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Summary
Affective disorders cause mood disturbance in individuals and the main types are
Bipolar Disorder (BD) and Major Depressive Disorder (MDD). Cognitive impair-
ments in patients with affective disorders may indicate remission of symptoms, which
can adversely affect quality of their daily tasks. Neuropsychological tests are the stan-
dard tools that are administered to the patients when they come for a follow-up visit.
Such tests assess various cognitive domains including memory, attention, processing
speed, and executive functions. The follow-up visits are scheduled on a need basis
and are administered in a silent room at a clinic by a trained staff. However, clinics
have faced lack of resources as the number of patients with affective disorders is in-
creasing. Moreover, human cognitive functioning changes from time to time within
a given day. Taken together, frequent assessments are essential to monitor patients’
cognitive functioning over time for timely diagnosis and early treatments.

Two pervasive computing technologies were designed, implemented, and evaluated
to 1) deliver a patient-administered cognitive assessment tool and 2) assess cognitive
functioning in individuals’ free-living conditions. Internet-based Cognitive Assess-
ment Tool (ICAT) is a Web-based tool that automatically calculates cognitive test
scores regarding verbal memory, working memory, and psychomotor speed. In par-
ticular, ICAT utilises speech recognition technology in verbal memory tasks. Hence,
patients can take the tests at home without receiving any assistance from a clinician.
Ubiquitous Cognitive Assessment Tool (UbiCAT) is a wearable computing technology
to 1) assess individuals’ attention, working memory, and executive functions over time
using three smartwatch-based apps and 2) collect multivariate sensor data including
activity and sleep features for digital phenotyping.

Three studies were conducted with ICAT to evaluate usability, feasibility, and
concurrent validity of the test scores. The findings of these studies demonstrated
high usability and significant validity of the test scores when compared with gold-
standard neuropsychological tests. Three studies were also conducted with UbiCAT
to investigate usability, validity, and feasibility of this tool in individuals’ free-living
conditions. As such, high usability of the UbiCAT and a strong correlation coeffi-
cient between UbiCAT and standard computerised cognitive tests were obtained. In
addition, concurrent validity of the UbiCAT cognitive test scores was demonstrated
when compared with neuropsychological tests in a population of healthy controls and
patients with BD. Our findings also proved feasibility of UbiCAT in accordance to
the participants’ Global Positioning System (GPS) data, which showed that cognitive
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test performance measures were statistically the same in indoor and outdoor places.
Supervised learning methods were applied on a dataset including one-week daily obser-
vations of cognitive, behavioural, and physiological features of controls and patients
with BD for digital phenotyping. As such, Extreme Gradient Boosting (XGBoost)
model gave the highest performance and a set of digital phenotypes were derived from
this model, showing that individuals’ time in bed, daily step counts, number of daily
missed counts in the cognitive test sessions, and average of daily executive functioning
are the most important features in determining their mental health diagnosis.

Overall, ICAT and UbiCAT are two pervasive computing technologies designed
and implemented to provide ambulatory cognitive assessments. The findings of the
studies conducted in this thesis demonstrated usability and feasibility of these tools
as well as significant validity of their cognitive test scores.



Sammenfatning
Affektive lidelser, såsom depression og bipolar lidelse, er kendetegnet ved at påvirke
patientens stemningsleje. Kognitiv funktionsnedsættelse for patienter med affektive
lidelser kan indikere forværring i lidelsen og kan negativt påvirke deres dagligdag.
Neuropsykologisk test af patienter er ofte en standard procedure når de kommer i am-
bulant efterbehandling. Sådanne test vurderer forskellige kognitive områder, inklusive
hukommelse, opmærksomhed, arbejdshukommelse, og eksekutive funktioner. Disse
test skal planlægges, kræver en trænet klinikker til at udføre dem, og et afskærmet
og dedikeret lokale i klinikken. Men sundhedsvæsnet står med begrænsede ressourcer
samtidig med, at antallet af patienter med affektive lidelser vokser. Endvidere er
der et behov for at vurdere patientens kognitive evner også uden for klinikken og i
dagligdagen. Af disse grunde er det således relevant at udvikle nye metoder og teknolo-
gier, som nemt kan teste patientens kognitive funktionsevne på en mere kontinuerlig
måde, hvilket igen kan hjælpe til tidlig diagnose og behandling.

I denne afhandling præsenteres to teknologier til neuropsykologisk vurdering af pa-
tienter med affektive lidelser, som dels fokuserer på at patienten selv kan administrere
en test og dels, at test kan finde sted i patientens dagligdag uden for klinikken. Det
første værktøj – som kaldes Internet-based Cognitive Assessment Tool (ICAT) – er et
web-baseret værktøj med fem korte kognitive test. Dette værktøj udnytter moderne
stemmegenkendelsesteknologi til vurdering af verbal hukommelse og kan automatisk
udregne et testresultat. På denne måde kan patienter tage en test selv, for eksempel
derhjemme uden assistance fra en klinikker. Det andet værktøj – kalder Ubiquitous
Cognitive Assessment Tool (UbiCAT) – er en bærbar (Eng: “wearable”) teknologi
som dels kan indsamle kognitiv funktionsvurderinger over tid ved brug af tre små
kognitionstest og dels, indsamler sensor data, herunder data om fysisk aktivitet og
søvn.

ICAT har været genstand for tre studier som har vurderet teknologiens bruger-
venlighed, brugbarhed, samt validitet. Disse studier viste, at teknologien var meget
brugervenlig og havde signifikant validitet sammenlignet med eksisterende ‘state-of-
art’ metoder. UbiCAT var ligeledes genstand for tre studier som vurderede teknolo-
giens brugervenlighed, brugbarhed, validitet, samt værktøjets anvendelighed under
anvendelse i brugerens dagligdag. Teknologien blev vurderet til at være meget bruger-
venlig og der kunne påvises en stærk korrelation mellem test resultaterne fra UbiCAT
og standardiserede kognitive tests. Ydermere blev validiteten af UbiCAT fastlagt
både i en gruppe af raske forsøgspersoner samt i en gruppe af patienter med bipolar
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lidelse. Ved at studere forsøgspersonernes lokationsdata (GPS) kunne det vises, at
testresultaterne var valide både når de blev indsamlet indendørs såvel som udendørs.

Maskinlæringsalgoritmer (Eng: ‘Supervised Learning’) blev brugt til at analysere
data indsamlet fra en gruppe af raske forsøgspersoner og fra en gruppe af patienter
med bipolar lidelse. Denne analyse viste, at Extreme Gradient Boosting (XGBoost)
metoden var den bedste til at identificere hvilke parametre, som gav den bedste
forudsigelse af kognitive evne. Disse parametre viste sig at være hvor længe en person
befandt sig i sin seng, antal daglige skridt, hvor mange gange forsøgspersonen undlod
af udføre sine kognitive test, og den gennemsnitslige test score.

Sammenlagt konkluderer afhandlingen, at ICAT og UbiCAT er to værktøjer som
er velegnet til at kunne vurdere personers kognitive evner uden for klinikken og i deres
dagligdag. Resultaterne fra studierne viser, at disse to værktøjer er meget brugerven-
lige, er brugbare, og har en høj validitet sammenlignet med standard metoder.
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CHAPTER1
Introduction

1.1 Context and Motivation
Cognitive functioning is one of the core aspects of human mental health and is as-
sessed by examining several cognitive domains including memory, attention, execu-
tive functions, and psychomotor speed. Affective disorders disturb individuals’ mood
[72] and the main types are Major Depressive Disorder (MDD) and Bipolar Disor-
der (BD). Low mood is a characteristic of patients with MDD. BD, also known as
manic-depression, is a chronic illness that causes fluctuations in mood and energy
level [62]. It is highly relevant to assess cognitive impairments in patients with BD
and MDD as it may indicate the onset of symptoms [8, 38, 87]. In clinical settings,
neuropsychological tests are the common practice in psychiatry to assess patients’
cognitive functioning. Each assessment session requires a trained staff member to
allocate a silent room and a time slot to administer the tests. Moreover, there is evi-
dence that human cognition fluctuates between days and within a single day [77, 100],
and follow-up visits are scheduled on a need basis for patients with affective disorders.
Thus, patients’ cognitive functioning are not assessed frequently, indicating a need
for taking the cognitive tests outside clinics.

Recently, mobile cognitive test batteries have been designed and implemented
to address this need using extensive resources for cognitive assessments. Such tools
make it possible to assess patients’ cognition remotely, for instance at home. How-
ever, feasibility of such pervasive cognitive assessment tools for frequent and remote
assessments of patients with affective disorders has not been adequately explored.

1.2 Background
The first attempt to develop portable devices for cognitive assessment was performed
in 1982 by Wilkinson and Houghton who utilized cassette recorders to measure simple
reaction times in 10 minutes [102]. Folkard and Monk mentioned that only one
cognitive function could be measured with a cassette recorder device and pointed
to the time-consuming nature of scoring manually using paper-and-pencil tests [27].
In 1985, Folkard and Monk utilized computer-based test batteries in their studies
and emphasized the promising future of portable cognitive assessment tools [29, 63].
Nowadays, psychiatrists administer computerised cognitive test batteries including
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Cambridge Neuropsychological Test Automated Battery (CANTAB) [10], THINC-
Integrated Tool (THINC-it) [39], CogState [18], and Brief Assessment of Cognition
Schizophrenia (BACS) [6] to assess patients’ cognitive impairment.

Usability studies aim to improve the design of a system by proposing the tasks to
a sample of real users of the system [23]. Evaluating a tool in a laboratory settings is
practical to assess its usability since participants are asked to perform certain tasks
while the study leader observes and/or records their interaction. However, laboratory
settings limit the context for evaluating Ubicomp tools, which are ubiquitous comput-
ing technologies that require a different context of use compared with laboratory-
based tools. Ambulatory assessments have been performed using mobile devices such
as Personal Digital Assistant (PDA) and smartphones in clinical psychology for vari-
ous purposes, particularly monitoring [94]. Thus, studies are run in users’ free-living
conditions to evaluate the design of a novel Ubicomp tool [71]. Empirical studies
are often conducted in the field of Human-Computer Interaction (HCI) to directly
or indirectly observe an evidence. Feasibility of a novel tool is often evaluated in an
empirical research to investigate viability of the tool. So far, validity of some mobile
cognitive assessments tools against the gold-standard neuropsychological tests have
been investigated [9, 46, 68, 88]. Behavioural features have been recently analysed
for digital phenotyping with smartphones in BD (e.g., [25, 26]) and MDD (e.g., [73,
74]). As such, mobile cognitive assessment tools are capable of collecting behavioural,
contextual, and physiological data in conjunction with cognitive test measures to
determine digital phenotypes of human mental health.

1.3 Problem Statement
The common practice in psychiatry is to administer neuropsychological test batteries
to the patients during clinical visits. Neuropsychological tests often include paper-
based and (or) computerised tests. Despite their acceptable accuracy in identifying
cognitive impairments, the current procedure in administrating neuropsychological
tests imposes three key problems. First, neuropsychological test administration is
resource demanding. Due to the increasing number of patients with mental disorder,
the number of patients exceeds available resources including trained clinical staff and
silent rooms to administer the tests in the clinics. Furthermore, the clinician who
administers a test is responsible for monitoring and instructing the participant during
the test session. Hence, resource allocation is currently burdensome for psychiatrists
and psychologists due to the lack of patient-administered cognitive assessment tools.

Second, neuropsychological tests are often administered in a controlled environ-
ment, which is an influential factor in determining validity of the cognitive tests [11,
60]. Previous work suggested taking cognitive tests outside clinics to assess cogni-
tive functioning more frequently and in individuals’ free-living conditions [48, 89].
Moreover, research shows that individuals’ alertness [77], working memory [28], and
executive skills [51] vary within a single day. Therefore, frequent assessments of the
cognitive functioning within a day is crucial in achieving reliable test results.
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Third, follow-up visits do not provide an opportunity to sense and collect be-
havioural, contextual, and physiological measures for digital phenotyping. A recent
work [16] aimed to determine the digital phenotypes of cognitive functioning dur-
ing a one-week study and administered neuropsychological tests to the participants
as their baseline measure. Passive phone-interaction data of the participants was
collected during the study. A limitation reported in this paper was that the neu-
ropsychological tests were administered once per participant, at the beginning of the
study while daily frequent testings throughout the study could have provided more
insights into their findings. Such a limitation highlights the need for a ubiquitous as-
sessment tool to capture individuals’ daily cognitive functioning in conjunction with
their mobile sensor data in their free-living conditions.

1.4 Research Questions
The research questions addressed in this thesis are the following:

• RQ1: What is the design of a patient-administered cognitive assessment tool
for affective disorders?

• RQ2: What is the design of an ubiquitous cognitive assessment tool that allow
for cognitive assessment in free-living conditions?

• RQ3: What is the feasibility of using such cognitive assessment tools for pa-
tients with affective disorders in the clinic and in free-living conditions?

1.5 Research Methods
The research method utilised in this dissertation was adapted from the “Triangula-
tion in HCI” methodology by Mackay and Fayard [58]. Figure 1.1 shows the activities
performed on three levels: Theory, Design, and Observation. The rest of this section
provides an overview of the tasks performed to deliver two pervasive computing tech-
nologies for cognitive assessment.

1.5.1 Computerised Cognitive Assessment Tool
SCIP is a paper-and-pencil screening tool to assess cognitive impairment in patients
with affective disorders [69]. This tool has five short tests supporting brief assess-
ment of cognition and formed the theoretical basis for the design of the first tool
of this thesis called Internet-based Cognitive Assessment Tool (ICAT). A literature
review was also performed to identify validated patient-administered tools for mental
disorders and to review the design of previous cognitive test batteries. Five major
tasks were performed sequentially to design, implement, and evaluate cognitive tests
of the ICAT as shown in Figure 1.2. A User-Centered Design (UCD) approach [2]
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Figure 1.1: The activities performed at each level are presented. (SCIP: Screen for
Cognitive Impairment in Psychiatry; EMA: Ecological Momentary As-
sessment; UCD: User-Centered Design; ICAT: Internet-based Cognitive
Assessment Tool; UbiCAT: Ubiquitous Cognitive Assessment Tool).

was adopted to design ICAT in an interdisciplinary team through several meetings.
Speech recognition technology was utilised for automatic scoring of the verbal memory
tasks in ICAT during remote examinations. ICAT v1 underwent two studies namely
usability and feasibility studies to measure participants’ psychometric factors and
concurrent validity of the ICAT test scores against SCIP. Concurrent validity is one
of the methods used for criterion validity and it is measured by applying correlation
analysis between the test results of a new and an existing tool [55, 64]. Followed by
that, we developed ICAT v2 and conducted a clinical validation study with healthy
controls and patients with BD.

Figure 1.2: Major tasks performed to build and evaluate ICAT.

1.5.2 Smartwatch-based Cognitive Assessment Tool
A literature review of previous mobile cognitive assessment tools was performed to
identify suitable neuropsychological tests for implementation on smartwatches. As
such, the second tool called Ubiquitous Cognitive Assessment Tool (UbiCAT) was
designed together with three domain experts using a UCD approach. Figure 1.3 shows
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the tasks performed to design, implement, and evaluate UbiCAT as a smartwatch-
based tool. Three studies were performed to evaluate UbiCAT cognitive test measures.
First, a formative evaluation study was conducted to examine preliminary design of
the cognitive tests in UbiCAT, implemented as standalone smartwatch-based apps.
Second, an evaluation study was performed to compare the cognitive test performance
measures calculated by UbiCAT with their corresponding measures calculated by
standard computerised cognitive assessment tools. Last, a clinical feasibility study
with controls and patients with BD was conducted to 1) evaluate concurrent validity
of the UbiCAT cognitive tests, 2) investigate feasibility of the UbiCAT in a one-week
‘in-the-wild’ study, and 3) identify digital phenotypes of human mental health by
applying supervised learning methods on a dataset including daily observations of
passive mobile sensing and cognitive test results calculated by UbiCAT.

Figure 1.3: Major tasks performed to create and evaluate UbiCAT.

1.6 Contributions
This thesis generally contributes to the design and evaluation of pervasive computing
tools for cognitive assessments and more specifically, patient-administered cognitive
test batteries and ubiquitous cognitive assessment tools. The main contributions of
this thesis are outlined as follows:

1. Design, implementation, and evaluation of a patient-administered
cognitive assessment tool for patients with affective disorders. A
Web-based cognitive assessment tool called ICAT is built and three studies are
conducted in two phases with healthy controls and patients with BD to assess
perceived usability, feasibility of the tool and speech recognition technology,
and concurrent validity of the ICAT test scores.

2. Design, implementation, and evaluation of a tool for ubiquitous cog-
nitive assessments in users’ free-living conditions. A smartwatch-based
cognitive assessment tool is designed and implemented called UbiCAT for con-
tinuous assessment of individuals’ key cognitive functions outside clinics. Then,
three empirical studies are conducted both in a lab and ‘in the wild’ to ex-
plore subjective human factors and objective cognitive performance measures,
feasibility, and concurrent validity of the UbiCAT cognitive tests.

3. Digital phenotypes of individuals’ mental health diagnosis in their
free-living conditions. UbiCAT collects objective measures of human cog-
nitive performance measures. Meanwhile, mobile data including activity and
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sleep features are passively collected via wearable and mobile sensors. This re-
search investigates the associations between daily observations of activity and
sleep data and cognitive test performance measures. ‘State-of-the-art’ super-
vised learning methods are trained and tested on such data to determine the
best performing model, from which a set of digital phenotypes of human men-
tal health diagnosis are derived in a population of healthy controls and patients
with BD.

1.7 Included Papers
Chapters 9 and 10 present the papers related to the ICAT and UbiCAT, respectively.
A brief overview of the papers are presented as follows.

The paper presented below briefly explains the initial User Interface (UI) design of
ICAT and was presented at ACM Digital Health Conference 2018 to discuss the
opportunities to enhance the UI of this tool:

Article I

Hafiz P, Miskowiak KW, Kessing LV, Bardram JE. Design and implemen-
tation of a web-based application to assess cognitive impairment in
affective disorder. In Proceedings of the 2018 International Conference on
Digital Health 2018- Apr 23 (pp. 154-155). (see Section 9.1)

The system design of ICAT and findings of the usability, feasibility, performance
of the speech recognition technology, and concurrent validity of the test scores are
published in the following paper:

Article II

Hafiz P, Miskowiak KW, Kessing LV, Jespersen AE, Obenhausen K, Gulyas L,
Żukowska K, Bardram JE. The Internet-Based Cognitive Assessment
Tool: System Design and Feasibility Study. JMIR formative research.
2019;3(3):e13898. (see Section 9.2)

A formative evaluation study was performed to evaluate preliminary UI design of the
smartwatch-based apps in UbiCAT with five participants who had a background in
HCI or design and innovation, and to explore the extent to which participants adopt
wearables. The findings of this study can be found in the paper presented below:
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Article III

Hafiz P, Bardram JE. Design and formative evaluation of cognitive
assessment apps for wearable technologies. In Adjunct Proceedings of
the 2019 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2019 ACM International Symposium on
Wearable Computers 2019 Sep 9 (pp. 1162-1165). (see Section 10.1)

An empirical evaluation study was conducted to compare the test performance mea-
sures calculated by UbiCAT with the corresponding measures obtained from two
standard computer-based cognitive assessment tools. The following paper presents
the findings of this study and discusses the differences between smartwatch-based and
computer-based test performance measures:

Article IV

Hafiz P, Bardram JE. The Ubiquitous Cognitive Assessment Tool
for Smartwatches: Design, Implementation, and Evaluation Study.
JMIR mHealth & uHealth. (see Section 10.2)

The empirical study introduced above for the Article IV also collected participants’
subjective usability rating of the UbiCAT apps, and the cognitive load perceived in
the N-back tests. The following paper aims to 1) explore the correlations between
perceived human factors and cognitive measures obtained from UbiCAT and 2) group
participants on the basis of their demographics using an unsupervised method to
discover the similarities between their perceived human factors:

Article V

Hafiz P, Maxhuni A, Bardram JE. Analysis of Perceived Human Fac-
tors and Participants’ Demographics during a Cognitive Assessment
Study with a Smartwatch. To appear in: Proceedings of the 8th IEEE In-
ternational Conference on Healthcare Informatics. (see Section 10.3)

A clinical feasibility study was conducted on UbiCAT with healthy controls and pa-
tients with BD. The article below mainly reports 1) feasibility and concurrent validity
of the UbiCAT cognitive tests, 2) associations between daily cognitive functioning and
wearable sensor data including activity and sleep features, and 3) digital phenotypes
of human mental health diagnosis derived from supervised models of bipolar and
healthy groups:
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Article VI

Hafiz A, Miskowiak KW, Kessing L, Maxhuni A, Bardram JE. Wearable
Computing Technology for Assessment of Cognitive Functioning of
Bipolar Patients and Healthy Controls (see Section 10.4)

1.8 Thesis Overview
Chapter 2 presents and discusses related work on the Web-based and mobile cogni-
tive assessment technologies which have been validated and their feasibility have been
previously studied. Chapter 3 presents the design and implementation of ICAT as
well as the key findings from the studies conducted with this tool. The key findings
of Chapter 3 are taken from Article I and Article II. Chapter 4 explains the process
in which UbiCAT apps (cognitive tests) was designed and implemented. The main
findings of Article III obtained from a formative evaluation study are also included
in this chapter since this study was performed to evaluate the design of UbiCAT
apps. Chapter 5 describes two empirical studies conducted to evaluate 1) UbiCAT
test performance measures against standard computer-based tests and 2) feasibility
of the cognitive test measures of UbiCAT and concurrent validity of the test scores.
Some of the key findings of Articles IV and Article VI are presented in this chap-
ter. Chapter 6 presents the analysis performed on 1) subjective human factors and
objective test measures obtained from the first empirical study with UbiCAT and
2) daily cognitive and mobile data to classify healthy and bipolar groups and then, to
identify digital phenotypes of human mental health diagnosis. This chapter outlines
the findings of Article V and several results of Article VI. Chapter 7 discusses the
main findings of this research regarding the following items:

1. Usability and feasibility of ICAT in calculating cognitive test scores and use
of speech recognition technology for automatic scoring of verbal memory tasks,
and concurrent validity of this tool against SCIP.

2. Usability of the UbiCAT, feasibility of taking cognitive tests of this tool in
individuals’ free-living conditions, and concurrent validity of the cognitive tests
against neuropsychological tests.

3. Utilising an Ecological Momentary Assessment (EMA) approach for collecting
individuals’ daily cognitive test performance measures using UbiCAT as well as
passive sensing of activity and sleep features in order to extract digital pheno-
types of human mental health diagnosis.

The chapter then explains how the outcomes of the studies conducted with ICAT
and UbiCAT outperform the findings of previous related work. Followed by that,
the chapter provides an outline of some core limitations to the present research as
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well as some pointers for future work relevant for the HCI and Ubicomp communities.
Finally, Chapter 8 concludes the thesis by explaining how each research question of
this thesis was addressed through the main findings, which were obtained from the
empirical and clinical studies conducted with ICAT and UbiCAT.



12



CHAPTER2
Related Work

A literature review was performed to identify computerised and mobile cognitive
assessment tools. Characteristics of the tools are outlined in Section 2.1. Validation
and feasibility studies conducted on the computerised and mobile cognitive assessment
tools are presented in Section 2.2.

2.1 Overview of Cognitive Assessment Tools
Relevant databases including PubMed, ACM, and IEEE were searched to find previ-
ous cognitive assessment tools with a peer-reviewed evidence. Note, cognitive training
apps with no peer-reviewed evidence were excluded. The tools and applications along
with their target users and cognitive domains are presented in Table 2.1. Of the N=19
tools and applications, eleven are Web-based cognitive test batteries (see #1-11 in Ta-
ble 2.1). Cambridge Neuropsychological Test Automated Battery (CANTAB) is the
most well-known cognitive test battery that was built more than 30 years ago. This
tool includes validated cognitive tests to examine four key cognitive domain of human
cognitive functioning namely attention, processing speed, executive functions, mem-
ory and emotional and social cognition. CANTAB can be administered for screening
the patients who suffer from cognitive impairments and elderly population with de-
mentia or Alzheimer’s disease. ‘Mindstreams’, Computer Assessment of Memory
and Cognitive Impairment (CAMCI), and Computer-Administered Neuropsycholog-
ical Screen for Mild Cognitive Impairment (CANS-MCI) are particularly developed
for assessing cognitive impairment in elderly people. BACS and MyCognition Quo-
tient (MyCQ) assess cognitive functioning of schizophrenic patients and Immediate
post-concussion assessment and cognitive testing (ImPACT) is particularly developed
for athletes with concussion. ‘CogState’ is a comprehensive test battery that utilises
the card games for assessing and screening various mental disorders including depres-
sion, Alzheimer’s disease, concussion, schizophrenia, epilepsy, and multiple sclerosis
test. Central Nervous System Vital Signs (CNSVS) has seven tests and has been
administered to the patients who suffer from BD, MDD, Attention Deficit Hyper-
activity Disorder (ADHD), Alzheimer’s disease, schizophrenia, substance abuse, and
epilepsy. Of the Web-based tools, THINC-it is the only tool that is designed and
built specifically for patients with MDD.

Relevant smartphone and wearable applications (see #12-19 in Table 2.1) were im-
plemented to provide ambulatory cognitive assessments of various patients including
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dementia, delirium, MDD, methamphetamine users, and healthy individuals without
any mental illness. Color-Shape Test (CST), ‘MOBI-COG’, and ‘iVitality’ applica-
tions are practical for assessing Mild Cognitive Impairment (MCI) particularly in
dementia. ‘CognitionKit’ has been recently developed by Cambridge Cognition 1.
So far, this tool has shown validated measures for assessing cognitive impairment in
patients with MDD but it was mainly built for various target groups. ‘Cognition
Toolkit’ measures in-the-wild alertness using three tests and it has been evaluated in
empirical studies.

2.2 Validation and Feasibility Studies
CANTAB has been administered to affective disorder patients (for example, [85, 97]),
and uses the following tasks to assess cognitive impairments in these patients [14]:
One touch stockings of Cambridge targeting (executive function), Delayed Match-
ing to Sample (visual memory), Emotion recognition task, Spatial Working Memory,
and Rapid Visual Information Processing, Cambridge Gambling Task (decision mak-
ing). THINC-it has four cognitive tests namely ‘Spotter’, ‘Symbol check’, ‘Code
Breaker’, and ‘Trails’, which were designed to detect cognitive impairments in pa-
tients with MDD. This tool also subjectively measures cognition using Perceived
Deficits Questionnaire— Depression, 5‐item (PDQ-D-5). Total duration of taking
cognitive tests of the THINC-it is 15 min. A moderate concurrent validity of the to-
tal composite scores of this tool was demonstrated with the patients who had MDD
(r = 0.539, p <.001) [61]. Another study conducted on THINC-it [39] showed variant
convergent validity of the tasks of this tool (between 0.19 and 0.74) in a population
of N=100 adults without any mental disorder. Concurrent validity of the cognitive
test scores of CNSVS was also examined in a study with patients who had MDD [31].
Their findings showed significant coefficients for processing speed (p=0.0153) and
attention (p=0.0013). ‘CogState’ measures were evaluated in [18] that revealed im-
pairments in attention and verbal memory and learning. However, no difference was
found between psychomotor speed, visual attention, and working memory of patients
with MDD compared with healthy controls.

Table 2.2 provides an evidence for validation of each mobile cognitive assessment
tool as well as summarising their studies including participants, cognitive tasks, and
key findings. A description of this studies are presented as follows. One of the
smartphone apps of a research platform called ‘iVitality’ implements the following
cogntiive tests: Memory-Word, Trail Making, Stroop, Reaction Time, and N-Back.
Scores calculated by Stroop and Trail Making Test (TMT) tests in ‘iVitality’ cor-
related significantly with neuropsychological tests (r=0.5 and r=0.4, respectively),
indicating validity of these cognitive tests.

1https://www.cognitionkit.com

https://www.cognitionkit.com
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CST is mainly practical for elderly people. Validation study showed a moderate
correlation between CST and global cognition with Mini-Mental State Examination
(r=0.52), Digit Span (r=0.43), Trail Making Test (r=-0.65), and Digit Symbol Test
(r=0.51) but no significant coefficient was obtained for verbal fluency tests. ‘DelApp’
is a smartphone-based app, and it was evaluated against ‘Edinburgh Delirium Test
Box’ as a gold-standard computer-based tool. Analysis showed that the test scores
calculated by ‘DelApp’ was statistically the same as the gold-standard tool (p=0.41).
‘Neurophone’ is a smartphone-based tool, and it was tested against a computer-based
tool with methamphetamine users. ‘Neurophone’ implements N-back and the scores
calculated for this test could be compared with standard tools. On the other hand,
the scores calculated by Stop Signal test could not be compared with standard tools
due to the different scales used for mobile and computer-based tests. Stroop test in
‘Neurophone’ was implemented using speech recognition but it did not have adequate
accuracy. As such, this test in ‘Neurophone’ could not be compared with the standard
Stroop test.

Table 2.2: Overview of the validation studies with relevant mobile tools.

Application Participants Cognitive tasks Key findings

iVitality [46] Healthy
(N=151)

Memory-Word,
TMT, Stroop,
Reaction Time,
and N-back

Stroop and TMT
correlated moderately
with the conventional
tests

CST [9] Healthy without
dementia (N=57)

Processing speed
& attention task

Correlation between
CST scores and global
cognition with MMSE,
digit span, TMT, and
digit symbol

DelApp [88] Delirium patients
(N=20) Not specified

Cognitive test results
similar to Edinburgh
Delirium Test Box

Neurophone [68]
Healthy (N=20)-
methamphetamine
users (N=16)

N-back, Stroop,
Stop Signal

Stop Signal test results
could not be compared;
N-back test on both
platforms were similar.

Feasibility of mobile cognitive assessment tools were evaluated using an EMA
approach including subjective and objective measures. Table 2.3 summarises previous
studies that reported feasibility of a mobile tool with cognitive tests. Below, these
studies are explained in detail.

PDA was utilised to conduct a study by administrating 2-back tests three times
per day for a duration of six days [30]. Cognitive conditions were also evaluated sub-
jectively with a questionnaire including eight items. Participants of this study were
N=20 epilepsy patients. Nokia phones were utilised to measure memory and atten-
tion twice each day for two weeks in a population including drinkers. In addition,
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their self report of alcohol consumption were collected [90]. Alcohol consumption
was predicted in drinkers using an inhibitory control, that was assessed two times
daily via a stop signal task on smartphones [45]. A study compared the scores ob-
tained in laboratory with the scores in uncontrolled conditions using a memory task
in N=26 participants [89]. An analysis showed no significant difference between par-
ticipants’ performance in both conditions. Subjective reports of gloomy, fatigue and
tension feelings, disturbance level, and locations were also collected. Results showed
no significant impact of mood and noise on the test performance measures. An EMA-
based study were run using mobile cognitive tests with N=60 elderly people who
were not diagnosed with dementia, along with their daily activities [4]. According to
their findings, no impact of socializing, general and physical activities were found on
their semantic memory in a three-hour time period. Validity and reliability of brief
smartphone-based cognitive tests compared with lab-based tests were demonstrated
for a period of two weeks per participant [78]. Participants were notified five times
per day to take the cognitive tests targeting working memory and perceptual speed.

A study on ‘CognitionKit’ were conducted to administer N-back tests to N=30
patients with MDD [15]. Participants reported their daily self-reported mood through
three short questions on an Apple watch and took an N-back test up to three times per
day during six weeks. Their findings showed moderate correlation between daily self-
reports and depression questionnaires and daily cognitive assessments with standard
tests for patients with MDD. The authors did not report any association between
behavioural features (step counts and mood) and cognitive test performance mea-
sures, which were collected throughout the study. Alertness of N=12 individuals
were examined in an in the wild study using a mobile toolkit including three cogni-
tive tasks to measure alertness [20]. The duration of study was on average nine days
per participant. The authors also collected time of day, participants’ subjective sleep
duration and quality, alertness, and preference in terms of cognitive tasks. Their
findings revealed effectiveness of Psychomotor Vigilance Test (PVT) and Go No-Go
tasks in detecting homeostatic process, and PVT and Multiple Objective Tracking
in circadian variations. No significant effect of sleep duration and sleep quality was
found on participants’ cognitive test performance.

‘PsyMate’ app was utilised in a study for frequent daily assessment of working
memory and processing speed along with self-reports of mood, sleep quality, location,
activity, social company and physical status [17]. This study did not show any impact
of sleep quality, mood, location, or activity stress on both cognitive test results. A
clinical feasibility study with patients who had MDD was conducted using ‘iHope’
app to measure executive functions daily and to collect self-reports of sleep quality
and duration, anxiety, and depression [42]. Participants at the baseline were tested
with Hamilton Depression Rating Scale (HAMD) questionnaire to determine severity
of depression. HAMD scores correlated with anxiety, depression, and poor sleep
quality.
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Table 2.3: Overview of the feasibility studies with mobile cognitive assessment tools.

Study Instrument Sample Freq. Duration Tests

Frings et al.
[30] PDA

Epilepsy
patients
(N=20)

3 daily 6 days N-back (N=2)

Tiplady et al.
[90] Cellphone Drinkers

(N=38) 2 daily 14 days

Number-pair,
matching, memory
scanning, sustained
attention

Timmers et al.
[89] Smartphone Healthy

(N=26) 4 daily 1 day Letter span

Sliwinski et al.
[78] Smartphone Adults

(N=219) 5 daily 14 days Symbol search,
dot memory

Abdullah et al.
[1] Smartphone Students

(N=40) 2 daily 40 days PVT

Dingler et al.
[20] Smartphone Students

(N=12) 1-6 daily 2-13 days
PVT, go no-go,
multiple object
tracking

Cormack et al.
[15] Smartwatch MDD

(N=30) 3 daily 6 weeks N-back

Hung et al.
[42] Smartphone MDD

(N=54) 1 weekly 8 weeks TMT-B, Stroop

Daniels et al.
[17] Smartphone Healthy

(N=49) 8 daily 6 days

Digit symbol
substitution,
visuospatial working
memory



CHAPTER3
Computerised

Cognitive Assessment
Tool

ICAT is a patient-administered cognitive assessment tool supporting speech recogni-
tion technology for verbal memory tasks. In this chapter, first, the design and imple-
mentation of ICAT are presented. Second, main findings obtained from the usability,
feasibility and validation studies conducted on ICAT are outlined. The content of
this chapter are taken from Article I (see Section 9.1) and Article II (see Section 9.2).

