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A Bigger Picture of how the Tibetan Lakes Have Changed
Over the Past Decade Revealed by CryoSat‐2 Altimetry
Liguang Jiang 1 , Karina Nielsen2 , Ole B. Andersen2 , and Peter Bauer‐Gottwein1

1Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark, 2DTU Space,
National Space Institute, Technical University of Denmark, Kgs. Lyngby, Denmark

Abstract Tibetan lakes are an effective indicator of climate change as they are highly sensitive to and
directly affected by climate change. The past decade has seen the seven warmest years on record
globally. Such observations have prompted questions about lake changes over the Tibetan Plateau. The
dense coverage of the CryoSat‐2 altimeter reveals large‐scale patterns in this climate change signal. We
investigate lake level variations of more than 200 lakes using altimetry observations from CryoSat‐2 during
the period 2010 to 2019. Combined with GRACE/GRACE‐FO, we evaluate the water storage change of
lakes and terrestrial water storage (TWS). We find that most studied lakes generally went through three
phases of change, that is, rising‐hiatus/decline‐rising, albeit lakes in the north Tibetan Plateau, show higher
rising rates. Results also show that lake levels are widely affected by the 2015/16 El Niño event across the
entire Inner Plateau via reduced precipitation. Above normal precipitation during 2016–2018, resulted in a
sharp rise of ~1.22 m on average, accounting for 56% of the decadal lake level rise (mean/median:
2.19/1.85 m). TWS in the Inner Tibetan Plateau accumulated a net gain of 70.5 km3, which is dominated by
the net gain of lake water storage (ca. 63.3 km3). The interannual TWS variation is found to be
associated mainly with precipitation. In particular, extreme conditions such as the 2015/16 El Niño, had a
profound negative impact on the TWS. The findings in this study shed new light on the response of
Tibetan lakes to recent decadal environmental changes.

1. Introduction

The Tibetan Plateau (TP) is well known as the “Water Tower of Asia” given that 10 major rivers originate
from its high mountains (Figure 1) and that it influences more than 1.4 billion people in the downstream
areas (Immerzeel et al., 2010). With an average elevation of more than 4,000 m and an annual average
temperature of around 0°C, the TP has huge areas of glaciers and permafrost (T. Yao et al., 2018).
Moreover, the TP is home to over 1,000 lakes, which are of great importance for the local eco‐environment
and water supply for wild animals. The TP has experienced significant warming (twice the global average)
and extreme climate events during the past 50 years (Chen et al., 2015). One of the consequences of
climate change is the intensification of the water cycle (Durack et al., 2012), which in turn affects regional
water availability by transport and redistribution of water via atmospheric circulations and hydrological
processes. This change is directly reflected in lake changes over the inner TP during the past decades
(G. Zhang et al., 2020). On the other hand, due to rare human intervention, these lakes respond naturally
to large‐scale climate variability and regional hydrological processes; thus, the Tibetan lakes can be seen
as a valid indicator of environmental change (Sheng & Yao, 2009; G. Zhang et al., 2016).

In addition to their value as water resources, lakes are important landscape units playing a crucial role in
water cycle and land surface energy cycle and thus affect regional climate (Notaro et al., 2013; Scott &
Huff, 1996). For instance, lakes can change turbulent fluxes as well as surface downward shortwave
radiation flux due to changes in local atmospheric moisture and convective cloud cover; moreover, lakes
strongly modulate evaporation and precipitation as well as snowmelt (Lazhu et al., 2016; Notaro et al., 2013;
Wu et al., 2019). In turn, large‐scale fluctuation of climate (such as NAO and ENSO) and regional climate
(e.g., glacier melting, permafrost degradation, and enhanced hydrological cycle) alter the phenology and
lake water budgets (Lei et al., 2019; Liu et al., 2018; Zhang, Tang, et al., 2017). Widely distributed lakes over
the TP may respond differently to climate change across the diverse climate conditions and geographic
regions (Figure 1). Understanding how the water and energy budgets respond to climate change
and whether lakes behave homogeneously requires extensive observations. However, the TP remains
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largely ungauged, and only a small fraction of those lakes is monitored with in‐situ instrumentation
(Lei et al., 2019). Data collection in such a harsh and remote environment is difficult and expensive, and
we are in dire need of alternative ways of monitoring lake changes over the TP (Li, Long, et al., 2019;
G. Zhang et al., 2020).

