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A B S T R A C T

Sleep disorders are prevalent in the general population and have major
implications for personal health and mortality including increased risk of
cardiovascular, metabolic and psychiatric complications. Furthermore, sleep
disorders have a major economic burden contributing to an estimated cost of
several hundred billion dollars per year to society.

The current gold standard for sleep disorder diagnosis is based on man-
ual analysis of electroencephalography (EEG), electrooculography (EOG),
electromyography (EMG), and cardio-respiratory variables recorded during
sleep following a set of guidelines provided by the American Academy of
Sleep Medicine. However, several studies have shown that this introduces
subjective bias in the resulting sleep analysis due to interpretations of scoring
guidelines, differences in recording equipment and setup among different
sleep clinics, and the presence of sleep disorders interrupting normal sleep
patterns.

The main objective of this thesis is to develop a system based on artificial
intelligence, that can assist clinicians in the analysis of sleep studies. This is
realized in three research themes, each focusing on a separate aspect of sleep
analysis.

The first research theme presents findings related to the development of
methods for automatic sleep stage classification, which is a crucial part of
analyzing sleep patterns. Two models based on deep neural networks applied
to EEG, EOG, and EMG signals were developed for this reason. Using the raw
signals from 14 086 polysomnographies (PSGs) to classify sleep stages, the
first model obtained an average accuracy of 86.9% across 1584 PSGs collected
from five independent datasets. The second model used cross-correlation
representations of signals from 2784 PSGs to classify sleep stages with an
accuracy of 86.8% across 70 PSGs scored by six sleep technicians.

The second research theme concerned methods for automatic detection of
sleep events focusing specifically on arousals (Ars), limb movements (LMs),
and sleep disordered breathing (SDB) events. A model was designed based
on deep neural networks applied to EEG, EOG, EMG, and respiratory signals.
The model was able to precisely localize and classify events in data and was
tested on more than 1000 PSGs. Moreover, the model was used in a transfer
learning setting, where a fine-tuning optimization strategy could effectively
recover lost performance caused by a reduced set of input channels. An
adaptable model like this would be an important step forward in a clinical
setting.

The third and final research theme concerned classification of sleep dis-
orders using artificial intelligence. A model was designed based on feature
engineering of the hypnodensity-representation and probabilistic classifi-
cation algorithms to classify narcolepsy type 1 (NT1) from both healthy
controls and patients with other central hypersomnias. NT1 was identified
with 91% sensitivity and 96% specificity in the test sample, while replication
in two independent datasets yielded similar performances.

In conclusion, this thesis presents new automatic methods for clinical sleep
analysis based on artificial intelligence. Compared to current methods, the
proposed models could significantly reduce analysis time by virtue of being
quick to execute, while providing similar or higher levels of performance.
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R E S U M É

Søvnforstyrrelser er udbredte i samfundet og har konsekvenser for personlig
sundhed og dødelighed, herunder øget risiko for hjertekarsygdomme, meta-
boliske og psykiatriske komplikationer. Derudover er søvnforstyrrelser en
stor omkostning for samfundet, og det er anslået at komplikationer følgende
søvnforstyrrelser bidrager til flere hundrede milliarder dollars om året.

Den nuværende standard for diagnose af søvnforstyrrelse og søvnsyg-
domme er baseret på manuel analyse af elektroencephalografi (EEG), elek-
trooculografi (EOG), eletromyografi (EMG) og cardio-respiratoriske variable
registreret under søvn efter et sæt retningslinjer defineret af American Acade-
my of Sleep Medicine. Flere studier har imidlertid vist, at dette introducerer
et subjektivt bias i den resulterende søvnanalyse på grund af fortolkninger af
scoringsretningslinjer, forskelle i optageudstyr og -opsætning blandt forskel-
lige søvnklinikker samt tilstedeværelsen af søvnforstyrrelser, der negativt
påvirker normale søvnmønstre.

Hovedformålet med denne afhandling er at udvikle et system baseret på
kunstig intelligens, der kan hjælpe klinikere i analysen af søvnmønstre. Dette
realiseres i tre forskningstemaer, der hver især fokuserer på et separat aspekt
af søvnanalyse.

Først præsenteres resultater relateret til udvikling af metoder til auto-
matisk klassificering af søvnstadier, som er en vigtig del af analysen af
søvnmønstre. To modeller baseret på dybe neurale netværk anvendt på EEG,
EOG og EMG signaler blev udviklet af denne grund. Ved hjælp af de rå
signaler fra 14086 polysomnografier (PSG) til klassificering af søvnstadier
opnåede den første model en gennemsnitlig nøjagtighed på 86.9% målt over
1584 PSG’er samlet fra fem uafhængige datasæt. Den anden model brugte
krydskorrelations-repræsentationer af signaler fra 2784 PSG’er til klassifice-
ring af søvnstadier med en nøjagtighed på 86.8% målt henover 70 PSG’er
scoret af seks søvnteknikere.

Dernæst præsenteres en metode til automatisk detektion af mikro-opvåg-
ninger, benspjæt, og apnø-lignende perioder. En model blev designet baseret
på dybe neurale netværk anvendt på EEG, EOG, EMG og åndedrætssignaler.
Modellen var i stand til at lokalisere og klassificere begivenheder i data og
blev testet på mere end 1000 PSG’er. Desuden blev modellen brugt til over-
førselslæring, hvor en finjusteret optimeringsstrategi af modellen effektivt
kunne gendanne tabt ydeevne forårsaget af et reduceret sæt inputkanaler. En
fleksibel model som denne vil være nyttig i en klinisk sammenhæng.

Det sidste forskningstema vedrørte klassificering af søvnforstyrrelser ved
hjælp af kunstig intelligens. En model blev designet baseret på repræsen-
tationer af hypnodensiteten og probabilistiske algoritmer til adskillelse af
narkolepsi type 1 (NT1) patienter fra kontroller og patienter med andre
centrale hypersomnier. NT1 blev identificeret med 91% sensitivitet og 96%
specificitet i testprøven, mens replikation i to uafhængige datasæt gav tilsva-
rende resultater.

Samlet set præsenterer denne afhandling nye automatiske metoder til
klinisk søvnanalyse baseret på kunstig intelligens. Sammenlignet med de
nuværende analyse-standarder kan de foreslåede modeller markant reducere
analysetiden i kraft af at være hurtigere end manuel analyse, samtidig med
at de kan levere lignende eller højere ydeevne.
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1T H E S I S I N T R O D U C T I O N

Quantum carburetor? Jesus, Morty, you can’t just add a sci-fi word to a car word
and hope it means something.

— Rick Sanchez
Rick and Morty, season 2, episode 6.

Although sleep is essential for normal human brain development and
functionality, sleep disorders are prevalent in society. There are approxi-
mately 90 different sleep disorders currently recognized and described in
the International Classification of Sleep Disorders (ICSD) grouped into six
categories: insomnias, circadian rhythm sleep-wake disorders, central hyper-
somnias (e. g. narcolepsy), sleep-related breathing disorders (e. g. obstructive
sleep apnea), parasomnias (e. g. sleepwalking, REM sleep behaviour disor-
der), and sleep-related movement disorders (e. g. periodic leg movement
disorder and restless legs syndrome) [1]. It is estimated that about 25% of
the US population present with sleep apnea-related symptoms [2], [3] with
similar prevalences in other developed countries [4]–[7]. The prevalence of
chronic insomnia is estimated to be about 10% of the US population [8], and
6% in high-income countries [9]—a number increasing to up to 48% when
including insomnia symptoms alone [9]. Although these numbers are high,
evidence suggests that sleep disorders are severely under-diagnosed [10]–
[12].

Disrupted sleep is associated with increased risk of developing systemic hy-
pertension, cardiovascular disease and abnormalities in the metabolism [13].
Increased levels of fatigue due to disrupted nighttime sleep is also a cause
of motor-vehicle accidents [14], as people with excessive daytime sleepiness
have a sevenfold greater risk of being involved in an accident [15].

Apart from the medical impacts on a personal level, sleep disorders have
monumental societal impact due to their prevalence and cost of care. A
study on the burden of poor sleep in the Australian population estimated
the annual economic cost at $42.5 billion [16], while the combined cost of
poor sleep in USA, Canada, UK, Japan and Germany is estimated to exceed
$600 billion per year [17]. USA alone accounts for an estimated $411 billion
of these costs [18].

3
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Figure 1.1: Accuracy-usability trade-off for selected methods in sleep analysis. Polysomnography is consid-
ered the gold standard in sleep medicine providing high levels of accuracy, while also being very cumbersome
and time-consuming. Videosomnography provides lower levels of accuracy, while being equally cumber-
some and time-consuming, although this is required for diagnosis of some sleep disorders. User-centered
technologies such as health apps and sleep diaries are easier to use than the gold standard methods, but are
generally not accurate in capturing sleep metrics. Wearable devices and ubiquitous technologies, such as
bed and radiowave sensors, generally have the lowest impact on the user, while providing medium levels
of accuracy. This thesis will focus on improving the the gold standard indicated on the figure by moving
polysomnography along the red arrow to the left along the user burden axis. In this case, user burden
encompasses both the burden to the patient, as well as the burden to the clinician. Adapted from [30] under a
Creative Commons Attributes 4.0 International License: http://creativecommons.org/licenses/by/4.0/.

Currently, the gold standard of diagnosing sleep disorders is based on
manual analysis of sleep patterns following the guidelines published by the
American Academy of Sleep Medicine (AASM) and the clinical guidelines in
the ICSD [1]. Sleep is recorded in sleep clinics using PSG, which comprises
several recording modalities across the body. Patients in the sleep clinic wearSpecific details

concerning PSG
setup and recording

will be described
in Section 2.2.

and sleep with a heavy and extensive recording setup, which may have an
impact on regular sleep patterns [19], [20].

Apart from being time consuming and cumbersome for both patients and
clinical personnel, there is growing evidence that manual analysis of sleepThese findings on

variability will be
presented

in Section 2.3.

patterns suffer from subjectiveness resulting in high inter-scorer variabili-
ties [21]–[29]. In the last decades, there has been an increasing effort to come
up with new solutions that can ease and standardize the way sleep data is
acquired and analyzed.

http://creativecommons.org/licenses/by/4.0/
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Numerous commercial, industrial and academic interests are focusing
on easier methods for acquiring sleep data in the form of mobile health
applications and low-cost wearable/nearable devices such as headbands, Nearables include

non-contact devices
such as radar-based
sensing, and
embedded sensors
such as bed sensors.

in-ear EEG, or activity trackers [30]. These devices are interesting from
several standpoints, but mostly due to the low user burden compared to
conventional PSG. However, wearable devices are not yet applied in clinical
practice, due to the limited validation against gold standard methods [31].
This trade-off between usability and user burden versus accuracy is depicted
graphically in Figure 1.1 for several methods available for sleep recording
and/or quantification.

Similarly, numerous efforts have already been made on the data analysis
side to automate the sleep analysis process. Especially the task of automatic
sleep stage classification has been the subject of many research papers [32].
With the rising presence of artificial intelligence in medicine, and deep
learning in particular [33]–[35], more and more research groups are focusing
on applying advanced signal processing and analysis techniques to sleep
data. Due to the vast number of different approaches regarding the number
of classified sleep stages, feature extraction, classification algorithms, applied
datasets, and validation approaches, direct comparison between published
findings is a complex task [32], [36]–[39]. However, high quality large-scale
studies on automatic methods for sleep analysis was until very recently not
dominant in the literature.

1.1 problem statement and research hypothesis

Analysis of sleep is based on manual scoring of PSGs recorded overnight at
either a sleep clinic or at home, which are prone to subjective interpretation of
scoring rules. Correct identification and analysis of sleep patterns precedes
correct diagnosis and thus subsequent treatment of sleep disorders. The
objective of this thesis is

to develop a system based on artificial intelligence, that can assist
clinicians in the analysis of sleep studies.

The aim is to ease the way PSGs are analyzed in the clinic today, but without
lowering accuracy. This is depicted graphically in Figure 1.1 by moving the
PSG along the red arrow.

Taking into account the motivation, the problem statement is formalized
into the following thesis hypothesis:

Advanced biomedical signal processing and machine learning
algorithms can be used for efficient, high-performing analysis of
sleep studies with regards to

RH 1 sleep stages;

RH 2 sleep events; and,

RH 3 sleep disorders.

1.2 thesis outline and scientific contributions

The scientific content of this research is grouped into three research themes
each with its own chapter.

Chapter 1 contains the preliminary introduction and motivation to this
thesis, and outlines the content and scientific contributions.



6 thesis introduction

Chapter 2 provides necessary clinical background for readers with little
previous knowledge in somnology and sleep medicine.

Chapter 3 presents three studies on automatic sleep stage classification, the
first research theme.

Chapter 4 presents three studies on a model developed for sleep micro-event
detection, which is the second research theme.

Chapter 5 presents the development of a narcolepsy classification algo-
rithm, based on outputs from one of the sleep stage classification models
presented in Chapter 3. This concerns the third and final research theme.

Chapter 6 integrates the findings of this dissertation in a discussion relative
to the stated research hypotheses and objectives.

Chapter 7 concludes the thesis by summing up the main research findings.
Chapter 8 outlines some of the future directions and research perspectives

in the field of computational sleep science.

The following first-author publications have been published, accepted or
submitted during my PhD studies and form the scientific basis of this thesis.1

Preprints and/or published versions of these are supplied in the appendix.

journal papers

– J. B. Stephansen*, A. N. Olesen*, M. Olsen, A. Ambati, E. B. Leary, H. E.
Moore, O. Carrillo, L. Lin, F. Han, H. Yan, Y. L. Sun, Y. Dauvilliers, S. Scholz, L.
Barateau, B. Hogl, A. Stefani, S. C. Hong, T. W. Kim, F. Pizza, G. Plazzi, S. Vandi,
E. Antelmi, D. Perrin, S. T. Kuna, P. K. Schweitzer, C. Kushida, P. E. Peppard,
H. B. D. Sorensen, P. Jennum, and E. Mignot, “Neural network analysis of sleep
stages enables efficient diagnosis of narcolepsy”, Nat. Commun., vol. 9, p. 5229,
2018. doi: 10.1038/s41467-018-07229-3

– A. N. Olesen, P. Jennum, E. Mignot, and H. B. D. Sorensen, Automatic sleep
stage classification with deep residual networks in a mixed-cohort setting, 2020, (under
review)

– A. N. Olesen, P. Jennum, E. Mignot, and H. B. D. Sorensen, A multi-modal sleep
event detection algorithm for clinical sleep analysis, 2020, (in preparation)

conference papers

– A. N. Olesen, P. Jennum, P. Peppard, E. Mignot, and H. B. D. Sorensen, “Deep
residual networks for automatic sleep stage classification of raw polysomno-
graphic waveforms”, 2018 40th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Hon-
olulu, HI, USA: IEEE, 2018. doi: 10.1109/EMBC.2018.8513080

– A. N. Olesen, S. Chambon, V. Thorey, P. Jennum, E. Mignot, and H. B. D.
Sorensen, “Towards a Flexible Deep Learning Method for Automatic Detection
of Clinically Relevant Multi-Modal Events in the Polysomnogram”, 2019 41st
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Berlin, Germany: IEEE, 2019, pp. 556–
561. doi: 10.1109/EMBC.2019.8856570

– A. N. Olesen, P. Jennum, E. Mignot, and H. B. D. Sorensen, Deep transfer
learning for improving single-EEG arousal detection, 2020. arXiv: 2004.05111

[cs.CV], (accepted, IEEE EMBC 2020)

Furthermore, I have (co-)authored the following publications during my
PhD.

journal papers

– A. N. Olesen*, M. Cesari*, J. A. E. Christensen, H. B. D. Sorensen, E. Mignot,
and P. Jennum, “A comparative study of methods for automatic detection of
rapid eye movement abnormal muscular activity in narcolepsy”, Sleep Med.,
vol. 44, pp. 97–105, 2018. doi: 10.1016/j.sleep.2017.11.1141

1
∗ indicates shared first authorship.

https://doi.org/10.1038/s41467-018-07229-3
https://doi.org/10.1109/EMBC.2018.8513080
https://doi.org/10.1109/EMBC.2019.8856570
https://arxiv.org/abs/2004.05111
https://arxiv.org/abs/2004.05111
https://doi.org/10.1016/j.sleep.2017.11.1141
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– M. Cesari, J. A. E. Christensen, L. Kempfner, A. N. Olesen, G. Mayer, K.
Kesper, W. H. Oertel, F. Sixel-Döring, C. Trenkwalder, H. B. D. Sorensen, and
P. Jennum, “Comparison of computerized methods for rapid eye movement
sleep without atonia detection”, Sleep, vol. 41, no. 10, pp. 1–11, 2018. doi:
10.1093/sleep/zsy133

– A. Brink-Kjaer, A. N. Olesen, P. E. Peppard, K. L. Stone, P. Jennum, E. Mignot,
and H. B. Sorensen, “Automatic detection of cortical arousals in sleep and
their contribution to daytime sleepiness”, Clin. Neurophysiol., vol. 131, no. 6,
pp. 1187–1203, 2020. doi: 10.1016/j.clinph.2020.02.027

– L. Carvelli, A. N. Olesen, A. Brink-Kjær, E. B. Leary, P. E. Peppard, E. Mignot,
H. B. Sørensen, and P. Jennum, “Design of a deep learning model for automatic
scoring of periodic and non-periodic leg movements during sleep validated
against multiple human experts”, Sleep Medicine, vol. 69, pp. 109–119, 2020. doi:
10.1016/j.sleep.2019.12.032

– A. Ambati, Y.-E. Ju, L. Lin, A. N. Olesen, H. Koch, J. J. Hedou, E. B. Leary,
V. P. Sempere, E. Mignot, and S. Taheri, “Proteomic biomarkers of sleep apnea”,
Sleep, 2020, (in press)

conference papers

– A. B. Klok*, J. Edin*, M. Cesari, A. N. Olesen, P. Jennum, and H. B. Sorensen,
“A New Fully Automated Random-Forest Algorithm for Sleep Staging”, 2018
40th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Honolulu, HI, USA: IEEE, 2018,
pp. 4920–4923. doi: 10.1109/EMBC.2018.8513413

abstracts

– A. Brink-Kjær, A. N. Olesen, C. A. Jespersen, P. E. Peppard, P. J. Jennum, H. B.
Sørensen, and E. Mignot, “0142 Automatic Detection of Cortical Arousals in
Sleep using Bi-direction LSTM Networks”, Sleep, vol. 41, no. suppl_1, A55–A56,
2018. doi: 10.1093/sleep/zsy061.141

– L. Carvelli, A. N. Olesen, E. B. Leary, H. Moore, L. D. Schneider, P. E. Peppard,
P. J. Jennum, H. B. Sørensen, and E. Mignot, “0323 Design of a Deep Learning
Based Algorithm for Automatic Detection of Leg Movements During Sleep”,
Sleep, vol. 41, no. suppl_1, A124–A124, 2018. doi: 10.1093/sleep/zsy061.322

– K. P. Jacobsen, A. N. Olesen, L. Trap, P. E. Peppard, H. B. Sorensen, P. J. Jennum,
and E. Mignot, “0328 Automatic Detection of Respiratory Events During Sleep
Using Bidirectional LSTM Networks”, Sleep, vol. 41, no. suppl_1, A125–A126,
2018. doi: 10.1093/sleep/zsy061.327

– A. N. Olesen, P. E. Peppard, H. B. Sorensen, P. J. Jennum, and E. Mignot, “0316

End-to-End Deep Learning Model For Automatic Sleep Staging Using Raw
PSG Waveforms”, Sleep, vol. 41, no. suppl_1, A121–A121, 2018. doi: 10.1093/
sleep/zsy061.315

– A. N. Olesen, J. Thybo, S. Chambon, V. Thorey, P. J. Jennum, H. B. Sorensen,
and E. Mignot, “0318 Towards A Deep Learning-based Joint Detection Model
For Nocturnal Polysomnogram Events”, Sleep, vol. 42, no. Supplement_1, A130–
A130, 2019. doi: 10.1093/sleep/zsz067.317

– J. Thybo, A. N. Olesen, M. Olsen, E. Leary, P. Jennum, H. B. D. Sorensen, and
E. Mignot, “Fully Automatic Detection of Sleep-disordered Breathing Events”,
Sleep, 2020, (in press)

Finally, I have also written a popular science article about my research titled
Intelligente algoritmer på søvnklinikken (Intelligent algorithms in the sleep clinic)
for the Danish industry magazine Medicoteknik.

https://doi.org/10.1093/sleep/zsy133
https://doi.org/10.1016/j.clinph.2020.02.027
https://doi.org/10.1016/j.sleep.2019.12.032
https://doi.org/10.1109/EMBC.2018.8513413
https://doi.org/10.1093/sleep/zsy061.141
https://doi.org/10.1093/sleep/zsy061.322
https://doi.org/10.1093/sleep/zsy061.327
https://doi.org/10.1093/sleep/zsy061.315
https://doi.org/10.1093/sleep/zsy061.315
https://doi.org/10.1093/sleep/zsz067.317




2C L I N I C A L B A C K G R O U N D

What, so everyone’s supposed to sleep every single night now? You realize that
nighttime makes up half of all time?

— Rick Sanchez
Rick and Morty, season 1, pilot episode

This chapter aims to provide the reader with a basic and preliminary
understanding of sleep science. First, the fundamental aspects of sleep as a
physiological phenomenon are reviewed. Unless otherwise stated, the context
will be concerning sleep in primarily healthy adults. This will be followed by
a description of how sleep is recorded, quantified and analyzed in clinical
practice. The chapter will conclude with a section on some of the major
challenges and difficulties that arise in clinical sleep practice, such as inter-
and intra-rater variability, and how this can affect clinical outcomes.

2.1 fundamental aspects of sleep

Sleep is ubiquitous to human life. Our bodies might seem static, but sleep
is actually a complex, physiological state comprised of multiple, dynamic
processes, that are observable across multiple recording modalities. But
although we spend almost a third of our lifetime sleeping, there are still
many aspects that are unknown to science.

The general understanding of how our sleep is structured includes two
concepts important for this thesis: sleep architecture and sleep events.

sleep architecture refers to the structure of sleep, how it is divided into
different states based on physiological characteristics, and the dynamics
of those states across the night. This can also be called macro-sleep, as it
concerns the overall macro-structure of our sleep patterns.

sleep events are discrete observations with various characteristics that
are distinct for the specific event type. Many such events can happen
during sleep, and the duration and scope of these events can vary from
short and localized (leg movements, sleep spindles), to long and broad
(arousals, apneas). The description and characterization of these events

9
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Table 2.1: Clinical EEG frequency bands.

Rhythm Brown et al. [40] AASM2020 [43]

Delta 1 Hz to 4 Hz 0 Hz to 3.99 Hz

Theta 4 Hz to 8 Hz 4 Hz to 7.99 Hz

Alpha 8 Hz to 14 Hz 8 Hz to 13 Hz

Beta 15 Hz to 30 Hz > 13 Hz

Gamma 30 Hz to 120 Hz n.d.

SWA 0.5 Hz to 4 Hz 0.5 Hz to 2.0 Hz

LAMF n.d. 4 Hz to 7 Hz

n.d., not defined; EEG: electroencephalography;
SWA: slow wave activity; LAMF: low amplitude,
mixed frequency.

can also be called micro-sleep, but this term is also sometimes applied
to sleep architecture on a small time-scale. In this thesis, I will refer to
this concept as either micro-sleep events or just sleep events for short.

2.1.1 Sleep architecture

On average, normal sleep in adult humans lasts between 7-9 hours per night
with substantial variability between persons. During this period, the brain
and body cycle between alternating sleep stages, which can be categorized
into a state of drowsiness or semi-conscious wakefulness (W), a rapid eye
movement (REM) sleep stage, and three non-rapid eye movement (NREM)
stages, non-rapid eye movement stage 1 (N1), non-rapid eye movement stage
2 (N2), and non-rapid eye movement stage 3 (N3). The main distinction
between sleep stages comes from the amplitude and spectral content of the
brain signals as measured using EEG. For example, wakefulness and REM
sleep are associated with high frequency, low amplitude content such as
theta or alpha rhythm activity, while the NREM sleep stages are associated
with low frequency, high amplitude content in the delta rhythm range.

However, certain brain stages are also characterized by the presence of
certain micro-structure events with very distinct morphologies, such as sleep
spindles or K-complexes in the EEG, or REMs which are recorded with
EOG [40]–[42]. Muscle activity, which is typically recorded using EMG of
the submentalis and anterior tibialis muscles, can also be used to distinguishThe submentalis is

located below the
chin, while the

anterior tibialis is
located on the shin.

between sleep stages.
The following sections review the major electrophysiological characteristics

for the five sleep stages currently defined by the AASM, which is summarized
in Table 2.2. A graphical overview of typical signal content in the EEG, EOG
and EMG for the five sleep stages is shown in Figure 2.1.

2.1.1.1 Wakefulness

Spanning from a full awareness state to a quiet awakening or drowsiness
state, this stage generally accounts for about 5 % of the total time in bed
from lights out to lights on in healthy adults. In this stage, the brain typically
exhibits low amplitude, high frequency content in small areas and moreEEG rhythms in the

alpha range or higher. wide-spread theta rhythms. During quiet awakening, these theta rhythms
increase in the frontal area of the brain, while alpha rhythms are dominant
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EEG

W

N1

N2

REM

N3

EMGEOG

Figure 2.1: Typical waveforms encountered in different sleep stages. The left column displays the progression
from low amplitude, mixed frequency content such as alpha rhythms in W, towards low frequency, high
amplitude delta rhythms in the deep N3 sleep. In the middle is shown REMs and reading eye movements in
W, and SEMs or no activity in NREM stages. Due to their proximity to the frontal area, delta rhytms might
be visible in the EOG during N3. The right-most column shows the EMG amplitude progression from high
in W to low in N3. The bottom row shows the paradoxical nature of REM sleep with LAMF content and
theta rhythms in the EEG, REMs in the EOG, and atonia in the EMG. Reprinted with permission from [44].
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Table 2.2: Sleep stage characteristics according to AASM2020 [43].

Sleep stage Description

W EEG: alpha (eyes closes), theta (eyes open)

EOG: REMs, reading eye movements

EMG: high, but variable, amplitude

N1 EEG: LAMF content, theta rhythms

EOG: SEMs

EMG: variable amplitude, usually lower than in W

N2 EEG: K-complexes, sleep spindles

EOG: No activity, or SEMs

EMG: variable amplitude, usually lower than in N1

N3 EEG: SWA, large amplitude delta rhythms

EOG: No activity, or SEMs

EMG: variable amplitude, usually lower than in N2

REM EEG: LAMF content, theta rhythms, sawtooth waves, PGO waves

EOG: REMs

EMG: muscle atonia, phasic bursts

LAMF: low amplitude, mixed frequency; PGO: ponto-geniculo-occipital;
REM: rapid eye movement; SEM: slow eye movement.

over the occipital region, especially when the eyes are closed. With eyes
open, this stage is characterized by eye blinking, reading eye movements and
REMs. The chin muscle tone is typically high with unspecific amplitude.

2.1.1.2 NREM sleep

Sleep in humans generally commences when a person progresses from W to
one of the three stages of NREM. They generally constitute approximatelyUp until 2007,

NREM sleep was
divided in four stages:

S1, S2, S3, and S4
(slow wave sleep).

The latter two was
merged in

AASM2007 into N3.

2 % to 5 %, 45 % to 55 %, and 13 % to 23 % of the total sleep time (TST) for
the first, second, and third NREM stage, respectively. The order of N1, N2,
and N3 represents a continuum of the depth of sleep, which is primarily
constituted by a progressive slowing of the EEG activity from low amplitude,
high frequency alpha and theta rhythms, to low frequency delta rhythms
with large amplitude. Furthermore, another major indicator of deepening
sleep is the increasing arousal thresholds associated with the progression
from N1 to N3 [40], [42].

n1 This is the first stage encountered during normal sleep, and is generally
considered to be a transitional stage between drowsiness, or lighter sleep,
and deeper sleep. It is characterized by mixed frequency content, as the
alpha rhythms are progressively reduced and replaced with theta rhythms.
Additionally, small sleep events called vertex sharp waves also appear in the
EEG during this stage. REMs and reading eye movements are replaced withVertex sharp waves

are sharply contoured
waveforms with a

very short duration of
less than 0.5 s

slow eye movements and the muscle tone is reduced compared to W.

n2 Although theta rhythms from N1 continue, brain activity in N2 exhibits
discrete sleep events like sleep spindles and K-complexes. Eye movement activityThese events will be

described
in Section 2.1.3
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is not typically seen in this stage, while muscle activity is further reduced
from that of N1.

n3 The last of the three NREM, the N3 stage is also known as deep sleep.
In this stage, the EEG content shifts towards more pronounced delta wave
activity, especially slow wave activity (SWA) larger than 75 µV in the frontal
regions. Eye movement activity is typically not seen, but SWA intrusion
artifacts from the frontal EEG can sometimes be seen. The muscle activity is
low, and the muscle tone typically has an amplitude between that of N2 and
REM.

2.1.1.3 REM sleep

The defining characteristic of this stage of sleep is the appearance of REM Conjugate, irregular,
sharply peaked eye
movements with an
initial deflection
lasting less than
500 ms [43]

activity observed in the EOG, desynchronized low amplitude, mixed fre-
quency (LAMF) EEG activity, and suppression of skeletal muscle activity (ato-
nia) due to brainstem-mediated inhibition of the alpha motor-neurons [42],
[45]. This stage typically accounts for 20 % to 25 % of the TST [42], and is
associated with the majority of dreaming activity, although evidence suggests
dreaming also occurs in NREM [40], [45]–[48], albeit at a less vivid level [49].

Some studies indicate that REM sleep is comprised of two distinct micro-
states [45]: a phasic state characterized by the appearance of ponto-geniculo-
occipital (PGO) and sawtooth waves, REMs and muscle twitches [50]; and Characteristic 2-4 Hz

rhythmic oscillations
during REM sleep
that have a triangular
shape and maximal
amplitude at frontal
and central
derivations.

a tonic state in between phasic states that is characterized by LAMF and
theta rhythms, and a higher arousal threshold [51]. Studies on the effects
of auditory stimulation and event related potentials in REM microstates
confirm the heterogeneity of REM sleep [52]–[54]. This is underlined by
clinical studies on REM sleep behaviour disorder (RBD) patients, which
suggest a distinction in the level of activation of the sensory motor system
during tonic and phasic REM [55]–[57].

2.1.2 Neurobiological control of sleep

2.1.2.1 The wake-sleep switch

The wake-sleep switch consists of several neuronal populations in the areas of
the upper brainstem, hypothalamic, and forebrain responsible for promoting
wakefulness and sleep, as shown in Figure 2.3 [41].

Two major pathways promoting wakefulness are located in the upper
brainstem. Figure 2.3A shows cholinergic neurons (cyan) pedunculopontine
tegmental nucleus (PPT) projecting to the thalamus, lateral hypothalamic
area (LHA), and basal forebrain (BF) from the laterodorsal tegmental nucleus
(LDT), thereby driving extensive cortical activation. The monoaminergic
and glutaminergic neurons (green) in the locus coeruleus (LC), parabrachial
nucleus (PB), precoeruleus nucleus (PC), dorsal raphe nucleus (DRN), ventral
periaqueductal gray (vPAG), and tuberomammillary nucleus (TMN) project
to the forebrain, cerebral cortex, thalamic and hypothalamic areas. A special
population of neurons in the LHA promotes wakefulness by directly exciting
both wakefulness pathways as well as the BF and cerebral cortex by secreting
hypocretin (hcrt) [59]. Two research teams

simultaneously
discovered these
neuropeptides and
gave them the names
hypocretin and
orexin, respectively.

The main pathway for sleep promotion, shown in purple in Figure 2.3B,
originates in neurons in the ventrolateral preoptic nucleus (VLPO) and
median preoptic nucleus (MnPO) areas of the hypothalamus and inhibits
the pathways promoting wakefulness. In turn, these pathways can likewise
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Figure 2.2: Locations of the brain centers involved in sleep-wake control. The predominant role of each center
is color-coded: red for arousal, blue for sleep, green for REM sleep, purple for circadian regulation, and
multicolored for mixed activity. BF: basal forebrain; DMH: dorsomedial hypothalamic nucleus; DRN: dorsal
raphe nucleus; LC: locus coeruleus; LDT: laterodorsal tegmental nucleus; LHA: lateral hypothalamic
area; LPT: lateral pontine tegmentum; PB: parabrachial nucleus; PC: precoeruleus nucleus; POA: preoptic
area; PPT: pedunculopontine tegmental nucleus; SCN: suprachiasmatic nucleus; SLD: sublaterodorsal
nucleus TMN: tuberomammillary nucleus; vM: ventral medulla; vlPAG: ventrolateral periaqueductal gray;
vPAG: ventral periaqueductal gray. Reprinted from [58] with permission from Elsevier.

inhibit the sleep-promoting activity in the VLPO and MnPO areas, as shown
in Figure 2.3C.

This mutual inhibitory activity is the basis for the wake-sleep switch acting
like an electronic switch. When one group of neurons gains a slight advantage
over the other, a rapid decrease in neuronal firing activity on the losing side
ensures a fast and complete transition between the two states [41], [58].

2.1.2.2 The REM-NREM switch

Similar to the wake-sleep switch, the REM-NREM switch consists of several
groups of neurons in the brainstem and hypothalamic areas, as shown
in Figure 2.4 [41].

Two populations of importance, shown in Figure 2.4A, include a group
of neurons in the sublaterodorsal nucleus (SLD) and PC (red) that fires
most actively during REM, and a group in the ventrolateral periaqueductal
gray (vlPAG) and lateral pontine tegmentum (LPT) (gold) that promotes
NREM sleep by inhibiting REM-on neurons.

These two populations are acted upon by several other neurotransmitter
systems as shown in Figure 2.4B. One of these consists of noradrenergic
neurons in the LC and serotonergic neurons in the DRN (green), which
inhibits REM sleep by exciting REM-off neurons and inhibiting REM-on
neurons. Conversely, a system of cholinergic neurons (aqua) in the LDT
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Figure 2.3: Structures involved in the wake-sleep switch. A The two main wake-promoting pathways
originating in the upper brainstem. Cholinergic neurons (aqua) in the LDT and PPT project to the thalamus
and BF, while predominantly monoaminergic neurons (green) in the LC, PB, PC, dr, vPAG, and TMN project
directly to the hypothalamus, BF and cerebral cortex. Hypocretin-producing neurons in the hypothalamus
reinforce activation in both pathways, while directly innervating the BF. B The main sleep-promoting
pathways originate in the VLPO and MnPO areas (purple) of the hypothalamus and inhibit the activity of the
wake-promoting networks in the upper brainstem. C The wake-promoting networks in the brainstem in turn
can also inhibit the activity of the sleep-promoting networks in the VLPO/MnPO area. BF: basal forebrain;
dr: dorsal raphe; LC: locus coeruleus; LDT: laterodorsal tegmental nucleus; MnPO: median preoptic
nucleus; PB: parabrachial nucleus; PC: precoeruleus nucleus; PPT: pedunculopontine tegmental nucleus;
TMN: tuberomammillary nucleus; VLPO: ventrolateral preoptic nucleus; vPAG: ventral periaqueductal gray.
Reprinted from [41] with permission from Elsevier.
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Figure 2.4: Structures involved in the REM-NREM switch. A Two mutually inhibitory GABAergic neuron
groups in the brainstem form a switch for controlling transitions between REM and NREM sleep. Pro-
jections from the SLD and PC (red) promote REM, while REM-off projections from the vlPAG and LPT
(gold) are most active during NREM and thus inhibit REM-producing activity in the SLD/PC nuclei. B The
REM-NREM switch is also modulated by other neurotransmitter systems. The noradrenergic (green) neurons
in the LC and serotonergic DR inhibit REM sleep by exciting the REM-off neurons and inhibiting REM-on
neurons. Cholinergic (aqua) neurons in the LDT and PPT nuclei promote REM sleep by the opposing
actions on the same neuron groups. VLPO neurons promote REM sleep by inhibiting the REM-off neurons,
while orexin-producing neurons produce the opposite effect. C During REM sleep, glutaminergic neurons
in the SLD promote REM atonia in the skeletal muscles by way of inhibitory interneurons in the spinal
cord and medulla, which act on the α motor neurons. Furthermore, glutamergic neurons in the PB/PC
promote desynchronized EEG via BF neurons. BF: basal forebrain; DR: dorsal raphe; LC: locus coeruleus;
LDT: laterodorsal tegmental nucleus; LPT: lateral pontine tegmentum; PC: precoeruleus nucleus; PPT: pe-
dunculopontine tegmental nucleus; SLD: sublaterodorsal nucleus; vlPAG: ventrolateral periaqueductal gray;
VLPO: ventrolateral preoptic nucleus. Reprinted from [41] with permission from Elsevier.
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Figure 2.5: Schematic of the flip-flop model. Clinical manifestations of wrongful
firing of neurons are shown in parentheses. DR: dorsal raphe; MnPO: median preop-
tic nucleus; LC: locus coeruleus; LDT: laterodorsal tegmental nucleus; LPT: lateral
pontine tegmentum; MCH: melanin-concentrating hormone; orx: orexin (hypocre-
tin); PB: parabrachial nucleus; PC: precoeruleus nucleus; PPT: pedunculopontine
tegmental nucleus; SLD: sublaterodorsal nucleus; TMN: tuberomammillary nucleus;
vlPAG: ventrolateral periaqueductal gray; VLPO: ventrolateral preoptic nucleus;
vPAG: ventral periaqueductal gray. Reprinted from [41] with permission from Else-
vier.

and PPT promotes REM sleep by the opposite mechanisms. Neurons in
the VLPO (purple) also promote REM sleep by inhibiting REM-off neurons,
while hcrt-(orexin-)producing neurons in the LHA inhibit REM sleep by
exciting REM-off neurons.

Lastly, the glutaminergic neurons in the SLD promote REM atonia by
exciting inhibitory interneurons in the medulla and spinal cord, as shown
in Figure 2.4C.

2.1.2.3 The flip-flop model of sleep

It can be appreciated from the previous sections, that sleep and wake states
are under the regulation of extremely complex mechanisms in the brainstem,
thalamus, hypothalamus, and forebrain. These mechanisms can be grouped
into the wake-sleep and REM-NREM promoting networks, which, in turn,
can be combined into the flip-flop model of sleep regulation [41], [60], [61].

A schematic shown in Figure 2.5 illustrates both the complex neuronal
interplay, as well as how two neurotransmitters play crucial roles in sleep
homeostasis. One is the neuropeptide hypocretin, which acts to inhibit REM
entry by exciting the wake-promoting pathways and the REM-off nuclei,
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while melanin-concentrating hormone (MCH) has the opposite effect of
hypocretin.

Also shown in Figure 2.5 are clinical manifestations (in parentheses) asso-
ciated with destabilized switching due to a lack of hypocretin.Lack of

hypocretin-producing
neurons is the

hallmark sign of NT1. 2.1.3 Micro-events durings sleep

2.1.3.1 Arousals

Arousals are defined as abrupt shifts in EEG frequencies towards alpha, theta,
and beta rhythms for at least 3 s with a preceding period of stable sleep of
at least 10 s. During REM sleep, where the background EEG shows similar
rhythms, arousal scoring requires a concurrent increase in chin EMG lasting
at least 1 s. [51]

2.1.3.2 Movements of the extremities

LMs should be scored in the leg EMG channels, when there is an increase in
amplitude of at least 8 µV above baseline level with a duration between 0.5 s
to 10 s. A periodic leg movement (PLM) series is then defined as a sequence
of 4 LMs, where the time between LM onsets is between 5 min to 90 min.

2.1.3.3 Respiratory disturbances

Apneas are generally scored when there is a complete (>90 % of pre-event
baseline) cessation of breathing activity either due to a physical obstruction
(obstructive apnea) or due to an underlying disruption in the central nervous
system control (central apnea) for at least 10 s. When the breathing is only
partially reduced (>30 % of pre-event baseline) and the duration of the
excursion is >10 s, the event is scored as a hypopnea if there is either a >4 %
oxygen desaturation or a >3 % oxygen desaturation coupled with an Ar.

2.2 recording and quantifying sleep

2.2.1 Polysomnography

The principal tool available to sleep physicians and technicians for anal-
ysis of sleep patterns is the polysomnography (PSG). This is often the first
study performed on patients referred to a sleep clinic, and consists of the
continuous and concurrent recording of several physiological variables as
electrophysiological signals. The primary signals of interest are brain activity
(EEG), eye movements (EOG), chin and leg muscle activity (EMG), heart
activity (electrocardiography (ECG)), respiratory effort (thoracoabdominal
inductance plethysmography belts, RIP), nasal pressure, oral airflow, and
blood oxygen saturation (pulse oximetry). Sleep experts manually analyze
the contents of these signals in order to score sleep stages and annotate sleep
events based on a standardized set of guidelines published by the AASM [43].
These guidelines also contain technical recommendations for recording sleep
studies, such as electrode placements, minimal sampling frequencies and
specific filter settings. Table 2.3 lists an overview of technical specifications
for commonly recorded signals as recommended by the AASM.

A common procedure for analysis of sleep studies involves multiple passes
through each PSG study. For example, a first pass could be to score every
consecutive segment of 30 s data as one of the five sleep stages. A second
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Figure 2.6: Example of a hypnogram from a PSG study of an 82 year old male subject.

Table 2.3: Technical specifications for recording commong signals in PSGs according
to AASM2020 standards [43].

Signal Recommended recording setup Min. fs Filter

EEG F4-M1, C4-M1, O2-M1 (required) 200 Hz 0.3–35 Hz

F3-M2, C3-M2, O1-M2 (backup)

EOG E1-M2, E2-M2 (required) 200 Hz 0.3–35 Hz

E1-M1, E2-M1 (backup)

EMG Chin2-ChinZ (required, chin EMG) 200 Hz 10–100 Hz

Chin1-ChinZ (backup, chin EMG)

Bipolar derivation (required, leg EMG)

ECG modified Lead II derivation (required) 200 Hz 0.3–70 Hz

AASM describes a specific requirement as well as a backup in case
of failure for each signal. Minimal fs lists the minimally acceptable
sampling frequency per signal, but the recommendations are higher in
order to better capture waveform morphology. Filter settings describe
recommended bandpass filter settings.

pass could be to score respiratory events, arousals and leg movements, etc.
The product of these passes is a sleep study report, which summarizes the
findings into a hypnogram and associated PSG variables, including total
sleep time (TST), sleep latency (SL), REM latency (RL), wake after sleep onset
(WASO), and percentage of time spent in the different sleep stages. Key
indices describing the amount of sleep events are also calculated for each
study, such as the arousal index (number of arousals per hour of sleep, ArI),
apnea-hypopnea index (number of apneas and hypopneas per hour of sleep,
AHI), and the periodic limb movements in sleep index (number of peridoc
limb movement series in sleep per hour of sleep, PLMSI).

2.3 challenges in scoring sleep studies

Significant human bias can enter into the analysis of sleep studies by virtue of
the process being performed manually. Several studies have shown significant
inter- and intra-rater variability primarily in the case of sleep stage scoring, Interrater variability

refers to the variation
in scoring that
happens between
experts on the same
study, while
intrarater variability
refers to the
variability in scoring
when a single expert
scores the same study
more than once.

but some studies have also investigated the reliability of scoring arousals
and respiratory events for sleep-related breathing disorders. This variability
can be caused by several factors:
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1. Imprecise scoring guidelines. Some have argued that extensive training
is required to minimize the subjective component in sleep stage scor-
ing, and that the optimal training requires participation in concensus
scoring rounds [62].

2. Presence of disease or other sleep disorders. Many neurodegenerative dis-
eases exhibit symptoms of disturbed sleep as the neurodegeneration
progresses to the centers in the brain stem responsible for control of
sleep and wakefulness [63]. Similarly, central hypersomnias can alsoCentral disorders of

hypersomnolence,
hypersomnias, are a

group of sleep
disorders

characterized by
excessive daytime

sleepiness not caused
by disturbed

nocturnal sleep or
irregular circadian

rhythms [1]

exhibit fragmented sleep. NT1, for instance, shows increased fragmen-
tation of sleep, because the hypocretin-producing cells in the latero-
posterior hypothalamus responsible for stabilizing the wake-sleep and
REM-NREM pathways are missing [64]. Since current scoring guide-
lines are based on clinical experience in healthy subjects exhibiting
normal sleep patterns, the scoring of sleep patterns becomes more
difficult in this context.

3. True errors. These can occur when annotations are correctly made, but
entered wrongly into a computer system or report. However, these
types of errors are difficult to measure in practice.

A separate, but equally critical issue in scoring sleep studies concerns
recording of the study itself by means of electrical equipment. Typically,
the PSG is performed as described in Section 2.2.1 with many electrodes
placed on the body to the discomfort of the wearer potentially disrupting
regular sleep patterns. For this reason, efforts are being made in industry
and research to develop non-intrusive, low-impact recording devices, such
as headbands, or in-ear EEG [65], [66].

Depending on the target variable under investigation, reliability and vari-
ability can be measured with different metrics. The following sections will
describe some of the studies that have investigated inter- and intra-scorer
reliability for various sleep analysis objectives.

2.3.1 Sleep stage scoring

Norman et al. found the average epoch by epoch agreement between five
experienced PSG technicians representing different clinics to be 73 % in a
dataset containing 62 PSGs [24]. Furthermore, they also found this agreement
to vary with phenotype, as the average agreement in a normal subset was
higher than for a subset consisting of patients with sleep disordered breathing
(76 % in the normal subset vs. 71 % in the SDB subset).

Later studies also found significant variability in expert agreements when
comparing different patient groups. Notably, Danker-Hopfe et al. investigated
interrater reliability between experienced technicians in eight different sleep
clinics in Europe in a sample of 196 recordings from 98 patients exhibiting
different disorders, such as depression, general anxiety disorder with and
without insomnia, Parkinson’s disease, sleep apnea and periodic leg move-
ments in sleep disorder [23]. They found that although the overall agreement
between experts as measured by Cohen’s κ was 0.6816, there was a statis-Cohen’s κ is a

measure of the
observed agreement
between two agents
taking into account

chance agreement.

tically significant difference between patient groups, where the median κ
ranged from 0.6138 in patients with Parkinson’s disease to 0.8176 in patients
with generalized anxiety disorder. Other studies have found no statistically
significant differences in the overall agreement between healthy controls,
patients with sleep apnea/hypopnea syndrome, and patients with narcolepsy,
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when comparing scorers from Berlin and Beijing [67]. They did, however, find
statistically significant differences in the stage-specific agreements between
patient groups.

Recent large scale studies on interscorer agreement found that the average
consensus-agreement is approximately 83 % with the overall stage-specific
agreement ranging from 63 % for N1 to 91 % for REM [26]. Although the
authors recognize that their results are heavily biased towards agreements in
the N2 stage as this accounts for almost 60 % of the total number of epochs,
this percentage is in agreement with clinical experience and reflects the
amount of N2 in a typical sleep study.

Although human subjective bias is also a factor, the vast majority of inter-
scorer differences originate from equivocal epochs that have equal probability
of being assigned to two stages. Younes, Raneri, and Hanly found that dis-
agreements were most common between W and N1, N2 and N3, and N1 and
N2 [28], and indeed several studies have found that scoring N1 and N3 sleep
is especially difficult [23], [26], [29], [67].

2.3.2 Arousals

The majority of studies on reliability of arousal scoring are based on criteria
from the American Sleep Disorders Association (ASDA) [68]. One study
comparing several different criteria for arousal scoring found an intraclass
correlation coefficient (ICC) of 0.84 using the ASDA criteria [69]. Experts the intraclass

correlation coefficient
is a descriptive
statistic for
characterizing
agreement between
data that can be
naturally organized
in groups.

scoring arousals shorter than 3 s with an ICC between 0.19 and 0.37 were
found less reliable, while the addition of increased EMG activity as a criteria
in addition to the ASDA criteria increased the ICC to 0.92. Another study,
however, did not improve the already-high ICC of 0.98 when supplementing
the ASDA criteria with increased EMG activity [70].

Another factor to be considered in the reliable scoring of arousals is the
placement of the arousal in the sleep continuum. Drinnan et al. investigated
the impact of sleep stage on arousal scoring and found the highest Cohen’s κ
value for arousals scored in slow wave sleep [21]. This sleep stage exhibits
delta and SWA EEG rhythms with high amplitude and low frequency, which
is easier to contrast with the shift to high frequency EEG content typically
associated with arousals.

Other types of cues visible in the PSG are the presence of autonomous
findings such as increased heart rate visible in the ECG, or increased respi-
ratory effort. The latter is evident in a study investigating arousal scoring
reliability in 17 obstructive sleep apnea (OSA) patients using ASDA criteria.
An event-by-event scoring agreement of 91 %, which dropped significantly
to 59 % when removing the respiratory signals was found [71].

While reliability of scoring arousals according to the updated AASM2007

criteria remains severely understudied, Magalang et al. reported an intraclass
correlation coefficient for the arousal index of 0.68 (95 % CI: [0.49 − 0.85]) in
15 PSGs scored by nine technicians from unique sleep clinics according to
AASM2007 criteria [25].

These reported results are based solely on the values of the arousal index
per study, and as such, two scorers can potentially score completely different
arousals for a specific PSG, while still having good agreement between them,
since their scored arousal index values are similar. Furthermore, scoring only
index values for a study do not reflect important underlying characteristics
of the arousal events. These characteristics could include event morphology
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and variability in each recorded modality, as well as variations in duration,
spectral content, amplitude, etc..

2.3.3 Sleep disordered breathing

Whitney et al. investigated inter- and intra-scorer reliability in three techni-
cians for 20 randomly selected PSG recordings from the Sleep Heart Health
Study (SHHS) cohort using various definitions of respiratory disturbance
indices (RDIs) with or without arousals, and oxygen desaturation levels
from 2 % to 5 % [22]. The authors found that the technicians were in high
agreement when scoring respiratory events with oxygen desaturation levels
present indicated by an ICC between 0.90 and 0.99. However, this reliabil-
ity dropped to moderate agreement when oxygen levels were not part of
the scoring (ICC of 0.77), and when neither oxygen levels or arousals were
included (ICC of 0.74).

The study by Magalang et al. also investigated the agreement in scoring
respiratory events. The authors reported an ICC for the apnea-hypopnea
index (AHI) of 0.95 (95 % CI: [0.91 − 0.98]) which indicates a very strong
agreement between centers.

Rosenberg and Van Hout studied the degree of agreement between more
than 3600 scorers when asked to identify whether a 30 s epoch contained
either an obstructive, mixed or central apnea; a hypopnea; or no event at
all [27]. They found that overall agreement was 93.3%, although this was
caused by a very high agreement of 97.4% on epochs with no event present.
For epochs with a majority vote of having a respiratory event present, overall
agreement was 88.4%. The study also showed that disagreements between
apneas and hypopneas, and between different types of apneas were common.

However, as with the arousal scoring, neither the RDI nor the AHI take
into account the exact location of respiratory events, which means that two
technicians in theory could be in perfect agreement when comparing these
values even though they did not score any of the same events.

2.4 chapter summary

This chapter has introduced some of the fundamental aspects in sleep science.
The concepts of macro- and micro-sleep were introduced. The former was

elaborated upon with descriptions of the five sleep stagescurrently recog-
nized by the AASM, and how they together form a description of the sleep
architecture called a hypnogram.

The chapter described the neurobiological mechanisms and complex inter-
play between cell nuclei in the brainstem responsible for sleep regulation. For
example, the wake-sleep and REM-NREM switches consist of several neuron
groups in the basal forebrain, hypothalamic areas, and brainstem. Their
mutual interactions responsible for the fast and complete transitions between
wake and sleep, and REM-on and REM-off periods, can be conceptualized in
the flip-flop model, which summarizes the roles of the different cell groups
and neurotransmitter systems.

Although, this chapter did not elaborate on various malfunctions of the
sleep regulatory systems in the brainstem, later chapters will touch on specific
sleep disorders where applicable, such as narcolepsy in Chapter 5.

The final sections in this chapter touched upon some of the issues facing
clinical sleep medicine. Specifically, the reproducibility of scoring sleep stud-
ies, the intra- and inter-scorer reliability of scoring sleep stages, arousals, and
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sleep disordered breathing events were presented and discussed. The diffi-
culty in providing accurate and reproducible results with clinical outcomes
is specifically a motivating factor for this thesis; namely the development of
robust systems to automatically process and analyze clinical sleep studies.
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What is my purpose?

You pass butter.
Oh my God.

— Butter Robot to Rick Sanchez
Rick and Morty, season 1, episode 9

This chapter presents methods and main findings in two published re-
search papers and one manuscript currently under review regarding auto-
matic methods for sleep stage classification.

First, the problem of automated sleep stage classification is presented and
associated research questions are formulated. Then, an initial version of
the multi-modal automatic sleep stage classification (MASSC) model based
on end-to-end deep learning is presented along with the results published
in [72], which is followed by the findings from applying an updated version
of the model in a multi-cohort experimental setting. Afterwards, the Stanford
Technology Analytics and Genomics in Sleep (STAGES) model for sleep stage
classification originally published in [73] is presented along with results
compared to multiple scorers. The chapter will conclude with a summary of
the main findings in Section 3.5

Parts of this chapter have been modified from their original publications.

• Section 3.2 has been modified from
A. N. Olesen, P. Jennum, P. Peppard, E. Mignot, and H. B. D. Sorensen,
“Deep residual networks for automatic sleep stage classification of raw
polysomnographic waveforms”, 2018 40th Annu. Int. Conf. IEEE Eng.
Med. Biol. Soc., Honolulu, HI, USA: IEEE, 2018. doi: 10.1109/EMBC.
2018.85130801.

• Section 3.3 is based on
A. N. Olesen, P. Jennum, E. Mignot, and H. B. D. Sorensen, Automatic
sleep stage classification with deep residual networks in a mixed-cohort setting,
2020, (under review).

1 ©2018 IEEE
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• Section 3.4 has been modified from
J. B. Stephansen*, A. N. Olesen*, M. Olsen, A. Ambati, E. B. Leary, H. E.
Moore, O. Carrillo, L. Lin, F. Han, H. Yan, Y. L. Sun, Y. Dauvilliers, S.
Scholz, L. Barateau, B. Hogl, A. Stefani, S. C. Hong, T. W. Kim, F. Pizza,
G. Plazzi, S. Vandi, E. Antelmi, D. Perrin, S. T. Kuna, P. K. Schweitzer,
C. Kushida, P. E. Peppard, H. B. D. Sorensen, P. Jennum, and E. Mignot,
“Neural network analysis of sleep stages enables efficient diagnosis of
narcolepsy”, Nat. Commun., vol. 9, p. 5229, 2018. doi: 10.1038/s41467-
018-07229-32.

3.1 research background

Sleep staging is important to the analysis of human sleep with about 845 000

sleep studies performed in 2014 in the US alone [75]. A standard clinical sleep
study consists of a full-night PSG comprising EEG, EOG, EMG, ECG, respira-
tory inductance plethysmography, oronasal thermal flow, nasal pressure, and
blood oxygen saturation recordings. These studies are evaluated by experts
for the presence of events of clinical relevance, as determined by standards
created by the AASM, such as the number of blood oxygen desaturations,
micro-arousals, leg movements, periods of cessated breathing, to name a
few. The overall sleep architecture is captured in a visual representation
called a hypnogram, which is achieved by labeling every 30 s of PSG data
into one of five stages of sleep: W, REM sleep, N1, N2, and N3, and plotting
as a function of time. The latter three stages are distinguished by distinct
EEG amplitude and frequency distributions, the presence of specific EEG
micro-events and arousability differences reflecting sleep depth.

Sleep stage scoring is summarized in key metrics, such as the percentage
of TST spent in any of the five stages (%W, or wake after sleep onset (WASO);
%REM; %N1; %N2; %N3), and visually in the form of a hypnogram, which
shows temporal progression of sleep stages across the night as mentioned.
Current clinical practice (gold standard) of sleep study analysis is manual
scoring and annotation of sleep stages and sleep events based on guidelines
from the AASM [76]. These guidelines, based on observations made inThis is described in

detail in Section 2.3.1 healthy young males almost 70 years ago, are problematic for several reasons:
a) technicians will never score the same data the exact same way as another
technician, or even the same way twice [24], [26], [28], [29], [77]; b) normal
sleep from healthy young males may not reflect sleep patterns of patients
referred to sleep clinics; and c) the 30 s epoch rule was arbitrarily based on
physical limitations of recording equipment, when PSGs were recorded on
paper, and may not accurately reflect the true underlying neurobiological
mechanisms.

Automatic sleep stage classification has not yet seen wide-spread adoption
in clinical practice despite ongoing research demonstrating feasibility and
industrial interests [78]. A major issue has been a lack of available data for
designing and training models. The publicly available PhysioNet Sleep-EDF
and the expanded version databases [79], [80] has been used extensively for
training both shallow and deep learning-based machine learning models [81]–
[83], but given the small sample size and homogeneity (most papers use the
same healthy 20 subjects), it is questionable how well models derived from
this data generalize to unseen data, even if high classification performance
is often reported [78]. Other databases which have been extensively used

2 Creative Commons Attributes 4.0 International License: http://creativecommons.org/

licenses/by/4.0/
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include the St. Vincent’s University Hospital and University College Dublin
Sleep Apnea Database (n = 25) [32], [79], and the Montreal Archive of Sleep
Studies (MASS, n = 200) [83]–[88].

The argument for using deep learning-based models to classify high-
dimensional electrophysiological data, e.g. PSGs, into discrete outcomes such
as sleep stages is compelling, because of their ability to capture variability in
the underlying highly complex data representations, that might be missed
by machine learning methods relying on manual feature engineering. In the
image, speech, and natural language processing domains, the success of deep
learning models using un-transformed data has been unsurpassed in the
last decade, thanks largely due to the availability of ever-increasing amounts
of compute resources and more significantly very large, robust and diverse
datasets [33].

Recently deep learning models for automatic sleep stage classification have
been developed and validated using two or more databases or cohorts [73],
[89], [90], or a single large volume cohort [72], [89], [91]. The assumption
has been that by incorporating multiple sources of variance in the dataset
used for training (e. g. from multiple technicians, sites, recording setups,
equipment, etc.), final models will be better at generalizing to new, unseen
data. However, no study to date has investigated multiple, large-scale cohorts
for automatic sleep stage classification, or how different cohorts generalize
to one another.

3.1.1 Research motivation and objectives

Motivated by these issues, we were interested in the following research
questions specifically related to research hypothesis RH 1: RH 1: Advanced

biomedical signal
processing and
machine learning
algorithms can be
used for efficient,
high-performing
analysis of sleep
studies with regards
to sleep stages.

RQ 1.1 can sleep stages be effectively and reliably classified using novel ma-
chine learning algorithms,

RQ 1.2 in cases of multiple available data sources, is it better to have more
volume or more diverse data,

RQ 1.3 how can we guarantee that such a system is stable with respect to the
impact of sleep disorders.

Derived from the research hypothesis and associated questions, the follow-
ing research objectives were formulated:

(i) a single model should classify sleep stages and assign probabilities to
each sleep stage to allow for stage mixing;

(ii) the model should be tested using as diverse data as possible.

The following sections describe the steps taken to complete the research
objectives and answer the research questions.
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3.2 paper i : deep residual networks for automatic sleep stage

classification of raw polysomnographic waveforms

abstract We have developed an automatic sleep stage classifi-
cation algorithm based on deep residual neural networks and raw
polysomnogram signals. Briefly, the raw data is passed through 50 con-
volutional layers before subsequent classification into one of five sleep
stages. Three model configurations were trained on 1850 polysomno-
gram recordings and subsequently tested on 230 independent record-
ings. Our best performing model yielded an accuracy of 84.1% and a
Cohen’s kappa of 0.746, improving on previous reported results by
other groups also using only raw polysomnogram data. Most errors
were made on non-REM stage 1 and 3 decisions, errors likely resulting
from the definition of these stages. Further testing on independent
cohorts is needed to verify performance for clinical use.

3.2.1 Methods

3.2.1.1 Data

A database containing 2310 recordings extracted from the Wisconsin Sleep
Cohort (WSC) was used in this study. Specific acquisition details concerning
the PSGs are described in [92], [93]. The entire set of PSG studies was ran-
domly split into training (train), validation (eval), and testing (test) subgroups
in an 8:1:1 ratio. Detailed demographic information as well as relevant PSG
variables for all three subgroups are provided in Table 3.1 including AHI
and time spent in each sleep stage based on manual scoring.

3.2.1.2 Data processing pipeline

Central and occipital EEG from the right hemisphere, left and right EOG, and
chin EMG channels were extracted from each PSG study. To accommodate
different equipment setups used for recording studies, each channel was
upsampled to 200 Hz. Following resampling, signals were filtered using
zero-phase Butterworth filters with frequency ranges recommended by the
AASM2016 [94]. Since dynamic ranges vary considerably across channels,
each signal was soft-normalized using the 5th and 95th quantiles, such that

xnorm = 2

x − Q0.05(x)
Q0.95(x) − Q0.05(x)

− 1, (3.1)

where xnorm denotes the normalized version of the signal x, and Q0.05(x)
and Q0.95(x) denotes the 5th and 95th percentile, respectively. Doubling and
subtracting by one rescales Q0.05(x) and Q0.95(x) to −1 and 1, respectively.

Finally, each signal was segmented into 30 s epochs corresponding to
AASM2016 criteria [94], resulting in a tensor X with elementsWe introduce a

singleton dimension,
as the

tf.layers.conv1d

implementation in
TensorFlow reshapes
the input argument

to match
tf.layers.conv2d.

(xn,c,·,t) ∈ RN×C×1×T , (3.2)

with N = 16, C = 5, and T = 6000 being batch size, number of signals, and
number of timesteps for one epoch, respectively.
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Table 3.1: WSC demographics for each subgroup.

Train Eval Test p-value

n (male) 1850 (1010) 230 (112) 230 (120) 0.210

Age, years 59.2± 8.4 59.9± 8.5 60.4± 8.2 0.092

BMI, kg m−2
31.7± 7.2 31.0± 6.9 32.2± 7.7 0.203

AHI, h−1
12.6± 15.6 11.5± 14.9 12.4± 16.2 0.600

TST, h 7.4± 0.8 7.4± 0.7 7.4± 0.8 0.947

W, % 18.5± 11.3 17.2± 11.1 19.6± 11.8 0.071

N1, % 8.2± 4.5 8.8± 5.6 8.9± 5.1 0.038

N2, % 54.2± 10.3 54.0± 10.9 52.4± 11.0 0.048

N3, % 5.8± 6.4 6.4± 7.0 6.0± 7.0 0.433

REM, % 13.3± 5.9 13.7± 5.8 13.2± 5.7 0.635

Values are shown as mean ± standard deviation across subjects.
Significant p-values highlighting differences between subsets are
highlighted in bold as tested with χ2 test (population proportions)
and ANOVA (rest). WSC: Wisconsin Sleep Cohort; BMI: body-
mass index; AHI: apnea-hypopnea index; TST: total sleep time;
W: wakefulness; N1: non-rapid eye movement stage 1; N2: non-
rapid eye movement stage 2; N3: non-rapid eye movement stage
3; REM: rapid eye movement.

3.2.1.3 Deep residual network model

We applied a deep learning model inspired by the residual network models
proposed in [95], [96]. These types of models employ residual skip connec-
tions between layers in order to maintain a proper gradient backpropagation This is also known as

the vanishing
gradient problem and
is especially
problematic in very
deep networks and
RNNs.

through the network. This feature allows for extremely deep network struc-
tures, and a specific variant of this model with 152 layers came in 1st place
in the ILSVRC ’15 image classification competition [95].

network architecture The residual network model is illustrated
in Figure 3.1. Briefly, the bulk network comprised 50 convolutional (conv)
and dense layers arranged in four block layers of four bottlenecked residual
blocks each.