3.1 Design and Implementation
SCIP [69] is a gold-standard tool for patients with affective disorders including five
short cognitive tasks namely Verbal Learning Test-Immediate (VLT-I), Consonant
Repetition (CR), Verbal Fluency (VF), Verbal Learning Test-Delayed (VLT-D), and
Visuomotor Tracking (VMT) tasks. ICAT is the first Web-based cognitive assessment
tool adapted from SCIP with minor changes to deliver a patient-administered tool.
We formed an interdisciplinary team including computer engineers, User Experience
(UX) designers, psychologists, and psychiatrists to design ICAT. Figure 3.1 shows
the main tasks performed to design and implement ICAT as explained below.

3.1.1 Team Meetings
We held three brainstorming meetings to discuss the suitable platform on which the
tool should be deployed as well as the components required to deliver a patient-
administered cognitive test battery. The main components in ICAT are illustrated in
Figure 3.2. First, users are provided with a brief overview of ICAT to become more
familiar with this tool. Then, an informed consent is displayed before proceeding
to the cognitive tasks, providing details of the data types to be collected and how
user’s data would be handled. Followed by that, general instructions are given to
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Figure 3.1: Design and implementation procedure of ICAT. The icons in this figure
were made by http://flaticon.com.

the users. It is essential to familiarize users, in particular patients, with the tasks
in ICAT since neuropsychological tests are administered to the patients by a trained
staff who is responsible to explain the test instructions while ICAT is designed to be
a patient-administered tool. Technical setup including speaker and microphone tests
were utilised to ensure that user’s device is ready to run the cognitive tests. Next,
five cognitive tasks in ICAT are sequentially presented to the users. Finally, user’s
scores in terms of the number of correct responses achieved in each cognitive test are
automatically calculated and displayed to the user.

Figure 3.2: General components of ICAT.

3.1.2 Iterative User-Centered Design
Two personas were prepared together with the psychologists and psychiatrists consid-
ering the lived experience of the patients with BD. Then, a flowchart was created on
the basis of the personas to determine the navigation between components. These
items were discussed several times during the team meetings.

3.1.3 Wireframes and Prototyping
UI design was performed by creating wireframes. Low-fidelity mock-ups were created
and modified several times during our team meetings. Then, prototypes were created
for ICAT and were tested multiple times within the team before implementing the
front- and back-end of our tool.

http://flaticon.com
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3.1.4 Implementation
The front-end of ICAT was built using React Java Script (JS) framework [3] and the
back-end was supported by CACHET Research Platform (CARP). We utilised “Web-
site localization” [75] to implement ICAT in both English and Danish languages. The
rest of this section explains the cognitive tasks in Section 3.1.4.1 and the important
elements to consider for adapting ICAT from SCIP in Section 3.1.4.2.

3.1.4.1 ICAT tasks

ICAT has five cognitive tasks that are presented sequentially to the users. Charac-
teristics of each cognitive task can be found in Table 3.1. Below, the functionality of
each cognitive task is explained:

• Task 1: List Learning (LL)– This task is run in three trials. For each trial, a
user firstly listens to a list including ten words. Then, the user repeats the words
that s/he recalls. The number of correct words are automatically calculated by
comparing the word list read to the user with the words recognized by speech
recognition technology.

• Task 2: Consonant Repetition (CR)– A user listens to a set of letters.
Followed by that, the user should complete a short number-sorting task in a
limited time duration. Then, the user is required to enter the letters to which
s/he listened earlier. These tasks are proposed to the user in several trials with
different letters and numbers.

• Task 3: Wechsler Adult Intelligence Scale letter-number sequencing
(WAIS-LNS)– Similar to task 2, a user first listens to a set of letters and
numbers. Then, the user is required to sort the numbers in an ascending order,
and the letters in an alphabetical order.

• Task 4: Delayed List Learning (DLL)– Similar to task 1, a user is scored
on the basis of the number of recalled words captured by speech recognition
technology. The word list is the same as task 1 but it only runs in one trial,
and the user cannot listen to the word list in this task.

• Task 5: Visuomotor Tracking (VMT)– A table including six letters and
their matching codes is shown to the users. Thirty random codes are presented
and the users should enter the matching codes in thirty seconds.

3.1.4.2 Adapting ICAT from SCIP

Responses to the cognitive tasks in ICAT were in the form of words, letters, and
numbers. The available input methods to enter test responses via a Personal Com-
puter (PC) were a keyboard and a mouse, and speech recognition technology. Five
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Table 3.1: Overview of the cognitive tasks in ICAT (Table is copied from [36]).

Features LLa CRb WAIS-LNSc DLL d VMTe

Measure Immediate
verbal recall Working memory Working memory Delayed

verbal recall
Psychomotor
speed

Criteria Recalled words
for 3 trials Recalled letters Sorted

sequences
Recalled
words

Matched
letters

Score 0–30 0–24 0–21 0–10 0–30
Practice set No No Yes No Yes

aList Learning
bConsonant Repetition
cWechsler Adult Intelligence Scale letter-number sequencing
dDelayed List Learning
eVisuomotor Tracking

issues were considered to computerise SCIP, as a pencil-and-paper tool. First, re-
sponses to the verbal memory tasks (LL and DLL) could not be entered manually
using a keyboard since 1) such tasks in their conventional setting are administered
by a clinician who instructs the patient to repeat the recalled words orally, 2) typing
skill of the individuals are not the same as each other, and 3) entering the recalled
words involves other aspects of the brain [41] that may distort the recalling procedure.
Consequently, we decided to use the Google’s Automatic Speech Recognition (ASR)
Web service in the verbal memory tasks. Figure 3.3 shows a sample screenshot of the
LL task while a user was repeating some words.

Figure 3.3: A screenshot of the ICAT list learning task (Image is copied from [36]).

Second, the CR task in SCIP presents a number-sorting task to the users imme-
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diately after listening to a sequence of letters. The aim of this task is to measure
working memory, thus, the mentioned sorting task appears intentionally after the
letter sequences to examine user’s short-term memory capacity. We used a drag-and-
drop component to simulate the sorting task in CR such that users were required to
sort some numbers in descending order.

Third, SCIP has a practice set for WAIS-LNS and VMT tasks. Practice sets are
essential for the users to learn how to respond during a test. ICAT task 3 and 5
also implement the practice sets of their corresponding task in SCIP. A feedback was
given to the users during the practice sets in ICAT to highlight the correct responses
in case they made a mistake or to approve their correct responses.

Fourth, the VMT task in SCIP includes a table of letters with their corresponding
Morse codes (see Appendix A). Taking this test in SCIP requires the subjects to
write down the matching Morse codes of a sequence of thirty letters. Since writing
the corresponding Morse codes is faster than typing them (for example, due to the
common trouble in finding the dash (-) and dot (.) symbols), we swapped the test
stimuli and responses with each other. Moreover, since some people are already
familiar with Morse codes, the test difficulty could have been perceived differently
by users. As such, users were required to enter the matching letters of a sequence of
codes, consisted of circles ( ) and asterisk (∗) symbols. The preliminary UI design
of the ICAT VMT task is presented in [35]. We decided to remove a timer from the
test to avoid inducing stress to the users (see Figure 1 in Section 9.1).

Last, the VF task in SCIP was replaced with WAIS-LNS for implementation in
ICAT since ASR could not be used for the VF task. VF tasks require users to repeat as
many words as possible which start with a certain letter. However, ASR converts any
random word to the closest word in the dictionary, thus, it was considered unreliable
for utilization in ICAT. It should be noted that WAIS-LNS was selected by the
psychiatrists as VF and WAIS-LNS measure the same aspect of executive functions.

3.2 Usability and Feasibility Studies
We conducted three studies to evaluate usability and feasibility of ICAT v1. An
overview of the usability and feasibility studies on ICAT v1 is depicted in Figure 3.4.
First, usability evaluation was performed with N = 21 individuals who did not have
any mental illness before. Followed by that, another study with N = 19 healthy
controls were conducted at Psychiatric Center Copenhagen (Region Hospital). The
objectives of these studies were to evaluate usability and feasibility of the ICAT v1
with healthy controls and to calculate accuracy of the ASR in the verbal memory
tasks (LL and DLL) separately for English and Danish responses.

3.2.1 Participants and Procedure
Study 1 was conducted with individuals who studied or worked at Technical University
of Denmark or city of Copenhagen. Participants of study 2 were healthy controls
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Figure 3.4: Overview of the studies conducted on ICAT.

who were recruited from Danish blood bank donors. Procedures of the studies are
explained as follows. First, participants demographics were collected. Then, they
took the cognitive tests of ICAT with no assistance following the think-aloud method
[44]. Upon finishing the tests, participants rated their perceived usability with Post
Study System Usability Questionnaire (PSSUQ) [52] and took part in a short follow-
up interview. The test sessions and the interviews were recorded. Manual transcripts
of the participant’s recalled words were extracted from their records to calculate
accuracy of the ASR during the verbal memory tasks in ICAT. Word Error Rate
(WER) measure was utilised by previous work [50, 67, 93], hence, we used this metric
to report ASR accuracy using the following formula (equation is copied from [36]):

WER = (S + D + I)/N (3.1)

N is the total number of the words, D is the number of deletion, S is the number of
substitutions, and I is the number of insertions. Upon finishing study 1, we conducted
another study at Psychiatric Center Copenhagen with healthy controls to measure
usability of ICAT and concurrent validity of the cognitive test scores calculated by this
tool against SCIP. Participant took the Danish version of SCIP and ICAT tests in
a randomized order. Usability of ICAT was also assessed in this study. To evaluate
concurrent validity, Pearson’s correlation analysis was applied to the participants’
cognitive test scores obtained from ICAT and SCIP tests.

3.2.2 Key Findings
In total, we recruited N=40 individuals. Demographics of the study participants are
summarized in Table 3.2. Participants’ ratings using the PSSUQ were calculated to
obtain their overall score, system usage, information quality, and interface quality.
Table 3.3 presents participants’ ratings separately for each study, and for Danish and
English speaking participants to get better insights from their subjective psychometric
factors.

The correlation analysis between ICAT and SCIP test scores obtained in study 2
are reported in Table 3.4. Note, since ICAT tasks implement SCIP version 3, we
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Table 3.2: Demographics of ICAT study participants.

Study Age Gender Native Language
number English Danish
Study 1 31±12 F=9, M=12 9 12
Study 2 36±15 F=13, M=6 0 19

Table 3.3: Psychometric factors of the PSSUQ to evaluate ICAT usability (Table is
copied from [36]).

Factor Study 1
(N=21)

Study 2
(N=16)

English test
(N=25)

Danish test
(N=12)

Overall score 4.12±0.46 4.36±0.42 4.25±0.45 4.19±0.45
System usage 4.23±0.53 4.52±0.41 4.39±0.48 4.35±0.45
Information quality 3.86±0.55 4.24±0.58 4.11±0.55 3.84±0.64
Interface quality 4.28±0.62 4.25±0.49 4.16±0.57 4.50±0.45

also used SCIP version 2 with a different word list for the verbal memory tasks to
minimize practice. We visualized word accuracy and the number of recalled words
for English and Danish words. Figure 3.5 illustrates the performance evaluation for
English words. The rest of the results can be found in Article II (see Section 9.2).

3.2.3 Lessons Learned
Usability studies are conducted to investigate where users had trouble in interacting
with a system. The records of the test sessions and the semi-structured interviews of
the studies on ICAT were analyzed to identify the following issues:

1. Participants generally did not read the instructions of the tests carefully al-
though the instruction sets were organized in a point-by-point style. They
often skimmed quickly over the texts and some of them asked questions during
the tests which were already addressed in the instructions.

2. The drag-and-drop component in the CR task was not as user-friendly as we
expected as some of the participants called it ‘confusing’. In contrast to the
counting task in SCIP, this component did not challenge the short-term memory
of our participants. Furthermore, participants of the study 2 mentioned that
the drag-and-drop component in ICAT was easier than the counting task in
SCIP.
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Table 3.4: Correlation analysis between ICAT and SCIP test scores obtained from
study 2 (Table is copied from [36]).

Cognitive domain SCIP task ICAT task R P value
Verbal learning (SCIP-2a)
using ASR transcripts VLT -I LL 0.56 .013

Verbal learning (SCIP-3b)
using ASR transcripts VLT-I LL 0.67 .002

Verbal learning (SCIP-3b)
using manual transcripts VLT-I LL 0.66 .002

Working memory (SCIP-2a) WMT CR -0.12 .63
Working memory (SCIP-2a) WMT CR 0.11 .65
Executive function (SCIP-3b) VF WAIS-LNS 0.29 .27
Delayed recall (SCIP-3b)
using ASR transcripts VLT-D DLL 0.34 .15
Delayed recall (SCIP-3b)
using manual transcripts VLT-D DLL 0.58 .009

Psychomotor speed (SCIP-3b) VMT VMT 0.71 .001
Total score total total 0.63 .009

aSCIP- version 2
bSCIP- version 3

3. Some of the participants had difficulty in finding the ‘tab’ key on their keyboard
to navigate between the text boxes in the VMT task in ICAT which might be
due to the less frequent use of this key compared to the rest of control keys.

4. Some participants had an unclear and quiet voice. Consequently, some of the
words in the verbal memory tasks were not correctly recognized by ASR al-
though participants repeated them.

3.3 Enhancing ICAT
The aforementioned issues presented in Section 3.2.3 led us in enhancing UI of ICAT
before conducting a clinical validation study with BD patients and healthy controls.
We decided to add audio files of each test instruction set such that users firstly listen
to the instructions, then, they read the same instructions in a point-by-point style.
The problem with the drag-and-drop component was fixed by utilising ASR in task 2
since we noticed that participants were generally engaged in the speech recognition
technology. The issue with finding the ‘tab’ key in the VMT task was solved by
displaying a symbol of this key to the users as shown in Figure 3.6. Therefore, users
would proceed only if they find this key on their keyboard. Some of the words were
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Figure 3.5: Performance of ASR in verbal memory tasks for an English word list
(Figure is copied from [36]).

difficult to be recognized by the ASR. We removed such words and selected some
of the words from other validated versions of SCIP. ICAT v2 was deployed after
applying the mentioned modifications to the UI design. The changes are outlined
in Table 3.5.

Table 3.5: Changes applied to the cognitive tasks of ICAT v1.

Task name Modification
List Learning Replaced few English and Danish words

Consonant Repetition Automatic speech recognition replaced with
drag-and-drop component

Wechsler Adult Intelligence Scale
letter-number sequencing No change

Delayed List Learning Same as List Learning task
Visuomotor Tracking Identifying position of the ‘tab’ key prior to the test
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Figure 3.6: Interactive method implemented in ICAT to find the ‘tab’ key.

3.4 Clinical Validation Study
This section briefly reports preliminary findings of a clinical validation study con-
ducted at Copenhagen Affective Disorder Research Centre, Copenhagen University,
Region Hospital. The aim of this study was to evaluate concurrent validity of the
test scores calculated by ICAT v2. The finding of this study was presented as a
poster at 22nd Annual International Society for Bipolar Disorders Conference, and a
manuscript to report the findings will be prepared later.

3.4.1 Participants and Procedure
Adults with BD who were in full or partial remission and healthy controls were as-
sessed with the Danish version of SCIP and ICAT v2. Participants took ICAT and
SCIP in a randomized order. The criteria for identifying their mental health diagno-
sis was defined on the basis of scores ≤ 14 on the HAMD 17 items and Young Mania
Rating Scale (YMRS).

3.4.2 Findings
The preliminary analyses included patients with BD (N= 23) and healthy controls
(N=26). Patients displayed cognitive impairment compared with healthy controls
as measured by ICAT total score (t-score = 2.15, p=0.03). The analyses revealed
a strong association between SCIP and ICAT total scores (r = 0.73, p < .001).
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Moreover, the individual cognitive tasks were positively correlated with each other
(r= 0.50-0.73, p < .001).

3.5 Chapter Summary
ICAT is a Web-based cognitive assessment tool with short tests adapted from a paper-
and-pencil tool called SCIP. ICAT automatically calculates test scores regarding im-
mediate and delayed verbal memory, working memory, and psychomotor speed. In
this chapter, UCD process of the ICAT was described which would help future re-
searchers in creating patient-administered tools. Modified elements for implementing
cognitive tests in ICAT were presented, indicating the challenges of computerising
paper-based tests. The studies conducted with healthy individuals and patients with
BD demonstrated acceptable usability, feasibility of the design and implementation
of ICAT, and concurrent validity of the test scores calculated by ICAT. Therefore,
patients with affective disorders can take the cognitive tests of ICAT at home upon
receiving a request from their psychiatrists.
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CHAPTER4
Designing Cognitive

Tests for Smartwatches
The idea of creating a smartwatch-based tool for cognitive assessment was mainly
raised from the gaps in the literature. First, there is no ubiquitous tool to assess
key cognitive functions including attention, working memory, and executive func-
tions. Second, smartphone-based cognitive assessment tools cannot collect physiolog-
ical data such as sleep. Ubiquitous Cognitive Assessment Tool (UbiCAT) is the first
smartwatch-based tool that measures key cognitive functions for frequent assessments
during EMA-based studies. This chapter presents the design and implementation of
UbiCAT in Sections 4.1 to 4.3, cognitive tests of UbiCAT in Section 4.4, and the key
findings of a formative evaluation study in Section 4.5 that verified the preliminary
UI design of the UbiCAT apps. The content of Section 4.5 is taken from Article III
(see Section 10.1).

4.1 Device Selection
Ubiquitous devices including smartphones and wearables can prompt their users fre-
quently and in various contexts. Compared with the smartphones, wearables impose
less limitations with respect to their mobility. For instance, observations show that
individuals are not willing to bring their smartphones when they go for a run or
walk. Hence, wearables may be more practical to be administered in the EMA-based
studies for moment-by-moment assessments. Of the wearables, smartwatches are of-
ten worn for visibility and usefulness purposes [13]. The requirements for selecting a
smartwatch platform for UbiCAT implementation then become the following;

1. the smartwatch should support stand-alone application development, and

2. the Application Programming Interface (API) of the smartwatch should support
behavioural, contextual, and physiological data collection.

A review of available smartwatch technologies was performed during October-December
2018. Based on this review, Fitbit (Ionic and Versa) and Apple Watch were the only
smartwatches that met the aforementioned requirements. Battery discharge was a
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crucial factor since in the EMA-based studies frequent recharging is an additional
burden imposed to the participants. Since an Apple Watch is often discharged every
other day, Fitbit smartwatches was chosen over the Apple Watch. After comparing
Fitbit Ionic and Versa with each other, Ionic was selected due to its 1) GPS support
and 2) longer-lasting battery life (approximately five consecutive days).

Fitbit API allows researchers to program their own app using JS in ‘Fitbit Studio’
and publish their app publicly or to limited users, who are given a link to download
it. In addition, Fitbit apps can be executed through ‘Fitbit Studio’ and data can be
stored locally on the internal memory of Fitbit smartwatches. Several meetings were
held together with three domain experts to discuss essential factors to consider when
designing the cognitive tests for smartwatches, and feasibility of implementing the
tests.

4.2 Neuropsychological Tests for Implementation

After choosing Fitbit Ionic smartwatches, standard neuropsychological tests were in-
vestigated for implementation on Fitbit smartwatches. An impairment in attention,
memory, and executive function can bring about problems at work or school [57].
Furthermore, daily fluctuations were previously identified in alertness [77], working
memory [28], and executive function [51]. Verbal memory tasks could not be im-
plemented on smartwatches since these tests require a microphone to automatically
recognize the recalled words. Besides, the use of microphone in the public areas may
not have adequate acceptability as discussed during the meetings with domain ex-
perts. A review was performed on the available neuropsychological tests from which
mobile tests had been adapted. As such, five tests were initially selected to measure
the aforementioned key cognitive functions: N-back [49] to measure working mem-
ory, Two-Choice Reaction Time (2-CRT) [22] for attention, and Stroop color-word
test [84], Trail-Making Test-part B (TMT-B) [83], and Digit-Symbol Substitution
Test (DSST) [53] for executive functions. Of these tests, TMT-B and DSST could
not be implemented on Fitbit smartwatches. Figure 4.1 and Figure 4.2 illustrate the
mock-ups created for TMT-B and DSST tests, respectively. As can be seen, the
circles are too small to capture users’ taps on the watch screen. In addition, standard
TMT-B test includes 9 pairs of digits and letters. It was not possible to implement
all elements of the TMT-B test in a single screen. It should be noted that reduc-
ing the number of digit-letter pairs (similar to Figure 4.1) could have led to invalid
test results due to insufficient number of test stimuli. Likewise, symbols (shapes)
and digits in the DSST could not fit properly, and the size of circles was not large
enough to capture user’s taps on the screen. Consequently, TMT-B and DSST were
removed from the available options such that 2-CRT, N-back, and Stroop tests were
implemented on Fitbit Ionic smartwatches.
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Figure 4.1: Mockup created for TMT-B on the Fitbit Ionic.

Figure 4.2: Mockup created for DSST on the Fitbit Ionic.

4.3 User-Centered Design and Implementation
Three cognitive tests were selected for implementation on the Fitbit Ionic smartwatch.
In this section, UCD process of UbiCAT tests are presented. It should be noted that
each cognitive test is a standalone, smartwatch-based app. Thus, the terms ‘UbiCAT
apps’ and UbiCAT tests’ are used interchangeably from this point. Design of the
elements used in UbiCAT apps is inline with Fitbit design guidelines 1. Functional
prototypes were tested frequently via ‘Fitbit Simulator’. Each app was run on a
Fitbit Ionic device and tested with several users with various finger sizes to 1) refine
navigation between the app views 2 and 2) resize the app buttons to a proper scale to

1https://dev.fitbit.com/guides/design-guidelines
2Each page displayed on a smartwatch is called a ‘view’.

https://dev.fitbit.com/guides/design-guidelines
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capture users’ taps. The common components of each UbiCAT app are an instruction
set and the actual test. Initially, a single-view instruction was created for each app
to summarize the instructions. Figure 4.3 shows an early design of the instructions
in Stroop test. However, users found such instructions insufficient, thus, a ‘panorama

Figure 4.3: Initial instruction design of the Stroop test in UbiCAT.

view’ was utilised to present more details for each test instruction. The final design
of Stroop test instructions using ‘panorama view’ is shown in Figure 4.4.

4.4 UbiCAT Cognitive Tests
This section elaborates on the cognitive tests used for each UbiCAT app along with
some screenshots of the apps to clarify their functionality. Each app implements a
standard neuropsychological test.

4.4.1 Two-Choice Reaction Time Test
This test measures user’s attention and processing speed through user’s number of
correct responses and Response Times (RTs) to the test stimuli. In UbiCAT 2-CRT
app, each view presents a right-hand or left-hand arrow on either left or right side of
the screen. Two app buttons appear on both sides of the screen so users are required
to tap on the correct direction of each arrow as fast as possible. The time limit to
select the direction of an arrow is 2500 ms. Figure 4.5 shows an initial and the final
UI design of UbiCAT 2-CRT test.
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Figure 4.4: Final instruction design of Stroop test in UbiCAT.

Figure 4.5: Initial and final design of the 2-CRT test. Part b is copied from [32].

4.4.2 N-back Test
N-back test measures working memory by presenting a sequence of letters. A user
should memorize N letter back in the sequence and indicate whether the current
letter appeared N letter before or not. Three difficulty levels were considered for the
N-back test in UbiCAT such that 1-back, 2-back, and 3-back tasks could run on the
smartwatches. Figure 4.6 shows UI development of UbiCAT N-back test. The color
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of letters was changed from yellow to blue as a user suggested.

Figure 4.6: N-back user interface development in UbiCAT.

4.4.3 Stroop Color-Word Test
Stroop color-word test measures executive functions. Similar to the classic Stroop
test, a set of congruent and incongruent stimuli is displayed to the users in each trial.
A congruent stimuli is defined as a color name displayed with the same color as its
meaning (for example ‘RED’) while an incongruent stimuli is a color name displayed
in a different color (for example ‘GREEN’). The task of users is to select the ink
color of each stimuli in a limited time. Figure 4.7 illustrates how the UI design of the
Stroop test in UbiCAT improved.

Figure 4.7: Stroop’s user interface design improvements.
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4.5 Formative Evaluation Study
A study was conducted on an early design of UbiCAT to 1) evaluate the preliminary
design of the apps and 2) investigate adoption of wearables by study participants.
Three names were assigned to each app in order to simplify memorizing the apps by
the participants:

• 2-CRT test → Arrow Test

• N-back test → Letter Test

• Stroop test → Color Test

4.5.1 Participants and Procedure
Five individuals from Technical University of Denmark participated with a back-
ground in design and innovation or HCI. This study was performed in five steps per
participant as illustrated in Figure 4.8. First, an informed consent form was handed

Figure 4.8: Tasks performed during a formative evaluation study with UbiCAT
apps.

to the participants to inform about data collection and handling of their data. Upon
signing the form, participants were asked about their previous experience of using a
wearable device. If the participant had already used a wearable device, the reason(s)
for quitting or adopting the device were inquired. Then, participants were asked to
wear a Fitbit Ionic smartwatch and perform the following tasks for each UbiCAT app:

1. Launch a UbiCAT app on the smartwatch.

2. Read the test instructions in the app.

3. Take a cognitive test with the app.

4. Check your score at the end of the test.

These tasks were recorded and the participant was asked to verbalize their thoughts
following the ‘think-aloud’ method. Then, participant was asked to fill in a usability
questionnaire including seven questions extracted from Mobile Application Rating
Scale (MARS) questionnaire [82] concerning three psychometric factors: aesthetics,
functionality, and information quality and quantity of the UbiCAT apps. Finally, a
semi-structured interview was held with the participant.



38 4 Designing Cognitive Tests for Smartwatches

4.5.2 Key Findings
In this section, key findings are presented regarding participants’ statistics, their
perceived usability ratings, and interviews conducted with them. The rest of the
findings can be found in Article III (see Section 10.1).

4.5.2.1 Participants’ Statistics

The study was run with five participants (1 female, 4 male; age= 28 ± 4.35). One
participant held a Ph.D. degree in HCI, three participants were Ph.D. candidates in
the field of HCI, and one participant was studying in Design and Innovation program
at Master’s level.

4.5.2.2 Usability Ratings

Five-point Likert-based scale was used to rate the psychometric factors of the MARS
questionnaire. Selected questions of MARS used in this study can be found in Ap-
pendix B. Table 4.1 reports participants’ ratings for each UbiCAT app.

Table 4.1: Usability ratings of the UbiCAT apps (Table is copied from [32]).

UbiCAT App Aesthetics Functionality Information
Arrow Test 3.93 ± .61 4.6 4.4
Letter Test 4 ± .2 3.3 ± 1.84 2.6
Color Test 4 ± .2 4.2 ± .28 3.9 ± .14

4.5.2.3 Previous Use of Wearable Devices

Three participants did not use any wearable device. Participants were asked about
the wearable devices they had used. Two of them used a wearable device for a while.
For instance, P4 used Basic Pick and Apple Watch for several months.

4.5.2.4 Interviews

Participants also talked about an active feedback displayed on the watch screen after
responding to a test stimulus. A sample feedback to a correct response in the ‘Color
Test’ given to a user is presented Figure 4.9. Test scores were displayed in the last
view of each UbiCAT app. It reported a single number, indicating the total number
of correct responses during a test session. According to the meetings held with two
domain experts, we decided to show a single number to the users as a low test score
could have an adverse effect on the users. However, all study participants were
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Figure 4.9: Sample feedback to a correct response in UbiCAT Stroop test.

looking for the maximum number of scores in a certain format (for example, 28/30).
Therefore, the maximum number was added to the scores.

4.5.3 Post-Study Improvements
The finding of formative evaluation of UbiCAT revealed that the apps are usable
and there is no major issue to tackle with. The information quantity and quality of
the ‘Letter Test’ received lower ratings compared to the other apps (see Table 4.1).
Therefore, the instructions were enhanced by adding more details. Functionality
of the ‘Letter Test’ also received lower rating which might be due to the inherent
difficulty of the N-back test. Upon analyzing the results of this study, minor changes
were applied to the UI design of the apps including bigger font sizes and replacing
some colors.

4.6 Chapter Summary
Design, implementation, and formative evaluation of the UbiCAT apps were presented
in this chapter. Important factors that should be considered by future researchers
are outlined as follow. First, device selection is an important part of smartwatch
app development for doing a research ‘in-the-wild’ since the opportunities of existing
smartwatches are not the same as each other. Second, limitations of small screens and
brief interactions with smartwatch-based apps are the key factors to consider when
designing for smartwatches. UbiCAT apps meet these criteria as it takes less than 2
minutes to take a test with any of the apps, and each event requires a short command.
Third, creating paper prototypes for smartwatch apps is less efficient as papers do not
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provide any opportunity for identifying where app buttons are not sensitive to user’s
taps on the watch screen. Hence, high-fidelity prototypes are essential for iterative
tests with users. Finally, formative evaluation studies explore user’s interaction and
assist in revising UI design of the apps where necessary before conducting larger
studies with more participants.



CHAPTER5
Empirical Evaluations

of UbiCAT
This chapter outlines the findings of two empirical studies conducted on UbiCAT.
The first study aimed to compare cognitive performance measures of UbiCAT with
standard computer-based cognitive tests and the results are presented in Section 5.1,
which are taken from Article IV (see Section 10.2). The second study was conducted
in collaboration with Psychiatric Center Copenhagen, Region Hospital. Results re-
garding feasibility and concurrent validity of the UbiCAT test scores are reported
in Section 5.2, which are taken from Article VI (see Section 10.4).

5.1 Comparison with Computer-based Tests
Computer-based cognitive tests implement standard neuropsychological tests to as-
sess cognitive functioning. Smartwatch-based apps have a different interaction space
compared with PCs. It is unknown how cognitive performance measures of a test cal-
culated via smartwatches are compared with the measures obtained from a computer-
based test. Thus, an empirical evaluation study was performed to compare the cog-
nitive test measures of UbiCAT with computer-based tests.

5.1.1 Metrics and Tools
A search over the existing computer-based tools was performed in the first step con-
sidering two criteria: 1) The cognitive tests of such tools should implement standard
neuropsychological tests and 2) The tool should allow changes to the test parameters
in order to run the cognitive tests with the same parameters on both computer and
smartwatch platforms. Consequently, THINC-it [39] and Psytoolkit tests [80, 81]
were selected as standard computer-based tools. The THINC-it Spotter test imple-
ments the choice reaction time test suitable for evaluation against UbiCAT 2-CRT
app. Psytoolkit is an open-source toolkit including several standard cognitive tests
and allows changing the test parameters. As such, the number of test stimuli and
maximum time limit in the N-back and Stroop color-word tests of Psytoolkit were
managed to be the same as in UbiCAT.
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The usability evaluation of this study was performed with MARS questionnaire
(see Appendix B). Perceived cognitive load of the participants during the N-back
tasks on both computer and smartwatch was assessed using NASA Task Load Index
(NASA-TLX) questionnaire [40]. The sub-scales of NASA-TLX included in this study
are mental and temporal demand, overall performance, effort and frustration level.
The test sessions with each participant were recorded to 1) check the interactions
with UbiCAT cognitive tests (apps) and 2) extract themes from the interviews by
performing semantic analysis on their responses.

5.1.2 Participants and Procedure
Healthy individuals (female: 12, male: 9) without previous history of a mental ill-
ness were recruited from Technical University of Denmark using snowball sampling
method [7]. Participants’ education were from bachelor, master, or Ph.D. levels, and
they worked or studied in various industries. The tasks performed in this study are
depicted in Figure 5.1. As can be seen, the tasks fall into three phases: before, dur-
ing, and after experiment. A description of each phase is outlined as follow. Each

Figure 5.1: Tasks performed for comparing UbiCAT with computer-based tests.

participant was briefed with a short introduction to the study and what s/he should
have expected during the test session. Then, an informed consent was handed to the
participant. Upon signing the consent form, sociodemographics of the participant
was collected including age, gender, higher education level (in years), job title, work
or study industry, and the use of dominant or non-dominant hand when wearing a
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watch. Each participant took a cognitive test both on a computer and Fitbit smart-
watch using UbiCAT in a randomized order. Followed by that, the participant was
asked to evaluate usability of the UbiCAT app through which s/he took a cognitive
test. For the N-back tests on both platforms, participants additionally rated their
perceived cognitive load. A short interview was conducted with each participant im-
mediately after phase 2 to investigate where s/he struggled and to improve UI design
of the UbiCAT apps. At the end, participants were debriefed about the objectives of
this study and further explanations were given to them.

5.1.3 Correlation between Cognitive Tests
Pearson’s correlation analysis between total scores (accuracy) of the participants ob-
tained from computerised and UbiCAT tests revealed a significant coefficient (r= 0.78,
p<0.001). Figure 5.2 shows a positive association as well as the confidence intervals.
Next, the association between the performance measures of each test on both plat-

Figure 5.2: Correlation between UbiCAT and computer-based test scores (Figure
is copied from [33]).

forms were investigated. The average of correct responses obtained from THINC-it
‘Spotter test’ and UbiCAT 2-CRT correlated significantly with each other. The mean
RTs obtained from each N-back task on UbiCAT and Psytoolkit correlated signifi-
cantly as shown in Figure 5.3. Furthermore, the RTs to Stroop congruent and incon-
gruent stimuli on Psytoolkit and UbiCAT correlated significantly with each other.