Thanks to the availability of satellite observations, we are able to take a closer look at lake changes on a large
scale. For instance, NASA's Landsat program has undoubtedly transformed our ability to understand the
spatial coherence/variability of lake shrinking and expansion during the past 40 years (G. Zhang et al., 2020).
Zhang et al. (2019) compiled lake surface extents over the TP from Landsat MSS/TMETM+/OLI imagery
acquired between 1970 and 2018. There is a slight decline (−5.6%) of the total lake area from 1970 to
~1995; then a pronounced increase of 23% from ~2000 to 2018 is revealed. To understand the water budget
and quantify the contributions of different driving factors for lake changes, lake surface extent alone is insuf-
ficient (F. Yao et al., 2018; Zhang, Yao, et al., 2017). Combining surface water extent with global digital ele-
vation models (DEMs), some studies estimated lake storage variations by establishing the relationship
between lake area and lake level (Qiao et al., 2019; F. Yao et al., 2018). However, the uncertainty of global
DEMs is usually above a few meters (Rodríguez et al., 2006), which may affect the estimation of lakes with
small level change. Ocean‐oriented altimetry has gradually been extended to cryospheric and hydrologic
studies (Fetterer et al., 1992; Koblinsky et al., 1993). Altimetry observations add information about lake
changes in the vertical dimension, and combined with lake extent, volumetric water changes can be calcu-
lated (J.‐F. Crétaux et al., 2016). The first studies to quantify volumetric lake changes over the TP mainly
used ICESat altimetry data (2003–2009) (Song et al., 2013; G. Zhang et al., 2013). Increased availability of
altimetry data sets has allowed researchers to better quantify water volume change (J. F. Crétaux &
Birkett, 2006; J. Wang et al., 2018; F. Yao et al., 2018). Combined with GRACE‐derived total water storage,
the dynamics of surface water storage and groundwater storage can be assessed (Jiang et al., 2017a; G. Zhang
et al., 2013). Nevertheless, previous studies mainly investigated level/storage variation of a limited number
of lakes due to the lack of lake level data sets (see a review by G. Zhang et al., 2020). Among past and present
satellite altimetry missions, CryoSat‐2 stands out due to its high coverage and long‐time records (since 2010)
among other distinctive features (Jiang, Schneider, et al., 2017; Wingham et al., 2006). This is a very impor-
tant feature for the monitoring of the widely distributed Tibetan lakes (Figure 1).

CryoSat‐2 was launched in April 2010 into a non‐sun‐synchronous orbit with a 369‐day repeat period. This
orbit also has a 30‐day subcycle, which results in dense ground tracks, that is, an intertrack spacing of 7.5 km
at the Equator over one full repeat cycle (Wingham et al., 2006). This special geodetic orbit enables many
opportunities to study inland water bodies. For example, many more lakes are sampled compared to mis-
sions with a short‐repeat cycle (Jiang et al., 2017a; Jiang, Schneider, et al., 2017); longitudinal elevation

Figure 1. Distribution of lakes over the Tibetan Plateau, accompanied with colored topography, major rivers, and three
large‐scale atmospheric circulations, that is, the westerly jet, Indian monsoon, and East Asian monsoon.
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profiles of rivers can be retrieved (Bercher et al., 2013; Jiang et al., 2017a); parameterization of river models
and hydrodynamic simulations can also be improved by using distributed CryoSat‐2 observations (Jiang,
Madsen, et al., 2019; Schneider et al., 2017, 2018). The drawback is that it is difficult to construct water level
time series at certain virtual stations (Jiang, Schneider, et al., 2017).

CryoSat‐2 is equipped with a novel Synthetic Aperture Radar/Interferometric Radar Altimeter (SIRAL)
instrument (Garcia et al., 2014; Wingham et al., 2006). It can operate in three modes, that is, low resolution
mode (LRM), SAR mode, and SARIn mode over different regions. When SAR/SARIn mode is enabled, the
instrument operates in bursts, that is, sending a burst of pulses with a frequency of ~18,000 kHz (Wingham
et al., 2006). The returning echoes are processed coherently (Doppler beam formation) in the along‐track
direction (Keith Raney, 1998; Wingham et al., 2006). In this way, a smaller footprint is achieved, that is,
ca. 300–400 m in the along‐track direction and ca. 1.65 to a few kms in the cross‐track direction depending
on the flatness of the illuminated area (Garcia et al., 2014; Jiang, Schneider, et al., 2017). Besides, the track-
ing range window and measurement range window of CryoSat‐2 SARIn mode are 480 and 240 m, respec-
tively, which raises the possibility to fully capture the echoes from water over rugged topography
(Wingham et al., 2006).

This study focuses on the variations of the Tibetan lakes to understand how the Tibetan lakes have
responded to global warming? Did lakes behave homogeneously, especially during the 2015/16 El Niño?
If not, was there any distinct spatial pattern? We aim to present a bigger picture of variations of the
Tibetan lakes over the last decade using consistent altimetry data from CryoSat‐2. Finally, this study exam-
ines the lake storage variations and total water storage over the TP using GRACE/GRACE‐FO data sets. This
study for the first time shows the water level as well as storage variations of more than 200 lakes. And the
findings are expected to contribute to a better understanding of lake changes over the latest decade.

