributions are symmetric, and it suffices to show to show them along a quarter of the cross section 

(0 < x < B/2 and 0 < y < H/2). Results from CB are reported only for half of the cross-section (0 < y < 

H/2). In Fig. 4 - 13 the label ‘BECAS CS’ refers to the results from BECAS, ‘3D CSP’ and ‘3D CST’ 
to the ones from the prismatic and tapered models in Abaqus respectively.  

3.1 ISR: a solid rectangular cross-section with homogeneous isotropic material 

A doubly tapered cantilever beam with solid rectangular cross section was modelled and analysed. 

The comparison in Fig. 4 and 5 refers to a vertical and to a horizontal path located at x = 0.49 m and y 
= 0.57 m respectively. Stresses are evaluated in the global coordinate system Oxyz. 

In a cross section of a homogeneous isotropic prismatic beam with solid rectangular cross section 

subjected to internal shear and shear-bending, only axial and in-plane shear stresses arise. Figures 4 
and 5 show that if the same beam is slightly tapered none of the stress components is zero. 

 As expected [13], the axial stress component zz in both the vertical and horizontal path is not 

affected by taper. The other stresses xx, xy, xz, yy are strongly at variance and they increase when 

moving toward the edge of the cross section. For example, the shear stress distribution along the 

vertical path of the prismatic beam reaches its maximum value at the mid-span, whereas it occurs at 

the extremity of the cross section in the tapered beam, as experienced in homogeneous isotropic thin-

walled cross sections [2]. 

3.2 ITWR: a thin-walled rectangular cross-section with homogeneous isotropic material 

The stresses along the web and flange of the current cross section are evaluated in the global 

coordinate system Oxyz. Three different methods were applied: the cross-section analysis BECAS, the 
3D finite element model in Abaqus, and the closed-form analytical solutions (‘Analytical’) provided in 

Bertolini and Taglialegne [12]. Analytical solutions and Abaqus models of the tapered beams are in 

good agreement and they are both able to capture the effects of taper. As in the previous example, the 

axial stress component zz in the flange and the web is hardly affected by small taper angles [13]. On 

the other hand, the shear stress distributions are wrongly predicted in BECAS because the shear-

bending coupling caused by the taper is not depicted. It reduces the shear stress yz, but it also shifts its 

External force Internal forces 

Shear force Shear force Bending moment 

1000 N 1000 N -5000 Nm 

Table 4: Internal forces at the reference cross sections due to the external load Fy applied at the tip. 
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maximum from the mid-span to the corner, as shown in Fig. 7-e. In addition, the stress components 

xx, xz, yy are not zero even for the small taper angles used in this model.  

Figure 4: Stress distributions along a horizontal path located in the proximity of the edge of 

model ISR under an external shear force. Legend: --- BECAS CS, — 3D CST, 
……

 3D CSP. 

Figure 5: Stress distributions along a vertical path located in the proximity of the edge of 

model ISR under shear force. Legend: --- BECAS CS, — 3D CST, …… 3D CSP. 
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3.3 CTWR: a thin-walled rectangular cross-section with composite material 

The same cross section analysed in the previous section is now composed by three laminae of E-
glass/epoxy. In the flanges, the fibres are oriented along the beam direction (0°)3 and in the webs, the 

plies have direction angles [+45° -45° +45°]. The stresses are therefore evaluated in the material 

coordinate system O123, where the axis corresponding to the 1-direction is aligned with the fibres and 
the axis corresponding to the 3-direction is the outward normal. Figure 8 shows the stresses in half of 

Figure 6: Stress distributions along the flange of model ITWR under shear force.  

Legend: --- BECAS CS, — 3D CST, …… 3D CSP, . - . - . Analytical. 

Figure 7: Stress distributions along the web of model ITWR under shear force.  

Legend: --- BECAS CS, — 3D CST, …… 3D CSP, . - . - . Analytical. 
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the internal lamina of the flange. It is worth noting that the axial stress 11 and the-out-of-plane 

components are not affected by taper. The in-plane shear stress has opposite sign and it is three times 

overestimated in BECAS.  

Figure 9 shows the stresses in the internal lamina of the web where the fibres have direction -45°. 

In this case, BECAS correctly predicts the in-plane shear stress 12, whereas it overestimates the in-

plane stress components 11 and 22 by three-times in comparison to Abaqus. In addition, taper induces 

the out-of-plane stress components, which are zero in the prismatic case. Out-of-plane stresses have a 
key role in failure design because they are involved in delamination of the laminate. It is worth noting 

that even if 13 and 23 are 10 times smaller than 12, the transverse tensile strength is typically 20 

times smaller than the longitudinal tensile strength in unidirectional laminae [14]. Therefore, the ratios 

stresses-to-strength in the transverse and longitudinal direction are comparable. 

 

3.4 CB: a wind turbine blade cross sectional geometry of composite material 

The last example is a tapered cantilever beam with the blade-like cross section given in Fig. 3-b. 