A single bottleneck residual block contains three triplets of a batch nor-
malization layer, a rectified linear unit (ReLU) activation layer, and a conv
layer. This pre-activation configuration has shown benefits with regards to
trainability and generalization compared to vanilla residual blocks [96]. Pro-
jection shortcuts were used between the first ReLU and conv layers to the
output of the last conv layer. Kernel sizes were set to 1× 1 for the first and
third conv layers, and 1× 3 for the second conv layer. The number of output
filters for each residual block was l× f with l being the block layer index and
f = 16, resulting in a total of 256 filters after the final conv layer.

Prior to the bottleneck blocks, the input tensor X was passed through an
initial conv layer consisting of 64 1× 16 filters, and then through a maximum
pooling (max pool) layer with a 1 × 2 kernel and stride size, effectively
reducing the time-resolution by a factor of 2. This max pool operation was
implemented in the beginning of each block layer.

The output tensor from the block layers was subsequently passed to a final
batch normalization and ReLU activation layer, followed by a mean pooling
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Figure 3.1: MASSC network architecture. The input tensor containing EEG, EOG, and EMG has shape
(N,C, 1, T), where N, C = 5, T = 6000 correspond to the batch size, number of signals, and length of each
30 s epoch, respectively. The output tensor has shape N×K with K = 5 sleep stages, while L = 4, and f = 16

is the number of block layers and base number of filters.

layer to reduce the tensor to X = (xnk) ∈ RN×256. Finally, a fully connected
layer with K = 5 output units corresponding to the sleep stages resulted in
the following output tensor

P = (pnk) ∈ RN×K, pnk =
exp (znk)∑K
k exp (znk)

(3.3)

with pnk containing the softmax activations of the output units znk from
the fully connected layer for the nth subject and the kth sleep stage. The
predicted class for the nth subject can then be calculated as

ŷn = arg max
k

pnk. (3.4)

training setup The optimization problem was constructed using cross
entropy loss across K classes and N epochs as objective function, such that

L(pn|yn,θw) = −

K∑
k=1

ynk logpnk, (3.5)
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is the calculated cross entropy loss for epoch n given predicted class proba-
bilities pn, true class labels yn, and the set of current weights θw. Then, the
average cost across a batch of data is

C(P|Y,θw) =
1

N

N∑
n=1

L(pn|yn,θw). (3.6)

The cost function was optimized using the Adam optimization algorithm
with default hyperparameters [97]. Weights were initialized using variance
scaling [98], and we applied weight decay during training with a decay factor
of λ = 10

−4. The initial learning rate was set to α = 10
−3 and was multiplied

by 0.1 every 50 000 steps.
In order to investigate the effect of the imbalanced data on the network

performance, we trained the following three different configurations. First,
we defined a baseline configuration as described in the previous sections. The
second was a weighted configuration, where the cost function in Equation (3.6)
was replaced with an average weighted by the inverse frequency for the
correct class, such that

C(Ŷ|Y,θw) =
∑N
n ωn(yn)L(ŷn|yn,θw)∑N

n ωn(yn)
, (3.7)

where ωn(yn) is the inverse frequency for the correct class for the nth subject
in the current batch. Finally, a balanced configuration was tested, in which
we performed resampling of the training dataset in order to balance classes.
We oversampled the N1, N3, and REM classes with replacement, while
undersampling the N2 class in order to have approximately equal fractions
of each class in total.

3.2.1.4 Performance metrics

Individual precision, recall and F1 scores (Pr, Re, F1) were calculated for
each sleep stage and subsequently aggregated for each recording by stage
frequency weighting, such that

Prnk =
TP

TP + FP
, Prn =

∑
k βnkPrnk∑
k βnk

(3.8)

Renk =
TP

TP + FN
, Ren =

∑
k βnkRenk∑
k βnk

(3.9)

F1nk = 2 · Prnk ·Renk
Prnk + Renk

, F1n =

∑
k βnkF1nk∑
k βnk

, (3.10)

where βnk is the frequency of stage k for recording n, and TP, FP and FN
are true positives, false positive, and false negatives, respectively. Overall
accuracy (Acc) and Cohen’s kappa (κ) were also calculated for each recording.
All metrics were summarized by mean and standard deviations.

3.2.1.5 Statistical tests

Demographic and PSG variables were tested with analysis of variances
(ANOVAs) after establishing normality, while gender was tested with a χ2

test. Significance was set at α = 0.05.
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Figure 3.2: Top: hypnodensity graph of per-epoch probability distributions, middle: automatically scored
hypnogram by applying Equation (3.4). Bottom: manually scored hypnogram. Note the intrusions of N3

into N2 around epoch 150 and 370, and N1 into W around 420.

Table 3.2: Averaged performance metrics for configura-
tions.

Baseline Weighted Balanced

Train

Acc, % 86.1± 5.5 79.4± 7.1 80.4± 7.3

κ, % 77.1± 8.6 69.5± 9.7 70.7± 9.8

Pr, % 87.1± 4.9 88.7± 4.1 88.9± 4.0

Re, % 86.1± 5.5 79.4± 7.1 80.4± 7.3

F1, % 85.3± 6.1 81.8± 6.6 82.6± 6.9

Eval

Acc, % 85.0± 6.1 78.4± 7.3 79.7± 7.4

κ, % 75.4± 9.5 68.1± 10.5 69.7± 10.0

Pr, % 86.3± 5.3 87.8± 4.8 88.0± 4.9

Re, % 85.0± 6.1 78.4± 7.3 79.7± 7.4

F1, % 84.0± 7.2 80.7± 7.1 81.9± 7.1

Metrics are shown as mean ± standard deviations
across each PSG. Best performing model for each metric
is shown in bold.

3.2.2 Results and discussion

Performance metrics for the train and eval subgroups are shown in Table 3.2.
Not accounting for Pr, the baseline configuration compares favorably to the
weighted and balanced configurations on both subgroups with an average
accuracy of 85.0 % and a Cohen’s kappa of 75.4 on the eval subgroup. Since
the training data is imbalanced in favor of N2, it would be fair to assume
overfitting to the majority class. However, the lower spread in both precision
and recall does not support this.

Evaluating the baseline model on the test subgroup, only a slight drop
in accuracy and κ is observed, indicating that the model generalizes well,
see Table 3.3 and Table 3.4. The lowest sensitivity is obtained for N1 and N3,
which is in accordance with clinical experience reported in the literature [24],
[26], [28], [77]. N1 is a transitional stage between wakefulness, drowsiness
and sleep often containing beta and alpha activity in epochs of low interscorer
agreement, which explains the low predictive power in the confusion matrix.
The sleep continuum is also apparent in Figure 3.2 which shows the manually
and automatically scored hypnograms in the middle and bottom traces, and
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Table 3.3: Aggregated confusion matrix and stage-specific performance metrics in
test subgroup.

Automatic

W W N2 N3 REM Pr, % Re, % F1, %

Manual

W 37980 1322 852 2 327 84.3 93.8 88.8

W 3922 8784 3545 0 2193 51.9 47.6 49.7

N2 1756 5136 99564 1091 991 88.6 91.7 90.2

N3 18 1 7932 4063 14 78.8 33.8 47.3

REM 1361 1680 465 0 23931 87.2 87.2 87.2

W: wakefulness; N1: non-rapid eye movement stage 1; N2: non-rapid eye
movement stage 2; N3: non-rapid eye movement stage 3; REM: rapid eye
movement.

Table 3.4: Performance across recordings in test subgroup.

Accuracy κ Pr Re F1

84.1± 6.9 0.746± 0.099 85.7± 6.1 84.1± 6.9 83.1± 7.6

Values are shown as mean ± standard deviation across PSG.
Pr: precision; Re: recall.

the hypnodensity graph in the top trace for a representative subject in
the test subgroup. The hypnodensity is a probabilistic representation of
the hypnogram, which has found use in the detection of narcolepsy and
Parkinson’s disease [73], [99], [100].

Our baseline model attains favorable performance when comparing to
the results reported for the raw waveform CNN model in [91] with both
higher accuracy and Cohen’s kappa. However, it should be stressed that [91]
only used EEG channels from 9000 recordings, while our model uses both
EEG, EOG and EMG data, but only from 1850 recordings. Furthermore,
our baseline model performs only slightly worse compared to the best-
performing model in [91] without using any memory networks. This indicates
a performance gain by adding recurrent networks, such as long short-term
memory cells, to our network.

A possible limiting factor to our model is the filter kernels. The small
filter sizes in block layers might not be able to accurately capture the physi-
ological dynamics, but there are indications that many, smaller kernels are
preferable to fewer, larger kernels when comparing model complexity versus
computational costs [101].

Future work will include adding more data to balance classes, and adding
long short-term memory cells to the network in order to model temporal
dynamics between epochs.
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3.3 paper ii : automatic sleep stage classification with deep

residual networks in a mixed-cohort setting

study objectives : Sleep stage scoring is performed manually
by sleep experts and is prone to subjective interpretation of scoring
rules with low intra- and interscorer reliability. Many automatic sys-
tems rely on few small-scale databases for developing models, and
generalizability to new datasets is thus unknown. We investigated a
novel deep neural network to assess the generalizability of several
large-scale cohorts.
methods : A deep neural network model was developed using
15 684 polysomnography studies from five different cohorts. We ap-
plied four different scenarios: 1) impact of varying time-scales in the
model; 2) performance of a single cohort on other cohorts of smaller,
greater or equal size relative to the performance of other cohorts
on a single cohort; 3) varying the fraction of mixed-cohort training
data compared to using single-origin data; and 4) comparing models
trained on combinations of data from 2, 3, and 4 cohorts.
results : Overall classification accuracy improved with increasing
fractions of training data (0.25%: 0.782± 0.097, 95 % CI: [0.777 − 0.787];
100%: 0.869 ± 0.064, 95 % CI: [0.864 − 0.872]), and with increasing
number of data sources (2: 0.788 ± 0.102, 95 % CI: [0.787 − 0.790];
3: 0.808 ± 0.092, 95 % CI: [0.807 − 0.810]; 4: 0.821 ± 0.085, 95 % CI:
[0.819 − 0.823]). Different cohorts show varying levels of generaliza-
tion to other cohorts.
conclusions : Automatic sleep stage scoring systems based on
deep learning algorithms should consider as much data as possible
from as many sources available to ensure proper generalization. Pub-
lic datasets for benchmarking should be made available for future
research.

3.3.1 Cohort descriptions

To investigate and conclude on generalizability of any machine learning or
sleep stage classification model, multiple heterogenous datasets must be
used for training, validation and testing purposes. In this work, we collected
datasets from five different sources, each dataset containing a diverse col-
lection of subjects presenting with multiple disease phenotypes. Details of
the separate cohorts are shown in Table 3.5 along with reported p-values
highlighting cohort differences. Each cohort was split into a training, valida-
tion and testing subset in proportions of 87.5 %, 2.5 %, and 10 %, respectively,
using random sampling without replacement among unique subjects, so that
no subject is shared between subsets. With these percentages, we maximize
the number of PSGs available for training, while still reserving enough PSGs
for validation and testing. Collecting all the separate subsets across cohorts
forms a training, validation, and testing partition, containing the respective
subsets from all five cohorts.
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3.3.1.1 Institute of Systems and Robotics, University of Coimbra Sleep Cohort
(ISRUC)

This cohort contains 126 recordings from 118 unique subjects recorded at the
Sleep Medicine Centre of the Hospital of Coimbra University, Portugal, in the
period 2009–2013 [102]. The cohort comprises three subgroups: subgroup I
contains 100 PSGs of subjects with diagnosed sleep disorders, generally sleep
apnea; subgroup II contains 16 recordings of eight subjects most of which
are also diagnosed with sleep apnea; and subgroup III contains recordings
from 10 subjects with no diagnosed sleep disorders. All PSGs were recorded
with the same recording hardware and software and each was scored by
two technicians for sleep stages and sleep events according to the AASM
guidelines. ISRUC is a freely accessible resource and all data and PSG files
can be located at https://sleeptight.isr.uc.pt/ISRUC_Sleep/.

3.3.1.2 Osteoporotic Fractures in Men Sleep Study (MrOS)

The MrOS Sleep Study is part of the larger Osteoporotic Fractures in Men
Study, which aims to understand the relationships between sleep disorders,
fractures, and vascular diseases in community-dwelling men [103]–[105]. It
consists of 2907 in-home PSG recordings with an additional 1026 follow-up
PSG studies from subjects recruited from six different clinical centers in the
USA. Each recording was annotated by an expert technician according to
Rechtschaffen and Kales (R&K) criteria for sleep staging [106]. For compati-
bility with AASM guidelines, we combined stages labeled S3 and S4 into N3.
All data were accessed from the National Sleep Research Resource (NSRR)
repository [107], [108].

3.3.1.3 SHHS

The SHHS is a large, multi-center study on cardiovascular outcomes related
to sleep disorders with a specific focus on sleep-disordered breathing [109],
[110]. The cohort consists of 6441 subjects above 40 years old recruited
between 1995 and 1998 undergoing in-home PSG (SHHS Visit 1) with sub-
sequent follow-up PSG between 2001 and 2003 in 3295 subjects (SHHS Visit
2). PSG recordings were annotated for sleep stages by trained and certified
technicians according to R&K rules. From the original cohort we extracted
5793 PSGs and annotations from Visit 1, and 2651 from Visit 2. We aggregated
S3 and S4 stages into N3 similar to MrOS. All data were accessed from NSRR
repository.

3.3.1.4 WSC

WSC is a population-based study of sleep-disordered breathing in govern-
ment workers in Wisconsin, USA, that was initiated in 1988 [92], [93]. In
this work, we used 2412 PSGs from 1091 unique subjects in the WSC sam-
ple scored by expert technicians according to R&K rules with subsequent
merging of S3 and S4 into N3.

3.3.1.5 Stanford Sleep Cohort (SSC)

PSGs from this cohort originate from patients referred for sleep disorders
evaluation and recorded at the Stanford Sleep Clinic since 1999. The specific
sample used in this study represents a small subset (n = 772) of the whole
cohort, which was selected and described in detail in previous studies scored

https://sleeptight.isr.uc.pt/ISRUC_Sleep/
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according to R&K or AASM guidelines according to prevailing standard at
the time of evaluation [111], [112].
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Table 3.5: Cohort demographics

ISRUC MrOS SHHS SSC WSC p-value

N (female) 126 (50) 3932 (0) 8444 (4458) 767 (319) 2401 (1103) —

Age, years 49.8±15.9 [20.0–85.0] 77.6±5.6 [67.0–90.0] 64.5±11.2 [39.0–90.0] 45.7±14.5 [13.0–104.8] 59.7±8.4 [37.2–82.3] <0.0001

BMI, kg/m2 — 27.1±3.8 [16.0–47.0] 28.2±5.1 [18.0–50.0] 27.2±6.5 [9.8–78.7] 31.6±7.2 [17.5–70.6] <0.0001

TST, min 350.0±67.3 [87.5–479.0] 352.1±71.9 [39.0–626.0] 374.1±69.4 [68.0–605.0] 361.0±83.5 [0.0–661.0] 364.1±63.6 [19.5–575.0] <0.0001

SL, min 17.7±20.5 [0.0–144.5] 24.7±26.9 [1.0–402.0] 24.2±25.7 [0.0–349.0] 93.5±58.9 [0.5–404.0] 33.2±21.4 [0.5–333.0] <0.0001

REML, min 125.6±61.4 [7.0–323.0] 104.8±75.1 [0.0–590.0] 91.7±58.8 [0.0–471.0] 140.9±88.0 [0.0–464.0] 128.3±76.0 [3.5–514.0] <0.0001

WASO, min 76.2±49.8 [7.5–251.0] 117.5±67.6 [4.0–487.0] 80.2±54.7 [2.0–378.0] 79.5±55.0 [3.5–367.0] 73.6±45.9 [3.0–325.0] <0.0001

SE, % 78.8±14.1 [19.5–98.3] 75.5±12.4 [12.0–99.0] 80.5±11.0 [11.3–99.0] 77.4±14.8 [0.0–98.0] 77.1±11.2 [4.1–95.6] <0.0001

N1, % 13.3±5.8 [1.8–33.1] 8.3±6.4 [0.0–70.0] 5.5±4.0 [0.0–39.1] 11.7±10.2 [0.0–92.0] 10.8±6.9 [1.0–88.4] <0.0001

N2, % 31.9±10.3 [4.4–89.3] 62.5±10.0 [21.0–95.0] 56.9±11.5 [10.9–100.0] 62.8±24.9 [0.0–636.0] 66.0±9.4 [9.1–93.3] <0.0001

N3, % 19.6±8.0 [0.0–41.1] 36.0±31.8 [0.0–259.0] 17.5±11.6 [0.0–70.1] 9.0±9.3 [0.0–73.0] 7.2±7.8 [0.0–47.5] <0.0001

REM, % 13.3±6.3 [0.0–37.8] 19.3±6.8 [0.0–44.0] 20.1±6.3 [0.0–48.0] 16.3±7.2 [0.0–40.0] 16.0±6.2 [0.0–38.2] <0.0001

ArI, /h 20.2±10.0 [2.1–72.0] 23.7±12.1 [1.0–105.0] 18.9±10.5 [0.0–110.4] 125.0±124.2 [1.0–729.0] — <0.0001

AHI, /h 13.1±13.2 [0.0–82.2] 13.7±14.6 [0.0–89.0] 18.1±16.2 [0.0–161.8] 13.5±19.2 [0.0–98.6] 7.0±9.4 [0.0–72.6] <0.0001

PLMI, /h 8.0±27.4 [0.0–292.8] 35.7±37.5 [0.0–233.0] — 7.0±18.1 [0.0–139.9] — <0.0001

BMI: body-mass index; TST: total sleep time; SL: sleep latency; REML: REM sleep latency; WASO: wake after sleep onset; SE: sleep efficiency; N1: non-
rapid eye movement stage 1; N2: non-rapid eye movement stage 2; N3: non-rapid eye movement stage 3; REM: rapid eye movement; ArI: arousal
index; AHI: apnea-hypopnea index; PLMI: periodic leg movement index; ISRUC: Institute of Systems and Robotics, University of Coimbra Sleep Cohort;
MrOS: Osteoporotic Fractures in Men Sleep Study; SHHS: Sleep Heart Health Study; SSC: Stanford Sleep Cohort; WSC: Wisconsin Sleep Cohort;
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3.3.2 Methods

3.3.2.1 Data pipeline

Electrophysiological signals corresponding to the minimum acceptable mon-
tage for sleep staging available across all cohorts were extracted for each PSG.
These included a central EEG (either C3 or C4 referenced to the contra-lateral
mastoid), left and right EOG referenced to the contra-lateral mastoid, and
a single submentalis EMG. The choice between C3 and C4 was determined
based on the lowest total signal energy across the entire duration of the PSG
to avoid excessive signal popping. Other methods to determine appropriate
channels include algorithms based on shortest Mahalanobis distance to an
already determined reference distribution [73], but was not investigated in
this study. All signals were resampled to fs = 128 Hz using a polyphase filter-
ing procedure irrespective of original sampling frequency, and subsequently
filtered using a zero-phase approach with 4th order Butterworth IIR filters
(0.5 Hz to 35 Hz band-pass for EEG and EOG; 10 Hz high-pass for EMG)
in accordance with AASM2020 filter specifications [43]. Each signal was
normalized to zero mean and unit variance to accommodate differences in
recording equipment and baselines, and to compress the dynamic range into
something easily trainable for the neural network architecture. We denote by
C the number of input signals supplied to the neural network, where in this
case C = 4.

3.3.2.2 Machine learning problem

We designate by X ∈ RC×T the set of 30 s input data segments with S

input channels and segment length T , and the corresponding sleep stage
classifications by Y = {y ∈ RK+ |

∑
i yi = 1}, where K = 5 corresponds to the

five sleep stages. Thus, y is a probability simplex, which maps to the ordered
set S = {w, n1, n2, n3, r} by the argmax function such that arg maxy : Y→ S.
Furthermore, as we are potentially interested in classifying multiple sleep
stages at once, we extend the problem of classifying a single sleep stage
given x ∈ X to a sequence-to-sequence problem, in which we desire to learn a
differentiable function representation Φ, that maps a sequence of 30 s epochs
x ∈ RC×αT to their corresponding label probabilities y ∈ RK×α, where α is
a parameter that controls the sequence length. For example, if α = 8, the
sequence x contains 4 min of successive PSG data described by 8 epochs of
length 30 s. Furthermore, we denote by Ja,bK the set of integers from a to b,
i.e. Ja,bK = {n ∈N | a 6 n 6 b}, and by JNK the shorthand form of J1,NK.

3.3.2.3 Network architecture

As the representation of Φ, we adapted and extended a previously published
neural network architecture for automatic sleep stage classification, which
was based on a variant of the ResNet-50 architecture commonly used for
two-dimensional image classification tasks, but adapted and re-trained from
scratch for the specific use-case of one-dimensional, time-dependent signals
in the PSG [72]. This network has the advantage that it does not require any
manual feature engineering and extraction compared to previous state of
the art sleep stage classification models [73]. An overview of the proposed
network architecture is provided graphically in Figure 3.3 and Table 3.6.
Briefly, the architecture consists of four modules:
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Figure 3.3: Model overview. a) The input is a sequence of data x containing raw signal data from EEG,
left/right EOG, and EMG channels, which is supplied to the network modules in sequence. The feature
extraction module consists of R repeated blocks of residual units, see b) panel to the right. The output of
the model is a matrix y containing class probabilities for each sleep stage for each time step, which can be
visualized either directly as a hypnodensity, or by arg max y as a hypnogram. The A and M labels in the
hypnogram plots corresponds to automatic and manually scored hypnograms. b) Schematic of a single
residual block in the feature extraction module. Convolutional layers are described by the kernel size ×
number of filters using a stride value of 1. Shortcut uses 1× 1 convolutions with added zero-padding to
maintain temporal dimension. Conv, convolutional layer; BatchNorm, batch normalization; ReLU: rectified
linear unit; f0, base number of filters (f0 = 4).

1. an initial mixing module

ϕmix : R1×C×T → RC×1×T , (3.11)

2. a feature extraction module

ϕfeat : RC×1×T → Rf02
R+1×1×T/2

R
, (3.12)

3. a temporal processing module

ϕtemp : Rf02
R+1×1×T/2

R → R2nh×T/2
R

, and (3.13)

4. a classification module

ϕclf : R2nh×T/2
R → RK×T/2

R
. (3.14)

Thus, we obtain a differentiable representation of the function Φ as

Φ : RC×K → RK×T/2
R

Φ(x) = ϕclf(ϕtemp(ϕfeat(ϕmix(x)))).
(3.15)

The output of this function is the matrix y ∈ RK×T/2
R containing sleep stage

probabilities in the sequence of PSG data evaluated every second.
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Table 3.6: Overview of model architecture.

Module Type Filters Kernel Stride Activation Output size

x Input — — — — 1×C× T

ϕmix 2d conv. C (1,C) 1 BN+ReLU C× 1× T

ϕ
(r)
feat Res. block† f02

r−1 (1, 1) (1, 1) BN+ReLU f02
r−1 × 1× T

2
r−1

r ∈ JRK f02
r−1 (1, 3) (1, 2) BN+ReLU f02

r−1 × 1× T
2
r

4f02
r−1 (1, 1) (1, 1) BN+ReLU f02

r × 1× T
2
r

ϕtemp bGRU nh — — — 2nh × T
2
R

ϕclf 1d conv. K 2nh 1 Softmax K× T
2
R

Kernel sizes correspond to the first, second and third convolutional layer in each
residual block. Stride counts correspond to the residual block and the subsequent
maxpooling operation. Conv., convolution; Res. block, residual block; BN: batch nor-
malization, ReLU: rectified linear unit, bGRU: bidirectional gated recurrent unit, C,
number of input channels; T , length of segment in samples; f0, base number of filters
in residual blocks; R, number of residual blocks; nh, number of hidden units in bGRU;
K, number of sleep stage classes; †See Figure 3.3 for details.

mixing module The raw input data is input to this module, which
encourages non-linear channel mixing similar to what has been proposed in
recent literature [85], [113]–[115]. The module is realized using a single 2d

convolutional operation outputting C feature maps computed using single-
strided (C× 1) kernels followed by ReLU activations.

feature extraction (residual network) module This is com-
prised of a succession of R residual blocks, which are responsible for the
bulk feature extraction from the channel-mixed data, see Figure 3.3. Each
residual block is realized using bottlenecks of first a 1× 1 convolution to
reduce the number of feature maps, then a 1× 3 convolution, and lastly
a 1× 1 convolution to finally increase the number of feature maps. Each
convolution operation is followed by a batch normalization [116] and ReLU
activation except after the last convolutional layer, where shortcut projections
are added before the activation [96]. This type of block structure enables the
design and training of very deep networks without the risk of vanishing
gradients due to the projection shortcuts [95].

temporal processing module This module is realized by a bidirec-
tional gated recurrent unit (GRU) [117] in order to accommodate temporal
dependencies in the PSG. The GRU runs through the temporal dimension of
the output from ϕfeat of T/2R time steps each containing f02

R feature maps
and outputs nh new features in each direction for each time step. By running
both forward and backward, we can accommodate that technicians base their
scoring on looking backwards as well as ahead in time in each time segment
(typically 30 s).

classification module The final module in the architecture performs
actual classification based on the forward and backward features for each
time step outputted from ϕtemp. It is realized by a single convolutional
operation with a subsequent softmax activation to compute a probability
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distribution over the K sleep stage classes, such that the probability of sleep
stage i at time step n is given by

y
(n)
i =

expai∑
k expak

, (3.16)

where ai ∈ a is the activation of the last layer in the network, and k ∈ JKK.

3.3.2.4 Loss function specification

The network was trained end-to-end with respect to a loss function, that
takes the output probabilities from the network y = Φ(x) and calculates the
loss as

L(y) = −

30/τ∑
n=1

K∑
k=1

t
(n)
k log (ỹ

(n)
k ),

ỹ
(n)
k =

1

τ

τn∑
i=τ(j−1)+1

y
(i)
k ,

(3.17)

which is the cross-entropy between successive time-averaged classifications
parameterized by the number of successive one-second predictions τ, and
the ground truth labels t broadcasted to 30/τ labels per 30 s segment. This
way, we can acquire predictions every second, that can be combined in time
at intervals given by τ.

3.3.2.5 Experimental setups

We set up four different experiments in this study.

1. We wished to investigate the effect of increasing the complexity of the
recurrent module by varying the number of units nh in the module
ϕtemp in the space nh = 2

k, k ∈ J6, 11K. We hypothesize that there exists
a sweet-spot in the number of hidden units that balances computational
complexity with classification performance, i.e. classifying a sequence of
sleep stage labels given a corresponding sequence of outputs from ϕfeat.
The results of this experiment were furthermore used to determine
parameters for models in subsequent experiments.

2. Since we have several cohorts at our disposition of both clinical and
research origin, we can investigate the compatibility and inherent
generalizability of the different cohorts in two ways: 1) we set aside a
single cohort for testing, while we train the models on the remaining
four (leave-one-cohort-out, leave-one-cohort-out (LOCO) training); and
2) we train on a single cohort, while we set aside the remaining four
for testing (leave-one-cohort-in, leave-one-cohort-in (LOCI) training).

3. Generalizability can also be investigated in another way, which can
answer the question of how many data sources is necessary. We trained
models with all possible 2-, 3-, and 4-combinations of cohorts, i.e.
one run trained on ISRUC and MrOS training data, another run with
ISRUC and SHHS train data, a third with ISRUC and SSC, etc., with
all runs subjected to subsequent evaluation on the test partition.

4. Previous studies have already investigated the performance of auto-
matic sleep staging algorithms using shallow machine learning models.
At the time of writing however, none have investigated the effect of
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available training data for deep learning models at this magnitude (up
to tens of thousands). We therefore trained models on 0.25 %, 0.5 %,
1 %, 5 %, 10 %, 25 %, 50 %, 75 % and 100 % of the data available for train-
ing. Specifically, some of these fractions of the total number of PSGs
correspond roughly to the number of PSGs in the training partitions in
each cohort, allowing for direct comparisons between training a model
with mixed- and single-cohort training data.

Common for all experiments were the default parameter values C = 4,
fs = 128 Hz, T = τfs, K = 5, R = 7, and f0 = 4 for the number of input
channels, sampling frequency, the sequence length, the number of sleep
stages, the number of consecutive residual blocks, and the base filter kernel
size, respectively. All models were trained for 50 epochs (passes through the
training partition) and the model with the highest Cohen’s kappa value on the
validation partition was subsequently selected for testing. All models were
trained end-to-end with backpropagation using the Adam optimizer [97]
with a learning rate of 10

−4, β1 = 0.9, and β2 = 0.999 to minimize the loss
function specified by Equation (3.17). All network weights and bias terms
were initialized using the uniform Glorot initialization scheme [118].

3.3.2.6 Performance metrics and model evaluation

For each experiment we evaluated model performance using the overall ac-
curacy (Acc) and Cohen’s κ in order to take account the possibility of chance
agreement between the model and the gold standard. Given a confusion
matrix C with element cij being the number of epochs belonging to sleep
stage i but classified to be in sleep stage j, we define the overall accuracy for
a given model as

Acc =

∑
i=j cij∑
i,j cij

, (3.18)

i. e. the sum of the trace of C divided by the total count. The Cohen’s κ metric
is defined as

κ =
po − pe
1 − pe

, (3.19)

where po = Acc is the observed agreement (i. e. accuracy) and pe is the
expected chance agreement, which can be reformulated in terms of the
outer product between the row and column sums (class-specific recall and
precision) of C.

3.3.3 Results

In this section we report on the results of the three experiments described
in Section 3.3.2.5.

3.3.3.1 Temporal context impact on model performance

In Figure 3.4 we show how the model performance depends on the temporal
context and complexity of the temporal processing module, when evaluating
the model on the validation partition. Results are further detailed in Table 3.7.
Specifically, we observe a drastic change in Cohen’s κ just by introducing
a simple recurrent unit into the network as shown in Figure 3.4a, where
Cohen’s κ increases from 0.645± 0.126, 95 % CI: [0.633 − 0.657] at nh = 0
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Figure 3.4: Temporal context changes model performance. a) Cohen’s kappa as a function of the number of
hidden units in the recurrent block. Inset shows zoom of Cohen’s kappa for non-zero hidden unit values.
b) Cohen’s kappa as a function of sequence length. c) Prediction accuracy averaged across all 5-minute
sequences in the test partition with a small and large training partition. Full lines are predictions evaluated
every 1 s, while dashed lines show predictions averaged every 30 s. Values are shown for panels a), b) as
mean with 95% confidence intervals.

to 0.720 ± 0.120, 95 % CI: [0.709 − 0.731] at nh = 64. We did not observe
any major changes when increasing the number of hidden units beyond
nh = 64, although we did see a maximum Cohen’s κ of 0.734± 0.111, 95 % CI:
[0.723 − 0.744] at nh = 1024, which is shown in the inset in Figure 3.4a. We
observed a general increase in Cohen’s κ when classifying longer sequences
than 2 min (0.726± 0.114, 95 % CI: [0.715 − 0.737]), but did not see any major
differences when classifying over more than 3 min sequences (0.733± 0.123,
95 % CI: [0.721 − 0.7444]). Subsequent models were fixed with nh = 1024

corresponding to a sequence length of 5 min.

3.3.3.2 Model classifications converge to 30 s predictions given sufficient training
data

Furthermore, we analyzed the classification performance of the model given
a specific sequence length by looking at the average prediction accuracy
across all 5 min sequences in all subject PSGs in the test partition, similar to
what Brink-Kjaer et al. has shown previously [119]. In Figure 3.4c, we show
how the average classification accuracy in a 5 min sequence both depends on
the amount of data and the frequency of evaluating the model output, i. e.
every 1 s or across 30 s. The average classification accuracy was found to be
slightly lower in the beginning of each 5 min sequence, both when training
a model with less (500 training subjects) and more (75 % of total training
subjects). Interestingly, when training with less data, we also observed a
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Table 3.7: Temporal context impact on model performance in validation partition (n = 426).

Overall accuracy Cohen’s kappa

Mean SD Median 95% CI Mean SD Median 95% CI

Hidden units

0 0.779 0.083 0.794 [0.771-0.787] 0.645 0.126 0.660 [0.633-0.657]

64 0.818 0.079 0.837 [0.810-0.825] 0.720 0.120 0.745 [0.709-0.731]

128 0.821 0.080 0.841 [0.813-0.829] 0.724 0.121 0.745 [0.713-0.736]

256 0.820 0.082 0.843 [0.812-0.828] 0.725 0.124 0.751 [0.713-0.736]

512 0.822 0.079 0.841 [0.815-0.830] 0.727 0.119 0.752 [0.716-0.739]

1024 0.828 0.072 0.845 [0.821-0.835] 0.734 0.111 0.758 [0.723-0.744]

2048 0.823 0.080 0.843 [0.816-0.831] 0.729 0.122 0.757 [0.717-0.740]

Sequence length

2 min 0.821 0.075 0.840 [0.814-0.828] 0.726 0.114 0.754 [0.715-0.737]

3 min 0.826 0.080 0.845 [0.818-0.833] 0.733 0.123 0.762 [0.721-0.744]

4 min 0.828 0.079 0.849 [0.820-0.835] 0.734 0.122 0.762 [0.722-0.745]

5 min 0.828 0.072 0.845 [0.821-0.835] 0.734 0.111 0.758 [0.723-0.744]

10 min 0.829 0.075 0.848 [0.822-0.836] 0.734 0.113 0.759 [0.723-0.745]

Window length

1 s 0.824 0.074 0.843 [0.817-0.831] 0.728 0.113 0.752 [0.717-0.738]

3 s 0.824 0.074 0.845 [0.817-0.832] 0.728 0.113 0.752 [0.717-0.739]

5 s 0.825 0.074 0.843 [0.818-0.832] 0.728 0.113 0.752 [0.717-0.739]

10 s 0.825 0.074 0.844 [0.818-0.832] 0.729 0.113 0.753 [0.718-0.739]

15 s 0.826 0.074 0.845 [0.818-0.833] 0.729 0.113 0.755 [0.719-0.740]

30 s 0.829 0.075 0.848 [0.822-0.836] 0.734 0.113 0.759 [0.723-0.745]

The hidden units variable corresponds to varying the complexity in the recurrent module by increasing
the number of hidden units. Sequence length indicate the length of the sequence of 30 epochs, while
window length correspond to varying the evaluation frequency. Means, standard deviations (SD) and
medians are based on performance for each PSG.

lower accuracy in the beginning and end of each 30 s segment relative to the
accuracy in the middle section, which was not the case when training with
more data.

3.3.3.3 Choice of cohort impacts classification performance on test set

In Figure 3.5 we show how training on different cohorts yield differing results
in subsequent testing performance, here expressed in heatmaps as both
overall accuracy (Figure 3.5a), and Cohen’s κ (Figure 3.5b) averaged across
all N = 1584 subject PSGs in the test partition. The first two columns show
the performance on the cohort on the x-axis, when training on the specific
cohort on the y-axis. Since the training subset in ISRUC is small compared
to the other cohorts, we trained the models in the left-most column with
weight decay of 10

−4 to compensate for the risk of overfitting, however, by
comparing the left and middle columns, we did not observe any specific gain
in classification performance by doing so. The right-most column shows the
test performance for each cohort, when excluding that cohort from training.
We observe a significant spread in classification accuracy across the different
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Figure 3.5: Individual cohorts influence classification performance on test partition (N = 1, 584). As an
example, training on MrOS in a LOCI configuration, the performance on the test subset of WSC is 0.815. The
diagonals in all three configurations shows the performance for the same subjects in the test subsets in the
respective cohorts making possible direct comparisons between LOCI and LOCO. For aggregated metrics
and more summary statistics, please see Table 4. LOCI: leave-one-cohort-in; LOCI-wd: LOCI with weight
decay; LOCO: leave-one-cohort-out; ISRUC: Institute of Systems and Robotics, University of Coimbra Sleep
Cohort; MrOS: Osteoporotic Fractures in Men Sleep Study; SHHS: Sleep Heart Health Study; SSC: Stanford
Sleep Cohort; WSC: Wisconsin Sleep Cohort.

cohorts with prediction on ISRUC being poorest, while prediction on MrOS
data being best. Further details can be found in Table 3.8.

3.3.3.4 More data is good, diverse data is better

We observed a general increase in classification performance both in terms of
overall accuracy and Cohen’s κ, when including more data in the model train-
ing phase in both the mixed- and single-cohort setting (Figure 3.6a, Table 3.9).
Classification performance was consistently lower in the single-cohort setting
compared to the corresponding mixed-cohort setting. Interestingly, we found
that training a model with just 0.25 % of mixed-cohort training data still
achieved an acceptable accuracy comparable to training a model with only
SHHS data, while using all available training data increased that performance
by almost 10 percentage points. Furthermore, we observed that the model
trained with 100 % of the training partition reached a state-of-the-art level of
performance with an overall accuracy of 0.869± 0.064, 95 % CI: [0.865 − 0.872]

and Cohen’s κ of 0.799± 0.098, 95 % CI: [0.794 − 0.804] (Table 3.9). The model
furthermore performs well with respect to classifying individual sleep stages
as shown in the confusion matrix in Figure 3.6b. However, the model still
has difficulties classifying and distinguishing between certain sleep stages,
especially between N2, N1, and N3; and W, N2, and N1.

3.3.3.5 Increasing the number of data sources improves classification performance

On average, we saw an increase in overall accuracy, when increasing the
number of cohorts from 2 to 4 using 500 PSGs in each configuration, see Fig-
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Figure 3.6: Training on mixed data increased predictive performance compared to individual cohorts of
similar size. a) There is a gain in predictive performance by mixing data from various sources consistent
across the size of the training dataset. b) Confusion matrix for a model trained on 100% of the available
training partition data. The model shows excellent performance overall, with most misclassification happen-
ing between W and N1, and N1, N2, and N3. This is somewhat consistent with clinical experience, since N1

is a transition stage between wake and the deeper stages of sleep with much frequency content overlap with
both W and N2.

ure 3.7 and Table 3.10. Specifically, we found that the average overall accuracy
increased from 0.788± 0.102, 95 % CI: [0.787 − 0.790] in the 2-cohort config-
uration to 0.808± 0.092, 95 % CI: [0.807 − 0.810] and 0.821± 0.085, 95 % CI:
[0.819 − 0.823] in the 3- and 4-cohort configurations, respectively.

3.3.4 Discussion

In this work, we present an end-to-end deep learning-based model for fully
automatic micro- and macro-sleep stage classification. Using all of the avail-
able data sources for training our model, we reached an overall accuracy
on test partition of 0.869± 0.064, 95 % CI: [0.865 − 0.872], and a Cohen’s κ of
0.799± 0.098, 95 % CI: [0.794 − 0.804], which is in the very high end of the
substantial agreement category for observer agreement [120]. We found that
individual cohorts exhibit major differences in overall accuracy and Cohen’s κ
when subjected to both training and testing conditions and specifically, we
found that average performance on the test partition in the LOCI configu-
rations varied significantly from 0.676± 0.124, 95 % CI: [0.670 − 0.682] when
training on ISRUC, to 0.837± 0.084, 95 % CI: [0.833 − 0.841] when training
on SHHS. Each individual cohort also showed large deviations in predictive
performance when tested on the other cohorts. For example, when condi-
tioned on SHHS data, the lowest average accuracy was 0.721 on SSC test data
compared to the highest at 0.872 on SHHS test data, while conditioning on
SSC training data, the lowest average accuracy was 0.704 on ISRUC test data
compared to 0.824 on WSC test data. Classification performance was gener-
ally higher on the test set when using the LOCO configuration, except for
SHHS (higher in LOCI) and SSC (no difference). We also found that having
data from multiple sources always resulted in better-performing models com-
pared to training on single cohorts. Increasing the number of data sources
increased classification performance, although this was non-significant. In
the design of the model, we observed that model performance was enhanced
by the addition of the recurrent module (bGRU), a phenomenon likely reflect-
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Table 3.8: Performance characteristics for LOCI and LOCO training configurations.

Overall accuracy Cohen’s kappa

N PSGs Mean SD Median 95% CI, mean Mean SD Median 95% CI, mean

LOCI-wd

ISRUC 1584 0.679 0.123 0.701 [0.673-0.685] 0.542 0.169 0.574 [0.533-0.550]

MrOS 1584 0.821 0.077 0.835 [0.817-0.825] 0.727 0.114 0.745 [0.721-0.733]

SHHS 1584 0.834 0.088 0.858 [0.830-0.839] 0.750 0.132 0.786 [0.744-0.757]

SHHS 1584 0.762 0.094 0.774 [0.757-0.767] 0.639 0.129 0.654 [0.633-0.646]

WSC 1584 0.758 0.105 0.773 [0.753-0.764] 0.633 0.145 0.653 [0.626-0.640]

LOCI

ISRUC 1584 0.676 0.124 0.700 [0.670-0.682] 0.539 0.170 0.574 [0.531-0.547]

MrOS 1584 0.826 0.074 0.839 [0.822-0.829] 0.732 0.111 0.748 [0.726-0.737]

SHHS‡ 1584 0.837 0.084 0.858 [0.833-0.841] 0.754 0.127 0.786 [0.748-0.761]

SHHS 1584 0.773 0.088 0.785 [0.769-0.777] 0.657 0.125 0.671 [0.651-0.663]

WSC 1584 0.763 0.101 0.776 [0.758-0.768] 0.641 0.140 0.659 [0.635-0.648]

LOCO

ISRUC† 52 0.749 0.081 0.764 [0.727-0.771] 0.648 0.119 0.682 [0.616-0.680]

126 0.757 0.071 0.766 [0.744-0.769] 0.661 0.101 0.682 [0.643-0.678]

MrOS† 371 0.843 0.066 0.851 [0.836-0.849] 0.757 0.104 0.776 [0.746-0.767]

3932 0.841 0.069 0.854 [0.838-0.843] 0.752 0.107 0.775 [0.749-0.755]

SHHS 846 0.805 0.076 0.815 [0.800-0.810] 0.705 0.109 0.722 [0.698-0.712]

8444 0.800 0.081 0.811 [0.798-0.801] 0.697 0.115 0.713 [0.694-0.699]

SHHS 76 0.793 0.086 0.809 [0.744-0.812] 0.680 0.120 0.700 [0.653-0.707]

766 0.798 0.086 0.815 [0.792-0.805] 0.690 0.123 0.711 [0.681-0.699]

WSC† 239 0.826 0.065 0.835 [0.818-0.834] 0.720 0.096 0.736 [0.708-0.732]

2411 0.824 0.068 0.837 [0.821-0.827] 0.718 0.100 0.736 [0.714-0.722]

Metrics are aggregated across all subjects for each cohort in test partition (N = 1584 PSGs). Bottom rows
in LOCO configuration correspond to evaluating performance on entire cohort. PSG: polysomnography;
LOCI: leave-one-cohort-in; LOCI-wd: LOCI with weight decay; LOCO: leave-one-cohort-out; ISRUC: In-
stitute of Systems and Robotics, University of Coimbra Sleep Cohort; MrOS: Osteoporotic Fractures in
Men Sleep Study; SHHS: Sleep Heart Health Study; SSC: Stanford Sleep Cohort; WSC: Wisconsin Sleep
Cohort; †significantly better than corresponding LOCI; ‡significantly better than corresponding LOCO.

ing the fact that sleep stage scoring at a specific time in one subject can be
influenced by signal content (frequency, amplitude, presence of micro-events)
at later time steps. However, the complexity of the module given by the
number of hidden units did not affect performance. In all our experiments,
we also evaluated the performance of the model every 1 s compared to
the performance evaluated every 30 s and found them to be similar, which
indicates the model is stable in classification in periods corresponding to an
epoch of data.

Only a handful of studies have previously reported results when using
multiple cohorts [73], [89], [90]. Some authors have reported a drop from
81.9% to 77.7% when training on the Massachusetts General Hospital cohort
(MGH) and testing on MGH and SHHS, respectively [89], while others have
shown significant drops from 89.8% to 81.4% and 72.1% on two separate
hold-out sets from Singapore and USA [90]. We also observed similar trends
in our LOCI and LOCO experiments, where excluding the training subset
of a cohort from the training partition resulted in a significant drop in
performance on the respective test subset from that cohort. A benefit of
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Table 3.9: Model performance of test partition with varying fractions of training data.

Overall accuracy Cohen’s kappa

Fraction, % Mean SD Median 95% CI, mean Mean SD Median 95% CI, mean

0.25 0.782 0.097 0.801 [0.777-0.787] 0.671 0.141 0.696 [0.664-0.678]

0.50 0.804 0.086 0.824 [0.800-0.808] 0.696 0.131 0.724 [0.689-0.702]

1 0.824 0.079 0.840 [0.820-0.828] 0.730 0.118 0.753 [0.724-0.736]

5 0.841 0.074 0.856 [0.837-0.844] 0.757 0.113 0.780 [0.751-0.763]

10 0.850 0.069 0.864 [0.847-0.853] 0.770 0.108 0.791 [0.765-0.775]

25 0.858 0.066 0.873 [0.854-0.861] 0.782 0.102 0.804 [0.777-0.787]

50 0.860 0.063 0.874 [0.856-0.863] 0.787 0.097 0.809 [0.782-0.792]

75 0.867 0.062 0.882 [0.864-0.870] 0.797 0.096 0.818 [0.792-0.802]

100 0.869 0.064 0.883 [0.865-0.872] 0.799 0.098 0.820 [0.794-0.804]

Increasing the available training data increased performance on the test partition (N = 1584) shown here
as aggregated metrics across all subjects. No statistical difference was found by comparing confidence
intervals between models trained with 75% and 100% of available training data, which indicates a
saturation in training.

our LOCI and LOCO experiments is the possibility for direct benchmarking
against previous publications using specific cohorts in their experiments.
For example, we obtain an accuracy of 0.805 in the LOCO-SHHS training-
testing case compared to 0.777 previously reported by Biswal et al. [89],
both of which reflect classification performance when SHHS had not been
used for training; and an accuracy of 0.865 in the LOCI-WSC case compared
to 0.841 reported previously [72], where both have been using a subset
of WSC for training the model. Interestingly, we obtained the same level
of performance on the SHHS data in our LOCI experiment as reported
by Sors et al. (87% accuracy, 81% Cohen’s κ) even though they only used
single-EEG for their experiments [121]. Other works that have investigated
single- vs. multi-channel models for automatic sleep stage classification have
found that models generally benefit from having more channels available
for training [85], [87], [89]. It may be that some cohorts share different
characteristics that makes them more suitable for single- or multi-channel
models, but this is speculative and would need to be verified in subsequent
studies.

We only optimized our network architecture with respect to the temporal
processing module and therefore cannot assess what impact different design
choices for the other modules would have had on final performance. For
example, the EMG signal has different statistical properties and spectral
content, and separate, parallel architectures for EMG and EEG/ EOG fea-
ture extraction may be warranted, as proposed by others [73], [85]. Other
studies have however shown equal performance in large cohorts using a
similar channel mixing approach as proposed here [72]. Another limitation
is found in our training runs, as we did not consider balancing our data
with respect to the proportion of sleep stages, which may or may not have
had impact on overall performance. It is well established that there is signifi-
cant variation in scoring and validation of N1/REM and N2/N3 [24], [28],
[29], which challenges the training for any classification algorithm. Some
researchers have experimented balancing the cost of misclassifying sleep
stages by weighting them by their inverse frequency of occurrence and found
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Table 3.10: Model performance on test partition (N = 1584) with varying number of cohorts in training
partition.

Overall accuracy Kappa

Training cohorts Mean SD Median 95% CI, mean Mean SD Median 95% CI, mean

2

Overall 0.788 0.102 0.811 [0.787-0.790] 0.683 0.143 0.710 [0.681-0.685]

ISRUC-MrOS 0.781 0.102 0.804 [0.776-0.786] 0.675 0.143 0.703 [0.668-0.682]

ISRUC-SHHS 0.808 0.097 0.835 [0.804-0.813] 0.717 0.142 0.756 [0.710-0.724]

ISRUC-SSC 0.735 0.103 0.753 [0.729-0.740] 0.613 0.140 0.638 [0.606-0.620]

ISRUC-WSC 0.745 0.107 0.758 [0.740-0.750] 0.628 0.140 0.642 [0.621-0.635]

MrOS-SHHS 0.829 0.081 0.849 [0.825-0.833] 0.740 0.124 0.769 [0.734-0.746]

MrOS-SSC 0.796 0.090 0.816 [0.791-0.800] 0.683 0.133 0.708 [0.677-0.690]

MrOS-WSC 0.805 0.087 0.822 [0.801-0.809] 0.699 0.126 0.722 [0.693-0.705]

SHHS-SSC 0.816 0.090 0.839 [0.812-0.821] 0.722 0.129 0.755 [0.716-0.729]

SHHS-WSC 0.824 0.089 0.846 [0.820-0.828] 0.733 0.128 0.762 [0.727-0.739]

SSC-WSC 0.742 0.110 0.755 [0.737-0.748] 0.620 0.145 0.634 [0.613-0.627]

3

Overall 0.808 0.092 0.830 [0.807-0.810] 0.711 0.131 0.739 [0.709-0.713]

ISRUC-MrOS-SHHS 0.820 0.092 0.844 [0.815-0.825] 0.732 0.134 0.766 [0.725-0.738]

ISRUC-MrOS-SSC 0.798 0.088 0.816 [0.794-0.802] 0.694 0.129 0.720 [0.688-0.700]

ISRUC-MrOS-WSC 0.811 0.083 0.828 [0.807-0.815] 0.711 0.119 0.735 [0.705-0.717]

ISRUC-SHHS-SSC 0.807 0.090 0.828 [0.803-0.812] 0.714 0.126 0.739 [0.708-0.721]

ISRUC-SHHS-WSC 0.817 0.091 0.842 [0.813-0.822] 0.728 0.128 0.759 [0.722-0.735]

ISRUC-SSC-WSC 0.755 0.109 0.775 [0.750-0.760] 0.639 0.150 0.670 [0.631-0.646]

MrOS-SHHS-SSC 0.833 0.071 0.848 [0.829-0.837] 0.744 0.109 0.766 [0.739-0.750]

MrOS-SHHS-WSC 0.840 0.073 0.854 [0.836-0.843] 0.753 0.109 0.774 [0.748-0.759]

MrOS-SSC-WSC 0.795 0.088 0.811 [0.791-0.800] 0.687 0.123 0.706 [0.681-0.693]

SHHS-SSC-WSC 0.807 0.101 0.833 [0.802-0.812] 0.710 0.142 0.744 [0.703-0.717]

4

Overall 0.821 0.085 0.840 [0.819-0.823] 0.728 0.124 0.755 [0.726-0.731]

ISRUC-MrOS-SHHS-SSC 0.827 0.078 0.843 [0.823-0.831] 0.739 0.115 0.764 [0.733-0.744]

ISRUC-MrOS-SHHS-WSC 0.835 0.075 0.850 [0.831-0.838] 0.747 0.112 0.768 [0.742-0.753]

ISRUC-MrOS-SSC-WSC 0.794 0.097 0.817 [0.789-0.799] 0.687 0.139 0.716 [0.680-0.694]

ISRUC-SHHS-SSC-WSC 0.819 0.091 0.843 [0.814-0.823] 0.728 0.131 0.759 [0.721-0.734]

MrOS-SHHS-SSC-WSC 0.830 0.076 0.846 [0.826-0.834] 0.741 0.112 0.763 [0.736-0.747]

The total number of training records were fixed at N = 500 for all configurations. ISRUC: Institute of
Systems and Robotics, University of Coimbra Sleep Cohort; MrOS: Osteoporotic Fractures in Men Sleep
Study; SHHS: Sleep Heart Health Study; SSC: Stanford Sleep Cohort; WSC: Wisconsin Sleep Cohort.



52 sleep stage classification

2 3 4
Number of cohorts

0.74

0.76

0.78

0.80

0.82

0.84

Ac
cu

ra
cy

Figure 3.7: Number of cohorts in training partition increases model performance.
Each datapoint is shown as the overall accuracy aggregated across all subjects for a
specific training configuration. For example, the bottom dot in column 2 (3 cohort
configuration) shows the performance on the test set (overall accuracy 0.755± 0.109,
95 % CI: [0.750 − 0.760]), when training with 500 PSGs randomly and evenly drawn
from SSC, ISRUC, and WSC. Notice the scale on the y-axis.

no significant improvement [72], [121], while others have experimented with
balancing the sleep stage frequencies in each batch of data input to the
neural network model [85], but more rigorous research in resampling or
over/under-sampling techniques is warranted in this regard. We ultimately
decided against experimenting with balancing our sleep stages in each batch,
as we prioritized flexibility with regards to the length of input sequences fed
to the network. All our models ran through at least 50 epochs of training
(passes through the training partition), which might have induced a bias in
the configurations with larger cohorts. For example, one pass through the
training partition in the LOCI-ISRUC case corresponds to much less data
than one pass through the LOCI-SHHS case. However, since we selected the
best performing model based on Cohen’s κ across all 50 epochs, we have
allowed for more effective training in cases with less available training data.
We observed that models using less data in the training partition generally
had to run for longer time (i. e. more epochs) before converging.

In future studies on automatic sleep stage classification algorithms, we
strongly recommend researchers to test and report results on not just hold-
out test partitions, but also on cohorts completely unseen by the model
both during training and testing/validation. Our experiments indicate that
even though good performance can be achieved on hold-out data using a
single cohort, this does not necessarily translate into good generalization
performance. Such approach requires availability of many publicly available,
high-quality, well-documented databases with easily accessible PSG data, as-
sociated annotations and related patient information. In this regard, websites
such as the NSRR, which contains several large databases with clinical data
as well as PSG and annotation data in a standardized format [107], [108], are
an invaluable resource for researchers. We also propose that the sleep science
community establishes a common reference dataset on which researchers in
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machine learning can benchmark their models, similar to what the computer
vision and general machine learning community has done with the ImageNet
Large Scale Visual Recognition Challenge [122], an annual competition in
which researchers submit their models to test in various competitions.

In summary, we have developed an automatic sleep stage classification
algorithm based on deep learning, that can accurately classify sleep stages at
a flexible resolution with a state-of-the-art classification performance of 87%
accuracy on a test set of 1584 PSGs. We trained and tested our model using
five cohorts with varying numbers of PSGs covering multiple phenotypes
with specific focus on how well cohorts can generalize to each other. We
found that different cohorts generalize very differently both in intra- and
inter-cohort settings (LOCI vs. LOCO experiments). Furthermore, we also
found that having more data sources significantly improve classification
performance and generalizability to the extent that even just a small number
of training PSGs can reach high classification performance by including
many different sources. To our knowledge, this is one of the largest, if not
the largest, study on automatic sleep stage classification in terms of PSG
volume, diversity, and performance.
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3.4 paper iii : neural network analysis of sleep stages enables

efficient diagnosis of narcolepsy

abstract : Analysis of sleep for the diagnosis of sleep disorders
such as NT1 currently requires visual inspection of polysomnography
records by trained scoring technicians. Here, we used neural networks
in approximately 3000 normal and abnormal sleep recordings to
automate sleep stage scoring, producing a hypnodensity graph—a
probability distribution conveying more information than classical
hypnograms. Accuracy of sleep stage scoring was validated in 70

subjects assessed by six scorers. The best model performed better than
any individual scorer (87% versus consensus). It also reliably scores
sleep down to 5 s instead of 30 s scoring epochs.

3.4.1 Materials & Methods

3.4.1.1 Datasets

The success of machine learning depends on the size and quality of the data
on which the model is trained and evaluated [123], [124]. We used a large
dataset comprised of several thousand sleep studies to train, validate, and
test/replicate our models. To ensure heterogeneity, data came from 4 different
cohorts: SSC [111], [112], WSC [112], [125], Interscorer Reliability Cohort
(IS-RC) [126], and Korean Hypersomnia Cohort (KHC) [127] Institutional
Review Boards approved the study and informed consent was obtained from
all participants. Technicians trained in sleep scoring manually labeled all
sleep studies. Figure 3.8a and b summarize the overall design of the study
for sleep stage scoring. Table 3.11 provides a summary of the size of each
cohort and how it was used. For this analysis, a few recordings with poor
quality sleep studies, i.e. missing critical channels, with additional sensors
or with a too short sleep duration (6 2 h) were excluded. Below is a brief
description of each dataset.

population-based wisconsin sleep cohort This cohort is a longi-
tudinal study of state agency employees aged 37–82 years from Wisconsin,
USA, and approximates a population-based sample (see Table 3.11 for age at
study). The subjects in this study are generally more overweight [125]. The
study is ongoing, and dates back to 1988. 2167 PSGs in 1086 subjects were
used for training while 286 randomly selected PSGs were used for valida-
tion testing of the sleep stage-scoring algorithm.Approximately 25% of the
population have an AHI above 15 h and 40% have a periodic leg movement
index (PLMI) above 15 h. A detailed description of the sample can be found
in [125] and [112].

patient-based stanford sleep cohort PSGs from this cohort were
recorded at the Stanford Sleep Clinic dating back to 1999, and represent
sleep disorder patients aged 18-91 visiting the clinic (see Table 3.11 for age
at study). The cohort contains thousands of PSG recordings, but for this
study we used 894 diagnostic (no positive airway pressure (PAP)) recordings
in independent patients that have been used in prior studies [126]. This
subset contains patients with a range of different diagnoses including: sleep
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Table 3.11: Description of the various cohorts included in this study.

Cohort Age, years BMI, kg m−2 Sex, % Train Test

WSC 59.7 ± 8.4 31.6 ± 7.1 53.1 1086 (2167) 286

SSC 45.4 ± 13.8 23.9 ± 6.5 59.4 617 277

KHC 29.1 ± 13.2 24.1 ± 4.3 58.6 None 160

IS-RC 51.1 ± 4.2 32.9 ± 9.2 0 None 70

Total subjects 1703 793

Total PSGs 2784 793

Variables are aggregated across PSGs. WSC: Wisconsin Sleep Cohort;
SSC: Stanford Sleep Cohort; KHC: Korean Hypersomnia Cohort; IS-RC: In-
terscorer Reliability Cohort.

disordered breathing (607), insomnia (141), REM sleep behavior disorder (4),
restless legs syndrome (23), NT1 (25), delayed sleep phase syndrome (14),
and other conditions (39). Description of the subsample can be found in [111]
and [112]. Approximately 30% of subjects have an AHI above 15 h, or a PLMI
above 15 h. 617 randomly selected subjects were used for training the neural
networks while 277 randomly selected PSGs were kept for validation testing
of the sleep stage scoring algorithm. 26 subjects were removed from the
study—4 due to poor data quality, and the rest due to continued medication
usage.

patient-based korean hypersomnia cohort The Korean Hyper-
somnia Cohort is a high pretest probability sample for narcolepsy. It includes
160 patients with a primary complaint of excessive daytime sleepiness (see Ta-
ble 3.11 for age at study). These PSGs were used for testing the sleep scoring
algorithm.No data was used for training the sleep-scoring algorithm. Detailed
description of the sample can be found in [127] and [111].

patient-based inter-scorer reliability cohort As Rosenberg
and Van Hout [26] have shown, variation between individual scorers can
sometimes be large, leading to an imprecise gold standard. To quantify this,
and to establish a more accurate gold standard, 10 scorers from five different
institutions, University of Pennsylvania, St. Luke’s Hospital, University of
Wisconsin at Madison, Harvard University, and Stanford University, analyzed
the same 70 full night PSGs. This allowed for a much more precise gold
standard, and the inter-scorer reliability could be quantified for a dataset,
which could also be examined by automatic scoring algorithms. For this study,
scoring data from University of Pennsylvania, St. Luke’s and Stanford were
used. All subjects are female (see Table 3.11 for details). Detailed description
of the sample can be found in [126] and [128].

american academy of sleep medicine sleep study The AASM
ISR dataset is composed of a single control sleep study of 150 epochs of each
30 s in length that was scored by 5234± 14 experienced sleep technologists
for quality control purposes. Design of this dataset is described in [26].



56 sleep stage classification

(a)

(b)

Figure 3.8: Overview of STAGES model for sleep stage classification. (a) Pre-processing steps taken to
achieve the format of data as it is used in the neural networks. One of the 5 channels is first high-pass
filtered with a cut-off at 0.2 Hz, then low-pass filtered with a cut-off at 49 Hz followed by a re-sampling to
100 Hz to ensure data homogeneity. In the case of EEG signals, a channel selection is employed to choose
the channel with the least noise. The data are then encoded using either the cross-correlation (CC) or the
octave encoding. (b) Producing and testing the automatic scoring algorithm. A part of the SSC [111], [112]
and WSC [112], [125] is randomly selected, as described in Table 3.11. These data are then segmented in 5

min segments and scrambled with segments from other subjects to increase batch similarity during training.
A neural network is then trained until convergence (evaluated using a separate validation sample). Once
trained, the networks are tested on a separate part of the SSC and WSC along with data from the IS-RC [126]
and KHC [111], [127].

3.4.1.2 Data labels, scoring and fuzzy logic

Sleep stages were scored by PSG-trained technicians using established scor-
ing rules, as described in the AASM Scoring Manual [129]. In doing so,
technicians assign each epoch with a discrete value. With a probabilistic
model, like the one proposed in this study, a relationship to one of the fuzzy
sets is inferred based on thousands of training examples labeled by many
different scoring-technicians.

The hypnodensity graph refers to the probability distribution over each
possible stage for each epoch, as seen in Figures 3.14 and 3.15. This allows
more information to be conveyed, since every epoch of sleep within the same
stage is not identical. For comparison with the gold standard, however, a
discrete value must be assigned from the model output as:

ŷ = arg max
yi

N∑
i

Pi(yi |xi), (3.20)

where Pi(yi | xi) is a vector with the estimated probabilities for each sleep
stage in the ith segment, N is the number of segments an epoch is divided
into, and ŷ is the estimated label.

Sleep scoring technicians score sleep in 30 s epochs, based on what stage
they assess is represented in the majority of the epoch—a relic of when
recordings were done on paper. This means that when multiple sleep stages
are represented, more than half of the epoch may not match the assigned label.
This is evident in the fact that the label accuracy decreases near transition
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epochs [26]. One solution to this problem is to remove transitional regions
to purify each class. However, this has the disadvantage of under-sampling
transitional stages, such as N1, and removes the context of quickly changing
stages, as is found in a spontaneous arousal. It has been demonstrated that the
negative effects of imperfect “noisy” labels may be mitigated if a large enough
training dataset is incorporated and the model is robust to overfitting [130].
This also assumes that the noise is randomly distributed with an accurate
mean—a bias cannot be canceled out, regardless of the amount of training
data. For these reasons, all data including those containing sleep transitions
were included. Biases were evaluated by incorporating data from several
different scoring experts cohorts and types of subjects.

To ensure quick convergence, while also allowing for long-term depen-
dencies in memory-based models, the data were broken up in 5 min blocks
and shuffled to minimize the shift in covariates during training caused by
differences between subjects. To quantify the importance of segment sizes,
both 5 s and 15 s windows were also tested.

3.4.1.3 Data selection and pre-processing

A full night PSG psg involves recording many different channels, some of
which are not necessary for sleep scoring [131]. In this study, EEG (C3 or C4, The AASM

recommends EEG,
EOG, and chin EMG
for sleep stage
scoring,
see Section 2.2.1.

and O1 or O2), chin EMG, and the left and right EOG channels were used,
with reference to the contralateral mastoid. Poor electrode connections are
common when performing a PSG analysis. This can lead to a noisy record-
ing, rendering it useless. To determine whether right or left EEG channels
were used, the noise of each was quantified by dividing the EEG data in
5 min segments, and extracting the Hjorth parameters [132]. These were
then log-transformed, averaged, and compared with a previously established
multivariate distribution, based on the WSC [112], [125] and SSC [111], [112]
training data. The channel with lowest Mahalanobis distance to this distri-
bution was selected. The log-transformation has the advantage of making
flat signals/disconnects as uncommon as very noisy signals, in turn making
them less likely to be selected. To minimize heterogeneity across recordings,
and at the same time reducing the size of the data, all channels were down-
sampled to 100 Hz. Additionally, all channels were filtered with a 5th order
two-directional infinite impulse response (IIR) high-pass filter with cutoff
frequency of 0.2 Hz and a 5th order two-directional IIR low-pass filter with
cutoff frequency of 49 Hz. The EMG signal contains frequencies well above
49 Hz, but since much data had been down-sampled to 100 Hz in the WSC,
this cutoff was selected for all cohorts. All steps of the pre-processing are
illustrated in Figure 3.8a.