2. Materials and Methods
2.1. CryoSat‐2 Data Set

CryoSat‐2 has been delivering altimetry data since its launch in April 2010. Over the TP, CryoSat‐2 operates
in SARIn mode, which enhances the along‐track spatial resolution to ~300 m (Jiang, Schneider, et al., 2017;
Wingham et al., 2006). In this study, baseline C data are used as input; level 1b and level 2 processing are
facilitated by the ESA GPOD platform (Dinardo et al., 2014). Water surface elevation is derived using the
SAMOSA+ retracker (Dinardo et al., 2018). The data set is archived at the ftp site ftp://eogrid.esrin.esa.
int/0039 and can be accessed after registration.

2.2. Auxiliary Data
2.2.1. GRACE and GRACE‐FO
The Gravity Recovery And Climate Experiment (GRACE) and GRACE Follow‐On (GRACE‐FO) provide
valuable data that allow us to accurately detect terrestrial water storage (TWS) change (Tapley et al., 2019).
In this study, we use JPL GRACE and GRACE‐FO level 3 mascon (Version2/RL06) equivalent water
height product (https://podaac.jpl.nasa.gov/GRACE). This solution uses a priori constraints to estimate
global monthly gravity fields in terms of mass concentration functions to minimize the effect of
measurement errors. This results in a better signal‐to‐noise ratio of the mascon fields compared to the
conventional spherical‐harmonic solutions (Watkins et al., 2015). Time invariant scaling factors are
applied as recommended. The native resolution of a single mascon is 3° × 3° (~300 × 300 km).
However, the data set is provided at a resolution of 0.5° × 0.5° (https://grace.jpl.nasa.gov/data/get‐data/
jpl_global_mascons/).
2.2.2. Meteorological Data
The Global Precipitation Climatology Project (GPCP version 2.3) monthly precipitation data set from 1979 to
present combines observations and satellite precipitation data into 2.5° × 2.5° (~250 × 250 km) global grids
(Adler et al., 2018). The Global Precipitation Measurement (GPM) Integrated Multi‐satellite Retrievals
(IMERG) is also used due to its finer spatial resolution of ~10 × 10 km (Huffman et al., 2017).
Multivariate ENSO Index (MEI) climate index is downloaded from NOAA Earth System Research
Laboratory (https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/).
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2.2.3. Soil Moisture
Soil moisture data are from the ESA Climate Change Initiative soil moisture product. In this study, we use
the monthly combined (a blend of passive and active products) product. The spatial resolution is
0.25° × 0.25° or roughly ~25 × 25 km. Data of nearly 10 years (2010–2019 September) are used.
2.2.4. Actual Evapotranspiration
Monthly actual evapotranspiration data are from the Global Land Evaporation Amsterdam Model
(GLEAM). The Priestley‐Taylor equation is used in GLEAM to calculate potential evapotranspiration based
on observations of surface net radiation and near‐surface air temperature. Actual evapotranspiration is cal-
culated using a multiplicative evaporative stress factor based on satellite observations of microwave
vegetation optical depth, root‐zone soil moisture, and so forth. For more details, please refer to Martens
et al. (2017). In this study, we use the latest v3.3b monthly data sets with a spatial resolution of
~25 × 25 km. This data set spans nearly 16‐year period 2003–2018 (September). Aligning with CryoSat‐2,
only data after 2010 are used.

2.3. Altimetry Data Processing

To analyze lake level variations, altimetry data have to be further processed to construct time series. Detailed
procedures are as follows.

1. Altimetry measurements over lakes are extracted based on the global surface water occurrence data set
(Pekel et al., 2016). Given that there are enough measurements (tens to hundreds) per track for lakes,
an 80% occurrence threshold is used to select measurements over lakes.

2. Given that CryoSat‐2 operates in closed‐loop mode (the altimeter continuously adjusts the range win-
dow based on previous measurements), signals can be just noise even when the satellite is over a
lake. Therefore, we first compare the position of the range window against the lake elevation from
a DEM (Altimeter Corrected Elevations, ACE2) to discard invalid measurements (Jiang et al., 2020).
To detect spurious measurements, pulse peakiness (the ratio of maximum echo to the sum of echoes
in a waveform) is used. Lakes are generally very reflective and therefore result in a high value of
pulse peakiness. A threshold of 0.01 is used based on investigation over a representative subset of
lakes.

3. To further remove outliers in each track, we exclude those further than 2 deviations away from the med-
ian value. Here, the deviation is estimated using the median of absolute deviation (MAD) method. A
detailed description can be found in Jiang, Andersen, et al. (2019).

4. Time series for each lake are calculated using the “tsHydro” tool available from Github (https://github.
com/cavios/tshydro). This tool efficiently estimates along‐track water level in the presence of outlying
measurements. For more information, please refer to Nielsen et al. (2015).