The airfoil is made of three-layer uniaxial laminate and the webs of three-layers laminate with ply 
angles of [+45° -45° +45°]3. Stresses are computed in the material coordinate system O123, which is 

defined in such a way that the fibres follow the 1-direction and the 3-direction is outward normal to 

the laminate. The numerical comparison refers only to the stresses along the upper flange in Fig. 10, 

the leading edge in Fig. 11, and half of the webs in Fig. 12 and 13 are presented.  
Results from BECAS and the prismatic FEM in Fig. 10 show that only axial and in-plane shear 

stresses occur in the upper flange. When the beam is tapered, the axial stress 11 slightly increases and 

the shear stress 12 is strongly reduced and has a different distribution with maximum value sf = 0 and 

quasi-zero stress at the external corner (sf → 0.8m). Among the remaining components, the out-of-

plane stresses are not zero in the tapered model and the maximum value of 23 has the same order of 

magnitude as 12. The combination of such a high transverse shear stress in Fig. 10-e and transverse 

tensile stress in Fig. 10-f  might be critical in delamination of the laminate or debonding of the 
adhesive joint, as already pointed out in the previous section.  

 

 

Figure 8: Stress distributions along half of the flange of model CTWR loaded by a shear 

force. The stresses are from the internal lamina (0°). 

Legend: --- BECAS CS, — 3D CST, 
……

 3D CSP. 
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Figure 11 refers to half of the leading edge. Only axial and in-plane shear stresses arise in the 

prismatic case. In the tapered model the axial stress does not change, whereas the in-plane shear stress 

halves and 12 = 0 at sl = 0.3 m. As observed in the flange of CB, the out-of-plane shear stress  in 

Fig. 11-e has values comparable to the in-plane shear stress at the intersection between the leading 

edge, the flange and the internal web. Delamination could have a driving role in the failure design. The 

distribution of  shown in Fig. 13-d does not provide sufficiently accurate results. Indeed, results 

from BECAS deviate from the prismatic model in Abaqus and therefore a deeper investigation is 
needed. 

 

 

 

 

Figure 9: Stress distribution along half of model CTWR loaded by a shear force. The stresses from 
the internal lamina (-45°). Legend: --- BECAS CS, — 3D CST, 

……
 3D CSP.  

Figure 10: Stress distribution along the upper flange of model CB under a shear force. The stresses 

are extracted in the internal lamina (0°). Legend: --- BECAS CS, — 3D CST, …… 3D CSP. 
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Figure 12 shows the stresses in the web along the external lamina (+45°). The in-plane shear stress 12 

from the three models is the same, the axial component 11 is overestimated in BECAS, whereas the 

22 is underestimated. As in the previous cases, the out-of-plane stresses are not zero when the beam is 

tapered. In the beam analysed in this study, the transverse shear components in Fig. 12-d and Fig. 12-e 
are circa four or six times smaller than the in-plane shear component, but as explained before, 

delamination could be crucial. 

Similar observations can be drawn for the flatback, whose stress components are shown in Fig. 13. 

The component 12 is not affected by the taper, whereas  11 and 22 are overestimated in BECAS.  
Delamination failure may be critical also in this region, since the out-of-plane shear stresses in Fig. 13-

d and Fig. 13-e are not zero.  

 

Figure 11: Stress distribution along the leading edge of model CB under a shear force. The stresses  

are extracted in the internal lamina (0°). Legend: --- BECAS CS, — 3D CST, …… 3D CSP. 

Figure 12: Stress distribution along the internal web of model CB under a shear force. The stresses 

are extracted in the external lamina (+45°). Legend: --- BECAS CS, — 3D CST, …… 3D CSP. 
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Figure 13: Stress distribution along the flatback of model CB under a shear force. The stresses are 

extracted in the internal lamina (-45°). Legend: --- BECAS CS, — 3D CST, …… 3D CSP. 

 
 

9 CONCLUSIONS 

In this paper the Cauchy stress distributions in tapered cantilever beams subject to concentrated 
shear loads are compared with stress distributions recovered from cross-section analysis induced by 

equivalent internal cross section forces. In this study three different cross section geometries are 

investigated where both isotropic and anisotropic material behaviour is considered. The aim of this 

study is to shed light on the deviation between the stress fields in tapered 3D finite element models 
and those provided by stepwise prismatic cross-section analysis models. The following conclusions 

can be drawn from the results: 

1. The numerically predicted stress distributions obtained by both, 3D analysis and cross-section 
analysis agreed well in all prismatic cases. The analytically obtained stress distributions 

agreed well with those predicted by 3D analysis in the designated tapered cases. 

2. The stepwise prismatic approach adopted in the cross-section analysis methods incorrectly 

predicts the stresses provided by tapered 3D finite element models. The stress distributions in 
tapered cross sections were found to be significantly at variance where the magnitude of 

deviation is a strong function of the taper angle. 

3. The deviations occur for any taper angle different from zero irrespective of isotropic or 
anisotropic material behaviour. The taper can significantly augment the stress distributions 

prevailing in prismatic cases whence the deviations are typically counterintuitive. 