3.4.1.4 Convolutional and recurrent neural networks

convolutional neural networks (CNNs) are a class of deep learning models
initially developed to solve problems in the field of computer vision [33]. A
CNN is a machine learning model in which a high-dimensional input, such
as an image, is transformed through a network of filters and sub-sampling
layers. Each layer of filters produces a set of features from the previous layer,
and as more layers are stacked, more complex features are generated. This
network is coupled with a general-purpose learning algorithm, resulting in
features produced by the model reflecting latent properties of the data rather
than the imagination of the designer. This property places fewer constrictions
on the model by allowing more flexibility, and hence the predictive power of
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the model will increase as more data is observed. This is facilitated by the
large number of parameters in such a model, but may also necessitate a large
amount of training data.

Sleep stage scoring involves a classification of a discrete time-series, in
which adjacent segments are correlated. Models that incorporate memory
may take advantage of this and may lead to better overall performance by
evening out fluctuations. However, these fluctuations may be the defining
trait or anomaly of some underlying pathology present in only a fractionNarcolepsy is one

such pathology well
known to involve

abnormal sleep stages
transitions.

of subjects, and perhaps absent in the training data. This can be thought of
similarly to a person with a speech impediment: the contextual information
will ease the understanding, but knowing only the output, this might also
hide the fact that the person has such a speech impediment. To highlight the
importance of this fact, models with and without memory were applied in
this work. Memory can be added to such a model by introducing recurrent
connections in the final layers of the model. This turns the model into
a recurrent neural network (RNN). Classical RNNs had the problem of
vanishing or exploding gradients, which meant that optimization was very
difficult. This problem was solved by changing the configuration of the
simple hidden node into an long short-term memory (LSTM) cell [133].
Models without this memory are referred to as FF models. A more in-depthThese models have no

recurrency and thus
feed forward the

signals directly, hence
FF.

explanation of CNNs including application areas can be found the review
article on deep learning by LeCun, Bengio, and Hinton [33], and the deep
learning textbook by Goodfellow, Bengio, and Courville [134]. For a more
general introduction to machine learning concepts, see the textbook on
pattern recognition and machine learning by Bishop [135].

3.4.1.5 Data input and transformations

Biophysical signals, such as those found in a PSG, inherently have a low
signal to noise ratio, the degree of which varies between subjects, and hence
learning robust features from these signals may be difficult. To circumvent
this, two representations of the data that could minimize these effects were
selected. An example of each decomposition is shown in Figure 3.9.

Octave encoding maintains all information in the signal, and enriches it by
repeatedly removing the top half of the bandwidth (i.e. cut off frequencies of
49 Hz, 25 Hz, 12.5 Hz, 6.25 Hz and 3.125 Hz) using a series of low-pass filters,
yielding a total of 5 new channels for each original channel. At no point is
a high-pass filter applied. Instead, the high frequency information may be
obtained by subtracting lower frequency channels—an association the neural
networks can make, given their universal approximator properties [136].
After filtration, each new channel is scaled to the 95th percentile and log
modulus transformed:

xscaled = sign(x) log
(

|x|
p95(x)

+ 1

)
(3.21)

The initial scaling places 95th of the data between -1 and 1, a range in which
the log modulus is close to linear. Very large values, such as those found in
particularly noisy areas, are attenuated greatly. Some recordings are noisy,
making the 95th percentile significantly higher than what the physiology
reflects. Therefore, instead of the selecting the 95th percentile from the entire
recording, the recording is separated into 50% overlapping 90 min segments,
from which the 95thth percentile is computed. The mode of these values is
then used as a scaling reference. In general, scaling and normalization is
important to ensure quick convergence as well as generalization in neural
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(a)

(b)

Figure 3.9: Neural network strategy for STAGES model. (a) An example of the octave and the CC encoding
on 10 s of EEG, EOG and EMG data. These processed data are fed into the neural networks in one of the
two formats. The data in the octave encoding are offset for visualization purposes. Color scale is unitless. (b)
Simplified network configuration, displaying how data are fed and processed through the networks. A more
detailed description of the network architecture is shown in Figure 3.11.
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Figure 3.10: Implementation of CC encoding. CC encoding of a noisy (right) and less noisy (left) signal. The
central part of the encoding, representing areas of full overlap between correlated signals, is kept; the red
part is discarded.

networks. The decomposition is done in the same way on every channel,
resulting in 25 new channels in total.

Using a CC function, underlying periodicities in the data are revealed
while noise is attenuated. White noise is by definition uncorrelated; the auto-
correlation function is zero everywhere except in lag zero. It is this property
that is utilized, even though noise cannot always be modeled as such. PSG
signals are often obscured by undesired noise that is uncorrelated with other
aspects of the signals. An example CC between a signal segment and an
augmented version of the same signal segment is shown in Figure 3.10.

Choosing the CC in this manner over a standard auto-correlation function
serves two purposes: the slow frequencies are expressed better, since there is
always full overlap between the two signals; and the change in fluctuationsAlthough some of this

can be adjusted with
the normal

auto-correlation
function using an
unbiased estimate.

over time within a segment is expressed, making the function reflect aspects
of stationarity. Because this is the CC between a signal and an augmented
version of itself, the zero lag represents the power of that segment, as is the
case in an auto-correlation function.

Frequency content with a time resolution may also be expressed using
time-frequency decompositions, such as spectrograms or scalograms. One of
the key properties of a CNN, however, is the ability to detect distinct features
anywhere in an input given the latent property of equivariance [137]. A CC
function reveals an underlying set of frequencies as an oscillation pattern, as
opposed to a spectrogram, where frequencies are displayed as small streaks
or spots in specific locations, corresponding to time-specific frequencies. The
length and size of each CC reflects the expected frequency content and the
limit of quasi-stationarity.That is, how quickly

the frequency content
is expected to change.
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The EEG signal is quasi-stationary in signals with a length of up to
0.25 s [138], [139]. The lowest expected meaningful frequencies are delta
rhythms, which have a lower bound of 0.5 Hz [138]. Hence, the transforma-
tion is made up of 2 s segments with 1.75 s overlaps between segments.

The EOG signal reveals information about eye movements such as REMs,
and to some extent EEG activity [128], [129]. In the case of the EOG signal, the
relative phase between the two channels is of great importance to determine
synchronized eye movements, and hence a CC of opposite channels is also Either the augmented

or zero-padded signal
is replaced with the
opposite channel.

included. The slowest eye-movements happen over the course of several
seconds [128], [129], and hence a segment length of 4 s was selected for the
correlation functions. To maintain resolution flexibility with the EEG, an
overlap of 3.75 s between each data segment was selected.

In the case of the EMG signal, the main concern is the signal amplitude
and the temporal resolution, not the actual frequencies. As no relevant low
frequency content is expected, a segment length of 0.4 seconds and an overlap
of 0.25 seconds was selected.

As with the octave encoding, the data is scaled, although only within
segments:

Di =
γxiyi log

(
1 + max

∣∣γxiyi
∣∣)

max
∣∣γxiyi

∣∣ (3.22)

where Di is the scaled correlation function and γxiyi is the unscaled correla-
tion function.

3.4.1.6 Architectures of applied CNN models

The architecture of a CNN typically reflects the complexity of the problem
that is being solved and how much training data is available, as a complex
model has more parameters than a simple model and is therefore more likely
to overfit. However, much of this may be solved using proper regularization.
Another restriction is the resources required to train a model; deep and
complex models require far more operations and will therefore take longer to
train and operate. In this study, no exhaustive hyper-parameter optimization
was carried out. The applied architectures were chosen on the basis of other
published models [140]. Since the models utilized three separate modalities
(EEG, EOG and EMG), three separate sub-networks were constructed. These
were followed by fully connected layers combining the inputs from each sub-
network, which were passed onto a softmax output, as shown in Figure 3.9b
and Figure 3.11. Models that utilize memory have fully connected hidden
units replaced with LSTM cells and recurrent connections added between
successive segments. Networks of two different sizes are evaluated to quantify
the effect of increasing complexity.

3.4.1.7 Training of CNN models

Training the models involves optimizing parameters to minimize a loss
function evaluated across a training dataset. The loss function was defined
as the cross-entropy with `2 regularization:

L(ω) =
1

N

N∑
i=1

H(yi, ŷi) + `2

=
1

N

N

i=1

yi log(ŷi) + (1 − yi) log(1 − ŷi) + λ‖ω‖22,

(3.23)
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Figure 3.11: Specifications of each network configuration. Each block represents an operation; white blocks
require multiplications and additions, whereas grey blocks are pooling or concatenations, default being
maximum pooling. The top row of each block describes the size of the window and its stride, and the bottom
row describes the size of the output. In this output, N is the length of a sequence, the second dimension
is the segment length, and if a fourth dimension is present (CC models), the third dimension originally
represents the size of the correlation function. The last dimension is the number of features in that layer.
Models with a low complexity skip the third max pooling block, and go straight to mean pooling.



3.4 stephansen & olesen, et al. , 2018 63

Table 3.12: Experimental configurations for single models

Level Memory Segment duration Complexity Encoding Realizations

1 Simple FF 5 s Low Octave 1

2 LSTM 15 s High CC 2

where yi is the true class label of the ith window, ŷi is the estimated probabil-
ity of the ith window, ω is the parameter to be updated, and λ is the weight
decay parameter set at 10

−5. The model parameters were initialized with
N(0, 0.01), and trained until convergence using stochastic gradient decent
with momentum [141]. Weight updates were computed as:

ωt+1 =ωt + ηvt+1 (3.24)

vt+1 = αvt −
∂L
∂ωt

, (3.25)

where α is the momentum set at 0.9, vt is the learning velocity initialized
at 0, and η is the learning rate, initially set at 0.005. The learning rate was
gradually reduced with an exponential decay

η = η0 exp(−t/τ), (3.26)

where t is the number of updates and τ is a time constant, here set to 12 000.
Over-fitting was avoided using a number of regularization techniques,

including batch normalization [116], weight decay [142], and early stop-
ping [130]. Early stopping is accomplished by scheduling validation after
every 50th training batch. This is done by setting aside 10% of the training
data. Training is stopped if the validation accuracy starts to decrease as a
sign of over-fitting. For LSTM networks, dropout set at 0.50 was included
while training [143]. This ensured that model parameters generalized to
the validation data and beyond. Given the stochastic nature of the training
procedure, it was likely that two realizations of the same model would not
lead to the same results, since models end up in different local minima. To
measure the effect of this, two realizations were made of each model.

Apart from model realizations, we also investigated the effect of ensem-
bling our sleep stage classification model. In general, ensemble models can
yield higher predictive performance than any single model by attacking a
classification or regression problem from multiple angles. For our specific
use case, this resolves into forming a sleep stage prediction based on the pre-
dictions of all the models in the given ensemble. We tested several ensembles
containing various numbers of model architectures and data encodings, as
described in Tables 3.12 and 3.13.

3.4.1.8 Performance comparisons of generated CNN models

As stated, the influences of many different factors were analyzed. These
included: using octave or CC encoding, short (5 s) or long (15 s) segment
lengths, low or high complexity, with or without LSTM, and using only a
single or two realizations of a given model. To quantify the effect of each in
a principled manner, a 2

5-factorial experiment was designed leading to 32

different models as detailed in Tables 3.12 and 3.13. Comparisons between
models was done on a per epoch basis.
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Table 3.13: Experimental configurations for ensemble models

Configuration Oct FF Oct LSTM CC FF CC LSTM FF LSTM Oct CC All models

Number of models 8 8 8 8 16 16 16 16 32

Table 3.14: Individual and overall scorer performance compared to model performance on IS-RC data.

Overall Scorer 1 Scorer 2 Scorer 3 Scorer 4 Scorer 5 Scorer 6

Accuracy, %

Biased 81.3± 3.0 82.4± 6.1 84.6± 5.5 74.1± 7.9 85.4± 5.7 83.1± 9.4 78.3± 8.9

Unbiased 76.0± 3.2 77.3± 6.3 79.1± 6.3 69.0± 8.0 79.7± 6.5 77.8± 9.6 72.9± 9.2

Model, % - 85.1± 4.9 83.8± 5.0 86.5± 4.3 84.3± 4.7 85.6± 4.7 87.0± 4.5

p-value - 3.8× 10
−14

7.5× 10
−9

6.0× 10
−28

4.7× 10
−9

1.7× 10
−8

7.5× 10
−19

Cohen’s κ

Biased 61.0± 6.8 63.6± 12.2 68.4± 10.5 45.6± 19.7 69.6± 13.2 64.5± 20.9 54.5± 19.8

Unbiased 57.7± 6.1 61.3± 11.2 64.6± 10.3 43.5± 19.2 64.6± 13.1 60.9± 16.9 51.6± 16.7

Model - 74.3± 12.3 72.4± 12.1 76.0± 11.8 72.7± 12.0 74.7± 12.1 76.6± 12.2

p-value - 4.6× 10
−14

7.9× 10
−10

7.0× 10
−24

6.4× 10
−9

9.2× 10
−10

2.0× 10
−20

Both accuracy and Cohen’s κ are presented with (biased) and without (unbiased) the assessed scorer included
in the consensus standard in a leave-one-out fashion. Accuracy is expressed in percent, and Cohen’s κ is a
ratio and therefore unitless. p-values correspond to the paired t-tests between the unbiased predictions for
each scorer against the model predictions on the same consensus.

3.4.2 Results

3.4.2.1 Inter-scorer reliability cohort

We assessed inter-scorer reliability using the IS-RC, a cohort of 70 PSGs
scored by 6 scorers across three locations in the USA [126]. Table 3.14 displays
individual scorer performance as well as the averaged performance across
scorers, with top and bottom of table showing accuracies and Cohen’s κ,
respectively. The results are shown for each individual scorer when compared
to the consensus of all scorers (biased), and compared to the consensus of the
remaining scorers (unbiased). In the event of no majority vote for an epoch,
the epoch was counted equally in all classes in which there was disagreement.
Also shown in Table 3.14 is the model performance on the same consensus
scorings as each individual scorer along with the t-statistic and associated
p-value for each paired t-test between the model performance and individual
scorer performance. At a significance level of α = 0.05, the model performs
statistically better than any individual scorer both in terms of accuracy and
Cohen’s κ.

Table 3.15 displays the confusion matrix for every epoch of every scorer of
the inter-scorer reliability data, both unadjusted (top) and adjusted (bottom).
As in [26], the biggest discrepancies occur between N1 and W, N1 and N2,
and N2 and N3, with some errors also occurring between N1 and REM, and
N2 and REM.

For future analyses of the IS-RC in combination with other cohorts that
have been scored only by one scorer, a final hypnogram consensus was
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Table 3.15: IS-RC scorer assesment.

Concensus

W N1 N2 N3 REM Pr
In

di
vi

du
al

sc
or

er
s

W 013.28 % 1.04% 0.86% 0.08% 0.23% 0.86

013.25 % 0.98% 0.87% 0.08% 0.22% 0.86

N1 0.79% 0 3.36 % 1.23% 0.03% 0.29% 0.59

0.88% 0 3.61 % 1.42% 0.03% 0.31% 0.58

N2 0.87% 2.46% 044.66 % 4.89% 0.85% 0.83

0.84% 2.30% 045.48 % 5.92% 0.84% 0.82

N3 0.05% 0.02% 2.58% 0 6.45 % 0.00% 0.71

0.05% 0.02% 1.54% 0 5.41 % 0.00% 0.77

REM 0.32% 1.00% 1.14% 0.03% 013.46 % 0.84

0.31% 0.97% 1.16% 0.04% 013.46 % 0.84

Se 0.87 0.43 0.88 0.56 0.91 0.81

0.86 0.46 0.9 0.47 0.91 0.81

W: wakefulness; N1: non-rapid eye movement stage 1; N2: non-rapid eye
movement stage 2; N3: non-rapid eye movement stage 3; REM: rapid eye
movement; Pr, precision; Se, sensitivity.

Table 3.16: Performance of best models on various datasets compared to the six-scorer
consensus. All comparisons are on a by-epoch-basis.

Test data Best single model Accuracy, % Best ensemble Accuracy, %

WSC CC/SH/LS/LSTM/2 86.0± 5.0 All CC 86.4± 5.2

SSC+KHC

÷ narcolepsy CC/LH/SS/LSTM 76.9± 11.1 All CC 77.0± 11.9

+ narcolepsy CC/LH/SS/LSTM 68.8± 11.0 All CC 68.4± 12.2

IS-RC CC/LH/LS/LSTM/2 84.6± 4.6 All Models 86.8± 4.3

built for this cohort based on the majority vote weighted by the degree of
consensus from each voter, expressed as

Cohen’s κ = 1 +
1 − po
1 − pe

, (3.27)

where pe is the baseline accuracy and po is the scorer accuracy, such that

y = arg max
∑

6

i=1
ŷi · κi∑

6

i=1
κi

(3.28)

In this implementation, scorers with a higher consensus with the group are
considered more reliable and have their assessments weighted heavier than
the rest. This also avoided split decisions on end-results.

3.4.2.2 Optimizing machine learning performance for sleep staging

We next explored how various machine learning algorithms (see Methods)
performed depending on cohort, memory (i.e., feed forward (FF) versus
LSTM networks), signal segment length (short segments of 5 s (SS) versus
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Figure 3.12: Comparisons of machine learning models. Left: Comparisons of the effect on accuracy by
each factor at different settings on IS-RC data, SSC and KHC narcolepsy subjects, and the remaining SSC,
KHC and WSC subjects used for testing. Right: Correlation matrix showing similarities in different model
predictions, where 0 means signals are independent, and 1 means signals are completely correlated. Models
1-32 are single models, and 33-41 are ensembles. The models vary on 5 parameters, each at two levels, in
the following order: Memory – FF or LSTM(1), segment size – 5 s or 15 s (2), complexity – high or low (3),
encoding – CC or octave (4), realizations – 1 or 2 (5). Ensembles: All FF octave models (33), all LSTM octave
models (34), all FF CC models (35), all LSTM CC models (36), all FF models (37), all LSTM models (38), all
CC models (39), all octave models (40), all models (41).

long segments of 15 s (LS)), complexity (i.e., low (SH) vs. high (LH)), en-
coding (i.e., octave versus cross-correlation (CC) encoding, and realization
type (repeated training sessions). The performance of these machine learn-
ing algorithms was compared with the six-scorer consensus in the IS-RC
and with single scorer data in 3 other cohorts, the Stanford Sleep Cohort
(SSC) [111], [112], the Wisconsin Sleep Cohort (WSC) [112], [125] and the
Korean Hypersomnia Cohort (KHC) [111], [127] (see Datasets section in
Methods for description of each cohort).

Model accuracy varies across datasets, reflecting the fact scorer perfor-
mance may be different across sites, and because unusual subjects such
as those with specific pathologies can be more difficult to score—a prob-
lem affecting both human and machine scoring. In this study, the worst
performance was seen in the KHC and SSC with narcolepsy, and the best
performance was achieved on IS-RC data (Figure 3.12a, Table 3.16). The
SSC+KHC cohorts mainly contain patients with more fragmented sleeping
patterns, which would explain a reduced performance. The IS-RC has the
most accurate label, minimizing the effects of erroneous scoring, which there-
fore leads to an increased performance. Incorporating large ensembles of
different models increased mean performances only slightly. (Table 3.16).

The two most important factors that increased prediction accuracy were
encoding and memory, while segment length, complexity and number of
realizations were less important (Figure 3.12). The effect of encoding was
less prominent in the IS-RC. Prominent factor interactions include: (i) CC
encoding models improve with higher complexity, whereas octave encoding
models worsen; (ii) increasing segment length positively affects models with
low complexity, but does not affect models with a high complexity; and (iii)
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Figure 3.13: Interaction of different factors. The IS-RC data was used for this anal-
ysis. The solid and dashed lines indicate factors along the rows on levels 1 and 2,
respectively.

adding memory improves models with an octave encoding more than models
with a CC encoding. Because the ISRC data are considered the most reliable,
we decided to use these data as benchmark for model comparison. This
standard improved as more scorers were added, and the model performance
increased ( Figure 3.16a). The different model configurations described in
this section do not represent exhaustive configuration search, and future
work experiments might result in improved results.

Figure 3.14 displays typical scoring outputs (bottom panels) obtained
with a single sleep study of the IS-RC cohort in comparison to 6 scorer
consensus (top panel). The model results are displayed as hypnodensity
graphs, representing not only discrete sleep stage outputs, but also the
probability of occurrence of each sleep state for each epoch (see definition
in Data labels, scoring and fuzzy logic section). As can be seen, all models
performed well, and segments of the sleep study with the lowest scorer
consensus (top) are paralleled by similar sleep stage probability uncertainty,
with performance closest to scoring consensus achieved by an ensemble
model described below (second to top).

3.4.2.3 Final implementation of automatic sleep scoring algorithm

Because of model noise, potential inaccuracies and the desire to quantify
uncertainty, the final implementation of our sleep scoring algorithm is an
ensemble of different CC models with small variations in model parameters,
such as the number of feature-maps and hidden nodes. This was achieved
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Table 3.17: Confusion matrix displaying the relation between different targets
and the ensemble estimate.

Target

W N1 N2 N3 REM Pr

M
od

el
pr

ed
ic

ti
on

W 0 14.08% 0.35% 0.88% 0.01% 0.08% 0.91

0 16.68% 0.15% 0.44% 0.00% 0.02% 0.96

N1 1.13% 0 1.78% 3.00% 0.00% 0.36% 0.28

0.47% 0 0.88% 1.15% 0 % 0.12% 0.34

N2 0.29% 0.59% 0 52.58% 1.27% 0.66% 0.95

0.12% 0.25% 0 56.30% 0.34% 0.32% 0.98

N3 0.00% 0 % 2.13% 0 4.87% 0 % 0.7

0 % 0 % 1.09% 0 4.23% 0 % 0.91

REM 0.54% 1.17% 0.78% 0 % 0 13.45% 0.84

0.40% 0.73% 0.41% 0 % 0 15.86% 0.91

Se 0.88 0.46 0.89 0.79 0.92 00.87

0.94 0.44 0.95 0.92 0.97 00.94

Top row: unweighted consensus. Bottom row: weighted by the scorer agree-
ment at each epoch. The number of analyzed epochs were 53 009 (un-weighted)
and 36 032 (weighted). W: wakefulness; N1: non-rapid eye movement stage 1;
N2: non-rapid eye movement stage 2; N3: non-rapid eye movement stage 3;
REM: rapid eye movement; Pr, precision; Se, sensitivity.

by randomly varying the parameters between 50 and 150% of the original
values using the CC/SH/LS/LSTM as a template (this model achieved
similar performance to the CC/LH/LS/LSTM while requiring significantly
less computational power).

We trained 16 models, and at each segment (5 s, 10 s, 15 s and 30 s) the
mean and variance of model estimates were calculated. As expected, the
relative model variance (standardized to the average variance in a correct
wakefulness prediction) is generally lower in correct predictions and this can
be used to inform users about uncertain/incorrect estimates. To demonstrate
the effectiveness of this final implementation, the average of the models
is shown alongside the distribution of 5234± 14 scorers on 150 epochs, a
dataset provided by the AASM (AASM inter-scorer reliability (ISR) dataset,
(see Datasets section in Methods). On these epochs, the AASM ISR achieved a
90% agreement between scorers. In comparison, the model estimates reached
a 95% accuracy compared to the AASM consensus (Fig. 2b). Using the model
ensemble and reporting on sleep stage probabilities and inter-model variance
for quality purpose constitute the core of our sleep scoring algorithm.

3.4.2.4 Ensemble/best model performance

Table 3.15 reports on concordance for our best model, the ensemble of all CC
models. Concordance is presented in a weighted and unweighted manner,
between the best model estimate and scorer consensus (Table 3.17). Weighing
of a segment was based on scorer confidence and serves to weigh down
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Figure 3.14: The figure displays the hypnodensity graph. Displayed models are in order: multiple scorer
assessment (1); ensembles: All models, those with memory (LSTM) and those without memory (FF) (2–4);
single models. OCT is octave encoding, Color codes: white, wake; red, N1; light blue, N2; dark blue, N3;
black, REM.
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Figure 3.15: The 150 epochs of a recording from the AASM Inter-Scorer Reliability program (ISR) are
analyzed by 16 models with randomly varying parameters, using the CC/SH/LS/LSTM model as a
template. These data were also evaluated by 5234± 14 different scorers. The distribution of these is shown
on top, the average model predictions are shown in the middle, and the model variance is shown at the
bottom.

controversial segments. For each recording i, the epoch-specific weight wn
and weighted accuracy αw were calculated as:

wn = max
z∈Z

(P(yn | xn)) − `2Z(P(yn | xn)),

α
(i)
w =

1∑
nwn

∑
n

wn

(
arg max
m∈M

(Pm(ŷn|xn))∩ arg max
z∈Z

(Pz(yn|xn))

)
,

(3.29)

where `2Z(P(yn | xn)) is the second most likely stage assessed by the set of
scorers (experts) denoted by Z, of the nth epoch in a sleep recording. As
with scorers, the biggest discrepancies occurred between wake versus N1, N1

versus N2 and N2 versus N3. Additionally, the weighted performance was
almost universally better than the unweighted performance, raising overall
accuracy from 87 to 94%, indicating a high consensus between automatic
scoring and scorers in places with high scorer confidence. An explanation
for these results could be that both scorers and model are forced to make a
choice between two stages when data are ambiguous. An example of this
may be seen in Fig. 2a. Between 1 and 3 h, several bouts of N3 occur, although
they often do not reach the threshold for being the most likely stage As time
progresses, more evidence for N3 appears reflecting increased proportion
of slow waves per epoch, and confidence increases, which finally yields
“definitive” N3. This is seen in both model and scorer estimates. Choosing to
present the data as hypnodensity graphs mitigates this problem. The various
model estimates produce similar results, which also resemble the scorer
assessment distribution, although models without memory fluctuate slightly
more, and tend to place a higher probability on REM sleep in periods of
wakefulness, since no contextual information is provided
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(a) (b)

Figure 3.16: Accuracy per scorer and by time resolution. (a) The effect on scoring accuracy as golden
standard is improved. Every combination of N scorers is evaluated in an unweighted manner and the mean
is calculated. Accuracy is shown with mean (solid black line) and a 95% confidence interval (gray area).
(b) Predictive performance of best model at different resolutions. Performance is shown as mean accuracy
(solid black line) with a 95% confidence interval (gray area).

3.4.2.5 Influences of sleep pathologies

To see how much may be attributed to various pathologies, five different
analyses of variance were made, with accuracy as the dependent variable,
using cohort, age (grouped as age < 30, 30 6 age < 50, and age > 50)
and sex as covariates, investigating the effect of insomnia, OSA, restless
leg syndrome (RLS), periodic leg movement index (PLMI) and NT1 on
accuracy of our machine learning routine versus human scoring. This was
performed in the cohort mentioned above with addition of the Austrian
Hypersomnia Cohort (AHC). The p-values obtained from paired t-testing
for each condition were 0.75 (insomnia), 7.53× 10

−4 (OSA), 0.13 (RLS), 0.22

(PLMI) and 1.77× 10
−15 (NT1) respectively, indicating that only narcolepsy

had a strong effect on scorer performance. Additionally, in the context
of narcolepsy, cohort and age yielded p-values between 3.69× 10

−21 and
2.81× 10

−82 and between 0.62 and 6.73× 10
−6, respectively. No significant

effect of gender was ever noted. Cohort effects were expected and likely
reflect local scorer performances and differences in PSG hardware and filter
setups at every site. Decreased performance with age likely reflects decreased
EEG amplitude, notably in N3/slow wave sleep amplitude with age36.

3.4.2.6 Resolution of sleep stage scoring

Epochs are evaluated with a resolution of 30 s, a historical standard that is
not founded in anything physiological, and limits the analytical possibilities
of a hypnogram. Consequently, it was examined to what extent the perfor-
mance would change as a function of smaller resolution. Only the models
using a segment size of 5 s were considered. Segments were averaged to
achieve performances at 5, 10, 15 and 30 s resolutions, and the resulting
performances in terms of accuracy are shown in Figure 3.16b. Although
the highest performance was found using a resolution of 30 s, performance
dropped only slightly with decreasing window sizes.
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3.4.3 Discussion

In recent years, machine learning has been used to solve similar or more
complex problems, such as labeling images, understanding speech and trans-
lating language, and have seen advancement to the point where humans are
now sometimes outperformed [95], [98], [144], while also showing promising
results in various medical fields [145]–[150]. Automatic classification of sleep
stages using automatic algorithms is not novel [78], [151], but only recently
has this type of machine learning been applied and the effectiveness has
only been demonstrated in a small numbers of sleep studies [36], [39], [152]–
[154]. Because PSGs contain large amounts of manually annotated gold stan-
dard data, we hypothesized this method would be ideal to automatize sleep
scoring. We have shown that machine learning can be used to score sleep
stages in PSGs with high accuracy in multiple physical locations in various
recording environments, using different protocols and hardware/software
configurations, and in subjects with and without various sleep disorders.

After testing various machine learning algorithms with and without mem-
ory and specific encodings, we found increased robustness using a consensus
of multiple algorithms in our prediction. The main reason for this is likely
the sensitivity of each algorithm to particular aspects of each individual
recording, resulting in increased or decreased predictability. Figure 3.12b
displays the correlations between different models. Those incorporating an
ensemble of different models generally have a higher overall correlation
coefficient than single models, and since individual models achieve simi-
lar performances, it stands to reason that these would achieve the highest
performance.

In addition to the stochastic nature of the training, one potential source for
this variability was that recordings were conducted in different laboratories
that were using different hardware and filters, and had PSGs scored by
technicians of various skill levels. Another contributor was the presence
of sleep pathologies in the dataset that could influence machine learning.
However, of the pathologies tested, only narcolepsy had a very significant
effect on the correspondence between manual and machine learning methods.
This was not surprising as the pathology is characterized by unusual sleep
stage transitions, for example, transitions from wake to REM sleep, which
may make human or machine learning staging more difficult. This result
suggests that reporting inter-model variations in accuracy for each specific
patient has value in flagging unusual sleep pathologies.

Unlike previous attempts using automatic detector validations, we were
able to include 70 subjects scored by 6 technicians in different laborato-
ries from the IS-RC to independently validate our best automatic scoring
consensus algorithm [126]. This allowed us to estimate the performance
at 87% in comparison to the performance of a consensus score for every
epoch among six expert technicians, see Table 3.14. Including more scorers
produces a better gold standard, and as Figure 3.16a indicates, the model
accuracy also increases with more scorers. Naturally, extrapolating from this
should be done with caution; however, it is reasonable to assume that the
accuracy would continue to increase with increased scorers. In comparison,
performance of any individual scorer ranges from 74 to 85% when compared
to the same six-scorer gold standard, keeping in mind this performance
is artificially inflated since the same scorers evaluated are included in the
gold standard. The best model achieves 87% accuracy using 5 scorers andThe unbiased

performance of any
scorer versus
consensus of

remaining 5 scorers
range from 69 % to

80 %.
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achieves statistically significantly higher performance values than all scorers,
as shown in Figure 3.16a and Table 3.14.

As with human scorers, the biggest discrepancies in machine learning
determination of sleep stages occurred between wake versus N1, N1 versus
N2 and N2 versus N3. This is logical as these particular sleep stage tran-
sitions are part of a continuum, artificially defined and subjective. To give
an example: an epoch comprised of 18% slow wave activity is considered
N2 while an epoch comprised of 20% slow wave activity qualifies as N3

according to AASM guidelines [43]. Overall, data indicate that our machine
learning algorithm performs better than individual scorers, as typically used
in clinical practice, or similar to the best of 5 scorers in comparison to a
combination of 5 experts scoring each epoch by consensus. It is also able
to score at higher resolution, i.e., 5 s, making it unnecessary to score sleep
stages by 30 s epochs, an outdated rule dating from the time sleep was scored
on paper.

In conclusion, models which classify sleep by assigning a membership
function to each of five different stages of sleep for each analyzed segment
were produced, and factors contributing to the performance were analyzed.
The models were evaluated on different cohorts, one of which contained 70

subjects scored by 6 different sleep scoring technicians, allowing for inter-
scorer reliability assessments. The most successful model, consisting of an
ensemble of different models, achieved an accuracy of 87% on this dataset,
and was statistically better performing than any individual scorer. It was
also able to score sleep stages with high accuracy at lower time resolution (5
s), rendering the need for scoring per 30 s epoch obsolete. When predictions
were weighted by the scorer agreement, performance rose to 95%, indicating
a high consensus between the model and human scorers in areas of high
scorer agreement. A final implementation was made using an ensemble with
small variations of the best single model. This allowed for better predictions,
while also providing a measure of uncertainty in an estimate.
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3.5 chapter summary

Sleep stage classification is performed manually by experts in sleep clinicsRH 1: Advanced
biomedical signal

processing and
machine learning
algorithms can be
used for efficient,
high-performing
analysis of sleep

studies with regards
to sleep stages

leading to major inter- and intra-variability [24], [26], [28], [29], [77]. One
potential way to overcome this challenge is to assist or augment the man-
ual scoring with fully automatic intelligent systems (RH 1), that provide
consistency and robustness in the analysis of sleep patterns. In this chapter,
we introduced methods for automating sleep stage classification using deep
neural networks with two separate model frameworks to answer research
questions RQ 1.1, RQ 1.2, and RQ 1.3.

Section 3.2 described the initial version of the MASSC algorithm, and end-RQ 1.1: can sleep
stages be effectively

and reliably classified
using novel machine
learning algorithms

to-end deep learning model based on the ResNet-50 architecture. We trained
and tested the algorithm on a collective of 2310 PSGs using three different
training strategies, the best of which yielded a high accuracy value of 84.1%
and a Cohen’s κ of 0.746. In view of the large number of PSG recordings
included in the study, these numbers compare favorably to the current state-
of-the-art in automatic sleep stage scoring, as well as the reported inter-rater
reliability measures described in Section 2.3.1.

However, like many other published papers on automatic sleep stage classi-RQ 1.2: in cases of
multiple available
data sources, is it

better to have more
volume or more

diverse data

fication, the results reported in Section 3.2 are based solely on a single cohort
of PSGs, which immediately raises concerns over the actual generalizability
of the model. In Section 3.3 we applied an updated version of the MASSC
algorithm in four different experimental settings using five cohorts differing
in size, demographics, inherent co-morbidities and recording setups. We
found that training models on individual cohorts yielded large variations in
classification performance both in LOCI and LOCO training configurations.
Strikingly, we found consistently higher sleep stage classification accuracy
as a function of the data fraction by mixing cohorts in the training data
compared to training models on single cohorts. Using 100% of the training
data, our model achieved an accuracy of 86.9% and a Cohen’s κ of 0.799,
which in light of the high numbers of both training and testing records
compares favorably to the state-of-the-art, as well as our previous reported
results in Section 3.2.

The final section described the sleep stage classification part of the STAGESRQ 1.3: how can we
guarantee that such a
system is stable with
respect to the impact

of sleep disorders

model. Here, we used specific transformations of the input PSG signals
coupled with multiple realizations of a deep neural network architecture
to create a final ensemble model for classifying sleep stages. Based on a
total 2784 PSGs, the best performing model as determined by a 2

5-factorial
experimental design yielded an accuracy of 86.8% on a dataset scored by six
technicians, while outperforming every single one based on both a biased
and unbiased consensus score. The model was also shown to be stable with
respect to the presence of several sleep disorders, with the exception of
narcolepsy which had a significant impact on the algorithm.The implications of

this will be detailed
in Chapter 5
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What, Morty, you want me to show you my math?

— Rick Sanchez
Rick and Morty, season 1, episode 6

This chapter presents the methods developed for detection of sleep events.
The multi-modal sleep event detection (MSED) algorithm for arousal and
limb movement detection, originally published in [115], is presented first
in Section 4.2 and followed by the updated version in Section 4.3. A method
for improving single-EEG arousal detection is also included in Section 4.4.
The chapter will conclude with a summary and discussion of the main
findings of the individual research items in Section 4.5.

Parts of this chapter have been modified from the following original
publications:

• A. N. Olesen, S. Chambon, V. Thorey, P. Jennum, E. Mignot, and
H. B. D. Sorensen, “Towards a Flexible Deep Learning Method for
Automatic Detection of Clinically Relevant Multi-Modal Events in the
Polysomnogram”, 2019 41st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
Berlin, Germany: IEEE, 2019, pp. 556–561. doi: 10.1109/EMBC.2019.
88565701

• A. N. Olesen, P. Jennum, E. Mignot, and H. B. D. Sorensen, A multi-
modal sleep event detection algorithm for clinical sleep analysis, 2020, (in
preparation)

• A. N. Olesen, P. Jennum, E. Mignot, and H. B. D. Sorensen, Deep
transfer learning for improving single-EEG arousal detection, 2020. arXiv:
2004.05111 [cs.CV], (accepted, IEEE EMBC 2020)

4.1 research background

As described in Chapter 2, a correct diagnosis of sleep disorders is predicated
on precise scoring of sleep stages as well as accurate scoring of discrete

1 ©2019 IEEE

75

https://doi.org/10.1109/EMBC.2019.8856570
https://doi.org/10.1109/EMBC.2019.8856570
https://arxiv.org/abs/2004.05111
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sleep events. However, the current gold standard of manual analysis by
experienced technicians is inherently biased and inconsistent due to low inter-
rater reliability on the scoring of sleep stages [24], [26], [28], arousals [68],
and respiratory events [27], as described in Section 2.3. As manual analysis
of PSGs is also time-consuming and prone to scorer fatigue, there is a need
for efficient systems that provide deterministic and reliable scorings of sleep
studies.

Although classification of sleep stages in large cohorts has been explored
with good results [73], [82], [85], [89], [157], reliable and consistent detection
and classification of discrete PSG events in large cohorts remains largely
unexplored. Two studies recently proposed methods for automatic detection
of arousals [158], and leg movements [159], and both tested their algorithms
on a subset of data from two cohorts scored by multiple technicians. Both
studies found that their algorithms could score as well as, or in some cases
outperform, human scorers. However, both methods predicted events at
discrete intervals, which might introduce biases in the decision making of
when to merge and split certain predictions.

Recent studies on certain micro-events in sleep have indicated that deep
learning methods reliably detect and annotate sleep spindles and K-complexes
with start time and duration [113], [114]. These studies proposed a single-shot
event detection algorithm, that parallels the YOLO and SSD algorithms used
for object detection in 2d images [160]–[162], but were limited in scope by
detecting events only at the EEG level, and did not explicitly take advantage
of the temporal connection of the detected events. Additionally, experiments
were carried out on a small-scale database [113].

Designing reliable and robust systems for automated sleep analysis based
on machine learning algorithms often requires multiple heterogeneous data
sources of sufficient size. However, due to differences in clinical practice,
few datasets in sleep science have standardized recording setups despite
guidelines from the AASM. This creates a channel mismatch problem, in which
the overlap between our source and target domains is small, and the domains
are possibly disjointed. Deep transfer learning has recently been investigatedUsing a pre-trained

deep neural network
on a separate domain.

to solve the channel mismatch problem when training and testing sleep stage
classification models [163], [164]. By using a fine-tuning strategy the authors
significantly improved the performance of sleep stage scoring models when
trained on various combinations of EEG and EOG channels.

4.1.1 Research motivation and objectives

Motivated by these unresolved issues in sleep scoring, we were interested
in the following research questions specifically related to research hypothe-
sis RH 2:RH 2: Advanced

biomedical signal
processing and

machine learning
algorithms can be
used for efficient,
high-performing
analysis of sleep

studies with regards
to sleep events.

RQ 2.1 can sleep events be detected precisely and reliably using novel machine
learning algorithms?

RQ 2.2 can the detection of one event class modulate the detection of an event
from another class?

RQ 2.3 how can we overcome the channel mismatch problem for sleep event
detection?

In this case, detection covers both localization and classification of sleep events.Localization places an
unclassified sleep
event in the time

domain, while
classification

determines the class,
or type, of the sleep

event.

Derived from the research hypothesis and associated questions, the follow-
ing research objectives were formulated:
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(i) a single model should detect multiple sleep events independently;

(ii) the events should be annotated with a start and duration directly to
avoid unnecessary postprocessing of predictions.

The following sections describe the steps taken to complete the posed
design objectives and answer the research questions.



78 sleep event detection

4.2 paper iv : towards a flexible deep learning method for

automatic detection of clinically relevant multi-modal

events in the polysomnogram

abstract : Much attention has been given to automatic sleep stag-
ing algorithms in past years, but the detection of discrete events in
sleep studies is also crucial for precise characterization of sleep pat-
terns and possible diagnosis of sleep disorders. We propose here
a deep learning model for automatic detection and annotation of
arousals and leg movements. Both of these are commonly seen during
normal sleep, while an excessive amount of either is linked to dis-
rupted sleep patterns, excessive daytime sleepiness impacting quality
of life, and various sleep disorders. Our model was trained on 1485

subjects and tested on 1000 separate recordings of sleep. We tested
two different experimental setups and found optimal arousal detec-
tion was attained by including a recurrent neural network module
in our default model with a dynamic default event window (F1 =
0.75), while optimal leg movement detection was attained using a
static event window (F1 = 0.65). Our work show promise while still
allowing for improvements. Specifically, future research will explore
the proposed model as a general-purpose sleep analysis model.

4.2.1 Materials & Methods

4.2.1.1 MrOS Sleep Study

The MrOS Sleep Study is a part of the larger Osteoporotic Fractures in Men
Study with the objective of researching the links between sleep disorders, frac-
tures, cardiovascular disease and mortality in older males (>65 years) [103]–
[105]. Between 2003 and 2005, 3135 of the original 5994 participants were
recruited to undergo full-night PSG recording at six centers in the US at
two separate visits (visit 1 and visit 2) with following 3 to 5-day actigraphy
studies at home. The resulting PSG studies were subsequently scored by
experienced sleep technicians for standard sleep variables including sleep
stages, leg movements, arousals, and respiratory events.

4.2.1.2 Included events and signals

In this study, we only considered the detection of two PSG events: arousals
and leg movements. These events are characterized by a start time and a
duration, which we extracted from 2907 PSG studies from visit 1 available
from the National Sleep Research Resource repository [107], [108]. From
each PSG study, we extracted left and right central EEG, left and right EOG,
chin EMG, and EMG from the left and right anterior tibialis. EEG and EOG
channels were referenced to the contralateral mastoid process, while a leg
EMG channel was synthesized by referencing left to right. Any PSG without
the full set of channels or without any event scoring was eliminated from
further analysis.
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Table 4.1: MrOS data demographics.

train eval test p-value

N 1485 165 1000

Age, years 76.4± 5.5 76.6± 4.9 76.4± 5.6 0.631

BMI, kg s−2
27.2± 3.8 27.2± 3.4 27.1± 3.7 0.879

AHI, h−1
12.8± 12.9 10.6± 11.8 11.9± 12.8 0.029

ArI, h−1
23.6± 11.5 24.1± 12.2 23.4± 11.8 0.607

PLMI, h−1
34.8± 37.0 37.8± 38.9 37.3± 38.0 0.204

Continuous variables were tested for significance with Mann-
Whitney U-tests. Significant p-values at α = 0.05 are shown
in bold. BMI: body-mass index; AHI: apnea-hypopnea index;
ArI: arousal index; PLMI: periodic leg movement index.

4.2.1.3 Subset demographics and partitioning

In total, 2650 out of the 2907 PSGs available from visit 1 were included in
this study. These were partitioned into train, eval, and test sets containing
1485, 165, and 1000 studies, respectively. A subset of key demographic and
PSG variables are presented in Table 4.1.

4.2.1.4 Signal preprocessing

All signals were resampled to fs = 128 Hz using poly-phase filtering with
a Kaiser window (β = 5.0) before subsequent filtering according to AASM
criteria [43]. Briefly, EEG and EOG channels were subjected to a 4th order
digital Butterworth band-pass filter with a 0.3 Hz to 35 Hz passband, while
chin and leg EMG channels were filtered with a 4th order digital Butterworth
high-pass filter with a 10 Hz cutoff frequency. All filters were implemented
using zero-phase filtering. Lastly, each channel was normalized by subtract- The zero-phase

filtering procedure
filters a signal in the
forward direction,
and then in the
reverse direction,
while matching the
initial conditions of
the filter in the
reverse direction.

ing the channel mean and dividing by the channel standard deviation across
the entire night.

4.2.1.5 Detection model overview

In brief, the proposed model receives as input a tensor x ∈ RC×T containing
C channels of data in a segment of T samples, along with a set of events
{εi ∈ R2 | εi = (ρi, δi), i ∈ JNxK}, were Nx is the number of events in the
associated time segment and (ρi, δi) are the start time and duration of event
εi. The objective of the deep learning model f is then to infer {εi} given
x. To do this, a set of default events {εdj ∈ R2 | j ∈ JNdK, Nd = T/τ} is
generated over the segment of T samples, where τ is the size of each default
event window in samples. The model outputs probabilities for K classes
including the default, non-event class for each default event window. The
probability for a given class k in the default event window εdj must be
greater than a classification threshold θclf. In order to select among many
possible candidates of predicted events, all predicted events of class k over
the possible events in Nd is subjected to non-maximum suppression using
the intersection over union (IoU) as in [160], [161]. A high-level schematic of The intersection over

union (IoU) is also
known as the Jaccard
index.

the detection model is shown in Figure 4.1.
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PSG 𝐱 ∈ 𝐑𝐶×𝑇

𝑓 ∶ 𝐑𝐶×𝑇 → 𝐑2×𝑁𝑑 × 𝐑 𝐾+1 ×𝑁𝑑

휀𝑗
∗ ∈ 𝐑2| 휀𝑗

∗ = 𝜚𝑗
∗, 𝛿𝑗

∗ 𝑝𝑗 ∈ 𝐑+
𝐾+1 𝑝 𝜏𝑗 = 𝑘 𝐱

𝐶

𝑇

𝐾 + 1
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2

(a)

(b)

arg max IoU

Figure 4.1: Schematic of proposed event detection procedure. (a) Input data x is fed to the model f, which
outputs predictions for event classes and localizations for each default event in εd. (b) The IoU for each
predicted ε∗j is then calculated with respect to the true event εi and non-maximum suppression is applied
to match up true events and predictions. In the current case, the predicted event marked in black has the
highest IoU with the true event in blue. For more information, see [113], [114], [162].
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Table 4.2: Event detection network architecture.

Module Input dim. Output dim. Type Kernel Filters Stride Activation

φC (C,T) (C,T) 1d conv C C 1 linear

φT ,init (C,T) (8,T) 1d conv 3 8 1 –

(8,T) (8,T) batch norm. – 8 – ReLU

(8,T) (8, T/2) 1d maxpool 2 – 2 –

φT ,n (2
n+1, T/2

n−1) (2
n+2, T/2

n−1) 1d conv 3 2
n+2

1 –

(2
n+2, T/2

n−1) (2
n+2, T/2

n−1) batch norm. – 2
n+2 – ReLU

(2
n+2, T/2

n−1) (2
n+2, T/2

n) 1d maxpool 2 – 2 –

φR (C̃, T̃) (2× C̃, T̃) bGRU C̃ – – –

ψclf (C̃, T̃) (KNd, 1) 1d conv T̃ KNd T̃ softmax over K filters

ψloc (C̃, T̃) (2Nd, 1) 1d conv T̃ 2N T̃ linear

φC, linear mixing module; φT , temporal feature extraction module; φR, recurrent neural network
module; ψclf, event classification module; ψloc, event localization module; C, number of input channels;
T , number of samples in segments; C̃ = 2

2+nmax , number of output channels; K, number of event
classes; Nd, number of default events in segment; T̃ = T/2nmax , reduced temporal dimension; bGRU,
bidirectional gated recurrent unit; ReLU, rectified linear unit.

4.2.1.6 Network architecture

The architecture for the proposed PSG event detection model closely follows
the event detection algorithms described in [113], [114], albeit with some
specific changes. An overview of the proposed network in the model f is
provided in Table 4.2. Briefly, the model comprises three modules:

1. a channel mixing module φC : RC×T → RC×T ;

2. a feature extraction module φT : RC×T → RC̃×T̃ ;

3. and an event detection module ψ,

the latter contains two submodules performing event classification ψclf :

RC̃×T̃ → R(K+1)×Nd and event localization ψloc : RC̃×T̃ → R2×Nd , respec-
tively. φclf outputs the probability of the default, non-event class and K event
classes, while φloc predicts a start time and a duration of all predicted events
relative to a specific default event window. The channel mixing module
φC receives a segment of input data x ∈ RC×T , where C is the number of
input channels and T is the number of time samples in the given segment,
and subsequently performs linear channel mixing using 1d convolutions to
synthesize C new channels. Following φC, the feature extraction module φT
consists of nmax blocks with the first block φT ,1 : RC×T → R8×T/2 and the
nth block φT ,n : R2

n+1×T/2
n−1 → R2

k+2×T/2
n . All nmax blocks implement φT ,n

using 1d convolution layers followed by batch normalization of the feature
maps, rectified linear unit activation, and final 1d maximum pooling layers
across the temporal dimension. Kernel sizes and strides for convolution and
max. pool. layers in φT were set to 3 and 1, and 2 and 2, respectively, while
the number of feature maps in φT ,n was set to 2

n+2. The event classification
submodule ψclf is implemented a 1d convolution layer across the entire data
volume using (K+ 1)Nd feature maps of size and stride T̃ = T/2nmax , where
K ∈ N is the number of event classes to be detected and Nd ∈ N is the
number of default event windows. The event localization submodule ψloc
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is likewise implemented using a 1d convolution layer across the entire data
volume.

4.2.1.7 Data and event sampling

The proposed network requires an input tensor x ∈ RC×T containing PSG
data in the time segment of size T as well as information about the associated
events in the segment. Since the total number of segments in a standard PSG
without any event data by far outnumbers the number of segments with
event data, we implemented a random sampling of non-event and event
classes with the sampling probability of class k inversely proportional to the
number of classes, such that pk = 1

K+1
, k = [0 ..K], where k = 0 is the default

(non-event) class. At training step t, we thus sample a class k and afterwards
randomly sample a single class k event εk between all class k events. Finally,
we extract a segment of PSG data of size C× T with start of segment in the
interval [ε̄k − T , ε̄k + T ], where ε̄k is the sample midpoint of εk. This ensures
that each x overlaps 50% with at least one associated event.

4.2.1.8 Optimization of network parameters

The network parameters were optimized using mini-batch stochastic gra-
dient descent with initial learning rate of 10

−3 and a momentum of 0.9.
Mini-batches were balanced with respect to the detected classes. The opti-
mization of the network was performed with respect to the same loss function
described in [113], [114], and the network was trained until convergenceWe used a worst

negative mining
approach with a

positive/negative
sample ratio of 3.

determined by no decrease in the loss on the eval set over 10 epochs of
train data. We also employed learning rate decay with a factor of 2 every 5

epochs of non-decreasing eval loss.

4.2.1.9 Experimental setups

In this study, we examined two different experimental setups:

experiment a First, we investigated the differences in predictive per-
formance using a static vs. a dynamic default event window size. This was
realized by running six separate training runs with τ ∈ {3, 5, 10, 15, 20, 30}×
fs, as well as a single training run where f was evaluated for all τ in
{3, 5, 10, 15, 20, 30}× fs. The best performing model was determined by evalu-
ating F1 score on the eval set for both LM and Ar detection.

experiment b Second, we tested a network where we added a recurrent
processing block φR after the feature extraction block φT as shown in grey
in Table 4.2. We considered a single bidirectional gated recurrent unit (bGRU)
layer with C̃ units. Predictions were evaluated across multiple time-scales
τ ∈ {3, 5, 10, 15}× fs.

All experiments were implemented in PyTorch 1.0 [165], [166].



4.2 olesen, chambon, thorey, jennum , mignot, & sorensen, 2019 83

4.2.1.10 Performance metrics

All models were evaluated on the eval and test sets using precision (Pr),
recall (Re), and F1 scores (F1):

Pr =
TP

TP + FP
, Re =

TP
TP + FN

(4.1)

F1 = 2

Pr ∗Re
Pr + Re

=
2TP

2TP + FP + FN
, (4.2)

where TP, FP, and FN, are the number of true positives, false positives and
false negatives, respectively.

4.2.2 Results and discussion

Shown in Figures 4.2a and 4.2b are the F1 scores as a function of IoU and the
classification threshold θclf for both the LM and Ar detection models. It is
apparent that both models perform best with a minimum overlap (IoU = 0.1)
with their respective annotated events, and do not benefit from increasing
the overlap. This might be caused by the annotated events being imprecise
and not by issues with the model itself. For example, it is not uncommon to
only mark the beginning of an event in standard sleep scoring software, as
the duration will automatically be annotated by a default length. . Future 3 s for Ars, and 0.5 s

for LM are the
minimum durations
as defined by
AASM [43]

studies will be able to confirm this by either collecting a precisely annotated
cohort, or by investigating the average start time and duration discrepancies
between annotated and predicted events.

It is also apparent from Figures 4.2a and 4.2b that both detection models
benefit from imposing a strict classification threshold. Specifically, LM de-
tection performance as measured by F1 was highest with θclf = 0.6, while
maximum Ar detection performance was attained with an even higher θclf
of 0.8.

By allowing for multiple time-scales in the dynamic models, shown in Fig-
ure 4.2c, we hypothesized that dynamic default event windows would allow
for more flexibility and thus better predictive performance. However, we
observed no significant differences between the optimal static window and
the dynamic window model.

Shown in Figure 4.3 are the performance curves for the RNN (bidirectional
GRU) version of the proposed model for each of the two event detection
tasks. While the optimal IoU and θclf points are unchanged from the stat-
ic/dynamic models presented in Figure 4.2, the optimal F1 value for Ar
detection is increased by incorporating temporal dependencies in the model.
The reverse is true for LM detection, which saw a slight decrease in predic-
tive performance caused by lower precision. Future work should consider See Table 4.3

optimizing predictive performance by investigating the effects of varying the
number of bGRU layers and the number of hidden units in φR, since this
was not performed here.

Application of the optimal models on the test data is shown in Table 4.3.
With the given architecture of f and the given labels and input data in
train, LM detection was maximal for the model with a static/dynamic
window, while adding a recurrent module only positively impacted Ar
prediction. Precision and recall decreased for LM detection when adding φR,
while precision increased and recall decreased for Ar detection. An example
visualization of the joint distribution of F1 scores obtained from the dynamic
model applied to the test data is shown in Figure 4.4. While some outliers
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Figure 4.2: Experiment A: Optimizing IoU and θclf in static models on the eval set by varying default
event window size in seconds in {3, 5, 10, 15, 20, 30} (a)-(b). Left panels show the IoU vs. F1 score, while right
panels show classification threshold θclf against F1 score. (a) LM model. Here, the model performs best
for IoU = 0.1 and θclf = 0.6 using a window size of τ = 3 s× fs. (b) Ar model. Here, the model performs
best for IoU = 0.1 and θclf = 0.8 using a window size of τ = 15 s× fs. (c) Dynamic models show optimal
performance for IoU = 0.1 and θclf = 0.7 and θclf = 0.6 for Ar and LM detection, respectively.
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Figure 4.3: Experiment B. F1 performance on the eval set as a function of IoU and
θclf for Ar and LM detection when adding the φR module. Best performance is seen
for IoU = 0.1 for both Ar and LM detection, and θclf = 0.6 and θclf = 0.8 for LM and
Ar detection, respectively.

are readily observable, especially for LM detection, the majority of subject F1

scores follows an approximate bivariate normal distribution.
Subset partitions were reasonably well-distributed with no significant

differences between key variables, see Table 4.1. An exception is the AHI,
although the associated effect is small and most likely a result of the low
sample size in eval compared to train and test. It is noted, that although
AHI, arousal index (ArI), and PLMI are not normally distributed and sum-
marizing these variables with standard deviations is invalid, it is nevertheless
standard practice in sleep medicine and thus presented the same way here.
We performed little data cleaning in order to provide as much data and
variation to the deep learning model as possible, however, future efforts
should explore and apply inclusion criteria such as minimal total sleep time,
artifact detection and removal of studies with severe artifacts. We did impose
a trivial lower bound on the number of scored events (>0) for a PSG to be
included in this study, but stricter requirements could potentially improve
model performance.

In this work, we investigated somatic PSG events present in multiple signal
modalities instead of EEG-specific events, which required changes to the
network architecture. Specifically, we kept the signal modality encoded in the
first dimension of the tensor propagated through the network, which allowed
for the use of 1d convolutional operators. By performing 1d convolutions
and keeping the channel information in the feature maps instead of keeping
them as separate dimensions and performing 2d convolutions as proposed
in [113], [114], we simplify and reduce the number of computations and
training time by a factor ∝ C.

However, we did not investigate the effects of modeling the conditional
probability of Ar and LM occurrence, but the proposed architecture is ver-
satile enough to detect both events jointly as well as separately. Previous
work also suggest that detecting multiple objects at the same time is of
high interest and leads to (at least) non-inferior performances [113], [114],
[160]–[162].

Additionally, we speculated that the temporal dynamics of the PSG signals
were important for optimal event detection performance. Although the effects
were small, the F1 score in Ar detection increased when adding an RNN
module to the network before the detection module. However, this was not
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Table 4.3: Application of optimized models on test data.

Model F1 Pr Re

LM, static 0.648± 0.148 0.631± 0.181 0.720± 0.141

Ar, static 0.727± 0.102 0.706± 0.113 0.771± 0.132

LM, dynamic 0.647± 0.148 0.627± 0.181 0.722± 0.140

Ar, dynamic. 0.729± 0.102 0.699± 0.115 0.785± 0.131

LM, RNN 0.639± 0.147 0.606± 0.180 0.727± 0.126

Ar, RNN 0.749± 0.105 0.772± 0.107 0.748± 0.138

Data are shown as subject-averaged F1, precision (Pr) and
recall (Re) with associated standard deviations. Top four
rows correspond to Experiment A, while bottom two rows
correspond to Experiment B. Ar: arousal; LM: leg movement;
RNN: recurrent neural network.

the case for LM detection, which is most likely due to the different temporal
and physiological characteristics of the two events in question.

Future efforts will address the fact that events are mutually exclusive in
the current modeling scheme, given a certain default event window size.
However, it is common to see Ars and LMs as a result of one another, and
thus, if the window size is too small, a more unlikely event, as measured by
classification threshold and IoU, will be removed even if it matches up to a
specific true event of a certain class.
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Figure 4.4: Visualization of F1 scores for both Ar and LM detection using the dynamic
model.
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4.3 paper vi : a multi-modal sleep event detection model for

clinical sleep analysis

study objective : Clinical sleep analysis require manual analysis
of sleep patterns for correct diagnosis of sleep disorders. Several
studies show significant variability in scoring discrete sleep events.
We wished to investigate, whether an automatic method could be
used for detection of arousals (Ar), leg movements (LM) and sleep
disordered breathing (SDB) events, and if the joint detection of these
events performed better than having three separate models.
methods : We designed a single deep neural network architecture
to jointly detect sleep events in a polysomnogram. We trained the
model on 1653 recordings of individuals, and tested the optimized
model on 1000 separate recordings. The performance of the model
was quantified by F1, precision, and recall scores, and by correlating
index values to clinical values using Pearson’s correlation coefficient.
results : F1 scores for the optimized model was 0.70, 0.63, and
0.62 for Ar, LM, and SDB, respectively. The performance was higher,
when detecting events jointly compared to corresponding single-event
models. Index values computed from detected events correlated well
with manual annotations (r2 = 0.73, r2 = 0.77, r2 = 0.78, respectively).
conclusion : Detecting arousals, leg movements and sleep disor-
dered breathing events jointly is possible, and the computed index
values correlates well with human annotations.

Clinical sleep analysis is currently performed manually by experts based
on guidelines from the AASM detailed in the AASM Scoring Manual [43].
The guidelines detail both technical and clinical best practices for setting up
and recording PSGs, which are overnight recordings of various electrophys-
iological signals, such as EEG, EOG, chin and leg EMG, ECG, respiratory
inductance plethysmography from the thorax and abdomen, oronasal pres-
sure, and blood oxygen levels.

Based on these signals, expert technicians analyse and score the PSG for
sleep stages [W, REM sleep, N1, N2, and N3], and sleep micro-events sum-
marized in key metrics, such as the AHI (number of apneas and hypopneas
per hour of sleep), the PLMI (number of period leg movements per hour of
sleep), and the ArI (number of arousals per hour of sleep).

Arousals are defined as abrupt shifts in EEG frequencies towards alpha,
theta, and beta rhythms for at least 3 s with a preceding period of stable
sleep of at least 10 s. During REM sleep, where the background EEG shows
similar rhythms, arousal scoring requires a concurrent increase in chin EMG
lasting at least 1 s. LMs should be scored in the leg EMG channels, when
there is an increase in amplitude of at least 8 µV above baseline level with a
duration between 0.5 s to 10 s. A PLM series is then defined as a sequence
of 4 LMs, where the time between LM onsets is between 5 min to 90 min.
Apneas are generally scored when there is a complete (>90 % of pre-event
baseline) cessation of breathing activity either due to a physical obstruction
(obstructive apnea) or due to an underlying disruption in the central nervous
system control (central apnea) for at least 10 s. When the breathing is only
partially reduced (>30 % of pre-event baseline) and the duration of the
excursion is >10 s, the event is scored as a hypopnea if there is either a >4 %
oxygen desaturation or a >3 % oxygen desaturation coupled with an Ar.
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However, several studies have shown significant variability in the scoring
of both sleep stages [23], [24], [26], [28], [29], [67], [167] and sleep micro-
events [21], [22], [25], [27], [68]–[71]. This has prompted extensive research
into automatic methods for classifying sleep stages in large-scale studies [72],
[73], [83], [85], [87]–[89], [99], while the research in automatic arousal [115],
[158], [168] and LM [159] detection on a similar scale is limited. Biswal et
al. recently proposed a model based on a combination of recurrent and
convolutional neural networks, where the same architecture was used for
sleep stage classification, AHI and limb movement index (LMI) prediction.
They trained their model using 9000 PSG recordings and evaluated the
performance on the three tasks on a held out test set containing 1000 PSGs.
However, this model was trained in separate runs for each downstream
task; furthermore, post-processing was performed on the event predictions
(apneas, limb movements).

In this study, we introduce the MSED model for joint detection of sleep
micro-events, in this case Ars, SDB, and LMs. The model is based on recent
advances in machine learning and challenges current state of the art methods
by directly classifying and localizing sleep micro-events in the PSG signals
at the same time.

4.3.1 Data

We collected PSGs from the MrOS Sleep Study, an ancillary part of the
larger Osteoporotic Fractures in Men Study. The main goal of the study is to
research and discover connections between sleep disorders, skeletal fractures,
and cardiovascular disease and mortality in community-dwelling older (>65

years) [103]–[105]. Of the original 5994 study participants, 3135 subjects were
enrolled at one of six sites in the USA for a comprehensive sleep assessment,
while 2909 of these underwent a full-night in-home PSG recording, The PSG
studies were subsequently scored by certified sleep technicians. Sleep stages
were scored into stages 1, 2, 3, 4 and REM, while stages 3 and 4 combined
into slow wave sleep (SWS) according to R&K rules [106]. Ars were scored
as abrupt increases in EEG frequencies lasting at least 3 s according to ASDA
rules [169]. Apneas were defined as complete or near complete cessation
of airflow lasting more than 10 s with an associated 3 % or greater SaO2

desaturation, while hypopneas were based on a clear reduction in breathing
of more than 30 % deviation from baseline breathing lasting more than 10 s,
and likewise assocated with a greater than 3 % SaO2 desaturation. While
the scoring criteria for scoring LMs are not explicitly available for the MrOS
Sleep Study, the prevailing standard at the time of the study was to score
LMs following an increase in leg EMG amplitude of more than 8 µV above
resting baseline levels for at least 0.5 s, but shorter than 10 s [170].