5. A linear trend is estimated based on robust least squares regression. This method uses an iteratively
reweighted least squares algorithm which gives lower weight to points that do not fit well. The results
are less sensitive to outliers in the data (Holland & Welsch, 1977).

6. Annual mean lake level is calculated by averaging all observations within a year. Annual lake levels are
used to estimate interannual lake storage variation.

2.4. Cluster Analysis

A spatial autocorrelation describes the tendency for geographically close areas or sites to have similar beha-
vior. Moran's I (Moran, 1950) is an index that is commonly used as a first measure of spatial autocorrelation.
It detects deviations from spatial randomness and determines whether neighboring samples are more simi-
lar than what is expected under the null hypothesis. This spatial statistical index is used here to provide
insight into the spatial patterns of lake variations. The first step is the construction of a spatial weights
matrix, which considers and expresses the strength of correlation between pairs of lake level change rates
in various locations. The definition of weight is based on the Euclidean distance. A distance threshold of
5.26 degrees is derived based on an empirical semivariogram, which describes the relationship between cor-
relation and distance. In the second step, we calculate Moran's I (Anselin, 1995). Local Moran's I indicates if
lakes with similar change rates are in clusters or are randomly distributed. It provides results in five cate-
gories: high‐high cluster, low‐low cluster, high‐low outliers, low‐high outliers, and not significant.
High‐high cluster refers to lakes that have high change rates and are surrounded by lakes with high change
rates. Likewise, low‐low indicates lakes that have low change rates and are surrounded by lakes with low
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change rates. These two categories show a significantly positive correlation, while the outliers indicate a
negative correlation between lakes and their neighbors.

2.5. Water Storage Change Estimation

To calculate lake volumetric changes, ideally the lake area of the corresponding year should be used. Here a
constant lake area (year 2014) is used since the change in lake area is relatively small for most lakes. The lake
extent is derived from Global Surface Water Explorer as used in our previous study (Jiang et al., 2017a). As
argued by Kleinherenbrink et al. (2015) the maximum increase of lake area per meter lake level change is
approximately 5%. Therefore, a cylindric shape assumption is used to estimate yearly water storage change.
Our previous study indicates that the error introduced by this approximation is 2.5% over 70 lakes (Jiang
et al., 2017a).

3. Results and Analyses
3.1. CryoSat‐2 Data Analysis

Based on the lake database we used (575), CryoSat‐2 crosses 558 lakes in total. However, due to the difficul-
ties intrinsic to positioning the range window, some measurements are invalid. Figure 2 shows an example
over a medium sized lake, Cam Co. For the descending pass, CryoSat‐2 failed to adjust the range window to
the elevation of the lake surface; thus, none of the waveforms contain a signal from the lake (Figure 2c).
Therefore, all measurements are discarded in this case. On the contrary, the ascending pass shows valid
measurements. We can see that the range window had been adjusted to the lake surface elevation
(Figure 2e). Correspondingly, the recorded waveforms show clear peaks indicating signals reflected by lake
water (Figure 2f ). This example demonstrates the problems that CryoSat‐2 has over rugged topography.
This occurs over relatively small lakes that mostly are surrounded by mountains. By comparing the range
window against a DEM, we discarded all invalid measurements. After data editing, we focus the analysis on
262 lakes with an area larger than 10 km2 and with a minimum of 10 overpasses (to ensure sufficiently long
time series).

Figure 2. Exemplary range window position in closed‐loop over the Cam Co (104 km2) surrounded by rugged terrain. (a) and (d) Locations of a descending/an
ascending ground track (dates: 30 July 2018; 1 June 2018); (b) and (e) illustration of underlying terrain along the ground track, adaptation of range window,
and altimetry‐derived heights; (c) and (f ) waveforms of measurements over the lake.
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3.2. Trend of Lake Levels

The results (Table 1) of the trend analysis show that an overall positive trend at a median rate of 0.12 m/yr is
found for 262 lakes. A large proportion of the lakes (76%) were experiencing a positive trend, of which 56%
had a high increasing rate beyond 0.15 m/yr and were statistically significant (p < 0.05). On the contrary,
only 34 (13%) show a significant negative trend and their linear rates are relatively small. Overall, 187 lakes
are showing significant changes at the level of 0.05.

Figure 3 shows the distribution of decadal linear rates of lake level change. Clearly, the decadal linear rate
distribution is uneven and dominated by rising trends. The histogram of rates is apparently skewed. In addi-
tion, rates increase with higher latitude, especially lakes located in the Inner TP (Figure 3c). We also ranked
the rates by lake area (not shown). But no obvious relationship can be identified, which indicates that rates
are independent of lake area.