4. Particularly relevant for fibre-polymer composites it was demonstrated that taper is prone to 
induce through thickness transverse tensile stress components. Such peeling stress 

components have the propensity to significantly affect the fatigue life of composites. 

 

ACKNOWLEDGEMENTS 

This work was conducted within the industrial PhD project ’Advanced Accurate and 

Computationally Efficient Numerical Methods for Wind Turbine Rotor Blade Design’ [grant number: 

5189-00210B] funded by Innovation Fund Denmark and LM Wind Power. The financial support is 

gratefully acknowledged.  

108



Paola Bertolini, Ali Sarhadi, Mathias Stolpe and Martin A. Eder 

 

REFERENCES 

[1] C. Bak, F. Zahle, R. Bitsche, A. Yde, L.C. Henriksen, A. Nata and M.H. Hansen, The DTU 10- 
MW reference wind turbine, Danish Wind Power Research 2013, 2013. 

[2] P. Bertolini, M.A. Eder, L. Taglialegne and P.S. Valvo, Stresses in constant tapered beams with 

thin-walled rectangular and circular cross sections, Thin-Walled Structures, 119, 2019, pp. 527-

540. 

[3] S.P. Timoshenko, J.M. Gere, Mechanics of materials, Van Nostrand Reinhold, New York, 

1972. 

[4] J.H. Michell, Elementary distributions of plane stress, Proceedings of the London Mathematical 

Society, s1-32, 1900, pp. 247-257. 

[5] S. Bennati, P. Bertolini, L. Taglialegne and P.S. Valvo, On stresses in tapered beams 

(submitted). 

[6] G. Balduzzi, M. Aminbaghai F. Auricchio and J. Füssl, Planar Timoshenko-like model for 

multilayer non-prismatic beams, International Journal of Mechanics and Materials in Design, 

14, 2017, pp.51-70. 

[7] C.E. Cesnik and D.H. Hodges, VABS: a new concept for composite rotor blade cross‐sectional 
modeling, Journal of the American Helicopter Society, 42, 1997, pp. 27-38. 

[8] M. Morandini, M. Chierichetti and P. Mantegazza, Characteristic Behavior of Prismatic 

Anisotropic Beam Via Generalized Eigenvectors, International Journal of Solids and 

Structures, 47, 2010, pp. 1327-1337. 

[9] P. Blasques, R. Bitsche, V. Fedorov and M.A. Eder, Applications of the BEam Cross-section 

analysis Software (BECAS), Proceedings of the 26th Nordic Seminar on Computational 

Mechanics, 2013, pp. 46‐49. 

[10] V. Giavotto, M. Borri, P. Mantegazza and G. Ghiringhelli, Anisotropic beam theory and 

applications, Computer & Structures, 16, 1983, pp. 403-413. 

[11] ABAQUS 2017, Dassault Systemes Simulia Corporation, 2018. 

[12] P. Bertolini and L. Taglialegne, Analytical expressions in doubly tapered beams (submitted). 

[13] B.A. Boley, On the accuracy of the Bernoulli-Euler theory for beams of variable section, 

Journal of Applied Mechanics, 30, 1963, pp. 373–378. 

[14] E.J. Barbero, Composite Materials Design, CRC press, Boca Raton, 2017. 

109



110



Paper 4

P. Bertolini, M. A. Eder, A. Sahdi, Numerical cross-section analysis of stresses in
tapered slices, To be submitted.

111



Numerical cross-section analysis of stresses in tapered

slices

P. Bertolinia,b, M.A. Ederb, A. Sarhadib

aLM Wind Power, Jupitervej 6, DK-6000 Kolding, Denmark, paober@dtu.dk,
corresponding author.

bTechnical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde, Denmark

Abstract

The field of cross-section analysis has a key role in determining the stiffness
cross-section properties and for recovering the strain and stress components
in complex structures. Most of the 2D cross-section analysis methods avail-
able in the literature are based on stepwise prismatic assumption and, conse-
quently, the well-known effects of lengthwise taper to the beam behaviour are
not taken into account. The six boundary conditions are imposed through
the Lagrange multipliers method, and the nodal forces are derived from the
equivalent internal tractions. The method is validated against analytical so-
lutions of the stresses in a cantilever wedge. The results show the capability
of the method to capture the taper effects on the stresses and displacements.
This work paves the way for a new advance cross-section analysis method
based on one-layered tapered slice of the cross section.