Analysis of Variance (ANOVA) revealed a significant effect of task difficulty on
participants’ test performance measures in the N-back tests. The study also demon-
strated usability ratings > 4 (out of 5) in terms of aesthetics, functionality, and
information quality and quantity. Low discomfort < 3 (out of 7) was reported by
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Figure 5.3: Correlation between response times in the N-back test obtained from
UbiCAT and Psytoolkit (Figure is copied from [33]).

our participants after taking the tests with the UbiCAT apps. Recorded interviews
with the participants were transcribed and seven themes were extracted including
perception about the experiment, input modality, device screen, visual impact, psycho-
logical factors, performance, and suggestions for enhancing the UI of UbiCAT. While
majority of the participants preferred taking cognitive tests on smartwatches, a few
participants preferred computer-based tests. The rest of the findings can be found in
Article IV (see Section 10.2).

5.2 Clinical Validation Study
A controlled clinical study was conducted at Psychiatric Center Copenhagen to eval-
uate concurrent validity of the UbiCAT test scores against neuropsychological tests.
Feasibility of this tool was evaluated by comparing participants’ performance mea-
sures in indoor and outdoor places using their GPS data, which was collected passively
when they took the cognitive tests of UbiCAT. Study procedure and results of the
concurrent validity and feasibility of UbiCAT are presented in this section.
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5.2.1 Participants and Procedure
Patients with BD and healthy controls were recruited from Psychiatric Center Copen-
hagen, Region Hospital. Participants came for their follow-up visits and underwent
several neuropsychological tests. These tests were selected as the baseline to evaluate
concurrent validity of the UbiCAT test scores. Followed by their visits, participants
took the cognitive tests of UbiCAT one by one and their results were used to apply
correlation analysis between the scores obtained from neuropsychological tests and
UbiCAT tests. In total, N=15 participants (6 bipolar patients, 9 healthy controls)
were included. Participants’ demographics as well as ratings of the YMRS and HAMD
are reported in Table 5.1.

Table 5.1: Characteristics of the participants in UbiCAT clinical study (Table is
copied from [37]).

Characteristic Measure Statistics
Healthy control Bipolar patient

Gender Female (Nr.) 5 5
Male (Nr.) 4 1

Age Mean±SD 34±12 32±6
Years of education Mean±SD 16±1.8 15±2.04
HAMD Mean±SD 1.1±1.3 5.2±3.5
YMRS Mean±SD 0.7±2 2.3±3.2
Verbal Intelligence Quotient Mean±SD 115±5 108±3

5.2.2 Concurrent Validity of UbiCAT
The neuropsychological tests administered during the follow-up visits included the
following tests: TMT parts A and B, Repeatable Battery for the Assessment of Neu-
ropsychological Status (RBANS) coding and digit span [19], WAIS-LNS, and verbal
fluency [95]. Scores obtained in these tests were used to extract composite scores for
each cognitive domain. Z-transformations of the RBANS coding and digit span and
the TMT part A tests were averaged to calculate a score for attention and processing
speed. Executive function was obtained by averaging z-transformations of the verbal
fluency and TMT part B tests Working memory was calculated directly using the
z-transformations of the WAIS-LNS test. Global cognitive scores was calculated to
compare with the overall scores of the UbiCAT by averaging z-transformations of
the composite scores of attention and processing speed and working memory. Pear-
son’s correlation analysis revealed that participants’ scores obtained in UbiCAT cor-
related significantly with their corresponding neuropsychological tests (r= 0.58-0.64).
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Moreover, participants’ global cognition calculated using their total scores correlated
strongly with each other (r= 0.77, p<0.001). Correlation analysis results are pre-
sented in Table 5.2.

Table 5.2: Correlation analysis between neuropsychological tests and UbiCAT test
scores (Table is copied from [37]).

Cognitive Function Neuropsychological Test UbiCAT Test r p

Executive functions Verbal fluency and TMT-B Stroop’s score to
incongruent stimuli 0.58 0.024

Working memory WAIS-LNS N-Back 0.63 0.011
Attention and
processing speed TMT-A and RBANS Choice reaction time 0.64 0.010

Stroop’s score to
congruent stimuli -0.11 0.686

Global cognition Working memory
and attention Composite scores 0.77 <0.001

5.2.3 Feasibility of UbiCAT
An EMA approach was used to conduct a one-week study on UbiCAT cognitive tests
with healthy controls and patients with BD. Twelve participants took the tests both
at indoor and outdoor places according to their GPS data. ANOVA was used to
examine the impact of environment on participants’ test performance measures. As
shown in Table 5.3, participants’ measures were statistically the same in indoor and
outdoor places. Therefore, UbiCAT is a feasible tool for assessing in-the-wild key
cognitive functioning of the individuals.

Table 5.3: Impact of indoor and outdoor places on UbiCAT test measures using
analysis of variance (Table is copied from [37]).

UbiCAT Test Observations Performance Measure Mean Square F p
2-CRT 249 Median RTs 4505.44 0.45 0.501

Nr. of correct responses 0.41 0.35 0.553
N-Back 217 Mean RTs 15478.79 0.34 0.560

Nr. of correct responses 9.38 0.09 0.759
Stroop 227 Mean RTss 14294.25 0.30 0.583

Nr. of correct responses 2.50 0.57 0.452

Of the participants, N=7 took part in a short interview and mentioned the issues
regarding the experiment with UbiCAT tests as well as the frequent places and con-
texts in which they took the tests. In general, none of the participants reported a
problematic issue with the smartwatch and the experiment itself. One participant felt
uncomfortable to take a test when people were around. Participants mentioned that
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they took the tests while sitting, walking, and standing. Some participants mentioned
that they took the tests on the bus as well.

5.3 Chapter Summary
This chapter presented the findings of two empirical studies that would help re-
searchers in designing evaluation studies on their novel pervasive computing tools.
Significant correlations were revealed between the scores obtained in UbiCAT and
computer-based tests. Similarly, the significant concurrent validity of UbiCAT test
scores was demonstrated against neuropsychological tests. Hence, UbiCAT tests cal-
culate valid measures of individuals’ cognitive functioning. Feasibility of UbiCAT in
a one-week study using an EMA approach was also shown as there was no signifi-
cant impact of indoor and outdoor environments on the cognitive test performance
measures of UbiCAT. Consequently, UbiCAT has valid cognitive test measures and
acceptable feasibility for ‘in-the-wild’ administration.
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CHAPTER6
Analysis of UbiCAT

Cognitive Measures
UbiCAT calculates various cognitive performance measures per cognitive test includ-
ing number of correct responses, longest scoring streak, RTs, and missed stimuli, that
is defined as the number of stimuli to which a user does not respond during a test
session. These key performance measures provided opportunities to derive new in-
sights from users’ data. The analysis performed to identify the associations between
subjective human factors and objective measures of UbiCAT collected from N=21
healthy adults are presented in Section 6.1. Furthermore, an unsupervised learning
method was utilised to visualize participants’ human factors on the basis of their so-
ciodemographics. This section reports the key findings of Article V (see Section 10.3).
The findings of a one-week study on UbiCAT with N=15 patients and healthy con-
trols are presented in Section 6.2 regarding 1) hourly-basis alertness, 2) comparing
mobile and cognitive data of patients with healthy controls, 3) correlations between
sleep and working memory performance, and 4) digital phenotypes of human mental
health extracted from feature raking of a trained model of XGBoost. This section
presents several results of Article VI (see Section 10.4).

6.1 Subjective and Objective Measures
Usability and cognitive load are two important human factors. Cognitive load is an
essential psychometric factor such that an excessive load inducted by a tool can neg-
atively affect learnability of the tool [47, 86, 103]. Usability metrics of the 2-CRT
and 1-back apps in UbiCAT and perceived cognitive loads of the participants in the
1-back tasks formed the subjective psychometric factors while participants’ cognitive
test performance in these tests were the objective measures of cognition calculate by
UbiCAT in terms of RTs, number of correct responses, and longest scoring streaks
of the participants. Such data were used to 1) analyze the relationship between
subjective and objective measures using correlation analysis and 2) explore the simi-
larities between participants’ perceived usability and cognitive load in terms of their
sociodemographics. The tasks performed for this study are illustrated in Figure 6.1.
Table 6.1 shows participants’ sociodemographics including gender, education, age, in-



50 6 Analysis of UbiCAT Cognitive Measures

Figure 6.1: Overview of the tasks performed for analyzing subjective and objective
measures. The icons in this figure were made by http://flaticon.com.

dustry, and job. Perceived usability was calculated by three metrics selected from
the MARS questionnaire [82] (see Appendix B). Participant rated their perceived
cognitive load during a 1-back task using sub-scales of the NASA-TLX questionnaire.
The rest of this section presents the main findings of Article V.

6.1.1 Correlation between Human Factors and Cognitive
Measures

Significant correlation coefficients were revealed between participants self-reports of
aesthetics and functionality, and the number of correct responses in the 2-CRT test of
UbiCAT as shown in Table 6.2. Similar analysis was performed on the 1-back test that
showed strong correlation coefficients between participants’ perceived functionality of
the UbiCAT 1-back app and all of the cognitive performance measures obtained from
this test. Table 6.3 presents the correlation coefficients for these analysis.

6.1.2 Clustering based on Sociodemographics
Ward hierarchical clustering method [96] was performed on the participants’ usability
and cognitive load ratings to cluster them on the basis of their sociodemographics.
The cluster analysis revealed a different pattern between the ratings of female and
male participants regarding their perceived cognitive load and usability metrics as
depicted in Figures 6.2 and 6.3. Key findings of this study are summarised below:

1. Participants’ could not accurately assess their own performance during the cog-
nitive tests by comparing their rating a sub-scaled of NASA-TLX and their
actual test scores calculated by UbiCAT.

2. Participants from various background rated usability metrics and cognitive load
sub-scales differently.

The rest of the figures and results can be found in Section 10.3.

http://flaticon.com
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Table 6.1: Sociodemographics of the study participants (Table is copied from [34]).

Variable Characteristics Nr. (%)
Gender Male 12 (57.14%)

Female 9 (42.86%)
Education Bachelor degree 6 (28.57%)

Master degree 8 (38.10%)
Ph.D. 7 (33.33%)

Age 19-30 17 (80.95%)
31-40 3 (14.29%)
> 40 1 (4.76%)
Mean ± SD 26.90 ± 5.98

Industry Design 4 (19.05%)
Research 4 (19.05%)
Computer Engineer 4 (19.05%)
Construction 1 (4.76%)
Education 1 (4.76%)
Energy Engineer 1 (4.76%)
Food Engineer 1 (4.76%)
Healthcare 3 (14.29%)
Research 4 (19.05%)
Water Engineer 2 (9.52%)

Job Student Assistant 3 (14.29%)
Bachelor Student 3 (14.29%)
Master Student 5 (23.80%)
Ph.D Student 4 (19.05%)
Postdoctoral Researchers 3 (14.29%)
Data Analyst 1 (4.76%)
Nurse 1 (4.76%)
Project Manager 1 (4.76%)

6.2 Daily Cognitive Measures and Mobile Data
Unobtrusive active and passive data was collected from the participants in a one-
week study with UbiCAT. At the same time, participants took cognitive tests of the
UbiCAT three times per day. Sleep data and activity features such as step counts were
passively collected via Fitbit API. Such behavioural and physiological data as well
as cognitive test measures allowed for collecting daily features to classify patients
with BD and healthy controls and extracting important features of human mental
health diagnosis that is called digital phenotypes [66]. Table 6.4 gives an overview
of the cognitive, behavioural, contextual, physiological data that were collected for
this study per participant. Note, GPS data was used to evaluate feasibility of the
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Table 6.2: Correlation analysis for 2-CRT test (Table is copied from [34]).

Test Usability Metrics
Measure Aesthetics Functionally Information
Mean RT 0.00 -0.11 0.21

Correct responses 0.45∗ 0.63∗∗ 0.38
Longest streak 0.52∗ 0.63∗∗ 0.53∗

∗p<0.05
∗∗p<0.01

Table 6.3: Correlation analysis for 1-back test (Table is copied from [34]).

Test Usability Metrics
Measure Aesthetics Functionally Information
Mean RT -0.28 -0.66∗∗ -0.43

Correct responses 0.20 0.73∗∗∗ 0.42
Longest streak 0.30 0.75∗∗∗ 0.48∗

∗p<0.05
∗∗p<0.01
∗∗∗p<0.001

UbiCAT cognitive tests as presented in Section 5.2.3. The one-week study helped in
analyzing various measures of participants’ cognitive functioning in relation to their
behavioural, contextual, and physiological data. Seven findings are outlined as follows
to compare cognitive and mobile features of the controls with the patients:

1. Patients’ alertness was lower than the healthy controls according to their median
RTs in the 2-CRT test (t-score= 5.24, p<0.001).

2. Patients experienced more drops and less rises in their attention compared with
the controls according to the ratio of negative and positive alertness (see Fig-
ure 6.5).

3. Patients were less capable of responding timely to a test stimulus as their daily
missed counts were higher compared with the controls (t-score=3.24, p<0.001)).

4. Patients’ processing speed was lower compared with the controls according to
their lower RTs in the UbiCAT Stroop test (t-score=1.93, p=0.029).

5. Patients’ sleep duration was significantly higher than the controls (t-score=
3.68, p<0.001).

6. Patients stayed more in bed for sleeping compared with the controls (t-score=
3.46, p=0.001).
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Figure 6.2: Perceived cognitive load of female and male participants in the 1-back
task (Figure is copied from [34]).

7. Mobility of the patients was higher than the controls according to their step
counts (t-score= 2.03, p=0.046).

6.2.1 Sleep Duration and Working Memory
A dataset was prepared including daily sleep data and the next-day cognitive per-
formance measures, which were averaged through daily test sessions. This dataset
had N=74 observations. Correlation analysis was performed on several cognitive test
performance measures and sleep duration of the participants. Of the test measures,
N-back hit rates as a measure of working memory correlated significantly with sleep
duration (r=0.26, p=0.026). It can be inferred that higher sleep duration had a
positive association with accuracy of the participants in recognizing correct matches
between the letters presented in the N-back tasks.

6.2.2 Digital Phenotypes of Mental Health
Classification of daily observations of the patients with BD and healthy controls was
performed by adding activity features to the dataset for sleep analysis. This dataset
had N=81 observations including the following features: time in bed, sleep duration,
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Figure 6.3: Perceived usability of female and male participants in the 2-CRT task
(Figure is copied from [34]).

number of awakenings, min awake, step counts, mean RTs in Stroop and 2-CRT tests,
and average accuracy in the N-back, Stroop, and 2-CRT tests.

Supervised learning methods were applied to classify bipolar patients and healthy
controls. Random Forest (RF) [54], XGBoost [12], Support Vector Machines (SVM)
(radial kernel) [79], and K-Nearest Neighbour (KNN) [5] methods were utilised to cre-
ate their predictive models. Five-fold cross validation was applied to train and test the
models. The performance evaluation metrics were accuracy, sensitivity, specificity,
Positive Predictive Value (PPV), Negative Predictive Value (NPV), Area under the
Receiver Operating Characteristic Curve (AUC). The latter was used to determine
the best performing model. Table 6.5 presents the average of performance metrics
calculated for each predictive model. Since XGBoost gave the highest average AUC,
the relative variable importance extracted from this tree-based model determined
digital phenotypes of individuals’ mental health diagnosis. As can be observed in
Figure 6.4, time in bed is the most significant physiological feature in determin-
ing participants’ treatment type. Step count is the next behavioural feature and
total daily missed counts as well as cognitive performance measures of the
Stroop test in UbiCAT are the important cognitive features. It can be inferred
that participants’ processing speed and executive function as well as their ability to
respond during the time limits of the UbiCAT tests were the most important cognitive
measures that separate observations of the patients with BD from healthy controls.
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Table 6.4: Features collected in a one-week study with UbiCAT (Table is copied
from [37]).

# Name Category Type Features

1 Choice reaction time Cognitive Active Median response time, correct responses,
missed stimuli

2 N-back Cognitive Active
Mean response time, correct responses,
hit rate, false alarm rate,
missed stimuli

3 Stroop Cognitive Active Mean response time, correct responses,
missed stimuli

4 GPS Contextual Passive Latitudes and longitudes to detect indoor
and outdoor environments

5 Time of the day Contextual Passive Time extracted from cognitive test logs

6 Physical Activity Behavioural Passive
Step counts, Minutes Sedentary, Minutes
Lightly Active, Minutes Fairly Active,
Minutes Very Active, Activity Calories

7 Sleep Physiological Passive
Minutes Asleep, Minutes Awake, Number
of Awakenings, Time in Bed, Minutes
REM sleep, light sleep, and deep sleep

Table 6.5: Performance evaluation metrics for classification of healthy and patient
groups. (Table is copied from [37]).

Method Accuracy Sensitivity Specificity PPV NPV AUC
XGBoost 77.51±3.28 76.65±2.91 78.38±4.03 78.60 ±3.83 76.38±3.45 86.40±3.97
RF 72.63±1.57 69.40±5.32 75.85±3.35 74.65±1.44 71.00 ±2.67 79.60±2.19
KNN 77.89±4.41 73.22±10.47 83.95±3.47 83.88±7.18 71.71±10.85 80.59±1.28
SVM 74.03±3.14 81.53±4.03 64.18±7.31 74.13±2.48 73.63±5.31 79.80±5.17

6.3 Chapter Summary
This research showed that UbiCAT as a computing tool for cognitive assessment gives
practical test performance measures that were utilised in deriving meaningful insights
from subjective human factors and sociodemographics. Moreover, in a one-week study,
digital phenotypes of human mental health diagnosis were revealed. Such knowledge
are also inline with the literature. Thus, researchers can use cognitive performance
measures of the UbiCAT in running their ‘in-the-wild’ studies to derive insights from
cognitive assessment results, and to analyze the associations between subjective and
objective measures of cognition and human factors.
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Figure 6.4: Variable importance of the features ranked by XGBoost model (Figure
is copied from [37]).
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Figure 6.5: Relative alertness of the healthy and patient groups (Figure is copied
from [37]).
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CHAPTER7
Discussion

Two pervasive computing technologies were designed and evaluated to assess cognitive
functioning: A Web-based cognitive assessment tool called ICAT and a smartwatch-
based cognitive assess tool called UbiCAT. Three studies were performed with each
of the tools to evaluate their usability, feasibility, and concurrent validity. Usability
evaluation of ICAT gave high ratings of psychometric factors by study participants.
As such, feasibility of the design and implementation of ICAT was demonstrated as
participants stated no specific issue while taking the cognitive tests of ICAT. Con-
current validity of the test scores calculated by ICAT also yielded significant coeffi-
cients when compared with gold-standard neuropsychological tests in a population
of healthy controls and patients with BD. Likewise, UbiCAT received high usabil-
ity scores concerning aesthetics, functionality, and information quality and quantity.
Followed by that, empirical approaches were used to evaluate feasibility of the design
an implementation of UbiCAT. First, an evaluation study revealed significant corre-
lations between the test performance measures of UbiCAT and standard computer-
based tools. Second, an ‘in-the-wild’ study showed that participants’ cognitive test
measures were statistically the same in indoor and outdoor places. Such findings pro-
vided substantial evidence to demonstrate feasibility of the UbiCAT for ‘in-the-wild’
administrations. Significant correlation coefficients between the scores obtained from
neuropsychological tests and UbiCAT tests also showed concurrent validity of this
tool.

7.1 Computerised Cognitive Assessment Tools
So far, several computerised cognitive test batteries have been built to assess various
cognitive domains in patients who suffer from cognitive impairments. Short cogni-
tive test batteries that assess key cognitive functioning of the patients with affective
disorders are getting more popular among psychiatrists and psychologists. SCIP is a
paper-and-pencil tool that has been validated particularly for patients with affective
disorders to provide brief assessments. THINC-it is a patient-administered tool that
has acceptable feasibility for assessing cognitive functioning of patients with MDD
using short tasks. We utilised such evidence to design and implement ICAT for pa-
tients with affective disorders by adapting the cognitive tests from SCIP. Previous
related Web-based cognitive assessment tools underwent several clinical studies to
evaluate feasibility of their tools and validity of the test scores. Similarly, the studies
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conducted in this research aimed to evaluate feasibility of the design and implemen-
tation of ICAT and concurrent validity of the test scores calculated by this tool. We
used speech recognition technology in ICAT for automatic scoring of verbal memory
tasks unlike some cognitive test batteries that modified standard verbal memory tasks
by asking their users to select the words that they recall from a word list. While a few
studies with elderly people used speech recognition technology in their verbal fluency
tasks [50, 67, 92, 93], it was not feasible to utilise this technology in a verbal fluency
task in ICAT. As such, we replaced this task with another neuropsychological test,
which measures the same aspect of cognition.

7.2 Mobile Cognitive Assessment Tools
Functionality of the standard neuropsychological tests have been utilised in mobile
apps for smartphones and smartwatches to obtain frequent measures of human cogni-
tion unlike lab-based studies, which are schedules once in a while. However, current
mobile tools measure limited cognitive domains that give insufficient information
about individuals’ cognition. In addition, such tools can not collect multivariate
sensor data, in particular physiological data (e.g. sleep and heart rate variability).
Therefore, UbiCAT was designed to 1) provide short cognitive assessments in ma-
jority of contexts and 2) collect wearable and mobile sensor data to identify digital
phenotypes of human mental health diagnosis. Previous work evaluated cognitive
performance measures of a mobile cognitive assessment tool against computer-based
or paper-based neuropsychological tests. While a few tools could not compare some
of the cognitive performance measures due to the different test parameters [46, 88], an
empirical study conducted in this thesis showed that smartwatch-based and computer-
based test measures (e.g. RT and scores) can be compared with each other as long
as the test parameters of both platforms are managed to be the same as each other.
Two important test parameters are the number of test stimuli per session and the
time limit to respond to each stimuli presented in a test session.

A 1-week study on UbiCAT demonstrated feasibility of taking cognitive tests ‘in
the wild’. None of the previous related work used GPS data to detect indoor and
outdoor places for evaluating feasibility of their cognitive assessment tool. Objective
measures of sleep and activity were collected via wearable sensors while previous work
often used subjective ratings of sleep and activity measures. Our results showed that
sleep, activity, number of missed stimuli in test sessions, and executive functioning
are the most important digital phenotypes that classify individuals’ mental health
diagnosis as bipolar or healthy. While previous work determined digital phenotypes
of BD and MDD by analyzing behavioural features using phone sensor data [25, 26,
73, 74], we utilised novel cognitive performance measures of UbiCAT in conjunction
with passive mobile and wearable sensor data to identify digital phenotypes with a
focus on the cognitive side.
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7.3 Limitations
The inherent difficulty in recruiting patients with BD and MDD slightly slowed the
progress of our clinical studies. Some of the patients cancelled their follow-up visits
right before the meetings and a few of them did not attend their follow-up visits.
Consequently, we had to limit our participants or extend the study duration. The
lockdown period due to COVID-19 pandemic also forced us to stop recruiting before
the study finishes. Despite difficulties in recruiting participants and unpredictable
situations, we managed to conduct our clinical studies with patients and healthy
controls. In addition, it is not easy to motivate patients with affective disorders to
participate in longitudinal studies especially at the time of recruitment. We inferred
that the problem is twofold. First, they find it hard to adhere to a schedule every day,
in our case taking the UbiCAT tests daily. Second, returning the smartwatch upon
finishing the one-week study seemed to be hard for them as they need to schedule it.
Although some of the participants were a bit reluctant to take part, they reported
that Fitbit smartwatches actually motivated them to be more active, and taking the
cognitive tests of the UbiCAT three times per day did not take their time. Two partic-
ipants could not take part in the feasibility study on UbiCAT due to the constraints
imposed by their job requirements.

To deliver a patient-administered tool, we utilised Google’s Automatic Speech
Recognition (ASR) in the verbal memory tasks of ICAT which resulted in acceptable
accuracy. However, existing speech recognition technologies do not have 100% accu-
racy especially for languages other than English. Thus, there is room for improvement
of such technologies. Speaking of verbal memory, we could not implement a standard
verbal memory task in UbiCAT since it is considered ‘awkward’ to repeat a set of
words to a smartwatch device especially in public areas. Moreover, limited number
of smartwatches are equipped with a microphone, for instance Apple Watch that was
excluded from the available options due to its short battery life.

7.4 Future Work
The current pervasive technologies for cognitive assessment are not completely auto-
mated to deliver a patient-administered tool. An issue in the existing speech recogni-
tion technologies hinders implementing verbal fluency tasks since these technologies
often convert the recorded word to the closest in their database. Consequently, users
may say irrelevant words and they still receives a positive score. Future research may
overcome this deficiency to pave the way for automatic assessment of users’ verbal
fluency.

A common issue with the cognitive tests, in particular complicated tests involving
memory, is that the instruction sets are not read carefully by the users. A study
may aim to unobtrusively infer users’ comprehension and highlight the parts left
unattended to make sure that users are ready to begin the test. Although gaze
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interaction technologies have paved the way to tackle this issue, it is preferred to
avoid using any additional hardware.

As pointed out in previous section, verbal memory tasks have not been imple-
mented for smartwatches. It would be interesting to for future researchers to explore
acceptability of deploying automatic verbal memory tasks in wearable devices. In
addition, other automated approaches or novel interaction techniques for capturing
the recalled words may contribute to the patient-administered tools for cognitive
assessments.

So far, there is no usability questionnaire that is particularly designed and val-
idated for smartwatch-based apps. Although smartwatches are considered as mo-
bile devices, we still need to examine specific psychometric factors related to the
smartwatch-based apps. In future, researchers can verify validity of their novel usabil-
ity tool using current smartwatch-based apps including UbiCAT. Perceived comfort
in user’s dominant hand and the related aspects can be included in future usability
questionnaires for smartwatch-based apps.

Digital phenotyping was performed by considering a set of features including ac-
tivity, sleep, and cognitive test performance measures. Future studies may integrate
the cognitive test performance measures of UbiCAT with other data types such as
ambient noise and voice features, phone screen time, and phone interaction data in-
cluding swipes, touches, and typing speed to derive more important features of human
mental health diagnosis. Relevant target groups of future studies with an EMA or
Experience Sampling Method (ESM) approach on the UbiCAT cognitive tests are
ADHD, alcohol drinkers, and drug users.
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Conclusion

Internet-based Cognitive Assessment Tool (ICAT) was designed and developed in an
interdisciplinary team including computer engineers, psychologists, and psychiatrists
to deliver a patient-administered tool adapted from a gold-standard screening tool
called Screen for Cognitive Impairment in Psychiatry (SCIP) for affective disorders.
Design and implementation of the ICAT were evaluated in a feasibility study, showing
that the computerised version of SCIP is feasible and highly usable. To the best of our
knowledge, ICAT is the first patient-administered cognitive assessment tool for the
patients with affective disorders that utilises speech recognition for automatic assess-
ment of immediate and delayed verbal memory. Moreover, the cognitive tests of ICAT
take less than 30 min to complete, which is inline with the intention behind creating
short cognitive tests for patients with affective disorders. Consequently, RQ1 was
addressed by showing the successful design and implementation of ICAT for assessing
verbal memory, working memory, and psychomotor speed. Such results contribute
to the HCI community by informing about the important factors to consider when
computerising a paper-and-pencil tool for remote examinations.

Ubiquitous Cognitive Assessment Tool (UbiCAT) is a wearable computing tech-
nology for ‘in-the-wild’ assessment of three key cognitive functions using smartwatch-
based apps. In addition, wearable sensor data collection was utilised in digital pheno-
typing of human mental health. The cognitive tests of UbiCAT were adapted from
neuropsychological tests, and assess attention, working memory, and executive func-
tions. A formative evaluation study on UbiCAT provided preliminary evidence to
show that the design of UbiCAT apps works as expected. Followed by that, an em-
pirical evaluation study showed that UbiCAT is highly usable and study participants
were generally comfortable when taking the tests on smartwatches as they did not
report any significant discomfort in their dominant hand. Thus, RQ2 was addressed
by evaluating participants’ perceived psychometric factors in two empirical studies.

Clinical studies were conducted to examine concurrent validity of the test scores
calculated by ICAT and UbiCAT against gold-standard neuropsychological tests. Two
clinical studies on ICAT revealed significant correlation coefficients between ICAT
and SCIP test scores in the working memory, verbal memory, and psychomotor speed
tasks as well as total scores. Such findings demonstrate feasibility of ICAT in accurate
measurement of cognitive functioning of both healthy persons and patients. Speech
recognition technology also yielded acceptable accuracy for both English and Danish
languages, demonstrating feasibility of this technology in automatic assessment of
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immediate and delayed verbal memory of the individuals. Concurrent validity of the
UbiCAT test scores was also verified with healthy controls and patients with BD who
took neuropsychological tests and UbiCAT cognitive tests at the clinic. We showed
that participants’ global cognition as well their attention, working memory, and exec-
utive functions assessed via UbiCAT correlated significantly with gold-standard neu-
ropsychological tests. Followed by that, participants took part in a one-week study
with UbiCAT to take the cognitive tests in the wild while their wearable and mobile
sensor data were passively collected. An analysis was performed on the cognitive test
measures calculated by UbiCAT in indoor and outdoor places, which were detected
by analyzing participants’ GPS data. Results showed that participants’ cognitive per-
formance measures obtained in indoor and outdoor places were statistically the same,
indicating feasibility of the UbiCAT cognitive tests. In addition, interviews with the
participants revealed that UbiCAT tests were performed during several positions such
as sitting, standing, and walking. Such findings demonstrate that smartwatch-based
tools are feasible for ambulatory cognitive assessments. Taken together, the feasibility
of ICAT and UbiCAT were verified through empirical and clinical studies to address
RQ3.

Unobtrusive wearable and mobile data collection regarding individuals’ activity
and sleep data assisted in identifying digital phenotypes of healthy and patient groups
in conjunction with their daily cognitive performance measures. Supervised learning
models of daily cognitive and mobile data showed that participants’ time in bed, step
counts, daily missed counts during cognitive test session, and measures of executive
functions are the digital phenotypes of human mental health diagnosis. Such impor-
tant features pave the way in building clinical decision support systems for patients
with affective disorders to contribute to the early diagnosis and treatments of these
patients. We also showed that UbiCAT collects four cognitive test performance mea-
sures including the number of correct responses, longest scoring streak, Response
Times (RTs), and the number of missed stimuli per test session. The potential of
these measures have been demonstrated through the empirical studies on UbiCAT. In
particular, the number of missed stimuli was ranked as one of the top features in de-
termining individuals’ mental health diagnosis. As such, the Ubicomp community can
utilise UbiCAT in their studies with an Ecological Momentary Assessment (EMA)
or Experience Sampling Method (ESM) approach to discover further potentials of
these objective cognitive performance measures. Moreover, human factors including
usability and cognitive load metrics that were evaluated in the empirical studies with
UbiCAT discovered unknown associations between subjective and objective factors.
An unsupervised approach with a particular focus on individuals’ sociodemographics
revealed new insights, which inform the HCI community about the potential of user’s
sociodemographics in personalizing User Interface (UI) of cognitive assessment tools.

Overall, two novel pervasive computing technologies were designed and evaluated
to accomplish this thesis. The research questions of this thesis were successfully
addressed by building the tools using a User-Centered Design (UCD) approach, and
evaluating design, concurrent validity, and feasibility of these tools through empirical
and clinical studies.
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1 INTRODUCTION
Affective disorder causes mood disturbance and includes depression
and bipolar disorder. Cognitive impairment is one of the determi-
nants of poor functioning in patients suffering from an affective dis-
order. For example, memory impairment in bipolar patients brings
about confusion in their daily life. Other cognitive domains include
attention, executive function, and psychomotor speed. Cognitive
function of these patients are assessed by means of neuropsycho-
logical tests such as California Verbal Learning Test (CVLT) and
Trail Making Test (TMT) that are used to examine verbal memory
and psychomotor speed, respectively.

The “Screen for Cognitive Impairment in Psychiatry” (SCIP) is a
simple and brief screening tool for psychotic disorders including
bipolar disorder and depression. It examines cognitive skills namely
verbal learning, working memory, verbal fluency, and psychomotor
speed [2]. SCIP is a paper-based test battery and is used in clinical
setting, in which the examiner explains the instructions and read
several words and letter-number sequences to the patient.
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However, current computerized test batteries require direct su-
pervision of clinicians in a clinical setting. To our knowledge, none
of the computerized test batteries for affective disorders have im-
plemented SCIP in a form of a patient-administered assessment
tool.

In this project we are developing a web-based cognitive assess-
ment tool called “Internet-based Cognitive Assessment Tool” (ICAT)
for bipolar and depressive patients. This application is a comput-
erized and web-based version of SCIP, in which the third part of
SCIP – the verbal fluency task – is replaced with Wechsler Adult
Intelligence Scale (WAIS) letter-number sequencing task. In total,
ICAT then consists of five sequential tasks, which are explained in
section 3.

The aim of this project is to design and implement ICAT as a
web-based cognitive assessment tool and examine its validity by
running a clinical trial, which compares ICAT with the paper-based
SCIP test as the golden standard.

2 RECENTWORKS
Computerized applications for cognitive assessment are currently
limited. The Cambridge Neuropsychological Test Automated Bat-
tery (CANTAB) [5] is one of the validated test batteries imple-
mented for a wide range of mental disorders. However, CANTAB
has inadequate tests to cover affective disorder. The NIH EXAM-
INER (Executive Abilities: Measures and Instruments for Neurobe-
havioral Evaluation and Research) [3] is a computerized test battery
which measures several cognitive domains. Although this applica-
tion has multiple tests, a clinician should read a set of words to the
patients when assessing verbal memory, which points to the direct
supervision of clinicians. THINC-it [4] is a computerized cognitive
assessment tool developed for Major Depressive Disorder (MDD)
patients. It uses cognitive tasks like Digit Symbol Substitution Test
and TMT (part B). However, this system doesn’t support cognitive
assessment of bipolar patients.

3 ICAT SYSTEM
3.1 Design Methods
The ICAT system is being developed in a user-centered design
process involving neuro-psychologists, psychologists, computer
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Figure 1: Task 5 uses a table of Morse codes and their match-
ing letters to assess psycho-motor speed.

scientists, and front-end developers. Once the first prototype of
ICAT is implemented, it is been planned to test it with some affective
disorder patients.

3.2 ICAT Cognitive Tasks
ICAT includes five tasks which are described below:

• List Learning: A list including 10 words are read to the patient
using a sound file. The patient should recall as many words
as possible. This task is repeated 2 more times with the same
set of words. It measures declarative memory and the score
ranges from 0 to 30.