Figure 4 shows the spatial distribution of trends of lake level change. Changes in lake levels display a
remarkable contrast between the north and south of the Inner TP. Specifically, lakes located in the north
of the Inner TP generally have higher rates, while those in the south show smaller or negative rates. Note
that there is one exception in the north showing a declining rate (<−0.2 m/yr) due to an abrupt drop in
2018 although it was continuously rising before 2018. It is noteworthy that all lakes with a sharp rising trend
(>0.5 m/yr) are located beyond 33°N. Lakes in the Qaidam Basin show low regional consistency. Those
located in the Yellow river source region are generally declining but mostly at rates that are not statistically
significant.

Spatial analyses revealed the presence of autocorrelation in the distribution of lake change rates. The map of
clusters and outliers categorized based on local Moran's I is shown in Figure 5. Clearly, lake level change
rates are not randomly distributed across the TP. Instead, there are strong relationships between lakes.
The main types of clusters are high‐high and low‐low groups. The hotspots of high rates (high‐high clusters)
are concentrated in the north of Inner TP, while low‐low clusters are mainly located in the south of Inner TP
as well as the Brahmaputra river basin. These two distinctive groups reveal a significant spatial autocorrela-
tion, indicating that lakes of each group are likely affected by the same factors. Both low‐high and high‐low
groups are scattered without strong spatial clustering, and only account for 18% of all lakes. This suggests
that lakes of these groups are likely affected by different dominant factors (e.g., increasing/decreasing pre-
cipitation, evaporation, and glacier melt recharge) or strong anisotropy of climate forcing factors (e.g., pre-
cipitation and evaporation) as they respond differently compared to neighboring lakes. Interestingly, these
clusters seem to be direction‐dependent, that is, the autocorrelation is stronger in the east–west direction
compared to the north–south direction. This may imply a spatial coherence of precipitation and evaporation
in the east–west direction, which is in line with the previous findings (Chen et al., 2016; Z. Wang et al., 2017).

3.3. Interannual Variations of Lake Levels

Figure 6 clearly reveals that lake levels show a general rising trend during the past decade, but the rising
rates are variable in time. Generally, three phases can be seen regardless of lake area. Specifically, a fast
increase in lake level occurred during 2010–2013, followed by a steady or slight drop during 2013–2016,
and then another fast increase since 2017. All six groups show a similar variation. There is no obvious

Table 1
Group Statistics of Lake Level Change Rates by Their Magnitudes

Group Num. (%) of lakes Median rate (m/yr) Num. (%) of lakes (p < 0.05) Median rate (m/yr) (p < 0.05)

<−0.2 8 (3) −0.26 8 (3) −0.26
[−0.2, 0] 54 (21) −0.05 26 (10) −0.11
[0, 0.15] 89 (34) 0.07 43 (16) 0.11
[0.15, 0.3] 41 (16) 0.23 40 (15) 0.23
[0.3, 0.5] 43 (16) 0.37 43 (16) 0.37
>0.5 27 (10) 0.69 27 (10) 0.69
>0 200 (76) 0.20 153 (58) 0.27
<0 62 (24) −0.06 34 (13) −0.12
All 262 (100) 0.12 187 (71) 0.22
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Figure 4. The spatial variation of lake level change rates. Endorheic region, that is, the Inner Tibetan Plateau, is
highlighted in blue.

Figure 3. Statistics of lake level changing rates (robust linear regression). (a) Ranked rates (black dots) with standard
deviations (red bars); (b) histogram of rates (24% negatives in red vs. 76% positives in blue); (c) rates distribution
along latitude (shaded areas indicate 95% confidence intervals).
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Figure 5. The spatial distribution of cluster types based on local Moran's I.

Figure 6. Anomaly of annual mean lake level for six groups based on lake area, that is, (a) 10–50 km2, (b) 50–100 km2,
(c) 100–200 km2, (d) 200–400 km2, (e) 400–600 km2, (f ) >600 km2, respectively. Accompanying inset maps show
the location of corresponding lakes. Note that 220 lakes are used based on the length of annual lake level time series (≥9).
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difference between large and small lakes (Figure 6). Statistically, 89% of all lakes have a negative anomaly in
2015/2016, and 52% have negative anomalies in both 2015 and 2016. Referred to lake level in 2013, 70% have
a negative increase in 2015/2016. In other words, 70% of all lakes experienced a drop in lake level in
2015/2016. Based on these findings, it is clear that climate variability plays an important role controlling
the interannual variations of lake levels.

Nevertheless, there are other distinct patterns, that is, declining followed by rising lake level and monoto-
nous rising lake level (Figure 7). All but one lake with monotonous rising pattern are located beyond
33°N. Lakes with a V‐shape pattern do not show clear clustering. Interestingly, none of those are located
in the northern part of the Inner TP. Note that these two patterns are present in both small and large lakes.
There is no obvious relationship between pattern and lake area. However, these two groups only account for
13% of all lakes.