Keywords: Finite element method, Tapered beams, Cross-section analysis,
Solid elements

1. Introduction

Nonprismatic beams are widely applied in the civil and aeronautic sec-
tors. For instance, wind turbine blades and wings are characterised by a
tapered and twisted airfoil to increase the stiffness-to-mass ratio and the lift-
to-drag ratio. 3D finite element analysis of nonprismatic structures would
provide an accurate analysis of the beam behaviour. Nevertheless, the high
computational cost of 3D finite element analysis does not suit with the re-
quired conceptual aeroelastic investigation nor with structural optimisation
routines. Since blades are long and slender structures, they are modelled with
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one-dimensional beam models, which provides results with the same accuracy
of 3D finite element analysis, when the hypotheses are correctly formulated,
in a much shorter time. To perform 1D beam analysis, the cross-section
stiffness properties are necessary. Several cross-section analysis methods are
available in the literature, as described in Hodges [1]. The most common
methods are based on the finite element discretization of the cross-section.
Among them it is worth recalling the Variational Asymptotic Beam Sectional
Analysis (VABS) [2] and the BEam Cross-sectional Analysis Software (BE-
CAS) [3]. The former is based on the theory developed by Cesnik and Hodges
[2] and further developed by Yu et al. [4]. The latter is an implementation
of the anisotropic beam theory derived by Giavotto et al. [5]. Both methods
rely on a 2D finite element analysis of the cross-section, which has no restric-
tions in the geometrical nor material properties in the cross-section plane,
but it is developed under prismatic hypothesis. In other words, lengthwise
geometrical variations are simplified as stepwise prismatic and, consequently,
the potential effects of geometrical variations are neglected.

Tapered beams are characterised by a variation of the cross-section di-
mensions along the longitudinal span. A parameter, taper, can be defined
in a straight beam as the angle between the longitudinal axis and the plane
tangent to the lateral surface [6]. Tapering a beam implies a counterintuitive
stresses re-distribution under any external load. Indeed, the error committed
in calculating the stresses in the cross section of a tapered beam by means of
2D cross-section analysis tools was reported by Bertolini et al. [7]. Particu-
larly, the Cauchy stresses in several tapered beams evaluated with analytical
solutions, when available, or 3D FEM are compared with the ones evaluated
with the cross-section analysis tool BECAS. For example, it was pointed out
that the current formulation of the cross-section analysis method cannot de-
pict the through thickness stress components which are evoked in tapered
beams. An incorrect prediction of the stress field may cause an inaccurate
structural design. In addition, the scientific literature has several studies,
from Bleich [8] to Balduzzi et al. [9] and Bennati et al. [10], where the non-
trivial behaviour of tapered beams is described and analysed analytically.

An attempt to include taper in VABS is demonstrated by the study pub-
lished by Hodges et al. [11], where a tapered beam model is derived by means
of the variational asymptotic method. Nonetheless, further developments nor
implementation are not documented in the literature.

Two scientific studies suggest to model the cross section as one-layered
slice of solid elements in the longitudinal direction. Ghiringhelli and Man-
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tegazza [12] extended the anisotropic beam theory developed by Giavotto et
al. [5] to model a 3D slice of a linear, straight, and untwisted beam. Solid
elements with linear shape-functions in the longitudinal direction were em-
ployed, but LGVs are neglected. Recently, Couturier and Krenk [13] stud-
ied the stiffness properties and stress distribution of a cross-section slice.
One-single element with cubic shape-function in the longitudinal direction
is employed. The Lagrange multipliers method is employed to impose the
displacements at the two faces of the slice, representing the six independent
deformations modes corresponding to extension, torsion, bending and shear.

The present work paves the way for a tapered slice cross-section anal-
ysis method based on solid finite elements. The boundaries conditions are
applied via the Lagrange multipliers and three load conditions, axial, shear,
and bending, are considered. The nodal forces are derived assuming the dis-
tribution of the internal tractions from the classic prismatic theories. Results
show that the slice model can depict the taper effects to the stresses.

2. Method

A 3D finite element formulation of a tapered slice is derived and imple-
mented in MATLAB to derive the cross-section stiffness properties and to
recover the strain and stress components. The formulation is based on the
coordinate system shown in Fig. 1. The strains and stresses at each point of

Figure 1: Geometry and coordinate system of a 2D planar wedge. The highlighted cross-
section slice has thickness ∆ and is located at z = L/2.

the beam are expressed as six-terms vectors ε = [εxx εyy εzz 2εxz 2εyz 2εxy]
T

and σ = [σxx σyy σzz σxz σyz σxy]
T . Under the assumption of linear elastic

material, the constitutive relation between the strain and stress vectors is

3
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given as ε = Eσ, where E is the 6× 6 constitutive matrix. The strain com-
ponents at a generic point of the cross section are defined as function of the
displacement vector r = [rx ry rz]

T through the relation ε̂ = B r, where B
is defined as follows

B̂ =




∂
∂x

0 0 ∂
∂y

0 ∂
∂z

0 ∂
∂y

0 ∂
∂x

∂
∂z

0

0 0 ∂
∂z

0 ∂
∂y

∂
∂x



T

. (1)

The continuum structure is discretised into ne eight-noded elements and
nnodes is total number of nodes. The nodal displacements are defined as
u(xi, yi, zi) = [uxi uyi uzi]

T , where i = 1...nnodes. The displacement vector
r is approximated to r ≈ N u(xi, yi, zi), where N is the matrix of the
shape-functions. Substituting the latter relation into Eq. (1), the following
expression is obtained:

ε = Bu(xi, yi, zi) , (2)

where B = B̂ N the 6× 3 strain-displacement matrix [14]. The variation of
the virtual work used to enforce the elastic equilibrium of the cross section
is

δW = δWint + δWext . (3)

The internal virtual work Wint is the work done by the stresses moving
through the virtual strain and, based on the finite element discretization,
becomes

δWint =

∫

V

δεT σ dV =

∫

V

δ εT E ε dV =

∫

V

δuT BT EBu dV , (4)

where V is the volume. Neglecting the volume and surface forces, the external
work is instead defined from the shape-functions and the vector of the internal
tractions p = [σyy, σyz, σzz]

T :

δWext = −
∫

A

δrT p dA = −
∫

A

δuNT p dA . (5)

Equations (4) and (5) are substituted in Eq. (3). Since the virtual work
must be satisfied for any virtual displacement δu, a necessary and sufficient
equilibrium conditions is that δW = 0, hence

∫

V

δuT BT EBu dV =

∫

A

δuT NTp dA. (6)

4
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The element stiffness matrix and the element nodal force vector f e =
[fx, fy, fz]

T are expressed from Eq. (6) as

Ke =

∫

V e

BT EB dV , f e =

∫

Ae

NT p dA (7)

Exploiting a standard assembly procedure, the element matrix and vector are
transformed in global stiffness matrix and nodal forces vector, K =

∑
eK

e,
f =

∑
e f

e. Finally, the weak form of the equilibrium is given as

Ku = f , (8)

where the stiffness matrix K relates the nodal forces f to the nodal displace-
ments u.

2.1. Boundary conditions

The stiffness matrix K is singular, hence not invertible. A set of six con-
straints related to the six rigid body motions, i.e. three rotations and three
translations, are imposed. To avoid restraining the warping displacements,
the Lagrange multipliers method is adopted. It imposes that the summation
of the nodal displacements and the average rotation of the cross section are
zero [5]:

ne∑

e=1

ux|e = 0,
ne∑

e=1

uy|e = 0,
ne∑

e=1

uz|e = 0 , (9)

n∑

e=1

−ze uy|e+ye uz|e = 0,
n∑

e=1

ze ux|e−xe uz|e = 0,
n∑

e=1

−ye ux|e+xe uy|e = 0 ,

where n is the total number of nodes, (ux|e, uy|e, uz|e) and (xe, ye, ze) are the
nodal displacements and coordinates in global coordinates [3].

2.2. Nodal forces

The nodal forces vector f is given by surface integration of the shape-
function matrix N and the cross-section tractions vector p:

fi =

∫

A

NT
i (ξ, η, ζ̂)p(x, y, ẑ) dA , (10)

where A is the area of the slice face, i = 1...ne is the element node, p(x, y, ẑ)
the surface tractions in the global coordinate system and Ni(ξ, η, ζ̂) the

5
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(a) (b) (c)

Figure 2: Internal forces and corresponding traction acting at the two faces of the slice
having thickness ∆. (a) Axial force and pressure, (b) shear force and shear traction, (c)
bending moment and axial traction.

shape-functions evaluated at ζ̂ = ±1, namely at the front and back faces
of the isoparametric element. Generally, the cross-section forces are given
from the aeroelastic analysis in case of blade design, whereas information
on the cross-section tractions is unknown. Under the Navier assumptions,
analytical studies on tapered beams [6, 15, 16] have shown that the nor-
mal stresses in tapered beam can be approximated with the Navier formula
with good agreement. Therefore, under the same hypotheses, the internal
tractions in the present method are modelled from classic prismatic beam
analysis. In other words, as shown in Fig. 2, the axial and bending tractions
are assumed by the Navier equation [17]

σzz =
Fz
A

+
Mx y

Ix
, (11)

and the shear tractions by the Jourawsky equation [17]

σyz =
Fy Sx
IxB

, (12)

where A is the cross-section area, Sx and Ix are the first and second moment
of area and B the width of the cross-section.

A change of coordinates is required to solve Eq. (10), since the shape-
functions are in the isoparametric reference system and the area and internal
traction in the global one. The transformation is done via the 3×3 Jacobian
matrix J , which maps from the element in the global reference system to the

6
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Figure 3: (a) Coordinates of the isoparametric and (b) real tapered element of height H,
width B and taper angle α.

element in the isoparametric reference system and vice versa. It is defined as

J =



∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ


 . (13)

It is worth mentioning that the taper factor, α, appears in the formulation
through the Jacobian matrix. The infinitesimal value of the face surface
becomes dA = dx dy = |J | dξ dη, where |J | is the determinant of the Jaco-
bian. Moreover, the transformation between y and η is performed through
the component J(2, 2) of the Jacobian matrix, and it can be written as

y =

∫
J(2, 2) dη = F̄ (ξ, η) + cy , (14)

where cy is the constant of integration which is evaluated by imposing the
equivalence of the coordinates of the centre of the elements in the natural
and the real domains, i.e. (ξ0, η0) and (x0, y0), as shown in Fig. 3. In other
words:

cy = y0e − F̄ (ξ0, η0), cx = x0e − F̄ (ξ0, η0) . (15)

The derivation of the nodal forces in the specific cases of axial, bending
and shear are described in the following paragraphs.