• Consonant Repetition: It has three letters, a starting number,
and a delay (in seconds) for each of the 8 items. The patient
counts backwards from the starting number. Then, after a
delay, the patient should recall three letters. It measures
working memory and the score ranges from 0 to 24.

• WAIS Letter-Number Sequencing: It has 7 sets, each set in-
cludes 3 letter-number sequences. For each sequence, the
numbers should be sorted in ascending order and the letters
in alphabetical order. The patient can proceed to the next
set only if at least one of the sequences in the current set is
reproduced correctly. It measures working memory and the
score ranges from 0 to 21.

• Delayed List Learning: The word list in task 1 is not played
and the patient is asked to recall the earlier words. It mea-
sures declarative memory and the score ranges from 0 to
10.

• Visuo-motor Tracking: A table including 6 letters and their
matching Morse codes are shown to the patient. In 30 sec-
onds, the patient should type the matching letters for 30
Morse codes. It measures executive skills and the score ranges
from 0 to 30.(See Figure 1)

3.3 Feedback
Scores of all tasks are displayed to the patients at the end of the
assessment. Later during a face-to-face visit, the examiner can inter-
pret the results for the patient and compare his or her performance
to a healthy reference group.

3.4 Implementation
The front-end of ICAT system is built using React v16.2.0. We are
using the Open m-Health platform [1] as the data back-end. For
this purpose, we are designing a Open m-Health JSON schema for
cognitive functions, which will be used to store patient’s cognitive
profile. This profile includes cognitive skills such as memory and
executive function.

In the original paper-based version of the SCIP method, the ex-
aminer reads the instructions, words, and letter-number sequences
aloud to each participant. The main challenge in the implemen-
tation of this system is to convert the role of an examiner from
in-person to a digitized format. For this reason, we are examin-
ing the use of Google speech recognition web API. It is developed
for over 110 languages and will enable us to store each word that
patients recall in text format for task 1 and 4.

3.5 Clinical Verification
ICAT will be subject to usability tests focusing on the ability for
test subject to understand and perform the cognitive assessment
tasks. Once ICAT has been improved based on the usability testing,
a clinical verification trial is planned. The goal is to verify and
compare the computerized ICAT system against the manual SCIP
method as the golden standard.

4 CONCLUSION
We are creating a set of simple and short tasks similar to SCIP in a
web application. The use of speech recognition module is supposed
to maintain the short duration of the tasks. It has been estimated
that 10,000 affective disorder patients in Denmark will use ICAT
along with the progress of this PhD project.
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Abstract

Background: Persistent cognitive impairment is prevalent in unipolar and bipolar disorders and is associated with decreased
quality of life and psychosocial dysfunction. The screen for cognitive impairment in psychiatry (SCIP) test is a validated
paper-and-pencil instrument for the assessment of cognition in affective disorders. However, there is no digital cognitive screening
tool for the brief and accurate assessment of cognitive impairments in this patient group.

Objective: In this paper, we present the design process and feasibility study of the internet-based cognitive assessment tool
(ICAT) that is designed based on the cognitive tasks of the SCIP. The aims of this feasibility study were to perform the following
tasks among healthy individuals: (1) evaluate the usability of the ICAT, (2) investigate the feasibility of the ICAT as a
patient-administered cognitive assessment tool, and (3) examine the performance of automatic speech recognition (ASR) for the
assessment of verbal recall.

Methods: The ICAT was developed in a user-centered design process. The cognitive measures of the ICAT were immediate
and delayed recall, working memory, and psychomotor speed. Usability and feasibility studies were conducted separately with
2 groups of healthy individuals (N=21 and N=19, respectively). ICAT tests were available in the English and Danish languages.
The participants were asked to fill in the post study system usability questionnaire (PSSUQ) upon completing the ICAT test.
Verbal recall in the ICAT was assessed using ASR, and the performance evaluation criterion was word error rate (WER). A
Pearson 2-tailed correlation analysis significant at the .05 level was applied to investigate the association between the SCIP and
ICAT scores.

Results: The overall psychometric factors of PSSUQ for both studies gave scores above 4 (out of 5). The analysis of the feasibility
study revealed a moderate to strong correlation between the total scores of the SCIP and ICAT (r=0.63; P=.009). There were also
moderate to strong correlations between the SCIP and ICAT subtests for immediate verbal recall (r=0.67; P=.002) and psychomotor
speed (r=0.71; P=.001). The associations between the respective subtests for working memory, executive function, and delayed
recall, however, were not statistically significant. The corresponding WER for English and Danish responses were 17.8% and
6.3%, respectively.
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Conclusions: The ICAT is the first digital screening instrument modified from the SCIP using Web-based technology and ASR.
There was good accuracy of the ASR for verbal memory assessment. The moderate correlation between the ICAT and SCIP
scores suggests that the ICAT is a valid tool for assessing cognition, although this should be confirmed in a larger study with
greater statistical power. Taken together, the ICAT seems to be a valid Web-based cognitive assessment tool that, after some
minor modifications and further validation, may be used to screen for cognitive impairment in clinical settings.

(JMIR Form Res 2019;3(3):e13898)  doi: 10.2196/13898
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Introduction

Background
Cognitive impairment is prevalent in patients with unipolar
disorder (UD) and bipolar disorder (BD) even during periods
of remission, and it has a negative impact on the quality of life
and psychosocial functioning. Nevertheless, cognitive function
is rarely assessed in the clinical treatment of these affective
disorders because of the time requirement for cognitive tests,
which often exceeds the limited health care resources.

To date, there is no patient-administered tool that provides a
brief and accurate screening for objective cognitive impairment
using gold-standard, performance-based cognitive tasks for
patients with affective disorders. The International Society for
Bipolar Disorder (ISBD) Targeting Cognition Task Force
recently recommended the systematic assessment of cognition
in the clinical management of these patients using objective,
performance-based cognitive tests [1]. However, validated tests
with sensitivity to cognitive impairments in affective disorders
only exist in paper-and-pencil or computerized formats, which
must be administered by health care professionals. One such
test for affective disorders is the screen for cognitive impairment
in psychiatry (SCIP). The SCIP is a short (<15 min)
paper-and-pencil test administered by trained health care
professionals and comprises 5 subtests: (1) list learning (LL),
(2) consonant repetition (CR), (3) verbal fluency (VF), (4)
delayed list learning (DLL), and (5) visuomotor tracking (VMT)
tests. These tests assess verbal recall, working memory, VF,
delayed recall, and psychomotor speed, respectively [2]. The
ISBD Targeting Cognition Task Force recommends the SCIP
for cognitive screening in patients with BD based on recent
validation studies [3,4]. In particular, studies point to the validity
and reliability of the SCIP for detecting cognitive impairment
in BD [5] and UD [6].

Nevertheless, even such brief screening for cognitive impairment
in the clinical setting may require too much time and training
of health care professionals to be realistic for all patients. This
highlights the need for a patient-administered digital tool that
provides a brief and valid assessment of cognition with objective
cognitive tests, such as the SCIP, for affective disorders.

Previous Studies
Our study is mainly concerned with digital cognitive test
batteries, and it partly deals with the application of automatic
speech recognition (ASR) in psychiatry. An overview of the
related works is presented in the following 2 sections.

Digital Cognitive Test Batteries
In this section, validated digital tools developed for cognitive
assessment are presented. Cognitive training tools are, therefore,
excluded.

CANTAB Mobile [7] is a validated patient-administered tool
to screen for dementia. This app examines memory impairment
in patients aged 50 to 90 years using the paired associates
learning test. Central nervous system vital signs (CNSVS) is a
computerized neurocognitive test battery developed to evaluate
cognitive impairment in mental disorders, including UD. The
CNSVS has 7 tests, including verbal and visual memory, finger
tapping, symbol digit coding, the Stroop test, a shifting attention
test, and a continuous performance test [8]. According to the
findings by Gualtieri and Johnson, CNSVS is suitable for
cognitive assessment and screening of normal subjects. Another
test battery is Cogstate, which is aimed to screen patients with
Alzheimer’s disease but has been used to assess other
neuropsychiatric disorders. A recent clinical study on Cogstate
[9] aimed to examine cognitive impairment in UD patients
compared with healthy controls in terms of psychomotor speed,
alertness, visual memory, working memory, verbal memory,
and learning and executive functions. Cogstate measures showed
impairment in attention and verbal memory and learning,
whereas no difference was found in psychomotor speed, visual
attention, and working memory in UD patients versus controls.
This contrasts with the literature on moderate impairments
within these domains in UD and it could be because of the
ceiling effects of the Cogstate. The THINC-it is a more recent
cognitive assessment tool designed specifically for UD patients
that measures attention, working memory, and executive
function. This application is the first Web-based
patient-administered cognitive screening tool developed for UD
and thus represents an important step toward more common
assessments of cognition in the clinical management of UD.
The THINC-it uses gamified cognitive tasks to engage patients
in taking the tests. For example, the Trails game is adapted from
the trail-making test part B. According to the latest study [10],
100 healthy controls were tested for temporal stability and
reliability as well as the validity of the THINC-it. Overall, high
stability and reliability and moderate validity were found.

Automatic Speech Recognition in Cognitive Assessment
Applications
Recently, ASR has been utilized to examine verbal impairment
in mental disorders. Semantic VF as a determinant factor in
mild cognitive impairment (MCI) has been automated through
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ASR in recent studies [11-14]. Troger et al [14] applied ASR
to examine semantic VF in dementia via a telephone-based
approach, showing the feasibility of automated analysis in
screening for dementia. Toth et al in their recent study [13]
derived nonverbal acoustic features, such as the duration of
pauses, from ASR among the Hungarian population. Their
findings revealed significant differences between healthy
individuals and MCI patients in terms of their acoustic features
of delayed recall.

The Gaps in the Literature
The limitations of THINC-it are twofold. First, of the cognitive
domains assessed by THINC-it, only psychomotor speed shows
a moderate correlation with the standardized tests. Second,
THINC-it does not examine verbal memory, although this
cognitive measure is a predictor of a long-term psychological
functional outcome in UD and BD patients [15]. CANTAB
Mobile and CNSVS do not assess verbal memory as well. The
lack of verbal memory assessment might be partially because
of uncertainty about how to measure it via a digital tool.
Moreover, the tests suggested by CANTAB and CNSVS for
use in affective disorders have not been specifically developed
to screen for cognitive impairment in UD and BD patients and
may thus not have optimal sensitivity for impairments in these
groups.

Internet-Based Cognitive Assessment Tool
We developed the internet-based cognitive assessment tool
(ICAT) with the perspective that it can be administered by
patients themselves at home. Specifically, the ICAT is a
Web-based cognitive test battery that examines immediate and
delayed verbal recall, working memory, executive function, and
psychomotor speed in 5 short tasks. Speech recognition
technology has become advanced enough to be used in various
applications. Moreover, ASR requires minimum technology
and resources for remote examination. Therefore, ASR is
utilized in 2 ICAT subtests to assess immediate and delayed
verbal recall.

Goals of This Study
The objective of this paper is threefold: first, to present the
ICAT as a Web-based cognitive test battery designed based on
the cognitive tests included in the SCIP; second, to present 2
studies assessing 2 aspects of the ICAT—(1) its usability and
(2) its feasibility evaluated by correlation analysis between the
SCIP and ICAT subtests and total scores; third, to evaluate the
accuracy of the ASR for immediate and delayed verbal recall.

Methods

Design Methods
The ICAT user interface (UI) was designed in a user-centered
design process involving computer scientists, health
informaticians, psychiatrists, and psychologists. Overall, the
design process took 5 months and was performed in 4
consecutive stages, as explained below.

Phase 1: Brainstorming Design Sessions
The essential components of the ICAT system as a
patient-administered system were brainstormed in 3 weekly
meetings. In addition, the technical opportunities and limitations
of computerizing the SCIP subtests were investigated.

Phase 2: Personas and User Interface Design
To identify design requirements and system functionalities, 2
personas were prepared based on the inputs received from
psychiatrists and psychologists, who provided the practical lived
experiences of the patients. A flowchart was created based on
the personas to determine the navigation through different
components (eg, homepage, instructions, and cognitive
assessment tasks), and UI wireframes of each page were drawn.

Phase 3: Mock-Up
The wireframes were presented as a slideshow and thoroughly
discussed by the ICAT team members during user experience
(UX) prototyping sessions. During these sessions every aspect
of the ICAT was (re)designed, including the layout and graphical
design of each page, the instructions, the use of speech
recognition, the feedback to the users, the use of input modalities
(ie, keyboard and mouse), and the informed consent pages.
During the design process, the original SCIP tasks were
significantly modified for administration on Web-based
technology in a browser, particularly considering support for a
PC-based setup with keyboard and mouse. In this phase, the
homepage of the ICAT contained a welcome page and a speaker
test (see Multimedia Appendix 1).

Phase 4: Prototyping
The low-fidelity mock-up of the ICAT was gradually turned
into a functional prototype using Web technology for graphical
rendering in a browser but with no storage or persistence. This
prototype was used for the initial assessment during UX
prototyping sessions involving PH, KWM, LVK, and JEB. The
slideshows created during phase 3 were expanded to 4 pages in
the low-fidelity mock-ups (see Multimedia Appendix 1); the
first page was added to determine how the patient would be
notified to take the test, and the fourth page was the consent
form. The final prototype was used to deploy the ICAT
application on a Web platform.

System Description
The ICAT includes the following 3 overall sections, which are
presented one after another to the user: (1) the homepage,
including an introduction, general instructions, and an informed
consent form; (2) the technical setup (speaker and microphone
test), and (3) cognitive assessment tasks. The ICAT supports
both English and Danish, and users can hence select their
preferred (native) language before proceeding to the general
instructions. For readability, the lengthy instructions were
divided into multiple pages. The terms of use in the consent
form clarifies the purpose of the study, what data are gathered,
and how the user’s data will be handled. All of this complies
with the European data protection law (general data protection
regulation, GDPR). As the ICAT makes extensive use of ASR,
the second section (technical setup) ensures that the microphone
and speakers are properly configured. See Multimedia Appendix
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1 to check the final design of the ICAT homepage and technical
setup, respectively. The third section of the ICAT contains a
set of 5 short tasks, each including a test introduction and
task-specific instructions. These 5 tasks were modified versions
of the following:

• SCIP LL
• SCIP CR
• Wechsler Adult Intelligence Scale letter-number sequencing

(WAIS LNS)
• SCIP DLL

• SCIP VMT

All of the ICAT subtests were adapted from the SCIP except
for the third subtest that was replaced with a modified version
of WAIS LNS. A detailed description of each ICAT task can
be found in Table 1. The ICAT WAIS LNS and VMT subtests
present a practice set to the users beforehand. The practice sets
were adapted from their corresponding clinically administered
tests. In total, the 5 tasks of the ICAT take 20 to 30 min to
complete.

Table 1. Description of the internet-based cognitive assessment tool subtests.

Task 5: visuomotor

trackinge
Task 4: delayed list

learningd
Task 3: Wechsler Adult
Intelligence Scale let-

ter-number sequencingc

Task 2: consonant repe-

titionb
Task 1: list learningaTask features

Psychomotor speedDelayed verbal memory
(delayed recall)

Working memoryWorking memoryVerbal memory (imme-
diate recall)

Measure

Total number of correct
matching letters

Total number of correct-
ly recalled words

Total number of correct-
ly sorted sequences

Total number of correct-
ly recalled letters

Total number of correct-
ly recalled words for 3
trials

Scoring criteria

0–300–100–210–240–30Score range

YesNoYesNoNoPractice test

aAn audio file containing a list of 10 words is played to the patient. Following that, the patient recalls as many words as possible and speak them aloud.
This task is repeated 2 more times (3 trials in total) using the same word list.
bFirst, a sequence of letters is played via an audio file. Then, the patient should sort a set of numbers in descending order within a certain time period
(this task is only for delaying the response). After time is up, the patient recalls and types the letters that were read to him or her earlier.
cA set of letter-number sequences are displayed on the screen one by one. Each sequence is played via an audio file to the patient. Following that, the
patient sorts the numbers and letters of the sequence and types them.
dIn this task, the patient should recall the same words that were played in the first list learning task and speak them aloud. No audio is played for the
patient in this task.
eA table including 6 letters and their matching codes (a combination of circles and asterisks) is shown to the patient. In 30 seconds, the patient enters
the matching letters of 30 random codes one by one.

Modified Elements of the Screen for Cognitive
Impairment in Psychiatry Tasks

List Learning and Delayed List Learning Tasks: Utilizing
Speech Recognition
During the initial design of the ICAT LL and DLL subtests,
users were supposed to type the recalled words. However, typing
was not a suitable input technique for 3 reasons. First, typing
influences human visual short-term memory that may help the
users in practicing the words. Hence, practicing could
significantly increase the users’ scores in the second and third
trials of the LL task. Second, typing skill depends on the
people’s age and previous typing experience. Third, misspelled
words may cause a problem when scores are automatically
calculated. To clarify the latter, the SCIP administrator reads

the words aloud and gives scores based on what he or she hears
from the patient. Hence, giving a score to a misspelled word is
unclear. An editing option for the ASR transcript could allow
users to check and modify it after a recall phase. However, this
approach would display the words to the users, which would
then significantly improve their verbal scores because (1) all
trials of the LL subtest use the same set of words and (2) it
would not comply with the SCIP administration manual. By
considering these major issues, the alternative to typing was to
utilize ASR. Figure 1 shows the UI of the ICAT LL subtest
including a user’s sound wave received from the microphone
device during a recall phase. Figure 2 displays the number of
recalled words calculated based on the real-time ASR when the
user stops speaking. The ICAT DLL task has an interface and
functionality similar to the LL task except that no audio file is
played for the users.
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Figure 1. Screenshot of a sound wave received from a user’s microphone device during a recall phase of the internet-based cognitive assessment tool
list learning task.

Figure 2. Screenshot of the number of recalled words recognized by automatic speech recognition when the user stops speaking in the list learning
task.

Consonant Repetition Task: Sorting Numbers Using
Drag-and-Drop
During the SCIP CR task, the test administrator asks the patient
to count backwards by starting from a specific number for a
time period. We replaced this face-to-face countdown with a
sorting module in the ICAT CR subtest, where the users should

drag each number and drop it into its correct place. The numbers
displayed on the user’s screen should be placed in descending
order. Figure 3 shows a sample drag-and-drop task where users
should sort a sequence of numbers from 67 (highest) to 63
(lowest) within a certain time limit. Each sequence includes 5
numbers, and if the user sorts them correctly, the next set
automatically appears on the screen.
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Figure 3. Screenshot of the internet-based cognitive assessment tool consonant repetition task where the user should sort the numbers in descending
order by dragging and dropping the numbers into their correct place.

Wechsler Adult Intelligence Scale Letter-Number
Sequencing Task: Replacing Verbal Fluency
The SCIP subtest for the assessment of the VF requires the
patient to generate as many words as possible that start with a
specific letter, for example, F in 30 seconds. The third subtest

of the ICAT uses WAIS LNS because the SCIP VF task could
not be implemented adequately in the technology. Hence, VF
was replaced with WAIS LNS, which measures executive
function. Figure 4 shows an example of an incorrect response
to a stimulus during a practice test of the ICAT WAIS LNS
subtest.

Figure 4. The internet-based cognitive assessment tool Wechsler Adult Intelligence Scale letter-number sequencing task includes a practice set with
5 sequences to prepare the user for the actual test. This screenshot shows that a user sorted a sequence incorrectly.

JMIR Form Res 2019 | vol. 3 | iss. 3 | e13898 | p. 6http://formative.jmir.org/2019/3/e13898/
(page number not for citation purposes)

Hafiz et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX



Figure 5. The user interface of the internet-based cognitive assessment tool visuomotor tracking task, where the user should enter the matching letter
for each symbol as fast as possible.

Visuomotor Tracking Task: Changing Morse Codes
A table of 6 letters and their corresponding codes is written for
the patients during the test, and they are required to write down
the matching Morse code of 30 letters on a paper within 30
seconds. Owing to slow typing, especially among elderly people,
we decided to ask users to enter the matching letter of each code
in the ICAT VMT task. The Morse codes of the SCIP VMT
task were modified from dots and dashes into a different
combination of circles and asterisk symbols because of the
learning effect for those participants who are already familiar
with the Morse codes. The earlier design of this task can be
found in our previous publication [16]. According to the former
design of this task, a countdown clock was displayed to the user
during the test, but it was later removed to prevent distraction.
Figure 5 shows the current design of the ICAT VMT task.

Technical Specifications and Apparatus
The low-fidelity mock-up of the ICAT was created in the
Balsamiq desktop app [17]. The front end of the ICAT was built
using React (version 15.4.0) developed by Facebook
incorporation company. The Copenhagen Center for Health
Technology—CACHET Research Platform (CARP), which
implemented an open mobile health (mHealth) data storage unit
[18], was used as the data back end, and ICAT-specific
JavaScript object notation (JSON) schemas for the cognitive
functions were designed according to the open mHealth
specifications. Google’s ASR service [19] was used in the LL
and DLL subtests, which require Google Chrome to run the
application. CARP and the ICAT system are deployed on secure
servers at the Technical University of Denmark. For the
evaluation and feasibility studies, ICAT tests were administered
using a MacBook Pro (Retina 15 inch) laptop and an external
mouse for those who were not comfortable with the MacBook
touchpad. Pearson correlation analysis was performed in SPSS.

Usability and Feasibility Studies
The local ethics committee for the Mental Health Services,
Capital Region of Denmark, determined that their permission
for the study was not needed because it involved no testing of
biomedical products nor involved any invasive procedures. A
total of 2 studies were conducted: the first study was a usability
test, which we will refer to as Study 1, and the second is a
feasibility study, which will be called Study 2 in the rest of this
paper. Participants of both studies signed an informed consent
before the data collection. The informed consent was compliant
with the GDPR regulation to protect the personal data of the
users. In the following sections, we elaborate on the participants
and procedures of the studies individually.

Participants
All participants were healthy individuals. Study 1 included
healthy students and individuals from the campus of the
Technical University of Denmark and the city of Copenhagen.
The inclusion criterion was English or Danish language skills,
and the exclusion criterion was any hearing disability because
some of the ICAT tasks used audio files. Study 2 included
healthy participants who were recruited from blood banks at
hospitals within the Capital Region.

Procedure
The age and gender of the subjects were collected before
conducting both studies. Study 1 was conducted during June
and August 2018. The study leader (PH) first asked the native
language of the participant. Then, PH introduced the ICAT
system to the participant and briefly explained the purpose of
the study. The think-aloud method [20] was used during the
test. The participants were not supposed to receive assistance
during the test except for login issues. Study 2 was conducted
during August and September 2018. Each participant first
performed the Danish version of the SCIP (SCIP-D) as
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administered by research assistants in the Neurocognition and
Emotion in Affective Disorders group (AEJ, KO) and then
completed the ICAT test.

The usability of the ICAT UI was evaluated in both studies by
the poststudy system usability questionnaire (PSSUQ) [21].
Upon completing the ICAT test, the PSSUQ questionnaire was
sent to the subjects’ email via Google Form, and the study
leaders conducted a brief follow-up interview with the
participant. During the interview, the participants were asked
to mention any general or task-specific issues or suggestions.
Participants could also type further comments at the end of the
PSSUQ form. The voice of the users was recorded during the
ICAT test and the follow-up interviews. The manually generated
transcripts of the participants’ verbal responses during the ICAT
LL and DLL subtests were obtained from their recorded files.

Metrics

Usability Factors
PSSUQ includes 19 items, each rated on a 5-point Likert-type
scale ranging from 1 (strongly disagree) to 5 (strongly agree).
The psychometric factors of the PSSUQ are (1) overall usability,
(2) system usefulness, (3) information quality, and (4) interface
quality.

Word Error Rate
Previous studies used word error rate (WER) as the performance
measure of ASR [11,12,14]. If N is the total number of words,
D is the number of deletions, S is the number of substitutions,
and I is the number of insertions, then, WER = (S+D+I)/N.

WER is calculated by comparing ASR transcripts to the
manually generated transcripts for English and Danish responses
during the ICAT LL and DLL subtests.

Correlation Analysis
Pearson 2-tailed correlation analysis was performed at the .05
significance level for both the SCIP and ICAT subscores and
total scores of the participants of Study 2.

Data Exclusion
The ICAT data of the WAIS LNS subtest were lost for 3
participants of Study 2. The correlation analysis was, therefore,
performed for 16 participants.

Results

User Statistics
Study 1 included N=21 subjects—9 females and 12 males, with
an average age of 31 years (SD 12). Of the Danish-speaking
participants, 7 were native Danish speakers and 2 were citizens
of Copenhagen who had spoken Danish for at least 10 years.
As for the rest of the participants, 1 was a native English speaker
and 11 spoke other languages. Study 2 included N=19
subjects—13 females and 6 males, with an average age of 36
years (SD 15). All participants of this study had Danish as their
native language.

Internet-Based Cognitive Assessment Tool Test Scores
The scores obtained by the participants of both studies in tasks
1-5 are shown in Figures 6-10.
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Figure 6. Boxplots of the internet-based cognitive assessment tool and screen for cognitive impairment in psychiatry subscores of the participants of
both studies in task 1.

Figure 7. Boxplots of the internet-based cognitive assessment tool and screen for cognitive impairment in psychiatry subscores of the participants of
both studies in task 2.
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Figure 8. Boxplots of the internet-based cognitive assessment tool and screen for cognitive impairment in psychiatry subscores of the participants of
both studies in task 3.

Figure 9. Boxplots of the internet-based cognitive assessment tool and screen for cognitive impairment in psychiatry subscores of the participants of
both studies in task 4.
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Figure 10. Boxplots of the internet-based cognitive assessment tool and screen for cognitive impairment in psychiatry subscores of the participants of
both studies in task 5.

Usability and Feasibility Outcomes
Of the total number of subjects in both studies (N=40), 37
participants submitted the PSSUQ. The psychometric factors
of the PSSUQ results (Table 2) are reported for each study
separately because the objectives and procedures of those studies
were different. Moreover, the PSSUQ results are calculated for
Danish and English test participants. According to the reports
collected from the follow-up interview and additional comments
received via the PSSUQ form, some of the participants reported
some issues and gave some suggestions regarding the
instructions and the functionality of the ICAT tests. A total of
2 participants of Study 1 mentioned that there were too many
instructions in the ICAT LL task. A participant of Study 1 said
that the sorting module in the ICAT CR task was complicated
and thus not user friendly, and 2 participants of Study 1
mentioned that this module was problematic. In total, 2
participants of Study 2 mentioned that the ICAT CR task was
far easier than the SCIP CR task. A participant of Study 1
suggested replacing some of the textual information in the
instructions of the ICAT WAIS LNS task with an example. We
did not receive any comment on the ICAT DLL task, perhaps
because its functionality was similar to the ICAT LL task. For
the ICAT VMT task, a participant of Study 1 mentioned that

the time limit of this task was too short. A total of 2 participants
of Study 1 mentioned that the practice sets of the ICAT CR,
WAIS LNS, and VMT were helpful in understanding the tests.

The results of the correlation analysis between the SCIP-D and
ICAT subscores and total scores can be found in Table 3.

The analysis of ASR for the ICAT LL and DLL tasks are
reported in Table 4. As can be seen, the insertion (I) rate is 0
for both languages. The number of recalls versus recognition
accuracy of each English and Danish word are represented in
Figures 11 and 12, respectively. Overall, 332 words were
received from 12 English-speaking participants of Study 1 and
887 words were gathered from 28 Danish-speaking subjects (9
from Study 1 and 19 from Study 2). Note that the words which
are repeated more than once are included in Figures 11 and 12.
Of the English words, machine, milk, and coffee were the most
recalled and the least misinterpreted words, whereas bed and
hat were highly misinterpreted and were the least memorized
terms. The word garden was the most recalled word (45 times)
but its accuracy (77.78%) was not as high as the words
mentioned earlier. For the Danish word list, mælk and sømand
were correctly recognized for every response received, whereas
seng and brev were misinterpreted frequently.
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Table 2. Psychometric factors of poststudy system usability questionnaire for usability evaluation of the internet-based cognitive assessment tool
reported for both studies and testing languages.

English test (N=12),

mean (SD)

Danish test (N=25),

mean (SD)

Study 2 (N=16),

mean (SD)

Study 1 (N=21),

mean (SD)

Factor

4.19 (0.45)4.25 (0.45)4.36 (0.42)4.12 (0.46)Overall score

4.35 (0.45)4.39 (0.48)4.52 (0.41)4.23 (0.53)System usage

3.84 (0.64)4.11 (0.55)4.24 (0.58)3.86 (0.55)Information quality

4.50 (0.45)4.16 (0.57)4.25 (0.49)4.28 (0.62)Interface quality

Table 3. Results of correlation analysis applied to the screen for cognitive impairment in psychiatry (Danish version) and internet-based cognitive
assessment tool scores.

P valuePearson correlation
coefficient (r)

Internet-based cognitive
assessment tool task

Screen for cognitive impairment in
psychiatry–Danish version task

Cognitive domain

.0130.56LLdVLTc-IVerbal learning (SCIP-2a)—using ASRb transcripts

.0020.67LLVLT-IVerbal learning (SCIP-3e)—using ASR transcripts

.0020.66LLVLT-IVerbal learning (SCIP-3)—using manual transcripts

.63−0.12CRgWMTfWorking memory (SCIP-2)

.650.11CRWMTWorking memory (SCIP-3)

.270.29Wechsler adult intelli-
gence letter-number se-
quencing

Verbal fluency testExecutive function (SCIP-3)

.150.34DLLiVLT-DhDelayed recall (SCIP-3)—using ASR transcripts

.0090.58DLLVLT-DDelayed recall (SCIP-3)—using manual transcripts

.0010.71VMTVMTjPsychomotor speed (SCIP-3)

.0090.63TotalTotalTotal score

aSCIP-2: Screen for Cognitive Impairment in Psychiatry–version 2.
bASR: automatic speech recognition.
cVLT-I: verbal learning test-immediate.
dLL: list learning.
eSCIP-3: Screen for Cognitive Impairment in Psychiatry–version 3.
fWMT: working memory test.
gCR: Consonant Repetition.
hVLT-D: verbal learning test–delayed.
iDLL: delayed list learning.
jVMT: visuomotor tracking.

Table 4. Performance evaluation of automatic speech recognition in internet-based cognitive assessment tool task 1 (list learning) and task 4 (delayed
list learning).

Deletion error ratio, %Substitution error ratio, %Average word error rateParticipants in task 4, nParticipants in task 1, nLanguage

22.0377.9717.7711a12English

7.0292.986.3127b28Danish

a1 English-speaking participant accidentally clicked on the stop button in the internet-based cognitive assessment tool delayed list learning task before
repeating the recalled words.
b1 Danish participant could not remember any word in the internet-based cognitive assessment tool delayed list learning task.
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Figure 11. Total number of recalls versus the recognition accuracy of the English words in task 1 (list learning) and task 4 (delayed list learning).

Figure 12. Total number of recalls versus the recognition accuracy of the Danish words in task 1 (list learning) and task 4 (delayed list learning).

Discussion

Principal Findings
The ICAT is the first Web-based cognitive screening tool for
affective disorders, designed based on the SCIP as a

gold-standard tool, and it uses ASR to assess immediate and
delayed verbal recall. The key findings were that the ICAT was
easy to use, had promising feasibility outcomes in measuring
key cognitive functions, and had acceptable concurrent validity.
Specifically, the ICAT and SCIP-3 total scores correlated to a
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moderate to strong degree (r=0.63; P=.009), and the subtests,
namely, LL and VMT, correlated to a moderate (r=0.67; P=.002)
and strong (r=0.71; P=.001) degree, respectively. The usability
evaluation of the ICAT system revealed high scores above 4
for system usefulness, interface quality, and overall usage. The
information quality was rated lower by the English-speaking
participants (3.84), compared with the Danish participants
(4.11), which may indicate that the English instructions of the
ICAT tests should be revised. The insignificant error rates of
ASR, as calculated for the Danish and English responses (6.3%
and 17.8%, respectively), indicate a promising future of ASR,
particularly for Danish-speaking patients who will be the
primary users of the ICAT. According to the results obtained
from the recent THINC-it validity study on healthy subjects
[10], the 2 cognitive games called Trails (executive function,
r=0.74) and Codebreaker (attention, working memory, and
executive function, r=0.63) revealed strong to moderate
convergent validity, respectively, whereas Symbol Check
(working memory, r=0.19) and Spotter (attention, r=0.44)
showed low validity. In our study, the ICAT subtest for
psychomotor speed also showed moderate concurrent validity,
as did the subtest for verbal memory. However, the subtests
tapping into working memory and executive skills did not
correlate with the original SCIP tasks, which might be because
of a suboptimal design of these tests or the small sample size.
The ICAT may be an alternative to the THINC-it, which is the
most recent cognitive screening tool developed specifically for
UD patients. The analysis between the total scores of the SCIP
and ICAT showed moderate to strong correlations (r=0.63) in
contrast to the moderate concurrent validity (r=0.42) of the
THINC-it composite. The higher concurrent validity and the
automatic real-time verbal memory assessment via ASR are
thus the advantages of the ICAT.

The lack of statistical significance between task 2 of the SCIP
and ICAT might be because of the replacement of the oral
countdown task with the sorting module because (1) 2
participants in Study 2 mentioned that the ICAT CR subtest
was easier compared with the paper-based SCIP CR and (2)
participants received high scores in the ICAT CR subtest for
both studies (Figure 7), which may indicate a ceiling effect for
this task. The insignificant coefficients may indicate that the
participants’ cognitive load in the ICAT sorting module was
less than the countdown task in the SCIP CR subtest. Hence,
the ICAT will require additional modifications before
conducting a larger validation study of healthy individuals and
patients with affective disorders.