Mean decadal change of lake level is 2.19 m (median 1.85 m), of which 56% (1.22 m) occurs in the last 3 years
after the decline (−0.3 m) in 2016. This can be clearly seen from Figure 6. A maximum change of 26 m is
found at Salt Lake (Figure 6c), followed by changes of 5 to 10 m in 19 lakes. These lakes are generally con-
tinuously increasing in lake level, similar to those shown in Figure 7.

3.4. Lake Storage and Terrestrial Water Storage Changes

Figure 8 depicts the volumetric lake storage changes. The map is characterized by the overwhelming dom-
inance of increasing rates (green dots). Spatially, most of those with a net gain are located in the northeastern
part of the Inner TP. The sum of positive change rates is 7.85 km3/yr, while negative changes sum to
−0.63 km3/yr. A similar rate was reported for the period of 2002–2015 (F. Yao et al., 2018). There are 21 lakes
gaining water at a rate larger than 0.1 km3/yr due to either larger areas (in the south) or higher increases in
water level (in the north). These lakes contribute with 65% (5.08 km3) of the total storage gain although only
accounting for 11% (21/200) of all lakes. In particular, the Qinghai Lake has the maximum gaining rate of
1.24 km3/yr, followed by Ayakkum Lake (0.38 km3/yr), Selin Co (0.33 km3/yr), Salt Lake (0.32 km3/yr),
and Aqqikkol Lake (0.3 km3/yr) (see Figure 8).

TWS from GRACE/GRACE‐FO shows similar patterns to that of lake storage change (Figure 8), which
implies that lake storage change dominates the TWS change. In general, contrasting trends appear over
the north and south TP. Positive trends are present in north TP with a strong center in the northeastern
Inner TP. This is in good agreement with lake storage change shown in Figure 8. On the contrary, the exor-
heic region, that is, the Brahmaputra River basin, shows a negative trend of −1.12 cm/yr. Nevertheless, it
should be kept in mind that because of the limited spatial resolution of GRACE, reliable results of mass
changes can only be resolved in regions larger than 10,000 km2. Therefore, we cannot interpret Figure 8
on a lake‐by‐lake basis. For example, even the Qinghai Lake has a quite large storage gain, but no excep-
tional TWS increase shows nearby.

Figure 7. (Top) anomaly of annual mean lake level presenting V‐shape and lake location map. (Bottom) anomaly of
annual mean lake level showing monotonous rising and lake location map.

10.1029/2020JD033161Journal of Geophysical Research: Atmospheres

JIANG ET AL. 9 of 15



The net gain of lake water storage in the Inner TP is ca. 63.3 km3 over the past decade, while TWS shows a
similar gain of 70.5 km3. Clearly, the positive rate of lake storage change is not constant (Figure 9). In the
first 3 years, the annual lake storage was increasing, and then it slowed down with a hiatus of 3 years.
However, TWS had a distinct decline during 2013–2016. In the last 3 years, both lake storage and TWS
had a sharp increase, that is, 60% and 119% increases referred to that of 2016, respectively. Note that TWS
in 2017 might be underestimated while overestimated in 2018 due to data gaps in the second half of 2017
and the first half of 2018. However, these gaps will not affect decadal cumulated TWS. Figure 9 also shows
that lake storage change dominates the TWS change in wet years (e.g., 2011, 2012, and 2017–2019), while
lake storage mitigates TWS decline in dry years (2013–2016). Therefore, lake storage has a big influence

on TWS variation on interannual scale by acting as a buffer against cli-
mate extremes. On a decadal timescale, TWS change is dominated by lake
water storage change.

4. Discussion

It is well acknowledged that the westerlies and the Indian summer mon-
soon play major roles in transporting water vapor to the TP (Curio
et al., 2015; Pan et al., 2019; Z. Wang et al., 2017; T. Yao et al., 2015;
Ye, 1981), and lake level rise in the north TP is largely attributed to
increased precipitation (Song et al., 2014; F. Yao et al., 2018; Zhang, Yao,
et al., 2017). The increased atmospheric moisture has been extensively dis-
cussed. Yao, Thompson, et al. (2012) found that the precipitation increase
(1970–2010) in the eastern Pamir is linked to the strengthening westerlies.
Zhang, Tang, and Chen (2017) attributed the precipitation increase
(1979–2013) over the Inner TP to enhanced water vapor transport from
the Indian Ocean during summer and local moisture recycling. Li, Su,
et al. (2019) showed that the increased atmospheric transport of water
from the Indian Ocean, rather than from local recycling, is mostly
the cause of the increased precipitation over the Inner TP during
1979–2015. A recent study attributed the increase of summer

Figure 8. Trend of water storage during 2010–2019. Background colored grid indicates trend of terrestrial water storage
(cm/yr) derived from GRACE/GRACE‐FO. Front dot indicates trend of lake storage in units of km3/yr. Top five
lakes with largest net gains are labeled.