Nodal forces equivalent to cross-section axial force. Based on Navier’s as-
sumption, the case of extension is described by a constant pressure p̂ = Fz/A

7
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distributed on the two faces of the slice, as shown in Fig. 2-a. Therefore, in
Eq. (10), the traction is moved out from the integral and the nodal forces
are straightforwardly derived as

fi = Fz

∫ 1

−1

∫ 1

−1

Ni(ξ , η)

A
|J | dξ dη . (16)

Nodal forces equivalent to cross-section bending moment. Bending is described
from the Navier’s linear stress distribution given by the second term of Eq.
(11) and shown in Fig. 2-c. In this case, p̂(y) is a linear function of the global
coordinate y. Consequently, recasting Eq. (14) in Eq. (11) and, consequently
in Eq. (10), results in :

fi =
Mx

Ix

∫ 1

−1

∫ 1

−1
NT
i (η, ξ) [F̄ + (y0e − F̄ (ξ0, η0))] |J | dξ dη , (17)

where i is the number of nodes of the cross-section,

Nodal forces equivalent to cross-section pure shear. The pure shear traction
is given from Eq. (12), as shown in Fig. 2-b. The second moment of inertia
of the cross-section is function of the y−coordinate through the first moment
of area and in the specific case of rectangular cross section, it is defined as:

Sx =

∫ B/2

−B/2

∫ H/2

ỹ

y dy dx = B

(
H2

8
− y2

2

)
. (18)

The same relation previously derived between y and η can be employed in
this case and the final expression of the equivalent nodal forces becomes

fi =
Fy
2 Ix

∫ 1

−1

∫ 1

−1
NT
i (η, ξ)

(
H2

4
−
[
F̄ (ξ, η) + (y0e − F̄ (ξ0, η0))

]2
)
|J | dξ dη .

(19)

3. Application

In the scientific literature, the exact and approximate analytical solutions
of the Cauchy stresses are available for the planar cantilever isotropic wedge
of length L and taper angle α shown in Fig. 1 and loaded at its tip by con-
centrated force Fe, whose components are shear Fy and axial force Fz, and
bending moment Mx. The exact solutions are derived from the elasticity

8
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Table 1: Expressions of gk(α) and Ĝijk of the exact analytical equations in Eq. (20) of a
wedge.

Axial force Bending moment Shear force

gk σij (α + sinα cosα) (2α cos 2α− sin 2α) ( α− sinα cosα)

Ĝijk

σzz (L0 − z)3 xy [3x2−y2−(x2+y2) cos 2α]
[y2+(L0−z)2] y (L0 − z)2

σyy y2 (L0 − z) x4+y4−6x2y2−(x4−y4) cos 2α
[y2+(L0−z)2] y3

σyz y (L0 − z)2 xy [x2−3 y2−(x2+y2) cos 2α]
[y2+(L0−z)2] y2 (L0 − z)

theory, hence they satisfy the set of equilibrium, constitutive and compati-
bility equations [18, 16]. The wedge is assumed in plane-stress state, namely
the through thickness stress components are zero. The exact solutions of the
Cauchy stresses are summarised in Eq. (20):

σij =
P̂k
gk(α)

Ĝijk

[y2 + (L− z)2]2
, (20)

where i, j = y, z, and fk(α) and P̂k are defined in Table 1. The details of
the derivation of Eq. (20) are described in Taglialegne [16]. A more handy
solution for the Cauchy stresses in a planar wedge was derived in Bennati
et al. [10] approximating the normal stresses with the Navier equation Eq.
(11). Thereafter, imposing the stress equilibrium on an infinitesimal portion
dz of a tapered beam with generic cross-section provides a generalisation
of the classic shear stress formula Eq. (12). The generalised shear stress
equation neglects high-order infinitesimal quantities, therefore the solution
is approximate. The set of approximate equations for the Cauchy stress
components is given in Eq. (21)-(22)

σzy =
1

B

(
−y tanα

2h2
Fz +

3

4

h2 − y2
h3

Fy +
3

4

h2 − 3 y2

h4
tanαMx

)
, (21)

σyy =
3 y

2B

[
y tanα2

3h3
Fz +

(y2 − h2) tanα

h4
Fy +

(2 y2 − h2) tanα2

h5
Mx

]
.

(22)
Equations (20) to (22) will be used to benchmark the stresses from the ta-
pered slice method of a wedge cross section.
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3.1. Geometry description

The present method was applied to a 2D wedge clamped at its root.
Specifically, the control cross-section located at z = L/2 was chosen for
validation purposes. The axial and shear forces, and bending moment listed
in Table 2 were applied at the tip. Linear elastic material properties were
assigned to the models with an elastic modulus of E =100 Pa and Poisson
ratio of ν = 0.3. The dimensions of the wedge were chosen in such a way
that the width and the height of the middle cross-section are B = 0.10 m
and H0 = 2.00 m respectively, whereas the taper angle α and the length of
the wedge can vary as shown in Table 3.