The lack of statistical significance in the DLL task was
unexpected because the ASR component was the same for both
the ICAT LL and DLL subtests. When doing a poststudy
analysis of the recorded data, we found that poor recognition
was mainly rooted in 2 factors: (1) the subject did very fast
recalls of the words and uttered them right after each other, with
no or limited pauses in-between each word or (2) the subject
spoke very quietly and far from the microphone. Therefore, the
lack of a statistically significant correlation between the ICAT
and SCIP DLL tasks might be because of the various ways in
which the participants repeated the recalled words. It was
previously shown that speech recognition did not perform well

for non-native speakers [22], which perhaps justified the higher
WER of the English responses for the participants of Study 1
(11 non-native English speakers). The analysis of the ASR of
the English-speaking subjects would be more robust if we could
recruit more English-speaking participants, especially native
speakers. The words which received the lowest accuracy (bed
and hat from the English list and seng and brev from the Danish
list) should be replaced with other words provided in the SCIP
manual. The lower ratio of deletion error indicated that ASR
received most of the verbal responses in the ICAT LL and DLL
subtests.

Digitizing validated paper-and-pencil tests requires effort in
prototyping, iterative design, implementation, and evaluation.
The ICAT is the first Web-based application designed based
on the SCIP as a gold-standard cognitive test battery. Moreover,
to our knowledge, none of the existing digital cognitive
assessment tools provides a real-time assessment of verbal
memory. Taking it all together, the ICAT is a novel digital tool
for cognitive assessment. The feasibility of the ICAT reported
in this study indicates a promising use for out-of-clinical
assessment. The ultimate goal of our research is to introduce
the ICAT as a brief cognitive assessment tool for remote
administration and the assessment of affective disorder patients.

Implications for Future Development
On the basis of our observations, the sorting module in the ICAT
CR subtest was difficult to use for most of the participants. In
addition to this issue, the analysis did not show significant
correlations between the SCIP and ICAT CR subtest.
Consequently, the sorting module in the ICAT should be
redesigned to resemble the SCIP CR task better, for example,
with a speech interface, because changing the type of the
interface was perhaps the primary reason for the insignificant
correlation coefficient.

To mitigate the speech recognition problems, the ICAT should
incorporate detailed instructions and tutorials that teach and
train users how to speak loudly, clearly, and close to the
microphone. Moreover, the speech recognition should be able
to detect when users repeat the words too fast or quietly and
then instruct them to slow down or speak more clearly. The
goal is to enable the ICAT to be administered by the patient,
and hence, a strong emphasis should be placed on providing
self-explanatory instructions and tutorials to the users.

Limitations
This is the feasibility study of the ICAT with a limited number
of participants. Despite the promising results, there are a set of
limitations of the study. First, the evaluation of the ASR for
English-speaking participants was limited because of the few
number of native English speakers. We did not evaluate the
English proficiency of the participants of Study 1 to examine
whether or not the ASR recognition error was because of their
English proficiency level. Second, the think-aloud method was
not practical, especially during the ICAT LL and DLL subtests
in which users repeated their recalled words. As cognitive tests
demand mental effort, it was hard for the participants to
verbalize their thoughts during the test. Hence, an implicit or
objective approach for recognizing participants’ interaction with

JMIR Form Res 2019 | vol. 3 | iss. 3 | e13898 | p. 14http://formative.jmir.org/2019/3/e13898/
(page number not for citation purposes)

Hafiz et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX



the system throughout the test would be more practical. Third,
the nonsignificant coefficients of the executive function and
working memory according to Pearson correlation analysis
might be because of the modest sample size of Study 2. Fourth,
the SCIP VF task and ICAT WAIS LNS task do not translate
directly into exactly the same aspect of executive functions. VF
performance has been found to correlate with fluid reasoning
and shifting aspects of executive function [23], whereas WAIS
LNS more specifically measures working memory [24]. It is
worth mentioning that currently, Google’s ASR converts any
arbitrary word to the closest meaningful word. Hence, the
rationale for replacing the VF task with the WAIS LNS task in
the ICAT was the possibility of misinterpretation caused by
using the ASR technology. Finally, this pilot study included
only healthy control participants. The ICAT is intended to be
used for cognition screening in patients with mood disorders.

On the basis of the preliminary findings from this report, our
group is, therefore, in the process of validating a slightly revised
version of the ICAT in patients with mood disorders.

Conclusions
The ICAT is a patient-administered, Web-based tool to screen
for cognitive impairment in patients with affective disorders.
The results indicate that the ICAT is a good initial step toward
building a digital modified cognitive assessment tool based on
the SCIP. The high values of the psychometric factors derived
from the PSSUQ scores present the ICAT as a usable and useful
tool. The use of real-time ASR during the immediate and
delayed recall gave a WER of 17.8% and 6.3% for English and
Danish responses, respectively. On the basis of the results and
insights derived from this study, future optimization and further
validation of the ICAT are now warranted.
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ABSTRACT
Cognitive functioning is a crucial aspect of the individual’s mental
health and it affects human’s daily activities. We have developed the
Ubiquitous Cognitive Assessment Tool (UbiCAT) including three
cognitive assessment apps on the Fitbit smartwatch. In this paper,
we present the design and formative evaluation of the UbiCAT apps
conducted with 5 participants who had a background in design
and/or human-computer interaction. Moreover, we investigated
the adoption of the wearable devices by our participants.

CCS CONCEPTS
•Human-centered computing→ Ubiquitous and mobile devices;

KEYWORDS
cognition; cognitive function; wearable technology; application;
stroop test
ACM Reference Format:
Pegah Hafiz & Jakob E. Bardram. 2019. Design and Formative Evaluation
of Cognitive Assessment Apps for Wearable Technologies. In Adjunct Pro-
ceedings of the 2019 ACM International Joint Conference on Pervasive and
Ubiquitous Computing and the 2019 International Symposium on Wearable
Computers (UbiComp/ISWC ’19 Adjunct), September 9–13, 2019, London,
United Kingdom. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3341162.3347077

1 INTRODUCTION
Cognition is a core function to the human daily activities. Cogni-
tive measures include working memory, verbal memory, attention,
psychomotor speed and executive function. Human cognition may
fluctuate during the day. For example, an individual may have a
better attention in the morning. The cognitive fluctuation level
may vary among individuals depending on several factors includ-
ing their age and mental workload. Hence, a personalized model
of cognition seems practical for the individuals to reflect on their
cognitive performance during the day.

Human cognition and alertness have been previously inves-
tigated via mobile apps. Dingler et al. [4] assessed alertness us-
ing three short tasks, namely Psychomotor Vigilance Task (PVT),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UbiComp/ISWC ’19 Adjunct, September 9–13, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6869-8/19/09. . . $15.00
https://doi.org/10.1145/3341162.3347077

Go/No-Go (GNG), and Multiple Object Tracking (MOT). Abdul-
lah et al. [1] conducted a study with 20 participants to analyze
the fluctuation in individuals’ alertness using PVT mobile app
called PVT-Touch. Their findings showed that alertness can vary
by 30% depending on the timing of the day. The standard PVT
test takes 10 minutes [3] but both studies used a short version of
the PVT to prevent participants’ fatigue. The Cognition Kit app
(https://www.cognitionkit.com/) is designed for the Apple Watch
to assess mood and cognition in clinical context. The cognitive test
used in this app is the ‘N-back’ test [6].

The Ubiquitous Cognitive Assessment Tool (UbiCAT) includes
three cognitive assessment apps as well as mobile sensor data col-
lection using Fitbit API. The UbiCAT cognitive assessment apps
are short tests to conduct a research and assess cognition in the
wild. Through UbiCAT project, we will collect two types of data: (i)
cognitive performance of the individuals which are assessed via the
apps and (ii) mobile sensor data including physical activity, heart
rate, sleep, and mobility data. The ultimate goal of the UbiCAT
project is to find correlation between individuals’ cognitive per-
formance and objective mobile data. The objectives of this paper
are two-folded. First, the design and formative evaluation results
of the UbiCAT apps will be presented. Second, the challenges re-
garding the wearable technologies for cognitive assessment will be
discussed.

2 DESIGN AND STUDY
The UbiCAT apps are designed in a user-centered design process
including 3 expert researchers who hold a PhD in computer science,
experimental psychology and cognitive science. The design of the
UbiCAT apps was revised after several meetings with the experts.
In this section, we will first introduce the UbiCAT apps. Then, the
formative evaluation of the apps will be explained in detail.

2.1 Overview of the Apps
The UbiCAT includes three apps namely Color Test (CT), Letter
Test (LT) and Arrow Test (AT). Each app provides a set of short
instructions as well as the test itself. All tests are timed and users
should respond as fast as possible. The apps are implemented on
the FitBit Ionic smartwatch. The CT is adapted from the Stroop
color-word test [5], which presents a set of color names one by one,
each with either the same (congruent) or different (incongruent) ink
color. Figure 1 shows a screenshot of the CT with an incongruent
stimuli. Users are presented with four colors to select the correct ink
color of the stimuli. The Stroop test examines sustained attention
and the performance measures are the Stroop effect and average
response time.
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Figure 1: A screenshot of the Color test adapted from the
Stroop color-word test

The LT is adapted from the ‘N-back’ test, where the stimulus are
a set of letters shown one by one and the user is asked to memorize
N letter back in the sequence. ‘N-back’ is used by psychologists
and psychiatrists to assess working memory. Figure 2 shows a
screenshot of the LT where N is 1 and users should tap on either
‘Yes’ if the current letter (‘T’) is the same as one letter showed back
in the sequence or ‘No’ otherwise. This test becomes more difficult
as N increases.

Figure 2: A screenshot of the Letter test adapted from the
N-back test

Choice reaction test has variations such as the GNG and stop
signal test. A computer-based four-choice reaction time test is devel-
oped and tested on adults by Deary et al. [2]. The AT is a two-choice

reaction time test. In this test, each stimulus is an arrow pointing
either to the left or right side. A screenshot of a sample AT test is
shown in Figure 3. The users are required to tap on the right/left
app button in case the arrow points to the right/left.

Figure 3: A screenshot of the Arrow test adapted from the
two-choice reaction time test

2.2 Formative Evaluation
The aim of this study was to (i) evaluate app design and improve the
user interface of the apps and (ii) explore the adoption of wearable
technologies. The participants and the procedure of this study are
presented below.

2.2.1 Participants. The participants of this study were selected
from the researchers who had a background in app design and/or
human-computer interaction at Technical University of Denmark.

2.2.2 Procedure. A consent form was handed to the participants
before beginning the study. Then, we asked the participants about
their experience of using a wearable device, the duration, and rea-
son to stop using it (if any). The procedure to work with each app
involved three steps. First, the participant was asked to wear the
FitBit smartwatch and launch the app, read the test instructions,
take a test, and view his/her score. We asked the participants to ver-
balize their thought as in ‘think-aloud’ method. Then, participants
were asked to fill in a questionnaire form including 7 questions. We
selected relevant questions of a reliable and objective tool called
Mobile App Rating Scale (MARS) [7] to evaluate UbiCAT apps.
The chosen questions were taken from three sections of the MARS
namely aesthetics (3 questions), functionality (2 questions) and in-
formation (2 questions). The 5-point rating scale was used to give
a score to the participants’ response to each question. Finally, a
semi-structured interview was conducted with each participant.
The participants’ interaction with the apps and the interviews were
recorded.
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Table 1: Usability results of the UbiCAT apps

Aesthetics Functionality Information

Arrow Test 3.93 ± .61 4.6 4.4
Letter Test 4 ± .2 3.3 ± 1.84 2.6
Color Test 4 ± .2 4.2 ± .28 3.9 ± .14

3 RESULTS
Five people participated in this study (1 female, 4 male; age=28 ±
4.35), 1 with a PhD degree, 3 PhD students and 1 Master’s degree
student. The experiment took approximately 1 hour per participant.
The interviews with the participants were transcribed after the
experiment. The video recordings were also checked multiple times
to identify where participants struggled with the apps.

3.1 Usability
Table 1 shows the usability results for the UbiCAT apps reported
separately in terms of aesthetics, functionality and information.
The range of scores in Table 1 is from 1 (lowest) to 5 (highest).

3.2 Wearable Technology Adoption
We investigated whether our participants use a wearable device or
not. Of the 5 participants, 3 of them did not need to use a wearable
activity tracker:

"I feel a bit overwhelmed when I have too much data about myself.
I prefer not to have numbers to define myself. I do not even use a
normal watch" (P1).

"[I have used] only normal watches. I have no need for it. No need
to track the data" (P2).

"I never felt I have to. I already tracked the things that I wanted on
my smartphone on the street or park and I do not think I need it" (P3).

Two of the participants had already used at least one wearable
device for various time periods: "It (Apple watch) did not really
give me anything. It was too obtrusive and pervasive. You are always
reminded of something. A classic mechanical watch does not disturb
me since it does not collect data and it is passive" (P4 used Basic Pick
and Apple Watch for several months).

"I used Nokia smartwatch for six months but I felt I was motivated
without it" (P5 used Nokia steel HR).

3.3 Feedback
UbiCAT apps give feedback to the participants when a user re-
sponds to a stimuli. A sample screenshot of the feedback to a cor-
rect response in the CT test is shown in Figure 4. We received the
following comment regarding the feedback to the user’s response:

"I am not sure how feedback affects my performance. How could
it affect? If it indicates that I entered a response...for couple of times
it distracted me to think if I was right or wrong. It is not about the
amount of the feedback. Cognitively, I might be doing something else.
Maybe I want to reduce my error rate instead of responding as fast as
possible" (P4).

The rest of the participants did not report any issue in regard to
the app feedbacks during the tests.

Figure 4: A screenshot of a feedback to a correct response in
the Color test app

3.4 Test Score
All UbiCAT apps use the same user interface to display a score after
the test. Upon finishing a test, the number of correct responses
is displayed on the smartwatch screen. During the user-centered
design meetings, we decided to make it as simple as possible due
to the negative impact of the low score on the individual’s mood.
The following question was asked during the interviews: "Did your
score at the end of the test help you to understand your performance?
If yes, how?"

All of the participants mentioned that a maximum score is es-
sential for them to understand their performance, for instance,
24 (number of correct responses) out of 30 (maximum score). We
perceived that quantifying user’s performance is essential.

4 CONCLUSION AND FUTUREWORK
The usability study showed promising outcomes in terms of aes-
thetics, functionality and information of the UbiAT apps. The score
of the information section for the LT gave average score which
indicates that the instruction set of this test should be improved.
Through this study, we assessed the usability of the UbiCAT apps
and investigated the participants’ interaction with the wearable
devices. The participants’ comments regarding wearable devices
will help us in improving the usability of the wearable devices in
particular smartwatches. We have planned to conduct a study to
evaluate the UbiCAT apps with more participants.
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Abstract

Background: Cognitive functioning plays a significant role in individuals’mental health, since fluctuations in memory, attention,
and executive functions influence their daily task performance. Existing digital cognitive assessment tools cannot be administered
in the wild and their test sets are not brief enough to capture frequent fluctuations throughout the day. The ubiquitous availability
of mobile and wearable devices may allow their incorporation into a suitable platform for real-world cognitive assessment.

Objective: The aims of this study were threefold: (1) to evaluate a smartwatch-based tool for the assessment of cognitive
performance, (2) to investigate the usability of this tool, and (3) to understand participants’ perceptions regarding the application
of a smartwatch in cognitive assessment.

Methods: We built the Ubiquitous Cognitive Assessment Tool (UbiCAT) on a smartwatch-based platform. UbiCAT implements
three cognitive tests—an Arrow test, a Letter test, and a Color test—adapted from the two-choice reaction-time, N-back, and
Stroop tests, respectively. These tests were designed together with domain experts. We evaluated the UbiCAT test measures
against standard computer-based tests with 21 healthy adults by applying statistical analyses significant at the 95% level. Usability
testing for each UbiCAT app was performed using the Mobile App Rating Scale (MARS) questionnaire. The NASA-TLX (Task
Load Index) questionnaire was used to measure cognitive workload during the N-back test. Participants rated perceived discomfort
of wearing a smartwatch during the tests using a 7-point Likert scale. Upon finishing the experiment, an interview was conducted
with each participant. The interviews were transcribed and semantic analysis was performed to group the findings.

Results: Pearson correlation analysis between the total correct responses obtained from the UbiCAT and the computer-based
tests revealed a significant strong correlation (r=.78, P<.001). One-way analysis of variance (ANOVA) showed a significant
effect of the N-back difficulty level on the participants' performance measures. The study also demonstrated usability ratings
above 4 out of 5 in terms of aesthetics, functionality, and information. Low discomfort (<3 out of 7) was reported by our participants
after using the UbiCAT. Seven themes were extracted from the transcripts of the interviews conducted with our participants.

Conclusions: UbiCAT is a smartwatch-based tool that assesses three key cognitive domains. Usability ratings showed that
participants were engaged with the UbiCAT tests and did not feel any discomfort. The majority of the participants were interested
in using the UbiCAT, although some preferred computer-based tests, which might be due to the widespread use of personal
computers. The UbiCAT can be administered in the wild with mentally ill patients to assess their attention, working memory,
and executive function.

(JMIR Mhealth Uhealth 2020;8(6):e17506) doi: 10.2196/17506
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Introduction

Background
Wearable devices provide an opportunity for users to collect
their personal data. A recent empirical study determined that
fashnology, individuals’ attitudes, and risk context were the
most influential factors in adoption of wearable devices for
quantified self-tracking purposes [1]. Wrist-worn devices,
particularly smartwatches, are becoming more popular.
Usefulness and visibility are the two major reasons that people
adopt a smartwatch [2]. Smartwatches are lightweight and
portable, which makes them easy for people to wear and use in
almost every context, while some people may not carry their
smartphones when they go for a walk or run. Moreover,
platforms, including Fitbit OS (operating system), Apple
Watch’s watchOS, and Google's Wear OS, support building
stand-alone apps that run without connecting to a smartphone.
The application programming interface (API) of some
smartwatches allow sensor data collection in the wild, including
physiological and behavioral data, such as sleep, heart rate
variability, mobility, and location. King and Saffarzadeh
reviewed the application of smartwatches in 27 health-related
studies [3]. Their findings show that activity monitoring, chronic
disease self-management, nursing or home-based care, and
health care education are the current smartwatch-based
applications in health care. Hence, smartwatches are suitable
devices to assist researchers in developing stand-alone health
care–related apps, as well as for collecting sensor data in the
wild.

Cognitive functioning is a crucial aspect of mental health and
determines the quality of individuals’daily activities. According
to Lyon et al, impairment in attention, memory, and executive
function may cause problems at school or work [4]. Moreover,
previous studies have shown daily fluctuations in alertness [5],
working memory [6], and executive skills [7]. Quantifying
cognitive performance may help individuals reflect on their
own fluctuations. For instance, students can track their alertness
levels to select appropriate times of day to schedule their
attention-demanding tasks. Besides healthy individuals, mentally
ill patients also suffer from cognitive dysfunction, such as
dementia [8], bipolar disorder [9,10], attention deficit
hyperactivity disorder (ADHD) [11], and schizophrenia [12].
Monitoring cognitive performance can thus help patients in
scheduling their follow-up visits in case of significant
degradation in their cognitive functioning, as it may indicate
the onset of their illness.

Digital cognitive screening tools have been designed for
different technological platforms, targeting both mentally ill
patients and healthy individuals. The Cambridge
Neuropsychological Test Automated Battery (CANTAB) Mobile
[13], the Internet-based Cognitive Assessment Tool (ICAT)
[14], the THINC-integrated tool (THINC-it) [15], MyCognition
Quotient (MyCQ) [16], CogState [17], and the Brief Assessment
of Cognition in Schizophrenia (BACS) [18] are some examples
of the validated cognitive test batteries administered on a
computer or tablet. The existing cognitive test batteries are
administered at a certain time in a controlled condition. Such

cognitive tools are not feasible for long-term frequent
monitoring and assessment of cognitive functioning, since (1)
it takes at least 15 minutes to complete a set of tests and (2) the
tests are taken in a controlled condition without any distraction,
for example, a silent room. However, according to previous
studies [19,20], it is crucial to assess cognitive functioning in
real-life settings for frequent and continuous monitoring of the
individuals.

Ecological momentary assessment (EMA) [21] and the
experience-sampling method (ESM) [22] were developed to
overcome the bias in delivering retrospective self-reports by
study participants. Both methodologies provide an opportunity
to collect psychological and clinical measures of behavior,
cognition, and emotion in situ [23]. Unobtrusive cognitive tests
instead of subjective ratings may improve the accuracy of EMA
and the ESM in longitudinal studies.

Taking together, a ubiquitous tool providing continuous and
frequent assessment of the individuals' in-the-wild cognitive
performance would be an important approach for real-world
psychometric research and diagnosis.

Previous Studies

Overview
The application of neuropsychological tests on mobile platforms
previously showed promising outcomes [19,24]. In this section,
an overview of the previous studies on digital cognitive tests
developed for smartphones and smartwatches is presented.
Commercial cognitive training mobile apps with no evidence
of validity were excluded.

Smartphone-Based Tools
A research platform called iVitality includes a smartphone app
with five cognitive tests, namely Memory-Word, Trail Making,
Stroop, Reaction Time, and N-back. Jongstra et al conducted a
study with 151 healthy individuals to examine feasibility and
validity of the iVitality platform over 6 months [25]. According
to the results of their validation study, the Stroop and Trail
Making tests correlated moderately (r=.5 and r=.4, respectively)
with the conventional tests. The authors did not validate the rest
of the cognitive tests against their corresponding baseline
measures, due to the difference between the raw scores of the
smartphone tests and conventional tests. The Color-Shape Test
(CST) is a smartphone-based app designed to measure cognitive
processing speed and attention in the elderly population. The
validity of the CST was examined against the Uniform Data
Set (UDS) neuropsychological test battery in an experiment by
Brouillette et al with 57 individuals who did not have dementia
[26]. Their findings showed a significant correlation between
CST scores and global cognition with the Mini-Mental State
Examination (r=.52), Digit Span (r=.43), the Trail Making test
(r=-.65), and the Digit Symbol test (r=.51). However, the CST
scores did not correlate with verbal fluency tasks. Tieges et al
conducted a study with 20 delirium patients to assess the
feasibility of a smartphone-based app called the DelApp against
a computerized device called the Edinburgh Delirium Test Box
(EDTB) [27]. The authors found no significant difference
between the scores of the DelApp and the EDTB (P=.41). Pal
et al used a mobile app called the Neurophone, which includes
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N-back, Stop Signal, and Stroop tests, to evaluate the cognitive
performance of 20 healthy and 16 methamphetamine users
against a validated computerized tool [28]. The Stop Signal test
results could not be compared to the computerized tests due to
the different parameters used by phone- and computer-based
tests, while the scores of the N-back test on both platforms were
similar. The authors used speech recognition in the Stroop test
of their mobile app to detect the correct response time (RT).
However, due to the inaccuracy of the speech recognition, the
test results of the computer- and phone-based tests were not
comparable. Dingler et al developed a smartphone-based tool
including three short cognitive tasks, namely the psychomotor
vigilance task (PVT), the go/no-go task, and the multiple object
tracking task [29]. The authors conducted an in-the-wild study
to assess the alertness of 12 participants over 9 days, on average.
Although the short version of the PVT was validated before by
Basner et al [30], the go/no-go and the multiple object tracking
tasks were not tested against a computer- or paper-based
neuropsychological test.

Smartwatch-Based Tool
Cormack et al developed a tool called the Cognition Kit for the
Apple Watch, including a variation of the N-back test adapted
from CANTAB's N-back along with self-reports of mood using
a short questionnaire [31]. The authors conducted feasibility
and validation studies of the Cognition Kit with 30 depressed
patients. According to their validation study results, N-back test
performance correlated with CANTAB’s rapid visual
information processing task (P≤.01, r=.5).

Gaps in the Literature
The study conducted by Dingler et al [29] was the only work
that introduced a smartphone-based toolkit for doing research
on in situ alertness. The rest of the smartphone-based apps were
developed to deliver personal cognitive assessment tools without
collecting mobile data. So far, the Cognition Kit is the only
smartwatch-based tool exclusively assessing working memory
through the N-back test. A limited number of cognitive measures
provided by mobile tools, as well as a lack of studies in
exploring the potential of smartwatches in measuring in-the-wild
cognition, led us to build the Ubiquitous Cognitive Assessment
Tool (UbiCAT). Our tool has three smartwatch-based cognitive
tests measuring three key cognitive domains, namely attention,
working memory, and executive function. The UbiCAT tests,
along with smartwatch-based sensor data collection, allow
researchers to analyze associations between individuals’
cognitive, physiological, and behavioral features toward
identifying digital biomarkers of human cognitive functioning
and conducting psychometric research in the wild.

Goals of This Study
Through this study, we will (1) evaluate the cognitive measures
of the UbiCAT apps against state-of-the-art computer-based
tools, (2) assess the usability of the UbiCAT tests, and (3)
understand participants' perceptions about smartwatch apps for
assessing cognition.

Methods

In this section, we first provide details of the design and
functionality of the UbiCAT apps; we then explain the study in
detail.

Design Methods

Overview
The UbiCAT includes three smartwatch-based apps; each is a
cognitive test that measures a certain cognitive domain. We
considered three inclusion criteria for the UbiCAT tests: (1) the
tests should measure memory, attention, and executive function,
since fluctuations in these domains may negatively affect
individuals’ work or study performance, (2) each test should
be able to be adapted for the limited screen size of the
smartwatch, and (3) each test should not require a microphone
or speaker, which are essential in verbal recall tests. Taking
these together, we selected a two-choice reaction-time test [32]
to measure attention, the Stroop color-word test [33] to measure
attention and executive function, and the N-back test [34] to
examine working memory. The three tests contribute to short
assessments, as it takes approximately 5 minutes to take the
UbiCAT tests.

Three experts who each hold a doctoral degree within cognitive
psychology and human-computer interaction were involved in
the design process. First, the initial design of the aforementioned
tests was sketched on paper. Based on detailed analysis of the
available smartwatch hardware platforms, the Fitbit Ionic device
was selected. Second, functional prototypes for each test were
implemented separately and tested on the smartwatch.
Individuals with different finger sizes were asked to work with
the apps to adjust the size of the app buttons and text. The Fitbit
design guidelines were also considered during the prototyping
phase. The components of the UbiCAT apps were revised
several times after meetings with the domain experts. Overall,
the design and implementation process took 4 months. Third,
a formative evaluation study of the earlier versions of the
UbiCAT apps was conducted with 5 participants aimed to
examine the usability of the apps and understand participants'
adoption of wrist-worn devices [35]. The findings of the
formative evaluation study helped us improve the user interface
and functionality of the apps.

The UbiCAT Cognitive Tests

Overview

Three stand-alone apps were built for the Fitbit smartwatch.
Each test takes less than 2 minutes to complete. We selected
the following names for the UbiCAT apps to simplify
memorizing the apps for the users: Arrow test (two-choice
reaction-time test), Letter test (N-back test), and Color test
(Stroop color-word test). An outline of the UbiCAT apps is
presented in the following sections and snapshots are shown in
Figures 1-3.

Arrow Test

The Arrow test presents a sequence of rightward or leftward
arrows to the user one by one. The user is required to select the
correct direction of each arrow by tapping on either the left or
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right app button. The position of each arrow can be on the left
or right side of the screen. Figure 1 shows a snapshot of the
Arrow test where the correct response to this stimulus is the
app button on the right side.

Letter Test

In the Letter test, a sequence of English alphabet letters are
displayed to the user. Depending on the value of N, the user is
supposed to determine whether the current stimulus is the same
as the N letter, or N letters, back in the sequence or not. The
value of N determines the difficulty level and is unchanged

during an entire trial. Figure 2 shows a snapshot of the 2-back
test, where N is equal to 2.

Color Test

The names of four colors, for example RED, with either the
same or different ink color are the stimuli of the Color test. A
congruent stimulus has the same color as its meaning, while an
incongruent stimulus has a different color. The task of the user
is to select the ink color of each stimulus by tapping on the app
button labeled with the color name. Figure 3 presents an
incongruent stimulus. Here, the correct response is the GREEN
app button in the bottom-left corner.

Figure 1. A sample test taken from the UbiCAT (Ubiquitous Cognitive Assessment Tool) Arrow test. The stimuli is the rightward arrow and the app
buttons on both sides capture the direction of the arrow.

Figure 2. A sample test taken from the UbiCAT (Ubiquitous Cognitive Assessment Tool) Letter test, 2-back task. The participant should indicate
whether “T” appeared 2 letters back in the sequence or not.
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Figure 3. A sample test taken from the UbiCAT (Ubiquitous Cognitive Assessment Tool) Color test, displaying an incongruent stimuli.

Technical Specifications and Apparatus
Two validated computer-based tools, PsyToolkit [36,37] and
the THINC-it application [15], were run on a MacBook Pro
(15-inch Retina display, Apple Inc) during the study. A Fitbit
Ionic smartwatch (1.42-inch screen, 348 × 250 pixel resolution)
was used to run the UbiCAT apps. The figures in this paper
were created in RStudio using the ggplot2 package [38].

Ethical Approval
The study protocol and system description were sent for
approval by the Danish Ethical Committee. The study was
classified as a nonclinical survey study and, hence, exempted
for ethical approval (Journal-nr.: H-19086232).

Participant Recruitment
We recruited 21 healthy adults who lived in Copenhagen,
Denmark, using a snowball sampling method [39]. All
participants had sufficient English-language skills to read the

test instructions. Participants were not eligible if they had a
history of mental illness, were aged over 50 years, or had color
blindness.

Procedure

Overview
All of the test sessions were performed in a silent room at the
Technical University of Denmark. The study session lasted
60-75 minutes per participant. Participants were compensated
with a gift card worth an amount equal to US $15 that was given
at the end of the study. Prior to an experiment, the study leader
(PH) informed the participant to ask for a short break between
the testing sessions if needed. We measured each participant’s
perceived wrist discomfort after completing each of the UbiCAT
tests using a 7-point Likert scale. Figure 4 shows a participant
completing a UbiCAT test on the Fitbit smartwatch. A detailed
description of the experiment is presented below.

Figure 4. A study participant completing a UbiCAT (Ubiquitous Cognitive Assessment Tool) test via a Fitbit Ionic smartwatch. The laptop was used
to administer computer-based tests.
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First, a general description of the study was given to the
participant. Second, a consent form was handed to the
participant. Upon signing the consent form, background
information from the participant was collected, including age,
gender, educational background, and preference in terms of
watch-wearing wrist (ie, dominant or nondominant hand). Third,
the participant was asked to perform the three UbiCAT tests
one by one. Each test was administered against its corresponding
computer-based test. PH explained the instructions of the
computer-based tests to the participant and repeated if needed.
The participant was able to read the instructions of the
smartwatch-based tests in the UbiCAT by themself. The
feedback displayed to the participant was the fraction of correct
responses to the total responses in each UbiCAT test. The
interaction of each participant with the smartwatch was
video-recorded during the experiment. The order of test
administration on the smartwatch and computer was
counterbalanced between participants.

Previous work mentioned that some of the cognitive test results
obtained from paper-based and computer-based tools could not
be compared to their corresponding smartphone-based tests,
due to the difference between parameters. Therefore, we chose
the PsyToolkit for the Stroop color-word test and the N-back
test. This tool allows researchers to program their experiments
and adapt the parameters to their needs. We matched the
difficulty levels of the N-back tests by changing the N and
selecting the same ratio of congruent stimuli to the incongruent
stimuli (1:3) in the Stroop tests. The details of our study are
presented below.

Arrow Test Versus Spotter Test
All participants took the Arrow test and THINC-it Spotter test
twice. The stimuli of each test on both the smartwatch and the
computer was a set of 40 arrows. Each arrow was displayed on
the watch for a maximum of 2000 ms. The interstimulus interval
was randomly selected to be between 1000 and 3000 ms. The
input of the THINC-it Spotter test was received by pressing the
left or right arrow key, while the input was captured by tapping
the left or right app button in the UbiCAT Arrow test. The
performance measure calculated for both tests was the number
of correct responses and fastest RTs.

Letter Test Versus PsyToolkit N-Back Test
The N-back test was administered separately with three
difficulty levels, starting from N=1. The tests with the same
difficulty level were tested against each other. For instance,
1-back in the Letter test was examined against the PsyToolkit
1-back test. The stimuli of each test was a sequence of 40
English alphabet letters displayed one by one. The time limit
for the participant to respond to a stimulus was 2500 ms. Two
keys were used to respond during the PsyToolkit test: “m” for
yes and “n” for no. The inputs were captured on the UbiCAT
Letter test by tapping on the app buttons labeled as “Yes” and
“No.” The performance measures were the number of correct
responses and mean RTs to the stimuli.

Color Test Versus PsyToolkit Stroop Test
All participants took each test twice. The stimulus of each test
was 30 color names consisting of 7 congruent and 23

incongruent color names. The time limit was 2500 ms.
Participants were required to press “b” for blue, “g” for green,
“r” for red, and “y” for yellow in the PsyToolkit Stroop test.
Responses were captured in the UbiCAT Color test by tapping
on the app buttons labeled with the color names (see Figure 3).
The pink color replaced yellow on the Fitbit smartwatch for
some participants who found yellow difficult to distinguish.
The performance measures of the Stroop tests were the mean
RTs to the congruent and incongruent stimuli.

Usability Testing
The usability of the UbiCAT apps was assessed using the Mobile
App Rating Scale (MARS) questionnaire [40]. Relevant
questions concerning aesthetics, functionality, and information
were selected from the MARS questionnaire (see Multimedia
Appendix 1). The rating scale for each of the MARS questions
ranged from 1 (the lowest score) to 5 (the highest score).

Perceived Cognitive Workload
Each N-back task was preceded by the NASA-TLX (Task Load
Index) questionnaire [41] to quantify participants' perceived
cognitive workloads using a 7-point Likert scale. The following
subscales of the NASA-TLX were used: mental demand,
temporal demand, performance, effort, and frustration level. It
should be noted that the physical demand subscale was excluded
as it was deemed irrelevant.

Follow-Up Interview
Upon finishing each experiment, a short interview was
performed with each participant to investigate their subjective
perception about the experiment and the UbiCAT tests, as well
as their suggestions to improve the apps and/or instructions.
The interviews were audio-recorded and transcribed for semantic
analysis and grouping of the findings across participants.