4.3.1.1 Subset demographics and partitioning

We used a total of 2853 PSG studies downloaded from the NSRR [107], [108],
which we partitioned into a training set (Dtrain, ntrain = 1653), a validation
set (Deval, neval = 200), and a final testing set (Dtest, ntest = 1000). Key
demographics and PSG-related variables for each subset are shown as mean
± standard deviation with range in parenthesis in Table 4.4.
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Table 4.4: MrOS demographics by subset.

Dtrain Deval Dtest p-value

n 1653 200 1000 -

Age, years 76.4± 5.6 [67.0 − 90.0] 76.8± 5.4 [68.0 − 90.0] 76.4± 5.3 [67.0 − 90.0] 0.404

BMI, kg s−2
27.3± 3.9 [16.0 − 47.0] 27.0± 3.6 [19.0 − 40.0] 27.0± 3.7 [17.0 − 45.0] 0.247

TST, min 357.3± 69.0 [54.0 − 615.0] 354.0± 69.1 [108.0 − 503.0] 353.6± 68.7 [62.0 − 572.0] 0.312

SL, min 22.9± 25.6 [1.0 − 349.0] 21.6± 23.0 [1.0 − 135.0] 25.1± 32.1 [1.0 − 402.0] 0.284

REML, min 109.5± 77.9 [0.0 − 578.0] 103.5± 70.0 [10.0 − 413.0] 107.2± 75.3 [3.0 − 590.0] 0.466

WASO, min 116.7± 67.1 [11.0 − 462.0] 119.0± 70.8 [15.0 − 372.0] 112.9± 65.0 [6.0 − 458.0] 0.471

SE, % 75.9± 12.1 [17.0 − 97.0] 75.5± 12.3 [37.0 − 96.0] 76.4± 11.8 [26.0 − 98.0] 0.690

N1, % 6.8± 4.1 [0.0 − 31.0] 7.0± 4.5 [0.0 − 28.0] 6.9± 4.7 [1.0 − 58.0] 0.968

N2, % 62.7± 9.5 [28.0 − 89.0] 62.0± 9.7 [30.0 − 90.0] 62.8± 10.0 [21.0 − 95.0] 0.451

N3, % 11.4± 9.0 [0.0 − 55.0] 11.8± 9.7 [0.0 − 55.0] 11.1± 9.0 [0.0 − 57.0] 0.638

REM, % 19.2± 6.5 [0.0 − 44.0] 19.4± 7.2 [0.0 − 41.0] 19.3± 6.7 [0.0 − 42.0] 0.894

ArI, h−1
23.5± 11.8 [3.0 − 87.0] 23.4± 11.0 [4.0 − 77.0] 23.8± 11.8 [4.0 − 102.0] 0.661

AHI, h−1
13.5± 13.9 [0.0 − 83.0] 13.6± 13.3 [0.0 − 59.0] 14.2± 15.5 [0.0 − 89.0] 0.907

PLMI, h−1
35.4± 37.1 [0.0 − 233.0] 36.6± 39.0 [0.0 − 178.0] 36.0± 37.7 [0.0 − 175.0] 0.993

Data are shown as means ± standard deviations (range) across PSGs. Variables were tested with Kruskal-
Wallis H-tests. Significant p-values at significance level α = 0.05 are highlighted in bold. BMI: body-mass
index; TST: total sleep time; SL, sleep latency, REML: REM sleep latency; WASO: wake after sleep onset;
SE, sleep efficiency, N1: non-rapid eye movement stage 1; N2: non-rapid eye movement stage 2; N3: non-
rapid eye movement stage 3; REM: rapid eye movement; ArI: arousal index; AHI: apnea-hypopnea index;
PLMI: periodic leg movement index.

4.3.1.2 Signal and events

For this study, we considered three PSG events: Ars, LMs, and SDB events,
which includes all forms of apneas (obstructive and central) and hypopneas.
These event types are each based on a specific set of electrophysiological
channels from the PSG, and as such, we extracted left and right central
EEG (C3 and C4), left and right EOG, left and right chin EMG, left and
right leg EMG, nasal pressure, and respiratory inductance plethysmography
from the thorax and abdomen. EEG and EOG channels were referenced to
the contralateral mastoid process, while a chin EMG was synthesized by
subtracting the right chin EMG from the left chin EMG.

Apart from the raw signal data, we also extracted onset time relative to
the study start time and duration times for each event type in each PSG.

4.3.2 Methods

notation We denote by Ja,bK the set of integers {n ∈ N | a 6 n 6 b}

with JNK being shorthand for J1,NK, and by n ∈ JNK the nth sample in
JNK. A segment of PSG data is denoted by x ∈ RC×T , where C, T is the
number of channels and the duration of the segment in samples, respectively.
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The corresponding set of Nt true events for the segment is denoted by
εt =

{(
ρti , δ

t
i

)
∈ R2

+ | i ∈ JNtK
}

, where ρ, δ are the center point and duration,
respectively, of the ith event. By ffl ∈ D∗ we denote a sample in either one
of the three subsets. In the description of the network architecture, we have
omitted the batch dimension from all calculations for brevity.

4.3.2.1 Model overview

Given an input set χ =
{

x, εt
}
∈ RC×T ×RNt×2

+ containing PSG data with
C channels and T time steps, and true events ε, the goal of the model is to
detect any possible events in the segment, where, in this context, detection
covers both classification and localization of any event in the segment space.

To accomplish this, the model generates a set of default event windows
εd =

{(
ρdj , δdj

)
∈ R2

+ | j ∈ JNdK
}

for the current segment, and match each
true event to a default event window if their intersection-over-union (IoU) is
at least 0.5.

At test time, we generate predictions over the default event windows and
use a non-maximum suppression procedure to select between the candidate
predictions. For a given class k, the procedure is as follows. First, the pre-
dictions are sorted according to probability of the event, which is above a
threshold θk. Then, using the most probable prediction as an anchor, we se-
quentially evaluate the IoU between the anchor and the remaining candidate
predictions, removing those with IoU >= 0.5.

The output of the model is thus the set {p, y} containing the predicted class
probabilities along with the corresponding onsets and durations.

4.3.2.2 Signal processing pipeline

We resampled all signals to a common sampling frequency of fs = 128 Hz
using a poly-phase filtering approach (Kaiser window, β = 5.0). Based on
recommended filter specifications from the AASM, we designed Butterworth
IIR filters for four sets of signals. EEG and EOG channels were filtered with
a 2nd order filter with a 0.3 Hz–35 Hz passband, while chin and leg EMG
channels were filtered with a 4th order high-pass filter with a 10 Hz cut-off
frequency. The nasal pressure channel was filtered with a 4th order high-pass
filter with a 0.03 Hz cut-off frequency, while the thoracoabdominal channels
were filtered with a 2nd order with a 0.1 Hz–15 Hz passband.

All filters were implemented using the zero-phase method, which sequen-
tially applies the filter in the forward direction, and then in the backwards
direction. This accounts for the non-linear phase response and subsequent
frequency-dependent group delay inherent in IIR filters, but also effectively
squares the magnitude response of the filter.

Filtered signals were subsequently standardized by

x(i) =
x̂(i) − µ(i)

σ(i)
, (4.3)

where x̂(i) ∈ RC×T is the raw matrix containing C input channels and T

samples, and µ(i),σ(i) ∈ RC are the mean and standard deviation vectors
for the ith PSG, respectively. This is a common approach in computer vision
tasks, and beneficial to ensure a proper gradient propagation through a deep
neural network [171].
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4.3.2.3 Target encoding

For each data segment, target event classes π ∈ RNm×K generated by one-
hot encoding, while the target detection variable containing the onset and
duration times t ∈ RNm×2 was encoded as

ti =

(
ρmi − ρdj

δdj
, log

δmi
δdj

)
, i ∈ JNmK, j ∈ JNdK, (4.4)

where ρmi is the center point of the true event matched to a default event
window ρdj , and δmi and δdj are the corresponding durations of the true and
default events.

4.3.2.4 Data sampling

As the total number of default event windows in a data segment Nd most
likely will be much higher than the number of event windows matched
to a true event, i. e. Nd � Nm, we implemented a similar random data
sampling strategy as in [115]. At training step t, a given PSG record r

has a certain number of associated number of Ar, LM, and SDB events
(nAr,nLM,nSDB, respectively). We randomly sample a class k with equal
probability pk = 1

K , whilst disregarding the negative class, since this class
is most likely over-represented in the data segment. Given the class k, we
randomly sample an event εk with probability p(εk) ∝ nk, and afterwards,
we extract a segment of data of size C× T , where the start of the segment is
sampled from [ε̄k − T , ε̄k + T ], where ε̄k is the sample midpoint of the event
εk, thereby ensuring at least 50 % overlap with at least one event associated
with the data segment.

We found that this approach to sampling data segments with a large ratio
of negative to positive samples to be beneficial in all our experiments, when
monitoring the loss on the validation set.

4.3.2.5 Network architecture

Similar to the architecture described in [158], we designed a splitstream
network architecture for the differentiable function Φ, where each stream is
responsible for the bulk feature extraction for a specific event class. For the
given problem of detecting Ars, LMs, and SDBs, the network contains three
streams: the Ar stream takes as input the EEGs, the EOGs, and the chin EOG
signals for a total of CAr = 5 channels; the LM stream receives the CLM = 2

leg EMG signals; and the SDB stream receives the nasal pressure and the
thoracoabdominal signals for a total of CSDB = 3 channels. An overview of
the network architecture is shown graphically in Figure 4.5.

4.3.2.6 Stream specifics

Each stream is comprised of two components. First, a mixing module
ϕmix : RC∗×T → RC∗×T computes a non-linear mixing of the C channels
using a set of C single-strided 1-dimensional filters w ∈ RC×C and ReLU
activation [172], such that ϕmix(x) = max{0, w⊗ x + b}, where the max opera-
tion introduces the non-linearity, ⊗ is the conv operator over the C feature
maps, and b ∈ RC is a bias vector (in this case b = 0). Second, the output
activations from ϕmix are used as input to a deep neural network module
ϕfeat : RC∗×T → Rf

′×T ′ , which transforms the input feature maps to a f′ × T ′
feature space with a temporal dimension reduced by a factor of T

T ′ . The
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Figure 4.5: MSED network architecture. The left column shows the output dimensions for each operation as
(number of filters[ x singleton] x time steps). Each stream on the right (green) processes a separate set of
input channels (blue, top), the results of which are concatenated before the bGRU (yellow). The outputs
from the additive attention layer (purple) are convolved in the final classification and localization layers
(red) to output the probabilities for each event class, and the predicted onset and duration of each event
(blue, bottom). Convolution layers (orange, green, red) are detailed as [number of feature maps x kernel
size, stride]. Recurrent layer (yellow) shows the direction and number of hidden units. Additive attention
layer (purple) is described with the number of hidden and output units.
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feature extraction module ϕfeat is realized using kmax successive conv opera-
tions with an increasing number of filters f′ = f02

k−1, k ∈ JkmaxK, where f0
is a tunable base filter number. Each conv feature map is normalized using
batch normalization (BN) [116], such that if z̃ ∈ Rf

′×T ′ denotes the output
from a conv operation, the subsequent normalized version is computed as

z = γ
z̃ − E[z̃]√
Var[z̃] + ε

+β, (4.5)

where E[z̃] ∈ Rf
′ , Var[z̃] ∈ Rf

′
+ is the expectation and variance over the

temporal dimension of each feature map, ε is a small constant, and {γ, β} ∈
Rf
′ ×Rf

′ are learnable parameters representing the mean and bias for each
feature map. Each normalized conv output is subsequently activated using
ReLU.

4.3.2.7 Feature fusion for sequential processing

The outputs from the three feature extraction streams are subsequently
fused by concenating each output vector z∗ into a combined feature vector
z = (zar, zlm, zsdb) ∈ R3f′×T ′ . We introduce sequential modeling of the feature
vectors using a bGRU [117], which has the advantage over other RNN-based
models such as the LSTM of having fewer trainable parameters while still
being powerful enough to model complex, temporal relationships [173]. The
output of the GRU for timestep t is a vector ht =

(
hf
t, hb

t

)
∈ R2nh containing

the concatenated outputs from the forward (f) and backward (b) directions.
Each directional feature vector is calculated as a weighted combination of a
gated new input nt and the feature vector from the previous timestep ht−1

h∗t = (1 − ut)⊗ nt + ut ⊗ ht−1. (4.6)

The update gate ut and gated new input nt are computed as

ut = σ
(

Wz
uzt + bzu + Wh

uht−1 + bhu
)

, (4.7)

nt = tanh
(

Wz
nzt + bzn + rt ⊗

(
Wh
nht−1 + bhn

))
, (4.8)

where W∗∗, b∗∗ are weight matrices and bias vectors, respectively, and rt is a
reset gate computed as

rt = σ(Wz
rzt + bzr + Wr

hht−1 + brh). (4.9)

4.3.2.8 Additive attention

The attention mechanism is a powerful technique to introduce a way for
the network to focus on relevant regions and disregard irrelevant regions
of a data sample, and is a key part of the highly successful Transformer
model [174] and the subsequent state-of-the-art BERT model for natural
language processing [175]. In this work, we implemented a simple, but
powerful, additive attention mechanism [176], which computes context-vectors
c ∈ R2nh for each event class as the weighted sum of the feature vector
outputs h ∈ R2nh×T ′ from the ϕh. Formally, attention is computed as

c = h ·α =

T ′∑
t=1

htαt, (4.10)
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where T ′ is the reduced temporal dimension, ht is the feature vector for time
step t, and αt ∈ RK is the attention weight computed as

αt =
exp(tanh(htWu)Wa)∑T ′
τ exp(tanh(hτWu)Wa)

. (4.11)

Here, Wu ∈ R2nh×na and Wa ∈ Rna×K are linear mappings of the feature
vectors, and tanh is the hyperbolic tangent function.

4.3.2.9 Detection

The final event classification and localization is handled by two modules,
ψclf : R2nh×K → RNd×K and ψloc : R2nh×K → RNd×2, respectively. The
classification module ψclf : c 7→ p outputs a tensor p ∈ [0, 1]Nd×K+ contain-
ing predicted event class probabilities for each default event window. The
localization module ψloc : c 7→ y outputs a tensor y ∈ RNd×2 containing
encoded relative onsets and durations for a detected event for each default
event window.

4.3.2.10 Loss function

Similar to [156], we optimized the network parameters according to a three-
component loss function consisting of: i) a localization loss `loc; ii) a positive
classification loss `+, and iii) a negative classification loss `−, such that the
total loss ` was defined by

` = `loc + `+ + `−. (4.12)

The localization loss `loc was calculated using a Huber function

`loc =
1

N+

∑
i∈π+

f
(i)
H (4.13)

fH =

0.5(y − t)2, if |y − t| < 1,

|y − t|− 0.5, otherwise,
(4.14)

where i ∈ π+ yields indices of event windows with positive targets, i. e. event
windows matched to an arousal, LM or SDB target, and N+ is the number of
positive targets in the given data segment.

The positive classification loss component `+ was calculated using a simple
cross-entropy over the event windows matched to an arousal, LM, or SDB
event:

`+ =
1

N+

∑
i∈π+

∑
k∈JKK

π
(i)
k logp(i)k , where p

(i)
k =

exp s(i)k∑
j exp s(i)j

, (4.15)

and π(i)k , p(i)k , and s(i)k are the true class probability, predicted class probabil-
ity, and logit score for the ith event window containing a positive sample.

Similar to [113], [114], the negative classification loss `− was calculated
using a hard negative mining approach to balance the number of positive and
negative samples in a data segment after matching default event windows
to true events [162]. Specifically, this is accomplished by calculating the
probability for the negative class (no event) for each unmatched default
event window, and then calculating the cross entropy loss using the Z most
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probable samples. In our experiments, we set the ratio of positive to negative
samples as 1:3, such that the calculation of ` involves Z = 3 times as many
negative as positive samples.

We also explored a focal loss objective function for computing `+ and
`− [177], however, we found that this approach severely deteriorated the
ability of the network to accurately detect LM and SDB events compared to
using worst negative mining.

4.3.2.11 Optimization

The network parameters were optimized using adaptive moment estimation
(Adam) according to the loss function described in Equation (4.12) [97]. This
algorithms uses first (m) and second (v) moment estimations of gradients to
update the model parameters θ of a differentiable function f at time t:

m(t) = β1m
(t−1) + (1 −β1)∇θf(t)

(
θ(t−1)

)
(4.16)

v(t) = β2v
(t−1) + (1 −β2)∇2

θf
(t)
(
θ(t−1)

)
, (4.17)

where β1,β2 are exponential decay rates for the first and second moment, re-
spectively, ∇ is the gradient vector with respect to θ, and ∇2

θ is the Hadamard
product ∇θf�∇θf. The moment vectors are initialized with 0’s, which in-
duce a bias towards zero. This can be offset by computing a bias-corrected
estimate of each moment vector as

m̂(t) =
m(t)

1 −βt
1

(4.18)

v̂(t) =
v(t)

1 −βt
2

, (4.19)

which yields the final update to θ as

θ(t) = θ(t−1) − η
m̂(t)

√
v̂(t) + ε

, (4.20)

where η is the learning rate.

4.3.2.12 Experimental setups

In our experiments, we fixed the exponential decay rates at (β1,β2) =

(0.9, 0.999), the learning rate at η = 10
−3, and ε = 10

−8. The learning rate
was decayed in a step-wise manner by multiplying η with a factor of 0.1 after
3 consecutive epochs with no improvement in loss value on the validation
dataset.

Similarly, we employed an early stopping scheme by monitoring the loss
on the validation dataset and stopping the model training after 10 epochs of
no improvement on Deval.

We tested four types of models in two categories: the first is a default
split-stream model as shown in Figure 4.5 with and without weight decay
(splitstream, splitstream-wd). The second is a variation of the split-stream
model, but where the ψclf and ψloc modules are realized using depth-wise
convolutions, such that each attention group is used only for that type of
event. The second category is also tested with and without weight decay
(splitstream-dw, splitstream-dw-wd).
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Figure 4.6: Architecture optimization.

4.3.2.13 Performance evaluation

Performance was quantified using precision, recall and F1 scores. Statistical
significance in F1 score between groups was assessed with Kruskall-Wallis H-
tests. The performance of joint vs. single-event detection models was tested
with Wilcoxon signed rank tests for matched samples. The relationships
between true and predicted ArI, AHI, and LMI were assessed using linear
models and Pearsons r2. Significance was set at α = 0.05.

4.3.3 Results and discussion

4.3.3.1 Model architecture evaluation

We found no significant differences in F1 performance for either Ar (Kruskal-
Wallis H = 0.961, p = 0.811), LM (H = 0.230, p = 0.973), or SDB detection
(H = 2.838, p = 0.417), when evaluating the model architectures on Deval.
Based on this result, all further modeling was based on the default splitstream
architecture for simplicity.

4.3.3.2 Joint vs. single event detection

For each event type, we evaluated the F1 score as a function of classification
threshold θ on Deval for both the joint detection model as well as the single-
event models. It can be observed in Figure 4.7 that for all three events, the
joint detection model achieves higher F1 score, although the apparent increase
is not as large for LM detection. This was also observed when evaluating
the joint and single detection models with optimized thresholds on Dtest for
both Ar (Wilcoxon W = 30440.0, p = 2.481× 10

−127), LM (W = 101103.0, p =

6.454× 10
−60), and SDB detection (W = 93647.0, p = 2.378× 10

−64). Precision,
recall and F1 scores for optimized models evaluated on Dtest are shown
in Table 4.5. These findings are interesting, because they provide evidence that
the presence of different event types can module the detection of others, and
that this can be modeled using automatic methods. This is in line with what
previous studies have found e. g. on event-by-event scoring agreement in
arousals, which improved significantly from 0.59 % to 0.91 %, when including
respiratory signals in the analysis [71].
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Figure 4.7: Optimizing F1 performance on Deval as a function of θ). Full lines correspond to the joint model
and dashed lines are the corresponding single-event detection model. The blue and orange dots correspond
to optimized model performance on Dtest.

Table 4.5: Performance scores for optimized models evaluated
on Dtest.

Event Model Precision Recall F1

Ar Joint 0.759± 0.114 0.672± 0.125 0.704± 0.106

Single 0.777± 0.107 0.571± 0.127 0.649± 0.113

LM Joint 0.650± 0.169 0.647± 0.120 0.628± 0.123

Single 0.661± 0.166 0.607± 0.116 0.613± 0.116

SDB Joint 0.817± 0.142 0.526± 0.146 0.624± 0.115

Single 0.765± 0.142 0.486± 0.121 0.578± 0.097

Metrics are shown aggregated across PSGs. Ar: arousal;
LM: limb movement; SDB: sleep disordered breathing.

4.3.3.3 Detection vs. manual scorings

For each event type, we computed the correlation coefficient between the
predicted and true index values (arousal index, ArI; apnea-hypopnea index,
AHI; limb movement index, LMI), which is shown in Figure 4.9. We found a
large positive correlation between true and predicted values for ArI (r2 = 0.73,
p = 2.5× 10

−285), AHI (r2 = 0.77, p = 9.3× 10
−316), and LMI (r2 = 0.78,

p = 3.1× 10
−321).

A similar study using an automatic method for automatic detection of
SDB and LM events found similar or higher correlations between automaticThe authors pooled

obstructive, central,
mixed apneas, and
4% hypopneas into

one category, apnea.

and manual scorings (r2 = 0.85, and r2 = 0.79, respectively), although their
findings were based on almost 5 times as much data [89].
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Figure 4.8: Evaluating optimized joint and single-event detection models on Dtest.
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4.3.3.4 Temporal characteristics

We compared the temporal precision between manual and automatic event
scoring by looking at the errors in onset (∆onset), offsets (∆offset), and
durations (∆dur.) calculated as

∆onset = onsetautomatic − onsetmanual (4.21)

∆offset = offsetautomatic − offsetmanual (4.22)

∆dur = durautomatic − durmanual (4.23)

so that positive values of ∆onset,∆offset corresponds to a positive shift
to the right (delayed prediction), and positive values of ∆dur. meaning an
overestimation of the event duration compared to manual scoring. This is
shown in Figure 4.10, where the blue distributions are the joint detection
model for each event type, and the orange distributions are the corresponding
single-event models. The distributions are shown as kernel density estimates
superimposed on a histogram. For Ar events, the model overestimates the
duration on average by a couple of seconds, which is caused by an earlier
prediction of onset and delayed prediction of termination. For LM events,
the model underestimates the duration by about half a second on average,
which is due to earlier prediction of termination. For SDB events, the model
overestimates the duration by about 25 seconds on average, which is caused
by an earlier prediction of onset and delayed prediction of termination. These
errors in predicted durations reflects the temporal characteristics of these
events; LMs are shorter events, and it is thus unlikely to be overestimated Between 0.5 s to 10 s

per definition.by several seconds, while SDBs are longer events by one to two orders
of magnitude, which also increases the size of the errors. Ars events are
intermediate in length compared to LMs and SDBs, which is reflected in the
error distributions.
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Figure 4.9: Pearson correlation plots for each event type index between true and predicted values. The linear
relationship is indicated with solid blue with 95% confidence intervals in light blue. Grey dashed lines
indicate perfect correlation lines. ArI: arousal index; AHI: apnea-hypopnea index; LMI: limb movement
index.
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Figure 4.10: Temporal error metrics distributions across all events and PSGs. Positive values of ∆onset,∆offset
means delayed predictions, while positive values of ∆dur. means to an overestimation of event duration.
Blue distributions are joint detection models, while orange distributions are the corresponding single-event
models. Distributions are shown as kernel density estimates superimposed on a histogram. Ar: arousal;
LM: limb movement; SDB: sleep disordered breathing.
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4.4 paper v : deep transfer learning for improving single-eeg

arousal detection

abstract : Datasets in sleep science present challenges for machine
learning algorithms due to differences in recording setups across clin-
ics. We investigate two deep transfer learning strategies for overcom-
ing the channel mismatch problem for cases where two datasets do
not contain exactly the same setup leading to degraded performance
in single-EEG models. Specifically, we train a baseline model on multi-
variate polysomnography data and subsequently replace the first two
layers to prepare the architecture for single-channel electroencephalog-
raphy data. Using a fine-tuning strategy, our model yields similar
performance to the baseline model (F1=0.682 and F1=0.694, respec-
tively), and was significantly better than a comparable single-channel
model. Our results are promising for researchers working with small
databases who wish to use deep learning models pre-trained on larger
databases.

4.4.1 Methods

notation We denote by Ja,bK the set of integers {n ∈ N | a 6 n 6 b}

with JNK being shorthand for J1,NK, and by n ∈ JNK the nth sample in JNK. A
model for a given experiment is denoted by M(·), while an optimized model
is superscripted with a star as M∗(·). A segment of PSG data is denoted by
x ∈ RC×T , where C, T is the number of channels and the duration of the
segment in samples, respectively.

4.4.1.1 Data

We collected PSGs from 1500 subjects in the Osteoporotic Fractures in Men
Sleep Study [103]–[105] from the NSRR [107], [108]. From each PSG, we
extracted left and right EEG, left and right EOG, and chin EMG. EEG and
EOG channels were referenced to the contralateral mastoid process. For each
PSG, we also extracted time-stamped arousal scorings containing starts and
durations of scored arousal events. We did not exclude any PSGs from this
study based on sleep duration, number of arousal events, or similar criteria.

4.4.1.2 Data partitioning

The 1500 PSGs were initially partitioned into three subsets train1, eval1,
and test1 containing 400, 100 and 1000 PSGs, respectively. Furthermore, we
additionally partitioned test1 into three smaller subsets train2, eval2, and
test2 containing 400, 100, and 500 PSGs, respectively.

4.4.1.3 Preprocessing pipeline

All signals were resampled to 128 Hz using poly-phase filtering with a Kaiser
window (β = 5.0) prior to subsequent processing. Extracted EEG and EOG
signals were filtered with 2nd order Butterworth IIR bandpass filters with
cutoff frequencies 0.3 Hz and 35 Hz. Chin EMG was filtered with a 4th order
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Butterworth IIR highpass filter with a cutoff frequency of 10 Hz. Filtered
signals were subsequently standardized by

x(i) =
x̃(i) − µ(i)

σ(i)
, (4.24)

where x̃(i) ∈ RC×T is the raw matrix containing C input channels and T

samples, and µ(i),σ(i) ∈ RC are the mean and standard deviation vectors The vectors contain
the mean and
standard deviation for
each signal modality.

for the i’th PSG, respectively.

4.4.1.4 Model setup

We expand upon previous work using similar models for sleep event de-
tection [113]–[115]. Briefly, the model takes as input a tensor of PSG data
x ∈ RC×T and outputs

z = (p, y) ∈ RNd×T
′×K ×RNd×T

′×2 (4.25)

containing predicted arousal probabilities p and associated starts and dura-
tions for predicted arousal events y. The differentiable function underlying
the model comprises a deep neural network architecture consisting of the
following modules:

input mixing module Here, non-linear combinations of the input PSG
data x are made using a non-linear mixing block φmix : R1×C×T → RC×1×T .
This is implemented using single-strided 2d convolution operations with C
(C, 1)-dimensional kernels.

feature extraction module This module contains two components.
The first is a convolutional feature extraction block ϕconv : RC×1×T →
Rf
′×1×T ′ consisting of kmax successions of convolutional, batch normaliza-

tion, and rectified linear unit (ReLU) layers. The second is a recurrent feature
extraction block ϕrec : Rf

′×1×T ′ → Rf
′×2×T ′ with f′ = f02

kmax hidden units.
The ϕconv block is responsible for bulk feature extraction and temporal dec-
imation using strided convolutions, while ϕrec processes the raw features
across the reduced temporal dimension using a bidirectional gated recurrent
unit with f′ hidden units [117].

event detection module The output from ϕrec is processed by two
separate blocks: ψclf : Rf

′×2×T ′ → RKNd×1×T ′ outputs the tensor p containing
predicted arousal probabilities for each time point t ∈ JT ′K for each default
event window. ψloc : Rf

′×2×T ′ → R2Nd×T ′ outputs the tensor y containing
predicted start time and durations of arousal events. Both ψclf and ψloc are
implemented using (2, 1) convolutions rather than convolutions over the
entire volume as in [113]–[115]. This serves a dual purpose: reducing the
number of parameters to make the network more memory-efficient and
allowing the kernel and feature maps to be temporally invariant.

For a detailed description of the network architecture, see Table 4.6.

4.4.1.5 Loss objective

The network parameters were optimized according to a three-component
loss objective comprising a localization loss `loc and a positive and negative Loss function is

another term.classification loss `+ and `−, respectively, such that

` = `loc + `+ + `−. (4.26)
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Table 4.6: Network architecture overview.

Layer type Kernel Stride Filters Input size Output size Activation

x Input — — — C× T 1×C× T —

φmix 2d conv (C, 1) (1, 1) C 1×C× T C× 1× T ReLU

ϕ
(1)
conv 2d conv (1, c) (1, s) 2f0 C× 1× T 2f0 × 1× T/s —

BN — — 2f0 2f0 × 1× T/s 2f0 × 1× T/s ReLU

ϕ
(k)
conv 2d conv (1, c) (1, s) f02

k f02
k−1 × 1× T/sk−1 f02

k × 1× T/sk —

BN — — f02
k f02

k × 1× T/sk f02
k × 1× T/sk ReLU

ϕrec bGRU — — f′ f′ × 1× T ′ f′ × 2× T ′ —

ψclf 2d conv (2, 1) (1, 1) KNd f′ × 2× T ′ KNd × 1× T ′ Softmax

ψloc 2d conv (2, 1) (1, 1) 2Nd f′ × 2× T ′ 2Nd × 1× T ′ Linear

z Output, p — — — KNd × 1× T ′ Nd × T ′ ×K —

Output, y — — — 2Nd × 1× T ′ Nd × T ′ × 2 —

x, input containing PSG data; z, output containing predicted arousal probabilities and associated
start and duration predictions; φmix, non-linear mixing block; ϕconv, convolutional feature extraction
block, k ∈ J2,kmaxK; ϕrec recurrent feature extraction block; ψclf, event classification block; ψloc, event
localization block; C, number of input channels; T , number of samples in a segment of PSG data;
c, temporal kernel size; s, temporal stride; f0, base number of feature maps; f′ = f02

kmax , maximum
number of feature maps; T ′ = T/skmax , reduced temporal dimension in samples; Nd, number of default
event windows in segment; K, number of classes; ReLU: rectified linear unit; bGRU: bidirectional gated
recurrent unit; BN: batch normalization.

The localization loss was calculated using a Huber function

`loc =
1

Nπ\∅

∑
i∈π\∅

h(i) (4.27)

h =

0.5(y − t)2, if |y − t| < 1,

|y − t|− 0.5, otherwise,
(4.28)

where i ∈ π\∅ indicates event windows with a non-empty arousal target.
Contributions from the positive/negative classification losses were calculated
using a focal loss function [177]:

`+ =
1

Nπ\∅

∑
i∈π\∅

−α(1 − p)γ log(p), and (4.29)

`− =
1

Nπ=∅

∑
i∈π=∅

−α(1 − p)γ log(p), (4.30)

where α = 0.25 and γ = 2. This serves to counter the class imbalance in a
single data segment, which typically consists of many event windows with
few positive examples.

4.4.1.6 Experimental setups

We investigated the channel mismatch problem with the following four
experimental setups:
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full montage baseline (fm) In this experiment, we trained the event
detection algorithm on train1 using C = 5 channels: left/right central EEG,
left/right EOG, and chin EMG. Convergence and the optimal detection
threshold were assessed on eval1 and performance was evaluated on test2.
The optimal baseline model was used as an initialization for the two transfer
learning experiments described below.

pretraining (pt) The optimal model M∗FM was used in this experiment
as an initialization for MPT. We adjusted the mixing module and first con-
volutional layer in the feature extraction module to account for the channel
mismatch by replacing the convolutional and batch normalization layers,
and subsequently trained these from scratch. The rest of the weights and
bias terms were frozen to the optimized values from M∗FM. The network was
trained on train2 with only C = 1 channels (left central EEG, C3). Conver-
gence and optimal detection thresholds were assessed on eval2, while final
performance was evaluated on test2.

fine-tuning (ft) Similar to PT, the optimal model M∗FM was used in this
experiment as an initialization for MFT. Also, the mixing module and first
convolutional layer in the feature extraction module were likewise adjusted.
However, all other layers in MFT were permitted to be further optimized
by fine-tuning weights and bias terms during training. The model was
trained using the same 400 PSGs from train2 with the same C = 1 channel
configuration as in PT.

single eeg benchmark (se) We benchmarked our two transfer learning
experiments to a comparable situation in which an event detection model
was trained on the same PSGs in train2 using only the left central EEG (C3).

4.4.1.7 Network optimization

In all experimental runs, we optimized the loss objective in Equation (4.26)
using the Adam optimization algorithm with a learning rate of α = 10

−3 and
the default parameter values (β1,β2) = (0.9, 0.999) as suggested in [97]. We
applied the same data sampling strategy as proposed in [115], in which a
segment of data is sampled such that it contains at least 50% of a randomly
sampled event across all PSGs. We used a default event window size of 15 s
with 50 % overlap as this was found previously to work well for arousal
detection [115].

All experiments were implemented in PyTorch 1.2 [166].

4.4.1.8 Performance evaluation

Bipartite matching was used to match detected and true events during
training and testing. At test time, detected events were subjected to non-
maximum suppression based on an IoU of at least 0.5 between detected and
true events. We evaluated the performance of our experimental setups using
precision, recall and F1 scores.

4.4.1.9 Statistical analysis

We used Kruskal–Wallis one-way analysis of variance tests for differences
in performance metrics between groups (SE, FT and PT) with a significance



106 sleep event detection

Precision Recall F1
0.5

0.6

0.7

0.8
**ns

ns
****

**** ****
ns nsns

SE FT PT FM

Figure 4.11: Performance metrics as evaluated on test2 for each experimental setup.
Metrics are shown as means with 95% confidence interval as error bars. Note the
y-axis scaling. SE: single-EEG. FT: fine-tuning. PT: pre-training. FM: full montage. ns:
not significant, ∗∗: padj 6 10
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−4.

Table 4.7: Performance metrics across experiments.

Experiment Precision Recall F1

FM 0.739± 0.122 0.675± 0.139 0.694± 0.115

SE 0.723± 0.124 0.624± 0.137 0.659± 0.117

FT 0.710± 0.128 0.676± 0.130 0.682± 0.110

PT 0.699± 0.141 0.619± 0.153 0.642± 0.129

Metrics are shown evaluated on test2 as means ± standard
deviation. Best performing transfer learning experiment
is shown in bold. SE: single-EEG. FT: fine-tuning. PT: pre-
training. FM: full montage.

level of α = 0.05. Post-hoc testing was performed with Mann-Whitney U-
tests for each pair-combination (SE/FT, SE/PT, and FT/PT) likewise with
α = 0.05. We accounted for multiple comparisons by adjusting p-values with
Bonferroni corrections.

4.4.2 Results and discussion

We present the results of the transfer learning experiments (FT, PT) as well as
the baseline and benchmark experiments (FM, SE) in Figure 4.11 and Table 4.7.
Performance metrics were not calculated for 10 subjects in test2, as these
did not have any scored arousals and are thus not reflected in Figure 4.11

and Table 4.7.
The baseline F1 performs slightly lower than previously reported (0.694±

0.115 vs. 0.749± 0.105 [115]). However, our baseline model was trained on
400 subjects compared to 1485 in [115], which would account for the lower
F1 score. By reducing the available input channels from C = 5 different
modalities to C = 1 EEG channel as in the SE benchmark experiment, the F1

score drops to 0.659± 0.117, while the precision and recall scores likewise
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drop from 0.739± 0.122 to 0.723± 0.124, and 0.675± 0.139 to 0.624± 0.137,
respectively.

We found statistically significant differences in F1 scores between SE, FT,
and PT (p = 3.189× 10

−7). Post-hoc testing further revealed statistically sig-
nificant differences between SE and FT (padj = 2.224× 10

−3), and FT and PT
(padj = 2.685× 10

−7), but not between SE and PT (padj = 0.080). We also found
that recall scores differed between experimental setups (p = 7.085× 10

−13).
Post-hoc testing showed statistically significant differences between SE, FT
(padj = 5.180× 10

−11), and FT and PT (padj = 1.440× 10
−9), but not between

SE and PT (padj = 1.000). Lastly, we saw statistically significant differences
in precision scores between experimental setups (p = 0.033), subsequent
post-hoc testing did not reveal any statistical significant differences, when
adjusting for multiple comparisons using the Bonferroni procedure (SE/FT,
padj = 0.214; FT/PT, padj = 1.000; SE/PT, padj = 0.037).

Our results show, that for some scenarios, we can learn and effectively
transfer information present in multi-variate PSG data to a target domain
containing only a single EEG channel. Specifically, the performance of our
fine-tuning strategy is high enough that the mean F1 scores across subjects
are statistically insignificant, when comparing FT and FM setups (not shown).

Previous related work focused on the channel mismatch problem, when
comparing different, but the same number of, channel modalities such as
transferring EEG-based models to EOG-based target domains, and thus
did not investigate how changing the model architecture might impact
performance [163], [164]. In this work, we investigated transfer learning
when the source and target domains only overlap by one input channel. This
necessitates changing some parts of the underlying model architecture to
accommodate the different number of input channels, and these changes
might impact downstream feature extraction. We did not explore simply
zeroing out a large number of input channels in this work, as this requires
exhaustive search of which channel indices to zero out in the model based
on the number of target input channels.

Our study applied a simple optimization strategy for the transfer learning
experiments, which might limit the potential performance gain. This is
especially relevant for the FT experiment. For example, one could experiment
with different learning rates and scheduling schemes for the initial layers
and pre-trained layers, such that the initial layers were trained with a higher
relative learning rate to compensate for their lack of initial training.

Furthermore, we explored transfer learning for the channel mismatch
problem in a single cohort of patient recordings. Future directions of this
research will investigate scenarios, where both the source and target domains,
and the datasets are different.
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4.5 chapter summary

This chapter concerned the detection of sleep events motivated by researchRH 2: Advanced
biomedical signal

processing and
machine learning
algorithms can be
used for efficient,
high-performing
analysis of sleep

studies with regards
to sleep events.

hypothesis RH 2, and research questions RQ 2.1, RQ 2.3, and RQ 2.2.

RQ 2.1: can sleep
events be detected

precisely and reliably
using novel machine
learning algorithms.

RQ 2.3: how can we
overcome the channel
mismatch problem for
sleep event detection.

RQ 2.2: can the
detection of one event

class modulate the
detection of an event

from another class.

The first study described the MSED model. Here, the main objective
was to detect multiple sleep events in PSG studies simultaneously and
independently using only a single model, which was trained and tested on
1485 and 1000 PSGs, respectively. Optimal arousal detection was obtained by
including a recurrent neural network module and using a dynamic default
event window yielding an F1 score of 0.75, while optimal leg movement
detection was obtained with a static window yielding an F1 score of 0.65.

The second study in this chapter presented the application of the MSED
algorithm for arousal detection under the channel mismatch problem. We
investigated two deep transfer learning strategies for overcoming the channel
mismatch problem for cases, where two datasets do not contain exactly the
same setup leading to degraded performance in single-EEG models. Using a
fine-tuning strategy, the model yielded similar performance to the baseline
model (F1 = 0.68 and F1 = 0.69, respectively), and was significantly better
than a comparable single-channel model. While these results are promising,
they will have to be validated in a larger setting across separate cohorts.

Motivated by the preliminary results obtained previously, we investigated
whether the MSED model could be extended with more input channels for
added detection of sleep disordered breathing events, the results of which
are shown in the last study of this chapter. We tested different variations on
network architecture and found that a split-stream network with each stream
responsible for separate sets of input channels was beneficial for our task. The
results from evaluating on 1000 separate PSG recordings was F1 scores of 0.70,
0.63 and 0.62 for Ar, LM, and SDB detection, respectively. Interestingly, we
also found that the model performed better with respect to F1 score for each
separate class, when detecting events jointly instead of using single models
for each class. However, this model remains severely understudied, and
future efforts should concentrate on including more data sources, evaluating
on a dataset containing multiple scorers, and benchmarking against state of
the art methods.
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Break the cycle, Morty. Rise above. Focus on science.

— Rick Sanchez
Rick and Morty, season 1, episode 9

This chapter aims to build upon the knowledge and methods introduced
previously by applying them in a clinical setting. Specifically, I will describe
how we applied one of the sleep stage classification algorithms introduced
in Chapter 3 to identify patients with narcolepsy, which is a sleep disor-
der characterized by a dysfunctional regulation of the sleep-wake switch
described in Section 2.1.2.

The content of this chapter is based on the original publication

J. B. Stephansen* et al., “Neural network analysis of sleep stages
enables efficient diagnosis of narcolepsy”, Nat. Commun., vol. 9,
p. 5229, 2018. doi: 10.1038/s41467-018-07229-31

5.1 research background

Sleep disorders and sleep dysregulation impact over 100 million Ameri-
cans by contributing to a range of cardiovascular, metabolic and psychiatric
disorders, such as obesity, diabetes, and depression. Generalized sleep de-
privation also negatively impairs performance, judgment, and mood, and
is a major preventable contributor to motor-vehicle-related accidents [15].
There are approximately 90 different sleep disorders currently recognized
and described in the ICSD grouped into six categories: insomnias, circadian
rhythm sleep-wake disorders, central hypersomnias (e. g. narcolepsy), sleep-
related breathing disorders (e. g. obstructive sleep apnea), parasomnias (e. g.
sleepwalking, RBD), and sleep-related movement disorders (e. g. periodic leg
movement disorder (PLMD) and restless legs syndrome) [1].

Among these pathologies, NT1 is unique as a disorder with a known,
discrete pathophysiology—a destruction of hypocretin neurons in the hy-
pothalamus, which is most likely of autoimmune origin [178]–[180]. This is

1 Creative Commons Attributes 4.0 International License: http://creativecommons.org/

licenses/by/4.0/
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reflected in the cerebrospinal fluid (CSF) concentrations of the hypocretin-
1 neuropeptide, where a concentration below 110 pg mL−1 is consideredHypocretin-1 is also

known as orexin-A. indicative of narcolepsy [1].
Although debated,

there is also a
narcolepsy type 2,

which does not
exhibit low CSF

hypocretin
levels [181].

Typically beginning in childhood or adolescence, narcolepsy affects approx-
imately 0.03 % of the US, European, Korean and Chinese populations [64].
Unique to narcolepsy is the extremely strong association with the genetic
marker hla-dqb1*06:02 [182], and a well-characterized set of sleep distur-
bances that include short sleep latency, rapid transitions into REM sleep and
poor nocturnal sleep consolidation. The pathology also includes episodes
of sleep-wake dissociations, where the neuron groups in the sleep-wake or
REM-NREM switches fire at the wrong time. This results in the clinical
manifestations shown with parentheses in Figure 2.5.

The differentiation of sleep stages is also particularly important for the
diagnosis of narcolepsy. Current diagnostic guidelines for NT1 require a
full-night PSG and a multiple sleep latency test (MSLT) the following day,
where patients are asked to nap 4 to 5 times for 20 min every 2 h during the
daytime, and for each nap, the sleep latency and REM latency are noted [183].
A mean sleep latency (MSL) less than 8 min and the presence of at least 2A MSL less than

8 min is indicative of
excessive sleepiness

sleep onset REM periods (SOREMPs) during the MSLT, or 1 SOREMP plus

A SOREMP is
defined as REM

latency less than
15 min following

sleep onset in a nap.

a REM latency less than 15 min during nocturnal PSG are diagnostic criteria
for NT1 [1]. In a recent large study of the MSLT, specificity and sensitivity
for NT1 were 98.6 % and 92.9 % in comparing 516 NT1 versus 516 controls,
respectively; and 71.2 % and 93.4 % in comparing 122 NT1 cases versus 132

other hypersomnia cases, respectively [111]. Similar sensitivities of 75 % to
90 % and specificities of 90 % to 98 % have been reported by others in large
samples of hypersomnia cases versus NT1 [179], [184]–[187]. The MSLT is
thus both highly specific and highly sensitive, making it incredibly valuable
as a diagnostic tool.

5.1.1 Research motivation and objectives

In Section 3.4, we saw how a sleep stage classification algorithm could be con-
structed to reliably classify sleep stages as well or better than human experts.
The results presented an interesting observation: sleep stage classification
performance was unperturbed by existing sleep disorders, except in patients
with narcolepsy. Furthermore, when comparing the hypnodensities in pa-
tients with and without narcolepsy, the former exhibited a much more diffuse
sleep architecture with less pronounced sleep-wake cycles and increased
REM/W/N1 disassociation. This is illustrated in Figure 5.1 where the bot-
tom (top) trace shows a hypnodensity graph for a subject with (without)
narcolepsy.

These findings motivated a novel research question with is directly associ-
ated with research hypothesis RH 3:RH 3: Advanced

biomedical signal
processing and

machine learning
algorithms can be
used for efficient,
high-performing
analysis of sleep

studies with regards
to sleep disorders.

RQ 3.1 based on a single overnight PSG recording, is it possible to diagnose
narcolepsy with the same level of performance as the current clinical
gold standard?

Derived from the research hypothesis and associated question, the follow-
ing objectives were formulated:

(i) the model should be capable of diagnosing narcolepsy from the hypn-
odensity representation of a PSG study;

(ii) the model should have comparable or higher level of performance as
the gold standard PSG-MSLT combination.
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Figure 5.1: Examples of hypnodensity graph in subjects with and without narcolepsy. Hypnodensity for a
subject without narcolepsy (top) and a subject with narcolepsy (bottom). Color codes: white, W; red, N1;
light blue, N2; dark blue, N3; black, REM.

The following sections describe the steps taken to complete the posed
objectives and answer the research question.
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5.2 paper iii : neural network analysis of sleep stages enables

efficient diagnosis of narcolepsy

abstract : Analysis of sleep for the diagnosis of sleep disorders
such as NT1 currently requires visual inspection of polysomnography
records by trained scoring technicians. Here, we used neural net-
works in approximately 3000 normal and abnormal sleep recordings
to automate sleep stage scoring, producing a hypnodensity graph—a
probability distribution conveying more information than classical
hypnograms. A NT1 marker based on unusual sleep stage overlaps
achieved a specificity of 96% and a sensitivity of 91%, validated in
independent datasets. Addition of hla-dqb1*06:02 typing increased
specificity to 99%. Our method can reduce time spent in sleep clin-
ics and automates NT1 diagnosis. It also opens the possibility of
diagnosing NT1 using home sleep studies.

5.2.1 Methods

The following sections describe the narcolepsy model aspects in detail from
initial hypnodensity computation, to feature engineering, and finally data
modeling using Gaussian process (GP) classification algorithms. The main
outcome of this approach is to be able to classify a hypnodensity representa-
tion of a PSG as either being positive or negative for NT1.

5.2.1.1 Data descriptions

patient-based austrian hypersomnia cohort Patients in this
cohort were examined at the Innsbruck Medical University in Austria as
described in Frauscher et al. [188]. The AHC contains 118 PSGs in 86 high
pretest probability patients for narcolepsy (see Table 3.11 for details). 42

patients (81 studies) are clear T1N with cataplexy cases, with all but 3 having
a positive MSLT (these three subjects had a mean sleep latency (MSL)>8

minutes but multiple SOREMPs). The rest of the sample has idiopathic
hypersomnia and type 2 narcolepsy. Four patients have an AHI>15/hour
and 25 had a PLMI>15/hour. Almost all subjects had two sleep recordings
performed, which were kept together such that no two recordings from the
same subject were split between training and testing partitions.

the jazz clinical trial sample This sample includes seven base-
line sleep PSGs from five sites taken from a clinical trial study of sodium
oxybate in narcolepsy (SXB15 with 45 sites in Canada, USA, and Switzer-
land) conducted by Orphan Medical, now named Jazz Pharmaceuticals. The
few patients included are those with clear and frequent cataplexy (a re-
quirement of the trial) that had no stimulant or antidepressant treatment at
baseline [189]. All 7 subjects in this sample were used exclusively for training
the narcolepsy biomarker algorithm.

patient-based italian hypersomnia cohort Patients in this high
pretest probability cohort (see Table 3.11 for demographics) were examined
at the IRCCS, Istituto delle Scienze Neurologiche ASL di Bologna in Italy
as described in Pizza et al. [190]. The IHC contains 70 nt1 patients (58 %
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Table 5.1: Description of the various cohorts included in this study and how they were used.

Cohort Age, years BMI, kg m−2 Sex, % Train Test Replication NT1, % H, %

WSC 59.7 ± 8.4 31.6 ± 7.1 53.1 170 116 None 0 0

SSC 45.4 ± 13.8 23.9 ± 6.5 59.4 139 112 None 11.6 1.8

KHC 29.1 ± 13.2 24.1 ± 4.3 58.6 87 71 None 45.8 54.2

AHC 34.5 ± 13.8 25.9 ± 4.9 54 42 (76) 44 (84) None 52.3 47.7

JCTS 53.2 ± 9.8 31.0 ± 4.4 57.1 7 None None 100 0

IHC 33.7 ± 17.6 - 56.7 87 61 None 47.3 50

DHC 33.4 ± 14.8 24.8 ± 4.9 50 79 None None 26.6 48.1

FHC 28.8 ± 15.2 24.4 ± 8.1 59 None None 122 51.6 18

CNC 28.5 ± 16.9 23.2 ± 11.5 51.3 None None 199 34.2 0

Total subjects 611 404 321

Total PSGs 645 444 321

WSC: Wisconsin Sleep Cohort; SSC: Stanford Sleep Cohort; KHC: Korean Hypersomnia Cohort; AHC: Austrian Hyper-
somnia Cohort; JCTS: Jazz Clinical Trial Sample; IHC: Italian Hypersomnia Cohort; DHC: Danish Hypersomnia Cohort;
FHC: French Hypersomnia Cohort; CNC: Chinese Narcolepsy Cohort; NT1: narcolepsy type 1; H, unspecific hypersomnia
(narcolepsy type 2 (NT2) and idiopathic hypersomnia).

male, 29.5± 1.9 years old), with either documented low CSF hypocretin levels
(59 cases, all but 2 HLA DQB1*06:02 positive), or clear cataplexy, positive
MSLTs and HLA positivity (11 subjects). As non-nt1 cases with unexplained
daytime somnolence, the cohort includes 77 other patients: 19 with idiopathic
hypersomnia, 7 with type 2 narcolepsy and normal CSF hypocretin-1, 48

with a subjective complaint of excessive daytime sleepiness not confirmed by
MSLT, and 3 with secondary hypersomnia. Subjects in this cohort were used
for training (n=87) and testing (n=61) the narcolepsy biomarker algorithm.

patient-based danish hypersomnia cohort Patients in this co-
hort were examined at the Rigshospitalet, Glostrup, Denmark as described
in Christensen et al. [191]. The DHC contains 79 PSGs in controls and patients
(see Table 3.11 for details). Based on PSG, multiple sleep latency test and
cerebrospinal fluid hypocretin-1 measures, the cohort includes healthy con-
trols (19 subjects), patients with other sleep disorders and excessive daytime
sleepiness (20 patients with CSF hypocretin-1 > 110 pg/ml), narcolepsy type
2 (22 patients with CSF hypocretin-1 > 110 pg/ml), and T1N (28 patients
with CSF hypocretin 1 6 110 pg/ml). All 79 subjects in this cohort were used
exclusively for training the narcolepsy biomarker algorithm.

patient-based french hypersomnia cohort This cohort consists
of 122 individual PSGs recorded at the Sleep-Wake Disorders Center, De-
partment of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
(see Table 3.11 for demographics). The FHC contains 63 subjects with T1N
(all but two tested with CSF hypocretin-1 6 110 pg/ml, five below 18 years
old, 55 tested for HLA, all positive for HLA DQB1*06:02) and 22 narcolepsy
type 2 (19 with CSF hypocretin-1 > 200 pg/ml, and three subjects with
CSF hypocretin-1 between 110 and 200 pg/ml, three HLA positive). The
remaining 36 subjects are controls (15 tested for HLA, two with DQB1*06:02)
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Figure 5.2: Narcolepsy detector algorithm design. Hypnodensities are extracted from data, as described
in Section 3.4. These data are separated into a training (60 %) and a testing (40 %) split. From the training
split, 481 potentially relevant features described in Table 5.2 are extracted from each hypnodensity. The
prominent features are selected using a recursive feature elimination (RFE) algorithm, and the narcolepsy
detection model is trained using a GP model. The performance of the GP narcolepsy detection model is
evaluated using the selected features computed on the test data.

without other symptoms of hypersomnia. The FHC was used as data for the
replication study of the narcolepsy biomarker algorithm.

patient-based chinese narcolepsy cohort This cohort contains
199 individual PSGs recorded (see Table 3.11 for demographics). The CNC
contains 67 subjects diagnosed with T1N exhibiting clear-cut cataplexy (55

tested HLA DQB1*06:02 positive), while the remaining 132 subjects are
randomly selected population controls (15 HLA DQB1*06:02 positive, 34

HLA negative, remaining unknown) [184]. Together with the FHC, the CNC
was used as data for the replication study of the narcolepsy biomarker
algorithm.

5.2.1.2 Model overview

The general pipeline for training and testing the narcolepsy model is shown
in Figure 5.2. The input data sources from the cohorts described in Table 5.1
are shown on the left side. The PSGs from these cohorts are extracted and
subjected to the sleep stage scoring model described in Section 3.4 resulting
in a hypnodensity representation for each PSG.The hypnodensity is

further described
in Section 3.4, but is

essentially a
probability

distribution over
sleep stages.

The hypnodensity data are split into training and testing subsets in a
60 %/40 % ratio. The training data are used for building the GP narcolepsy
model with a subset of features determined using a feature reduction
agorithm. Cross-validation was employed to determine the optimal clas-
sification threshold, and the performance of the classifier was determined on
the held-out testing data.

5.2.1.3 Feature extraction for NT1

The following sections describe the features computed for each hypnodensity
representation. Overall, the features fall into two categories: (i) features based
on the dynamics between various stage combinations; and, (ii) features based
on reported findings in the literature.

hypnodensity-derived features To quantify narcolepsy-like behav-
ior for a single recording i, features were generated based on a proto-feature
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Table 5.2: Description of each feature, how it is calculated, and how it is
numerated.

# Description Formula

1 General prevalence of a value log
(

1

N

∑N
n=1

Φn(Sk)
)

2 Highest achieved value − log(1 − maxΦn(Sk))

3 Average fluctuations in value log
(

1

N

∑N
n=1

∣∣∣dΦn(Sk)
dn

∣∣∣
)

4 Log of Shannon entropy log
(
−
∑

i s
2

i logs2

i
N

)

5–8 Time until p times max. value log
(

firstp
(

cum sum(Φ(Sk))
sum(Φ(Sk))

)
× 30

)

9 Weighted maximum
√

maxΦ(Sk)× Φ̄(Sk)

10 Weighted average fluctuation
(

1

N

∑N
n=1

∣∣∣dΦn(Sk)
dn

∣∣∣
)
× Φ̄(Sk)

11 Weighted Shannon entropy log
(
−
∑

i s
2

i logs2

i
N × Φ̄(Sk)

)

12–15 Weighted time until p max value
√

log
(

firstp
(

cum sum(Φ)Sk

sum(Φ(Sk))

)
× 30

)

4 The Shannon entropy is calculated using wavelet decompositions of Φ(Sk),
where si contains the ith detail coefficient. This feature describes the amount of
information contained in the signal.
5–8 p here corresponds to 5 %, 10 %, 30 % and 50 %.
12–15 p here corresponds to 5 %, 10 %, 30 % and 50 %.
Each individual feature is scaled by subtracting the mean and dividing by the

difference between the 85th and 15th percentile values. Each value was assessed
visually to ensure that the transformations and scaling was done optimally.

derived from k-combinations of S = {w, r, n1, n2, n3}. For the nth 5, 15 or 30 s
segment in recording i, a single k-combination is selected from the set of all
k-combinations, and the proto-feature is then calculated as the sum of the
pair-wise products of the elements in the single k-combination, such that

Φ
(i)
n (Sk) =

∑
ζ∈[Sk]2

∏
s∈ζ

p
(
s | x(i)n

)
, p ∈ [0, 1], (5.1)

where Φ(i)
n is the proto-feature for the nth segment in recording i, ζ ∈ [Sk]

2 is
a 2-tuple, or pair-wise combination, in the set of all pair-wise combinations
in the k-combination of S, and s is a single element, or sleep stage, in ζ.
For k ∈ J5K, there are 31 different Sk, e.g. {w, r}, {n1, n2, n3}. The predicted
probability of a 5, 15 or 30 s epoch belonging to a certain class in S given the
data x(i)n is given by p

(
s | x(i)n

)
. For every value of k, 15 features based on

the mean, derivative, entropy and cumulative sum were extracted as shown
in Table 5.2.

additional polysomnogram features Apart from the hypnodensity-
derived features, we also defined features based on the conventional hypno-
gram analysis.

One set of such features was selected because they have been found to
differentiate NT1 from other subjects in prior studies [192]–[196]. These
include

• nocturnal REM sleep latency (REML) [111],

• presence of a nightly SOREMP with a REML less than 15 min [111],
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• presence and number of SOREMPs during the night, where the SOREMPs
are defined as REM sleep occurring after at least 2.5 min of either W or
N1, and

• nocturnal sleep latency [192].A short sleep latency
is common in

patients with NT1 Other features include

• a NREM fragmentation index defined as 22 or more occurrences, where
sustained N2/N3 is broken by at least 1 min of N1/W [192], and

• the number of W/N1 hypnogram bouts longer than 3 min [192].

In this study we also explored:

• the cumulative W/N1 duration for wakefulness periods shorter than
15 min;

• cumulative REM duration following W/N1 periods longer than 2.5 min;
and,

• total nightly SOREMP duration defined as the sum of REM epochs
following 2.5 min W/N1 periods.

5.2.1.4 Probabilistic models for diagnostic purposes

The large set of features was reduced using a cross-validated RFE algo-
rithm [197]. Using a threshold of 0.40 yielded 38 relevant features, which were
fed to a GP classifier as described below. GP classifiers are non-parametric
probabilistic models that produce robust non-linear decision boundaries
using kernels and provide estimates of the uncertainties in classifications.Gaussian processes

can also be viewed as
a probabilistic

extension of support
vector machines.

This is useful when combining estimates, but also when making a diagnosis;
if an estimate is particularly uncertain, a doctor may opt for more tests to
increase certainty before making a diagnosis. During GP model building, a
training dataset is used to optimize a set of hyper-parameters, which specify
the kernel function, the basis function coefficients, here a constant, noise
variance, and to form the underlying covariance and mean function from
which inference about new cases are made [198]. In this case, the kernel is
the squared exponential: Two classes were established: narcolepsy type 1

and “other”, which contains every other subject. These were labeled 1 and -1
respectively, placing all estimates in this range. For more information on GP
in general, see the textbook by Rasmussen and Williams[198], while more
information on variational inference for scalable GP classification can be
found in the paper by Hensman, Matthews, and Ghahramani[199] and by
Matthews et al.[200].

hla testing As described previously, 97 % of NT1 patients are hla-
dqb1*06:02 positive when the disease is defined biochemically by low CSF
hypocretin-1, or by the presence of cataplexy coupled with clear MSLT find-
ings [111], [182]. We implemented this feature as a binary-valued predictor
resulting in negative narcolepsy predictions for subjects with a negative
hla-dqb1*06:02 test result.

high pretest probability sample MSLTs are typically performed
in patients with daytime sleepiness that cannot be explained by OSA, in-
sufficient sleep or circadian disturbances alone. These patients thus have a
higher pre-test probability of having NT1 than random clinical patients and
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are then diagnosed with NT1 or NT2, idiopathic hypersomnia or subjective
sleepiness based on MSLT results, cataplexy symptoms and human leuko-
cyte antigen (HLA) results, if they are available. To test whether our detector
differentiates NT1 from these other cases with unexplained sleepiness, we
conducted a post-hoc analysis of the detector performance in these subjects
extracted from both the test and replication datasets.

5.2.2 Results

The neural networks produce outputs that depend on evidence in the input
data for or against a certain sleep stage based on features learned through
training. We hypothesized that narcolepsy, a condition characterized by sleep-
wake dissociation [190], [192], [201]–[203], would result in a greater than
normal overlap between stages, such as that shown in Figure 5.1. Based on
this result, we hypothesized that such sleep stage model outputs could be
used as a biomarker for the diagnosis of NT1 using a standard nocturnal
PSG rather than the PSG-MSLT combination.

To quantify narcolepsy-like behavior for a single recording, we generated
features quantifying sleep stage dissociation using 16 sleep stage prediction
models. These features were based on descriptive statistics and other features
describing persistence of a set of new time series generated from every
permutation product of the set of predicted sleep stages.

We also added features expected to predict narcolepsy based on prior
work, such as REM sleep latency and sleep stage sequencing parameters. A
RFE procedure was performed on extracted features with average outcome
setting the optimal number of relevant features at 38 [197].

An optimal selection frequency cut-off of 0.40 was determined using a That means including
a feature if it was
selected in 40 % of
the cross-validation
runs

cross-validation setup on the training data. The selected features are de-
scribed in Table 5.3 with detailed description of the eight most important
features reported in Table 5.4.

Final predictions were achieved by creating a separate GP narcolepsy clas-
sifier for each of the sleep scoring models used in the final implementation.
The models were trained (tested) on data from seven (five) different cohorts
with subsequent independent replication in two cohorts previously unseen
by the algorithm, see Table 5.1. The algorithm produced values between -1
and 1, with 1 indicating a high probability of NT1. A cut-off threshold of
-0.03 was determined using cross-validation on the training dataset, which is
shown with red dots in Figure 5.3. This optimal trade-off achieves both high
sensitivity and specificity, which is seen to translate well onto the test data
and the replication sample in Figure 5.3b-c.

In the training data, a sensitivity of 94 % and specificity of 96 % was
achieved, and in the testing data a sensitivity of 91 % and specificity of
96 % was achieved, while the sensitivity and specificity for the replication
sample was 93 % and 91 %, respectively. When HLA was added to this model
(Figure 5.3d–f), the sensitivity changed to 90 % and the specificity rose to
99 %, and the cut-off threshold was updated to −0.53 shown with green dots
in Figure 5.3d–f. Furthermore, in the high pretest sample we obtained a
sensitivity and specificity of 90 % and 92 %, which rose to 90 % and 98 %
when adding HLA. More descriptive statistics including 95 % confidence
intervals are shown in Table 5.5.
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Table 5.3: Selection frequency and descriptions of each of the 38 features included
in the Gaussian process model used for narcolepsy prediction. Numbers in second
column correspond to feature number in Table 5.2.