Table 2: Axial force, shear force and bending moment applied at the tip of the wedge and
respective internal forces at the middle cross-section.

Tip loads Mid-span c.s.

Fz [N] Fy [N] Mx [N m] Fz [N] Fy [N] Mx [N m]

Shear 10 - - 10 - -10L/2
Extension - 10 - - 10 -
Bending - - 10 - - 10

Table 3: Geometrical dimensions of the analysed wedges.

α [◦] 2.0 5.7 10.0 20.0

L [m] 57.27 20.04 11.34 5.49

In the same way, the numerical model is defined from the control cross-
section, considering the slice of thickness ∆ highlighted in Fig. 1. The
finite element model of the slice consists of one layer of solid elements in the
z−direction and the x−direction, whereas 30 elements are employed in the
y−direction. A convergence study was performed to establish the optimal
number of elements along the height of the slice. The exemplary topology of
the slice is shown in Fig. 4. Eight-noded elements with the linear serendipity
shape-functions in Eq. (23) are employed.

Nn =
1

8
(1 + ξn ξ) (1 + ηn η) (1 + ζn ζ) , (23)

10
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Figure 4: Model of an exemplary slice of a wedge. The coordinate system Oxyz, the
dimensions and the mesh discretisation are highlighted. Moreover, the examples of an
eight-noded linear solid element and a twenty-noded quadratic solid element are given on
the right. The red dot show the location at which the average displacement, strain, and
stress values are considered.

where (ξ η ζ) are the isoparametric coordinates and i refers to the element
nodes. The integrals in the finite element analysis are solved numerically
with the 2× 2 Gauss quadrature [19], which is characterised by eight Gauss
points located at (±1/

√
3, ±1/

√
3, ±1/

√
3).

4. Results

The Cauchy stresses derived from the finite element slice analysis are
compared to the analytical ones. After validating the method for a prismatic
slice, the tapered case in Fig. 4 is considered. The numerical and analytical
results are extrapolated at the control-section in order to avoid boundary ef-
fects. The finite element model evaluates the strain and stress solutions with
the Gauss quadrature, hence at the Gauss points. Therefore, the element
stress at the centre is evaluated by averaging the nodal stresses located at
the back and front face of the element, as indicated by the red dot in Fig. 4.

4.1. Prismatic slice

A planar prismatic beam of dimensions H = 2 m and B = 0.1 m is
clamped at z = 0 and loaded at the tip with the forces in Table 2. For
the prismatic case, also the twenty-noded element with quadratic serendip-
ity shape functions [19] is implemented. The Cauchy stresses at the control

11
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cross section are evaluated with both the slice method and the classic solid
mechanic, Eq. (11) and (21) where α = 0. The slice thickness is arbitrarily
chosen as ∆ = 0.01 m and its value does not interfere with the prismatic
results. Figure 5 shows the stress distributions along half of the slice height
due respectively to the three analysed external forces.
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Figure 5: Normal stress due to (a) extension, (b) bending, and (c) shear stress due to shear
along half of the prismatic slice. Different mesh-topology and both eight-noded (L) and
twenty-noded elements (Q) are considered. The number of elements used in each model
is indicated in the Legend after #.

4.2. Tapered slice

The effects of the amplitude of the taper angle are evaluated, but only the
results for the axial force are reported for the sake of brevity. Four different
wedges, α = 2◦, 5.7◦, 10◦, 20◦, are considered. Figure 6 shows the ratio
between the numerical and the exact analytical stresses for the four analysed
wedges. The stresses at the centre and the edge of the slice are considered
for comparison.

Nonetheless, in the following study, the taper angle is fixed to α = 5.7◦

and only the slice thickness is allowed to vary in the range ∆ ∈ [0.01 m,
0.5 m].

4.2.1. Extension of the slice

The slice in Fig. 2-a subjected to a constant distributed traction p̂ =
Fz/A is considered. The stress components resulting from the finite element

12
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Figure 6: Numerical-to-analytical stresses at the control cross-section of four wedges sub-
jected to extension. The ratio involves the stresses at the centre y = 0 and the edge
y = H/2 of the central slice.
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analysis of the tapered slice having ∆ = 0.03, 0.09, 0.5m, and from both the
exact and approximate analytical formulas are evaluated and reported in Fig.
7. To investigate the relation between the magnitude of the stresses and the

(a) (b) (c)

Figure 7: Cauchy stress components, namely (a) σyy, (b) σzz, and (c) σyz, in a tapered
slice subjected to axial traction. Results from analytical and numerical solutions. The
latter considers three different thickness of the slice.

slice thickness, the parametric study in Fig. 8 is conducted. It compares the
ratio between the numerical and analytical stresses evaluated at the centre
y = 0 and at the edge y = H/2 of the slices.