Statistical Analysis
The Pearson correlation test was performed on the number of
correct responses and mean RTs of the cognitive tests on both
platforms. The paired-sample t test was applied on the
performance measures to compare the numbers obtained from
the smartwatch- and computer-based tests. One-way analysis
of variance (ANOVA) was used to analyze the effect of
difficulty level on the participants' test performances during the
N-back test. The CI of the statistical tests was 95%. The
statistical analysis was performed in JASP, version 0.11.1 (The
JASP Team).

Results

Participant Statistics
Participants were aged between 19 and 44 years (mean 26, SD
6), and 9 out of 21 participants (43%) were female. On average,
participants spent 5.7 years studying at a higher-education level.
Participants had diverse occupational backgrounds, including
design, computer science, water engineering, construction,
health care, energy, and food engineering. Of the 21 participants,
10 (48%) of them had used at least one wrist-worn device
before. All participants except for 1 (20/21, 95%) wore the
smartwatch on their nondominant hand.
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Overall Analysis
Pearson correlation analysis revealed a significant strong
correlation between the total number of correct responses
obtained from the cognitive tests on the UbiCAT and
computer-based tools (r=.78, P<.001). It should be noted that
the scores of 4 participants of the PsyToolkit Stroop test were
lost; thus, the correlation analysis between the total scores was

performed for 17 participants. Figure 5 shows the total
participant accuracy obtained from the UbiCAT apps versus
the computer-based tools, along with the regression line. The
single data point located on the bottom-left corner of Figure 5
might indicate an outlier; however, we did not remove this
sample point, since it is normal that the abilities of the
individuals are different from each other.

Figure 5. Overall participant accuracy in the three cognitive tests. Each black dot represents results from one participant. The blue line is the regression
line and the shaded region is the CI. UbiCAT: Ubiquitous Cognitive Assessment Tool.

Two-Choice Reaction-Time Tests
The Pearson correlation analysis that was applied on the average
of correct responses in the two trials of the Arrow test and
Spotter test and the participants' fastest RTs on both platforms
is presented in Table 1. Figure 6 shows the box plots of the
number of correct responses for both platforms during each
trial. Figure 7 shows the box plots of the participants' fastest
RTs calculated for both trials of the two-choice reaction-time
tests. We applied the paired-sample Student t test and it revealed
that the fastest RTs obtained from the Arrow test in both trials
were not statistically different (t20=-1.266, P=.22). The average

of the participants' fastest RTs in the Arrow test were statistically
higher than in the Spotter test (t20=10.84, P<.001).

N-Back Test
Figures 8 and 9 show the number of correct responses and the
mean RTs of the participants, respectively, during the 1-back,
2-back, and 3-back tests in the Letter test and the PsyToolkit
N-back test. Pearson correlation analysis was performed on the
number of correct responses and the mean RTs for each
difficulty level between the Letter test and PsyToolkit N-back
test. The results are presented in Table 2.

Table 1. Correlation analysis between performance measures in the Arrow test and the Spotter test.

P valuePearson rPerformance measure

.003.61Average of correct responses

.30.24Fastest response times
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Figure 6. Box plots of participants’ number of correct responses during the two-choice reaction-time tests.

Figure 7. Box plots of participants’ fastest response times during the two-choice reaction-time tests.
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Figure 8. Box plots of participants' number of correct responses in the N-back tests.

Figure 9. Box plots of participants' mean response times during the N-back tests.
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Table 2. Correlation analysis between performance measures of the N-back tasks in the Letter test and PsyToolkit N-back test.

P valuePearson rPerformance measure and tasks

Mean response time

<.001.781-back

<.001.712-back

.01.533-back

Number of correct responses

<.001.901-back

.40.192-back

.13.353-back

One-way ANOVA was performed to analyze the effect of
difficulty level on the participants' test performances (see
Multimedia Appendix 2).

The results of the NASA-TLX questionnaire for 1-back, 2-back,
and 3-back on both platforms are reported in Table 3. The
numbers in this table show the means and SDs calculated based
on the 7-point Likert scales for the metrics of the NASA-TLX.

Table 3. The N-back cognitive workload results using the NASA-TLX (Task Load Index) metrics.

Scorea for each metric, mean (SD)Device and task

Frustration levelEffortOverall performanceTemporal demandMental demand

Smartwatch

2.52 (1.60)3.05 (1.20)2.05 (1.32)2.81 (1.29)2.81 (1.50)1-back

3.86 (1.80)4.43 (1.17)4.29 (1.49)4.19 (1.50)4.71 (1.27)2-back

3.95 (1.80)5.10 (1.10)4.67 (1.62)4.05 (1.75)5.19 (1.33)3-back

Computer

2.48 (1.47)2.67 (1.07)2.91 (1.84)2.86 (1.62)2.76 (0.99)1-back

2.95 (1.64)4.35 (1.35)3.10 (1.52)3.50 (1.61)4.50 (1.54)2-back

4.00 (1.73)5.00 (1.18)4.76 (1.76)4.24 (1.76)5.52 (1.29)3-back

aScores were based on the 7-point Likert scales of the NASA-TLX metrics.

Stroop Color-Word Test
Figures 10 and 11 present the box plots of the mean RTs to the
congruent and incongruent stimuli for each trial of the Color
test and the PsyToolkit Stroop test, respectively. Table 4 reports
the correlation analysis between the performance measures of
the Stroop tests on both platforms. Box plots of the number of

correct responses to both congruent and incongruent stimuli are
shown in Figure 12.

Usability Ratings
The psychometric factors considered for the usability test were
aesthetics, functionality, and information. Each of the UbiCAT
apps were rated separately by the participants. Table 5 reports
the means and SDs of the usability ratings, which are out of 5.
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Figure 10. Box plots of participants' mean response times to congruent stimuli during Stroop tests.

Figure 11. Box plots of participants’ mean response times to incongruent stimuli during the Stroop tests.
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Table 4. Correlation analysis between performance measures in the Color test and the Stroop color-word test.

P valuePearson rPerformance measure

<.001.67Mean response times to congruent stimuli

.001.66Mean response times to incongruent stimuli

Figure 12. Box plots of participants’ number of correct responses in the Stroop tests.

Table 5. Usability ratings of the UbiCAT (Ubiquitous Cognitive Assessment Tool) apps.

Scorea for each factor, mean (SD)UbiCAT app

InformationFunctionalityAesthetics

4.24 (0.86)4.55 (0.52)4.02 (0.76)Arrow test

4.33 (0.60)4.36 (0.62)4.19 (0.75)Letter test

4.31 (0.64)4.64 (0.45)4.14 (0.83)Color test

aScores ranged from 1 (the lowest score) to 5 (the highest score).

Perceived Discomfort
For each UbiCAT app, participants rated the discomfort level
in their wrist on which they wore the smartwatch via a 7-point
Likert scale from 1 (the least discomfort) to 7 (the most
discomfort). The corresponding means and SDs of the
discomfort levels, calculated separately for the Arrow test, Letter
test, and Color test, are 2.71 (SD 1.79), 2.24 (SD 1.18), and
2.14 (SD 1.32), respectively.

Interviews

Overview
Seven themes were extracted from the participants' responses
and a brief description of each theme is presented below. The
participants’ quotes are presented in Multimedia Appendix 3.

Perceptions About the Experiment
Participants were asked to describe their feelings about the
experiment. They were generally engaged in the experiment: 5
participants out of 21 (24%) mentioned that the experiment was
“fun,” 3 (14%) said it was “good,” and 3 (14%) said it was
“fine.” Only 1 participant out of 21 (5%) believed that the

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 6 | e17506 | p. 12https://mhealth.jmir.org/2020/6/e17506
(page number not for citation purposes)

Hafiz & BardramJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX



experiment was too long. The rest of the participants did not
express their opinions or had to leave immediately after the
experiment.

Input Modality
Participants compared the input modalities of the smartwatch
and computer. Participants #1 and #3 (2/21, 10%) preferred the
app buttons of the UbiCAT Color test to the keyboard in the
Stroop test. Participants #9, #12, and #19 (3/21, 14%) felt more
comfortable with the app buttons in general, and participant
#14 (1/21, 5%) liked the tangibility of the keyboard.

Device Screen
Some participants compared the screen size of the smartwatch
with the computer. Out of 21 participants, 1 (5%) argued that
the bigger screen of the computer influenced his or her
performance positively and 2 (10%) preferred the screen size
of the computer to the smartwatch. We understood that computer
screen size might be more acceptable for some people due to
the longer adoption time of personal computers compared to
smartwatches.

Visual Impact
Out of 21 participants, 3 (15%) implied that their better
performance on the computer was due to the visualization of
the elements. A participant (1/21, 5%) did not like the visual
elements of the Fitbit, indicating that the overall device design
and graphics affected participants' interaction quality apart from
the specific user-interface design of the UbiCAT apps.

Psychological Factors
Apart from the physical characteristics of a smartwatch and a
computer, psychological factors also influenced participants'
performance. A participant (1/21, 5%) pointed to the gamified
nature and playfulness of the UbiCAT tests.

Performance
Some of the participants related their lower performance in the
UbiCAT tests to the apps. Out of 21 participants, 4 (19%)
mentioned that the Color test sometimes did not capture their
taps on the app buttons during the test. We noticed such an
incident while reviewing the records of the experiments. The
position of the app buttons in the Color test changed randomly
to avoid practicing the positions of the buttons. It surprised
some of the participants during the test. Besides, 1 of the
participants (5%) thought that his or her performance might
differ significantly between the first and second trials of the
cognitive tests.

Suggestions
Of the 21 participants, 3 of them (14%) proposed suggestions
regarding the font size used in the UbiCAT tests.

Discussion

Principal Findings
UbiCAT implements three smartwatch-based cognitive
assessment tests for in-the-wild deployment. The findings of
this study revealed comparable performance measures to
computer-based tests. The strong correlation between the overall

accuracy of the participants during the cognitive tests in the
UbiCAT and computerized tools showed that UbiCAT can be
utilized for assessing individuals' three key cognitive functions,
namely attention, working memory, and executive function.
The analysis between the following performance measures of
the UbiCAT and computerized tests revealed significant
correlation coefficients: the number of correct responses in the
two-choice reaction-time test; mean RTs in the 1-back, 2-back,
and 3-back tests; the number of correct responses in the 1-back
test; and the mean RTs to the Stroop test’s congruent and
incongruent stimuli.

The psychometric factors, including aesthetics, functionality,
and information quality and quantity, of the UbiCAT apps had
high average ratings by the participants (>4 out of 5). The
subjective ratings of the participants' wrist discomfort levels
were less than 3 out of 7, indicating that interaction with the
UbiCAT apps via the smartwatch was comfortable, which is in
line with our overall objective of making cognitive assessment
as simple and convenient as possible.

Previous work reported mobile cognitive test results along with
paper-based or computerized tests. Comparison between the
correlation coefficients reported in previous studies and in our
study is not possible due to different parameters, number of
participants, and target population. Nevertheless, our test
outcomes obtained from computer- and smartwatch-based apps
were comparable to each other, unlike some of the previous
studies (eg, Neurophone Stop Signal test) that could not compare
their results with computerized or paper-based tests due to
dissimilar parameters.

Two-Choice Reaction-Time Test Outcomes
The average number of correct responses obtained from the
THINC-it and Arrow tests correlated significantly with each
other. As it can be seen in Figure 6, the majority of the
participants received the highest score on both platforms, which
may indicate a ceiling effect. The participants' fastest RTs,
however, did not correlate with each other, which might be due
to the different interaction methods on both platforms. The app
buttons in the Arrow test (see Figure 1) disappeared on receiving
an input or time-out until the next stimulus appeared, since an
accidental tap on the buttons could impede calculating the real
performance of the participants. We observed that the
participants moved their index fingers away after tapping on an
app button in the Arrow test, while they kept their fingers on
the arrow keys on the computer keyboard during the THINC-it
Spotter test. Such a difference between the users' interactions
may explain the longer RTs of the UbiCAT Arrow test as
compared to the THINC-it Spotter test. Nevertheless, the
difference between the fastest RTs of the participants helped us
in understanding the impact of interaction methods.

The fastest RTs measured via both platforms may indicate that
the thresholds of individuals' alertness vary on the computer
and smartwatch platforms. In our study, the average fastest RTs
of the participants in the Arrow test was 545 ms (SD 88), while
the corresponding result for the THINC-it Spotter test was 315
ms (SD 59). A study on the development of a brief version of
the PVT (PVT-B) showed that 500 ms might be the threshold
for an impaired alertness [30], which is in line with the average
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fastest RTs obtained from the THINC-it computer-based test.
However, the participants of the PVT-B study pressed a button
to respond during the tests, which is similar to the interaction
method of the THINC-it Spotter test. Therefore, this threshold
may not be comparable to the fastest RTs obtained from the
Arrow test on the smartwatch. To infer the level of impairment
on the basis of the user's fastest RT delivered via a smartwatch,
a larger study is required that would include both healthy
controls and cognitively impaired patients. Nevertheless, the
findings of our study revealed that the average fastest RT of the
healthy subjects to a smartwatch-based test is above 500 ms.

According to Figure 7, participants’ fastest RTs were almost
the same during the first and second trials of the Spotter test
(327 ms and 303 ms, respectively), while their responses were
a bit slower in the second trial of the Arrow test (564 ms)
compared to the first trial (526 ms). A paired-sample t test
showed that the fastest RTs received from the Arrow test in
both trials were not statistically different.

N-Back Test Outcomes
One-way ANOVA showed the effect of difficulty level on the
number of correct responses and mean RTs in the UbiCAT
Letter test and the PsyToolkit N-back test. The perceived
cognitive workload in the N-back tests also revealed that as
N-back tasks became more difficult, the participants' cognitive
workload increased. The mean RTs obtained from each N-back
task on both the smartwatch and the computer correlated
significantly. Figure 9 shows that the mean RT during the
UbiCAT 2-back test was higher than that of the 3-back test,
while statistical analysis revealed no significant difference
between the mean RTs of the UbiCAT 2-back and 3-back tests.
The RTs of the PsyToolkit 2-back and 3-back tests were not
statistically different either (P>.99). According to Table 3,
higher temporal effort reported through NASA TLX
questionnaires for the 2-back Letter test compared to the 3-back
test may imply that participants were more rushed during the
2-back test. Moreover, participants might have spent more time
on practicing the 2-back test right after taking the 1-back test
to adapt their mental skills, since the reported mental effort for
both 2-back and 3-back tests were higher than for the 1-back
test on both the computer and the smartwatch.

According to Table 2, the correlation analysis between the
number of correct responses of the N-back tests on the
smartwatch and the computer was only significant for the 1-back
test. The lack of a significant correlation between the 2-back
and 3-back tasks might be due to the N-back test itself, since
the letter sequences of the N-back test were generated randomly
and the maximum number of matches (ie, hits) during the
N-back tests was not controlled to be the same between the
computer and the smartwatch.

Stroop Test Outcomes
The RTs to the congruent and incongruent stimuli on the
PsyToolkit and Color tests significantly correlated with each
other. According to Figures 10 and 11, the RTs obtained from
the second trials were lower than the first trials for both the
PsyToolkit Stroop test and Color test. However, the magnitude
of difference between the RTs in both trials of the Color test

was lower than that in the PsyToolkit Stroop test. It might be
due to the difference between the interaction methods of the
tests. In the Color test, the order of app buttons was shuffled
after a test run to avoid practicing the positions and increasing
engagement with the apps. On the other hand, the position of
the keys was obviously stable during the PsyToolkit tests.
Hence, participants might get used to the position of the keys
and respond faster in the second trial of the PsyToolkit Stroop
test, while the changing position of the app buttons in the Color
test took some time for them to practice with the new positions.
The change in the position of the app buttons was intended to
obtain reliable outcomes during future studies for longitudinal
frequent administration.

Figure 12 shows that several participants received the highest
score in the PsyToolkit Stroop tests (ie, 10 participants in trial
1 and 11 participants in trial 2), while the scores are more
distributed in the Color tests (ie, 2 participants received the
highest score in trial 1 and 6 participants in trial 2). In addition,
we observed that sometimes the app buttons in the Color test
did not capture touch inputs by the participants and some
participants reported this issue during the interviews. Therefore,
lower scores in the Color test might be due to the Fitbit’s touch
sensitivity.

Perceptions From the Interviews
Seven themes were identified from the follow-up interviews
with the participants. Some of the participants generally felt
more comfortable when taking a cognitive test on the
smartwatch compared to the computer, while some did not.
Factors related to the physical aspects of the device, including
the screen size and distance and the input modalities, affected
their interactions. We understood that longer adoption times of
computers compared to smartwatches may explain why some
participants preferred computer tests to the UbiCAT apps.
Therefore, deploying smartwatches into individuals’ daily lives
may take some time and may not be useful for all. Psychological
factors were also involved in determining participants’
engagement with UbiCAT, such as the gamified features of the
tests.

Implications for Future Work
On the basis of our interviews, we decided to (1) add customized
badges to the UbiCAT apps depending on participants’ test
performances to motivate them toward continuous usage of the
UbiCAT, (2) increase the font size of the stimulus in the Letter
test since it was not easy for some of the participants to read,
and (3) keep the right and left app buttons of the Arrow test on
the screen after they tap on a button.

This study was conducted to evaluate our novel smartwatch
apps against their corresponding computer tests, as well as to
investigate participants' perceptions about the study and usability
of the UbiCAT apps. One of the future directions of the UbiCAT
project is to identify digital biomarkers of human cognition. In
an upcoming study, we will collect participants’ mobile data,
including physiological and behavioral data, along with
assessing their daily cognitive functioning through the UbiCAT
apps to determine digital biomarkers of human cognition. The
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digital biomarkers would help researchers in building predictive
models of individuals' cognitive impairment using mobile data.

Sleep-stage data and heart rate variability (HRV) are the
physiological data that can be collected through the Fitbit API.
Sleep disturbance is, for instance, prevalent in bipolar patients
[42]. The negative impact of poor sleep on mood and cognitive
functioning is particularly noticeable in bipolar patients [43].
Fitbit smartwatches collect sleep duration and stages, which
can help us in measuring the impact of sleep quality on next-day
cognitive performance. Literature suggests a relationship
between reduced HRV and impairment in inhibition control
[44]. Moreover, reduced HRV was observed in bipolar and
schizophrenic patients compared with healthy controls [45].
Our outlook is to create a Cognitive Watch to extend human
knowledge regarding cognition.

Limitations
The limitations of this study are threefold. First, this study was
conducted with 21 healthy adults who were recruited mostly
from the campus of the Technical University of Denmark. This
was deemed appropriate for evaluating the UbiCAT as compared
to existing tools. However, studies involving patients and people
with cognitive impairment are needed and are the focus of our
upcoming studies. Second, the UbiCAT is designed for
in-the-wild administration and, yet, this study was conducted
in an indoor environment. This was done because cognitive
performance fluctuates and in order to be able to assess
cognition using both UbiCAT and the computer-based tests,
the tests had to be administered right after each other on both

platforms in order to achieve comparable measures. Therefore,
moving the participants inside and outside between
computer-based and smartwatch-based test sessions could yield
unreliable cognitive measures for our study. In our upcoming
studies, however, the UbiCAT will be used outside the clinic
in order to collect real-world cognitive performance, which will
be compared with cognitive assessments performed in a clinic.
Third, the results indicated that the UbiCAT tests may not reflect
the optimal performance of the participants compared to the
computer-based tests. Nevertheless, frequent tests with the
UbiCAT in upcoming studies and with various patient groups
may better verify the optimal performance of the UbiCAT users.

Conclusions
In this study, the UbiCAT as a smartwatch-based tool for
cognitive assessment was evaluated against computer-based
cognitive assessment tools. The results revealed significant
correlations between the total scores of the UbiCAT tests and
standard computer-based tests. The psychometric factors
regarding the aesthetics, functionality, and information quality
and quantity of the apps yielded high usability ratings from the
study participants. The majority of our study participants felt
comfortable when using the UbiCAT. The findings of this study
showed that the UbiCAT can be used for assessing attention,
working memory, and executive function across participants'
everyday lives, along with mobile data collection. Future studies
can administer the UbiCAT to mentally ill patients to collect
their daily cognitive functioning data and to compare their
results with lab-based studies.
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Abstract—Digital tools have been developed to assess human
cognitive functioning. It is unknown to what degree users’
cognitive test performance is correlated with their perceived
usability and cognitive load induced by interaction with a tool.
Moreover, the similarity between user groups in terms of their
subjective usability and cognitive load has not been explored
adequately despite its potential importance in designing digital
cognitive assessment tools for people from diverse background.
This paper presents a study of two smartwatch-based cognitive
tests to assess participants’ attention and working memory.
NASA Task Load Index (NASA-TLX) and Mobile App Rating
Scale (MARS) questionnaires were used for cognitive load and
usability evaluations, respectively. Aesthetics, functionality, and
information quality and quantity were the metrics we selected
for usability evaluations. Pearson’s correlation analysis was
performed to investigate the associations and Ward’s clustering
method was applied for data visualization. Our results showed
that participants who received higher scores and longer scoring
streak rated functionality of the cognitive tests better. Moreover,
information quality and quantity of the tests were rated better
by the participants who received longer scoring streak indicating
the significant role of test instructions in gaining higher scores.
In addition, participants with lower temporal demand received
higher scores and faster mean response times. The key findings
from the clusters visualized in this paper are: (i) Female and
male participants rated their perceived usability and cognitive
load completely differently; (ii) A discrepancy was found between
participants’ perceived performance and their actual scores;
(iii) Participants from diverse background rated their perceived
usability and cognitive load different from each other.

Index Terms—cognition, cognitive load, usability, human fac-
tor, correlation, working memory, attention, clustering

I. BACKGROUND

USABILITY and cognitive load metrics are two major
constructs of human factors that have been studied in

many domains. The International Organisation for Standard-
isation (ISO 9241) [1] defines usability metrics as effective-
ness, efficiency, and satisfaction. A recent review investigated
the usability methods of mHealth applications and found
that approximately 50% of the studies (13 out of 27) used
questionnaires and evaluated psychometric factors including
attractiveness, learnability, operability, and understandability
of the applications [2]. Cognitive load is another crucial aspect

of human factors since excessive mental workload induced
by an application can lead to a negative impact on users’
learnability [3]–[5].

Cognitive functioning is a key aspect of human mental
health. An impairment in attention, memory, and executive
function can cause problems for individuals at their work
or school [6]. The tests for assessing cognitive function-
ing often put mental pressure on the users’ brain. Digi-
tal tools for cognitive assessment have been designed for
personal computers, tablets, and mobile devices. Examples
include Cambridge Neuropsychological Test Automated Bat-
tery (CANTAB) Mobile [7], the THINC- Integrated Tool
(THINC-it) [8], CogState [9], and the Internet-based Cognitive
Assessment Tool (ICAT) [10]. These tools provide remote
assessment of both healthy individuals and patients. Recently,
smartwatch-based tools have emerged that allow for ‘in-the-
wild’ assessments. Examples include the Cognition Kit [11] for
assessment of working memory and the Ubiquitous Cognitive
Assessment Tool (UbiCAT) [12] for assessment of alertness,
working memory, and executive function.

Overall, digital cognitive assessment tools have gained
momentum and are administered in a wide range of user
groups from diverse backgrounds. Although these tools have
shown promising feasibility, some issues are introduced by
them. First, usability may play a significant role in such tests
and it is essential to determine whether users are able to
take the tests properly via the user interfaces. Inability to
interact with a tool can potentially impact the assessment of
the users’ real cognitive functioning. Second, cognitive load
induced by digital cognitive assessment tools may similarly
impact the users taking the tests, which again may negatively
affect their test results. As such, usability and cognitive load
are the factors that might influence assessment of the users’
real cognitive functioning. Third, participants’ demographics
are often collected in surveys in which human factors such as
usability and mental workload are also assessed. Descriptive
statistics of participants’ demographics are often reported
while little attention is paid to the similarity or association be-
tween various participants in terms of their perceived usability



and cognitive load after taking cognitive tests. Investigating
the latter would tell about the design of a digital cognitive
assessment tool for users with a focus on their demographics.
In order to address these issues, this paper presents a study
of a digital cognitive assessment tool, and seeks to investigate
the following questions:

• What is the relationship between users’ subjective usabil-
ity and cognitive load metrics on the one hand, and their
objective cognitive test performance on the other?

• How does users’ demographic background (e.g., gender
and education) relate to how they rate usability and
cognitive load after taking a cognitive test with inherent
mental pressure?

Answering these questions will help design more reliable as
well as more usable digital cognitive assessment tools.

II. RELATED WORK

Table I gives an overview of related work. A study
identified the relationship between the usability of a website
and personal factors, Intelligence Quotient (IQ) and cognitive
abilities of students [13]. According to their finding, partici-
pants with higher IQ and Grade Point Average (GPA) rated
the learnability of a software higher. Another experiment with
students assessed the effect of system and user features on
perceived usability and ease of use of a Web-based learning
system [14]. The user features included subjective norm, self-
efficacy, and innovativeness in information technology and
system features involved computer playfulness, interface style,
and interactivity. Their findings showed that the effect of user
features was higher than system features on perceived usability
while the impact of system features was higher than user
features on the ease of use.

Van et al. conducted a study to find a relationship between
usability of an internet-based cognitive behavioural therapy
program for chronic pain and participants’ sociodemograph-
ics [15]. Their findings revealed that usability negatively
correlated with age and positively correlated with digital health
knowledge while no correlation was found between usability
and educational level. Some previous studies conducted with
System Usability Scale (SUS) questionnaire [16] showed no
impact of gender on their overall usability ratings [17]–[20].
Kortum and Oswald [21] evaluated usability of 14 frequently-
used products using the SUS questionnaire. Their findings
showed higher overall usability ratings in female participants
regarding Word and Amazon products while the rest of the
applications were rated higher by male participants. The
authors in [22] evaluated usability of mobile banking apps
and performed statistical analysis between users’ satisfaction
and their demographics. Their results showed that male partic-
ipants were more satisfied with the mobile apps. Furthermore,
participants at a Ph.D. level felt more content with the apps
compared to the individuals in Master’s and first-degree levels.

To our knowledge, none of the existing studies have ex-
plored the association between individuals’ cognitive test
performance delivered via a digital tool and their perceived
usability and cognitive load metrics. In addition, the role

Table (I) Main related works in perceived human factor
analysis showing the features used and details about the
studies.

Study Items measured Evaluated system Method
Karahoca et
al. [13]

IQ; GPA Web portal Software us-
ability mea-
surement in-
ventory

Ke et al. [14] User features:
subjective norm,
self-efficacy, and
innovativeness;
System features:
computer
playfulness,
interface style,
and interactivity

Web-based
learning system

Questionnaire
(5-point
Likert scale)

Van et al.
[15]

Demographics:
age, digital health
knowledge,
education level

Internet-based cog-
nitive behavioural
therapy

Num. of
completed
performance
tasks;
Num. of
encountered
problems

Kortum et al.
[21]

Usability;
Personality;
Demographics:
gender

Frequently-used
softwares/products

SUS

Mkpojiogu
et al. [22]

Usability;
Demographics:
age, gender,
education,
experience

Mobile banking
apps

Questionnaire
(9-point
Likert scale)

of users’ characteristics in usability and cognitive load as-
sessment studies have not been adequately explored during
cognitive assessment tests. The aforementioned gaps in the
literature motivated us in setting the following objectives for
the present work:

• To identify the correlation between individuals’ cognitive
test performance delivered via a digital tool and their
perceived usability

• To identify the correlation between individuals’ working
memory performance and their perceived cognitive load

• To investigate similarities between the perceived usability
and cognitive load measures of our study participants on
the basis of their demographics

III. METHODOLOGY

The study protocol was sent for approval at the Danish
Ethical Committee and was exempted from ethical approval
as it was not a clinical survey (Journal-nr.: H-19086232).
Participants were recruited on voluntary basis and an informed
consent form was signed by them prior to the study. The
participants’ age, education level, and industry were collected
as well as their cognitive test performance and subjective
usability and cognitive load. We used two smartwatch-based
apps of UbiCAT [12] and collected associated cognitive per-
formance data. The apps in UbiCAT are short, engaging, and
run on Fitbit Ionic smartwatches. This tool includes digital
versions of Two-Choice Reaction Time (2-CRT) [23] and



N-back [24] tests which we used in our study. Three test
performance measures including mean Response Time (RT),
number of correct responses, and longest scoring streak were
calculated by UbiCAT cognitive tests. Longest scoring streak
is the maximum number of stimuli to which participants
responded correctly without leaving any incorrect or missed
response in between. The tests were timed which means users
had limited time to respond to each test stimuli. It took
approximately two min per participant to take each of the 2-
CRT and 1-back tests. A snapshot of a study participant who
took a 2-CRT test is presented in Figure 1.

Figure (1) A snapshot of the 2-CRT test in UbiCAT

The experiments were performed in a silent room. Partici-
pants wore a Fitbit smartwatch on their non-dominant hand.
Each participant took the 2-CRT test for two consecutive trials
to achieve a reliable measure of alertness and 1-back for one
trial. Participants could check their scores at the end of a tests
session.

Each test was followed by a usability questionnaire (see
Appendix A). We selected seven questions from a validated us-
ability tool called Mobile App Rating Scale (MARS) question-
naire [25]. The factors considered for usability are aesthetics,
functionality, and information quantity and quality of the two
apps presenting standard 2-CRT and 1-back tests. Furthermore,
selected factors from the MARS questionnaire are inline with
the frequent measures evaluated for mHealth apps [2].

Participants additionally rated their perceived cognitive load
upon finishing the 1-back test in UbiCAT. It should be noted
that N-back is a valid cognitive test that not only measures
working memory but also have been utilized in several studies
in which cognitive load of the individuals were measured (for
example, [26]–[29]). NASA Task Load Index (NASA-TLX)
questionnaire [30] was used to measure perceived cognitive
load of the participants. We excluded a sub-scale of NASA-
TLX regarding physical effort as it was not relevant to our
study instrument. Hence, the sub-scales considered for the
present study are mental demand, temporal demand, overall
performance, effort, and frustration level.

Figure 2 illustrates the procedure of the first part of this
paper where correlation analysis significant at 95% level was
performed. In the second part, we applied Ward’s method [31]
as a hierarchical clustering technique to visualize participants’
perceived usability and cognitive load metrics based on their
demographics. The Ward’s method uses half-square euclidean

distance1 between participants as presented in Equation (1).
Finally, we grouped similarities of our study participants
by gender, education level, and work/study industry using
Equation (2). The Ward’s method provides several advantages
over other clustering algorithms: (i) There is no need to define
the number of clusters for the algorithm; (ii) It is easy to
implement; (iii) Dendrograms are useful in understanding the
similarities.

distance(ai, bi) =
1

2

k∑
i=1

(ai − bi)
2 (1)

similarity(C1,C4) = a·sim(C1,C2)+b·sim(C1,C3)−c·sim(C2,C3)

(2)

Figure (2) Schematic overview of the correlation analysis
performed in this paper

IV. RESULTS

In total, N=21 participants in Copenhagen, Denmark were
selected for this study. Table II provides a summary of
participant’s demographic characteristics and it can be noted
that there is a fairly balanced mix of gender (9-female, 12-
male), education, age (M = 26.9, SD = 5.98), industry, and
jobs among participants. Cognitive tests performance of the
study participants are reported in Table III, where 2-CRT
performance measures are calculated by averaging the values
obtained from two consecutive trials. Usability ratings of
the apps presenting 2-CRT and 1-back tests in UbiCAT are
shown in Figure 3. Mean and standard deviations of the
participants’ perceived cognitive load for each sub-scale are
depicted in Figure 4.

A. Correlation between Usability Metrics and Cognitive Test
Measures

Table IV and Table V show the correlation coefficients be-
tween the usability metrics and the test performance measures
for 2-CRT and 1-back tests, respectively. Strong correlation
coefficients were revealed between participants’ perceived
functionality and achieved scores and longest scoring streaks
in both 2-CRT and 1-back tests. It can be inferred that
participants who received higher scores and achieved longer
scoring streak rated functionality of the tests higher. In the 1-
back test, the participants who were faster in responding rated

1Euclidean distance is always greater than or equal to zero. Measurements
would be ≈ 0 for identical subjects and ≈ 1 for subjects that show less
similarity.



Table (II) Study demographics of our participants.

Variable Characteristics Nr. (%)
Gender Male 12 (57.14%)

Female 9 (42.86%)
Education Bachelor degree 6 (28.57%)

Master degree 8 (38.10%)
Ph.D. 7 (33.33%)

Age 19-30 17 (80.95%)
31-40 3 (14.29%)
> 40 1 (4.76%)
Mean ± SD 26.90 ± 5.98

Industry Design 4 (19.05%)
Research 4 (19.05%)
Computer Engineer 4 (19.05%)
Construction 1 (4.76%)
Education 1 (4.76%)
Energy Engineer 1 (4.76%)
Food Engineer 1 (4.76%)
Healthcare 3 (14.29%)
Research 4 (19.05%)
Water Engineer 2 (9.52%)

Job Student Assistant 3 (14.29%)
Bachelor Student 3 (14.29%)
Master Student 5 (23.80%)
Ph.D Student 4 (19.05%)
Postdoctoral Researchers 3 (14.29%)
Data Analyst 1 (4.76%)
Nurse 1 (4.76%)
Project Manager 1 (4.76%)

Table (III) Mean and standard deviations of the participants’
cognitive test performance during the choice reaction time and
1-back tests

Test Response time Correct responses Longest streak
2-CRT 773±107 39.57±0.60 36.5±5.34
1-Back 903±266 37.09±4.82 34±9.86

the functionality better. Participants’ longest scoring streak
also correlated significantly with their perceived information
quantity and quality.

B. Correlation between 1-Back Test Measures and Cognitive
Load Sub-scales

Correlation analysis was applied between the sub-scales of
NASA-TLX questionnaire, which was rated by the participants
and the performance measures of 1-back tests. Significant
correlation coefficients are reported as follows:

Mean RTs of the participants correlated moderately with
their temporal demand (r= 0.54, p= 0.011) and effort (r= 0.50,
p= 0.02). Number of correct responses correlated moderately
with temporal demand (r= −0.45, p= 0.04) and frustration
level (r= −0.47, p= 0.03). Similarly, the longest scoring streak
of the participants correlated with temporal demand (r= −0.55,
p= 0.009) and frustration level (r= −0.44, p= 0.04).