Feature Stage combination Frequency

1 12 W, N2, REM 1.00

2 Nightly SOREMPs 0.91

3 15 W 0.82

4 6 REM 0.82

5 2 W 0.68

6 2 N2, REM 0.68

7 14 W, N2 0.68

8 13 W, N1 0.64

9 5 N3 0.59

10 5 REM 0.59

11 13 N1, N2 0.59

12 8 N1 0.55

13 11 N1 0.55

14 7 W, N1, REM 0.55

15 5 W, N1, N3 0.55

16 6 W, N1, N3 0.55

17 1 W, N1, N2, REM 0.55

18 Hypnodensity sleep stage bout transitions from N2 to N3 0.55

19 Accumulation of W periods less than 15 min 0.50

20 Hypnodensity sleep stage bout transitions from W/N1 to REM 0.50

21 11 N3, REM 0.45

22 2 N1, REM 0.45

23 7 W, N2, N3 0.45

24 12 W 0.41

25 2 N1 0.41

26 12 N2 0.41

27 14 N2 0.41

28 7 N2, REM 0.41

29 8 N2, REM 0.41

30 6 N1, N2 0.41

31 15 N1, N2 0.41

32 15 W, N3 0.41

33 12 W, N1 0.41

34 5 W, N2, REM 0.41

35 1 W, N1, N3, REM 0.41

36 1 W, N1, N2, N3, REM 0.41

37 Accumulation of REM epochs following W periods 0.41

38 Hypnodensity sleep stage bout transitions from N2 to REM 0.41

SOREMP: sleep onset REM period; W: wakefulness; N1: non-rapid eye movement
stage 1; N2: non-rapid eye movement stage 2; N3: non-rapid eye movement stage 3;
REM: rapid eye movement.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Diagnostic receiver operating characteristics curves for narcolepsy model displaying the trade-
offs between sensitivity and specificity for the narcolepsy biomarker for (a) training sample, (b) testing
sample, (c) replication sample, and (e) high pretest sample. (d)–(f) Adding HLA to model greatly increases
specificity. Cut-off thresholds are presented for models with (red dot) and without HLA (green dot)



120 classification of sleep disorders

Table 5.4: Eight most frequently selected features for NT1 detection.

Frequency Description

1 1.00 Time until 5 % of the weighted sum of the product between W, N2, and REM calculated at
every epoch has accumulated. This feature expresses the known sleep stage dissociation
and altered sleep timing.

2 0.91 Number of SOREMPs appearing throughout the recording.

3 0.82 Time until 50 % of W in recording has accumulated weighted by total amount of W.

4 0.82 Shannon entropy of REM sleep. This expresses the amount of information held in a signal,
or in this case, how many different values the REM sleep stage distribution obtains, i. e.
how consolidated phases of REM are when the stage appears.

5 0.68 Maximum probability of W obtained in a recording.

6 0.68 Maximum value obtained of the product between N2 and REM probability in a recording.

7 0.68 Time until 30 % of the epoch-by-epoch sum product between W and N2 has accumulated,
weighted by the sum total.

8 0.64 The time taken before 10 % of the epoch-by-epoch sum product between W and N1 has
accumulated, weighted by the sum total.

NT1: narcolepsy type 1; W: wakefulness; N1: non-rapid eye movement stage 1; N2: non-rapid eye movement
stage 2; N3: non-rapid eye movement stage 3; REM: rapid eye movement; SOREMP: sleep onset REM period.

Table 5.5: Descriptive statistics on the evaluation of the narcolepsy biomarker in models with and without
the HLA biomarker. Mean value (top) and 95% confidence interval (bottom).

Model Accuracy, % Sensitivity, % Specificity, % PPV, % NPV, % PSGs NT1, %

T 0.95 0.91 0.96 0.88 0.97 444 0.24

0.92-0.97 0.84-0.96 0.93-0.98 0.80-0.93 0.95-0.99

R 0.92 0.93 0.91 0.87 0.95 321 0.28

0.88-0.95 0.87-0.97 0.87-0.95 0.80-0.93 0.92-0.98

T+R, HLA 0.96 0.9 0.99 0.97 0.95 584 0.31

0.94-0.97 0.84-0.93 0.98-1.00 0.94-0.99 0.93-0.97

T+R, HLA,
optim.

0.94 0.94 0.94 0.88 0.97 584 0.31

0.92-0.96 0.90-0.97 0.92-0.96 0.83-0.92 0.95-0.99

HPT, no HLA. 0.91 0.9 0.92 0.94 0.86 335 0.61

0.87-0.94 0.86-0.94 0.86-0.96 0.91-0.97 0.80-0.91

HPT, HLA 0.93 0.9 0.98 0.99 0.85 296 0.61

0.90-0.95 0.84-0.93 0.96-1.00 0.97-1.00 0.79-0.91

HPT, HLA,
optim.

0.93 0.94 0.9 0.94 0.9 296 0.61

0.90-0.95 0.90-0.97 0.85-0.95 0.90-0.97 0.85-0.95

Performance on models with HLA typing is reported for both regular and optimized threshold, since the
ROC curve changes by adding HLA. HLA: human leukocyte antigen; ROC: receiver operating characteristic;
NT1: narcolepsy type 1; T, test dataset; R, replication dataset; HPT, high pre-test probability dataset; PPV,
positive predictive value (precision); NPV, negative predictive value.
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5.2.3 Discussion

Using our models, and considering how typical NT1 behaved in our sleep
stage machine learning routines, we extracted features that could be useful
to diagnose this condition.

Tables 5.3 and 5.4 reveal features found in nocturnal PSGss that discrimi-
nate NT1 from non-narcolepsy. One of the most prominent features, short
latency REM sleep, bears great resemblance to the REM sleep latency, which
is currently used clinically to diagnose narcolepsy. As short REML is cal-
culated using fuzzy logic, it represents a latency where accumulated sleep
suggests high probability of REM sleep occurrence. A short REM latency As opposed to a

discrete REM latency
scored by a technician

during PSG recording is extremely specific (99 %) and moderately sensitive

Short in this case
typically means less
than 15 min

(40 % to 50 %) for NT1 classification [111], [204]. The remaining selected
features also describe a generally altered sleep architecture, particularly be-
tween REM sleep, light sleep and W. These dissociations mirror aspects of

Here light sleep is
comprised of N1 and
N2

narcolepsy which are already known and thus reinforce their validity as
biomarkers.

For example, the primary feature, as determined by the RFE algorithm,
was the time it took to reach5 % of the accumulated sum of the probability
products between stages W, N2 and REM, which reflects the uncertainty
between W, REM and N2 sleep at the beginning of the night. Specifically, for
the nth epoch, the model will output probabilities for each sleep stage, and
the proto-feature Φn is calculated as

Φn = p(w)× p(n2) + p(w)× p(r) + p(n2)× p(r) (5.2)

The feature value is then calculated as the time it takes in minutes for the
accumulated sum of Φn to reach 5 % of the total sum

∑
nΦn. Since each

probability product in Φn reflects the staging uncertainty between each sleep
stage pair, Φn alone reflects the general sleep stage uncertainty for that
specific epoch as predicted by the model. A high feature value is attained for
epoch n when N2, W and REM are of equal probability and the remaining
two sleep stages are close to zero. A PSG with a high staging uncertainty
between sleep and wake early in the night would reach the 5 % threshold
rapidly.

Using these features, we determined an optimal cut-off that discriminated
narcolepsy from controls and other patients with specificity and sensitivity
as high as the MSLT, notably when HLA typing is added. This is true for See also Table 5.5 for

detailsboth the test and replication samples. Although we observed a small drop
in specificity in the replication sample, the performance was similar to the
MSLT when the efficacy of the detector was tested in the context of naive
patients with hypersomnia in the high pretest probability sample.

Furthermore, MSLTs requires that patients spend an entire night and
day in a sleep laboratory. This novel biomarker could allow for improved
recognition of acNT1 cases at a reduced cost by only requiring a standard
PSG screening as used for other sleep pathologies, such as OSA. A positive
predictive value could also be provided depending on the nature of the
sample and known narcolepsy prevalence. It also opens the possibility of This prevalence is

low in general
population screening,
intermediary in a
overall clinic
population sample,
and high in
hypersomnia cohorts

using home sleep recordings for diagnosing narcolepsy. In this direction,
because of the probabilistic and automatic nature of our biomarker, estimates
from more than one night could be automatically analyzed and combined
over time ensuring improved prediction. However, it is important to note that
this algorithm will not replace the MSLT in the ability to predict excessive
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daytime sleepiness through the measure of mean sleep latency across daytime
naps, which is an important characteristic of other hypersomnias.

When the staging data were presented as hypnodensity distributions,
the model conveyed more information about the subject than through a
hypnogram alone. This led to the creation of a biomarker for narcolepsy that
achieved similar performance to the current clinical gold standard, the MSLT,
but only requires a single sleep study. If increased specificity is needed, for
example, in large-scale screening, HLA or additional genetic typing brings
specificity above 99% without loss of sensitivity. This presents an option for
robust, consistent, inexpensive and simpler diagnosis of subjects who may
have narcolepsy, as such tests may also be carried out in a home environment.

This study shows how hypnodensity graphs can be created automatically
from raw sleep study data, and how the resulting interpretable features can
be used to generate a diagnosis probability for NT1. Another approach would
be to classify narcolepsy directly from the neural network by optimizing
the performance not only for sleep staging, but also for direct diagnosis by
adding an additional softmax output, thereby creating a multitask classifier.
This approach could lead to better predictions, since features are not then
limited to by a designer imagination. A drawback of this approach is that
features would no longer be as interpretable and meaningful to clinicians. If
meaning could be extracted from these neural network generated features,
this might open the door to a single universal sleep analysis model, covering
multiple diseases. Development of such a model would require adding more
subjects with narcolepsy and other conditions to the pool of training data.
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5.3 chapter summary

This chapter concerned the use of signal processing and machine learning for RH 3: Advanced
biomedical signal
processing and
machine learning
algorithms can be
used for efficient,
high-performing
analysis of sleep
studies with regards
to sleep disorders

the detection of sleep disorders, the topic of which directly relates to RH 3.
Specifically, we were interested in the following question: based on a single
overnight PSG recording, is it possible to diagnose narcolepsy with the same
level of performance as the current clinical gold standard?

We designed a narcolepsy model using feature engineering and proba-
bilistic machine learning models to classify NT1 patients with a 91 % sensi-
tivity and 96 % specificity using a hypnodensity representation of a single,
overnight PSG recording, which is the same level as the current gold standard.
By adding hla-dqb1*06:02 typing, the specificity increased to 99%.
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6D I S C U S S I O N

Okay, well, sometimes science is more art than science, Morty. A lot of people don’t
get that.

— Rick Sanchez
Rick and Morty, season 1, episode 6

The objective of this thesis was to develop a system based on artificial
intelligence, that can assist clinicians in the analysis of sleep studies. This
was based on the hypothesis that advanced biomedical signal processing
and machine learning algorithms can be used for efficient, high-performing
analysis of sleep studies with regards to sleep stages, sleep events, and sleep
disorders. In this thesis, the system was realized using three models. This
chapter will touch on the results of three models as described in Chapters 3

to 5, and discuss aspects of including artificial intelligence in sleep clinics.
This thesis described methods for automatic sleep stage classification based

on the manually annotated recordings according to the AASM guidelines.
The outputs of this research theme were 1) the MASSC model, which yielded
an accuracy of 84% and a Cohen’s κ of 0.75 on a test set of 230 PSGs from
WSC, which increased to an accuracy of 87% and Cohen’s κ of 0.80 using
data from five different cohorts; and, 2) the STAGES model, which yielded an
accuracy of 87% and was found to be better than six independent scorers. The
main question is whether we should train sleep stage classifiers to perform
as well as one or several human eyes, or, if we should let the classifiers rely
more on the hidden fluctuations in the PSG signals thereby allowing for
more stages that are harder for the human eye to differentiate. This has been
the subject of other research groups in the past years. For example, Stevner
et al. modeled a combination of functional magnetic resonance imaging and
EEG whole-brain dynamics using a hidden Markov model approach in 57

subjects [205]. Their main findings identified multiple distinct whole-brain
network states, and highlight that individual sleep stages can be characterized
by several of these latent states; e. g. they found that the W and N1 stages are
increasingly heterogeneous comprising multiple latent states, while N2 and
N3 comprise only a few. Similar findings have also been found in patients
expressing insomnia and Parkinson’s disease, where a topic model was
constructed in both cases using latent Dirichlet allocation of "words" created
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from the EEG, EOG, and EMG, revealing that NREM could be comprised
of several topics [99], [206], and that some individual topics could describeThe same paper also

found that individual
signals possess

different latent topics
that describe various

dissociations between
sleep stages.

a dissociated sleep stage e. g. between N1 and N2 [100]. Further evidence
also points towards that local areas in the brain can be in different sleep
stages [207]. However, the clinical implications and utility of these findings
are still unclear.

The second research theme concerned methods for automatic detection of
sleep events focusing specifically on Ars, LMs, and SDB events. The output
of this research theme was the MSED model, which yielded F1 scores of
0.704, 0.628, and 0.625 for Ar, LM, and SDB detection, respectively, when
tested on 1000 PSGs. The MSED model was also used in a study concerning
transfer learning in cases under the channel mismatch problem, where it was
demonstrated that the F1 score could be recovered effectively using a fine-
tuning strategy. The MSED model was not tested against multiple scorers,
as some studies have already proposed for LM and Ar detection [158],
[159], which makes direct comparison of final performance difficult. Indeed,
this is true for any method based on artificial intelligence (AI), which has
prompted the development of benchmark datasets and competitions for
computer vision applications, such as object recognition and localization in
the ImageNet challenge [122]. This would be an important step forward in
the future of computational sleep science.

The third research theme on methods for sleep disorder detection was
mainly focused on central hypersomnias, in particular the detection of NT1.
The development of the STAGES algorithm, a machine learning model ca-
pable of classifying NT1 based on single-night PSG with high sensitivity
and specificity even without the addition of hla-dqb1*06:02 typing or hcrt
serum levels, served as both the primary outcome and research contribution.
A secondary contribution relates to the identification of several novel PSG
features describing the dissociation between sleep stages, that was identified
by the RFE procedure. Several research groups have found biomarkers de-
scribing increased sleep stage dissociation in narcolepsy [192], [201], [202],
[208], Parkinson’s disease [99], [100], [209], and insomnia [206], and the RFE
procedure could very likely help in revealing new biomarkers for various
diseases.

A well-known effect in sleep medicine is the first night effect, wherein
subjects experience more W and less REM [19] during the first night of
recording PSG, which is not seen in the second night of recording. Obviously,
this will have an impact on the features extracted using the STAGES model,
but the extent of this impact needs further research.

Apart from the PSG and hla-dqb1*06:02 features, it is also possible that
the addition of other types of research data would be of value. It could be
theorized that the addition of questionnaire data such as the Narcolepsy
Severity Scale [210] or the Alliance Sleep Questionnaire would be beneficial
for example in distinguishing between hypersomnias. This has been explored
in other studies where e. g. a digital sleep questionnaire was designed and
used to classify and detect common societal sleep disturbances including
insomnia, delayed sleep phase syndrome, insufficient sleep syndrome, and
risk for obstructive sleep apnea [211].

Our model consistently was able to distinguish NT1 from NT2 as well
as IH, but not NT2 from IH, indicating a clear distinction between the two
narcolepsy types and that IH and NT2 might be more related than previ-
ously thought, which is also being considered by other research groups [181].
A panel consisting of European experts also recently reviewed the clini-
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cal findings for a future revision of the ICSD, in which they recommend
three new categorizations of central hypersomnias as narcolepsy, idiopathic
hypersomnia, and idiopathic excessive sleepiness [212].

The main findings of this thesis argue that clinical sleep medicine can
benefit from incorporating computational methods such as deep learning
and machine learning. However, major challenges still face the sleep sci-
ence community from wholly adopting automatic sleep analysis methods:
i) accessibility of curated data remains a major obstacle, which is especially
important for those researchers interested in applying or developing machine
learning algorithms and statistical methods, ii) how to share clinical data in
a safe and regulated manner compliant with GDPR specifications. Several
attempts have been made to address these issues; this thesis has relied heav-
ily on data from the NSRR, which contain several high-quality databases
from research cohorts and clinical trials in a stream-lined format [107], [108].
PhysioNet is another online resource containing vast amounts of freely acces-
sible electrophysiological data, although the amount of sleep-related data is
limited [79].

The AASM Artificial Intelligence in Sleep Medicine Committee recently
published a statement on behalf of the AASM regarding the adoption and
use of AI in the sleep clinics. Their official position of the AASM is that
electrophysiological data such as those originating from PSG recordings,
are well-suited for AI-based analysis due to the volume and variability of
data. They argue, that AI analysis can add significant value by improving
the efficiency of sleep labs, shifting focus away from manual analysis lead-
ing towards increased patient care, more rapid diagnosis and subsequent
treatment [213]. However, they also emphasize that the goal of integrating AI-
based systems into clinical practice should be to augment rather than replace
expert-based evaluations, and that full-scale adoption is complicated by lo-
gistics, limited transparency of AI-based models, and ethical and regulatory
issues [214].

The question then becomes if the field of sleep science and medicine is
ready to move towards more automated sleep analysis? In response to this
question, Lim et al. recently posed three advantages to automating sleep
study scoring [215]. The first advantage point is that sleep clinics will have
consistent results on the same sleep studies for both clinical and research
purposes, which potentially can be used for building new treatment protocols
and build upon the collective findings. The second mentioned advantage
point is that automated sleep scoring will significantly reduce man-hours
spent on PSG analysis, which will free up precious time for physicians and
technicians to focus on patient care. The third and last mentioned advantage
point is that automated sleep stage scoring has the potential to drive the field
away from the current gold standard of scoring sleep stages and discover
novel sleep stage characteristics in the brain.

Moving beyond the 30 s scoring guidelines requires a drastic shift in
methodology apart from a change in mindset. The rise of machine learning,
and in particular deep learning during the last decade, has prompted new
and powerful ways to learn from data, that could be useful for developing
future intelligent sleep analysis algorithms. Coupled with the raw amount of
data available from a sleep study with relatively few outcome labels, it seems
highly probable that unsupervised learning will become increasingly popular
for discovering new information about the processes and mechanisms of
sleep. Self-supervised representation learning is one such form of unsuper-
vised learning, where a model is incentivized to define latent feature spaces
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given some data without any associated target labels. The goal of defining
such latent representations is to model the underlying data distribution for
use in a later downstream task, which has been shown to work effectively
for both audio, video and natural language processing domains [216], [217].
Some studies have already been published made regarding the use of such
self-supervised techniques for improving sleep stage scoring [218]. The au-
thors were able to effectively model the underlying data distribution of PSG
recordings to improve sleep stage scoring in cases where the amount of data
was not sufficient to effectively train traditional machine learning or deep
learning-based models [218]. As this type of modeling is, in a sense, agnostic
to the downstream task at hand, this could be a potential avenue for futureA downstream task is

a secondary task that
a model is not

originally trained to
complete.

research aiming to design "one-shot-analysis"-type models, which is capable

This could e. g. be a
model that is able to

detect micro-sleep
events, predict sleep

disorders, recommend
treatment plans, etc..

of doing everything at once.
However, it is naïve to think that clinician experience would be redundant

in the future of clinical sleep medicine due to automated systems. Semi-
supervised learning systems could benefit from having both the robustness
and objectivity of the machine, as well as the expertise and flexibility of a
trained professional. Recently, explainable AI has emerged as a possible tool
for further analysis of deep learning models [219], and could also offer new
insight into sleep analysis [81].
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Did we learn a lesson here I’m not seeing?

— Summer Sanchez
Rick and Morty, season 1, episode 9

The main focus of this thesis was to develop a system based on artificial intelli-
gence, that can assist clinicians in the analysis of sleep studies. The application of
such a system would benefit clinicians and patients by shifting time spent on
analysis towards patient care. The system was realized in three parts, which
each addresses a specific sub-hypothesis:

RH 1: Advanced biomedical signal processing and machine learning algorithms can
be used for efficient, high-performing analysis of sleep studies with regards to sleep
stages.

Chapter 3 presented the MASSC model for automatic classification of sleep
stages using raw EEG, EOG, and chin EMG data extracted from PSG. This
model was initially proposed in [72], where it was trained and tested on 1850

and 230 PSGs, respectively, yielding an accuracy of 84%. Increasing both the
volume and diversity of the data increased performance to 87%, which was
described in Section 3.3.

Also presented was the STAGES model for sleep stage classification based
on cross-correlation representations of the EEG, EOG and chin EMG and
an ensemble of deep neural networks. This model was trained on 2784

PSGs and subsequently validated against six technicians on 70 PSGs, where
it outperformed all technicians both on a biased and unbiased consensus
score. The model was furthermore found stable with respect to underlying
sleep pathologies in all cases except for narcolepsy, which was exploited
in Chapter 5.

These findings suggest that AI-based systems such as deep neural networks
can augment clinicians with sleep stage classification, and that volume and
diversity in datasets are key to high performance.

RH 2: Advanced biomedical signal processing and machine learning algorithms can
be used for efficient, high-performing analysis of sleep studies with regards to sleep
events.
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Chapter 4 presented the MSED model for sleep event detection. An initial
version of the model was described in Section 4.2 for detection of arousals
and leg movements, which was augmented to include sleep disordered
breathing events in Section 4.3, using raw EEG, EOG, chin and leg EMG, and
respiratory data extracted from the PSG. Training and testing the model on
1653 and 1000 PSGs, respectively, yielded F1 scores of 0.70, 0.63, and 0.62

for arousal, leg movement, and sleep disordered breathing event detection,
respectively. The performance was higher when detecting events jointly
compared to corresponding single-event models. Index values computed
from detected events correlated well with manual annotations with r2-values
of 0.73, 0.77, and 0.78, respectively.

The MSED model was applied in a transfer learning setup under the
channel mismatch problem, where the target dataset contained only one EEG
channel. This problem has been investigated previously for the case of sleep
stage classification, but remains under-investigated in sleep event detection.
Using a network pre-trained on a full montage of input channels, stripped of
the input processing layers, and subsequently fine-tuned on a smaller dataset
allowed for recovery of F1 performance compared to the full montage model.

RH 3: Advanced biomedical signal processing and machine learning algorithms can
be used for efficient, high-performing analysis of sleep studies with regards to sleep
disorders. Chapter 5 presented the application of the STAGES for narcolepsy
detection. The motivation behind this was the finding in Section 3.4, which
led to the development of a probabilistic model using features derived from
the hypnogram representation of a PSG and a Gaussian process classification
algorithm. The STAGES model was able to classify NT1 patients with a
91% sensitivity and 96% specificity, which was increased to 99% by adding
hla-dqb1*06:02 typing. This was replicated in an independent cohort of
data from two continents for an optimized sensitivity and specificity of 94%
and 94%. These findings match the current gold standard for narcolepsy
diagnosis while having the benefit of using the PSG alone or in combination
with blood samples.

Altogether, the findings presented in this thesis underline the practicality
and utility of incorporating AI-based systems in the sleep clinic by providing
fast and accurate analysis of sleep stages, sleep events, and sleep disorders.
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Think for yourselves, don’t be sheep.

— Rick Sanchez
Rick and Morty, season 2, episode 11

This thesis has proposed novel methods for sleep stage classification, sleep
event detection, and identification of patients with narcolepsy, which may aid
clinicians in their work. However, the development of automatic, AI-based
systems for clinical sleep analysis is a fast-growing, open-ended field with
room for further investigations. An incomplete list of suggestions for future
directions of research within computational sleep science is provided here:

- Although the methods described in Chapters 3 to 5 could be described
as a single system, future research should investigate the development
of a unified model, that can make predictions on a small segment scale
(sleep stages, micro-events) and a larger, whole-PSG scale (outcome
modeling, identification of sleep disorders).

- Unsupervised and semi-supervised learning approaches such as con-
trastive predicting coding should be investigated with the aim of cre-
ating a flexible generic model capable of completing multiple several
downstream tasks.

- The transfer learning experiments in Section 4.4 was only tested within
one cohort; the findings should be replicated across multiple datasets.

- The MSED utility wrt. sleep disorder characterization, classification
and prediction should be investigated more thoroughly.

- Although the methods described in this thesis have been tested in
data with good performance, these results may still be biased towards
the applied cohorts. To alleviate this, the sleep science community
should consider establishing publicly available benchmark datasets for
independent validation of algorithms.

- The narcolepsy detector presented in Chapter 5 should be validated in
more samples from multiple international sleep labs.
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- In developing the narcolepsy detector, we did not investigate the inclu-
sion of MSLT findings, due to the specific scope. However, it would be
valuable to investigate the relationship between objective findings such
as MSLT and the algorithm output.

- It should also be investigated how stable the narcolepsy detection is
with regards to the first night effect, repeated PSG recordings, and/or
if the inclusion of multiple nights can add value.

- It should be investigated whether the framework for narcolepsy detec-
tion could be adapted for detection of other hypersomnias, either in a
separate system or as a detection algorithm for central hypersomnias
in general.
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Deep residual networks for automatic sleep stage classification of raw
polysomnographic waveforms

Alexander N. Olesen†,1,2, Poul Jennum3, Paul Peppard4, Emmanuel Mignot2, and Helge B. D. Sorensen1,

Abstract— We have developed an automatic sleep stage clas-
sification algorithm based on deep residual neural networks
and raw polysomnogram signals. Briefly, the raw data is passed
through 50 convolutional layers before subsequent classification
into one of five sleep stages. Three model configurations were
trained on 1850 polysomnogram recordings and subsequently
tested on 230 independent recordings. Our best performing
model yielded an accuracy of 84.1% and a Cohen’s kappa
of 0.746, improving on previous reported results by other
groups also using only raw polysomnogram data. Most errors
were made on non-REM stage 1 and 3 decisions, errors likely
resulting from the definition of these stages. Further testing on
independent cohorts is needed to verify performance for clinical
use.

I. INTRODUCTION

Sleep staging is the principal tool available to medical
doctors in the analysis of sleep disorders. Natural human
sleep consists of recurring cycles of three to four distinct
phases, which are primarily characterized by changes in brain
activity, eye movements, muscle activations and breathing.
A polysomnogram (PSG) containing electroencephalogra-
phy (EEG), electrooculography (EOG), electromyography
(EMG) and other signals is collected during sleep, and
subsequently processed and analyzed by sleep technicians
according to standards by the American Academy of Sleep
Medicine (AASM). Each 30 s epoch of data is categorized
into either wakefulness (W), rapid eye movement (REM)
sleep, or one of three stages of non-REM sleep (N1, N2,
N3) [1]. However, this approach is prone to subjective
interpretation of sleep staging rules, which have prompted
extensive research in using various signal processing and
machine learning approaches [2].

Attempts at exploiting deep learning models for sleep stag-
ing have been proposed recently. One group used a transfer
learning-approach to characterize sleep stages [3], where
30 s epochs of Fpz-Cz EEG were subjected to multitaper
spectral estimation (MTSE) in order to create spectral image
representations [4], that ultimately were fed as input to a
VGG-16 model stripped of the last layers [5]. This approach
was cross-validated using a leave-one-out scheme on 20
subjects and yielded a bootstrapped accuracy of 86%± 2%.

†Corresponding author: aneol@elektro.dtu.dk.
1Department of Electrical Engineering, Technical University of Denmark,

Kgs. Lyngby, Denmark.
2Stanford Center for Sleep Sciences and Medicine, Stanford University,

Palo Alto, CA, USA.
3Danish Center for Sleep Medicine, Department of Neurophysiology,

Rigshospitalet, Glostrup, Denmark.
4University of Wisconsin School of Medicine and Public Health, Madi-

son, WI, USA.

Using MTSE for representing EEG data was also inves-
tigated in [6], where the authors compared various machine
and deep learning models trained on either raw EEG wave-
forms, MTSE spectrograms, or 96 expert-defined features.
They tested their best performing model on recordings
from 1000 individual subjects and obtained an accuracy of
85.76% and a Cohen’s kappa of 0.79 using a combination of
expert-defined features and recurrent neural networks (RNN).
On the same test set, they obtained accuracy/kappa values of
77.31% and 0.71 using a deep learning model trained on raw
EEG waveforms.

However, it is still unclear whether manual feature ex-
traction such as sleep spindle/K-complex detection, or data
transformations, such as spectrograms or MTSE, are strictly
necessary for efficient deep learning, and there is still room
for improvement in the current state of the art for raw PSG
analysis.

We propose a novel method for automatic sleep staging
combining state of the art deep learning networks with raw
PSG data to accurately capture the complex relationships
found in PSG data without resorting to data transformations
and manual feature engineering.

II. DATA

A database containing 2310 recordings extracted from the
Wisconsin Sleep Cohort was used in this study. Specific
acquisition details concerning the PSGs are described in [7].
The entire set of PSG studies was randomly split into training
(train), validation (eval), and testing (test) subgroups in an
8:1:1 ratio. Detailed demographic information as well as
relevant PSG variables for all three subgroups are provided
in table I including apnea-hypopnea index (AHI) and time
spent in each sleep stage based on manual scoring.

III. METHODS

A. Signal extraction and pre-processing

Central and occipital EEG from right hemisphere, left
and right EOG, and chin EMG channels were extracted
from each PSG study. To accommodate different equipment
setups used for recording studies, each channel was upsam-
pled to 200Hz. Following resampling, signals were filtered
using zero-phase Butterworth filters with frequency ranges
recommended by the AASM [1]. Since dynamic ranges
vary considerably across channels, each signal was soft-
normalized using the 5th and 95th quantiles, such that

xnorm = 2
x−Q0.05(x)

Q0.95(x)−Q0.05(x)
− 1, (1)
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TABLE I
EXTRACTED WSC COHORT DEMOGRAPHICS FOR EACH SUBGROUP.

SIGNIFICANT p-VALUES ARE HIGHLIGHTED IN BOLD.

Train Eval Test p-value

n (male) 1850 (1010) 230 (112) 230 (120) 0.210
Age (years) 59.2± 8.4 59.9± 8.5 60.4± 8.2 0.092
BMI (kgm−2) 31.7± 7.2 31.0± 6.9 32.2± 7.7 0.203
AHI (h−1) 12.6± 15.6 11.5± 14.9 12.4± 16.2 0.600

PSG dur. (h) 7.4± 0.8 7.4± 0.7 7.4± 0.8 0.947
W (%) 18.5± 11.3 17.2± 11.1 19.6± 11.8 0.071
N1 (%) 8.2± 4.5 8.8± 5.6 8.9± 5.1 0.038

N2 (%) 54.2± 10.3 54.0± 10.9 52.4± 11.0 0.048

N3 (%) 5.8± 6.4 6.4± 7.0 6.0± 7.0 0.433
REM (%) 13.3± 5.9 13.7± 5.8 13.2± 5.7 0.635

where xnorm denotes the normalized version of the signal
x, and Q0.05(x) and Q0.95(x) denotes the 5th and 95th
percentile, respectively. Doubling and subtracting by one
rescales Q0.05(x) and Q0.95(x) to −1 and 1, respectively.

Finally, each signal was segmented into 30 s epochs corre-
sponding to AASM criteria [1], resulting in a tensor X with
elements

(xnc·t) ∈ RN×C×1×T , (2)

with N = 16, C = 5, and T = 6000 being batch size,
number of signals, and number of timesteps for one epoch,
respectively.1

B. Deep residual network model

We applied a deep learning model inspired by the residual
network models proposed in [8], [9]. These types of models
employ residual skip connections between layers in order
to maintain a proper gradient backpropagation through the
network. This feature allows for extremely deep network
structures, and a specific variant of this model with 152 lay-
ers came in 1st place in the ILSVRC ’15 image classification
competition [8].

1) Architecture: The residual network model is illustrated
in Fig. 1. Briefly, the bulk network comprised 50 convolua-
tional (conv) and dense layers arranged in four block layers
of four bottlenecked residual blocks each.

A single bottleneck residual block contains three triplets
of a batch normalization layer, a rectified linear unit (ReLU)
activation layer, and a conv layer. This pre-activation con-
figuration has shown benefits with regards to trainability
and generalization compared to vanilla residual blocks [9].
Projection shortcuts were used between the first ReLU and
conv layers to the output of the last conv layer. Kernel sizes
were set to 1×1 for the first and third conv layers, and 1×3
for the second conv layer. The number of output filters for
each residual block was l × f with l being the block layer

1The 1-dimensional convolution tf.layers.conv1d reshapes the
input argument to subsequently call tf.layers.conv2d in TensorFlow.
To reduce computational costs, we introduce a singleton dimension.

Fig. 1. Model architecture. The input tensor has shape (N,C, 1, T ), where
N , C, T correspond to the batch size, number of signals, and length of each
30 s epoch, respectively. The output tensor has shape N ×K with K = 5
sleep stages, while J = 4, and f = 16 is the number of block layers and
base number of filters.

index and f = 16, resulting in a total of 256 filters after the
final conv layer.

Before the bottleneck blocks, the input tensor X was
passed through an initial conv layer consisting of 64 1× 16
filters, and then through a maximum pooling (max pool)
layer with a 1×2 kernel and stride size, effectively reducing
the time-resolution by a factor of 2. This max pool operation
was implemented in the beginning of each block layer.

The output tensor from the block layers was subsequently
passed to a final batch normalization and ReLU activation
layer, followed by a mean pooling layer to reduce the tensor
to X = (xnk) ∈ RN×256. Finally, a fully connected layer
with K = 5 output units corresponding to the sleep stages
resulted in the following output tensor

P = (pnk) ∈ RN×K , pnk =
exp znk∑K
k exp znk

(3)

with pnk containing the softmax activations of the output
units znk from the fully connected layer for the nth subject
and the kth sleep stage. The predicted class for the nth
subject can then be calculated as

ŷn = argmax
k

pnk. (4)

2) Training: The optimization problem was constructed
using cross entropy loss across K classes and N epochs as
objective function, such that

L(pn|yn,W) = −
K∑

k=1

ynk log pnk, (5)
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is the calculated cross entropy loss for epoch n given
predicted class probabilities pn, true class labels yn, and
the set of current weights W. Then, the average cost across
a batch of data is

C(P|Y,W) =
1

N

N∑
n=1

L(pn|yn,W). (6)

The cost function was optimized using the Adam optimiza-
tion algorithm with default hyperparameters [10]. Weights
were initialized using variance scaling [11], and we applied
weight decay during training with λ = 10−4. The initial
learning rate was set to α = 10−3 and was multiplied by 0.1
every 50000 steps.

In order to investigate the effect of the imbalanced data
on the network performance, we trained the following three
different configurations. First, we defined a baseline configu-
ration as described in the previous sections. The second was
a weighted configuration, where the cost function in eq. (6)
was replaced with an average weighted by the inverse
frequency for the correct class, such that

C(Ŷ|Y,W) =

∑N
n ωn(yn)L(ŷn|yn,W)∑N

n ωn(yn)
, (7)

where ωn(yn) is the inverse frequency for the correct class
for the nth subject in the current batch. Finally, a weighted
configuration was tested, in which we performed resampling
of the training dataset in order to balance classes. We
oversampled the N1, N3, and REM classes with replace-
ment, while undersampling the N2 class in order to have
approximately equal fractions of each class in total.

Models were implemented in TensorFlow 1.4, and trained
on a single workstation running Ubuntu 16.04 with a Ryzen
7 1700X 8-core CPU, an NVIDIA GTX 1080 Ti GPU with
11 GB memory, and 32 GB RAM memory.

C. Performance metrics

Individual precision, recall and F1 scores (Pr, Re, F1) were
calculated for each sleep stage and subsequently aggregated
for each recording by stage frequency weighting, such that

Prnk =
TP

TP + FP
, Prn =

∑
k βnkPrnk∑

k βnk
(8)

Renk =
TP

TP + FN
, Ren =

∑
k βnkRenk∑

k βnk
(9)

F1nk = 2 · Prnk · Renk
Prnk +Renk

, F1n =

∑
k βnkF1nk∑

k βnk
, (10)

where βnk is the frequency of stage k for recording n, and
TP, FP and FN are true positives, false positives, and false
negatives, respectively. Overall accuracy (Acc) and Cohen’s
kappa (κ) were also calculated for each recording. All
metrics were summarized by mean and standard deviations.

D. Statistical tests

Demographic and PSG variables were tested with ANOVAs
after establishing normality, while gender was tested with a
χ2 test. Significance was set at p = 0.05.

TABLE II
AVERAGED PERFORMANCE METRICS FOR CONFIGURATIONS ACROSS

TRAIN AND EVAL SUBGROUPS WITH BEST SHOWN IN BOLD.

baseline weighted balanced

Train

Acc (%) 86.1± 5.5 79.4± 7.1 80.4± 7.3

κ (%) 77.1± 8.6 69.5± 9.7 70.7± 9.8

Pr (%) 87.1± 4.9 88.7± 4.1 88.9± 4.0

Re (%) 86.1± 5.5 79.4± 7.1 80.4± 7.3

F1 (%) 85.3± 6.1 81.8± 6.6 82.6± 6.9

Eval

Acc (%) 85.0± 6.1 78.4± 7.3 79.7± 7.4

κ (%) 75.4± 9.5 68.1± 10.5 69.7± 10.0

Pr (%) 86.3± 5.3 87.8± 4.8 88.0± 4.9

Re (%) 85.0± 6.1 78.4± 7.3 79.7± 7.4

F1 (%) 84.0± 7.2 80.7± 7.1 81.9± 7.1

TABLE III
AGGREGATED CONFUSION MATRIX AND STAGE-SPECIFIC

PERFORMANCE METRICS IN TEST SUBGROUP.

W N1 N2 N3 REM Pr (%) Re (%) F1 (%)

W 37980 1322 852 2 327 84.3 93.8 88.8
N1 3922 8784 3545 0 2193 51.9 47.6 49.7
N2 1756 5136 99564 1091 991 88.6 91.7 90.2
N3 18 1 7932 4063 14 78.8 33.8 47.3
R 1361 1680 465 0 23931 87.2 87.2 87.2

IV. RESULTS AND DISCUSSION

Performance metrics for the train and eval subgroups
are shown in table II. Not accounting for Pr, the baseline
configuration compares favorably to the weighted and bal-
anced configurations on both subgroups with an average
accuracy of 85.0% and a Cohen’s kappa of 75.4 on the eval
subgroup. Since the training data is imbalanced in favor of
N2, it would be fair to assume overfitting to the majority
class, however, the lower spread in both precision and recall
does not support this. Evaluating the baseline model on
the test subgroup gave only a slight drop in accuracy and
κ, indicating that the model generalizes well, see table III
and table IV. The lowest sensitivity is obtained for N1 and
N3, which is in accordance with clinical experience reported
in the literature [12]–[15]. N1 is a transitional stage between
wakefulness, drowsiness and sleep often containing beta
and alpha activity in epochs of low interscorer agreement,
which explains the low predictive power in the confusion
matrix. The sleep continuum is also apparent in Fig. 2 which
shows the manually and automatically scored hypnograms in
the middle and bottom traces, and the hypnodensity graph
in the top trace for a representative subject in the test
subgroup. The hypnodensity is a probabilistic representation
of the hypnogram, which has found use in the detection of
Parkinson’s and narcolepsy [16]–[18]. Our baseline model
attains favorable performance when comparing to the results
reported for the raw waveform CNN model in [6] with both
higher accuracy and Cohen’s kappa. However, it should be
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Fig. 2. Top: hypnodensity graph of per-epoch probability distributions, middle: automatically scored hypnogram by applying eq. (4), bottom: manually
scored hypnogram. Note the intrusions of N3 into N2 around epoch 150 and 370, and N1 into W around 420.

TABLE IV
PERFORMANCE ACROSS RECORDINGS IN TEST SUBGROUP.

Acc κ Pr Re F1

84.1± 6.9 0.746± 0.099 85.7± 6.1 84.1± 6.9 83.1± 7.6

stressed that [6] used EEG from 9000 recordings, while our
model uses EEG, EOG and EMG from 1850 recordings. Fur-
thermore, our baseline model performs only slightly worse
compared to the best-performing model using manual feature
engineering and RNNs in [6]. This indicates a possible
performance gain by adding recurrent networks, such as long
short-term memory cells, to our network.

A possible limiting factor to our model is the filter kernels.
The small filter sizes in block layers might not be able to
accurately capture the physiological dynamics, but there are
indications that many, smaller kernels are preferable to fewer,
larger kernels when comparing model complexity versus
computational costs [19].

Future work will include adding more data to balance
classes, and adding long short-term memory cells to the
network in order to model temporal dynamics between
epochs. As we performed minimal hyperparameter tuning in
this work, investigating the effects of changing the network
specifications to optimize performance is also a relevant area
of future research.

V. CONCLUSION

We have shown that common data transformations such
as spectrograms are not necessary for automatic sleep stag-
ing. Combining residual learning networks and raw PSG
waveforms, we obtained an average accuracy of 84.1% and
Cohen’s kappa of 0.745, improving on previously reported
results on raw PSG sleep staging. Further testing on inde-
pendent cohorts will illuminate the clinical applicability of
this method, while introducing more data and memory cells
will be explored to increase performance even further.
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ABSTRACT 

Study Objectives: Sleep stage scoring is performed manually by sleep experts and is prone to subjective interpretation 

of scoring rules with low intra- and interscorer reliability. Many automatic systems rely on few small-scale databases for 

developing models, and generalizability to new datasets is thus unknown. We investigated a novel deep neural network 

to assess the generalizability of several large-scale cohorts. 

Methods: A deep neural network model was developed using 15.684 polysomnography studies from five different 

cohorts. We applied four different scenarios: 1) impact of varying time-scales in the model; 2) performance of a single 

cohort on other cohorts of smaller, greater or equal size relative to the performance of other cohorts on a single cohort; 3) 

varying the fraction of mixed-cohort training data compared to using single-origin data; and 4) comparing models trained 

on combinations of data from 2, 3, and 4 cohorts. 

Results: Overall classification accuracy improved with increasing fractions of training data (0.25%: 0.782 ± 0.097, 95% 

CI [0.777 – 0.787]; 100%: 0.869 ± 0.064, 95% CI [0.864 – 0.872]), and with increasing number of data sources (2: 0.788 

± 0.102, 95% CI [0.787 – 0.790]; 3: 0.808 ± 0.092, 95% CI [0.807 – 0.810]; 4: 0.821 ± 0.085, 95% CI [0.819 – 0.823]). 

Different cohorts show varying levels of generalization to other cohorts. 

Conclusions: Automatic sleep stage scoring systems based on deep learning algorithms should consider as much data as 

possible from as many sources available to ensure proper generalization. Public datasets for benchmarking should be 

made available for future research. 
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Automatic sleep stage classification, computational sleep science, machine learning, deep learning 
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STATEMENT OF SIGNIFICANCE 

Manual annotation of polysomnography studies is subject to human bias with multiple studies showing variations in how 

sleep experts score sleep. Most research in automatic sleep stage classification models use small-scale data from a single 

origin, and it is unknown how these models generalize to new data. We developed an algorithm for automatic scoring of 

sleep stages using raw polysomnography data and obtain state-of-the-art classification performance on a large number of 

test subjects. Our algorithm was tested under different conditions to compare generalizability. We found that using data 

from many different sources improves classification performance, and that models trained on single-origin data generalize 

inconsistently to new data. Future researchers should take multiple datasets into account when developing sleep scoring 

models.  
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INTRODUCTION 

Sleep staging is important to the analysis of human sleep with about 845,000 sleep studies performed in 2014 in the US 

alone1. Briefly, a standard clinical sleep study consists of a full-night polysomnography (PSG) comprising 

electroencephalography (EEG), electrooculography (EOG), electromyography (EMG), electrocardiography (ECG), 

thoraco-abdominal inductance plethysmography, oronasal thermal flow, nasal pressure, and blood saturation recordings.  

These studies are then evaluated by experts for the presence of events of clinical relevance, as determined by standards 

created by the American Academy of Sleep Medicine (AASM), such as the number of blood oxygen desaturations, micro-

arousals, leg movements, periods of cessated breathing, etc. Furthermore, the overall sleep architecture is captured in a 

hypnogram conducted by labeling every 30 s of PSG data into one of five stages of sleep: wakefulness (W), rapid eye 

movement (REM) sleep, and non-REM stage 1, 2, and 3 (N1, N2, N3). The latter three stages are distinguished by distinct 

EEG amplitude and frequency distributions, the presence of specific EEG micro-events and arousability differences 

reflecting sleep depth. Sleep stage labeling is summarized in key metrics, such as the percentage of total sleep time (TST) 

spent in any of the five stages (%W, or wake after sleep onset, WASO; %REM; %N1; %N2; %N3), and visually in the 

form of a hypnogram, which shows temporal progression of sleep stages across the night. Current clinical practice (gold 

standard) of sleep study analysis is manual scoring and annotation of sleep stages and sleep events based on guidelines 

from the AASM2. These guidelines, based on observations made in healthy young males almost 70 years ago are 

problematic for several reasons: a) technicians will never score the same data the exact same way as another technician, 

or even the same way twice3–7; b) normal sleep from healthy young males may not reflect sleep patterns of patients 

referred to sleep clinics; and c) the 30 s epoch rule is arbitrary and was based on physical limitations of recording 

equipment when PSGs were recorded on paper. 

 

Automatic sleep stage classification has not yet seen wide-spread adoption in clinical practice despite ongoing research 

demonstrating feasibility and industrial interests8. A major issue has been a lack of available data for designing and 

training models. The publicly available PhysioNet Sleep-EDF and the expanded version9,10 has been used extensively for 

training both shallow and deep learning-based machine learning models11–13, but given its small sample size and 

homogeneity (most papers use the same healthy 20 subjects), it is questionable how well models derived from this data 

generalize to unseen data, even if high classification performance is often reported8. Other databases which have been 

extensively used include the St. Vincent’s University Hospital and University College Dublin Sleep Apnea Database (𝑛 =

25)9,14, and the Montreal Archive of Sleep Studies (MASS, 𝑛 = 200)13,15–19. The argument for using deep learning-based 

models to classify high-dimensional electrophysiological data, e.g. PSGs, into discrete outcomes such as sleep stages is 

compelling, because of their ability to capture variability in the underlying, highly complex, data representations, that 



5 of 28 

might be missed by  machine learning methods relying on manual feature engineering. In the image, speech, and natural 

language processing domains, the success of deep learning models using untransformed data have been unsurpassed in 

the last decade, thanks largely due to the availability of ever-increasing amounts of compute resources and more 

significantly very large, robust and diverse datasets20. 

 

Recently deep learning models for automatic sleep stage classification have been developed and validated using two or 

more databases or cohorts21–23, or using a single large volume cohort22,24,25. The assumption has been that by incorporating 

multiple sources of variance in the dataset used for training (e.g. from multiple technicians, sites, recording setups, 

equipment, etc.), final models will be better at generalizing to new, unseen data. However, no study to date has 

investigated multiple, large-scale cohorts for automatic sleep stage classification, or how different cohorts generalize to 

one another. 

 

In this work, we describe a deep learning-based sleep stage classification algorithm trained and validated on raw PSG 

data from multiple, large-scale cohorts for a total of 15,684 studies, that outputs a probability distribution over all sleep 

stages at a given time resolution. Considering the amount of data available, our aim was to evaluate: 1) how well does 

performance of individual cohorts generalize to others; 2) how much data is needed for accurate sleep staging; 3) how 

many cohorts are necessary for that same goal; and 4) which is better, more data, or more diverse data. To our knowledge, 

this is one of the largest, if not the largest, study on automatic sleep stage classification in terms of PSG volume and 

diversity.  
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METHODS 

Cohort descriptions 

To investigate and conclude on generalizability of any machine learning or sleep stage classification model, multiple 

heterogenous datasets must be used for training, validation and testing purposes. In this work, we collected datasets from 

five different sources, each dataset containing a diverse collection of subjects presenting with multiple disease phenotypes. 

Details of the separate cohorts are shown in Table 1 along with reported p-values highlighting cohort differences. Each 

cohort was split into a training, validation and testing subset in proportions of 87.5%, 2.5% and 10%, respectively, using 

random sampling without replacement among unique subjects, so that no subject is shared between subsets. With these 

percentages, we maximize the number of PSGs available for training, while still reserving enough PSGs for validation 

and testing. Collecting all the separate subsets across cohorts forms a training, validation, and testing partition, containing 

the respective subsets from all five cohorts.  

 

Institute of Systems and Robotics, University of Coimbra Sleep Cohort (ISRUC) 

This cohort contains 126 recordings from 118 unique subjects recorded at the Sleep Medicine Centre of the Hospital of 

Coimbra University, Portugal, in the period 2009–201326. The cohort comprises three subgroups: subgroup I contains 100 

PSGs of subjects with diagnosed sleep disorders, generally sleep apnea; subgroup II contains 16 recordings of eight 

subjects most of which are also diagnosed with sleep apnea; and subgroup III contains recordings from 10 subjects with 

no diagnosed sleep disorders. All PSGs were recorded with the same recording hardware and software and each was 

scored by two technicians for sleep stages and sleep events according to the AASM guidelines. ISRUC-Sleep is a freely 

accessible resource and all data and PSG files can be located at https://sleeptight.isr.uc.pt/ISRUC_Sleep/. 

 

The MrOS Sleep Study (MrOS) 

The MrOS sleep study is part of the larger Osteoporotic Fractures in Men Study, which aims to understand the 

relationships between sleep disorders, fractures, and vascular diseases in community-dwelling men27–29. It consists of 

2,907 in-home PSG recordings with an additional 1,026 follow-up PSG studies from subjects recruited from six different 

clinical centers in the USA. Each recording was annotated by an expert technician according to Rechtschaffen and Kales 

(R&K) criteria for sleep staging30. For compatibility with AASM guidelines, we combined stages labeled S3 and S4 into 

N3. All data were accessed from the National Sleep Research Resource (NSRR) repository31,32. 

 

The Sleep Heart Health Study (SHHS) 
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The SHHS is a large, multi-center study on cardiovascular outcomes related to sleep disorders with a specific focus on 

sleep-disordered breathing33,34. The cohort consists of 6,441 subjects above 40 years old recruited between 1995 and 1998 

undergoing in-home PSG (SHHS Visit 1) with subsequent follow-up PSG between 2001 and 2003 in 3,295 subjects 

(SHHS Visit 2). PSG recordings were annotated for sleep stages by trained and certified technicians according to R&K 

rules. From the original cohort we extracted 5,793 PSGs and annotations from Visit 1, and 2,651 from Visit 2, and 

aggregated S3 and S4 stages into N3 similar to MrOS. All data were accessed from NSRR repository. 

 

Wisconsin Sleep Cohort (WSC) 

WSC is a population-based study of sleep-disordered breathing in government workers in Wisconsin, USA that was 

initiated in 198835,36. In this work, we used 2412 PSGs from 1091 unique subjects in the WSC sample scored by expert 

technicians according to R&K rules with subsequent merging of S3 and S4 into N3. 

 

Stanford Sleep Cohort (SSC) 

PSGs from this cohort originate from patients referred for sleep disorders evaluation and recorded at the Stanford Sleep 

Clinic since 1999. The specific sample used in this study represents a small subset (n = 772) of the whole cohort, which 

was selected and described in detail in previous studies37,38 scored according to R&K or AASM guidelines according to 

prevailing standard at the time of evaluation.  

 

Signal pre-processing pipeline 

Electrophysiological signals corresponding to the minimum acceptable montage for sleep staging available across all 

cohorts were extracted for each PSG. These included a central EEG (either C3 or C4 referenced to the contra-lateral 

mastoid), left and right EOG referenced to the contra-lateral mastoid, and a single submentalis EMG. The choice between 

C3 and C4 was determined based on the lowest total signal energy across the entire duration of the PSG to avoid excessive 

signal popping. Other methods to determine appropriate channels include algorithms based on shortest Mahalanobis 

distance to an already determined reference distribution21, but was not investigated in this study. All signals were 

resampled to fs = 128 Hz using a polyphase filtering procedure irrespective of original sampling frequency; and 

subsequently filtered using a zero-phase approach with 4th order Butterworth IIR filters (0.5 to 35 Hz band pass for EEG 

and EOG; 10 Hz high pass for EMG) in accordance with AASM filter specifications2. Each signal was normalized to zero 

mean and unit variance to accommodate differences in recording equipment and baselines; and to compress the dynamic 

range into something easily trainable for the neural network architecture. We denote by 𝐶 the number of input signals 

supplied to the neural network, where in this case 𝐶 = 4. 
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Machine learning problem 

We designate by 𝒳 ∈ ℝ ×  the set of 30 s input data segments with C input channels and segment length T, and the 

corresponding classifications by 𝒴 = {𝑦 ∈ ℝ | ∑ 𝑦 = 1}, where K = 5 corresponds to the five sleep stages. Thus, 𝑦 is a 

probability simplex, which maps to the ordered set 𝒮 = {W, N1, N2, N3, REM} by the argmax function such that 

argmax 𝑦 ∶ 𝒴 → 𝒮. Furthermore, as we are potentially interested in classifying multiple sleep stages at once, we extend 

the problem of classifying a single sleep stage given 𝑥 ∈ 𝒳 to a sequence-to-sequence problem, in which we desire to 

learn a differentiable function representation Φ, that maps a sequence of 30 s epochs 𝐱 ∈ ℝ ×  to their corresponding 

label probabilities 𝐲 ∈ ℝ × , where 𝛼 is a parameter that controls the sequence length. If e.g. 𝛼 = 8, the sequence x 

contains 4 min of successive PSG data described by 8 epochs of length 30 seconds. Furthermore, we denote by ⟦𝑎, 𝑏⟧ the 

set of integers from 𝑎 to 𝑏, i.e. ⟦𝑎, 𝑏⟧ ≡ {𝑛 ∈ ℕ|𝑎 ≤ 𝑛 ≤ 𝑏}, and by ⟦𝑁⟧ the shorthand form of ⟦1, 𝑁⟧. 

 

Network architecture 

As the representation of Φ, we adapted and extended a previously published neural network architecture for automatic 

sleep stage classification, which was based on a variant of the ResNet-50 architecture commonly used for two-dimensional 

image classification tasks, but adapted and re-trained from scratch for the specific use-case of one-dimensional, time-

dependent signals in the PSG24. This network has the advantage that it does not require any manual feature engineering 

and extraction compared to previous state of the art sleep stage classification models21. An overview of the proposed 

network architecture is provided graphically in Figure 1 and Table 2. Briefly, the architecture consists of four modules: 

1) an initial mixing module 𝜑mix ∶ ℝ × × → ℝ × ×  

2) a feature extraction module 𝜑feat ∶ ℝ × × → ℝ × × ⁄  

3) a temporal processing module 𝜑temp ∶ ℝ × × ⁄ → ℝ × ⁄ , and 

4) a classification module 𝜑clf ∶ ℝ × ⁄ → ℝ × ⁄ . 

Thus, we obtain a differentiable representation of the function Φ ∶  ℝ × → ℝ × ⁄  as 

Φ(𝐱) = 𝜑clf 𝜑temp 𝜑feat 𝜑mix(𝐱) . 

The output of this function is the matrix 𝐲 ∈ ℝ × ⁄  containing sleep stage probabilities in the sequence of PSG data 

evaluated every second. 

 

Mixing module 
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The raw input data is input to this module, which encourages non-linear channel mixing similar to what has been proposed 

in recent literature16,39–41. The module is realized using a single 2D convolutional operation outputting 𝐶 feature maps 

computed using single-strided 𝐶 × 1 kernels followed by rectified linear unit (ReLU) activations. 

 

Feature extraction (residual network) module 

This is comprised of a succession of R residual blocks (see Figure 1), which are responsible for the bulk feature extraction 

from the channel-mixed data. Each residual block is realized using bottlenecks of first a 1 × 1 convolution to reduce the 

number of feature maps, then a 1 × 3 convolution and lastly a 1 × 1 convolution to finally increase the number of feature 

maps. Each convolution operation was followed by a batch normalization42 and ReLU activation except after the last 

convolutional layer, where shortcut projections are added before the activation43. This type of block structure enables the 

design and training of very deep networks without the risk of vanishing gradients due to the projection shortcuts44. 

 

Temporal processing module 

This module is realized by a bidirectional gated recurrent unit (GRU)45 in order to accommodate temporal dependencies 

in the PSG. The GRU runs through the temporal dimension of the output from 𝜑  of 𝑇 2⁄  time steps each containing 

𝑓 2  features and outputs 𝑛  features in each direction for each time step. By running both forward and backward, we 

can accommodate that technicians base their scoring on looking backwards as well as ahead in time in each time segment 

(typically 30 s). 

 

Classification module 

The final module in the architecture performs actual classification based on the forward and backward features for each 

time step outputted from 𝜑 . It is realized by a single convolutional operation with a subsequent softmax activation to 

compute a probability distribution over the K sleep stage classes, such that the probability of sleep stage 𝑖 at time step 𝑛 

is given by 𝑦( )
=

 ( )

∑  ( )
, where 𝑎 ∈ 𝒂 is the activation of the last layer in the network and 𝑘 = ⟦𝐾⟧. 

 

Loss function 

The network was trained end-to-end with respect to a loss function, that takes the output probabilities from the network 

𝐲 = Φ(𝐱) and calculates the loss as 

 
ℒ(𝐲) = − 𝑡 ( ) log 𝑦

( )

⁄

, 
(1) 
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𝑦′

( )
=

1

𝜏
𝑦

( )

( )

, 
(2) 

which is the cross-entropy between successive time-averaged classifications (parameterized by the number of successive 

one-second predictions 𝜏), and the ground truth labels 𝑡 broadcasted to 30 𝜏⁄  labels per 30 s segment. This way, we can 

acquire predictions every second, that can be combined in time at intervals given by 𝜏. 

 

Experimental setups 

We set up three different experiments in this study. 

A) We wished to investigate the effect of increasing the complexity of the recurrent module by varying the number of 

units 𝑛  in the module 𝜑temp in the space 𝑛 = 2 ,  𝑘 ∈ ⟦6,11⟧. We hypothesize that there exists a sweet-spot in the 

number of hidden units that balances computational complexity with classification performance, i.e. classifying a 

sequence of sleep stage labels given a corresponding sequence of outputs from 𝜑feat. The results of this experiment 

were furthermore used to determine parameters for models in subsequent experiments. 

B) Since we have several cohorts at our disposition of both clinical and research origin, we can investigate the 

compatibility and inherent generalizability of the different cohorts in two ways: 1) we set aside a single cohort for 

testing, while we train the models on the remaining four (leave-one-cohort-out, LOCO training); and 2) we train on 

a single cohort, while we set aside the remaining four for testing (leave-one-cohort-in, LOCI training). 

C) Generalizability can also be investigated in another way, which can answer the question of how many data sources 

is necessary. We trained models with all possible 2-, 3-, and 4-combinations of cohorts, i.e. one run trained on ISRUC 

and MrOS training data, another run with ISRUC and SHHS train data, a third with ISRUC and SSC, etc., with all 

runs subjected to subsequent evaluation on the test partition.  

D) Previous studies have already investigated the performance of automatic sleep staging algorithms using shallow 

machine learning models. At the time of writing however, none have investigated the effect of available training data 

for deep learning models at this magnitude (up to tens of thousands). We therefore trained models on 0.25%, 0.5%, 

1%, 5%, 10%, 25%, 50%, 75% and 100% of the data available for training. Specifically, some of these fractions of 

the total number of PSGs correspond roughly to the number of PSGs in the training partitions in each cohort, allowing 

for direct comparisons between training a model with mixed- and single-cohort training data. 

 

Common for all experiments were the default parameter values 𝐶 = 4, 𝑓 = 128 Hz, 𝑇 = 𝜏𝑓 , 𝐾 = 5, 𝑅 = 7, and 𝑓 = 4 

for the number of input channels, sampling frequency, the sequence length, the number of sleep stages, the number of 

consecutive residual blocks, and the base filter kernel size, respectively. All models were trained for 50 epochs (passes 



11 of 28 

through the training partition) and the model with the highest Cohen’s kappa value on the validation partition was 

subsequently selected for testing. All models were trained end-to-end with backpropagation using the Adam optimizer46 

with a learning rate of 10 , 𝛽 = 0.9, and 𝛽 = 0.999 to minimize the loss function specified by Eq. (1) and Eq. (2). All 

network weights and bias terms were initialized using the uniform Glorot initialization scheme47.  

 

Performance metrics and model evaluation 

For each experiment we evaluated model performance using the overall accuracy (Acc) and Cohen’s kappa (κ) in order 

to into account the possibility of chance agreement between the model gold standard. Given a confusion matrix 𝐂 with 

element 𝑐  being the number of epochs belonging to sleep stage 𝑖 but classified to be in sleep stage 𝑗, we define the 

overall accuracy for a given model as 

Acc =
∑ 𝑐

∑ 𝑐,

 

i.e. the sum of the trace of 𝐂 divided by the total count. The Cohen’s kappa metric is defined as  

κ =
𝑝 − 𝑝

1 − 𝑝
 

where 𝑝 = Acc is the observed agreement (i.e. accuracy) and 𝑝  is the expected chance agreement, which can be 

reformulated in terms of the outer product between the row and column sums (class-specific recall and precision) of 𝐂. 

 

Data and source code availability 

All model training and testing code was implemented in PyTorch v. 1.248. Model performances were assessed using 

custom Python scripts using scikit-learn49. Source code and pre-trained models will be made available at 

https://github.com/neergaard/deep-sleep-pytorch.git and https://github.com/Stanford-STAGES/deep-sleep-pytorch.git 

upon publication of this paper. Data from ISRUC are publicly available at https://sleeptight.isr.uc.pt/ISRUC_Sleep/, while 

access to data from MrOS and SHHS can be requested from the NSRR. Anonymized PSG data from SSC including 

selected demographic data are available at https://stanfordmedicine.app.box.com/s/r9e92ygq0erf7hn5re6j51aaggf50jly.  
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RESULTS 

In this section we report on the results of the three experiments described in the Experimental setups section.  

 

Temporal context impact on model performance 

In Figure 2 we show how the model performance depends on the temporal context and complexity of the temporal 

processing module, when evaluating the model on the validation partition. Results are further detailed in Table S1. 

Specifically, we observe a drastic change in Cohen’s kappa just by introducing a simple recurrent unit into the network 

as shown in Figure 2a, where Cohen’s kappa increases from 0.645 ± 0.126 (95% CI:  [0.633 − 0.657]) at 𝑛 = 0 to 

0.720 ± 0.120 (95% CI:  [0.709 − 0.731]) at 𝑛 = 64. We did not observe any major changes when increasing the 

number of hidden units beyond 64, although we did see a maximum Cohen’s kappa of 0.734 ± 0.111 (95% CI:  [0.723 −

0.744]) at 𝑛 = 1024, which is shown in the inset in Figure 2a. We observed a general increase in Cohen’s kappa when 

classifying longer sequences than 2 min (0.726 ± 0.114,  95% CI:  [0.715 − 0.737]), but did not see any major 

differences when classifying over more than 3 min sequences (0.733 ± 0.123,  95% CI:  [0.721 − 0.744]). Subsequent 

models were fixed with 𝑛 = 1024 corresponding to a sequence length of 5 min. 

 

Model classifications converge to 30 s predictions given sufficient training data 

Furthermore, we analyzed the classification performance of the model given a specific sequence length by looking at the 

average prediction accuracy across all 5 min sequences in all subject PSGs in the test partition, similar to what Brink-

Kjaer et al. has shown previously50. In Figure 2c, we show how the average classification accuracy in a 5 min sequence 

both depends on the amount of data and the frequency of evaluating the model output, i.e. every 1 s or across 30 s. The 

average classification accuracy was found to be slightly lower in the beginning of each 5 min sequence (see Figure 2c), 

both when training a model with less (500 training subjects) and more (75% of total training subjects). Interestingly, when 

training with less data, we also observed a lower accuracy in the beginning and end of each 30 s segment relative to the 

accuracy in the middle section, which was not the case when training with more data. 

 

Choice of cohort impacts classification performance on test set 

In Figure 3 we show how training on different cohorts yield differing results in subsequent testing performance, here 

expressed in heatmaps as both overall accuracy (Figure 3a), and Cohen’s kappa (Figure 3b) averaged across all 𝑁 =

1,584 subject PSGs in the test partition. The first two columns show the performance on the cohort on the x-axis, when 

training on the specific cohort on the y-axis. Since the training subset in ISRUC is small compared to the other cohorts, 

we trained the model in the left-most column with weight decay of 10  to compensate for the risk of overfitting, however, 
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by comparing the left and middle columns, we did not observe any specific gain in classification performance by doing 

so. The right-most column shows the test performance for each cohort, when excluding that cohort from training. We 

observe a significant spread in classification accuracy across the different cohorts with prediction on ISRUC being 

poorest, while prediction on MrOS data being best. Further details can be found in Table S2. 

 

More data is good, diverse data is better 

We observed a general increase in classification performance both in terms of overall accuracy and Cohen’s kappa, when 

including more data in the model training phase in both the mixed- and single-cohort setting (Figure 4a, Table S3). 

