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Evaluating multiple bioclimatic risks using Bayesian Belief Network to support urban 

tree management under climate change  

 

Abstract 1 

Understanding the vulnerability of trees affected by climate change is a key 2 

requirement for identifying management priorities and suggesting suitable urban tree species. 3 

To measure such vulnerability under changing climate conditions, indicators of bioclimatic 4 

characteristics should be identified and evaluated using past and current geographic growth 5 

ranges. However, although climate events often occur simultaneously (e.g., frost and drought), 6 

and management issues in this regard need to be clarified, it is challenging to consider 7 

multiple risks in a climate change vulnerability assessment. Therefore, we applied a Bayesian 8 

belief network (BBN) to interlink the bioclimatic requirements of species and seasonal 9 

climate risk of the study site to comprehensively assess the multiple risks. In particular, we 10 

integrated expert knowledge and supporting evidences from relevant studies to construct the 11 

BBN. The developed BBN revealed vulnerability to frost considering occurrences of 12 

cascading and co-occurring climatic risks such as warmer winters and droughts throughout 13 

the phenological cycle. As a case study, two tree species, Zelkova serrata and Camellia 14 

japonica from Seoul, Republic of Korea, were evaluated. Among the climatic risks 15 

considered, the BBN revealed that shortened frost hardening and the occurrence of spring 16 

frost right after an extraordinarily warm winter would mainly affect vulnerability to frost of 17 

the two species. In particular, C. japonica had high vulnerability due to its high susceptibility 18 

to coldness, though growing temperature will be perfectly satisfied under climate change. 19 

Generally, this study provides insights to consider multiple bioclimatic risks for guiding 20 

urban tree management under climate change.  21 

 22 
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 2 

1. Introduction 25 

Changing climate has modified the vegetation composition and biodiversity in many 26 

regions (Kareiva et al., 1993; Skov and Svenning, 2004; Woodward, 1987). In particular, an 27 

increase in extreme weather events, such as severe frost and drought, has negatively affected 28 

climate-sensitive plants (IPCC, 2014). However, plant species provide multiple ecosystem 29 

services and biodiversity conservation, which are necessary for human well-being (Roloff et 30 

al. 2009). Accordingly, understanding the effects of climate change on plants and how plants 31 

respond to changing climates is required for the effective management of trees to maintain 32 

ecosystem services. 33 

Describing the climatic niche of species has been fundamental in ecology and has 34 

received renewed attention to assess the impact of climate change on species distributions 35 

(McKenzie et al. 2003). Based on the geographic growth range, the species-specific climate 36 

niche (e.g., temperature range for growing season on target species) can be estimated, and has 37 

enabled the prediction of vulnerability affected by climate change (Al-Qaddi et al. 2016, 38 

Hellmann et al. 2016, Deb et al. 2017, Barbosa 2016). The identified bioclimatic 39 

requirements cannot exactly predict future tree mortality, since it is difficult to fully consider 40 

the adaptive capacity of target species. However, they can estimate the potential risk that may 41 

occur, based on deviation from the past growth range. To evaluate such risks, advanced 42 

models such as generalized linear models and random forest have been applied (Koo et al. 43 

2017). Nevertheless, it is still challenging to jointly consider multiple bioclimatic hazards and 44 

complex seasonal risks under climate change, which restrict the identification of effective 45 

management priorities (Barry and Elith, 2006). 46 

Moreover, trees exhibit a fatal response to changing climate when multiple bioclimatic 47 

risks occur simultaneously or sequentially (Anderegg et al., 2012; Breshears et al., 2013; 48 

Manion, 1981; McDowell, 2011). Previous research identified that combined climatic events 49 

decreased the capacity of trees to adapt to a changing climate. For example, an analysis of 50 

long-term species data from 1993 to 2012 in a temperate climate showed that late spring 51 

frosts followed by early spring and a warm winter increased tree mortality (Augspurger, 52 

2013). Drought stress in interactions with other extreme climate events also increased tree 53 

mortality. Early spring, severe frosts, and droughts synthetically decreased the growth of 54 

vegetation, which resulted in a decrease in net primary productivity (Arnold et al., 2014). 55 
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That is, consideration of interactions between extreme events and the response of trees along 56 

with seasonal change is critical for suitable tree management. Therefore, consideration of 57 

simultaneous occurrences regarding multiple impacts is required, to improve the predictive 58 

power for future bioclimatic responses and promote suitable urban tree management (Case 59 

and Lawler, 2017). 60 

There are limited methodologies that account for cascading and overlapping climatic 61 

impacts to systematically reflect the overlapping occurrence of bioclimatic factors. The 62 

Bayesian Belief Network (BBN) – so called Bayesian Network- has been known for its 63 

advantages in systematically combining all available information by structuring a causal 64 

probabilistic network among multiple kinds of evidence and knowledge (Barton et al., 2012). 65 

In particular, BBN is known for its usefulness as it (i) reflects the complexity of an ecosystem 66 

by flexibly illustrating a network among factors, (ii) applicable for data-rich and data-poor 67 

conditions, and (iii) incorporates diverse knowledge by reflecting the opinions of experts and 68 

other stakeholder (Mccann et al., 2006). BBN ultimately supports strategic decision making 69 

for environmental management and modeling by graphically expressing complex 70 

relationships in an ecosystem (Mccann et al., 2006, Barton et al., 2012). Specifically, the 71 