4.2.2. Bending of the slice

Bending follows the Navier distribution p̂ = (Mx y)/Ix and it is applied
at both faces of the slice as shown in Fig. 2-c, considering several slice
thicknesses. The numerical stress components are compared to the analytical
solutions in Fig. 9. It is worth noting that, contrarily to the axial case, the
deviation of the results in the linear models increases with the thickness of
the slice.

4.2.3. Shear of the slice

The wedge is now subjected to an external shear force, which results
in cross-section shear force and cross-section bending moment around the
x−axis, as shown in Table 2. Therefore, given the linearity of the prob-
lem, the internal tractions are derived from superposition of the pure shear
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(a) (b)

(c)

Figure 8: Case of extension. Cauchy stresses at the centre and the edge of slices with
different thicknesss ∆. Specifically (a) σyy, (b) σzz, (b) σyz.
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(a) (b) (c)

Figure 9: Cauchy stress components, namely (a) σyy, (b) σzz, and (c) σyz, in a tapered
slice subjected to bending traction. Results from analytical and numerical solutions. The
latter considers three different thickness of the slice, ∆ = 0.03, 0.09, 0.5m.
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Figure 10: Case of bending. Cauchy stresses at the centre and the edge of slices with
different thicknesss ∆. Specifically, (a) σyy, (b) σzz, (b) σyz.
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traction in Fig. 2-b and pure bending traction from Fig. 2-c. Figure 11
shows the stresses occurring in a tapered slice under the effects of shear and
shear-bending.

(a) (b) (c)

Figure 11: Cauchy stress components, namely (a) σyy, (b) σzz, and (c) σyz, in a tapered
slice subjected to shear traction. Results from analytical and numerical solutions. The
latter considers three different thickness of the slice, ∆ = 0.03, 0.09, 0.5m.

5. Discussion

A new tapered slice finite element model is presented for analysis of cross-
section properties. One single layer of solid element is employed in the lon-
gitudinal direction. The rigid body constraints are imposed by means of the
Lagrange multipliers and the nodal forces derived from the assumption that
the internal tractions follow the prismatic stress distribution. A convergence
study and validation is performed considering a prismatic slice. Figure 5
shows a good agreement between the results for the axial and shear cases.
The eight-noded model under bending is at strong deviation as shown in Fig.
5-b, because the eight-noded elements are based on linear shape-functions
and suffer of shear-locking. On the other hand, the model based on the
twenty-noded element shows a good agreement also under bending. The so-
lution is strongly affected by two main factors, i.e. the taper angle and the
slice thickness. The results of the prismatic slice reveal that the slice thick-
ness does not affect the prismatic model. Figure 6 shows that the deviation
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between the numerical and analytical stresses increases with larger taper an-
gles. Indeed, it is worth recalling that the internal tractions are defined from
the Navier formula, which gives a good approximation of the stresses only in
moderately taper angles, as it was shown in the literature [20]. On the other
hand, it is worth noting that by changing the slice thickness, the deviation
can be contained.

Figures 7, 9, 11, shows the capability of the method to depict the correct
stresses distribution. It is worth noting in Fig. 7-b and in Fig. 9-b that the
normal stresses depicted by the slice analysis follow the quadratic distribution
corresponding to the exact analytical solutions. Hence, it deviates from the
constant Navier solution, which is predicted by the approximate analytical
solution. In other words, even though the internal tractions are approximate,
the finite element formulation can depict taper effects. Moreover, in the
model based on the eight-noded elements the shear locking trend, which
was observed in the prismatic model, does not appear in the slice model.
Therefore, the twenty-noded model was not considered for computational
time efficiency.

Yet, the magnitude of the stresses is at variance with the expected exact
values. The parameter ∆, namely the thickness of the slice, is responsible
for the deviation. Figures 8 and 10 show a parametric study between the
numerical and analytical stresses for a slice thickness varying from 0−0.5 m.
It is worth noting that the cases of axial and shear force converge for larger
slice thicknesses. Contrarily, the bending problem approaches the analytical
values for smaller thicknesses.

6. Conclusions

This work suggests to perform cross-sections analysis from its 3D finite
element model. The cross-section is represented as a tapered slice with a
single layer of elements in the longitudinal direction. The internal tractions
are assumed to follow the prismatic distributions. The following conclusions
can be drawn from the present investigation, which is limited to a planar
isotropic wedge:

(i) Finite element analysis of a tapered slice can depict the taper effects
to the Cauchy stress components.

(ii) Modelling the internal tractions under the Navier hypothesis results in
a good approximation of the stress components allows to predict taper
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effects in the stress analysis, for moderate taper angles.

(iii) The thickness of the modelled slice has a strong effect on the numerical
results. In case of axial and shear internal force the accuracy increases
for thicker slices, however it is vice versa in the bending load case.

The present work is a first attempt to introduce taper in cross-section analysis
and sheds light on the capability of 3D tapered slice models. Further bench-
mark examples whose analytical solutions are available should be analysed,
e.g. thin-walled tapered box girders. In addition, the remaining internal
forces, Fx, My, Mx can be implemented. Furthermore, higher order elements
could be used to model the effects of curvature.
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