Classification performance was consistently lower in the single-cohort setting compared to the corresponding mixed-

cohort setting. Interestingly, we found that training a model with just 0.25% of mixed-cohort training data still achieved 

an acceptable accuracy comparable to training a model with only SHHS data, while using all available training data 

increased that performance by almost 10 percentage points. Furthermore, we observed that the model trained with 100% 

of the training partition reached a state-of-the-art level of performance with an overall accuracy of 0.869 ± 0.064 

(95% CI:  [0.865 − 0.872]) and Cohen’s kappa of 0.799 ± 0.098 (95% CI:   [0.794 − 0.804]) (Table S3). The model 

furthermore performs well with respect to classifying individual sleep stages as shown in the confusion matrix in Figure 

4b. However, the model still has difficulties classifying and distinguishing between certain sleep stages, especially 

between N2, N1, and N3; and W, N2, and N1. 

 

Increasing the number of data sources improves classification performance 

On average, we saw an increase in overall accuracy, when increasing the number of cohorts from 2 to 4 using 500 PSGs 

in each configuration, see Figure 5 and Table S4. Specifically, we found that the average overall accuracy increased from 

0.788 ± 0.102 (95% CI: [0.787 − 0.790]) in the 2-cohort configuration to 0.808 ± 0.092 (95% CI: [0.807 − 0.810]) 

and 0.821 ± 0.085 (95% CI: [0.819 − 0.823]) in the 4-cohort configuration. 
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DISCUSSION 

In this work, we present an end-to-end deep learning-based model for fully automatic micro- and macro-sleep stage 

classification. Using all of the available data sources for training our model, we reached an overall accuracy on test 

partition of 0.869 ± 0.064 (95% CI:   [0.865 − 0.872]), and a Cohen’s kappa of 0.799 ± 0.098 (95% CI:  [0.794 −

0.804]), which is in the very high end of the substantial agreement category for observer agreement51. We found that 

individual cohorts exhibit major differences in overall accuracy and Cohen’s kappa when subjected to both training and 

testing conditions and specifically, we found that average performance on the test partition in the LOCI configurations 

varied significantly from 0.676 ± 0.124 (95% CI:   [0.670 − 0.682]) when training on ISRUC, to 0.837 ± 0.084 

(95% CI:  [0.833 − 0.841]) when training on SHHS. Each individual cohort also showed large deviations in predictive 

performance when tested on the other cohorts. For example, when conditioned on SHHS data, the lowest average accuracy 

was 0.721 on SSC test data compared to the highest at 0.872 on SHHS test data, while conditioning on SSC training data, 

the lowest average accuracy was 0.704 on ISRUC test data compared to 0.824 on WSC test data. Classification 

performance was generally higher on the test set when using the LOCO configuration, except for SHHS (higher in LOCI) 

and SSC (no difference). We also found that having data from multiple sources always resulted in better-performing 

models compared to training on single cohorts. Increasing the number of data sources increased classification 

performance, although this was non-significant. In the design of the model, we observed that model performance was 

enhanced by the addition of the recurrent module (bGRU), a phenomenon likely reflecting the fact that sleep stage scoring 

at a specific time in one subject can be influenced by signal content (frequency, amplitude, presence of micro-events) at 

later time steps. However, the complexity of the module given by the number of hidden units did not affect performance. 

In all our experiments, we also evaluated the performance of the model every 1 s compared to the performance evaluated 

every 30 s and found them to be similar, which indicates the model is stable in classification in periods corresponding to 

an epoch of data. 

 

Only a handful of studies have previously reported results when using multiple cohorts21–23. Some authors have reported 

a drop from 81.9% to 77.7% when training on the Massachusetts General Hospital cohort (MGH) and testing on MGH 

and SHHS, respectively22, while others have shown significant drops from 89.8% to 81.4% and 72.1% on two separate 

hold-out sets from Singapore and USA23. We also observed similar trends in our LOCI and LOCO experiments, where 

excluding the training subset of a cohort from the training partition resulted in a significant drop in performance on the 

respective test subset from that cohort. A benefit of our LOCI and LOCO experiments is the possibility for direct 

benchmarking against previous publications using specific cohorts in their experiments. For example, we obtain an 

accuracy of 0.805 in the LOCO-SHHS training-testing case compared to 0.777 previously reported by Biswal et al.22, 
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both of which reflect classification performance when SHHS had not been used for training; and an accuracy of 0.865 in 

the LOCI-WSC case compared to 0.841 reported by Olesen et al. 24, where both have been using a subset of WSC for 

training the model. Interestingly, we obtained the same level of performance on the SHHS data in our LOCI experiment 

as reported by Sors et al. (87% accuracy, 81% Cohen’s kappa) even though they only used single-EEG for their 

experiments52. Other works that have investigated single- vs. multi-channel models for automatic sleep stage classification 

have found that models generally benefit from having more channels available for training16,18,22. It may be that some 

cohorts share different characteristics that makes them more suitable for single- or multi-channel models, but this is 

speculative and would need to be verified in subsequent studies. 

 

Our study is not without limitations. We only optimized our network architecture with respect to the temporal processing 

module and therefore cannot assess what impact different design choices for the other modules would have had on final 

performance. For example, the EMG signal has different statistical properties and spectral content, and separate, parallel 

architectures for EMG and EEG/EOG feature extraction may be warranted, as proposed by others16,21.  Other studies have 

however shown equal performance in large cohorts using a similar channel mixing approach as proposed here24. Another 

limitation is found in our training runs, as we did not consider balancing our data with respect to the proportion of sleep 

stages, which may or may not have had impact on overall performance. It is well established that there is significant 

variation in scoring and validation of N1/REM and N2/N33,5,7, which challenges the training for any classification 

algorithm. Some researchers have experimented balancing the cost of misclassifying sleep stages by weighting them by 

their inverse frequency of occurrence and found no significant improvement24,52, while others have experimented with 

balancing the sleep stage frequencies in each batch of data input to the neural network model16, but more rigorous research 

in resampling or over/under-sampling techniques is warranted in this regard. We ultimately decided against experimenting 

with balancing our sleep stages in each batch, as we prioritized flexibility with regards to the length of input sequences 

fed to the network. All our models ran through at least 50 epochs of training (passes through the training partition), which 

might have induced a bias in the configurations with larger cohorts. For example, one pass through the training partition 

in the LOCI-ISRUC case corresponds to much less data than one pass through the LOCI-SHHS case. However, since we 

selected the best performing model based on Cohen’s kappa across all 50 epochs, we have allowed for more effective 

training in cases with less available training data. We observed that models using less data in the training partition 

generally had to run for longer time (i.e. more epochs) before converging. 

 

In future studies on automatic sleep stage classification algorithms, we strongly recommend researchers to test and report 

results on not just hold-out test partitions, but also on cohorts completely unseen by the model both during training and 
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testing/validation. Our experiments indicate that even though good performance can be achieved on hold-out data using 

a single cohort, this does not necessarily translate into good generalization performance. Such approach requires 

availability of many publicly available, high-quality, well-documented databases with easily accessible PSG data, 

associated annotations and related patient information. In this regard, websites such as the NSRR, which contains several 

large databases with clinical data as well as PSG and annotation data in a standardized format31,32, are an invaluable 

resource for researchers. We also propose that the sleep science community establishes a common reference dataset on 

which researchers in machine learning can benchmark their models, similar to what the computer vision and general 

machine learning community has done with the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)53, an 

annual competition in which researchers submit their models to test in various competitions. 

 

In summary, we have developed an automatic sleep stage classification algorithm based on deep learning, that can 

accurately classify sleep stages at a flexible resolution with a state-of-the-art classification performance of 87% accuracy 

on a test set of 1,584 PSGs. We trained and tested our model using five cohorts with varying numbers of PSGs covering 

multiple phenotypes with specific focus on how well cohorts can generalize to each other. We found that different cohorts 

generalize very differently both in intra- and inter-cohort settings (LOCI vs. LOCO experiments). Furthermore, we also 

found that having more data sources significantly improve classification performance and generalizability to the extent 

that even just a small number of training PSGs can reach high classification performance by including many different 

sources. To our knowledge, this is one of the largest, if not the largest, study on automatic sleep stage classification in 

terms of PSG volume, diversity, and performance. 
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FIGURE CAPTIONS LIST 

 

Figure 1: Model overview. a) The input is a sequence of data 𝐱 containing raw signal data from EEG, EOG-L/R, and 

EMG channels, which is supplied to the network modules in sequence. The feature extraction module consists of 𝑅 

repeated blocks of residual units, see panel to the right. The output of the model is a matrix 𝐲 containing class probabilities 

for each sleep stage for each time step, which can be visualized either directly as a hypnodensity, or by arg max 𝐲 as a 

hypnogram. The “A” and “M” labels in the hypnogram plots corresponds to automatic and manual hypnograms. b) 

Schematic of a single residual block in the feature extraction module. Convolutional layers are described by the kernel 

size × number of filters using a stride value of 1. Shortcut uses 1x1 convolutions with added zero-padding to maintain 

temporal dimension. Conv, convolutional layer; BatchNorm, batch normalization; ReLU, rectified linear unit; 𝑓 , base 

number of filters (𝑓 = 4).  
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Figure 2: Temporal context changes model performance. a) Cohen's kappa as a function of the number of hidden units in 

the recurrent block. Inset shows zoom of Cohen's kappa for non-zero hidden unit values. b) Cohen's kappa as a function 

of sequence length. c) Prediction accuracy averaged across all 5-minute sequences in the test partition with a small and 

large training partition. Full lines are predictions evaluated every 1 s, while dashed lines show predictions averaged every 

30 s. Values are shown for panels a), b) as mean with 95% confidence intervals. 
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Figure 3: Individual cohorts influence classification performance on test partition (𝑁 = 1,584). As an example, training 

on MrOS in a LOCI configuration, the performance on the test subset of WSC is 0.815. The diagonals in all three 

configurations shows the performance for the same subjects in the test subsets in the respective cohorts making possible 

direct comparisons between LOCI and LOCO. For aggregated metrics and more summary statistics, please see Error! 

Reference source not found.. LOCI, leave-one-cohort-in; LOCI-wd, LOCI with weight decay; LOCO, leave-one-cohort-

out; ISRUC, Institute of Systems and Robotics, University of Coimbra Sleep Cohort; MrOS, MrOS Sleep Study; SHHS, 

Sleep Heart Health Study; SSC, Stanford Sleep Cohort; WSC, Wisconsin Sleep Cohort. 
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Figure 4: Training on mixed data increased predictive performance compared to individual cohorts of similar size. a) 

There is a gain in predictive performance by mixing data from various sources consistent across the size of the training 

dataset. b) Confusion matrix for a model trained on 100% of the available training partition data. The model shows 

excellent performance overall, with most misclassification happening between W and N1, and N1, N2, and N3. This is 

somewhat consistent with clinical experience, since N1 is a transition stage between wake and the deeper stages of sleep 

with much frequency content overlap with both W and N2. 

  



26 of 28 

 

Figure 5: Number of cohorts in training partition increases model performance. Each datapoint is shown as the overall 

accuracy aggregated across all subjects for a specific training configuration. For example, the bottom dot in column 2 (3 

cohort configuration) shows the performance on the test set (overall accuracy 0.755 ± 0.109,  95% CI: [0.750 − 0.760]), 

when training with 500 PSGs randomly and evenly drawn from the Stanford Sleep Cohort, the Institute of Systems and 

Robotics, University of Coimbra Sleep Cohort, and the Wisconsin Sleep Cohort. Notice the scale on the y-axis. 
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TABLES 

Table 1: Cohort demographics. 

 ISRUC MrOS SHHS SSC WSC p-value 

N (female)   126 (50)   3932 (0)   8444 (4458)   767 (319)   2401 (1103)   0 

Age, years   49.8 ± 15.9  

[20.0-85.0]  

 77.6 ± 5.6  

[67.0-90.0]  

 64.5 ± 11.2 

[39.0-90.0]  

 45.7 ± 14.5 

[13.0-104.8]  

 59.7 ± 8.4 

[37.2-82.3]  

 0 

BMI, kg/m2   -  27.1 ± 3.8 

[16.0-47.0]  

 28.2 ± 5.1 

[18.0-50.0]  

 27.2 ± 6.5 

[9.8-78.7]  

 31.6 ± 7.2 

[17.5-70.6]  

 1.03e-171 

TST, min   350.0 ± 67.3 

[87.5-479.0]  

 352.1 ± 71.9 

[39.0-626.0]  

 374.1 ± 69.4 

[68.0-605.0]  

 361.0 ± 83.5 

[0.0-661.0]  

 364.1 ± 63.6 

[19.5-575.0]  

 4.07e-38 

SL, min   17.7 ± 20.5 

[0.0-144.5]  

 24.7 ± 26.9 

[1.0-402.0]  

 24.2 ± 25.7 

[0.0-349.0]  

 93.5 ± 58.9 

[0.5-404.0]  

 33.2 ± 21.4 

[0.5-333.0]  

 0 

REML, min   125.6 ± 61.4 

[7.0-323.0]  

 104.8 ± 75.1 

[0.0-590.0]  

 91.7 ± 58.8 

[0.0-471.0]  

 140.9 ± 88.0 

[0.0-464.0]  

 128.3 ± 76.0 

[3.5-514.0]  

 2.81e-173 

WASO, min   76.2 ± 49.8 

[7.5-251.0]  

 117.5 ± 67.6 

[4.0-487.0]  

 80.2 ± 54.7 

[2.0-378.0]  

 79.5 ± 55.0 

[3.5-367.0]  

 73.6 ± 45.9 

[3.0-325.0]  

 4.74e-233 

SE, %   78.8 ± 14.1 

[19.5-98.3]  

 75.5 ± 12.4 

[12.0-99.0]  

 80.5 ± 11.0 

[11.3-99.0]  

 77.4 ± 14.8 

[0.0-98.0]  

 77.1 ± 11.2 

[4.1-95.6]  

 4.23e-117 

N1, %   13.3 ± 5.8 

[1.8-33.1]  

 8.3 ± 6.4 

[0.0-70.0]  

 5.5 ± 4.0 

[0.0-39.1]  

 11.7 ± 10.2 

[0.0-92.0]  

 10.8 ± 6.9 

[1.0-88.4]  

 0 

N2, %   31.9 ± 10.3 

[4.4-89.3]  

 62.5 ± 10.0 

[21.0-95.0]  

 56.9 ± 11.5 

[10.9-100.0]  

 62.8 ± 24.9 

[0.0-636.0]  

 66.0 ± 9.4 

[9.1-93.3]  

 0 

N3, %   19.6 ± 8.0 

[0.0-41.1]  

 36.0 ± 31.8 

[0.0-259.0]  

 17.5 ± 11.6 

[0.0-70.1]  

 9.0 ± 9.3 

[0.0-73.0]  

 7.2 ± 7.8 

[0.0-47.5]  

 0 

REM, %   13.3 ± 6.3 

[0.0-37.8]  

 19.3 ± 6.8 

[0.0-44.0]  

 20.1 ± 6.3 

[0.0-48.0]  

 16.3 ± 7.2 

[0.0-40.0]  

 16.0 ± 6.2 

[0.0-38.2]  

 1.12e-203 

ArI, /h   20.2 ± 10.0 

[2.1-72.0]  

 23.7 ± 12.1 

[1.0-105.0]  

 18.9 ± 10.5 

[0.0-110.4]  

 125.0 ± 124.2 

[1.0-729.0]  

 -  0 

AHI, /h   13.1 ± 13.2 

[0.0-82.2]  

 13.7 ± 14.6 

[0.0-89.0]  

 18.1 ± 16.2 

[0.0-161.8]  

 13.5 ± 19.2 

[0.0-98.6]  

 7.0 ± 9.4 

[0.0-72.6]  

 0 

PLMI, /h   8.0 ± 27.4 

[0.0-292.8]  

 35.7 ± 37.5 

[0.0-233.0]  

-   7.0 ± 18.1 

[0.0-139.9]  

-   1.22e-169 

Cohort data represented as mean ± SD [range] unless noted. Arousal annotations were not available for WSC; PLMI was 

not available for SHHS and WSC; BMI was not available for ISRUC. N: number of subjects; TST: total sleep time; SL: 

sleep latency; REML: REM latency; WASO: wake after sleep onset; SE: sleep efficiency; ArI: arousal index; AHI: 

apnea/hypopnea index; PLMI: periodic leg movement index; ; ISRUC: Institute of Systems and Robotics, University of 

Coimbra Sleep Cohort; MrOS: The Osteoporotic Fractures in Men Sleep Study; SHHS: Sleep Heart Health Study; SSC: 

Stanford Sleep Cohort; WSC: Wisconsin Sleep Cohort.  
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Table 2: Overview of model architecture.  

Module Type # filters/units Kernel size Stride Activation Output size 

𝐱 Input − − − − 1 × 𝐶 × 𝑇 

𝝋mix 2D convolution 𝐶 (1, 𝐶) 1 − 𝐶 × 1 × 𝑇 

Batch normalization − − 1 ReLU 𝐶 × 1 × 𝑇 

𝝋feat
(𝒓)

 ,  𝒓 ∈ ⟦𝑹⟧ 
†Residual module 𝑓 2 /𝑓 2 /4𝑓 2  (1,1)/(1,3)/(1,1) (1,1)/(1,2) ReLU 𝑓 2 × 1 × 𝑇 2⁄  

𝝋temp Bidirectional GRU 𝑛  − − − 2𝑛 × 𝑇 2⁄  

𝝋clf 1D convolution 𝐾 2𝑛  1 Softmax 𝐾 × 𝑇 2⁄  

Kernel sizes correspond to the first, second and third convolutional layer in each residual block. Stride counts correspond 

to the residual block and the subsequent maximum pooling operation. ReLU, rectified linear unit; GRU, gated recurrent 

unit; 𝐶, number of input channels; 𝑇, length of segment in samples; 𝑓 , base number of filters in residual blocks; 𝑅, 

number of residual blocks; 𝑛 , number of hidden units in GRU; 𝐾, number of sleep stage classes. †SeeFigure 1.  
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SUPPLEMENTARY TABLES 

Table S1: Temporal context impact on model performance in validation partition (𝑛 = 426). 

 Overall accuracy Cohen’s kappa 

Mean SD Median 95% CI, mean Mean SD Median 95% CI, mean 

Hidden units         

0 0.779 0.083 0.794 [0.771-0.787] 0.645 0.126 0.660 [0.633-0.657] 

64 0.818 0.079 0.837 [0.810-0.825] 0.720 0.120 0.745 [0.709-0.731] 

128 0.821 0.080 0.841 [0.813-0.829] 0.724 0.121 0.745 [0.713-0.736] 

256 0.820 0.082 0.843 [0.812-0.828] 0.725 0.124 0.751 [0.713-0.736] 

512 0.822 0.079 0.841 [0.815-0.830] 0.727 0.119 0.752 [0.716-0.739] 

1024 0.828 0.072 0.845 [0.821-0.835] 0.734 0.111 0.758 [0.723-0.744] 

2048 0.823 0.080 0.843 [0.816-0.831] 0.729 0.122 0.757 [0.717-0.740] 

Sequence length         

2 min 0.821 0.075 0.840 [0.814-0.828] 0.726 0.114 0.754 [0.715-0.737] 

3 min 0.826 0.080 0.845 [0.818-0.833] 0.733 0.123 0.762 [0.721-0.744] 

4 min 0.828 0.079 0.849 [0.820-0.835] 0.734 0.122 0.762 [0.722-0.745] 

5 min 0.828 0.072 0.845 [0.821-0.835] 0.734 0.111 0.758 [0.723-0.744] 

10 min 0.829 0.075 0.848 [0.822-0.836] 0.734 0.113 0.759 [0.723-0.745] 

Window length         

1 s 0.824 0.074 0.843 [0.817-0.831] 0.728 0.113 0.752 [0.717-0.738] 

3 s 0.824 0.074 0.845 [0.817-0.832] 0.728 0.113 0.752 [0.717-0.739] 

5 s 0.825 0.074 0.843 [0.818-0.832] 0.728 0.113 0.752 [0.717-0.739] 

10 s 0.825 0.074 0.844 [0.818-0.832] 0.729 0.113 0.753 [0.718-0.739] 

15 s 0.826 0.074 0.845 [0.818-0.833] 0.729 0.113 0.755 [0.719-0.740] 

30 s 0.829 0.075 0.848 [0.822-0.836] 0.734 0.113 0.759 [0.723-0.745] 

The Hidden units variable corresponds to varying the complexity in the recurrent module by increasing the number of 

hidden units. Sequence length indicate the length of the sequence of 30 epochs, while Window length correspond to 

varying the evaluation frequency. 
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Table S2: Performance characteristics for LOCI and LOCO training configurations. 

  

N PSGs 

Overall accuracy Cohen’s kappa 

Mean SD Median 95% CI, mean Mean SD Median 95% CI, mean 

LOCI-wd          

ISRUC 1584 0.679 0.123 0.701 [0.673-0.685] 0.542 0.169 0.574 [0.533-0.550] 

MrOS 1584 0.821 0.077 0.835 [0.817-0.825] 0.727 0.114 0.745 [0.721-0.733] 

SHHS 1584 0.834 0.088 0.858 [0.830-0.839] 0.750 0.132 0.786 [0.744-0.757] 

SSC 1584 0.762 0.094 0.774 [0.757-0.767] 0.639 0.129 0.654 [0.633-0.646] 

WSC 1584 0.758 0.105 0.773 [0.753-0.764] 0.633 0.145 0.653 [0.626-0.640] 

LOCI          

ISRUC 1584 0.676 0.124 0.700 [0.670-0.682] 0.539 0.170 0.574 [0.531-0.547] 

MrOS 1584 0.826 0.074 0.839 [0.822-0.829] 0.732 0.111 0.748 [0.726-0.737] 

SHHS‡ 1584 0.837 0.084 0.858 [0.833-0.841] 0.754 0.127 0.786 [0.748-0.761] 

SSC 1584 0.773 0.088 0.785 [0.769-0.777] 0.657 0.125 0.671 [0.651-0.663] 

WSC 1584 0.763 0.101 0.776 [0.758-0.768] 0.641 0.140 0.659 [0.635-0.648] 

LOCO          

ISRUC†  52 0.749 0.081 0.764 [0.727-0.771] 0.648 0.119 0.682 [0.616-0.680] 

 126 0.757 0.071 0.766 [0.744-0.769] 0.661 0.101 0.682 [0.643-0.678] 

MrOS† 371 0.843 0.066 0.851 [0.836-0.849] 0.757 0.104 0.776 [0.746-0.767] 

 3932 0.841 0.069 0.854 [0.838-0.843] 0.752 0.107 0.775 [0.749-0.755] 

SHHS 846 0.805 0.076 0.815 [0.800-0.810] 0.705 0.109 0.722 [0.698-0.712] 

 8444 0.800 0.081 0.811 [0.798-0.801] 0.697 0.115 0.713 [0.694-0.699] 

SSC 76 0.793 0.086 0.809 [0.744-0.812] 0.680 0.120 0.700 [0.653-0.707] 

 766 0.798 0.086 0.815 [0.792-0.805] 0.690 0.123 0.711 [0.681-0.699] 

WSC† 239 0.826 0.065 0.835 [0.818-0.834] 0.720 0.096 0.736 [0.708-0.732] 

 2411 0.824 0.068 0.837 [0.821-0.827] 0.718 0.100 0.736 [0.714-0.722] 

Metrics are aggregated across all subjects for each cohort in test partition (𝑁 = 1,584 PSGs). Statistics in italics 

correspond to evaluating performance on entire cohort. PSG: polysomnography; LOCI-wd: leave-one-cohort-in with 

weight decay; LOCO: leave-one-cohort-out; ISRUC: Institute of Systems and Robotics, University of Coimbra Sleep 

Cohort; MrOS: The Osteoporotic Fractures in Men Sleep Study; SHHS: Sleep Heart Health Study; SSC: Stanford Sleep 

Cohort; WSC: Wisconsin Sleep Cohort; †: significantly better than corresponding LOCI; ‡: significantly better than 

corresponding LOCO. 
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Table S3: Model performance of test partition with varying fractions of training data. 

 Overall accuracy Cohen’s kappa 

Mean SD Median 95% CI, mean Mean SD Median 95% CI, mean 

Fraction (%)         

0.25 0.782 0.097 0.801 [0.777-0.787] 0.671 0.141 0.696 [0.664-0.678] 

0.50 0.804 0.086 0.824 [0.800-0.808] 0.696 0.131 0.724 [0.689-0.702] 

1 0.824 0.079 0.840 [0.820-0.828] 0.730 0.118 0.753 [0.724-0.736] 

5 0.841 0.074 0.856 [0.837-0.844] 0.757 0.113 0.780 [0.751-0.763] 

10 0.850 0.069 0.864 [0.847-0.853] 0.770 0.108 0.791 [0.765-0.775] 

25 0.858 0.066 0.873 [0.854-0.861] 0.782 0.102 0.804 [0.777-0.787] 

50 0.860 0.063 0.874 [0.856-0.863] 0.787 0.097 0.809 [0.782-0.792] 

75 0.867 0.062 0.882 [0.864-0.870] 0.797 0.096 0.818 [0.792-0.802] 

100 0.869 0.064 0.883 [0.865-0.872] 0.799 0.098 0.820 [0.794-0.804] 

Increasing the available training data increased performance on the test partition (𝑁 = 1,584) shown here as aggregated 

metrics across all subjects. No statistical difference was found by comparing confidence intervals (CI) between models 

trained with 75% and 100% of available training data, which indicates a saturation in training. 
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Table S4: Model performance on test partition (𝑁 = 1,584) with varying number of cohorts in training partition. 

Training cohorts Overall accuracy Kappa 

Mean SD Median 95% CI, mean Mean SD Median 95% CI, mean 

2         

Overall 0.788 0.102 0.811 [0.787-0.790] 0.683 0.143 0.710 [0.681-0.685] 

ISRUC-MrOS 0.781 0.102 0.804 [0.776-0.786] 0.675 0.143 0.703 [0.668-0.682] 

ISRUC-SHHS 0.808 0.097 0.835 [0.804-0.813] 0.717 0.142 0.756 [0.710-0.724] 

ISRUC-SSC 0.735 0.103 0.753 [0.729-0.740] 0.613 0.140 0.638 [0.606-0.620] 

ISRUC-WSC 0.745 0.107 0.758 [0.740-0.750] 0.628 0.140 0.642 [0.621-0.635] 

MrOS-SHHS 0.829 0.081 0.849 [0.825-0.833] 0.740 0.124 0.769 [0.734-0.746] 

MrOS-SSC 0.796 0.090 0.816 [0.791-0.800] 0.683 0.133 0.708 [0.677-0.690] 

MrOS-WSC 0.805 0.087 0.822 [0.801-0.809] 0.699 0.126 0.722 [0.693-0.705] 

SHHS-SSC 0.816 0.090 0.839 [0.812-0.821] 0.722 0.129 0.755 [0.716-0.729] 

SHHS-WSC 0.824 0.089 0.846 [0.820-0.828] 0.733 0.128 0.762 [0.727-0.739] 

SSC-WSC 0.742 0.110 0.755 [0.737-0.748] 0.620 0.145 0.634 [0.613-0.627] 

3         

Overall 0.808 0.092 0.830 [0.807-0.810] 0.711 0.131 0.739 [0.709-0.713] 

ISRUC-MrOS-SHHS 0.820 0.092 0.844 [0.815-0.825] 0.732 0.134 0.766 [0.725-0.738] 

ISRUC-MrOS-SSC 0.798 0.088 0.816 [0.794-0.802] 0.694 0.129 0.720 [0.688-0.700] 

ISRUC-MrOS-WSC 0.811 0.083 0.828 [0.807-0.815] 0.711 0.119 0.735 [0.705-0.717] 

ISRUC-SHHS-SSC 0.807 0.090 0.828 [0.803-0.812] 0.714 0.126 0.739 [0.708-0.721] 

ISRUC-SHHS-WSC 0.817 0.091 0.842 [0.813-0.822] 0.728 0.128 0.759 [0.722-0.735] 

ISRUC-SSC-WSC 0.755 0.109 0.775 [0.750-0.760] 0.639 0.150 0.670 [0.631-0.646] 

MrOS-SHHS-SSC 0.833 0.071 0.848 [0.829-0.837] 0.744 0.109 0.766 [0.739-0.750] 

MrOS-SHHS-WSC 0.840 0.073 0.854 [0.836-0.843] 0.753 0.109 0.774 [0.748-0.759] 

MrOS-SSC-WSC 0.795 0.088 0.811 [0.791-0.800] 0.687 0.123 0.706 [0.681-0.693] 

SHHS-SSC-WSC 0.807 0.101 0.833 [0.802-0.812] 0.710 0.142 0.744 [0.703-0.717] 

4         

Overall 0.821 0.085 0.840 [0.819-0.823] 0.728 0.124 0.755 [0.726-0.731] 

ISRUC-MrOS-SHHS-SSC 0.827 0.078 0.843 [0.823-0.831] 0.739 0.115 0.764 [0.733-0.744] 

ISRUC-MrOS-SHHS-WSC 0.835 0.075 0.850 [0.831-0.838] 0.747 0.112 0.768 [0.742-0.753] 

ISRUC-MrOS-SSC-WSC 0.794 0.097 0.817 [0.789-0.799] 0.687 0.139 0.716 [0.680-0.694] 

ISRUC-SHHS-SSC-WSC 0.819 0.091 0.843 [0.814-0.823] 0.728 0.131 0.759 [0.721-0.734] 

MrOS-SHHS-SSC-WSC 0.830 0.076 0.846 [0.826-0.834] 0.741 0.112 0.763 [0.736-0.747] 

The total number of training records were fixed at 𝑁 = 500 for all configurations. ISRUC: Institute of Systems and 

Robotics, University of Coimbra Sleep Cohort; MrOS: The Osteoporotic Fractures in Men Sleep Study; SHHS: Sleep 

Heart Health Study; SSC: Stanford Sleep Cohort; WSC: Wisconsin Sleep Cohort. 
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Neural network analysis of sleep stages enables
efficient diagnosis of narcolepsy
Jens B. Stephansen1,2, Alexander N. Olesen1,2,3, Mads Olsen1,2,3, Aditya Ambati 1, Eileen B. Leary 1,

Hyatt E. Moore1, Oscar Carrillo1, Ling Lin1, Fang Han4, Han Yan4, Yun L. Sun4, Yves Dauvilliers5,6,

Sabine Scholz5,6, Lucie Barateau5,6, Birgit Hogl7, Ambra Stefani7, Seung Chul Hong8, Tae Won Kim8,

Fabio Pizza9,10, Giuseppe Plazzi9,10, Stefano Vandi9,10, Elena Antelmi9,10, Dimitri Perrin11, Samuel T. Kuna12,

Paula K. Schweitzer13, Clete Kushida1, Paul E. Peppard14, Helge B.D. Sorensen2, Poul Jennum3 &

Emmanuel Mignot1

Analysis of sleep for the diagnosis of sleep disorders such as Type-1 Narcolepsy (T1N)

currently requires visual inspection of polysomnography records by trained scoring techni-

cians. Here, we used neural networks in approximately 3,000 normal and abnormal sleep

recordings to automate sleep stage scoring, producing a hypnodensity graph—a probability

distribution conveying more information than classical hypnograms. Accuracy of sleep stage

scoring was validated in 70 subjects assessed by six scorers. The best model performed

better than any individual scorer (87% versus consensus). It also reliably scores sleep down

to 5 s instead of 30 s scoring epochs. A T1N marker based on unusual sleep stage overlaps

achieved a specificity of 96% and a sensitivity of 91%, validated in independent datasets.

Addition of HLA-DQB1*06:02 typing increased specificity to 99%. Our method can reduce

time spent in sleep clinics and automates T1N diagnosis. It also opens the possibility of

diagnosing T1N using home sleep studies.
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S leep disorders and sleep dysregulation impact over 100
million Americans, contributing to medical consequences
such as cardiovascular (arrhythmia, hypertension, stroke),

metabolic (diabetes, obesity) and psychiatric disorders (depres-
sion, irritability, addictive behaviors). Sleep deprivation impairs
performance, judgment and mood, and is a major preventable
contributor to accidents1. There are ~90 different sleep disorders
including insomnia (20% of population), obstructive and central
sleep apnea (10%), restless legs syndrome (4%), rapid eye
movement (REM) sleep behavior disorder (RBD) and hyper-
somnia syndromes such as type 1 narcolepsy (T1N)2.

Among these pathologies, T1N is unique as a disorder with a
known, discrete pathophysiology—a destruction of hypocretin
neurons in the hypothalamus likely of autoimmune origin3. This
is reflected in the cerebrospinal fluid (CSF) concentrations of the
hypocretin-1 (orexin-A) neuropeptide, where a concentration
below 110 pg/ml is considered indicative of narcolepsy2. Typically
beginning in childhood or adolescence, narcolepsy affects
approximately 0.03% of the US, European, Korean and Chinese
populations4. Unique to narcolepsy is the extremely strong (97%
versus 25%) association with a genetic marker, HLA-
DQB1*06:025, and a well-characterized set of sleep disturbances
that include short sleep latency, rapid transitions into REM sleep
and poor nocturnal sleep consolidation. The pathology also
includes episodes of “sleep/wake dissociation” where the patient is
half awake and half in REM sleep, for example, experiencing REM
sleep muscle paralysis while awake (sleep paralysis, cataplexy) or
dreaming while awake (hypnagogic hallucinations).

Sleep disorders are generally assessed at sleep clinics by per-
forming sleep analysis using nocturnal polysomnography (PSG),
a recording comprised of multiple digital signals which include
electroencephalography (EEG), electrooculography (EOG), chin
and leg electromyography (EMG), electrocardiography, breathing
effort, oxygen saturation and airflow6. When sleep is analyzed in
PSGs, it is divided into discrete stages: wake, non-REM (NREM)
sleep stage 1 (N1), 2 (N2) and 3 (N3), and REM. Each stage is
characterized by different criteria, as defined by consensus rules
published in the American Academy of Sleep Medicine (AASM)
Scoring Manual6,7. N1 (sleep onset) is characterized by slowing of
the EEG, disappearance of occipital alpha waves, decreased EMG
and slow rolling eye movements, while N2 is associated with
spindles and K-complexes. N3 is characterized by a dominance of
slow, high amplitude waves (>20%), while REM sleep is asso-
ciated with low voltage, desynchronized EEG with occasional saw
tooth waves, low muscle tone and REMs. PSG analysis is typically
done by certified technicians who, through visual inspection on a
standardized screen, assign a sleep stage to each 30 s segment of
the full recording. Although there is progression from N1 to N3
then to REM during the night, a process that repeats approxi-
mately every 90 min (the sleep cycle), each stage is associated with
physiological changes that can be meaningful to the assessment of
sleep disorders such as obstructive sleep apnea. For example, the
abnormal breathing events that occur with obstructive sleep
apnea (OSA) are generally less severe in N3 versus N2 because of
central control of breathing changes, and they are more severe in
REM sleep, due to upper airway muscle weakness8. The differ-
entiation of sleep stages is also particularly important for the
diagnosis of narcolepsy, a condition currently assessed by a PSG
followed by a multiple sleep latency test (MSLT), a test where
patients are asked to nap 4–5 times for 20 min every 2 h during
the daytime and sleep latency and the presence of REM sleep is
noted9. A mean sleep latency (MSL) less than 8 min (indicative of
sleepiness) and the presence of at least 2 sleep onset REM periods
(SOREMPs, REM latency ≤15 min following sleep onset in naps)
during the MSLT or 1 SOREM plus a REM latency ≤15 min
during nocturnal PSG is diagnostic for narcolepsy. In a recent

large study of the MSLT10, specificity and sensitivity for type 1
narcoleptics were, respectively, 98.6% and 92.9% in comparing
516 T1N versus 516 controls and 71.2% and 93.4% in comparing
122 T1N cases versus 132 other hypersomnia cases (high pretest
probability cohort). Similar sensitivity (75–90%) and specificity
(90–98%) have been reported by others in large samples of
hypersomnia cases versus T1N11–15.

Manual inspection of sleep recordings has many problems. It is
time consuming, expensive, inconsistent, subjective and must
generally be done offline. In one study, Rosenberg and Van
Hout16 found inter-scorer reliability for sleep stage scoring to be
82.6% on average, a result consistently found by others17–20. N1
and N3 in particular have agreements as low as 63 and 67%,
placing constraints on their usefulness16. In this study, we
explored whether deep learning, a specific subtype of machine
learning, could produce a fast, inexpensive, objective, and
reproducible alternative to manual sleep stage scoring. In recent
years, similar complex problems such as labeling images,
understanding speech and translating language have seen
advancement to the point of outperforming humans21–23. Several
high-profile papers have also documented the efficacy of deep
learning algorithms in the healthcare sector, especially in the
fields of diabetic retinopathy24,25, digital pathology26,27 and
radiology28,29. This technology refers to complex neural network
models with a very large number (on a magnitude of millions)
of parameters and processing layers. For a thorough review
of the underlying theory behind deep learning including
common model paradigms, we refer to the review article by
LeCun et al.30.

In this implementation of deep learning, we introduce the
hypnodensity graph—a hypnogram that does not enforce a
single sleep stage label, but rather a membership function to each
of the sleep stages, allowing more information about sleep trends
to be conveyed, something that is only possible in non-human
scoring. Using this concept, we next applied deep learning-
derived hypnodensity features to the diagnosis of T1N, showing
that an analysis of a single PSG night can perform as well as the
PSG-MSLT gold standard, a 24 h long procedure.

Results
Inter-scorer reliability cohort. Supplementary Table 1 reports on
the description of the various cohorts included in this study, and
how they were utilized (see Datasets section in Methods). These
originate from seven different countries. We assessed inter-scorer
reliability using the Inter-scorer Reliability Cohort (IS-RC)31, a
cohort of 70 PSGs scored by 6 scorers across three locations in the
United States31. Table 1 displays individual scorer performance as
well as the averaged performance across scorers, with top and
bottom of table showing accuracies and Cohen’s kappas,
respectively. The results are shown for each individual scorer
when compared to the consensus of all scorers (biased) and
compared to the consensus of the remaining scorers (unbiased).
In the event of no majority vote for an epoch, the epoch was
counted equally in all classes in which there was disagreement.
Also shown in Table 1 is the model performance on the same
consensus scorings as each individual scorer along with the t-
statistic and associated p value for each paired t-test between the
model performance and individual scorer performance. At a
significance level of 5%, the model performs statistically better
than any individual scorer both in terms of accuracy and Cohen’s
kappa.

Supplementary Table 2 displays the confusion matrix for every
epoch of every scorer of the inter-scorer reliability data, both
unadjusted (top) and adjusted (bottom). As in Rosenberg and
Van Hout16, the biggest discrepancies occur between N1 and
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Wake, N1 and N2, and N2 and N3, with some errors also
occurring between N1 and REM, and N2 and REM.

For future analyses of the IS-RC in combination with other
cohorts that have been scored only by one scorer, a final
hypnogram consensus was built for this cohort based on the
majority vote weighted by the degree of consensus from each
voter, expressed as its Cohen’s κ, κ ¼ 1� 1�po

1�pe
, where pe is the

baseline accuracy and po is the scorer accuracy, such that

y ¼ argmax

P6
i¼1 byi � κiP6

i¼6 κi
: ð1Þ

In this implementation, scorers with a higher consensus with
the group are considered more reliable and have their assessments
weighted heavier than the rest. This also avoided split decisions
on end-results.

Optimizing machine learning performance for sleep staging.
We next explored how various machine learning algorithms (see
Methods) performed depending on cohort, memory (i.e., feed
forward (FF) versus long short-term memory networks (LSTM)),
signal segment length (short segments of 5 s (SS) versus long
segments of 15 s (LS)), complexity (i.e., low (SH) vs. high (LH)),
encoding (i.e., octave versus cross-correlation (CC) encoding, and
realization type (repeated training sessions). The performance of
these machine learning algorithms was compared with the six-
scorer consensus in the IS-RC and with single scorer data in 3
other cohorts, the Stanford Sleep Cohort (SSC)10,32, the Wis-
consin Sleep Cohort (WSC)32,33 and the Korean Hypersomnia
Cohort (KHC)10,34 (see Datasets section in Methods for
description of each cohort).

Model accuracy varies across datasets, reflecting the fact scorer
performance may be different across sites, and because unusual
subjects such as those with specific pathologies can be more
difficult to score—a problem affecting both human and machine
scoring. In this study, the worst performance was seen in the
KHC and SSC with narcolepsy, and the best performance was
achieved on IS-RC data (Supplementary Figure 1a, Table 2,
Supplementary Table 7). The SSC+KHC cohorts mainly contain
patients with more fragmented sleeping patterns, which would
explain a reduced performance. The IS-RC has the most accurate
label, minimizing the effects of erroneous scoring, which
therefore leads to an increased performance. Incorporating large
ensembles of different models increased mean performance
slightly (Table 2).

The two most important factors that increased prediction
accuracy were encoding and memory, while segment length,
complexity and number of realizations were less important
(Supplementary Figure 1). The effect of encoding was less

prominent in the IS-RC. Prominent factor interactions include
(Supplementary Figure 2): (i) CC encoding models improve with
higher complexity, whereas octave encoding models worsen; (ii)
increasing segment length positively affects models with low
complexity, but does not affect models with a high complexity;
and (iii) adding memory improves models with an octave
encoding more than models with a CC encoding. Because the IS-
RC data are considered the most reliable, we decided to use these
data as benchmark for model comparison. This standard
improved as more scorers were added, and the model
performance increased. (Fig. 1a). The different model configura-
tions described in this section do not represent exhaustive
configuration search, and future work experiments might result in
improved results.

Figure 2a displays typical scoring outputs (bottom panels)
obtained with a single sleep study of the IS-RC cohort in
comparison to 6 scorer consensus (top panel). The model results
are displayed as hypnodensity graphs, representing not only
discrete sleep stage outputs, but also the probability of occurrence
of each sleep state for each epoch (see definition in Data labels,
scoring and fuzzy logic section). As can be seen, all models
performed well, and segments of the sleep study with the lowest
scorer consensus (top) are paralleled by similar sleep stage
probability uncertainty, with performance closest to scoring
consensus achieved by an ensemble model described below
(second to top).

Final implementation of automatic sleep scoring algorithm.
Because of model noise, potential inaccuracies and the desire to
quantify uncertainty, the final implementation of our sleep
scoring algorithm is an ensemble of different CC models with
small variations in model parameters, such as the number of
feature-maps and hidden nodes. This was achieved by randomly
varying the parameters between 50 and 150% of the original
values using the CC/SH/LS/LSTM as a template (this model
achieved similar performance to the CC/LH/LS/LSTM while
requiring significantly less computational power).

All models make errors, but as these errors occur indepen-
dently of each other, the risk of not detecting and correcting
errors falls with increasing model numbers. For this reason,
16 such models were trained, and at each analyzed segment both
mean and variance of model estimates were calculated. As
expected, the relative model variance (standardized to the average
variance in a correct wakefulness prediction) is generally lower in
correct predictions (Supplementary Table 3) and this can be used
to inform users about uncertain/incorrect estimates. To demon-
strate the effectiveness of this final implementation, the average of
the models is shown alongside the distribution of 5234 ±
14 scorers on 150 epochs, a dataset provided by the AASM
(AASM inter-scorer reliability (ISR) dataset, (see Datasets section

Table 1 Individual and overall scorer performance, expressed as accuracy and Cohen’s kappa

Overall Scorer 1 Scorer 2 Scorer 3 Scorer 4 Scorer 5 Scorer 6

Accuracy (%), biased 81.3 ± 3.0 82.4 ± 6.1 84.6 ± 5.5 74.1 ± 7.9 85.4 ± 5.7 83.1 ± 9.4 78.3 ± 8.9
Accuracy (%), unbiased 76.0 ± 3.2 77.3 ± 6.3 79.1 ± 6.3 69.0 ± 8.0 79.7 ± 6.5 77.8 ± 9.6 72.9 ± 9.2
Model accuracy (%) on
concensus

— 85.1 ± 4.9 83.8 ± 5.0 86.5 ± 4.3 84.3 ± 4.7 85.6 ± 4.7 87.0 ± 4.5

T-stat (p value) — 9.5 (3.8 × 10−14) 6.6 (7.5 × 10−9) 18.3 (6.0 × 10−28) 6.7 (4.7 × 10−9) 6.4 (1.7 × 10−8) 12.2 (7.5 × 10−19)
Cohen’s kappa, biased 61.0 ± 6.8 63.6 ± 12.2 68.4 ± 10.5 45.6 ± 19.7 69.6 ± 13.2 64.5 ± 20.9 54.5 ± 19.8
Cohen's kappa, unbiased 57.7 ± 6.1 61.3 ± 11.2 64.6 ± 10.3 43.5 ± 19.2 64.6 ± 13.1 60.9 ± 16.9 51.6 ± 16.7
Model kappa on concensus — 74.3 ± 12.3 72.4 ± 12.1 76.0 ± 11.8 72.7 ± 12.0 74.7 ± 12.1 76.6 ± 12.2
T-stat (p value) — 9.5 (4.6 × 10−14) 7.1 (7.9 × 10−10) 15.4 (7.0 × 10−24) 6.6 (6.4 × 10−9) 7.1 (9.2 × 10−10) 13.2 (2.0 × 10−20)

Both accuracy and Cohen’s kappa are presented as both with (biased) and without (unbiased) the assessed scorer included in the consensus standard in a leave-one-out fashion. Accuracy is expressed
in percent, and Cohen’s kappa is a ratio, and therefore unitless. T-statistics and p values correspond to the paired t-test between the unbiased predictions for each scorer against the model predictions on
the same consensus
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in Methods). On these epochs, the AASM ISR achieved a 90%
agreement between scorers. In comparison, the model estimates
reached a 95% accuracy compared to the AASM consensus
(Fig. 2b). Using the model ensemble and reporting on sleep stage
probabilities and inter-model variance for quality purpose
constitute the core of our sleep scoring algorithm.

Ensemble/best model performance. Supplementary Table 2
reports on concordance for our best model, the ensemble of all
CC models. Concordance is presented in a weighted and
unweighted manner, between the best model estimate and scorer
consensus (Table 3). Weighing of a segment was based on scorer
confidence and serves to weigh down controversial segments. For
each recording i, the epoch-specific weight ωn and weighted
accuracy αω were calculated as:

ωn ¼ maxz2Z P ynjxn
� �

z

� �
� ‘2Z P ynjxn

� �� �
; ð2Þ

αðiÞω ¼ 1P
n ωn

X
n
ωn � argmaxm2M Pm bynjxn� �� ��

\ argmaxz2Z Pz ynjxn
� �� ��

;
ð3Þ

where ‘2Z P ynjxn
� �� �

is the second most likely stage assessed by
the set of scorers (experts) denoted by Z, of the nth epoch in a
sleep recording. As with scorers, the biggest discrepancies
occurred between wake versus N1, N1 versus N2 and N2 versus
N3. Additionally, the weighted performance was almost uni-
versally better than the unweighted performance, raising overall
accuracy from 87 to 94%, indicating a high consensus between
automatic scoring and scorers in places with high scorer con-
fidence. An explanation for these results could be that both
scorers and model are forced to make a choice between two stages
when data are ambiguous. An example of this may be seen in
Fig. 2a. Between 1 and 3 h, several bouts of N3 occur, although

they often do not reach the threshold for being the most likely
stage. As time progresses, more evidence for N3 appears reflecting
increased proportion of slow waves per epoch, and confidence
increases, which finally yields “definitive” N3. This is seen in both
model and scorer estimates. Choosing to present the data as
hypnodensity graphs mitigates this problem. The various model
estimates produce similar results, which also resemble the scorer
assessment distribution, although models without memory fluc-
tuate slightly more, and tend to place a higher probability on
REM sleep in periods of wakefulness, since no contextual infor-
mation is provided.

Influences of sleep pathologies. As seen in Table 2, the different
cohorts achieve different performances. To see how much may be
attributed to various pathologies, five different analyses of var-
iance were made, with accuracy as the dependent variable, using
cohort, age (grouped as age < 30, 30 ≤ age < 50 and age ≥ 50) and
sex as covariates (Supplementary Table 4), investigating the effect
of insomnia, OSA, restless leg syndrome (RLS), periodic leg
movement index (PLMI) and T1N on accuracy of our machine
learning routine versus human scoring. This was performed in
the cohort mentioned above with addition of the Austrian
Hypersomnia Cohort (AHC)35. The p values obtained from
paired t-testing for each condition were 0.75 (insomnia), 7.53 ×
10−4 (OSA), 0.13 (RLS), 0.22 (PLMI) and 1.77 × 10−15 (T1N)
respectively, indicating that only narcolepsy had a strong effect on
scorer performance. Additionally, in the context of narcolepsy,
cohort and age yielded p values between 3.69 × 10−21 and 2.81 ×
10−82 and between 0.62 and 6.73 × 10−6, respectively. No sig-
nificant effect of gender was ever noted. Cohort effects were
expected and likely reflect local scorer performances and differ-
ences in PSG hardware and filter setups at every site. Decreased
performance with age likely reflects decreased EEG amplitude,
notably in N3/slow wave sleep amplitude with age36.

Table 2 Performance of best models, as they are described by Supplementary Table 8, on various datasets compared to the six-
scorer consensus

Test data Best single model Mean performance (%) Best ensemble Mean performance (%)

WSC CC/SH/LS/LSTM/2 86.0 ± 5.0 All CC 86.4 ± 5.2
SSC+KHC, no narcolepsy CC/LH/SS/LSTM 76.9 ± 11.1 All CC 77.0 ± 11.9
SSC+KHC, narcolepsy CC/LH/SS/LSTM 68.8 ± 11.0 All CC 68.4 ± 12.2
IS-RC CC/LH/LS/LSTM/2 84.6 ± 4.6 All models 86.8 ± 4.3

All comparisons are on a by-epoch basis
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Fig. 1 Accuracy per scorer and by time resolution. a The effect on scoring accuracy as golden standard is improved. Every combination of N scorers is
evaluated in an unweighted manner and the mean is calculated. Accuracy is shown with mean (solid black line) and a 95% confidence interval (gray area).
b Predictive performance of best model at different resolutions. Performance is shown as mean accuracy (solid black line) with a 95% confidence interval
(gray area)
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Resolution of sleep stage scoring. Epochs are evaluated with a
resolution of 30 s, a historical standard that is not founded in
anything physiological, and limits the analytical possibilities of a
hypnogram. Consequently, it was examined to what extent the
performance would change as a function of smaller resolution.
Only the models using a segment size of 5 s were considered.
Segments were averaged to achieve performances at 5, 10, 15 and

30 s resolutions, and the resulting performances in terms of
accuracy are shown in Fig. 1b. Although the highest performance
was found using a resolution of 30 s, performance dropped only
slightly with decreasing window sizes.

Construction and evaluation of a narcolepsy biomarker. The
neural networks produce outputs that depend on evidence in
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Fig. 2 Hypnodensity example evaluated by multiple scorers and different predictive models. a The figure displays the hypnodensity graph. Displayed
models are, in order: multiple scorer assessment (1); ensembles as described in Supplementary Table 8: All models, those with memory (LSTM) and those
without memory (FF) (2–4); single models, as described in Supplementary Table 8 (5–7). OCT is octave encoding, Color codes: white, wake; red, N1; light
blue, N2; dark blue, N3; black, REM. b The 150 epochs of a recording from the AASM ISR program are analyzed by 16 models with randomly varying
parameters, using the CC/SH/LS/LSTM model as a template. These data were also evaluated by 5234 ± 14 different scorers. The distribution of these is
shown on top, the average model predictions are shown in the middle, and the model variance is shown at the bottom

Table 3 Confusion matrix displaying the relation between different targets and the ensemble estimate

Target

Model Predictions Wake N1 N2 N3 REM Precision

Wake 14.08% 0.35% 0.88% 0.007% 0.08% 0.91
16.68% 0.15% 0.44% 0.003% 0.02% 0.96

N1 1.13% 1.78% 3.00% 0.002% 0.36% 0.28
0.47% 0.88% 1.15% 0% 0.12% 0.34

N2 0.29% 0.59% 52.58% 1.27% 0.66% 0.95
0.12% 0.25% 56.30% 0.34% 0.32% 0.98

N3 0.002% 0% 2.13% 4.87% 0% 0.70
0% 0% 1.09% 4.23% 0% 0.91

REM 0.54% 1.17% 0.78% 0% 13.45% 0.84
0.40% 0.73% 0.41% 0% 15.86% 0.91

Sensitivity 0.88 0.46 0.89 0.79 0.92 0.87
0.94 0.44 0.95 0.92 0.97 0.94

The targets are: top row: unweighted consensus; bottom row: weighted by the scorer agreement at each epoch. The number of analyzed epochs were 53,009 (unweighted) and 36,032 (weighted)
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the input data for or against a certain sleep stage based on
features learned through training. We hypothesized that nar-
colepsy, a condition characterized by sleep/wake stage mixing/
dissociation37−41, would result in a greater than normal
overlap between stages, an observation that was obvious when
sleep stage probability were plotted in such subjects (see
example in Fig. 3). Based on this result, we hypothesized that
such sleep stage model outputs could be used as a biomarker
for the diagnosis of narcolepsy using a standard nocturnal
PSG rather than the more time-consuming MSLT.

To quantify narcolepsy-like behavior for a single recording, we
generated features quantifying sleep stage mixing/dissociation.
These are based on descriptive statistics and other features
describing persistence of a set of new time series generated from
the geometric mean of every permutation of the set of sleep
stages, as obtained from the 16 CC sleep stage prediction models.

In addition to this, we also added features expected to predict
narcolepsy based on prior work, such as REM sleep latency and
sleep stage sequencing parameters (see “Hypnodensity as feature
for the diagnosis of T1N” section in Methods for details). A
recursive feature elimination (RFE) procedure42 was performed
on extracted features with average outcome putting the optimal
number of relevant features at 38. An optimal selection frequency

cut-off of 0.40 (i.e., including a feature if it was selected 40% of
the time) was determined using a cross-validation setup on the
training data. Features are described in Supplementary Table 5
with detailed description of the 8 most important features
reported in Table 4.

Final predictions were achieved by creating a separate
Gaussian Predictor (GP) narcolepsy classifier from each of
the sleep scoring models used in the final implementation. This
was tested in seven independent datasets: a training dataset
constituted of PSG from WSC32,33, SSC10,32, KHC10,34, AHC35,
Jazz Clinical Trial Sample (JCTS)43, Italian Hypersomnia
Cohort (IHC)41 and DHC; with verification in test data mostly
constituted of PSG from the same cohorts and independent
replication in the French Hypersomnia Cohort (FHC) and the
Chinese Narcolepsy Cohort (CNC)12 that had never been seen
by the algorithm (see Supplementary Table 1). The algorithm
produced values between −1 and 1, with 1 indicating a high
probability of narcolepsy. A cut-off threshold between narco-
lepsy type 1 and “other“ was set at −0.03 (red dot, Fig. 4),
determined using training data, as shown in Fig. 4a. The
optimal trade-off achieves both high sensitivity and specificity,
which is seen to translate well onto the test data (Fig. 4b) and
the never seen replication sample (Fig. 4c).
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Fig. 3 Examples of hypnodensity graph in subjects with and without narcolepsy. Hypnodensity, i.e., probability distribution per stage of sleep for a subject
without narcolepsy (top) and a subject with narcolepsy (Bottom). Color codes: white, wake; red, N1; light blue, N2; dark blue, N3; black, REM

Table 4 Descriptions of the 8 most frequently selected features

Number Relative selection
frequency

Description

1 1 The time taken before 5% of the sum of the product between W, N2 and REM, calculated at every epoch, has
accumulated, weighed by the total amount of this sum.
This feature expresses the known sleep stage dissociation and altered sleep timing.

2 0.91 The number of nightly SOREMPS appearing throughout the recording.
3 0.82 The time taken before 50% of the wakefulness in a recording has accumulated, weighed by the total amount of

wakefulness.
4 0.82 REM 6

The Shannon entropy of the REM sleep stage distribution. This expresses the amount of information held in a
signal, or in this case, how many different values the REM sleep stage distribution obtains—how consolidated
phases of REM are when the stage appears.

5 0.68 The maximum probability of wakefulness obtained in a recording.
6 0.68 The maximum value obtained of the product between the N2 and REM probability in a recording.
7 0.68 The time taken before 30% of the sum of the product between W and N2, calculated at every epoch, has

accumulated, weighed by the total amount of this sum.
8 0.64 The time taken before 10% of the sum of the product between W and N1, calculated at every epoch, has

accumulated, weighed by the total amount of this sum.
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In the training data, a sensitivity of 94% and specificity of
96% was achieved, and in the testing data a sensitivity of 91%
and specificity of 96% was achieved, while the sensitivity
and specificity for the replication sample was 93 and 91%,
respectively. When human leukocyte antigen (HLA) was added to
this model (Fig. 4d–f), the sensitivity became 90% and the
specificity rose to 99%, and an updated cut-off threshold of −0.53
was determined (green dot, Fig. 4d–f). Furthermore, in the high
pretest sample we obtained a sensitivity and specificity of 90 and
92%, which rose to 90 and 98% when adding HLA. More
descriptive statistics including 95% confidence intervals are found
in Supplementary Table 6.

Discussion
In recent years, machine learning has been used to solve similar or
more complex problems, such as labeling images, understanding
speech and translating language, and have seen advancement to
the point where humans are now sometimes outperformed21–23,
while also showing promising results in various medical
fields24–29. Automatic classification of sleep stages using automatic
algorithms is not novel44,45, but only recently has this type of
machine learning been applied and the effectiveness has only been
demonstrated in a small numbers of sleep studies46–49. Because
PSGs contain large amounts of manually annotated “gold stan-
dard” data, we hypothesized this method would be ideal to
automatize sleep scoring. We have shown that machine learning
can be used to score sleep stages in PSGs with high accuracy in
multiple physical locations in various recording environments,
using different protocols and hardware/software configurations,
and in subjects with and without various sleep disorders.

After testing various machine learning algorithms with and
without memory and specific encodings, we found increased

robustness using a consensus of multiple algorithms in our pre-
diction. The main reason for this is likely the sensitivity of each
algorithm to particular aspects of each individual recording,
resulting in increased or decreased predictability. Supplementary
Figure 1b displays the correlations between different models.
Models that incorporate an ensemble of different models generally
have a higher overall correlation coefficient than singular models,
and since individual models achieve similar performances, it
stands to reason that these would achieve the highest performance.
One potential source for this variability was, in addition to the
stochastic nature of the training, the fact recordings were con-
ducted in different laboratories that were using different hardware
and filters, and had PSGs scored by technicians of various abilities.
Another contributor was the presence of sleep pathologies in the
dataset that could influence machine learning. Of the pathologies
tested, only narcolepsy had a very significant effect on the corre-
spondence between manual and machine learning methods (p=
1.77 × 10−15 vs p= 7.53 × 10−4 for sleep apnea for example)
(Supplementary Tables 4 and 7). This was not surprising as the
pathology is characterized by unusual sleep stage transitions, for
example, transitions from wake to REM sleep, which may make
human or machine learning staging more difficult. This result
suggests that reporting inter-model variations in accuracy for each
specific patient has value in flagging unusual sleep pathologies, so
this metric is also reported by our detector.

Unlike previous attempts using automatic detector validations,
we were able to include 70 subjects scored by 6 technicians in
different laboratories (the IS-RC cohort)31 to independently
validate our best automatic scoring consensus algorithm. This
allowed us to estimate the performance at 87% in comparison to
the performance of a consensus score for every epoch among six
expert technicians (ultimate gold standard) (Table 1). Including
more scorers produces a better gold standard, and as Fig. 1a
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indicates, the model accuracy also increases with more scorers.
Naturally, extrapolating from this should be done with caution;
however, it is reasonable to assume that the accuracy would
continue to increase with increased scorers. In comparison, per-
formance of any individual scorer ranges from 74 to 85% when
compared to the same six-scorer gold standard, keeping in mind
this performance is artificially inflated since the same scorers
evaluated are included in the gold standard (unbiased perfor-
mance of any scorer versus consensus of remaining 5 scorers
range from 69 to 80%. The best model achieves 87% accuracy
using 5 scorers (Fig. 1a and Table 1), and is statistically higher
than all scorers. As with human scorers, the biggest discrepancies
in machine learning determination of sleep stages occurred
between wake versus N1, N1 versus N2 and N2 versus N3. This is
logical as these particular sleep stage transitions are part of a
continuum, artificially defined and subjective. To give an exam-
ple: an epoch comprised of 18% slow wave activity is considered
N2 while an epoch comprised of 20% slow wave activity qualifies
as N3. Overall, data indicate that our machine learning algorithm
performs better than individual scorers, as typically used in
clinical practice, or similar to the best of 5 scorers in comparison
to a combination of 5 experts scoring each epoch by consensus. It
is also able to score at higher resolution, i.e., 5 s, making it
unnecessary to score sleep stages by 30 s epochs, an outdated rule
dating from the time sleep was scored on paper. Although the
data sample used for multi-scorer validation contained only
female subjects, the scoring accuracy of our model was not seen to
be affected by gender (Supplementary Table 3) in another
analysis.

Using our models, and considering how typical T1N behaved
in our sleep stage machine learning routines, we extracted fea-
tures that could be useful to diagnose this condition. T1N is
characterized by the loss of hypocretin-producing cells in the
hypothalamus3 and can be best diagnosed by measuring hypo-
cretin levels in the CSF11, a procedure that requires a lumbar
puncture, a rarely performed procedure in the United States. At
the symptomatic level, T1N is characterized by sleepiness, cata-
plexy (episodes of muscle weakness during wakefulness triggered
by emotions) and numerous symptoms reflecting poor nocturnal
sleep (insomnia) and symptoms of “dissociated REM sleep”.
Dissociated REM sleep is reflected by the presence of unusual
states of consciousness where REM sleep is intermingled with
wakefulness, producing disturbing reports of dreams that inter-
rupt wakefulness and seem real (dream-like hallucinations), or
episodes where the sleeper is awake but paralyzed as in normal
REM sleep (sleep paralysis). The current gold standard for T1N
diagnosis is the presence of cataplexy and a positive MSLT. In a
recent large study of the MSLT, specificity and sensitivity for T1N
was 98.6% and 92.9% in comparing T1N versus controls, and
71.2% and 93.4% in comparing T1N versus other hypersomnia
cases (high pretest probability cohort)10.

Table 4 and Supplementary Table 5 reveal features found in
nocturnal PSGs that discriminate type 1 narcoleptics and non-
narcoleptics. One of the most prominent features, short latency
REM sleep, bears great resemblance to the REM sleep latency,
which is already used clinically to diagnose narcolepsy, although
in this case it is calculated using fuzzy logic and thus represent a
latency where accumulated sleep is suggestive of a high prob-
ability of REM sleep having occurred (as opposed to a discrete
REM latency scored by a technician). A short REM latency during
nocturnal PSG (typically 15 min) has recently been shown to be
extremely specific (99%) and moderately sensitive (40–50%) for
T1N10,50. The remaining selected features also describe a gen-
erally altered sleep architecture, particularly between REM sleep,
light sleep and wake, aspects of narcolepsy already known and
thus reinforcing their validity as biomarkers.

For example, the primary feature as determined by the RFE
algorithm was the time taken until 5% of the accumulated sum of
the probability products between stages W, N2 and REM had
been reached (see also Table 4), which reflects the uncertainty
between wakefulness, REM and N2 sleep at the beginning of the
night. Specifically, for the nth epoch, the model will output
probabilities for each sleep stage, and the proto-feature Φn is
calculated as

Φn ¼ p Wð Þ ´ p N2ð Þ þ p Wð Þ ´ p REMð Þ þ pðN2Þ ´ pðREMÞ:
ð4Þ

The feature value is then calculated as the time it takes in
minutes for the accumulated sum of Φn to reach 5% of the total
sum

P
n Φn. Since each of probability product in Φn reflects the

staging uncertainty between each sleep stage pair, Φn alone
reflects the general sleep stage uncertainty for that specific epoch
as predicted by the model. A very high value will be attained for
epoch n if the probabilities for N2, W and REM are equally
probable with probabilities for the remaining sleep stages being
low or close to zero. A PSG with a high staging uncertainty
between sleep and wake early in the night would reach the 5%
threshold rapidly.