Figure 9. Changes of lake storage and terrestrial water storage over the
Inner TP. Bar indicates annual storage change relative to previous year,
while dotted line indicates cumulative annual storage change. Note that
area of lakes in the Inner TP account for 88% of that of all lakes over the TP.
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precipitation to weakened westerlies (Sun et al., 2020). However, the debate is still going on. One major
challenge is data uncertainty, which obscures the interplay of atmospheric water transport and
precipitation over the huge area of TP (Curio et al., 2015) as well as the mechanisms and causality for the
interactions between large‐scale circulations and the heating effect of the TP (Z. Wang et al., 2017).

Table 2 shows lake level change, lake storage change, and TWS change over different periods. Considering
that the studied lakes cover nearly all lakes larger than 20 km2 (202 according to F. Yao et al., 2018), the
uncertainty is within 5% (Yang et al., 2017; F. Yao et al., 2018). Overall, the net gain rate of 2010–2019 is simi-
lar to that of 2000–2011 and of 2002–2015 according to Song et al. (2013) and F. Yao et al. (2018). This indi-
cates that the overall increasing trend did not slow down at decadal scale. One clear finding is that the
2015/16 El Niño had a strong influence on the Tibetan lakes (Table 2) via reduced precipitation (Figures 6
and 10). This also resulted in soil moisture drought and TWS deficit (Figure 10). This is in line with the

assumption that precipitation was the major contributor to lake variation
(F. Yao et al., 2018; G. Zhang et al., 2020). However, we are unsure which
sources of precipitation (local recycling vs. external transport) that had
been reduced. Clearly, the above normal precipitation in 2010–2012 led
to the increase in lake levels (Figure 6) and a marked increase of TWS
in 2012, which may relate to the very strong 2010/11 La Niña event.
Moreover, the weak 2016/17 and 2017/18 La Niña led to persistent above
normal precipitation during 2016–2018, which explains the sharp rise of
lake levels in recent 3 years as shown in Table 2 and Figures 6 and 9.
Interestingly, precipitation, soil moisture, and evapotranspiration are very
well correlated with El Niño and La Niña events, but TWS shows a
delayed response to El Niño and La Niña as well as precipitation. This
indicates that water storage changes in Inner TP are likely to be more
resistant to meteorological droughts. However, the strength of El Niño
and La Niña is not directly proportional to the precipitation effects, such
as those in 2011, 2013, and 2018 (Figure 10), probably due to their differ-
ent characteristics (Yeo & Kim, 2014). It should be noted that the two pre-
cipitation products have small discrepancies, especially in cold season.
GPM IMERG is about 3% lower compared to GPCP. Nevertheless, they
are in agreement regarding long‐term trends on interannual timescale.

Continuous lake level rise leads to increasing water resources, which
favors ecosystem resilience and biomass production. On the other
hand, lake level rise also has negative effects. Many lakes have been
connected permanently or intermittently due to their continuous rising,
such as Migriggyangzham Co and Dorsoidong Co (Jiang et al., 2017b).
Moreover, lake level rise poses threats to transport infrastructure, such
as the S301, S205 provincial roads, and so forth, which cross many lake-
shores (e.g., Selin Co and Tangra Yumco). One of the extreme scenarios
is lake outburst, which can be illustrated using a specific case, that is,
Zhuonai Lake (Figure 11). The outburst of Zhuonai Lake in 2011 has
resulted in a chain reaction of environmental impacts (Hwang et al., 2016;
Yao, Liu, et al., 2012). The outflow recharges Kusai Lake, which further
releases water and recharges Salt Lake downstream. The continuous lake
level rise of Salt Lake (>25 m since 2011) poses a huge threat to the

Table 2
Lake Level Change and Storage Changes of the Inner TP Over Different Periods

2010–2014 2015–2016 2017–2019 2010–2019

Mean lake level change (m) 1.01 −0.35 1.35 2.32
TWS change (km3) 9.9 −23.6 84.1 70.5
Lake storage change (km3) 27.6 −2.3 37.9 63.3

Figure 10. (Top) average soil moisture of surface soil layer (2 to 5 cm)
during summer monsoon months (June, July, August, and September) over
the Inner TP; red bars indicate standard deviations. (Second) monthly
actual evapotranspiration over the Inner TP. (Third) monthly GPCP and
IMERG precipitation over the Inner TP. (Fourth) Monthly TWS
(some observations are not available). (Bottom) multivariate ENSO
index (MEI).
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Qinghai‐Tibet railway and highway 12 km running along the southern corner of Salt Lake (Figure 11). As
shown in Figure 11c, present lake level is approaching the highest boundary. The railway and highway
are under a big threat of inundation if the level of the three lakes continues to rise. The projected
precipitation is likely increasing in the future (Duan et al., 2019); therefore, some measures should be
considered, for example, dam, water transfer, and so forth, to alleviate the outburst risk. In addition,
rising lake levels also threaten local villages and pastoral communities due to the inundation of vast areas
of grazing land as well as cultural and religious influences (Mao et al., 2018; Nyima & Hopping, 2019).