C. Correlation between Usability and Cognitive Load metrics

An analysis was performed between cognitive load and us-
ability metrics such that a significant coefficient was revealed
only between the ‘performance’ sub-scale of NASA-TLX
questionnaire and aesthetics of the 1-back test (r=−0.52, p=

Table (IV) Correlation Analysis for 2-CRT

Test Usability Metrics
Measure Aesthetics Functionally Information
Mean RT 0.00 -0.11 0.21

Correct responses 0.45∗ 0.63∗∗ 0.38
Longest streak 0.52∗ 0.63∗∗ 0.53∗

∗p<0.05
∗∗p<0.01

Table (V) Correlation Analysis for 1-back test

Test Usability Metrics
Measure Aesthetics Functionally Information
Mean RT -0.28 -0.66∗∗ -0.43

Correct responses 0.20 0.73∗∗∗ 0.42
Longest streak 0.30 0.75∗∗∗ 0.48∗

∗p<0.05
∗∗p<0.01
∗∗∗p<0.001

0.015). The rest of the usability and cognitive load metrics did
not correlate significantly with each other. Hence, the results
of this section did not inform much about the relationship
between usability and cognitive load metrics.

D. Clusters of Perceived Human Factors based on Partici-
pants’ Demographics

Figure 5 and Figure 6 represent the clusters of participants’
usability ratings in 2-CRT and 1-back tests split on the basis
of their gender. It can be observed from both figures that
female and male participants perceived the usability metrics
completely differently from each other. Female participants
rated aesthetics and information higher than functionality. On
the other hand, male participants valued functionality higher
than information and aesthetics of the apps.

We also illustrated clusters of participants’ perceived us-
ability on the basis of their education level to explore how
the participants from three education levels perceived the
usability metrics after they took 2-CRT and 1-back tests.
Figure 8 and Figure 9 show that the participants at Ph.D.
level were more strict in rating usability of both tests. Another
information inferred from these figures is that participants
who were studying in a Bachelor or Master program were
inconsistent in rating the usability metrics of the 2-CRT test
in contrast to their consistent rating scores during the 1-back
test.

Clusters of the participants’ work or study industry can be
seen in Figure 11 and Figure 12, showing that those whose
industries were education (N=1) and construction (N=1)
tended to rate the usability metrics lower than the others.
In contrast, participants who belong to the water engineering
industry (N=2) valued usability of the apps higher than the
others.

Participants’ cognitive load measures split by their gender
is illustrated in Figure 7, which shows that perceived cognitive
load of the male and female participants are completely dif-



Figure (3) Usability ratings by our study participants pre-
sented separately for each cognitive test

Figure (4) NASA-TLX - Sub-scales were rated by 5-point
Likert scale

ferent from each other. Figure 10 represents how participants
from various educational levels rated their cognitive load. As
can be seen, the average of perceived frustration and perfor-
mance were higher in participants at a Master’s level compared
to Bachelor’s and Ph.D.’s level. Participants at the Bachelor
level felt that their effort was high while those educating at a
Ph.D. and Master program felt the opposite. Individuals at the
Ph.D. level perceived higher temporal and mental demand in
contrast to the participants’ at the Master’s level. We noticed
that Master’s degree participants rated their performance lower
than the Bachelor and PhD level participants while Master’s
level scores in the 1-back test were actually higher than the
Ph.D.s and a bit lower than the Bachelor’s level participants.

Figure 13 shows that perceived mental effort of the par-
ticipants in the computer (N=4) and design (N=4) industries

were higher while the individuals who worked or studied in
industries including construction, energy, food, and education
perceived lower mental effort. Frustration and effort level were
rated higher in food and design industries in contrast to the
participant from the energy section. Temporal demand and
performance were rated higher by the participant from the
education section while the person in the construction industry
gave a low score to the aforementioned sub-scales of the
NASA-TLX questionnaire.

V. DISCUSSION

In this study, we showed that individuals’ objective cog-
nitive performance is correlated with some metrics of their
perceived usability and cognitive load. Moreover, the patterns
of similarities and dissimilarities in participants’ usability and
cognitive load ratings were observed from the hierarchical
clusters. Previous related work used questionnaires to evaluate
usability of their Web-based or mobile tools. In our study,
we also used a validated questionnaire including three key
metrics of perceived usability. None of the previous related
work investigated the associations between usability metrics
of a cognitive assessment tool and their participants’ cognitive
test results. Furthermore, we explored users’ perceived human
factors on the basis of their sociodemographics to understand
users’ behaviour and provide insights to future application
designer.

Participants’ perceived human factors were associated with
their cognitive performance measures. First, the significant
correlation coefficients found between the functionality of the
apps and participants’ accuracy (see Table IV and Table V)
indicate that users’ behaviour in rating the usability is related
to how they performed in the tests. The positive association
between the longest scoring streaks and information quality
and quantity shows that those who understood the instructions
of the test were better in keeping the scoring streak. Second,
the results reported in Section IV-B show an association
between working memory performance and some sub-scales
of perceived cognitive load. Higher perceived mental and time
pressure led to slower RTs in the 1-back. Moreover, there was a
moderate negative correlation between participants’ perceived
level of frustration and time pressure and both their scores
and longest streaks. Given that excessive mental load have
an adverse impact on learnability [3]–[5], it can be inferred
that participants’ frustration and stress level negatively affected
their performance in the 1-back test.

Participants who studied at three educational level rated
their cognitive load differently. A discrepancy was also found
between perceived performance and the actual test results
of the participants, indicating that participants were not able
to accurately quantify their own performance level. Thus,
studies that rely on users’ perceived cognitive performance
using subjective methods (e.g. self-reports) should consider
this discrepancy.

According to our findings in Section IV-C, only perceived
performance correlated with the aesthetics of the 1-back test. It
can be inferred that participants rated aesthetics of the 1-back



Figure (5) Clusters of participants’ gender (m=male, f=female) based on their perceived usability of the two-choice reaction
time test.

Figure (6) Clusters of participants’ gender (m=male, f=female) based on their perceived usability of the 1-back App.

Figure (7) Clusters of participants’ gender (m=male, f=female) based on their perceived cognitive load.



Figure (8) Clusters of participants’ education based on their perceived usability of the two-choice reaction time application.

Figure (9) Clusters of participants’ education based on their perceived usability of the 1-back application.

Figure (10) Clusters of participants’ higher education level based on their perceived cognitive load.



Figure (11) Clusters of participants’ education or work industry based on their perceived usability of the two-choice
reaction time application.

Figure (12) Clusters of participants’ education or work industry based on their perceived usability of the 1-back application.

Figure (13) Clusters of participants’ education or work industry based on their perceived cognitive load.



user interface inline with their perceived performance in the
1-back test while the rest of the factors did not correlate signif-
icantly with each other. A recent study showed that perceived
usability and cognitive load are two independent metrics in
the field of human-computer interaction [32]. As such, the
correlation between perceived performance and aesthetics may
not be sufficient enough to conclude any association between
usability and cognitive load metrics.

Analysis performed between participants’ perceived human
factors and their gender and work industry also gave new
insights. Female and male participants perceived the usability
metrics completely differently from each other. Such a contrast
shows that users’ satisfaction is related to their gender. More-
over, a lack of consistency in reported usability metrics of the
2-CRT test is noticeable in design (N=4), healthcare (N=3),
and food (N=1) industries. On the other hand, participants
were more or less consistent in rating the usability metrics of
the 1-back test. It can be inferred that user interface design of
the 1-back is more acceptable than 2-CRT.

Similar to the patterns observed in Figure 5 and Figure 6, the
cognitive load ratings among the male and female populations
as shown in Figure 7 are completely different from each other.
The perceived temporal demand in female participants was
higher than the rest of the NASA-TLX sub-scales. In contrast,
male participants rated their perceived temporal demand lower
than the rest of the sub-scales. As temporal demand points
to the pace of the app, the time limit to respond to a test
stimulus may adapt to the user’s gender to achieve a reliable
measure of working memory. We also investigated perceived
cognitive load of the participants from various industries in
Section IV-D. Taken together, different patterns of perceived
human factors highlight that user’s satisfaction and learnability
in an app are dependant on measures of sociodemographics
including gender and work or study industry. In addition,
adapting user interfaces to the user’s characteristics may
facilitate the interaction with cognitive tools to obtain reliable
cognitive performance measures.

VI. CONCLUSION

Objective cognitive test performance measures are associ-
ated with individuals’ key human factors including usability
and cognitive load metric, which were evaluated subjectively.
Moreover, clusters of individuals’ perceived usability metrics
and cognitive load sub-scales revealed patterns of similarities
and dissimilarities on the basis of their sociodemographics fea-
tures. Gender, education level, and work or study industry are
the factors that can distinguish users of the smartwatch-based
cognitive assessment tools when evaluating their perceived
usability and cognitive load metrics. The findings of this study
will inform the HCI and Health Informatics community about
the role of human factors in designing more usable cognitive
assessment technologies to achieve reliable measures of human
mental health.

A. Limitation

A common issue with empirical studies to assess cognition
is the challenge of recruiting a large number of participants.
We have faced the same challenge in our study. The analysis
performed in this study is based on a limited number of
participants. We could not recruit more participants for the
current study and we did not find patterns of subjective human
factors based on the age of individuals.

B. Future Work

In future work, we would like to continue with larger scale
studies, recruiting participants from different backgrounds and
for longer period. Patients who suffer from a mental illness,
for instance depression, can be the target population for future
studies. Furthermore, other cognitive domains and digital
cognitive assessment tools developed for other platforms can
be studied to extensively explore the characteristics of their
users. Finally, individuals from other work or study industries
may be included in future work to be able to generalize the
findings of this study. As such, a future exploration to use
other clustering methods would be required since determining
the correct number of clusters by the dendrograms would be
difficult when using the Ward method.
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APPENDIX

The selected questions from the Mobile Application Rat-
ing Scale can be found here: https://doi.org/10.5281/zenodo.
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Mobile cognitive tests have been emerged to first, bring the assessments outside the clinics and second, frequently measure
individuals’ cognitive performance in their free-living environment. Patients with Bipolar Disorder (BD) suffer from cognitive
impairments and poor sleep quality negatively affects their cognitive performance. Wearables are capable of unobtrusively
collecting multivariate data including activity and sleep features. In this study, we analyzed daily attention, working memory,
and executive functions of patients with BD and healthy controls by using a smartwatch-based tool to 1) investigate its
concurrent validity and feasibility and 2) identify digital phenotypes of mental health using daily cognitive and mobile sensor
data. Our findings demonstrated that the smartwatch-based tool is feasible with valid measures for in-the-wild cognitive
assessments. Analysis showed that the patients responded slower than the healthy controls during the attention task, which
may indicate lower alertness of this group. Furthermore, sleep duration correlated positively with participants’ working
memory performance the next day. Supervised learning models were applied to the daily cognitive and mobile features to
predict individuals’ mental health diagnosis. Of the models, Extreme Gradient Boosting (XGBoost) outperformed the rest of
the models. In addition, feature analysis of the XGBoost ranked time in bed, daily step counts, number of missed stimuli, and
measures of executive functions as the digital phenotypes of mental health diagnosis.
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1 INTRODUCTION
Cognitive functioning of individuals’ attention, memory, and executive skills characterize the quality of their daily
tasks. The common practice in psychiatry is to assess patients’ cognitive functioning using neuropsychological
tests. Such experiments are run in a controlled environment and at a certain time of a day suitable for the clinician
and patient. However, fixed environment and context for taking cognitive tests may negatively impact the validity
and reliability of the test results [2] since human cognition fluctuates during the day [49, 61]. In particular,
patients with Bipolar Disorder (BD) (mania and depression) suffer from cognitive impairment even during their
period of symptom remission [7, 54]. However, constraints on time and resources hinder continuous and frequent
monitoring of patients’ cognitive functioning. Therefore, novel computing technologies are essential to obtain
cognitive performance measures over time.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, Issue 0
© 2018 Association for Computing Machinery.
https://doi.org/10.1145/1122445.1122456

1



Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, Issue 0 Anonymous

A few smartphone-based tools have been proposed for measuring individuals’ cognitive functioning outside
the clinic [8, 25, 42, 55]. Although these tools have contributed to mobile assessments, the use of wearables
propose two advantages over smartphones. First, wearables can collect reliable data on physical activity (e.g.,
step count) and physiological data (e.g., heart rate and sleep). Second, wearables are devices that people carry
continuously and wear them during most activities such as walking and running. Recently, smartwatch-based
tools have been developed to frequently assess cognitive functions [12, 20]. Taken together, wearables provide
an opportunity in conducting in-the-wild studies for collecting multivariate sensor data in conjunction with
cognitive test performance measures. It is, however, essential to evaluate the feasibility of using such tools and
their concurrent validity compared with the gold-standard neuropsychological tests.
Active and passive data collected via mobile devices can assist in identifying digital phenotype of human

mental health [41]. Wearables are capable of unobtrusively collecting various data types. For instance, daily step
counts, physical activities, and sleep duration per cycle are calculated by Fitbit trackers. There is evidence that
sleep quality affects individuals’ cognitive performance during a day [19, 37]. Particularly, patients with BD can
potentially suffer from the negative consequences of their frequent poor sleep quality [5]. So far, digital behavioural
phenotypes of individuals’ mental health have been investigated (for example, [11, 17, 18, 47, 48, 57, 58]). Yet,
we do not know what cognitive, behavioural, and physiological features play a significant role in classifying
individuals’ mental health diagnosis.
In this study, first, we show the concurrent validity and feasibility of an in-the-wild cognitive assessment

tool developed for Fitbit Ionic smartwatches. Then, we collect daily cognitive performance measures as well as
activity and sleep features using the smartwatch to 1) investigate the impact of sleep on the next-day cognitive
performance measures and 2) identify digital phenotypes of individuals’ mental health diagnosis.

2 RELATED WORK
A number of studies have shown the feasibility of mobile cognitive assessments by using Personal Digital
Assistants (PDAs), cellphones, or smartphones [39]. Table 1 provides an overview of studies that has used smart-
phone or smartwatch technology for cognitive testing. These studies have all adopted the Ecological Momentary
Assessment (EMA) [52] or Experience Sampling Method (ESM) [32] methodology (which are often mentioned
interchangeably). Prior related work has been focusing on collecting self-reports on mood [12, 13, 24, 56],
sleep [1, 13, 16, 24], activity [13], location [13, 56], and alertness [1, 16]. No effect of sleep quality, mood, location,
or activity stress was found on the cognitive test results in [13]. An ‘in-the-wild’ study investigated individuals’
alertness and showed the effectiveness of using mobile cognitive tasks in detecting circadian variations [16].
However, self-reports on sleep duration and quality did not have an impact on the cognitive test measures. On
the other hand, a similar study reported a negative impact of poor sleep on individuals’ alertness [1].

Previous studies mostly collected self-reported, subjective measures of sleep and behavioural features. In this
study, we collect objective sleep data using Fitbit smartwatches, which has shown acceptable performance in
differentiating sleep and wake cycles [21] and in estimating sleep stage accuracy [22]. Activity features (e.g.,
step count) are also collected passively using the Fitbit smartwatches. Of the recent studies performed to assess
in-the-wild cognition, two measured objective attention [1, 16], one evaluated working memory [12], and one
assessed working memory and psychomotor speed [13]. We extend this work by measuring three key cognitive
domains namely attention, working memory, and executive functions. Our work reports the findings of a clinical
in-the-wild feasibility study conducted with healthy controls and patients with BD, and achieves the following
contributions:

• Demonstrating the concurrent validity of the smartwatch-based tool in assessing individuals’ cognitive
functioning.
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Table 1. Overview of the studies conducted with mobile devices for cognitive assessments.

Study Device Participants Sampling Duration Cognitive tasks

Timmers et al. [56] Smartphone Young
adults (N=26) 4 times daily 1 day Letter span

Sliwinski et al. [50] Smartphone Adults
(N=219) 5 times daily 14 days Symbol search,

Dot memory

Abdullah et al. [1] Smartphone Students
(N=40) 2 times daily 40 days Psychomotor vigilance

test

Dingler et al. [16] Smartphone Students
(N=12) 1–6 times daily 2–13

days

Psychomotor vigilance,
Go No-Go,
Multiple object tracking

Daniels et al. [13] Smartphone Healthy
adults (N=49) 8 times daily 6 days

Visuospatial working
memory, Digit symbol
substitution

Hung et al. [24] Smartphone Depression
(N=54) once per week 8 weeks Stroop, TMT part B

Cormack et al. [12] Smartwatch Depression
(N=30) 3 times daily 6 weeks N-back

• Showing the feasibility of a smartwatch-based tool for continuous, daily, in-the-wild administration of
cognitive assessment tests.

• Investigating the relationship between sleep duration and individuals’ cognitive functioning the following
day.

• Identifying digital phenotypes of human mental health using daily cognitive tests combined with mobile
and wearable sensor data.

3 METHODOLOGY
The methodology of our study is adapted from the EMA/ESM approach and aims at collecting active cognitive
performance measures and passive mobile sensor data. This study was exempted for ethical approval by the
[Blind for review] ethics committee [file: Blind for review]. All participants were informed about the types of
data collected during the study and signed an informed consent before enrolled in the study (see also Figure 1).
We used a cognitive assessment tool developed for Fitbit Ionic smartwatches [20] that collects daily cognitive
performance measures as well as behavioural, contextual, and physiological data. The cognitive tests of this tool
are choice reaction time to measure attention, N-back to evaluate working memory, and Stroop color-word test to
assess executive functions. Each cognitive test of this tool is a standalone smartwatch-based app. The snapshots
and description of the smartwatch-based cognitive tests are presented in Appendix A.
Table 2 shows the features collected for this study as well as their associated characteristics. As can be seen,

the performance measures of the cognitive tests were the number of correct responses and response times (RTs)
to the test stimuli. The feature ‘missed stimuli’ in Table 2 refers to the number of stimuli in the test sessions to
which the participant did not respond during a time limit (2500 ms). The hit rates and false alarm rates were also
calculated for the N-back test. Hit rate is the number of times that the user correctly identified a match in the
N-back divided by the total matches in the sequence. False alarm rate refers to the number of times that the user
responded as a match while there was no match in the sequence. The median RT was calculated for the choice
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Table 2. Features collected throughout the study

# Name Category Type Features

1 Choice reaction time Cognitive Active Median response time, correct responses,
missed stimuli

2 N-back Cognitive Active
Mean response time, correct responses,
hit rate, false alarm rate,
missed stimuli

3 Stroop Cognitive Active Mean response time, correct responses,
missed stimuli

4 GPS Contextual Passive Latitudes and longitudes to detect indoor and
outdoor environments

5 Time of the day Contextual Passive Time extracted from cognitive test logs

6 Physical Activity Behavioural Passive
Step counts, Minutes Sedentary,
Minutes Lightly Active, Minutes Fairly Active,
Minutes Very Active, Activity Calories

7 Sleep Physiological Passive
Minutes Asleep, Minutes Awake, Number of
Awakenings, Time in Bed, Minutes REM Sleep,
Minutes Light Sleep, Minutes Deep Sleep

reaction time test since this test has two stimuli, a left- and right-hand arrow, and the participants were required
to select the correct direction of the arrows as fast as possible. As for the N-back and Stroop tests, the mean RT
was calculated .

To establish the validity of the tool, we applied the method of ‘concurrent validity’, which is used to evaluate
the measures of a novel tool against the current practice [35, 40]. Due to the frequent fluctuations in human
cognition, the validity of the smartwatch-based tests was assessed immediately after the neuropsychological test
sessions held at the clinic. Therefore, relevant cognitive domains of the neuropsychological tests were selected
by psychiatrists to evaluate concurrent validity of the smartwatch-based cognitive tests. The tests administered
during the follow-up visits included Trail Making Test (TMT) part A and B [44], Repeatable Battery for the
Assessment of Neuropsychological Status (RBANS) coding and digit span [15], Wechsler Adult Intelligence Scale
Letter-Number Sequencing (WAIS LNS) [28], and verbal fluency [59]. Z-transformation of the raw scores were
calculated per neuropsychological test as provided below:
(1) Composite attention and processing speed scores: Average of z-transformations of the scores in the

RBANS coding and digit span and the TMT part A.
(2) Composite executive functions scores: Average of z-transformations of the scores in the verbal fluency

and TMT part B.
(3) Composite working memory scores: Z-transformations of the scores in the WAIS LNS.
(4) Global cognitive composite scores: Average of z-transformations of the composite scores calculated for

the attention and processing speed (1) and working memory (3).
The scores of the participants with the smartwatch-based cognitive tests were averaged and their z-transformed
scores were used to compare against their global composite scores.
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3.1 Study Procedure
Prior to the clinical feasibility study, we conducted a 1-week pilot study with two adults without any previous
mental illness and one patient with BD in order to test data collection as well as refining the study procedure
according to the participants’ feedback. Then recruitment of participants was commenced at [Blind for review
location] for the in-the-wild clinical feasibility study. The study included both healthy controls and patients with
BD, who were in remission when they came to the clinic for a follow-up visit. Participants were reimbursed with
an amount equivalent to 1.5 USD per cognitive test and were additionally reimbursed with an amount equivalent
to 3 USD per night in case they wore the smartwatch during their sleeping time.
The study had three stages per participant as illustrated in Figure 1. Participants first underwent neuropsy-

chological testing at the clinic. Upon finishing their follow-up visit, the study leader explained the goals and
requirements to them and asked for voluntarily participation in the study. If a participant volunteered, detailed
information on the study was given to them both in writing and orally, and a consent form was signed. Each
participant performed the cognitive tests on the smartwatch immediately after finishing the neuropsychological
tests at the clinic. Followed by that, a Fitbit Ionic smartwatch was given to the participant and s/he was instructed
to perform the cognitive tests for seven days. Activity and sleep data were passively collected using the Fitbit
Application Programming Interface (API).

Fig. 1. Study procedure performed in three phases per participant.

Three alarms were set on the smartwatches; morning, afternoon, and evening. The hours set for the participant
was not fixed for all of them due to different working or studying schedules. The study leader asked them to take
the cognitive tests one by one when they received an alarm during their earliest suitable time and emphasized on
taking the tests in both indoor and outdoor environments. The stimulus of each smartwatch-based cognitive
test was generated randomly. Each of the N-back sessions were either 1-back, 2-back, or 3-back such that none
of the two consecutive sessions were the same. For instance, if a participant finished a 1-back task, the next
time it was either a 2-back or 3-back task. While participants took cognitive tests on their smartwatch, their
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Global Positioning System (GPS) data was collected through the Fitbit API to detect their location. One read per
second was used for the GPS. The Fitbit mobile app was installed on the participant’s own smartphone since
Fitbit smartwatches collect physical activity data in conjunction with their mobile app. Figure 2 illustrates a
participant standing while taking a cognitive test with the smartwatch-based tool.

Fig. 2. A sketch of a participant taking a cognitive test with the smartwatch tool while standing. The participant’s
smartphone concurrently collects GPS data.

Participants were asked to return the smartwatch upon finishing the seven-day experiment. A short semi-
structured interview was held with them to explore possible issues and how comfortable or uncomfortable it was
to take the tests indoor or outdoor. In addition, the contexts in which they took the tests as well as their positions
were inquired. It should be noted that we were not allowed to record these interview. Thus, the study leader took
notes on the participants’ responses during the interviews. Finally, participants were debriefed about the further
analysis of the data in the study.

3.2 Data Collection and Pre-processing
The cognitive tests results were stored locally on the smartwatch. When the smartwatche was handed back at
the end of the study, the test logs were extracted and transferred to spreadsheets. Activity and sleep data were
stored in the Fitbit server. We screened our dataset for missing values and outliers in the cognitive, contextual,
behavioural, and physiological features. As such, the RTs to the tests stimuli below 200 ms were removed since
participants might have accidentally tapped on the watch screen. One participant did not wear the smartwatch
during sleep and another participant only took one cognitive test daily and took off the watch during sleeping
hours in most of the nights. The samples of this participant was excluded from data analysis.
The relative RTs of the participants were calculated to obtain the degree to which their alertness increased

or decreased. The positive and negative values of the relative RTs shows an increase or decrease in their own
alertness, respectively. Given that MRTs ,p is the median RT of participant p in session s of the choice reaction
time test, we calculated MMRTs ,p as the mean of MRTs ,p to obtain the RRTs ,p (relative RT) as shown in eq. (1)
(taken from [1]).
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RRTs ,p = (1 −MRTs ,p/MMRTs ,p ) ∗ 100 (1)

Two datasets were prepared for analysis of this paper. A dataset was used for analyzing the impact of sleep on
the next-day cognitive performance in Section 4.3. To create this dataset, first, the accuracy of the participants
were averaged separately per test for each day. Then, the participant’s sleep data during one night before was
added to the daily cognitive observations. The second dataset was prepared by adding participants’ corresponding
daily activity features to the first dataset for the purpose of digital phenotyping and training supervised models
as reported in Section 4.4. This combined dataset is referred as daily cognitive and mobile data in the rest of the
paper.

3.3 Data Analysis
Several methods were used to calculate the results of this study. Pearson correlation was used for evaluating
concurrent validity of the smartwatch-based tool and the association between sleep duration and cognition. T-test
was performed to compare the healthy and patient groups with each other. Analysis of Variance (ANOVA) was
applied to assess feasibility of the smartwatch-based tool by measuring the impact of environment on participants’
cognitive performance measures. Principal Component Analysis (PCA) [63] was performed using the factoextra
package [27] to visualize the clusters of healthy and patients as well as the contribution of the dataset features
to the principal components. The rest of the figures in this paper were created using the ggplot2 [62] and
ggstatplot [43] packages in R studio.
Supervised predictive models were used to classify healthy controls and patients with BD. Random Forest

(RF) [34], XGBoost [10], Support Vector Machines (SVM) (radial kernel) [51], and K-Nearest Neighbour (KNN) [3]
were used to build the predictive models in caret package [31]. Each model was trained and tested using five-fold
cross validation. The label assigned to the observations was their mental health diagnosis (healthy or bipolar). It
should be noted that the positive class for the predictive models was the patient’s class.

4 RESULTS
We initially recruited 10 healthy controls and 8 patients with BD. Of the participants, 9 healthy controls and 6
patients completed their seven-day experiment (N = 15). Table 3 reports gender, age, education years of the
participants, Hamilton Depression Rating Scale (HAMD) and Young Mania Rating Scale (YMRS) clinical ratings,
and verbal intelligence quotients for each group. In total, we collected the following number of observations per
smartwatch-based cognitive test: 318 for the choice reaction time, 294 for the N-back, and 309 for the Stroop
test. Participants used the smartwatch between 6 and 18 days (Mean:8.6, SD:2.80). It should be noted that the
participant who took the tests for 18 days kept the device longer than the rest of the participants due to a problem
in handing back the device.

4.1 Validity and Feasibility of the In-the-wild Tool
The participants’ smartwatch-based test results were used to investigate the concurrent validity of the tool.
Table 4 shows the correlation coefficients applied between the neuropsychological tests and the smartwatch-based
tests per cognitive domain as well as the global cognition. We found a strong, significant correlation between the
average scores obtained from the smartwatch-based and neuropsychological tests (r=0.77) indicating adequate
concurrent validity of the smartwatch-based tool. The cognitive domains also correlated significantly (r=0.58-0.64).
It should be noted that correlation analysis for attention and processing speed was performed between two
cognitive test scores of the smartwatch-based tool namely choice reaction time and Stroop’s score of congruent
stimuli. Although the analysis for the Stroop’s congruent scores did not reveal a significant correlation coefficient,
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Table 3. Characteristics of study participants reported separately for patients and controls.

Characteristic Measure Statistics
HC BP

Gender Female 5 5

Male 4 1

Age Mean±SD 34±13 32±6

Years of education Mean±SD 16±1.8 15±2.04

HAMD Mean±SD 1.1±1.3 5.2±3.5

YMRS Mean±SD 0.7±2 2.3±3.2

Verbal Intelligence Quotient Mean±SD 115±5 108±3

the choice reaction time test showed a significant p-value indicating validity of this test for measuring attention
and processing speed.

Table 4. Pearson correlation analysis between neuropsychological tests and smartwatch-based test scores.

Cognitive Function Neuropsychological Test Smartwatch Test Pearson’s r p

Executive functions Verbal fluency and TMT-B Stroop’s score to
incongruent stimuli 0.58 0.024

Working memory WAIS LNS N-Back 0.63 0.011
Attention and processing speed TMT-A and RBANS Choice reaction time 0.64 0.010

Stroop’s score to
congruent stimuli -0.11 0.686

Global cognition Working memory
and attention Composite scores 0.77 <0.001

Feasibility of our study instrument was examined to demonstrate the viability of smartwatches in assessing
in-the-wild cognitive functioning considering the impact of indoor and outdoor places on participants’ cognitive
performance measures together with the interviews conducted with them. Of all participants, five patients and
seven healthy individuals took the smartwatch-based tests both in indoor and outdoor environments according
to their GPS data. Table 5 shows that their performance measures in all of the tests were statistically not different
in the indoor and outdoor places demonstrating the feasibility of the smartwatch-based tests in individuals’
free-living context. Seven participants could allocate time for the post-study interview. None of them mentioned
any issue except for one participant: "I felt uncomfortable when I was together with people". Their position while
taking the cognitive tests were also investigated; four participants reported sitting as their most common position
while two reported that they sometimes took the tests while traveling (e.g., on the bus). Two participants took
the tests while walking. One patient and one healthy participant reported that they were motivated by using the
smartwatch, stating that: “It motivated me to track my data and I checked my activities all the time”, and “The
watch motivated me to walk more”.
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Table 5. Analysis of variance applied to examine the impact of indoor and outdoor places on the tests measures

Smartwatch-based Test Observations (Nr.) Performance Measure Mean Square F p
Choice-reaction time 249 Median response times 4505.44 0.45 0.501

Num. of correct responses 0.41 0.35 0.553

N-Back 217 Mean response times 15478.79 0.34 0.560
Num. of correct responses 9.38 0.09 0.759

Stroop 227 Mean response times 14294.25 0.30 0.583
Num. of correct responses 2.50 0.57 0.452

4.2 Alertness Per Hour
Individuals’ alertness fluctuates during the day [49] and the choice reaction time paradigm tests are typically used
for measuring individuals’ alertness. Hence, we used the choice reaction time test of the smartwatch-based tool
to measure and compare the alertness of the patients and healthy controls. The records of one healthy participant
in the choice reaction time test were removed since this participant had some issues with the touch sensitivity of
the smartwatch screen. Figure 3 shows the median RTs per group and shows that the median RTs of the healthy
group were statically lower than the patients (t(230.30)=5.24, p<0.001) indicating better alertness of the healthy
controls.

Fig. 3. Median response times of the healthy and patient groups in the choice reaction time test.

Figure 4 represents the participants’ median RTs for each hour that they performed the tests. Both groups did
the choice reaction time test mostly at 9AM (patient:16, healthy:7), 1PM (patient:14, healthy:17), 2PM (patient:18,
healthy:16), and 6PM (patient:20, healthy:12). Independent samples t-test revealed that patients responded
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significantly slower at 2PM (t(32)=3.52, p<0.001) and 6PM (t(30)=4.10, p<0.001). The relative RTs were calculated
per participant similar to the approach used in previous work [1, 29, 60]. Figure 5 shows the percentage to which
individuals’ alertness increased or decreased compared with their own median RTs in each hour, showing an
almost balanced number of positive (N=153) and negative (N=132) samples. The ratio of negative samples of the
patients (48%) was higher than healthy controls (45%) while the ratio of the positive samples of healthy controls
(55%) was higher than the patients (52%). Thus, the drop in alertness was higher in the patients while the rise in
alertness was higher in the controls.

Fig. 4. Hourly representation of the median response times in the choice reaction time test.

4.3 Correlation between Sleep Duration and Cognition
Sleep duration of the participants is visualized in Figure 6 showing that patients slept more than healthy controls
(t(98.26)=3.68, p<0.001). Correlation analysis between sleep duration and the next-day cognitive performance
measures revealed a significant coefficient in terms of the N-back hit rates as a measure of working memory
performance (r=0.26, p=0.026). It can be inferred that more sleeping led to higher accuracy in recalling the letters
during the N-back test sessions. The rest of the cognitive test measures did not reveal any significant correlation
with sleep duration. Minutes of light and deep sleep also did not correlate with the cognitive test performance
measures. The difference in the participants’ N-back hit rates and sleep duration are depicted in Figure 7 per
group. The ratios in both plots were calculated by taking the first value (day one) as the basis to compare to the
next days. While the difference in the sleep and hit rates of the two groups do not have the same pattern, there is
a similar trend in their hit rates and sleep duration within groups.
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Fig. 5. Relative response times of the participants in the choice reaction time test per hour.

4.4 Daily Cognitive and Mobile data
The daily cognitive and mobile data had N = 81 observations. Five incomplete cases were removed from this
dataset such that N = 76 observations remained (bipolar:40, healthy: 36). The features of this dataset were time
in bed, sleep duration, number of awakenings, minutes awake, step counts, mean RTs during the Stroop and choice
reaction time tests, and average accuracy in the N-back, Stroop, and choice reaction time tests. It should be noted
that the RTs of the N-back tests were not included since the mean RTs of the tests with various difficulty levels
were not comparable .

4.4.1 Statistics and Comparison. Table 6 reports the descriptive statistics of the total daily missed counts during
the cognitive test sessions and the average accuracy of the participants in each test. The missed count is the
number of times that a participant did not respond to the test stimuli throughout a test session. As such, daily
missed count is the sum of missed counts calculated for the test sessions that the participant completed each day.
T-test revealed that the patients had more daily missed counts compared with the healthy controls (t(72)=3.24,
p<0.001), indicating inability of the patients with BD in responding during the time limit of the cognitive tests. The
average accuracy of the healthy controls in their daily cognitive tests with the smartwatch was higher than the
patients although t-test analysis did not give significant p-values. The RTs during the Stroop test was averaged
per day for each participant and t-test showed a significantly higher RTs of the patients (t(72)=1.93, p=0.029).
Hence, patients were slower in selecting the correct ink color of the stimuli in the Stroop test (see fig. 11c).
The participants’ daily step counts are shown in Figure 8a, showing that patients’ mobility was significantly
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Fig. 6. Sleep duration in minutes visualized for healthy and patient groups.