Using these features, we were able to determine an optimal cut-
off that discriminated narcolepsy from controls and any other
patients with as high specificity and sensitivity as the MSLT
(Supplementary Table 6), notably when HLA typing is added.
This is true for both the test and the never seen replication
samples. Although we do observe a small drop in specificity in the
replication sample, the efficacy of the detector was also tested in
the context of naive patients with hypersomnia (high pretest
probability sample), and performance found to be similar to the
MSLT.

MSLT testing requires that patients spend an entire night and
day in a sleep laboratory. The use of this novel biomarker could
reduce time spent to a standard 8 h night recording, as done for
the screening of other sleep pathologies (e.g., OSA), allowing
improved recognition of T1N cases at a fraction of the cost. A
positive predictive value could also be provided depending on the
nature of the sample and known narcolepsy prevalence (low in
general population screening, intermediary in overall clinic
population sample and high in hypersomnia cohorts). It also
opens the possibility of using home sleep recordings for diag-
nosing narcolepsy. In this direction, because of the probabilistic
and automatic nature of our biomarker, estimates from more
than one night could be automatically analyzed and combined
over time, ensuring improved prediction. However, it is impor-
tant to note that this algorithm will not replace the MSLT in the
ability to predict excessive daytime sleepiness through the mea-
sure of mean sleep latency across daytime naps, which is an
important characteristic of other hypersomnias.

In conclusion, models which classify sleep by assigning a
membership function to each of five different stages of sleep for
each analyzed segment were produced, and factors contributing
to the performance were analyzed. The models were evaluated on
different cohorts, one of which contained 70 subjects scored by 6
different sleep scoring technicians, allowing for inter-scorer
reliability assessments. The most successful model, consisting of
an ensemble of different models, achieved an accuracy of 87% on
this dataset, and was statistically better performing than any
individual scorer. It was also able to score sleep stages with high
accuracy at lower time resolution (5 s), rendering the need for
scoring per 30 s epoch obsolete. When predictions were weighted
by the scorer agreement, performance rose to 95%, indicating a
high consensus between the model and human scorers in areas of
high scorer agreement. A final implementation was made using
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an ensemble with small variations of the best single model. This
allowed for better predictions, while also providing a measure of
uncertainty in an estimate.

When the staging data were presented as hypnodensity dis-
tributions, the model conveyed more information about the
subject than through a hypnogram alone. This led to the creation
of a biomarker for narcolepsy that achieved similar performance
to the current clinical gold standard, the MSLT, but only requires
a single sleep study. If increased specificity is needed, for example,
in large-scale screening, HLA or additional genetic typing brings
specificity above 99% without loss of sensitivity. This presents an
option for robust, consistent, inexpensive and simpler diagnosis
of subjects who may have narcolepsy, as such tests may also be
carried out in a home environment.

This study shows how hypnodensity graphs can be created
automatically from raw sleep study data, and how the resulting
interpretable features can be used to generate a diagnosis prob-
ability for T1N. Another approach would be to classify narcolepsy
directly from the neural network by optimizing the performance
not only for sleep staging, but also for direct diagnosis by adding
an additional softmax output, thereby creating a multitask clas-
sifier. This approach could lead to better predictions, since fea-
tures are not then limited to by a designer imagination. A
drawback of this approach is that features would no longer be as
interpretable and meaningful to clinicians. If meaning could be

extracted from these neural network generated features, this
might open the door to a single universal sleep analysis model,
covering multiple diseases. Development of such a model would
require adding more subjects with narcolepsy and other condi-
tions to the pool of training data.

Methods
Datasets. The success of machine learning depends on the size and quality of the
data on which the model is trained and evaluated51,52. We used a large dataset
comprised of several thousand sleep studies to train, validate and test/replicate our
models. To ensure significant heterogeneity, data came from 10 different cohorts
recorded at 12 sleep centers across 3 continents: SSC10,32, WSC32,33, IS-RC31,
JCTS43, KHC10,34, AHC35, IHC41, DHC53, FHC and CNC12. Institutional review
boards approved the study and informed consent was obtained from all partici-
pants. Technicians trained in sleep scoring manually labeled all sleep studies.
Figure 5a–c summarizes the overall design of the study for sleep stage scoring and
narcolepsy biomarker development. Supplementary Table 1 provides a summary of
the size of each cohort and how it was used. In the narcolepsy biomarker aspect of
the study, PSGs from T1N and other patients were split across most datasets to
ensure heterogeneity in both the training and testing datasets. For this analysis, a
few recordings with poor quality sleep studies, i.e., missing critical channels, with
additional sensors or with a too short sleep duration (≤2 h) were excluded. A
“never seen” subset cohort that included French and Chinese subjects (FHC and
CNC) was also tested. Below is a brief description of each dataset.

Population-based Wisconsin Sleep Cohort. This cohort is a longitudinal study of
state agency employees aged 37–82 years from Wisconsin, and it approximates a
population-based sample (see Supplementary Table 1 for age at study) except for
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Fig. 5 Overall design of the study. a Pre-processing steps taken to achieve the format of data as it is used in the neural networks. One of the 5 channels is
first high-pass filtered with a cut-off at 0.2 Hz, then low-pass filtered with a cut-off at 49 Hz followed by a re-sampling to 100 Hz to ensure data
homogeneity. In the case of EEG signals, a channel selection is employed to choose the channel with the least noise. The data are then encoded using either
the CC or the octave encoding. b Steps taken to produce and test the automatic scoring algorithm. A part of the SSC10, 32 and WSC32, 33 is randomly
selected, as described in Supplementary Table 1. These data are then segmented in 5min segments and scrambled with segments from other subjects to
increase batch similarity during training. A neural network is then trained until convergence (evaluated using a separate validation sample). Once trained,
the networks are tested on a separate part of the SSC and WSC along with data from the IS-RC31 and KHC10, 34. c Steps taken to produce and test the
narcolepsy detector. Hypnodensities are extracted from data, as described in Supplementary Table 1. These data are separated into a training (60%) and a
testing (40%) split. From the training split, 481 potentially relevant features, as described in Supplementary Table 9, are extracted from each hypnodensity.
The prominent features are maintained using a recursive selection algorithm, and from these features a GP classifier is created. From the testing split, the
same relevant features are extracted, and the GP classifier is evaluated
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the fact they are generally more overweight33. The study is ongoing, and dates to
1988. The 2167 PSGs in 1086 subjects were used for training, while 286 randomly
selected PSGs were used for validation testing of the sleep stage scoring algorithm
and narcolepsy biomarker training. Approximately 25% of the population have an
Apnea Hypopnea Index (AHI) above 15/h and 40% have a PLMI above 15/h. A
detailed description of the sample can be found in Young et al.33 and Moore
et al.32. The sample does not contain any T1N patients, and the three subjects with
possible T1N were removed54.

Patient-based Stanford Sleep Cohort. PSGs from this cohort were recorded at
the Stanford Sleep Clinic dating back to 1999, and represent sleep disorder patients
aged 18–91 years visiting the clinic (see Supplementary Table 1 for age at study).
The cohort contains thousands of PSG recordings, but for this study we used 894
diagnostic (no positive airway pressure) recordings in independent patients that
have been used in prior studies30. This subset contains patients with a range of
different diagnoses including: sleep disordered breathing (607), insomnia (141),
REM sleep behavior disorder (4), restless legs syndrome (23), T1N (25), delayed
sleep phase syndrome (14) and other conditions (39). Description of the subsample
can be found in Andlauer et al.10 and Moore et al.32. Approximately 30% of
subjects have an AHI above 15/h, or a PLMI above 15/h. The 617 randomly
selected subjects were used for training the neural networks, while 277 randomly
selected PSGs were kept for validation testing of the sleep stage scoring algorithm.
These 277 subjects were also used for training the narcolepsy biomarker algorithm.
The sample contains PSGs of 25 independent untreated subjects with T1N (12 with
low CSF hypocretin-1, the others with clear cataplexy). A total of 26 subjects were
removed from the study—4 due to poor data quality, and the rest because of
medication use.

Patient-based Korean Hypersomnia Cohort. The Korean Hypersomnia Cohort is
a high pretest probability sample for narcolepsy. It includes 160 patients with a
primary complaint of excessive daytime sleepiness (see Supplementary Table 1 for
age at study). These PSGs were used for testing the sleep scoring algorithm and for
training the narcolepsy biomarker algorithm. No data were used for training the
sleep scoring algorithm. Detailed description of the sample can be found in Hong
et al.34 and Andlauer et al.10. The sample contains PSGs of 66 independent
untreated subjects with T1N and clear cataplexy. Two subjects were removed from
the narcolepsy biomarker study because of poor data quality.

Patient-based Austrian Hypersomnia Cohort. Patients in this cohort were
examined at the Innsbruck Medical University in Austria as described in Frauscher
et al.35. The AHC contains 118 PSGs in 86 high pretest probability patients for
narcolepsy (see Supplementary Table 1 for details). The 42 patients (81 studies) are
clear T1N with cataplexy cases, with all but 3 having a positive MSLT (these three
subjects had a MSL >8 min but multiple SOREMPs). The rest of the sample has
idiopathic hypersomnia and type 2 narcolepsy. Four patients have an AHI >15/h
and 25 had a PLMI >15/h. Almost all subjects had two sleep recordings performed,
which were kept together such that no two recordings from the same subject were
split between training and testing partitions.

Patient-based Inter-scorer Reliability Cohort. As Rosenberg and Van Hout16

have shown, variation between individual scorers can sometimes be large, leading
to an imprecise gold standard. To quantify this, and to establish a more accurate
gold standard, 10 scorers from 5 different institutions, University of Pennsylvania,
St. Luke’s Hospital, University of Wisconsin at Madison, Harvard University and
Stanford University, analyzed the same 70 full-night PSGs. For this study, scoring
data from University of Pennsylvania, St. Luke’s and Stanford were used. All
subjects are female (see Supplementary Table 1 for details). This allowed for a
much more precise gold standard, and the inter-scorer reliability could be quan-
tified for a dataset, which could also be examined by automatic scoring algorithms.
Detailed description of the sample can be found in Kuna et al.31 and Malhotra and
Avidan6. The sample does not contain any T1N patients.

The Jazz Clinical Trial Sample. This sample includes 7 baseline sleep PSGs from
5 sites taken from a clinical trial study of sodium oxybate in narcolepsy (SXB15
with 45 sites in Canada, United States, and Switzerland) conducted by Orphan
Medical, now named Jazz Pharmaceuticals. The few patients included are those
with clear and frequent cataplexy (a requirement of the trial) who had no stimulant
or antidepressant treatment at baseline43. All seven subjects in this sample were
used exclusively for training the narcolepsy biomarker algorithm.

Patient-based Italian Hypersomnia Cohort. Patients in this high pretest prob-
ability cohort (see Supplementary Table 1 for demographics) were examined at the
IRCCS, Istituto delle Scienze Neurologiche ASL di Bologna in Italy as described in
Pizza et al.41. The IHC contains 70 T1N patients (58% male, 29.5 ± 1.9 years old),
with either documented low CSF hypocretin levels (59 cases, all but 2 HLA-
DQB1*06:02 positive) or clear cataplexy, positive MSLTs and HLA positivity
(11 subjects). As non-T1N cases with unexplained daytime somnolence, the cohort
includes 77 other patients: 19 with idiopathic hypersomnia, 7 with type 2

narcolepsy and normal CSF hypocretin-1, 48 with a subjective complaint of
excessive daytime sleepiness not confirmed by MSLT and 3 with secondary
hypersomnia. Subjects in this cohort were used for training (n= 87) and testing
(n= 61) the narcolepsy biomarker algorithm.

Patient-based Danish Hypersomnia Cohort. Patients in this cohort were examined
at the Rigshospitalet, Glostrup, Denmark, as described in Christensen et al.53. The DHC
contains 79 PSGs in controls and patients (see Supplementary Table 1 for details). Based
on PSG, multiple sleep latency test and cerebrospinal fluid hypocretin-1 measures, the
cohort includes healthy controls (19 subjects), patients with other sleep disorders and
excessive daytime sleepiness (20 patients with CSF hypocretin-1 ≥110 pg/ml), narco-
lepsy type 2 (22 patients with CSF hypocretin-1 ≥110 pg/ml), and T1N (28 patients with
CSF hypocretin-1 ≤110 pg/ml). All 79 subjects in this cohort were used exclusively for
training the narcolepsy biomarker algorithm.

Patient-based French Hypersomnia Cohort. This cohort consists of 122 indivi-
dual PSGs recorded at the Sleep-Wake Disorders Center, Department of Neurol-
ogy, Gui-de-Chauliac Hospital, CHU Montpellier, France (see Supplementary
Table 1 for demographics). The FHC contains 63 subjects with T1N (all but two
tested with CSF hypocretin-1 ≤110 pg/ml, five below 18 years old, 55 tested for
HLA, all positive for HLA-DQB1*06:02) and 22 narcolepsy type 2 (19 with CSF
hypocretin-1 >200 pg/ml, and three subjects with CSF hypocretin-1 between 110
and 200 pg/ml, three HLA positive). The remaining 36 subjects are controls (15
tested for HLA, two with DQB1*06:02) without other symptoms of hypersomnia.
The FHC was used as data for the replication study of the narcolepsy biomarker
algorithm.

Patient-based Chinese Narcolepsy Cohort. This cohort contains 199 individual
PSGs recorded (see Supplementary Table 1 for demographics). The CNC contains
67 subjects diagnosed with T1N exhibiting clear-cut cataplexy (55 tested HLA-
DQB1*06:02 positive), while the remaining 132 subjects are randomly selected
population controls (15 HLA-DQB1*06:02 positive, 34 HLA negative, remaining
unknown)12. Together with the FHC, the CNC was used as data for the replication
study of the narcolepsy biomarker algorithm.

American Academy of Sleep Medicine Sleep Study. The AASM ISR dataset is
composed of a single control sleep study of 150 30 s epochs that was scored by
5234 ± 14 experienced sleep technologists for quality control purposes. Design of
this dataset is described in Rosenberg and Van Hout16.

Data labels, scoring and fuzzy logic. Sleep stages were scored by PSG-trained
technicians using established scoring rules, as described in the AASM Scoring
Manual7. In doing so, technicians assign each epoch with a discrete value. With a
probabilistic model, like the one proposed in this study, a relationship to one of the
fuzzy sets is inferred based on thousands of training examples labeled by many
different scoring technicians.

The hypnodensity graph refers to the probability distribution over each possible
stage for each epoch, as seen in Fig. 2a, b. This allows more information to be
conveyed, since every epoch of sleep within the same stage is not identical. For
comparison with the gold standard, however, a discrete value must be assigned
from the model output as:

ŷ ¼ argmaxyi
XN
i

Pi yijxi
� �

; ð5Þ

where PiðyijxiÞ is a vector with the estimated probabilities for each sleep stage in
the ith segment, N is the number of segments an epoch is divided into and ŷ is the
estimated label.

Sleep scoring technicians score sleep in 30 s epochs, based on what stage they
assess is represented in the majority of the epoch—a relic of when recordings were
done on paper. This means that when multiple sleep stages are represented, more
than half of the epoch may not match the assigned label. This is evident in the fact
that the label accuracy decreases near transition epochs20. One solution to this
problem is to remove transitional regions to purify each class. However, this has
the disadvantage of under-sampling transitional stages, such as N1, and removes
the context of quickly changing stages, as is found in a sudden arousal. It has been
demonstrated that the negative effects of imperfect “noisy” labels may be mitigated
if a large enough training dataset is incorporated and the model is robust to
overfitting41. This also assumes that the noise is randomly distributed with an
accurate mean—a bias cannot be canceled out, regardless of the amount of training
data. For these reasons, all data including those containing sleep transitions were
included. Biases were evaluated by incorporating data from several different
scoring experts cohorts and types of subjects.

To ensure quick convergence, while also allowing for long-term dependencies in
memory-based models, the data were broken up in 5 min blocks and shuffled to
minimize the shift in covariates during training caused by differences between
subjects. To quantify the importance of segment sizes, both 5 s and 15 s windows
were also tested.
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Data selection and pre-processing. A full-night PSG involves recording many
different channels, some of which are not necessary for sleep scoring55. In this
study, EEG, C3 or C4, and O1 or O2, chin EMG and the left and right EOG
channels were used, with reference to the contralateral mastoid. Poor electrode
connections are common when performing a PSG analysis. This can lead to a noisy
recording, rendering it useless. To determine whether right or left EEG channels
were used, the noise of each was quantified by dividing the EEG data in 5 min
segments, and extracting the Hjorth parameters56. These were then log-trans-
formed, averaged and compared with a previously established multivariate dis-
tribution, based on the WSC32,33 and SSC10,32 training data. The channel with
lowest Mahalanobis distance57 to this distribution was selected. The log transfor-
mation has the advantage of making flat signals/disconnects as uncommon as very
noisy signals, in turn making them less likely to be selected. To minimize het-
erogeneity across recordings, and at the same time reducing the size of the data, all
channels were down-sampled to 100 Hz. Additionally, all channels were filtered
with a fifth-order two-direction infinite impulse response (IIR) high-pass filter with
cut-off frequency of 0.2 Hz and a fifth-order two-direction IIR low-pass filter with
cut-off frequency of 49 Hz. The EMG signal contains frequencies well above 49 Hz,
but since much data had been down-sampled to 100 Hz in the WSC, this cut-off
was selected for all cohorts. All steps of the pre-processing are illustrated in Fig. 5a.

Convolutional and recurrent neural networks. Convolutional neural networks
(CNNs) are a class of deep learning models first developed to solve computer vision
problems30. A CNN is a supervised classification model in which a low level, such
as an image, is transformed through a network of filters and sub-sampling layers.
Each layer of filters produces a set of features from the previous layer, and as more
layers are stacked, more complex features are generated. This network is coupled
with a general-purpose learning algorithm, resulting in features produced by the
model reflecting latent properties of the data rather than the imagination of the
designer. This property places fewer constrictions on the model by allowing more
flexibility, and hence the predictive power of the model will increase as more data
are observed. This is facilitated by the large number of parameters in such a model,
but may also necessitate a large amount of training data. Sleep stage scoring
involves a classification of a discrete time series, in which adjacent segments are
correlated. Models that incorporate memory may take advantage of this and may
lead to better overall performance by evening out fluctuations. However, these
fluctuations may be the defining trait or anomaly of some underlying pathology
(such as narcolepsy, a pathology well known to involve abnormal sleep stages
transitions), present in only a fraction of subjects, and perhaps absent in the
training data. This can be thought of similarly to a person with a speech impe-
diment: the contextual information will ease the understanding, but knowing only
the output, this might also hide the fact that the person has such a speech impe-
diment. To analyze the importance of this, models with and without memory were
analyzed. Memory can be added to such a model by introducing recurrent con-
nections in the final layers of the model. This turns the model into a recurrent
neural network (RNN). Classical RNNs had the problem of vanishing or exploding
gradients, which meant that optimization was very difficult. This problem was
solved by changing the configuration of the simple hidden node into a LSTM cell58.
Models without this memory are referred to as FF models. A more in-depth
explanation of CNNs including application areas can be found in the review article
on deep learning by LeCun et al.30 and the deep learning textbook by Goodfellow
et al.59. For a more general introduction to machine learning concepts, see the
textbook by Bishop60.

Data input and transformations. Biophysical signals, such as those found in a
PSG, inherently have a low signal to noise ratio, the degree of which varies between
subjects, and hence learning robust features from these signals may be difficult. To
circumvent this, two representations of the data that could minimize these effects
were selected. An example of each decomposition is shown in Fig. 6a.

Octave encoding maintains all information in the signal, and enriches it by
repeatedly removing the top half of the bandwidth (i.e., cut-off frequencies of 49,
25, 12.5, 6.25 and 3.125 Hz) using a series of low-pass filters, yielding a total of 5
new channels for each original channel. At no point is a high-pass filter applied.
Instead, the high frequency information may be obtained by subtracting lower
frequency channels—an association the neural networks can make, given their
universal approximator properties61. After filtration, each new channel is scaled to
the 95th percentile and log modulus transformed:

xscaled ¼ sign xð Þ � log xj j
P95 xð Þ þ 1

� �
: ð6Þ

The initial scaling places 95% of the data between −1 and 1, a range in which
the log modulus is close to linear. Very large values, such as those found in
particularly noisy areas, are attenuated greatly. Some recordings are noisy, making
the 95th percentile significantly higher than what the physiology reflects. Therefore,
instead of selecting the 95th percentile from the entire recording, the recording is
separated into 50% overlapping 90 min segments, from which the 95th percentile is
extracted. The mode of these values is then used as a scaling reference. In general,
scaling and normalization is important to ensure quick convergence as well as
generalization in neural networks. The decomposition is done in the same way on
every channel, resulting in 25 new channels in total.

CC encoding, using a CC function, underlying periodicities in the data are
revealed while noise is attenuated. White noise is by definition uncorrelated; its
autocorrelation function is zero everywhere except lag zero. It is this property that
is utilized, even though noise cannot always be modeled as such. PSG signals are
often obscured by undesired noise that is uncorrelated with other aspects of the
signals. An example CC between a signal segment and an extended version of the
same signal segment is shown in Supplementary Figure 5. Choosing the CC in this
manner over a standard autocorrelation function serves two purposes: the slow
frequencies are expressed better, since there is always full overlap between the two
signals (some of this can be adjusted with the normal autocorrelation function
using an unbiased estimate); and the change in fluctuations over time within a
segment is expressed, making the function reflect aspects of stationarity. Because
this is the CC between a signal and an extended version of itself, the zero lag
represents the power of that segment, as is the case in an autocorrelation function.

Frequency content with a time resolution may also be expressed using time-
frequency decompositions, such as spectrograms or scalograms; however, one of
the key properties of a CNN is the ability to detect distinct features anywhere in an
input, given its property of equivariance62. A CC function reveals an underlying set
of frequencies as an oscillation pattern, as opposed to a spectrogram, where
frequencies are displayed as small streaks or spots in specific locations,
corresponding to frequencies at specific times. The length and size of each CC
reflects the expected frequency content and the limit of quasi-stationarity (i.e., how
quickly the frequency content is expected to change).

The EOG signal reveals information about eye movements such as REMs, and
to some extent EEG activity6,7. In the case of the EOG signal, the relative phase
between the two channels is of great importance to determine synchronized eye
movements, and hence a CC of opposite channels (i.e., either the extended or zero
padded signal is replaced with the opposite channel) is also included. The slowest
eye movements happen over the course of several seconds6,7, and hence a segment
length of 4 s was selected for the correlation functions. To maintain resolution
flexibility with the EEG, an overlap of 3.75 s was chosen.

In the case of the EMG signal, the main concern is the signal amplitude and the
temporal resolution, not the actual frequencies. As no relevant low-frequency
content is expected, a segment length of 0.4 s and an overlap of 0.25 s was selected.

As with the octave encoding, the data are scaled, although only within segments:

Di ¼
γxiyi � log 1þmax γxiyi

��� ���� ��

max γxiyi

��� ���� � ; ð7Þ

where Di is the scaled correlation function and γxiyi is the unscaled correlation
function.

Architectures of applied CNN models. The architecture of a CNN typically
reflects the complexity of the problem that is being solved and how much training
data are available, as a complex model has more parameters than a simple model,
and is therefore more likely to over-fit. However, much of this may be solved using
proper regularization. Another restriction is the resources required to train a model
—deep and complex models require far more operations and will therefore take
longer to train and operate. In this study, no exhaustive hyper-parameter opti-
mization was carried out. The applied architectures were chosen on the basis of
other published models63. Since the models utilized three separate modalities (EEG,
EOG and EMG), three separate sub-networks were constructed. These were fol-
lowed by fully connected layers combining the inputs from each sub-network,
which were passed onto a softmax output (Fig. 6b, Supplementary Figure 3).
Models that utilize memory have fully connected hidden units replaced with LSTM
cells and recurrent connections added between successive segments. Networks of
two different sizes are evaluated to quantify the effect of increasing complexity.

Training of CNN models. Training the models involves optimizing parameters to
minimize a loss function evaluated across a training dataset. The loss function was
defined as the cross-entropy with L2 regularization:

L ωð Þ ¼ 1
N

XN

i¼1
H yi;byi� �þ L2 ¼ 1

N

XN

i¼1
yilogbyi þ 1� yi

� �
logð1� byiÞ þ λ jjωjj22;

ð8Þ

where yi is the true class label of the ith window, byi is the estimated probability of
the ith window, ω is the parameter to be updated and λ is the weight decay
parameter set at 0.00001. The model parameters were initialized with Nð0; 0:01Þ,
and trained until convergence using stochastic gradient decent with momentum64.
Weight updates were done as: ωtþ1 ¼ ωt þ ηvtþ1 with vtþ1 ¼ αvt � δE

δωt
where α is

the momentum set at 0.9, vt is the learning velocity, initialized at 0, and η is the
learning rate, initially set at 0.005. The learning rate was gradually reduced with an
exponential decay η ¼ η0 � e�t=τ where t is the number of updates and τ is a time
constant, here set to 12,000.

Overfitting was avoided using a number of regularization techniques, including
batch normalization65, weight decay66 and early stopping67. Early stopping is
accomplished by scheduling validation after every 50th training batch. This is done
by setting aside 10% of the training data. Training is stopped if the validation
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accuracy starts to decrease, as a sign of overfitting. For LSTM networks, dropout68

was included, set at 0.5 while training. This ensured that model parameters
generalized to the validation data and beyond. During training, data batches were
selected at random. Given the stochastic nature of the training procedure, it was
likely that two realizations of the same model would not lead to the same results,
since models end up in different local minima. To measure the effect of this, two
realizations were made of each model.

Apart from model realizations, we also investigated the effect of ensembling our
sleep stage classification model. In general, ensemble models can yield higher
predictive performance than any single model by attacking a classification or
regression problem from multiple angles. For our specific use case, this resolves
into forming a sleep stage prediction based on the predictions of all the models in
the given ensemble. We tested several ensembles containing various numbers
of model architectures and data encodings, as described in Supplementary Table 8.

Performance comparisons of generated CNN models. As stated, the influences
of many different factors were analyzed. These included: using octave or CC
encoding, short (5 s) or long (15 s) segment lengths, low or high complexity, with
or without LSTM, and using a single or two realizations of a model. To quantify the
effect of each, a 25-factorial experiment was designed. This led to 32 different
models (Supplementary Table 8). Comparison between models was done on a per-
epoch basis.

Hypnodensity as feature for the diagnosis of T1N. To quantify narcolepsy-like
behavior for a single recording i, features were generated based on a proto-feature
derived from k-combinations of S ¼ fW;REM;N1;N2;N3g. For the nth 5, 15
or 30 s segment in recording i, we take a single k-combination in the set of all

k-combinations, and calculate the proto-feature as the sum of the pair-wise pro-
ducts of the elements in the single k-combination, such that

ΦðiÞ
n Skð Þ ¼

X
ζ2½Sk �2

Y
s2ζ

p sjxðiÞn
� �

; p 2 0; 1½ �; ð9Þ

where ΦðiÞ
n is the proto-feature for the nth segment in recording i, ζ 2 ½Sk�2 is a 2-

tuple, or pair-wise combination, in the set of all pair-wise combinations in the k-
combination of S and s is a single element, or sleep stage, in ζ . For k ¼ 1; ¼ ; 5,
there exist 31 different Sk , e.g., {Wake, REM}, {N1, N2, N3} etc., as shown in

Supplementary Table 9. p sjxðiÞn
� �

is the predicted probability of a 5, 15 or 30 s

epoch belonging to a certain class in S, given the data xðiÞn . For every value of k, 15
features based on the mean, derivative, entropy and cumulative sum were
extracted, as shown in Supplementary Table 10.

Additional features for T1N diagnosis. In addition to above, another set of
features reflecting abnormal sleep stage sequencing in T1N was investigated.

One set of such features was selected because they have been found to
differentiate T1N from other subjects in prior studies37,69–72. These include:
nocturnal sleep REM latency (REML)10, presence of a nightly SOREMP (REML
≤15 min)10, presence and number of SOREMPs during the night (SOREMPs
defined as REM sleep occurring after at least 2.5 min of wake or stage 1) and
nocturnal sleep latency (a short sleep latency is common in narcolepsy)37. Other
features include a NREM Fragmentation index described in Christensen et al.37.
(N2 and N3 combined to represent unambiguous NREM and N1 and wake
combined to denote wake, NREM fragmentation defined as 22 or more occurrences
where sustained N2/N3 (90 s) is broken by at least 1 min of N1/Wake), and the
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Figure 3
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number of W/N1 hypnogram bouts as defined by Christensen et al.37. (N1 and
wake combined to indicate wakefulness and a long period defined as 3 min or
more). In this study we also explore: the cumulative wake/N1 duration for
wakefulness periods shorter than 15 min; cumulative REM duration following
wake/N1 periods longer than 2.5 min; and total nightly SOREMP duration defined
as the sum of REM epochs following 2.5 minW/N1 periods.

Another set of 9 features reflecting hypnodensity sleep stage distribution was
also created as follows. As noted in Supplementary Figure 4, stages of sleep
accumulate, forming peaks. These peaks were then used to create 9 new features
based on the order of the peaks, expressing a type of transition (W to N2, W to
REM, REM to N3 etc.). If the height of the nth peak is denoted as φn, the transition
value τ is calculated as the geometric mean between successive peaks:

τn ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φn � φnþ1

p
: ð10Þ

Due to their likeness, W and N1 peaks were added to form a single type.
All transitions of a certain type were added together to form a single feature. A
lower limit of 10 was imposed on peaks to avoid spurious peaks. If two peaks
of the same type appeared in succession the values were combined into a single
peak.

Gaussian process models for narcolepsy diagnosis. To avoid overfitting, and at
the same time produce interpretable results, a RFE algorithm was employed, as
described in Guyon et al.42. Post screening, the most optimal features (n= 38) were
used in a GP classifier as described below. GP classifiers are non-parametric
probabilistic models that produce robust non-linear decision boundaries using
kernels, and unlike many other classification tools, provide an estimate of the
uncertainty. This is useful when combining estimates, but also when making a
diagnosis; if an estimate is particularly uncertain, a doctor may opt for more tests to
increase certainty before making a diagnosis. In a GP, a training dataset is used to
optimize a set of hyper-parameters, which specify the kernel function, the basis
function coefficients, here a constant, noise variance, and to form the
underlying covariance and mean function from which inference about new cases

are made73. In this case, the kernel is the squared exponential: σ2f exp
� x�x′j j2

2l2

h i
. Two

classes were established: narcolepsy type 1 and “other”, which contains every other
subject. These were labeled 1 and −1 respectively, placing all estimates in this
range. For more information on GP in general, see the textbook by Rasmussen
and Williams73, while more information on variational inference for scalable
GP classification can be found in the paper by Hensman et al.74 and Matthews
et al.75.

HLA-DQB1*06:02 testing. HLA testing plays a role in T1N diagnosis, as 97% of
patients are DQB1*06:02 positive when the disease is defined biochemically by low
CSF hypocretin-15 or by the presence of cataplexy and clear MSLT findings10. As
testing for HLA-DQB1*06:02 only requires a single blood test, models in which this
feature was included were also tested. The specific feature was implemented as a
binary-valued predictor, resulting in negative narcolepsy predictions for subjects
with a negative HLA test result.

High pretest probability sample. MSLTs are typically performed in patients with
daytime sleepiness that cannot be explained by OSA, insufficient/disturbed sleep or
circadian disturbances. These patients have a higher pretest probability of having
T1N than random clinical patients. Patients are then diagnosed with type 1 or type
2 narcolepsy, idiopathic hypersomnia or subjective sleepiness based on MSLT
results, cataplexy symptoms and HLA results (if available). To test whether our
detector differentiates T1N from these other cases with unexplained sleepiness, we
conducted a post hoc analysis of the detector performance in these subjects
extracted from both the test and replication datasets.

Data availability
All the software is made available in GitHub at: https://github.com/stanford-stages/
stanford-stages. We asked all contributing co-authors whether we could make the
anonymized EDF available, together with age, sex and T1N diagnosis (Y/N). The
SSC10,32 (E.M.), the IS-RC31 (S.T.K., C.K., P.K.S.), the KHC (S.C.H.), the HIS (G.
P.), the DHS (P.J.), the FHC (Y.D.) and associated data are available at https://
stanfordmedicine.app.box.com/s/r9e92ygq0erf7hn5re6j51aaggf50jly. The AHC (B.
H.) and the CNC12 (F.H.) are available from the corresponding investigator on
reasonable request. The WSC32,33 data analyzed during the current study are not
publicly available due to specific language contained in informed consent docu-
ments limiting use of WSC human subjects’ data to specified institutionally
approved investigations. However, WSC can be made available from P.E.P. on
reasonable request and with relevant institutional review board(s) approval. The
JCTS43 and AASM ISR16 dataset are available from the corresponding institutions
on reasonable request.
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SUPPLEMENTARY FIGURES 

 
 
Supplementary Figure 1: Comparisons of machine learning models. Left: Comparisons of the effect on 
accuracy by each factor at different settings on IS-RC data, SSC and KHC narcolepsy subjects, and the 
remaining SSC, KHC and WSC subjects used for testing. Right: Correlation matrix showing similarities in 
different model predictions, where 0 means signals are independent, and 1 means signals are completely 
correlated. Models number (N) 1-32 are single models, and 33-41 are ensembles. The models vary on 5 
parameters, each at two levels, in the following order: Memory – FF or LSTM (1), segment length (Seg. Len.) 
– 5 s or 15 s (2), complexity – high or low (3), encoding – CC or octave (4), realizations – 1 or 2 (5). 
Ensembles are as described in Supplementary Table 8: All FF octave models (33), all LSTM octave models 
(34), all FF CC models (35), all LSTM CC models (36), all FF models (37), all LSTM models (38), all CC 
models (39), all octave models (40), all models (41). 
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Supplementary Figure 2: Interaction of different factors and their dependence on accuracy. The IS-RC data 
was used for this analysis. The solid and dashed lines indicate factors along the rows on levels 1 and 2, 
respectively. 
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Supplementary Figure 3: Specifications of each network configuration. Each block represents an operation; 
with white blocks require multiplications and adding, whereas grey blocks are pooling or concatenations, 
default being max pooling. The top row of each block describes the size of the window and its stride, and the 
bottom row describes the size of the output. In this output, N is the length of a sequence, the second dimension 
is the segment length, and if a fourth dimension is present (CC models), the third dimension originally 
represents the size of the correlation function. The last dimension is the number of features in that layer. 
Models with a low complexity skip the third max pooling block, and go straight to mean pooling. 



 5 

 

 

. 
 
Supplementary Figure 4: Peak cumulation plot. It visualizes how hypnodensity-derived features are 
calculated (See Supplementary Table 10). Color codes: White – wake, red – N1, light blue – N2, dark blue – 
N3, black – REM 
 

 
 



 6 

 
Supplementary Figure 5: Implementation of CC encoding. CC encoding of a noisy (right) and less noisy (left) 
signal. The central part of the encoding, representing areas of full overlap between correlated signals, is kept; 
the red part is discarded. 
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SUPPLEMENTARY TABLES  
 
Supplementary Table 1: Description of the various cohorts included in this study and how they were used. 
 

Cohort Age 
(µ ± σ) 

BMI 
(µ ± σ) 

Sex 
(% 

male) 

Sleep scoring  Narcolepsy biomarker % narco % hypersomnia Use 
Train Test  Train Test Replication 

WSC 59.7 ± 8.4 31.6 ± 7.1 53.1 
1,086 
(2,167 
PSGs) 

286 
 

170 116 None 0.0 0.0 Training and testing of sleep scoring models and 
narcolepsy biomarker. 

SSC 45.4 ± 13.8 23.9 ± 6.5 59.4 617 277 
 

139 112 None 11.6 1.8 Training and testing of sleep scoring models and 
narcolepsy biomarker. 

KHC 29.1 ± 13.2 24.1 ± 4.3 58.6 None 160 
 

87 71 None 45.8 54.2 Sleep scoring testing, and training and testing of 
narcolepsy biomarker. 

AHC 34.5 ± 13.8 25.9 ± 4.9 54.0 None None 

 42 
(76 

PSGs) 

44 
(84 PSGs) None 52.3 47.7 

Training and testing of narcolepsy biomarker. 86 
subjects had the first PSG recorded, and 75 had an 
additional second PSG. A subject was used for either 
training or testing. 

IS-RC 51.1 ± 4.2 32.9 ± 9.2 0.0 None 70 
 

None None None 0.0 0.0 Scored by 6 different scorers. Final assessment and 
validation of predictive performance for sleep scoring. 

JCTS 53.2 ± 9.8 31.0 ± 4.4 57.1 None None 
 

7 None None 100.0 0.0 Training of narcolepsy biomarker. 

IHC 33.7 ± 17.6 - 56.7 None None 
 

87 61 None 47.3 50.0 Training and testing of narcolepsy biomarker. 

DHC 33.4 ± 14.8 24.8 ± 4.9 50.0 None None 
 

79 None None 26.6 48.1 Training of narcolepsy biomarker. 

FHC 28.8 ± 15.2 24.4 ± 8.1 59.0 None None 
 

None None 122 51.6 18.0 Replication of narcolepsy biomarker in never seen 
datasets 

CNC 28.5 ± 16.9 23.2 ± 
11.5 51.3 None None 

 
None None 199 34.2 0.0 Replication of narcolepsy biomarker in never seen 

datasets 
Total 

subjects    1,703 793  611 404 321    

Total 
PSGs    2,784 793 

 
645 444 321    

% narco. = % of cohort with type 1 narcolepsy; % hypersomnia= % with idiopathic hypersomnia or narcolepsy type 2 (high pretest probability cohort) 
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Supplementary Table 2: A cumulative assessment of the scorers.  
 
 Consensus 

Ac
cu

m
ul

at
io

n 
of

 In
di

vi
du

al
 S

co
re

rs
 Stages Wake N1 N2 N3 REM  

Wake 13.28% 
13.25% 

1.04% 
0.98% 

0.86% 
0.87% 

0.08% 
0.08% 

0.23% 
0.22% 

0.86 
0.86 

N1 0.79% 
0.88% 

3.36% 
3.61% 

1.23% 
1.42% 

0.03% 
0.03% 

0.29% 
0.31% 
 

0.59 
0.58 

N2 0.87% 
0.84% 

2.46% 
2.30% 

44.66% 
45.48% 

4.89% 
5.92% 

0.85% 
0.84% 

0.83 
0.82 

N3 0.05% 
0.05% 

0.02% 
0.02% 

2.58% 
1.54% 

6.45% 
5.41% 

0.002% 
0.002% 

0.71 
0.77 

REM 0.32% 
0.31% 

1.00% 
0.97% 

1.14% 
1.16% 

0.03% 
0.04% 

13.46% 
13.46% 

0.84 
0.84 

 0.87 
0.86 

0.43 
0.46 

0.88 
0.90 

0.56 
0.47 

0.91 
0.91 

0.81 
0.81 

The top row in every cell displays the un-weighed consensus, and the bottom row displays the weighed 
consensus. The values in the diagonal indicate a match between scorer and consensus. The total number of 
scored epochs were 324,978 

 

Supplementary Table 3: Average relative model variance, standardized to a correct wakefulness prediction, 
when compared to the scoring consensus. On average, the sleep classification model shows lower variance 
in the diagonal, which translates to a higher certainty on predicted true positives. 
 
 Model Predictions 

C
on

se
ns

us
 Stages Wake N1 N2 N3 REM 

Wake 1.00 1.16 2.25 2.12* 3.74 
N1 1.58 0.89 1.08 0.03* 1.29 
N2 3.80 1.33 0.51 0.99 1.45 
N3 0.92* NaN* 1.36 0.58 NaN* 
REM 3.58 1.89 1.93 NaN* 1.06 

*Fewer than five observations. 
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Supplementary Table 4: ANOVA comparing accuracy for subjects with and without various sleep disorders. 

Condition Source 
Sum of 
squares 

Degrees of 
freedom 

p-value 
Delta Mean 
accuracy 

Insomnia (N = 333) 

NInsomnia = 134 

Cohort 0.30 2 3.69∙10-21  

 

 

 Age 0.0026 2 0.62 

Sex 0.0060 1 0.139 Present 0.04 

Condition 0.0003 1 0.75 

Error 0.89 326  

OSA (N = 683) 

NNone = 297 

NMild = 167 

NModerate = 118 

NSevere = 101 

Cohort 2.85 2 2.81∙10-82   

Age 0.045 2 0.020  None - 

Sex 0.0018 1 0.57 Mild 0.04 

Condition 0.097 3 7.53∙10-4 Moderate 0.03 

Error 3.82 674  Severe 0.00 

RLS (N = 580) 

NRLS = 136 

Cohort 2.16 2 6.50∙10-54   

 Age 0.056 2 0.020 

Sex 0.011 1 0.22 Present 0.08 

Condition 0.016 1 0.13 

Error 4.05 573  

PLMI (N = 288) 

NNone = 120 

NMild = 80 

NModerate = 55 

NSevere = 33 

Cohort - - -      

Age 0.0027 1 0.31 None - 

Sex 0.0014 1 0.45 Mild 0.00 

Condition 0.011 3 0.22 Moderate -0.01 

Error 3.9297 282  Severe -0.02 

Narcolepsy (N = 729) 

NNarcolepsy = 98 

Cohort 2.05 2 1.63∙10-65   

Age 0.13 2 6.73∙10-6 

Sex 0.018 1 0.070 Present -0.15 

Condition 0.368 1 1.77∙10-15 

Error 4.01 722  

Overall (N = 729) 

Cohort 2.97 2 6.10∙10-82  

Age 0.065 2 0.0047  

Sex 0.010 1 0.19  

Error 4.38 723   

The model used is the ensemble of all CC models. Each analysis is done separately 
to account for missing values. Cohorts are the SSC, WSC, KHC and AHC.  Age is 
grouped as age<30, 30≤age<50 and age≥50. OSA is grouped as AHI<5, 5≤AHI<15, 
15≤AHI<30 and AHI≥30. PLM is grouped as PLMI <5, 5≤ PLMI <15, 15≤ PLMI <30 
and PLMI ≥30.  
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Supplementary Table 5: Selection frequency and descriptions of each of the 38 features included in the 
Gaussian process model used for narcolepsy prediction. 
 

# Feature # in supplementary Table 
10. 

Stage 
Combination 

Relative selection frequency 
 

1 12 W, N2, REM 1 
2 Nightly SOREMPs (REM latency ≤ 15 min)  0.91 
3 15 W 0.82 
4 6 REM 0.82 
5 2 W 0.68 
6 2 N2, REM 0.68 
7 14 W, N2 0.68 
8 13 W, N1 0.64 
9 5 N3 0.59 
10 5 REM 0.59 
11 13 N1, N2 0.59 
12 8 N1 0.55 
13 11 N1 0.55 
14 7 W, N1, REM 0.55 
15 5 W, N1, N3 0.55 
16 6 W, N1, N3 0.55 
17 1 W, N1, N2, REM 0.55 
18 Hypnodensity sleep stage bout transitions: N2 to N3 0.55 
19 Accumulation of the wakeful periods ≤ 15 minutes 0.50 
20 Hypnodensity sleep stage bout transitions: W/N1 to REM 0.50 
21 11 N3, REM 0.45 
22 2 N1, REM 0.45 
23 7 W, N2, N3 0.45 
24 12 W 0.41 
25 2 N1 0.41 
26 12 N2 0.41 
27 14 N2 0.41 
28 7 N2, REM 0.41 
29 8 N2, REM 0.41 
30 6 N1, N2 0.41 
31 15 N1, N2 0.41 
32 15 W, N3 0.41 
33 12 W, N1 0.41 
34 5 W, N2, REM 0.41 
35 1 W, N1, N3, REM 0.41 
36 1 W, N1, N2, N3, REM 0.41 
37 Accumulation of REM epochs following wakeful periods 0.41 
38 Hypnodensity sleep stage bout transitions: N2 to REM 0.41 
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Supplementary Table 6: Descriptive statistics on the evaluation of the narcolepsy biomarker in models 
with and without the HLA biomarker. Performance on models with HLA typing is reported for regular 
threshold and optimized threshold, since the ROC curve is changed dramatically by adding HLA. Mean 
value and 95% confidence interval. PPV and NPV are positive and negative predictive value, respectively.  
Model Accuracy 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
PPV (%) NPV (%) Number of 

PSGs 
T1N 

fraction 

Test (T) 0.95 
0.92-0.97 

0.91 
0.84-0.96 

0.96 
0.93-0.98 

0.88 
0.80-0.93 

0.97 
0.95-0.99 

444 0.24 

Replication 
(R) 

0.92 
0.88-0.95 

0.93 
0.87-0.97 

0.91 
0.87-0.95 

0.87 
0.80-0.93 

0.95 
0.92-0.98 

321 0.28 

T+R, HLA 0.96 
0.94-0.97 

0.90 
0.84-0.93 

0.99 
0.98-1.00 

0.97 
0.94-0.99 

0.95 
0.93-0.97 

584 0.31 

T+R, HLA, 
optimized 

0.94 
0.92-0.96 

0.94 
0.90-0.97 

0.94 
0.92-0.96 

0.88 
0.83-0.92 

0.97 
0.95-0.99 

584 0.31 

High pre-
test (HPT), 
no HLA. 

0.91 
0.87-0.94 

0.90 
0.86-0.94 

0.92 
0.86-0.96 

0.94 
0.91-0.97 

0.86 
0.80-0.91 

335 0.61 

HPT, HLA 0.93 
0.90-0.95 

0.90 
0.84-0.93 

0.98 
0.96-1.00 

0.99 
0.97-1.00 

0.85 
0.79-0.91 

296 0.61 

HPT, HLA, 
optimized 

0.93 
0.90-0.95 

0.94 
0.90-0.97 

0.90 
0.85-0.95 

0.94 
0.90-0.97 

0.90 
0.85-0.95 

296 0.61 
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Supplementary Table 7: Confusion matrix on the SSC and KHC data, displaying the relationship between 
scorer and the ensemble estimate as a fraction of the amount of data in total.  
 

 Target 

M
o

d
e
l 
p

re
d

ic
ti

o
n

 

Stages Wake N1 N2 N3 REM  

Wake 
13.94% 
8.02% 

2.08∙10-5 

0.40% 
0.54% 
0.085 

1.46% 
1.59% 
0.54 

0.04% 
0.07% 
0.01 

0.43% 
0.59% 
0.097 

0.86 
0.74 

N1 
2.58% 
3.59% 
0.014 

1.51% 
1.53% 
0.916 

3.64% 
2.70% 
0.024 

0.08% 
0.13% 
0.095 

1.14% 
1.57% 
0.011 

0.17 
0.16 

N2 
2.18% 
4.07% 

4.59∙10-6 

1.30% 
2.79% 

4.86∙10-12 

42.55% 
38.59% 
0.002 

2.06% 
1.94% 
0.714 

1.73% 
2.18% 
0.090 

0.85 
0.78 

N3 
0.02% 
0.02% 
0.872 

0.002% 
0.003% 
0.582 

2.68% 
4.05% 
0.001 

5.84% 
7.67% 
0.023 

0.004% 
0.009% 
0.357 

0.68 
0.65 

REM 
0.99% 
3.03% 

4.07∙10-12 

0.36% 
0.71% 

1.43∙10-5 

1.81% 
1.91% 
0.674 

0.05% 
0.06% 
0.753 

13.01% 
12.64% 
0.588 

0.80 
0.69 

 0.71 
0.43 

0.42 
0.27 

0.82 
0.79 

0.72 
0.78 

0.80 
0.74 

0.77 
0.68 

The top row of each cell is data from non-narcoleptics, the second row is from narcoleptics, and the 
bottom row is the p-value, indicating whether there is a significant difference in the two means. 98 
narcolepsy subjects and 500 non-narcolepsy subjects were used for the analysis. 
 

 

Supplementary Table 8: Models tested. 32 single models are tested, and 9 ensembles, totaling 41 models. 

 
Single models 

 Memory Seg. Len. Complexity Encoding Realizations 

Configuration 1 Simple FF 5 s Low Octave 1 

Configuration 2 LSTM 15 s High CC 2 

Ensembles 
Parameter
s included 

All Oct 
FF  

All Oct 
LSTM  

All CC 
FF 

All CC 
LSTM 

All FF All 
LSTM 

All Oct 
models 

All CC 
models 

All 
models 

N. models 8 8 8 8 16 16 16 16 32 
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Supplementary Table 9: The number of stage combinations, and the number of features this leads to. 
 
 Single 

stage 
Two 
stages 

Three 
stages 

Four 
stages 

Five 
stages 

Additional Total 

Combinations 5 10 10 5 1  31 
Features 75 150 150 75 15 16 481 

 
 
 
Supplementary Table 10: Description of each feature, how it is calculated, and how it is numerated.  
 

# Description of what is 
expressed 

Formula 

1 General prevalence of a value log$
1

&
' ((*+)

-

./012

3 

 

2 
Highest achieved value, measured 
as the distance from the highest 
value possible.  

−log51 −maximum;((*+)<= 

3 
Measures average fluctuations in 
value. 

log$
1

&
' >

?((*+)

?@AB
>

-

./012

3 

 

4 

Log of Shannon entropy, calculated 
through a wavelet decomposition, 
where @C contains the wavelet 
decompositions of ((*+). Measures 
the amount of information contained 
in the signal, i.e. how many different 
values are achieved.  

DEBF
−∑ @C

H log @C
H

C

&
I 

5 
6 
7 
8 

Time until 5%, 10%, 30% or 50% of 
the maximum value has been 
achieved. 

log FfirstNO0PQ%,2T%,UT%,QT% F
cumsum(((*+))

sum;((*+)<
I ∙ 30I 

9 
Maximum value achieved weighed 
by the mean prevalence. Z;maximum;((*+)< ∙ mean(((*+))< 

10 
Average fluctuations of value 
weighed by mean prevalence. 

$
1

&
' >

?((*+)

?@AB
>

-

./012

3 ∙ mean(((*+)) 

 

11 
Shannon entropy weighed by mean 
prevalence. DEBF

−∑ @C
H log @C

H
C

&
∙ mean(((*+))I 

12 
13 
14 
15 

Time until 5%, 10%, 30% or 50% of 
the maximum value has been 
achieved weighed by mean 
prevalence. 

]FfirstNO0PQ%,2T%,UT%,QT% F
cumsum(((*+))

sum;((*+)<
I ∙ 30mean(((*+))I 

Each individual feature is scaled by subtracting the mode dividing by the difference between the 85th and 
15th percentile. Each value was assessed visually to ensure that the transformations and scaling was done 
optimally. cumsum is the culminative sum. 
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Towards a Flexible Deep Learning Method for Automatic Detection of
Clinically Relevant Multi-Modal Events in the Polysomnogram

Alexander Neergaard Olesen†,1,2,3, Member, IEEE, Stanislas Chambon4,5, Valentin Thorey5,
Poul Jennum3, Emmanuel Mignot2 and Helge B. D. Sorensen3, Senior Member, IEEE

Abstract— Much attention has been given to automatic sleep
staging algorithms in past years, but the detection of discrete
events in sleep studies is also crucial for precise characterization
of sleep patterns and possible diagnosis of sleep disorders. We
propose here a deep learning model for automatic detection
and annotation of arousals and leg movements. Both of these
are commonly seen during normal sleep, while an excessive
amount of either is linked to disrupted sleep patterns, excessive
daytime sleepiness impacting quality of life, and various sleep
disorders. Our model was trained on 1,485 subjects and tested
on 1,000 separate recordings of sleep. We tested two different
experimental setups and found optimal arousal detection was
attained by including a recurrent neural network module in
our default model with a dynamic default event window (F1 =
0.75), while optimal leg movement detection was attained using
a static event window (F1 = 0.65). Our work show promise while
still allowing for improvements. Specifically, future research will
explore the proposed model as a general-purpose sleep analysis
model.

I. INTRODUCTION

Analysis of sleep patterns is performed manually by
experts in sleep clinics using rules and guidelines defined by
the American Academy of Sleep Medicine recently updated
in 2018 [1]. These guidelines outline technical and clinical
best practices when performing routine polysomnography
(PSG), which is an overnight recording of electroencephalog-
raphy (EEG), electrooculography (EOG), electromyography
(EMG) electrocardiography (ECG), respiratory effort and
peripheral limb activity. Expert technicians and somnologists
use these physiological variables to analyse sleep patterns
and diagnose sleep disorders based on key metrics and
indices, such as total sleep time, amount of sleep spent in
various sleep stages, and the observed number of discrete
events per hour of sleep. Specifically, the number of arousals
(short awakenings during sleep, <15 s), non-periodic and pe-
riodic leg movements (PLM), and the number of apnea events
per hour of sleep are summarized in the arousal index (AI),

Research supported by the Klarman Family Foundation, Technical Uni-
versity of Denmark, and University of Copenhagen with supporting grants
from Reinholdt W. Jorck & Wife’s Foundation, Knud Højgaard Foundation,
Otto Mønsted Foundation, Vera & Carl Michaelsens Foundation, Augustinus
Foundation, and Stibo Foundation.
†Corresponding author: alexno@stanford / aneol@dtu.dk
1Department of Health Technology, Technical University of Denmark,
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2Center for Sleep Sciences and Medicine, Stanford University, Palo Alto,

CA 94304, USA.
3Danish Center for Sleep Medicine, University Hospital Copenhagen,

2600 Glostrup, Denmark
4LTCI Telecom ParisTech, Universite Paris-Saclay, Paris, France.
5Research & Algorithms Team, Dreem, Paris, France.

periodic leg movements index (PLMI) and apnea/hypopnea
index (AHI), the latter of which is a combination of apneic
(no/obstructed respiratory effort) and hypopneic (reduced
respiratory effort) events. Excessive amounts of these events
are disruptive to normal sleep, which can lead to patient
complaints of excessive daytime sleepiness [2], which in
turn is linked to an increase in e.g. automotive accidents
and reduced quality of life [3]. Increased number of PLMs
is also linked to other sleep disorders such as restless legs
syndrome, and periodic leg movement disorder [4], [5].

Correct diagnosis of sleep disorders is predicated on
precise scoring of sleep stages as well as accurate scoring
of these discrete sleep events. However, the current gold
standard of manual analysis by experienced technicians
is inherently biased and inconsistent.Several studies have
shown low inter-rater reliability on both the scoring of sleep
stages [6]–[8], arousals [9], and respiratory events [10].
Furthermore, manual analysis of PSGs is time-consuming
and prone to scorer fatigue. Thus, there is a need for efficient
systems that provide deterministic and reliable scorings of
sleep studies.

Several recent studies have already explored automatic
classification of sleep stages in large cohorts with good re-
sults [11]–[15], however, the reliable and consistent detection
and classification of discrete PSG events in large cohorts
remain largely unexplored.

Recent studies on certain microevents in sleep have indi-
cated that sleep spindles and K-complexes can be reliably
detected and annotated with start time and duration using
deep learning methods [16], [17]. Specifically, these stud-
ies proposed a single-shot event detection algorithm, that
parallels the YOLO and SSD algorithms used for object
detection in 2D images [18], [19], however, they were limited
in scope by detecting events only at the EEG level, and did
not explicitly take advantage of the temporal connection of
the detected events. Additionally, experiments were carried
out on a small-scale database [16].

In this study, we focused on the detection of arousals (AR)
and leg movements (LM). These events arise from highly
distinct physiological sources, EEG and leg EMG, while ARs
are also visible in the EOG and chin EMG. These events are
important for the precise characterization of sleep patterns
and possible diagnosis of sleep disorders, and an accurate
detection is therefore of high interest. We extend previous
work in [16], [17] by 1) preprocessing and analysing multiple
input signals at the same time, and 2) taking into account
important temporal context using recurrent neural networks.

978-1-5386-1311-5/19/$31.00 ©2019 IEEE 556



TABLE I: MrOS subset demographics. Significant p-values
at α = 0.05 are shown in bold.

TRAIN EVAL TEST p-value

N 1,485 165 1000 -
Age (years) 76.4± 5.5 76.6± 4.9 76.4± 5.6 0.631
BMI (kg s−2) 27.2± 3.8 27.2± 3.4 27.1± 3.7 0.879
AHI (h−1) 12.8± 12.9 10.6± 11.8 11.9± 12.8 0.029
AI (h−1) 23.6± 11.5 24.1± 12.2 23.4± 11.8 0.607
PLMI (h−1) 34.8± 37.0 37.8± 38.9 37.3± 38.0 0.204

Furthermore, we apply our model on a larger database than
previous studies.

II. DATA

A. MrOS Sleep Study

The MrOS Sleep Study is a part of the larger Osteoporotic
Fractures in Men Study with the objective of researching
the links between sleep disorders, fractures, cardiovascular
disease and mortality in older males (> 65 years) [20]–[22].
Between 2003 and 2005, 3,135 of the original 5,994 partici-
pants were recruited to undergo full-night PSG recording at
six centers in the US at two separate visits (visit 1 and visit
2) with following 3 to 5-day actigraphy studies at home. The
resulting PSG studies were subsequently scored by experi-
enced sleep technicians for standard sleep variables including
sleep stages, leg movements, arousals, and respiratory events.

B. Included events and signals

In this study, we only considered the detection of two
PSG events, arousals and leg movements. These events are
characterized by a start time and a duration, which we
extracted from 2,907 PSG studies from visit 1 available from
the National Sleep Research Resource repository [23], [24].
From each PSG study, we extracted left and right central
EEG, left and right EOG, chin EMG, and EMG from the
left and right anterior tibialis. EEG and EOG channels were
referenced to the contralateral mastoid process, while a leg
EMG channel was synthesized by referencing left to right.
Any PSG without the full set of channels or without any
event scoring was eliminated from further analysis.

C. Subset demographics and partitioning

In total, 2,650 out of the 2,907 PSGs available from visit
1 were included in this study. These were partitioned into
TRAIN, EVAL, and TEST sets of sizes 1,485, 165, and 1,000
studies, respectively. A subset of key demographic and PSG
variables are presented in Table I.

III. METHODS

A. Signal preprocessing

All signals were resampled to fs = 128 Hz using poly-
phase filtering with a Kaiser window (β = 5.0) before
subsequent filtering according to AASM criteria. Briefly,
EEG and EOG channels were subjected to a 4th order But-
terworth band pass filter with cutoff frequencies [0.3, 35.0]

PSG 𝐱 ∈ 𝐑𝐶×𝑇

𝑓 ∶ 𝐑𝐶×𝑇 → 𝐑2×𝑁𝑑 × 𝐑 𝐾+1 ×𝑁𝑑

𝜀𝑗
∗ ∈ 𝐑2| 𝜀𝑗

∗ = 𝜚𝑗
∗, 𝛿𝑗

∗ 𝑝𝑗 ∈ 𝐑+
𝐾+1 𝑝 𝜏𝑗 = 𝑘 𝐱

𝐶

𝑇

𝐾 + 1

𝑁𝑑𝑁𝑑

2

(a)

(b)

arg max IoU

Fig. 1: Schematic of proposed event detection procedure. (a)
Input data x is fed to the model f , which outputs predictions
for event classes and localizations for each default event in
εd. (b) The IoU for each predicted ε∗j is then calculated with
respect to the true event εi and non-maximum suppression is
applied to match up true events and predictions. In the current
case, the predicted event marked in black has the highest IoU
with the true event in blue. For more information, see [16],
[19].

Hz, while chin and leg EMG channels were filtered with a
4th order Butterworth high pass filter with a 10 Hz cutoff
frequency. All filters employed zero-phase filtering. Lastly,
each channel was normalized by subtracting the channel
mean and dividing by the channel standard deviation across
the entire night.

B. Detection model overview

In brief, the proposed model receives as input a tensor
x ∈ RC×T containing C channels of data in a segment of
T samples, along with a set of events {εi ∈ R2 | εi =
(%i, δi) , i = 1, . . . , Nx}, were Nx is the number of events
in the associated time segment and (%i, δi) are the start time
and duration of event εi. The objective of the deep learning
model f is then to infer {εi} given x. To do this, a set
of default events {εdj ∈ R2 | j = 1, . . . , Nd, Nd = T/τ} is
generated over the segment of T samples, where τ is the size
of each default event window in samples. The model outputs
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TABLE II: Proposed network architecture. φC , linear mixing module; φT , temporal feature extraction module; φR, recurrent
neural network module; ψclf , event classification module; ψloc, event localization module; C, number of input channels;
T, number of samples in segments; C̃ = 22+nmax , number of output channels; K, number of event classes; Nd, number
of default events in segment; T̃ = T/2nmax , reduced temporal dimension; bGRU, bidirection gated recurrent unit; ReLU,
rectified linear unit.

Module Input dim. Output dim. Type Kernel size No. kernels Stride Activation

φC (C, T ) (C, T ) 1D convolution C C 1 linear

φT,init

(C, T ) (8, T ) 1D convolution 3 8 1 –
(8, T ) (8, T ) Batch norm. – 8 – ReLU
(8, T ) (8, T/2) 1D max. pool. 2 – 2 –

φT,k

n = 2, . . . , nmax

(
2n+1, T/2n�1

) (
2n+2, T/2n�1

)
1D convolution 3 2n+2 1 –(

2n+2, T/2n�1
) (

2n+2, T/2n�1
)

Batch norm. – 2n+2 – ReLU(
2n+2, T/2n�1

) (
2n+2, T/2n

)
1D max. pool. 2 – 2 –

φR (C̃, T̃ ) (2× C̃, T̃ ) bGRU C̃ – – –

ψclf (C̃, T̃ ) ((K + 1)Nd, 1) 1D convolution T̃ (K + 1)Nd T̃ softmax for each
K + 1 kernel

ψloc (C̃, T̃ ) (2Nd, 1) 1D convolution T̃ 2N T̃ linear

probabilities for K classes including the default, non-event
class for each default event window. The probability for a
given class k in the default event window εdj must be greater
than a classification threshold θclf . In order to select among
many possible candidates of predicted events, all predicted
events of class k over the possible events in Nd is subjected
to non-maximum suppression using the intersection-over-
union (IoU, Jaccard index) as in [18]. A high-level schematic
of the detection model is shown in Fig. 1.

C. Network architecture

The architecture for the proposed PSG event detection
model follows closely the event detection algorithms de-
scribed in [16], [17], albeit with some specific changes. An
overview of the proposed network in the model f is provided
in Table II. Briefly, the model comprises three modules:

1) a channel mixing module φC : RC×T → RC×T ;
2) a feature extraction module φT : RC×T → RC̃×T̃ ;
3) and an event detection module ψ,

the latter containing two submodules performing event clas-
sification ψclf : RC̃×T̃ → R(K+1)×Nd and event localization
ψloc : RC̃×T̃ → R2×Nd , respectively. The difference
between these two submodules is that φclf outputs the
probability of the default, non-event class and K event
classes, while φloc predicts a start time and a duration
of all predicted events relative to a specific default event
window. The channel mixing module φC receives a segment
of input data x ∈ RC×T , where C is the number of
input channels and T is the number of time samples in
the given segment, and subsequently performs linear channel
mixing using 1D convolutions to synthesize C new channels.
Following φC , the feature extraction module φT consists of
nmax blocks with the first block φT,1 : RC×T → R8×T/2

and the nth block φT,n : R2n+1×T/2n�1 → R2k+2×T/2n . All
nmax blocks implement φT,n using 1D convolution layers
followed by batch normalization of the feature maps, rectified

linear unit activation, and final 1D maximum pooling layers
across the temporal dimension. Kernel sizes and strides for
convolution and max. pool. layers in φT were set to 3 and 1,
and 2 and 2, respectively, while the number of feature maps
in φT,n was set to 2n+2. The event classification submodule
ψclf is implemented a 1D convolution layer across the entire
data volume using (K+1)Nd feature maps of size and stride
T̃ = T/2nmax , where K ∈ N is the number of event classes
to be detected and Nd ∈ N is the number of default event
windows. The event localization submodule ψloc is likewise
implemented using a 1D convolution layer across the entire
data volume.