One should be aware that the CryoSat‐2 is unable to track the seasonal variability over most lakes due to the
low temporal resolution, that is, 369‐day full repeat and 30‐day subcycle repeat. Only dozens of very large
lakes have quasi‐monthly time series. It is possible to obtain 10‐day or 27‐day lake level time series using
short‐repeat altimeters, such as Jason‐1/2/3 and Sentinel‐3A/B, but only for a limited number of lakes due
to the lower spatial coverage. This does not allow us to study the larger picture of seasonal variations.
Indeed, the pattern of seasonal variations of lake levels can vary between lakes depending mostly on the
runoff generation mechanisms. It is a very important question and requires further investigation.
Future studies on this issue could be carried out based on hypsometry, which can be established using alti-
metry (e.g., CryoSat‐2, SARAL‐DF, and Sentinel‐3A/B) and imagery (Landsat, GF, Sentinel‐1A/B, and
Sentinel‐2A/B).

5. Summary and Conclusions

We clearly demonstrate the value of CryoSat‐2 for monitoring inland lakes due to its superior data coverage.
Measurements from CryoSat‐2 during the past decade, have covered over 500 Tibetan lakes (>10 km2),
which is far beyond the coverage of missions with a short‐repeat cycle, such as Jason series and Envisat/
Sentinel series. Although the closed‐loop mode occasionally results in invalid measurements, time series
for 262 lakes have been retrieved in this study. This presents a bigger picture of how the Tibetan lakes chan-
ged in the past decade under a warming climate.

Lake level time series show a positive trend for 76% (58% significantly) of the lakes and a negative trend for
24% (13% significantly). Lakes located in the north TP generally have higher rates, while those in the south

Figure 11. Illustration of outburst risk at Salt Lake. (a) Locations of Zhuonai Lake, Kusai Lake, Salt Lake, and the
Qinghai‐Tibet railway and highway. (b) Zoom‐in of Salt Lake, railway & highway, and a potential channel.
(c) Longitudinal elevation profile of the line shown in (b).
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show smaller or negative rates. All lakes with a marked positive trend (>0.5 m/yr) are located beyond 33°N,
mainly in the Inner TP. On interannual timescale, three stages are found, that is, quick rising during
2010–2013, followed by a steady or slight decline during 2013–2016, and then another fast rising since
2017. The highest increase in lake level is seen over the last 3 years, contributing 56% of decadal increase
on average.

Lake storage change is dominated by the increase in lake level. The sum of positive change rates is
7.85 km3/yr while −0.63 km3/yr for negative ones. Particularly, the Inner TP lakes have gained a water
volume of 63.3 km3, constituting 90% of the total water storage gain (70.5 km3) during the past decade.
The latest 3 years have seen a sharp increase of both lake storage and TWS, that is, 60% and 119% increases
relative to 2016, respectively.

The whole picture of lake changes clearly shows the quick response of the Tibetan Plateau to climate change.
Lake level rise indeed has positive effects, such as increasing water availability, sustaining lake ecosystem,
and so forth, but it can also pose threats to pastoral livelihoods, traditional culture of local community, infra-
structure, and so forth (Nyima & Hopping, 2019). In this regard, satellite altimetry is of great value for mon-
itoring lake level dynamics. A continuous monitoring of lake dynamics is vital to our understanding of and
community‐based adaptation to the regional changes responding to climate change. Along with CryoSat‐2,
the upcoming Surface Water and Ocean Topography Mission (SWOT) and SMall Altimetry Satellites for
Hydrology (SMASH) (Verron et al., 2020) will greatly facilitate monitoring network.

Data Availability Statement

CryoSat‐2 data can be accessed online (https://gpod.eo.esa.int/). Note that an account of GPOD https://gpod.
eo.esa.int/ is required. GRACE/‐FO data are downloaded from JPL (https://podaac.jpl.nasa.gov/GRACE).
Soil moisture can be downloaded online (https://catalogue.ceda.ac.uk/uuid/2d4a50f390064820a9dcc2fc-
f7ac4b18). Evapotranspiration data are available online (https://www.gleam.eu/#downloads). Climate data
are available online (https://psl.noaa.gov/gcos_wgsp/Timeseries/ and https://gpm.nasa.gov/data‐access/
data‐sources).
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