Table 6. Descriptive statistics of the daily missed counts and average accuracy in the cognitive tests

Missed Counts CRT accuracy (%) N-back accuracy (%) Stroop accuracy (%)
BP HC BP HC BP HC BP HC

Mean 3.17 1.35 98.98 99.20 90.59 92.49 96.15 96.80
SD 3.67 1.66 1.35 1.47 5.24 4.26 2.75 2.87
Minimum 0.00 0.00 95.00 92.00 78.67 83.50 88.00 87.00
Maximum 18.00 7.00 100.00 100.00 100.00 100.00 100.00 100.00

higher than the controls (t(78.75)=2.03, p=0.046). Patients spend more time in bed compared with the controls
(t(78.35)=3.46, p=0.001) as can be observed in Figure 8b.

4.4.2 Predictive Models and Feature Analysis. PCA was performed to explore the clusters and features in the
dataset. The contribution of the dataset features are represented in Figure 9a. It can be seen that sleep duration,
time in bed, number of awakenings, daily missed counts, and Stroop RT contributed more to the principal
components 1 and 2. Figure 9b shows the clusters of healthy and patient observations as well as the overlap
between the samples.

The performance evaluation results are presented in Table 7. The average accuracy of the XGBoost and KNN
(K = 9) are very close to each other although the standard deviation is lower in the XGBoost. The average
of Positive Predictive Value (PPV) in the KNN is also the highest while Negative Predictive Value (NPV) of
the XGBoost is above all. The average sensitivity and specificity values of the SVM and KNN models are the
highest, respectively. Overall, the XGBoost model gave the highest average Area under the Receiver Operating
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Fig. 7. Overall difference of N-back hit rates and minutes asleep per group.

Characteristic Curve (AUC). We derived the feature importance from the XGBoost trained model and represented
the features versus their relative importance in Figure 10. As can be observed, time in bed and daily step counts,
total missed counts, and performance measures of the Stroop test are the most significant digital phenotypes of
participants’ mental health diagnosis.

Table 7. Mean and standard deviations of the performance evaluation metrics for classification of healthy and patients.

Method Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC (%)
XGBoost 77.51±3.28 76.65±2.91 78.38±4.03 78.60 ±3.83 76.38±3.45 86.40±3.97
KNN 77.89±4.41 73.22±10.47 83.95±3.47 83.88±7.18 71.71±10.85 80.59±1.28
RF 72.63±1.57 69.40±5.32 75.85±3.35 74.65±1.44 71.00 ±2.67 79.60±2.19
SVM 74.03±3.14 81.53±4.03 64.18±7.31 74.13±2.48 73.63±5.31 79.80±5.17
XGBoost: Extreme Gradient Boosting; KNN: K-Nearest Neighbour; RF: Random Forest; SVM: Support Vector Machines
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(a) Daily step counts. (b) Time in bed in minutes.

Fig. 8. Daily step counts and time in bed of healthy and patient groups.

(a) Dataset features and their contributions. (b) Dataset samples and clusters.

Fig. 9. Principal Component Analysis.

5 DISCUSSION
The results from this study show that smartwatch-based cognitive assessment of cognitive functioning correlated
moderately to strongly (r=0.58-0.77) with state-of-art neuropsychological tests, thus demonstrating adequate
concurrent validity of smartwatch-based cognitive tests. Furthermore, the study shows the feasibility of ‘in-the-
wild’ assessment of cognitive functioning since participants’ cognitive performance measures were statistically
the same in both indoor and outdoor environments. To our knowledge, this study is the first that 1) demonstrated
feasibility of assessing key cognitive functions of the patients with BD and healthy controls in their free-living
context and 2) identified digital phenotypes of individuals’ mental health diagnosis from a dataset including their
daily cognitive, behavioural, and physiological features.
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Fig. 10. Variable importance of the features ranked by the XGBoost model

5.1 Comparing Healthy and Patient Groups
Our findings showed that patients with BD responded slower compared with healthy controls during the choice
reaction time test although the patients were in remission. This is in line with prior research showing that
cognitive impairment remains in patients with BD despite being in remission [7, 54]. We also showed that
1) patients responses were statistically slower than the controls at 2PM and 6PM and 2) there were more drop
and less rise in patients’ alertness compared with the healthy controls (see Figure 5). The meaningful difference
between alertness level of healthy and patient groups together with hourly-basis analysis of their alertness
may inform the Ubicomp community to consider individuals’ mental health diagnosis as a potential feature
for managing attention-demanding tasks per hour. Prior work has established the threshold for impairment
in alertness using smartphones as 500 ms in [6]. According to Figure 3, the results from this study seems to
imply that the threshold of median RTs for distinguishing patients and healthy controls is 800 ms when using
a smartwatch-based tool. The difference between the modality of smartphones and smartwatches justifies the
difference between individuals’ RTs.
We showed that the patients with BD slept significantly more than the healthy group (see Figure 6) that is

inline with the findings of a study conducted with controls and patients with BD using actigraphy [38]. Figure 8b
also showed that the patients stayed more time in bed compared with the healthy controls. Sleep disturbance
of the patients with BD was previously demonstrated in [45] and more time in bed may inform about sleep
disturbance of the patients. Mobility of the patients in terms of their step counts was higher than the controls
(see Figure 8a) which might be due to the motivation caused by using the Fitbit smartwatches to walk more,
which was inferred from the interviews with the participants in Section 4.1.
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The daily average accuracy of the healthy group was slightly higher than the patients although the t-test did
not reveal any significant p-value (see Table 6). Daily missed counts in the cognitive tests sessions were calculated
per participant. Patients on average missed more stimuli than healthy participants. The higher number of daily
missed count indicates an inability to respond within a time limit. While none of the previous related work
investigated individuals’ missed count particularly patients with BD, we showed that this objective measure has
a great potential in classifying patients with BD and healthy controls.

5.2 Sleep and Cognitive Functions
One of the cognitive performance measures of the N-back test was hit rates. The higher the hit rate, the better
ability of the user in keeping the letters in his/her mind and thus better working memory. We showed a significant
correlation between sleep duration and the next-day working memory performance in terms of the N-back hit
rates (see Section 4.3). Such finding is in line with the results of the study by Russo et al. [46] who demonstrated
a negative impact of sleep disturbance on working memory for patients with BD. Moreover, cognitive load is
induced by learning tasks and it directly involves working memory ability [14] while too much cognitive load
adversely affects learnability [26, 53, 64]. The significant correlation coefficient between sleep duration and
working memory of the participants may inform the Ubicomp community about adjusting learnability of the
smartphone-based tasks according to the user’s sleep duration the night before.
Similar to Dingler et al. [16], we did not find a significant impact of sleep on alertness although we used

objective sleep measures. However, another study [1] did find a significant impact of sleep variation on individuals’
alertness while their study aimed to systematically measure circadian rhythm during 40 days, their sample size
was larger (N = 20) and a different target population (young college students) took part in their study.

5.3 Digital Phenotyping through Supervised Models
Various supervised learning models were applied on the daily cognitive and mobile dataset to train and test the
models and select the best performing model by comparing their average AUC with each other. KNN is a simple
and non-parametric classifier without any assumption about the underlying data [23] while it is susceptible to
the noise in the data. However, the impact of noise is less significant when using simple classifiers like KNN
rather than more complicated methods like RF and SVM [65]. SVM is suitable when classes are separable but
does not perform well in case of overlapped classes. In our dataset, we observed an overlap between the samples
in the clusters of healthy and patient groups (see Figure 9b). Such an overlap may justify lower values of the
SVM performance metrics. The average AUC of the KNN was higher than the RF and SVM, but not as good as
the XGBoost. Nevertheless, KNN performed better than the RF and SVM in predicting mental health diagnosis.
XGBoost uses an ensemble of decision trees and is an enhanced algorithm of gradient boosting [10]. RF is also a
tree-based method but its performance was not as good as the XGBoost. Above all, the XGBoost model gave the
highest average AUC.

The ranking of the important features in the output of the XGBoost model revealed the digital phenotypes of
individuals’ mental health diagnosis using daily measures of their cognition, activity, and sleep features. Time in
bed and step counts were the top features that were collected unobtrusively during the study. The next important
features are the RTs to the Stroop test stimuli (color names) and daily missed counts of the participants. Missed
count refers to individuals’ ability in responding during the time limit of each test stimuli, which was 2500 ms
in our study. The Stroop test displays a sequence of color names that are either congruent or incongruent (see
Figure 11c) and the user should select the ink color as fast as possible without getting distracted by the meaning
of the color name. As such, faster RTs in selecting the correct color shows better executive functioning.

Taken together, wearable computing technology assists in collecting frequent cognitive performance measures
such that an increase in the 1) RT to the Stroop color names and 2) daily missed counts in the cognitive tests may
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indicate the need for a follow-up session to assess individual’s mental health with a clinician. The rest of the
features also were ranked as important although with comparably lower ratio. Participants’ average accuracy
during the N-back test slightly contributed to the variable importance of the XGBoost while the performance
measures of the choice reaction time did not have a significant role in classifying patients and healthy controls.

5.4 Perspectives
The results of this study justify the feasibility of utilising objective sleep and activity data in cognition-aware
systems to help in managing the demand on users’ working memory the following day by, for example, reducing
task load in case of poor sleep quality. Furthermore, our findings paves the way for building clinical decision
support systems using wearable and mobile sensor data for timely detection of the mental disorders in particular
BD. Daily observations of users’ cognition and mobile data can be utilised in predicting the probability of cognitive
impairments to diagnose mental disorders. Continuing this line of research will also enable researchers to include
mobile and wearable sensor data in their studies to identify other digital phenotypes of cognition. One such
feature is ambient noise, which can be collected via the smartphone’s microphone. Possible associations between
cognitive performance measures and moment-by-moment stress ratings may also provide new knowledge.
Moreover, phone interaction features such as gestures and accelerometer measures can be integrated with the
features we collected in our study toward a more comprehensive identification of digital phenotypes of mental
health.

5.5 Limitation
This study have some limitations. First, the final sample size (number of participants) was smaller than planned due
to the COVID-19 outbreak, which required recruitment to be stopped before the study ended. Nevertheless, our
findings still provide a statistically significant analysis on cognitive performance measures and daily mobile data
in particular related to the concurrent validity and feasibility of the smartwatch-based tool and the identification
of digital phenotypes of mental health. Second, the fluctuations in the RTs over the course of the day depend on
several factors including the chronotype of the individuals (for example, morningness vs, eveningness), which
we did not control for this study. Third, the golden standard for sleep assessment in clinical studies are typically
self-reported sleep assessments [9], activity patterns of wrist-worn actigraphy [4], or polysomnography for sleep
monitoring [30, 33, 36]. Even though acceptable performance of the Fitbit device in collecting sleep data have
been demonstrated [21, 22], such consumer sleep tracking devices are not medical devices and might not be as
accurate.

6 CONCLUSION
This study showed that a smartwatch-based cognitive assessment tool is a valid instrument for measuring
attention, working memory, and executive functions. Moreover, this tool is feasible for frequent assessment of
the key cognitive functions ‘in-the-wild‘, i.e. in both indoor and outdoor environments, as well as when users
are taking different positions such as sitting, standing, and walking. We also showed the potential of wearable
computing technology in identifying individuals’ mental health diagnosis by collecting daily multivariate, active
and passive data. Patients with BD responded slower in the attention test compared to healthy controls, indicating
lower alertness level of the patients. Sleep duration correlated positively with the next-day working memory
performance, which may help inform the design of cognition-aware computing system when cognitive load is
managed in accordance with sleep duration. Digital phenotypes of mental health were derived from supervised
models of the patients with BD and healthy controls. The time participants stayed in bed as well as their daily
step counts were the most important features. Moreover, daily missed counts and response times (RTs) in the
Stroop test, which measure executive function, were found to be the next significant features. We conclude that
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using mobile and wearable technology for ambulatory collection of individuals’ physiological, behavioural and
cognitive features provides the basis for assisting clinicians in continuously monitoring patients symptoms for
early diagnosis and treatments.

7 ACKNOWLEDGMENTS
Blind for review.

REFERENCES
[1] Saeed Abdullah, Elizabeth L Murnane, Mark Matthews, Matthew Kay, Julie A Kientz, Geri Gay, and Tanzeem Choudhury. 2016. Cognitive

rhythms: unobtrusive and continuous sensing of alertness using a mobile phone. In Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. 178–189.

[2] Michèle Allard, Mathilde Husky, Gwénaëlle Catheline, Amandine Pelletier, Bixente Dilharreguy, Hélène Amieva, Karine Pérès, Alexandra
Foubert-Samier, Jean-François Dartigues, and Joel Swendsen. 2014. Mobile technologies in the early detection of cognitive decline. PLoS
One 9, 12 (2014), e112197.

[3] Naomi S Altman. 1992. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician 46, 3 (1992),
175–185.

[4] Sonia Ancoli-Israel, Jennifer L Martin, Terri Blackwell, Luis Buenaver, Lianqi Liu, Lisa J Meltzer, Avi Sadeh, Adam P Spira, and Daniel J
Taylor. 2015. The SBSM guide to actigraphy monitoring: clinical and research applications. Behavioral sleep medicine 13, sup1 (2015),
S4–S38.

[5] S Ancoli-Israel and Th Roth. 1999. Characteristics of insomnia in the United States: results of the 1991 National Sleep Foundation Survey.
I. Sleep 22 (1999), S347–53.

[6] Mathias Basner, Daniel Mollicone, and David F Dinges. 2011. Validity and sensitivity of a brief psychomotor vigilance test (PVT-B) to
total and partial sleep deprivation. Acta astronautica 69, 11-12 (2011), 949–959.

[7] E Bora and A Özerdem. 2017. Meta-analysis of longitudinal studies of cognition in bipolar disorder: comparison with healthy controls
and schizophrenia. Psychological medicine 47, 16 (2017), 2753–2766.

[8] Robert M Brouillette, Heather Foil, Stephanie Fontenot, Anthony Correro, Ray Allen, Corby K Martin, Annadora J Bruce-Keller, and
Jeffrey N Keller. 2013. Feasibility, reliability, and validity of a smartphone based application for the assessment of cognitive function in
the elderly. PloS one 8, 6 (2013), e65925.

[9] Colleen E Carney, Daniel J Buysse, Sonia Ancoli-Israel, Jack D Edinger, Andrew D Krystal, Kenneth L Lichstein, and Charles M Morin.
2012. The consensus sleep diary: standardizing prospective sleep self-monitoring. Sleep 35, 2 (2012), 287–302.

[10] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining. 785–794.

[11] Chul-Hyun Cho, Taek Lee, Min-Gwan Kim, Hoh Peter In, Leen Kim, and Heon-Jeong Lee. 2019. Mood prediction of patients with mood
disorders by machine learning using passive digital phenotypes based on the circadian rhythm: prospective observational cohort study.
Journal of medical Internet research 21, 4 (2019), e11029.

[12] Francesca Cormack, Maggie McCue, Nick Taptiklis, Caroline Skirrow, Emilie Glazer, Elli Panagopoulos, Tempest A van Schaik, Ben
Fehnert, James King, and Jennifer H Barnett. 2019. Wearable Technology for High-Frequency Cognitive and Mood Assessment in Major
Depressive Disorder: Longitudinal Observational Study. JMIR Mental Health 6, 11 (2019), e12814.

[13] NEM Daniëls, SL Bartels, SJW Verhagen, RJM Van Knippenberg, ME De Vugt, and Ph AEG Delespaul. 2020. Digital assessment of
working memory and processing speed in everyday life: Feasibility, validation, and lessons-learned. Internet Interventions 19 (2020),
100300.

[14] Robin Deegan. 2013. Mobile Learning Application Interfaces: First Steps to a Cognitive Load Aware System. International Association for
Development of the Information Society (2013).

[15] Faith Dickerson, John J Boronow, Cassie Stallings, Andrea E Origoni, Sara K Cole, and Robert H Yolken. 2004. Cognitive functioning in
schizophrenia and bipolar disorder: comparison of performance on the Repeatable Battery for the Assessment of Neuropsychological
Status. Psychiatry research 129, 1 (2004), 45–53.

[16] Tilman Dingler, Albrecht Schmidt, and Tonja Machulla. 2017. Building cognition-aware systems: A mobile toolkit for extracting
time-of-day fluctuations of cognitive performance. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
1, 3 (2017), 47.

[17] Maria Faurholt-Jepsen, Jonas Busk, Helga Þórarinsdóttir, Mads Frost, Jakob Eyvind Bardram, Maj Vinberg, and Lars Vedel Kessing. 2019.
Objective smartphone data as a potential diagnostic marker of bipolar disorder. Australian & New Zealand Journal of Psychiatry 53, 2
(2019), 119–128.

18



Wearable Technology for Cognitive Assessment Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, Issue 0

[18] Maria Faurholt-Jepsen, Mads Frost, Maj Vinberg, Ellen Margrethe Christensen, Jakob E Bardram, and Lars Vedel Kessing. 2014.
Smartphone data as objective measures of bipolar disorder symptoms. Psychiatry research 217, 1-2 (2014), 124–127.

[19] Marcos G Frank. 2006. The mystery of sleep function: current perspectives and future directions. Reviews in the Neurosciences 17, 4
(2006), 375–392.

[20] Pegah Hafiz and Jakob E Bardram. 2019. Design and formative evaluation of cognitive assessment apps for wearable technologies. In
Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019
ACM International Symposium on Wearable Computers. 1162–1165.

[21] Shahab Haghayegh, Sepideh Khoshnevis, Michael H Smolensky, Kenneth R Diller, and Richard J Castriotta. 2019. Accuracy of Wristband
Fitbit Models in Assessing Sleep: Systematic Review and Meta-Analysis. Journal of medical Internet research 21, 11 (2019), e16273.

[22] Shahab Haghayegh, Sepideh Khoshnevis, Michael H Smolensky, Kenneth R Diller, and Richard J Castriotta. 2020. Performance assessment
of new-generation Fitbit technology in deriving sleep parameters and stages. Chronobiology International 37, 1 (2020), 47–59.

[23] D Hand, H Mannila, and P Smyth. 2001. Principles of Data Mining”. The MIT Press. In A comprehensive, highlytechnical look at the math
and science behind extracting useful information from large databases. Vol. 546.

[24] Shan Hung, Min-Shan Li, Yen-Lin Chen, Jung-Hsien Chiang, Ying-Yeh Chen, and Galen Chin-Lun Hung. 2016. Smartphone-based
ecological momentary assessment for Chinese patients with depression: An exploratory study in Taiwan. Asian journal of psychiatry 23
(2016), 131–136.

[25] Susan Jongstra, Liselotte Willemijn Wijsman, Ricardo Cachucho, Marieke Peternella Hoevenaar-Blom, Simon Pieter Mooijaart, and Edo
Richard. 2017. Cognitive testing in people at increased risk of dementia using a smartphone app: the iVitality proof-of-principle study.
JMIR mHealth and uHealth 5, 5 (2017), e68.

[26] Slava Kalyuga. 2011. Cognitive load theory: How many types of load does it really need? Educational Psychology Review 23, 1 (2011),
1–19.

[27] Alboukadel Kassambara and Fabian Mundt. 2020. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. https:
//CRAN.R-project.org/package=factoextra R package version 1.0.7.

[28] Alan S Kaufman and Elizabeth O Lichtenberger. 2005. Assessing adolescent and adult intelligence. John Wiley & Sons.
[29] Matthew Kay, Kyle Rector, Sunny Consolvo, Ben Greenstein, Jacob OWobbrock, Nathaniel FWatson, and Julie A Kientz. 2013. PVT-touch:

adapting a reaction time test for touchscreen devices. In 2013 7th International Conference on Pervasive Computing Technologies for
Healthcare and Workshops. IEEE, 248–251.

[30] Bhanu Prakash Kolla, Subir Mansukhani, and Meghna P Mansukhani. 2016. Consumer sleep tracking devices: a review of mechanisms,
validity and utility. Expert review of medical devices 13, 5 (2016), 497–506.

[31] Max Kuhn. 2020. caret: Classification and Regression Training. https://CRAN.R-project.org/package=caret R package version 6.0-86.
[32] Reed Larson and Mihaly Csikszentmihalyi. 2014. The experience sampling method. In Flow and the foundations of positive psychology.

Springer, 21–34.
[33] Zilu Liang and Mario Alberto Chapa Martell. 2018. Validity of consumer activity wristbands and wearable EEG for measuring overall

sleep parameters and sleep structure in free-living conditions. Journal of Healthcare Informatics Research 2, 1-2 (2018), 152–178.
[34] Andy Liaw, Matthew Wiener, et al. 2002. Classification and regression by randomForest. R news 2, 3 (2002), 18–22.
[35] Wei-Ling Lin and Grace Yao. 2014. Concurrent Validity. Springer Netherlands, Dordrecht, 1184–1185. https://doi.org/10.1007/978-94-

007-0753-5_516
[36] Janna Mantua, Nickolas Gravel, and Rebecca Spencer. 2016. Reliability of sleep measures from four personal health monitoring devices

compared to research-based actigraphy and polysomnography. Sensors 16, 5 (2016), 646.
[37] Emmanuel Mignot. 2008. Why we sleep: the temporal organization of recovery. PLoS biology 6, 4 (2008).
[38] Audrey Millar, Colin A Espie, and Jan Scott. 2004. The sleep of remitted bipolar outpatients: a controlled naturalistic study using

actigraphy. Journal of affective disorders 80, 2-3 (2004), 145–153.
[39] Raeanne C Moore, Joel Swendsen, and Colin A Depp. 2017. Applications for self-administered mobile cognitive assessments in clinical

research: A systematic review. International journal of methods in psychiatric research 26, 4 (2017), e1562.
[40] Kevin R Murphy and Charles O Davidshofer. 1988. Psychological testing. Principles, and Applications, Englewood Cliffs (1988).
[41] Jukka-Pekka Onnela and Scott L Rauch. 2016. Harnessing smartphone-based digital phenotyping to enhance behavioral and mental

health. Neuropsychopharmacology 41, 7 (2016), 1691–1696.
[42] Reshmi Pal, John Mendelson, Odile Clavier, Mathew J Baggott, Jeremy Coyle, and Gantt P Galloway. 2016. Development and testing of a

smartphone-based cognitive/neuropsychological evaluation system for substance abusers. Journal of psychoactive drugs 48, 4 (2016),
288–294.

[43] Indrajeet Patil. 2018. ggstatsplot: "ggplot2" Based Plots with Statistical Details. https://doi.org/10.5281/zenodo.2074621
[44] Ralph M Reitan. 1958. Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and motor skills 8, 3 (1958),

271–276.
[45] Paulo Marcos Brasil Rocha, Fernando Silva Neves, and Humberto Corrêa. 2013. Significant sleep disturbances in euthymic bipolar

patients. Comprehensive psychiatry 54, 7 (2013), 1003–1008.

19



Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, Issue 0 Anonymous

[46] Manuela Russo, Katie Mahon, Megan Shanahan, Elizabeth Ramjas, Carly Solon, Shaun M Purcell, and Katherine E Burdick. 2015. The
relationship between sleep quality and neurocognition in bipolar disorder. Journal of affective disorders 187 (2015), 156–162.

[47] Sohrab Saeb, Emily G Lattie, Stephen M Schueller, Konrad P Kording, and David C Mohr. 2016. The relationship between mobile phone
location sensor data and depressive symptom severity. PeerJ 4 (2016), e2537.

[48] Sohrab Saeb, Mi Zhang, Christopher J Karr, Stephen M Schueller, Marya E Corden, Konrad P Kording, and David C Mohr. 2015. Mobile
phone sensor correlates of depressive symptom severity in daily-life behavior: an exploratory study. Journal of medical Internet research
17, 7 (2015), e175.

[49] Christina Schmidt, Fabienne Collette, Christian Cajochen, and Philippe Peigneux. 2007. A time to think: circadian rhythms in human
cognition. Cognitive neuropsychology 24, 7 (2007), 755–789.

[50] Martin J Sliwinski, Jacqueline A Mogle, Jinshil Hyun, Elizabeth Munoz, Joshua M Smyth, and Richard B Lipton. 2018. Reliability and
validity of ambulatory cognitive assessments. Assessment 25, 1 (2018), 14–30.

[51] Ingo Steinwart and Andreas Christmann. 2008. Support vector machines. Springer Science & Business Media.
[52] Arthur A Stone and Saul Shiffman. 1994. Ecological momentary assessment (EMA) in behavorial medicine. Annals of Behavioral Medicine

(1994).
[53] John Sweller. 1994. Cognitive load theory, learning difficulty, and instructional design. Learning and instruction 4, 4 (1994), 295–312.
[54] Alejandro Szmulewicz, Marina P Valerio, and Diego J Martino. 2019. Longitudinal analysis of cognitive performances in recent-onset

and late-life Bipolar Disorder: A systematic review and meta-analysis. Bipolar disorders (2019).
[55] Zoë Tieges, Antaine Stíobhairt, Katie Scott, Klaudia Suchorab, Alexander Weir, Stuart Parks, Susan Shenkin, and Alasdair MacLullich.

2015. Development of a smartphone application for the objective detection of attentional deficits in delirium. International psychogeriatrics
27, 8 (2015), 1251–1262.

[56] Corrie Timmers, Anne Maeghs, Michiel Vestjens, Charlie Bonnemayer, Huub Hamers, and Arjan Blokland. 2014. Ambulant cognitive
assessment using a smartphone. Applied Neuropsychology: Adult 21, 2 (2014), 136–142.

[57] John Torous, JP Onnela, and Matcheri Keshavan. 2017. New dimensions and new tools to realize the potential of RDoC: digital
phenotyping via smartphones and connected devices. Translational psychiatry 7, 3 (2017), e1053–e1053.

[58] John Torous, Patrick Staples, Ian Barnett, Luis R Sandoval, Matcheri Keshavan, and Jukka-Pekka Onnela. 2018. Characterizing the
clinical relevance of digital phenotyping data quality with applications to a cohort with schizophrenia. NPJ digital medicine 1, 1 (2018),
1–9.

[59] Eirini Tsitsipa and Konstantinos N Fountoulakis. 2015. The neurocognitive functioning in bipolar disorder: a systematic review of data.
Annals of general psychiatry 14, 1 (2015), 42.

[60] Céline Vetter, Myriam Juda, and Till Roenneberg. 2012. The influence of internal time, time awake, and sleep duration on cognitive
performance in shiftworkers. Chronobiology international 29, 8 (2012), 1127–1138.

[61] Robert West, Kelly J Murphy, Maria L Armilio, Fergus IM Craik, and Donald T Stuss. 2002. Effects of time of day on age differences in
working memory. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences 57, 1 (2002), P3–P10.

[62] Hadley Wickham. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
[63] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis. Chemometrics and intelligent laboratory systems 2, 1-3

(1987), 37–52.
[64] Bin Xie and Gavriel Salvendy. 2000. Review and reappraisal of modelling and predicting mental workload in single-and multi-task

environments. Work & stress 14, 1 (2000), 74–99.
[65] Yan Zhang and Xindong Wu. 2010. Integrating induction and deduction for noisy data mining. Information Sciences 180, 14 (2010),

2663–2673.

A SMARTWATCH-BASED COGNITIVE TESTS
Figures 11a to 11c show snapshots of the smartwatch-based cognitive tests. The choice reaction time test has 40
arrows that appear on either right or left side of the watch screen. The arrows are right-hand or left-hand. The
participants should select the direction of each arrow by tapping on either the right-hand or left-hand rectangle
(touch button) (see Figure 11a). The N-back test has three difficulty levels determined by the N value. This test
shows a sequence of 40 letters one by one. Figure 11b shows a 2-back task, thus, the participant should tap on
‘Yes’, if the letter G had appeared 2 letters back in the sequence. The Stroop test displays 30 color names one by
one where each stimuli is either congruent or incongruent. Figure 11c shows an incongruent stimuli as “Green”
is written in a pink color.
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(a) Choice reaction time test. (b) N-back (N=2) test.

(c) Stroop color-word test.

Fig. 11. Smartwatch-based Cognitive Assessment.
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APPENDIXA
Screen for Cognitive

Impairment in
Psychiatry



Subject Name (First, Last):__________________________Gender: ____ Examiner::______________  

DOB (d/m/y):__________________ Test Date (d/m/y):_______________ Time of test:____________ 
IQ estimate (indicate PPVT, NART, WAIS):______________Education (years):____________Handedness:____ 

SCIP FORM 3 

 
SCREEN FOR COGNITIVE IMPAIRMENT IN PSYCHIATRY (SCIP) 

Scot E. Purdon, Ph.D., Clinical Professor of Psychiatry, University of Alberta; spurdon@ualberta.ca 
© 2005 CIPO (1037004) Purdon Neuropsychological Labs Inc., Edmonton, Alberta, Canada 

 

1.  List learning test:  Read the list of 10 words at 3 seconds per word.  Test free recall.  Repeat 2 

more times.  At the end of trial 3 let participant know they will be asked to recall the list again later. 
 Desert Face Letter Bed Machine Milk Helmet Sailor Horse Nail Σ/10 

Tr. 1            

Tr. 2            

Tr. 3            Σ/30 =   

 

2. Consonant repetition test (Read each set of three letters.  Have the subject count backwards from 

the start # for the seconds under delay for each item, and then recall letters.  Any order is fine):  

Stimulus Start # Delay Response  Stimulu

s 

Start # Delay Response 

D-L-H     Z-Q-M 49 3   

M-S-R     B-X-K 67 18  

P-H-Q 39 9   N-F-P 128 9  

X-C-D 177 18   C-T-J 40 3  Σ/24 = 

 

 

3. Verbal fluency test.  Allow 30 seconds to generate words beginning with each letter. 

Stimulus Response 

F 

 

 

R 

 

 Σ =  

 

 

4. Delayed list learning:  Ask the subject to recall the earlier words; do not repeat the list. 
 

 

Desert Face Letter Bed Machine Milk Helmet Sailor Horse Nail 

Tr. 4           Σ /10 t4/t3 * 

100 

 

--------------------------------------------FOLD HERE-------------------------------------------- 

 

5.  Visuomotor tracking test:  After practice items, allow 30 seconds to complete left to right and top 

to bottom. 

M F X D W J 

- -  . . - . - . . - - . . . - -  . - - - 
 
Practice Test 

W 

 

D X J M F X M W 

F 

 

J D W D M J X F 

M 

 

X J W D F X J F 

D 

 

W M F X W M F J Σ/30= 

SCORING SUMMARY:  For each sub-test, divide the difference between observed from predicted scores and 

divide by the standard deviation (n=185, 1st year college sample, IQ approx. 110):  Z-Scores=((Score-Mean)/SD).  

M+SD for VLT_I=23.59+2.87, WMT=20.66+2.45, VFT=17.44-4.74, VLT_D=7.65+1.90, PST=14.26+2.25. 



APPENDIXB
Usability Questionnaire

These questions are selected from Mobile Application Rating Scale (MARS) question-
naire [82].



Usability Evaluation
* Required

Aesthetics

1. Is arrangement and size of buttons/icons/content on the screen appropriate? *
Mark only one oval.

 Very bad design, cluttered, some options impossible to select/locate/see/read device
display not optimised

 Bad design, random, unclear, some options difficult to select/locate/see/read

 Satisfactory, few problems with selecting/locating/seeing/reading items or with minor
screen-size problems

 Mostly clear, able to select/locate/see/read items

 Professional, simple, clear, orderly, logically organised, device display optimised.
Every design component has a purpose

2. How high is the quality/resolution of graphics used for buttons/icons/content? *
Mark only one oval.

 Graphics appear amateur, very poor visual design - disproportionate, completely
stylistically inconsistent

 Low quality/low resolution graphics; low quality visual design – disproportionate,
stylistically inconsistent

 Moderate quality graphics and visual design (generally consistent in style)

 High quality/resolution graphics and visual design – mostly proportionate, stylistically
consistent

 Very high quality/resolution graphics and visual design - proportionate, stylistically
consistent throughout

3. How good does the app look? *
Mark only one oval.

 No visual appeal, unpleasant to look at, poorly designed, clashing/mismatched colours

 Little visual appeal – poorly designed, bad use of colour, visually boring

 Some visual appeal – average, neither pleasant, nor unpleasant

 High level of visual appeal – seamless graphics – consistent and professionally
designed

 As above + very attractive, memorable, stands out; use of colour enhances app
features/menus

Functionality



Powered by

4. Performance: How accurately/fast do the app features (functions) and components
(buttons/menus) work? *
Mark only one oval.

 App is broken; no/insufficient/inaccurate response (e.g. crashes/bugs/broken features,
etc.)

 Some functions work, but lagging or contains major technical problems

 App works overall. Some technical problems need fixing/Slow at times

 Mostly functional with minor/negligible problems

 Perfect/timely response; no technical bugs found/contains a ‘loading time left’ indicator

5. Ease of use: How easy is it to learn how to use the app; how clear are the menu
labels/icons and instructions? *
Mark only one oval.

 No/limited instructions; menu labels/icons are confusing; complicated

 Useable after a lot of time/effort

 Useable after some time/effort

 Easy to learn how to use the app (or has clear instructions)

 Able to use app immediately; intuitive; simple

Information

6. Quality of information: Are instructions content correct, well written, and relevant to the
goal/topic of the app? *
Mark only one oval.

 Irrelevant/inappropriate/incoherent/incorrect

 Poor. Barely relevant/appropriate/coherent/may be incorrect

 Moderately relevant/appropriate/coherent/and appears correct

 Relevant/appropriate/coherent/correct

 Highly relevant, appropriate, coherent, and correct

7. Quantity of information: Is the extent coverage within the scope of the app and
comprehensive but concise? *
Mark only one oval.

 Minimal or overwhelming

 Insufficient or possibly overwhelming

 OK but not comprehensive or concise

 Offers a broad range of information, has some gaps or unnecessary detail; or has no
links to more information and resources

 Comprehensive and concise; contains links to more information and resources
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