D. Data and event sampling

The proposed network requires an input tensor x ∈ RC×T

containing PSG data in the time segment of size T as well as
information about the associated events in the segment. Since
the total number of segments in a standard PSG without
any event data far outnumbers the number of segments with
event data, we implemented a random sampling of non-event
and event classes with the sampling probability of class k
inversely proportional to the number of classes, such that
pk = 1

K+1 , k = [0 ..K], where k = 0 is the default (non-
event) class. At training step t, we thus sample a class k
and afterwards randomly sample a single class k event εk
between all class k events. Finally, we extract a segment
of PSG data of size C × T with start of segment in the
interval [ε̄k − T, ε̄k + T ], where ε̄k is the sample midpoint
of εk. This ensures that each x overlaps 50% with at least
one associated event.

E. Optimization of network parameters

The network parameters were optimized using mini-batch
stochastic gradient descent with initial learning rate of 10−3

and a momentum of 0.9. Minibatches were balanced with
respect to the detected classes. The optimization was per-
formed with respect to the same loss function described

558



in [16], [17] and the network was trained until convergence
determined by no decrease in the loss on the EVAL set over
10 epochs of TRAIN data. We also employed learning rate
decay with a factor of 2 every 5 epochs of non-decreasing
EVAL loss.

F. Experimental setups

In this study, we examined two different experimental
setups.

a) Experiment A: First, we investigated the differences
in predictive performance using a static vs. a dynamic default
event window size. This was realized by running six separate
training runs with τ ∈ {3, 5, 10, 15, 20, 30} × fs, as well
as a single training run where f was evaluated for all
{3, 5, 10, 15, 20, 30} × fs. The best performing model was
determined by evaluating F1 score on the EVAL set for both
LM and AR detection.

b) Experiment B: Second, we tested a network where
we added a recurrent processing block φR after the feature
extraction block φT as shown in grey in Table II. We consid-
ered a single bidirectional gated recurrent unit (bGRU) layer
with C̃ units. Predictions were evaulated across multiple
time-scales τ ∈ {3, 5, 10, 15} × fs

All experiments were implemented in PyTorch 1.0 [25].

G. Performance metrics

All models were evaluated on the EVAL and TEST sets
using precision (Pr), recall (Re), and F1 scores (F1):

Pr =
TP

TP + FP
, Re =

TP

TP + FN

F1 = 2
Pr ∗ Re

Pr + Re
=

2TP

2TP + FP + FN
,

where TP, FP, and FN, are the number of true positives, false
positives and false negatives, respectively.

H. Statistical analysis

Demographic and polysomnographic variables were tested
for subset differences with Kruskall-Wallis H-test for inde-
pendent samples.

IV. RESULTS AND DISCUSSION

Shown in Figs. 2a and 2b are the F1 scores as a function
of IoU and the classification threshold θclf for both the LM
and AR detection models. It is apparent that both models
perform best with a minimum overlap (IoU = 0.1) with
their respective annotated events, and do not benefit from
increasing the overlap. This might be caused by the fact
that the annotated events might not be precise enough, and
not due to issues with the model itself. For example, it
is not uncommon to only mark the beginning of an event
in standard sleep scoring software, as the duration will
automatically be annotated by a default length, such as 3 s
for ARs, and 0.5 s for LM (which is the minimum duration as
defined by the AASM guidelines [1]). Future studies will be
able to confirm this by either collecting a precisely annotated
cohort, or by investigating the average start time and duration
discrepancies between annotated and predicted events.
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Fig. 2: Experiment A: Optimizing IoU and θclf in static
models on the EVAL set by varying default event window size
in seconds in {3, 5, 10, 15, 20, 30} (a)-(b). Left panels show
the IoU vs. F1 score, while right panels show classification
threshold θclf against F1 score. (a) LM model. Here, the
model performs best for IoU = 0.1 and θclf = 0.6 using a
window size of τ = 3 s×fs. (b) AR model. Here, the model
performs best for IoU = 0.1 and θclf = 0.8 using a window
size of τ = 15 s × fs. (c) Dynamic models show optimal
performance for IoU = 0.1 and θclf = 0.7 and θclf = 0.6
for AR and LM detection, respectively.

It is also apparent from Figs. 2a and 2b that both detection
models benefit from imposing a strict classification threshold.
Specifically, LM detection performance as measured by F1
was highest with θclf = 0.6, while maximum AR detection
performance was attained with an even higher θclf of 0.8.

Furthermore, we explored allowing for multiple time-
scales in the dynamic models, shown in Fig. 2c. It was
hypothesized that having the default event windows dynamic
instead of static would allow for more flexibility and thus
better predictive performance, however, we observed no
significant differences between the optimal static window and
the dynamic window model.

Shown in Fig. 3 are the performance curves for the RNN
(bidirectional GRU) version of the proposed model for each
of the two event detection tasks. While the optimal IoU and
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Fig. 3: Experiment B. F1 performance on the EVAL set as
a function of IoU and θclf for AR and LM detection when
adding the φR module. Best performance is seen for IoU =
0.1 for both AR and LM detection, and θclf = 0.6 and θclf =
0.8 for LM and AR detection, respectively.

θclf points are unchanged from the static/dynamic models
presented in Fig. 2, the optimal F1 value for AR detection
is increased by incorporating temporal dependencies in the
model. The reverse is true for LM detection, which saw a
slight decrease in predictive performance caused by a lower
precision (see Table III). Future work should consider op-
timizing predictive performance by investigating the effects
of varying the number of bGRU layers and the number of
hidden units in φR, since this was not performed here.

Application of the optimal models on the TEST data is
shown in Table III. We observed that with the given archi-
tecture of f and the given labels and input data in TRAIN, LM
detection was maximal for the model with a static/dynamic
window, while adding a recurrent module only positively
impacted AR prediction. We observed a general decrease
in both precision and recall for LM detection when adding
φR, while precision actually increased and recall decreased
for AR detection. An example visualization of the joint
distribution of F1 scores obtained from the dynamic model
applied to the TEST data is shown in Fig. 4. While some
outliers are readily observable especially for LM detection,
the majority of subject F1 scores follows an approximate
bivariate normal distribution.

Subset partitions were reasonably well-distributed with no
significant differences between key variables, see Table I.
An exception is the AHI, although the associated effect
is small and most likely a result of the low sample size
in EVAL compared to TRAIN and TEST. It is noted, that
although AHI, AI, and PLMI are not normally distributed
and summarizing these variables with standard deviations is
invalid, it is nevertheless standard practice in sleep medicine
and thus presented the same way here. We performed little
data cleaning in order to provide as much data and variation
to the deep learning model as possible, however, future
efforts should explore and apply inclusion criteria such as
minimal total sleep time, artifact detection and removal of
studies with severe artifacts. We did impose a trivial lower
bound on the number of scored events (>0) for a PSG to
be included in this study, but stricter requirements could
potentially improve model performance.

In this work, we investigated ’systemic’ PSG events

TABLE III: Application of optimized models on TEST data.
Data are shown as subject-averaged F1, precision (Pr) and
recall (Re) with associated standard deviations. Top four rows
correspond to Experiment A, while bottom two rows corre-
spond to Experiment B. AR: arousal; LM: leg movement;
RNN: recurrent neural network.

Model F1 Pr Re

LM, static 0.648± 0.148 0.631± 0.181 0.720± 0.141
AR, static 0.727± 0.102 0.706± 0.113 0.771± 0.132

LM, dynamic 0.647± 0.148 0.627± 0.181 0.722± 0.14
AR, dynamic. 0.729± 0.102 0.699± 0.115 0.785± 0.131

LM, RNN 0.639± 0.147 0.606± 0.180 0.727± 0.126
AR, RNN 0.749± 0.105 0.772± 0.107 0.748± 0.138
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Fig. 4: Visualization of F1 scores for both AR and LM
detection using the dynamic model.

present in multiple signal modalities instead of EEG-specific
events, which required changes to the network architecture.
Specifically, we kept the signal modality encoded in the first
dimension of the tensor propagated through the network,
which allowed for the use of one-dimensional convolutional
operators. By performing 1D convolutions and keeping the
channel information in the feature maps instead of keeping
them as separate dimensions and performing 2D convolutions
as proposed in [16], [17], we simplify and reduce the number
of computations and training time by a factor ∝ C. However,
we did not investigate the effects of modeling the conditional
probability of AR and LM occurrence, but the proposed ar-
chitecture is versatile enough to detect both events jointly as
well as separately. Previous work also suggest that detecting
multiple objects at the same time is of high interest and leads
to (at least) non-inferior performances [16]–[19].

Additionally, we speculated that the temporal dynamics of
the PSG signals were important for optimal event detection
performance. Although the effects were small, we did show
an increase in F1 score in AR detection when adding an
RNN module to the network before the detection module.
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However, this was not the case for LM detection, which is
most likely due to the different temporal and physiological
characteristics of the two events in question.

Future efforts will be addressing the fact that in the current
modeling scheme, events are mutually exclusive given a
certain default event window size. However, it is common to
see ARs and LMs as a result of one another, and thus, if the
window size is too small, a more unlikely event as measured
by classification threshold and IoU will be removed even if
it matches up to a specific true event of a certain class.

V. CONCLUSIONS

We have proposed a deep learning model that extends on
previous work and shows promise in automatic detection
of arousals and leg movements during sleep. The proposed
model is flexible in allowing for the detection of multiple
events of distinct physiological natures. Future work will
expand further on adding more signals and event classes in
order to complete a general purpose sleep analysis tool.
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Deep transfer learning for improving single-EEG arousal detection

Alexander Neergaard Olesen∗,1,2,3, Member, IEEE, Poul Jennum3,
Emmanuel Mignot2 and Helge B. D. Sorensen1, Senior Member, IEEE

Abstract— Datasets in sleep science present challenges for
machine learning algorithms due to differences in recording
setups across clinics. We investigate two deep transfer learning
strategies for overcoming the channel mismatch problem for
cases where two datasets do not contain exactly the same
setup leading to degraded performance in single-EEG mod-
els. Specifically, we train a baseline model on multivariate
polysomnography data and subsequently replace the first two
layers to prepare the architecture for single-channel electroen-
cephalography data. Using a fine-tuning strategy, our model
yields similar performance to the baseline model (F1=0.682
and F1=0.694, respectively), and was significantly better than
a comparable single-channel model. Our results are promising
for researchers working with small databases who wish to use
deep learning models pre-trained on larger databases.

I. INTRODUCTION

A principal tool in the analysis of sleep is the polysomnog-
raphy (PSG). Standard PSGs contain electroencephalography
(EEG), electrooculography (EOG), electromyography (EMG)
from below the chin and lower limbs, electrocardiography,
respiratory effort, and blood oxygenation, which is manually
analysed by sleep experts according to guidelines published
by the American Academy of Sleep Medicine [1].

Experts score sleep stages and annotate discrete events,
such as arousals (short awakenings during sleep, ≤ 15 s), limb
movements, and decreased respiratory effort characterized
by apneas (complete cessation of breathing), hypopneas
(partial cessation of breathing), and desaturations (decreases
in oxygen desaturation). Low inter-rater reliability has been
reported for sleep stages scoring in multiple studies [2]–[4],
arousals [5], and respiratory events [6], [7], prompting
extensive research in automated methods for sleep analy-
sis [8]–[14].

Designing reliable and robust systems for automated sleep
analysis based on machine learning algorithms often require
multiple heterogenous data sources of sufficient size. However,
due to differences in clinical practice, very few datasets in
sleep science are standardized with regards to recording setups
despite guidelines from the AASM.
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In these cases, we end up with a channel mismatch problem,
in which the overlap between our source and target domains
is small, and the domains are possibly disjointed. Recent
studies have investigated the use of deep transfer learning to
solve the channel mismatch problem when training and testing
sleep stage classification models [15], [16]. The authors found
that using a fine-tuning strategy significantly improved the
performance of sleep stage scoring models when trained on
various combinations of EEG and EOG channels.

We present results on using deep transfer learning to
address the channel mismatch problem, when the source
and target domains differ both in the number and type of
channel modalities. Specifically, our source domain consists
of multivariate PSG data comprising left and right central
EEG, left and right EOG, and submental EMG recordings,
while our target domain consists of only a single central EEG
channel. We show that by employing a simple fine-tuning
strategy on a pre-trained network stripped of the initial two
layers, we can effectively reach the same level of F1 score
as when using the full set of PSG data.

II. METHODS

Notation: We denote by Ja, bK the set of integers {n ∈
N | a ≤ n ≤ b} with JNK being shorthand for J1, NK, and
by n ∈ JNK the nth sample in JNK. A model for a given
experiment is denoted by M(·), while an optimized model is
superscripted with a star as M∗(·). A segment of PSG data is
denoted by x ∈ RC×T , where C, T is the number of channels
and the duration of the segment in samples, respectively.

A. Data

We collected PSGs from 1500 subjects in the MrOS Sleep
Study [17]–[19] from the National Sleep Research Resource
repository [20], [21]. From each PSG, we extracted left and
right EEG, left and right EOG, and chin EMG. EEG and
EOG channels were referenced to the contralateral mastoid
process. For each PSG, we also extracted time-stamped
arousal scorings containing starts and durations of scored
arousal events. We did not exclude any PSGs from this study
based on sleep duration, number of arousal events, or similar
criteria.

B. Data partitioning

The 1500 PSGs were initially partitioned into three subsets
TRAIN1, EVAL1, and TEST1 containing 400, 100 and 1000
PSGs, respectively. Furthermore, we additionally partitioned
TEST1 into three smaller subsets TRAIN2, EVAL2, and TEST2
containing 400, 100, and 500 PSGs, respectively.



TABLE I
NETWORK ARCHITECTURE OVERVIEW.

Module Layer type Kernel Stride Feature maps Input size Output size Activation

x Input — — — C × T 1× C × T —
φmix 2D convolution (C, 1) (1, 1) C 1× C × T C × 1× T ReLU

ϕconv,1 2D convolution (1, c) (1, s) 2f0 C × 1× T 2f0 × 1× T/s —
Batch norm. — — 2f0 2f0 × 1× T/s 2f0 × 1× T/s ReLU

ϕconv,k 2D convolution (1, c) (1, s) f02k f02k−1 × 1× T/sk−1 f02k × 1× T/sk —
k ∈ J2, kmaxK Batch norm. — — f02k f02k × 1× T/sk f02k × 1× T/sk ReLU
ϕrec bGRU — — f ′ f ′ × 1× T ′ f ′ × 2× T ′ —

ψclf 2D convolution (2, 1) (1, 1) (K + 1)Nd f ′ × 2× T ′ (K + 1)Nd × 1× T ′ Softmax over K + 1

ψloc 2D convolution (2, 1) (1, 1) 2Nd f ′ × 2× T ′ 2Nd × 1× T ′ Linear

z Output, p — — — (K + 1)Nd × 1× T ′ Nd × T ′ × (K + 1) —
Output, y — — — 2Nd × 1× T ′ Nd × T ′ × 2 —

x, input containing PSG data; z, output containing predicted arousal probabilities and associated start and duration predictions; φmix,
non-linear mixing block; ϕconv, convolutional feature extraction block; ϕrec recurrent feature extraction block; ψclf , event classification
block; ψloc, event localization block; C, number of input channels; T , number of samples in a segment of PSG data; c, temporal kernel
size; s, temporal stride; f0, base number of feature maps; f ′ = f02

kmax , maximum number of feature maps; T ′ = T/skmax , reduced
temporal dimension in samples; Nd, number of default event windows in segment; K, number of classes; ReLU, rectified linear unit;
bGRU, bidirectional gated recurrent unit.

C. Preprocessing pipeline

All signals were resampled to 128Hz using poly-phase
filtering with a Kaiser window (β = 5.0) prior to subsequent
processing. Extracted EEG and EOG signals were filtered
with 2nd order Butterworth IIR bandpass filters with cutoff
frequencies 0.3Hz and 35Hz. Chin EMG was filtered with
a 4th order Butterworth IIR highpass filter with a cutoff
frequency of 10Hz. Filtered signals were subsequently
standardized by

x(i) =
x̃(i) − µ(i)

σ(i)
, (1)

where x̃(i) ∈ RC×T is the raw matrix containing C input
channels and T samples, and µ(i),σ(i) ∈ RC are the mean
and standard deviation vectors for the i’th PSG, respectively.

D. Model setup

We expand upon previous work using similar models for
sleep event detection [22]–[24]. Briefly, the model takes as
input a tensor of PSG data x ∈ RC×T and outputs

z = (p,y) ∈ RNd×T ′×(K+1) × RNd×T ′×2 (2)

containing predicted arousal probabilities p and associated
start and durations for predicted arousal events y. The
differentiable function underlying the model comprises a
deep neural network architecture consisting of the following
modules:

a) Input mixing module: Here, non-linear combinations
of the input PSG data x are made using a non-linear mixing
block φmix : R1×C×T → RC×1×T .

b) Feature extraction module: This module contains
two components. The first is a convolutional feature ex-
traction block ϕconv : RC×1×T → Rf ′×1×T ′

consisting of
kmax successions of convolutional, batch normalization, and

rectified linear unit (ReLU) layers. Second is a recurrent
feature extraction block ϕrec : Rf

′×1×T ′ → Rf ′×2×T ′
with

f ′ = f02
kmax hidden units. The ϕconv block is responsible

for bulk feature extraction and temporal decimation using
strided convolutions, while ϕrec processes the raw features
across the reduced temporal dimension using a bidirectional
gated recurrent unit [25] with f ′ hidden units.

c) Event detection module: The output from ϕrec is
processed by two separate blocks: ψclf : Rf ′×2×T ′ →
R(K+1)Nd×1×T ′

outputs the tensor p containing predicted
arousal probabilities for each time point t ∈ JT ′K for each
default event window. ψloc : Rf

′×2×T ′ → R2Nd×T ′
outputs

the tensor y containing predicted start time and durations of
arousal events. Both ψclf and ψloc are implemented using
(2, 1) convolutions rather than convolutions over the entire
volume as in [22]–[24]. This serves a dual purpose: the first
is to reduce the number of parameters to make the network
more memory-efficient, while the second purpose is to allow
the kernel and feature maps to be temporally invariant.

For a detailed description of the network architecture,
see Table I.

E. Loss objective

The network parameters were optimized according to a
three-component loss objective comprising a localization loss
`loc and a positive and negative classification loss `+ and `−,
respectively, such that

` = `loc + `+ + `−. (3)

The localization loss was calculated using a Huber function

`loc =
1

Nπ\∅

∑

i∈π\∅
h(i) (4)



h =

{
0.5(y − t)

2
, if |y − t| < 1,

|y − t| − 0.5, otherwise,
(5)

where i ∈ π\∅ indicates event windows with a non-empty
arousal target. Contributions from the positive/negative classi-
fication losses were calculated using a focal loss function [26]:

`+ =
1

Nπ\∅

∑

i∈π\∅
−α (1− p)

γ
log (p), and (6)

`− =
1

Nπ=∅

∑

i∈π=∅
−α (1− p)

γ
log (p), (7)

where α = 0.25 and γ = 2. This serves to counter the class
imbalance in a single data segment, which typically consists
of many event windows with few positive examples.

F. Experimental setups

We investigated the channel mismatch problem with the
following four experimental setups:

a) Full montage baseline (FM): In this experiment, we
trained the event detection algorithm on TRAIN1 using C = 5
channels: left/right central EEG, left/right EOG, and chin
EMG. Convergence and the optimal detection threshold were
assessed on EVAL1 and performance was evaluated on TEST2.
The optimal baseline model was used as an initialization for
the two transfer learning experiments described below.

b) Pretraining (PT): The optimal modelM∗FM was used
in this experiment as an initialization for MPT. We adjusted
the mixing module and first convolutional layer in the feature
extraction module to account for the channel mismatch by
replacing the convolutional and batch normalization layers,
and subsequently trained these from scratch. The rest of the
weights and bias terms were frozen to the optimized values
from M∗FM. The network was trained on TRAIN2 with only
C = 1 channels (left central EEG, C3). Convergence and
optimal detection threshold were assesed on EVAL2, while
final performance was evaluated on TEST2.

c) Fine-tuning (FT): Similar to PT, the optimal model
M∗FM was used in this experiment as an initialization for
MFT. Also, the mixing module and first convolutional layer
in the feature extraction module were likewise adjusted.
However, all other layers in MFT were permitted to be
further optmized by fine-tuning weights and bias terms during
training. The model was trained using the same 400 PSGs
from TRAIN2 with the same C = 1 channel configuration as
in PT.

d) Single EEG benchmark (SE): We benchmarked our
two transfer learning experiments to a comparable situation
in which an event detection model was trained on the same
PSGs in TRAIN2 using only the left central EEG (C3).

In all experimental runs, we optimized the loss objective
in eq. (3) using the Adam optimization algorithm with a
learning rate of α = 10−3 and the default parameter values
(β1, β2) = (0.9, 0.999) as suggested in [27]. We applied the
same data sampling strategy as proposed in [24], in which
a segment of data is sampled such that it contains at least
50% of a randomly sampled event across all PSGs. We used
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Fig. 1. Performance metrics as evaluated on TEST2 for each experimental
setup. Metrics are shown as means with 95% confidence interval as error
bars. Note the y-axis scaling. SE: single-EEG. FT: fine-tuning. PT: pre-
training. FM: full montage. ns: not significant, ∗∗: padj ≤ 10−2; ∗∗∗∗:
padj ≤ 10−4.

TABLE II
PERFORMANCE METRICS ACROSS EXPERIMENTS.

Experiment Precision Recall F1

FM 0.739± 0.122 0.675± 0.139 0.694± 0.115

SE 0.723± 0.124 0.624± 0.137 0.659± 0.117

FT 0.710± 0.128 0.676± 0.130 0.682± 0.110

PT 0.699± 0.141 0.619± 0.153 0.642± 0.129

Metrics are shown evaluated on TEST2 as means ± standard
deviation. Best performing transfer learning experiment is shown
in bold. SE: single-EEG. FT: fine-tuning. PT: pre-training. FM:
full montage.

a default event window size of 15 s with 50% overlap as this
was found previously to work well for arousal detection [24].

All experiments were implemented in PyTorch 1.2 [28].

G. Performance evaluation

Bipartite matching were used to match detected and true
events during training and testing. At test time, detected
events were subjected to non-maximum suppression based
on an intersection-over-union (IOU) of at least 0.5 between
detected and true events. We evaluated the performance of
our experimental setups using precision, recall and F1 scores.

H. Statistical analysis

We used Kruskal–Wallis one-way analysis of variance tests
for differences in performance metrics between groups (SE,
FT and PT) with a significance level of α = 0.05. Post-
hoc testing was performed with Mann-Whitney U-tests for
each pair-combination (SE/FT, SE/PT, and FT/PT) likewise
with α = 0.05. We accounted for multiple comparisons by
adjusting p-values with Bonferroni corrections.

III. RESULTS AND DISCUSSION

We show the results of the transfer learning experiments
(FT, PT) as well as the baseline and benchmark experiments
(FM, SE) in Fig. 1 and Table II. Performance metrics were
not calculated for 10 subjects in TEST2, as these did not



have any scored arousals and are thus not reflected in Fig. 1
and Table II.

The baseline F1 performance is shown to be slightly
lower than previously reported (0.694 ± 0.115 vs. 0.749 ±
0.105 [24]). However, our baseline model was trained on 400
subjects compared to 1485 in [24], which would account for
the lower F1 score. By reducing the available input channels
from C = 5 different modalities to C = 1 EEG channels
as in the SE benchmark experiment, the F1 score drops to
0.659± 0.117, while the precision and recall scores likewise
drop from 0.739±0.122 to 0.723±0.124, and 0.675±0.139
to 0.624± 0.137, respectively.

We found statistically significant differences in F1 scores
between SE, FT, and PT (p = 3.189 × 10−7). Post-hoc
testing further revealed statistically significant differences
between SE and FT (padj = 2.224 × 10−3), and FT and
PT (padj = 2.685 × 10−7), but not between SE and PT
(padj = 0.080). We also found that recall scores differed
between experimental setups (p = 7.085× 10−13). Post-hoc
testing showed statistically significant differences between SE,
FT (padj = 5.180× 10−11), and FT and PT (padj = 1.440×
10−9), but not between SE and PT (padj = 1.000). Lastly,
we saw statistically significant differences in precision scores
between experimental setups (p = 0.033), subsequent post-
hoc testing did not reveal any statistical significant differences,
when adjusting for multiple comparisons using the Bonferroni
procedure (SE/FT, padj = 0.214; FT/PT, padj = 1.000; SE/PT,
padj = 0.037).

Our results show, that for some scenarios, we can learn
information present in multi-variate PSG data and efficitively
transfer that information to a target domain containing only
a single EEG channel. Specifically, the performance of our
fine-tuning strategy is high enough that the mean F1 scores
across subjects are statistically insifignicant, when comparing
FT and FM setups (not shown).

Previous related work focused on the channel mismatch
problem, when comparing different, but the same number of,
channel modalities such as transferring EEG-based models
to EOG-based target domains, and thus did not investigate
how changing the model architecture might impact perfor-
mance [15], [16]. In this work, we investigated transfer
learning when the source and target domains only overlap
by one input channel. This necessitates changing some parts
of the underlying model architecture to accommodate the
different number of input channels, and these changes might
impact downstream feature extraction. We did not explore
simply zeroing out a large number of input channels in this
work, as this requires exhaustive search of which channel
indices to zero out in the model based on the number of target
input channels. Our strategy does not require this exhaustive
search.

Our study applied a simple optimization strategy for the
transfer learning experiments, which might limit the potential
performance gain. This is especially relevant for the FT
experiment. For example, one could experiment with with
different learning rates and scheduling schemes for the initial
layers and pre-trained layers, such that the initial layers were

trained with a higher relative learning rate to compensate for
their lack of initial training.

Furthermore, we explored transfer learning for the channel
mismatch problem in a single cohort of patient recordings.
Future directions of this research will investigate scenarios,
where both the source and target domains, and the datasets
are different.

IV. CONCLUSIONS
We show in our experiments that a simple fine-tuning

strategy can be employed to transfer learning from a model
based on multi-variate PSG data to a configuration where
only a single EEG lead is available for detecting arousals,
and that the difference between single-EEG and multivariate
PSG performance is negligible. Future work will explore the
effects of various combinations of datasets on the impact
of generalized event detection, when the source and target
domains do not overlap completely.
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Abstract

Study objective: Clinical sleep analysis require manual analysis of sleep patterns for correct diagnosis

of sleep disorders. Several studies show significant variability in scoring discrete sleep events. We wished

to investigate, whether an automatic method could be used for detection of arousals (Ar), leg movements

(LM) and sleep disordered breathing (SDB) events, and if the joint detection of these events performed

better than having three separate models.

Methods: We designed a single deep neural network architecture to jointly detect sleep events in a

polysomnogram. We trained the model on 1653 recordings of individuals, and tested the optimized model

on 1000 separate recordings. The performance of the model was quantified by F1, precision, and recall

scores, and by correlating index values to clinical values using Pearson’s correlation coefficient.

Results: F1 scores for the optimized model was 0.70, 0.63, and 0.62 for Ar, LM, and SDB, respectively.

The performance was higher, when detecting events jointly compared to corresponding single-event models.

Index values computed from detected events correlated well with manual annotations (r2 = 0.73, r2 =

0.77, r2 = 0.78, respectively).

Conclusion: Detecting arousals, leg movements and sleep disordered breathing events jointly is

possible, and the computed index values correlates well with human annotations.

1 Introduction

Clinical sleep analysis is currently performed manually by experts based on guidelines from the American

Academy of Sleep Medicine (AASM) detailed in the AASM Scoring Manual [1]. The guidelines detail

1



both technical and clinical best practices for setting up and recording polysomnographies (PSGs), which

are overnight recordings of various electrophysiological signals, such as electroencephalography (EEG),

electrooculography (EOG), chin and leg electromyography (EMG), electrocardiography (ECG), respiratory

inductance plethysmography from the thorax and abdomen, oronasal pressure, and blood oxygen levels.

Based on these signals, expert technicians analyse and score the PSG for sleep stages [wakefulness (W),

rapid eye movement (REM) sleep, non-REM stage 1 (N1), non-REM stage 2 (N2), and non-REM stage

3 (N3)], and sleep micro-events summarized in key metrics, such as the apnea-hypopnea index (AHI)

(number of apneas and hypopneas per hour of sleep), the periodic leg movement index (PLMI) (number

of period leg movements per hour of sleep), and the arousal index (ArI) (number of arousals per hour of

sleep).

Arousals are defined as abrupt shifts in EEG frequencies towards alpha, theta, and beta rhythms

for at least 3 s with a preceding period of stable sleep of at least 10 s. During REM sleep, where the

background EEG shows similar rhythms, arousal scoring requires a concurrent increase in chin EMG

lasting at least 1 s. Limb movements (LMs) should be scored in the leg EMG channels, when there is

an increase in amplitude of at least 8 µV above baseline level with a duration between 0.5 s to 10 s. A

periodic leg movement (PLM) series is then defined as a sequence of 4 LMs, where the time between

LM onsets is between 5 min to 90 min. Apneas are generally scored when there is a complete (≥90 %

of pre-event baseline) cessation of breathing activity either due to a physical obstruction (obstructive

apnea) or due to an underlying disruption in the central nervous system control (central apnea) for at

least 10 s. When the breathing is only partially reduced (≥30 % of pre-event baseline) and the duration

of the excursion is ≥10 s, the event is scored as a hypopnea if there is either a ≥4 % oxygen desaturation

or a ≥3 % oxygen desaturation coupled with an arousal (Ar).

However, several studies have shown significant variability in the scoring of both sleep stages [2]–[8] and

sleep micro-events [9]–[16]. This has prompted extensive research into automatic methods for classifying

sleep stages in large-scale studies [17]–[24], while the research in automatic arousal [25]–[27] and LM [28]

detection on a similar scale is limited.

In this study, we introduce the multi-modal sleep event detection (MSED) model for joint detection of

sleep micro-events, in this case Ars, sleep disordered breathing (SDB), and LM. The model is based on

recent advances in machine learning and challenges current state of the art methods by directly classifying

and localizing sleep micro-events in the PSG signals at the same time.

2 Data

We collected PSGs from the MrOS Sleep Study, an ancillary part of the larger Osteoporotic Fractures in

Men Study. The main goal of the study is to research and discover connections between sleep disorders,
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Table 1: MrOS demographics by subset.

Dtrain Deval Dtest p-value

n 1653 200 1000 -
Age, years 76.4± 5.6 [67.0, 90.0] 76.8± 5.4 [68.0, 90.0] 76.4± 5.3 [67.0, 90.0] 0.404
BMI, kg s−2 27.3± 3.9 [16.0, 47.0] 27.0± 3.6 [19.0, 40.0] 27.0± 3.7 [17.0, 45.0] 0.247

TST, min 357.3± 69.0 [54.0, 615.0] 354.0± 69.1 [108.0, 503.0] 353.6± 68.7 [62.0, 572.0] 0.312
SL, min 22.9± 25.6 [1.0, 349.0] 21.6± 23.0 [1.0, 135.0] 25.1± 32.1 [1.0, 402.0] 0.284
REML, min 109.5± 77.9 [0.0, 578.0] 103.5± 70.0 [10.0, 413.0] 107.2± 75.3 [3.0, 590.0] 0.466
WASO, min 116.7± 67.1 [11.0, 462.0] 119.0± 70.8 [15.0, 372.0] 112.9± 65.0 [6.0, 458.0] 0.471
SE, % 75.9± 12.1 [17.0, 97.0] 75.5± 12.3 [37.0, 96.0] 76.4± 11.8 [26.0, 98.0] 0.690
N1, % 6.8± 4.1 [0.0, 31.0] 7.0± 4.5 [0.0, 28.0] 6.9± 4.7 [1.0, 58.0] 0.968
N2, % 62.7± 9.5 [28.0, 89.0] 62.0± 9.7 [30.0, 90.0] 62.8± 10.0 [21.0, 95.0] 0.451
N3, % 11.4± 9.0 [0.0, 55.0] 11.8± 9.7 [0.0, 55.0] 11.1± 9.0 [0.0, 57.0] 0.638
REM, % 19.2± 6.5 [0.0, 44.0] 19.4± 7.2 [0.0, 41.0] 19.3± 6.7 [0.0, 42.0] 0.894

ArI, h−1 23.5± 11.8 [3.0, 87.0] 23.4± 11.0 [4.0, 77.0] 23.8± 11.8 [4.0, 102.0] 0.661
AHI, h−1 13.5± 13.9 [0.0, 83.0] 13.6± 13.3 [0.0, 59.0] 14.2± 15.5 [0.0, 89.0] 0.907
PLMI, h−1 35.4± 37.1 [0.0, 233.0] 36.6± 39.0 [0.0, 178.0] 36.0± 37.7 [0.0, 175.0] 0.993

Significant p-values at significance level α = 0.05 are highlighted in bold. BMI: body-mass index; TST: total
sleep time; SL: sleep latency; REML: REM sleep latency; WASO: wake after sleep onset; SE: sleep efficiency;
N1: non-REM stage 1; N2: non-REM stage 2; N3: non-REM stage 3; REM: rapid eye movement; ArI: arousal
index; AHI: apnea-hypopnea index; PLMI: periodic leg movement index.

skeletal fractures, and cardiovascular disease and mortality in community-dwelling older (>65 years) [29]–

[31]. Of the original 5994 study participants, 3135 subjects were enrolled at one of six sites in the USA for

a comprehensive sleep assessment, while 2909 of these underwent a full-night in-home PSG recording, The

PSG studies were subsequently scored by certified sleep technicians. Sleep stages were scored into stages 1,

2, 3, 4 and REM, while stages 3 and 4 combined into slow wave sleep (SWS) according to R&K rules [32].

Ars were scored as abrupt increases in EEG frequencies lasting at least 3 s according to American Sleep

Disorders Association (ASDA) rules [33]. Apneas were defined as complete or near complete cessation of

airflow lasting more than 10 s with an associated 3 % or greater SaO2 desaturation, while hypopneas were

based on a clear reduction in breathing of more than 30 % deviation from baseline breathing lasting more

than 10 s, and likewise assocated with a greater than 3 % SaO2 desaturation. While the scoring criteria

for scoring LMs are not explicitly available for the MrOS Sleep Study, the prevailing standard at the

time of the study was to score LMs following an increase in leg EMG amplitude of more than 8 µV above

resting baseline levels for at least 0.5 s, but shorter than 10 s [34].

2.1 Subset demographics and partitioning

We used a total of 2853 PSG studies downloaded from the National Sleep Research Resource (NSRR) [35],

[36], which we partitioned into a training set (Dtrain, ntrain = 1653), a validation set (Deval, neval = 200),

and a final testing set (Dtest, ntest = 1000). Key demographics and PSG-related variables for each subset

are shown as mean ± standard deviation with range in parenthesis in Table 1.
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2.2 Signal and events

For this study, we considered three PSG events: Ars, LMs, and SDB events, which includes all forms

of apneas (obstructive and central) and hypopneas. These event types are each based on a specific set

of electrophysiological channels from the PSG, and as such, we extracted left and right central EEG

(C3 and C4), left and right EOG, left and right chin EMG, left and right leg EMG, nasal pressure, and

respiratory inductance plethysmography from the thorax and abdomen. EEG and EOG channels were

referenced to the contralateral mastoid process, while a chin EMG was synthesized by subtracting the

right chin EMG from the left chin EMG.

Apart from the raw signal data, we also extracted onset time relative to the study start time and

duration times for each event type in each PSG.

3 Methods

Notation We denote by Ja, bK the set of integers {n ∈ N | a ≤ n ≤ b} with JNK being shorthand

for J1, NK, and by n ∈ JNK the nth sample in JNK. A segment of PSG data is denoted by x ∈ RC×T ,

where C, T is the number of channels and the duration of the segment in samples, respectively. The

corresponding set of Nt true events for the segment is denoted by εt =
{

(%ti, δti) ∈ R2
+ | i ∈ JNtK

}
, where

%, δ are the center point and duration, respectively, of the ith event. By χ ∈ D∗ we denote a sample in

either one of the three subsets. In the description of the network architecture, we have omitted the batch

dimension from all calculations for brevity.

3.1 Model overview

Given an input set χ = {x, εt} ∈ RC×T ×RNt×2
+ containing PSG data with C channels and T time steps,

and true events ε, the goal of the model is to detect any possible events in the segment, where, in this

context, detection covers both classification and localization of any event in the segment space.

To accomplish this, the model generates a set of default event windows εd =
{(
%dj , δ

d
j

)
∈ R2

+ | j ∈ JNdK
}

for the current segment, and match each true event to a default event window if their intersection-over-

union (IoU) is at least 0.5.

At test time, we generate predictions over the default event windows and use a non-maximum

suppression procedure to select between the candidate predictions. For a given class k, the procedure is as

follows. First, the predictions are sorted according to probability of the event, which is above a threshold

θk. Then, using the most probable prediction as an anchor, we sequentially evaluate the IoU between the

anchor and the remaining candidate predictions, removing those with IoU >= 0.5.

The output of the model is thus the set {p,y} containing the predicted class probabilities along with

the corresponding onsets and durations.
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3.2 Signal conditioning

We resampled all signals to a common sampling frequency of fs = 128 Hz using a poly-phase filtering

approach (Kaiser window, β = 5.0). Based on recommended filter specifications from the AASM, we

designed Butterworth IIR filters for four sets of signals. EEG and EOG channels were filtered with a

2nd order filter with a 0.3 Hz–35 Hz passband, while chin and leg EMG channels were filtered with a 4th

order high-pass filter with a 10 Hz cut-off frequency. The nasal pressure channel was filtered with a 4th

order high-pass filter with a 0.03 Hz cut-off frequency, while the thoracoabdominal channels were filtered

with a 2nd order with a 0.1 Hz–15 Hz passband.

All filters were implemented using the zero-phase method, which sequentially applies the filter in the

forward direction, and then in the backwards direction. This accounts for the non-linear phase response

and subsequent frequency-dependent group delay inherent in IIR filters, but also effectively squares the

magnitude response of the filter.

Filtered signals were subsequently standardized by

x(i) = x̂(i) − µ(i)

σ(i) , (1)

where x̂(i) ∈ RC×T is the raw matrix containing C input channels and T samples, and µ(i),σ(i) ∈ RC

are the mean and standard deviation vectors for the ith PSG, respectively. This is a common approach

in computer vision tasks, and beneficial to ensure a proper gradient propagation through a deep neural

network [37].

3.3 Target encoding

For each data segment, target event classes π ∈ RNm×K generated by one-hot encoding, while the target

detection variable containing the onset and duration times t ∈ RNm×2 was encoded as

ti =
(
%mi − %dj
δdj

, log δ
m
i

δdj

)
, i ∈ JNmK, j ∈ JNdK, (2)

where %mi is the center point of the true event matched to a default event window %dj , and δmi and δdj are

the corresponding durations of the true and default events.

3.4 Data sampling

As the total number of default event windows in a data segment Nd most likely will be much higher

than the number of event windows matched to a true event, i. e. Nd � Nm, we implemented a similar

random data sampling strategy as in [25]. At training step t, a given PSG record r has a certain number

of associated number of Ar, LM, and SDB events (nAr, nLM, nSDB, respectively). We randomly sample
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a class k with equal probability pk = 1
K , whilst disregarding the negative class, since this class is most

likely over-represented in the data segment. Given the class k, we randomly sample an event εk with

probability p(εk) ∝ nk, and afterwards, we extract a segment of data of size C × T , where the start of

the segment is sampled from [ε̄k − T, ε̄k + T ], where ε̄k is the sample midpoint of the event εk, thereby

ensuring at least 50 % overlap with at least one event associated with the data segment.

We found that this approach to sampling data segments with a large ratio of negative to positive

samples to be beneficial in all our experiments, when monitoring the loss on the validation set.

3.5 Network architecture

Similar to the architecture described in [27], we designed a splitstream network architecture for the

differentiable function Φ, where each stream is responsible for the bulk feature extraction for a specific

event class. For the given problem of detecting Ars, LMs, and SDBs, the network contains three streams:

the Ar stream takes as input the EEGs, the EOGs, and the chin EOG signals for a total of CAr = 5

channels; the LM stream receives the CLM = 2 leg EMG signals; and the SDB stream receives the nasal

pressure and the thoracoabdominal signals for a total of CSDB = 3 channels. An overview of the network

architecture is shown graphically in Figure 1.

3.5.1 Stream specifics

Each stream is comprised of two components. First, a mixing module ϕmix : RC∗×T → RC∗×T computes

a non-linear mixing of the C channels using a set of C single-strided 1-dimensional filters w ∈ RC×C

and rectified linear unit (ReLU) activation [38], such that ϕmix(x) = max{0,w⊗ x + b}, where the max

operation introduces the non-linearity, ⊗ is the convolution (conv) operator over the C feature maps,

and b ∈ RC is a bias vector (in this case b = 0). Second, the output activations from ϕmix are used

as input to a deep neural network module ϕfeat : RC∗×T → Rf ′×T ′ , which transforms the input feature

maps to a f ′ × T ′ feature space with a temporal dimension reduced by a factor of T
T ′ . The feature

extraction module ϕfeat is realized using kmax successive conv operations with an increasing number

of filters f ′ = f02k−1, k ∈ JkmaxK, where f0 is a tunable base filter number. Each conv feature map is

normalized using batch normalization (BN) [39], such that if z̃ ∈ Rf ′×T ′ denotes the output from a conv

operation, the subsequent normalized version is computed as

z = γ
z̃− E[z̃]√
Var[z̃] + ε

+ β, (3)

where E[z̃] ∈ Rf ′ , Var[z̃] ∈ Rf
′

+ is the expectation and variance over the temporal dimension of each

feature map, ε is a small constant, and {γ, β} ∈ Rf ′ × Rf ′ are learnable parameters representing the

mean and bias for each feature map. Each normalized conv output is subsequently activated using ReLU.
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Figure 1: MSED network architecture. The left column shows the output dimensions for each operation as
(number of filters[ x singleton] x time steps). Each stream on the right (green) processes a separate set of input
channels (blue, top), the results of which are concatenated before the bidirectional gated recurrent unit (bGRU)
(yellow). The outputs from the additive attention layer (purple) are convolved in the final classification and
localization layers (red) to output the probabilities for each event class, and the predicted onset and duration of
each event (blue, bottom). Convolution layers (orange, green, red) are detailed as [number of feature maps x
kernel size, stride]. Recurrent layer (yellow) shows the direction and number of hidden units. Additive attention
layer (purple) is described with the number of hidden and output units.
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3.5.2 Feature fusion for sequential processing

The outputs from the three feature extraction streams are subsequently fused by concenating each

output vector z∗ into a combined feature vector z = (zar, zlm, zsdb) ∈ R3f ′×T ′ . We introduce sequential

modeling of the feature vectors using a bGRU [40], which has the advantage over other recurrent neural

network (RNN)-based models such as the long short-term memory (LSTM) of having fewer trainable

parameters while still being powerful enough to model complex, temporal relationships [41]. The output

of the gated recurrent unit (GRU) for timestep t is a vector ht =
(
hf
t,hb

t

)
∈ R2nh containing the

concatenated outputs from the forward (f) and backward (b) directions. Each directional feature vector

is calculated as a weighted combination of a gated new input nt and the feature vector from the previous

timestep ht−1

h∗t = (1− ut)⊗ nt + ut ⊗ ht−1. (4)

The update gate ut and gated new input nt are computed as

ut = σ
(
Wz

uzt + bzu + Wh
uht−1 + bhu

)
, (5)

nt = tanh
(
Wz

nzt + bzn + rt ⊗
(
Wh

nht−1 + bhn
))
, (6)

where W∗
∗,b∗∗ are weight matrices and bias vectors, respectively, and rt is a reset gate computed as

rt = σ(Wz
rzt + bzr + Wr

hht−1 + brh). (7)

3.5.3 Additive attention

The attention mechanism is a powerful technique to introduce a way for the network to focus on

relevant regions and disregard irrelevant regions of a data sample, and is a key part of the highly

successful Transformer model [42] and the subsequent state-of-the-art BERT model for natural language

processing [43]. In this work, we implemented a simple, but powerful, additive attention mechanism [44],

which computes context-vectors c ∈ R2nh for each event class as the weighted sum of the feature vector

outputs h ∈ R2nh×T ′ from the ϕh. Formally, attention is computed as

c = h ·α =
T ′∑

t=1
htαt, (8)

where T ′ is the reduced temporal dimension, ht is the feature vector for time step t, and αt ∈ RK is the

attention weight computed as

αt = exp(tanh(htWu)Wa)
∑T ′

τ exp(tanh(hτWu)Wa)
. (9)
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Here, Wu ∈ R2nh×na and Wa ∈ Rna×K are linear mappings of the feature vectors, and tanh is the

hyperbolic tangent function.

3.5.4 Detection

The final event classification and localization is handled by two modules, ψclf : R2nh×K → RNd×K

and ψloc : R2nh×K → RNd×2, respectively. The classification module ψclf : c 7→ p outputs a tensor

p ∈ [0, 1]Nd×K
+ containing predicted event class probabilities for each default event window. The

localization module ψloc : c 7→ y outputs a tensor y ∈ RNd×2 containing encoded relative onsets and

durations for a detected event for each default event window.

3.6 Loss function

Similar to [45], we optimized the network parameters according to a three-component loss function

consisting of: i) a localization loss `loc; ii) a positive classification loss `+, and iii) a negative classification

loss `−, such that the total loss ` was defined by

` = `loc + `+ + `−. (10)

The localization loss `loc was calculated using a Huber function

`loc = 1
N+

∑

i∈π+

f
(i)
H (11)

fH =





0.5(y− t)2
, if |y− t| < 1,

|y− t| − 0.5, otherwise,
(12)

where i ∈ π+ yields indices of event windows with positive targets, i. e. event windows matched to an

arousal, LM or SDB target, and N+ is the number of positive targets in the given data segment.

The positive classification loss component `+ was calculated using a simple cross-entropy over the

event windows matched to an arousal, LM, or SDB event:

`+ = 1
N+

∑

i∈π+

∑

k∈JKK

π
(i)
k log p(i)

k , where p
(i)
k = exp s(i)

k∑
j exp s(i)

j

, (13)

and π(i)
k , p(i)

k , and s(i)
k are the true class probability, predicted class probability, and logit score for the

ith event window containing a positive sample.

Similar to [46], [47], the negative classification loss `− was calculated using a hard negative mining

approach to balance the number of positive and negative samples in a data segment after matching default
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event windows to true events [48]. Specifically, this is accomplished by calculating the probability for the

negative class (no event) for each unmatched default event window, and then calculating the cross entropy

loss using the Z most probable samples. In our experiments, we set the ratio of positive to negative

samples as 1:3, such that the calculation of ` involves Z = 3 times as many negative as positive samples.

We also explored a focal loss objective function for computing `+ and `− [49], however, we found that

this approach severely deteriorated the ability of the network to accurately detect LM and SDB events

compared to using worst negative mining.

3.7 Optimization

The network parameters were optimized using adaptive moment estimation (Adam) according to the

loss function described in Equation (10) [50]. This algorithms uses first (m) and second (v) moment

estimations of gradients to update the model parameters θ of a differentiable function f at time t:

m(t) = β1m
(t−1) + (1− β1)∇θf (t)

(
θ(t−1)

)
(14)

v(t) = β2v
(t−1) + (1− β2)∇2

θf
(t)
(
θ(t−1)

)
, (15)

where β1, β2 are exponential decay rates for the first and second moment, respectively, ∇ is the gradient

vector with respect to θ, and ∇2
θ is the Hadamard product ∇θf�∇θf . The moment vectors are initialized

with 0’s, which induce a bias towards zero. This can be offset by computing a bias-corrected estimate of

each moment vector as

m̂(t) = m(t)

1− βt1
(16)

v̂(t) = v(t)

1− βt2
, (17)

which yields the final update to θ as

θ(t) = θ(t−1) − η m̂(t)
√
v̂(t) + ε

, (18)

where η is the learning rate.

3.8 Experimental setups

In our experiments, we fixed the exponential decay rates at (β1, β2) = (0.9, 0.999), the learning rate at

η = 10−3, and ε = 10−8. The learning rate was decayed in a step-wise manner by multiplying η with a

factor of 0.1 after 3 consecutive epochs with no improvement in loss value on the validation dataset.

Similarly, we employed an early stopping scheme by monitoring the loss on the validation dataset and
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Figure 2: Caption

stopping the model training after 10 epochs of no improvement on Deval.

We tested four types of models in two categories: the first is a default split-stream model as shown

in Figure 1 with and without weight decay (splitstream, splitstream-wd). The second is a variation of the

split-stream model, but where the ψclf and ψloc modules are realized using depth-wise convolutions, such

that each attention group is used only for that type of event. The second category is also tested with and

without weight decay (splitstream-dw, splitstream-dw-wd).

3.9 Performance evaluation

Performance was quantified using precision, recall and F1 scores. Statistical significance in F1 score

between groups was assessed with Kruskall-Wallis H -tests. The performance of joint vs. single-event

detection models was tested with Wilcoxon signed rank tests for matched samples. The relationships

between true and predicted ArI, AHI, and limb movement index (LMI) were assessed using linear models

and Pearsons r2. Significance was set at α = 0.05.

3.10 Statistical analysis

We used Kruskall-Wallis H -tests for significant differences in demographic and PSG variables between

subsets, and to test for significant differences in F1 performance between model architectures evaluated

on Deval. Significant differences between joint and single-event detection models were assessed using

Wilcoxon signed-rank tests. The level of significance for all tests were set at α = 0.05.

4 Results and discussion

4.1 Model architecture evaluation

We found no significant differences in F1 performance for either Ar (Kruskal-Wallis H = 0.961, p = 0.811),

LM (H = 0.230, p = 0.973), or SDB detection (H = 2.838, p = 0.417), when evaluating the model
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Figure 3: Optimizing F1 performance on Deval as a function of θ). Full lines correspond to the joint model
and dashed lines are the corresponding single-event detection model. The blue and orange dots correspond to
optimized model performance on Dtest.

Table 2: Performance scores for optimized models evaluated on Dtest.

Event Model Precision Recall F1

Ar Joint 0.759± 0.114 0.672± 0.125 0.704± 0.106
Single 0.777± 0.107 0.571± 0.127 0.649± 0.113

LM Joint 0.650± 0.169 0.647± 0.120 0.628± 0.123
Single 0.661± 0.166 0.607± 0.116 0.613± 0.116

SDB Joint 0.817± 0.142 0.526± 0.146 0.624± 0.115
Single 0.765± 0.142 0.486± 0.121 0.578± 0.097

architectures on Deval. Based on this result, all further modeling was based on the default splitstream

architecture for simplicity.

4.2 Joint vs. single event detection

For each event type, we evaluated the F1 score as a function of classification threshold θ on Deval for

both the joint detection model as well as the single-event models. It can be observed in Figure 3 that for

all three events, the joint detection model achieves higher F1 score, although the apparent increase is

not as large for LM detection. This was also observed when evaluating the joint and single detection

models with optimized thresholds on Dtest for both Ar (Wilcoxon W = 30440.0, p = 2.481× 10−127), LM

(W = 101103.0, p = 6.454× 10−60), and SDB detection (W = 93647.0, p = 2.378× 10−64). Precision,

recall and F1 scores for optimized models evaluated on Dtest are shown in Table 2. These findings

are interesting, because they provide evidence that the presence of different event types can module

the detection of others, and that this can be modeled using automatic methods. This is in line with

what previous studies have found e. g. on event-by-event scoring agreement in arousals, which improved

significantly from 0.59 % to 0.91 %, when including respiratory signals in the analysis [13].
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Figure 4: Evaluating optimized joint and single-event detection models on Dtest. ∗∗∗∗: p < 10× 10−4. Ar: arousal;
LM: limb movement; SDB: sleep disordered breathing.

4.3 Detection vs. manual scorings

For each event type, we computed the correlation coefficient between the predicted and true index

values (arousal index, ArI; apnea-hypopnea index, AHI; limb movement index, LMI), which is shown

in Figure 5. We found a large positive correlation between true and predicted values for ArI (r2 = 0.73,

p = 2.5× 10−285), AHI (r2 = 0.77, p = 9.3× 10−316), and LMI (r2 = 0.78, p = 3.1× 10−321).

A similar study using an automatic method for automatic detection of SDB1 and LM events found

similar or higher correlations between automatic and manual scorings (r2 = 0.85, and r2 = 0.79,

respectively), although their findings were based on almost 5 times as much data [21].

4.3.1 Temporal characteristics

We compared the temporal precision between manual and automatic event scoring by looking at the

errors in onset (∆onset), offsets (∆offset), and durations (∆dur.) calculated as

∆ onset = onsetautomatic − onsetmanual (19)

∆ offset = offsetautomatic − offsetmanual (20)

∆dur = durautomatic − durmanual (21)

so that positive values of ∆ onset,∆ offset corresponds to a positive shift to the right (delayed prediction),

and positive values of ∆dur. meaning an overestimation of the event duration compared to manual

scoring. This is shown in Figure 6, where the blue distributions are the joint detection model for each

event type, and the orange distributions are the corresponding single-event models. The distributions are

shown as kernel density estimates superimposed on a histogram. For Ar events, the model overestimates
1The authors pooled obstructive, central, mixed apneas, and 4% hypopneas into one category, apnea.
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Figure 5: Pearson correlation plots for each event type index between true and predicted values. The linear
relationship is indicated with solid blue with 95% confidence intervals in light blue. Grey dashed lines indicate
perfect correlation lines. ArI: arousal index; AHI: apnea-hypopnea index; LMI: limb movement index.

the duration on average by a couple of seconds, which is caused by an earlier prediction of onset and

delayed prediction of termination. For LM events, the model underestimates the duration by about

half a second on average, which is due to earlier prediction of termination. For SDB events, the model

overestimates the duration by about 25 seconds on average, which is caused by an earlier prediction of

onset and delayed prediction of termination. These errors in predicted durations reflects the temporal

characteristics of these events; LMs are shorter events2, and it is thus unlikely to be overestimated by

several seconds, while SDBs are longer events by one to two orders of magnitude, which also increases the

size of the errors. Ars events are intermediate in length compared to LMs and SDBs, which is reflected in

the error distributions.
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Af Alexander  
Neergaard Olesen.  
Ph.d.-studerende 
– Institut for  
Sundhedsteknologi, DTU

Selv om vi i snit bruger en tredjedel af 
vores liv på at sove, er forskning i søvn 
og søvnmedicinske sygdomme stadig 
et relativt nyt felt. Først i slutningen af 
60’erne blev de første komplette ret-

Intelligente  
algoritmer  
på søvnklinikken

Nyudviklede algoritmer kan assistere sundhedsfagligt personale på søvnklinikker. 
Gevinsten er hurtigere og mere konsistente diagnoser - og dermed bedre behandling 
af søvnsygdomme og andre lidelser med udtalt søvnbesvær.

ningslinjer for klinisk analyse af søvn-
mønstre etableret.
Og trods stigende interesse i søvn fra et 
samfunds- og sundhedsvidenskabeligt 
synspunkt er der stadig mange ubesva-
rede spørgsmål om de underliggende 
mekanismer i hjernen: Hvordan vi opnår 
gode søvnvaner, og hvordan vi skal for-
holde os til og behandle søvnlidelser.
I min forskning har jeg fokuseret på at 
udvikle intelligente supportsystemer, 

som kan bruges af teknikere og søvnlæ-
ger i en klinisk sammenhæng.

Maskinerne træder  
ind i klinikken
Når patienter henvises til en søvnklinik, 
vil de typisk blive undersøgt med en 
såkaldt polysomnograἀ (PSG). Det er 
en samlet betegnelse for optagelse af 
hjerne-, hjerte-, øjen-, respirations- og 
muskelfunktion under søvn. Disse opta-
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gelser bliver derefter manuelt undersøgt 
og analyseret af specialister i søvnana-
lyse ud fra speciἀkke retningslinjer, som 
er udarbejdet af American Academy of 
Sleep Medicine.
Afhængigt af situationen skal der regi-
streres søvnstadier, og der skal muligvis 
også annoteres områder med korte op-
vågninger, benspjæt, apnø-anfald og de-
saturationer (korte perioder med for lav 
iltmætning i blodet). Dette kan tage Ḁere 
timer for en specialist at udføre. Derud-
over har Ḁere studier vist, at specialister-
ne ikke altid er enige i analyserne. Selv 
den samme specialist vil ikke registrere 
den samme PSG på præcis samme måde 
hver gang.
Derfor er der et stort behov for robuste 
metoder til at assistere dette arbejde for 
at sikre en præcis og konsekvent analyse 
af søvnen hver gang.

Rå signaler
Et gennemgående element i min forsk-
ning har været at modellere og analysere 

de rå PSG-signaler i stedet for andre 
repræsentationer af data som frekvens-
spektra og spektrogrammer, som hidtil 
ofte er blevet anvendt. Hypotesen er, at 
denne form for behandling kan intro-
ducere et uønsket menneskeligt bias i 
repræsentationen af data, som kan skjule 
vigtige underliggende mønstre. Eksem-
pelvis har jeg i samarbejde med mine 
vejledere udviklet en model til at klassi-
ἀcere søvnstadier baseret på de rå PSG-
signaler fra hjernen, øjne og muskler 
under hagen. Progressionen af søvnsta-
dierne sammenfattes i et hypnogram, der 
blandt andet illustrerer, hvordan søvnsta-
dierne gentages i cyklusser over natten.
Vi har i vores gruppe også forsket i at 
beskrive hypnogrammet ved hjælp af 
sandsynlighedsfunktioner (hypnoden-
sitet), som kan give et mere detaljeret 
indblik i dynamikken i hjernen.
Dette har vi brugt til at udvikle et 
fuldautomatisk diagnostisk værktøj, som 
ud fra blot en enkelt nats optagelser kan 
hjælpe med at bestemme, om patienten 

Om projektet
Forskningsprojektet er en del af et større 
nordatlantisk samarbejde mellem DTU 
Sundhedsteknologi, Rigshospitalet og 
Stanford University. Kontaktpersoner: 
lektor Helge B. D. Sørensen, DTU 
Sundhedsteknologi; professor Poul Jør-
gen Jennum, Rigshospitalet; professor 
Emmanuel Mignot, Stanford University.

Figur 1. Her ses et eksempel på 120 minutters polysomnografi-data (elektro-encefalografi, EEG, venstre/højre elektro-okulografi, EOG, 
elektromyografi, EMG), der gennem vores søvnscoringsalgoritme omdannes til dels en hypnodensitet (farvet) og et automatisk (A) og manuelt (M) 
registreret hypnogram.
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lider af narkolepsi. Typisk vil denne 
gruppe af patienter skulle undergå Ḁere 
PSG-optagelser samt en opfølgende 
multipel søvnlatenstest (MSLT) og/el-
ler lumbalpunktur mm., før en endelig 
diagnose kan stilles.

Mod automatisk analyse
Udover at bestemme og beskrive søvnar-
kitekturen ved registrering af søvnsta-
dier ἀndes der også andre aspekter af 
søvn, som har klinisk relevans.
Jeg har i min forskning beskæftiget 
mig med detektion og annotation af 
»mikro-events«, såsom »arousals« (korte 
opvågninger under søvn), regelmæssige 
benspjæt og perioder med udtalt vejr-
trækningsbesvær. Sammen med et hold 
forskere fra Frankrig har jeg udviklet 
en model baseret på deep learning, 
der, ligesom søvnstadiemodellen, kan 
analysere et sæt rå data fra en PSG og 
automatisk ἀnde de områder, hvor disse 
events opstår.
Det smarte ved denne model er, at den 
er meget Ḁeksibel i forhold til, hvad man 
speciἀkt er interesseret i. Modellen er 
da også blevet brugt i forbindelse med 
detektion af søvnspindler og K-kom-
plekser, som er nogle meget speciἀkke 
hjernebølger, der typisk ses i bestemte 
søvnstadier.
Udviklingen af denne model er et skridt 
på vejen mod et automatisk, diagnostisk 
supportsystem til generel analyse af 
søvnstudier, som vi arbejder på i vores 
forskningsgruppe.

Datamængden er afgørende
Disse speciἀkke modeller baseret 
på deep learning stiller store krav til 
mængden og variabiliteten af tilgæn-

gelige data, da de som oftest består af 
mange millioner parametre. En enkelt 
af vores modeller består eksempelvis af 
ca. 30 millioner parametre, hvilket dog 
er relativt beskedent i forhold til, hvad 
de førende industrielle forskningsgrup-
per i Google og Facebook arbejder med.
I vores forskningsgruppe har vi der-
for gennem et frugtbart internationalt 
samarbejde med Stanford Center for 
Sleep Sciences and Medicine og Dansk 
Center for Søvnmedicin indsamlet 
Ḁere tusinde søvnstudier til vores 
forskning i intelligente medicinske 
support-systemer.
Det har blandt andet ført til et studie, 
hvor vi har undersøgt, hvordan forskel-
lige datasæt påvirker modellernes evne 
til at generalisere til nye data. Dette 
er vigtigt at undersøge, fordi en model 
trænet på ét datasæt med en speciἀk pa-
tientgruppe højst sandsynligt ikke virker 
efter hensigten på et andet datasæt med 
helt andre patienter. Det kan skyldes, at 
en model bliver trænet på raske subjekter 
med normale søvnmønstre - og derefter 
benyttes på patienter med Parkinsons 
sygdom eller en anden neurodegenerativ 
sygdom, der påvirker kontrolcentrene i 
hjernestammen, som styrer søvnen. Hvis 
en algoritme eller model ikke bliver vist 
eksempler på disse søvnmønstre under 
træningen, kan den ikke genkende dem 
ordentligt.

Kan vi stole på algoritmerne? 
I vores forskningsgruppe har vi skarpt 
fokus på udvikling af robuste algoritmer, 
der kan benyttes i kliniske sammenhæn-
ge af lægefagligt personale. For eksem-
pel har vi i Ḁere af vores studier testet 
vores algoritmer op mod en konsensus af 
adskillige søvnspecialister for at sikre, at 
vores modeller virker og er konsistente.
Systemer baseret på deep learning-
algoritmer bliver ofte mødt med skepsis. 
Kritikere påpeger, at algoritmerne er så-
kaldte »black boxes«, hvor vi i virkelig-
heden ikke ved, hvad der ligger til grund 
for en speciἀk beslutning. Flere forsker-
grupper har dog undersøgt metoder til at 
»åbne op for kassen« - et felt, der popu-
lært betegnes som »explainable AI«.
Min - og mine vejlederes - vision er, at 
søvnklinikker i fremtiden kan bruge 
vores systemer til dels at fremme ny 
forskning i søvn, men vigtigst af alt: At 
patienter med søvnlidelser kan få bedre, 
hurtigere og mere præcis afklaring af 
deres søvnproblemer, hvilket i sidste 
ende vil føre til en bedre behandling.
Det er dog vigtigt at understrege, at vi på 
ingen måde forestiller os, at de intel-
ligente systemer skal erstatte hverken 
lægefagligt eller teknisk personale. 
Tværtimod ser vi vores forskning som 
værktøjer, der kan assistere personalet og 
effektivisere deres arbejde og hverdag - 
til gavn for patienterne.

Figur 2. Et eksempel på, hvad mikro-event-
modellen kan detektere. Her ses en periode på 
ca. 35 sekunder med vejrtrækningsbesvær 
(grønt markeret) i de kanaler, der måler tryk i 
næsen (Nasal), brystekspansion (Thor) og 
maveekspansion (Abdo). Herefter ses en 
»arousal« i hjerne- (EEG-A1/A2), øjen- (EOG-A1/
A2) og muskelsignalerne (EMG) fra omkring 35 
s (blåt markeret) samt et kort benspjæt 
(orange markeret) lige inden 40 s markøren på 
venstre og højre ben (LAT/RAT). Denne sekvens 
med vejrtrækningsbesvær samt arousal og/
eller benspjæt ses ofte sammen.
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