BBN associates variables via conditional probability distributions and uses inference 72 

algorithms using Bayes’ law to calculate posterior probabilities of the outcome states. The 73 

BBN, with a structured framework for combining the diverse risks of an ecosystem, could be 74 

useful to consider coincidental climatic impacts by linking bioclimatic factors as a network. 75 

Therefore, in this study, an analytical framework applying the BBN was developed to reflect 76 

the occurrence of multiple bioclimatic risks in a climate change vulnerability assessment for 77 

individual tree species. Based on expert knowledge and related known information regarding 78 

previous studies, we developed the BBN to reflect multiple risks to assess vulnerability to 79 

frost. Identified risks and their chronological sequence in a temperate climate were 80 

investigated for Zelkova serrata and Camellia japonica, one of the most widely used street 81 

trees in urban areas, as a case study. We expect that the suggested methodology and results 82 

will provide insights to consider multiple impacts of climate change for supporting effective 83 

tree management. 84 

 85 

2. Method 86 

In this study, a BBN was developed to reflect multiple bioclimatic impacts in a 87 
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climate change vulnerability assessment. The BBN can be constructed by defining and 88 

linking a set of nodes including the parent (i.e., variable set by user with no external 89 

influences) and child nodes (i.e., variable that is conditional upon the values of its parent 90 

nodes) (Webster and McLaughlin, 2014). Here, to reflect multiple risks, we defined a node as 91 

an individual climatic risk (e.g., the occurrence of drought), and the linkage of nodes 92 

represented the cascading and simultaneous occurrence sequence of such individual risks (Fig. 93 

1). Conditional probability tables were generated regarding the rate of occurrence of 94 

simultaneous impacts. Overall, nodes and linkages were identified based on expert 95 

knowledge and documented knowledge regarding relevant studies. To develop the BBN, Z. 96 

serrata and C. japonica, two widely planted urban tree species in Seoul, were evaluated as a 97 

case study.  98 

[Figure 1] please refer to the back page of this manuscript 99 

2.1. Study site and species for case study 100 

The study site was Seoul, the capital city of the Republic of Korea, which has a 101 

temperate climate with four distinct seasons. The yearly mean temperature of Seoul is 12.5°C. 102 

The mean temperature in August (summer) is 25.7°C, and mean temperature in January 103 

(winter) is -2.4°C, which shows extreme temperature differences (Korea Meteorological 104 

Administration, www.kma.go.kr). The modeled species for case study are Z. serrata –zelkova 105 

serrata- and C. japonica –camelia japonica-, which are the major tree species of the Republic 106 

of Korea and are widely distributed over the Korean Peninsula. The two species were selected, 107 

as those were one of the most frequently used street trees in urban areas having higher 108 

economic importance. Two species can be found in study site, but show different distribution 109 

range across Republic of Korea.  110 

2.2. Data  111 

To consider climatic hazards that could occur based on a business-as-usual state, 112 

climate projection from the RCP 8.5 scenario was evaluated. The RCP scenarios predict 113 

future climates depending on actions to curb greenhouse gas emissions according to changes 114 

in policy and the level of anthropogenic impacts (Symon, 2013). RCP 8.5 reflects high levels 115 

of global warming, which hypothesizes high future demand for energy (Deb et al., 2017; 116 

Moss et al., 2010). We used climate data projected by the HadGEM3 model, which was 117 

developed by the Met Office Hadley Centre. In particular, an official national downscaled 118 
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regional climate model, HadGEM3-RA (Korea Meteorological Administration, 119 

www.kma.go.kr) with a 1 × 1 km spatial resolution, was used to reflect climate variations on 120 

the Korean Peninsula. Data for the current and past climate was obtained from the Korea 121 

Meteorological Administration, including meteorological observatory data (Korea 122 

Meteorological Administration, www.kma.go.kr). 123 

Species occurrence data was acquired from the Third National Ecosystem Survey 124 

conducted by the Ministry of Environment of the Republic of Korea (www.me.go.kr) from 125 

2006 to 2012. For the WI, based on expert’s interview particularly regarding the heat 126 

requirement of a species that was distributed beyond the Korean peninsula, we considered the 127 

natural distribution range of the species studied by Yim and Kira (1991) regarding the wide 128 

range of the heat requirement of the species studied (S1). 129 

2.3. Development of a Bayesian Belief Network (BBN) 130 

2.3.1. Selecting and linking indicators 131 

[Table 1] please refer to the back page of this manuscript 132 
 133 

Expert knowledge was integrated for selecting, confirming and linking the nodes. 134 

Five experts (local managers and scientists) with a minimum of 20 years’ experience on tree 135 

management were individually interviewed for the indicator selection on main bioclimatic 136 

risks and its confirmation. Furthermore, plant’s annual phenological cycle (Burton and 137 

Cumming 1995), and the relevant researches clarifying bioclimatic requirements of trees, 138 

Yim and Kira (1975), Cannell and Smith (1986), Prentice et al. (1992), Urban et al. (1993), 139 

Burton and Cumming (1995), McKenzie et al. (2003), Skov and Svenning (2004), Schwartz 140 

et al. (2006), Normand et al. (2007), McDowell et al. (2008), Nitschke and Innes (2008), and 141 

Arnold et al. (2014), were considered to identify the nodes (Table 1).   142 

In specific, based on the plant’s phenological cycle from Burton and Cumming 143 

(1995) and relevant research, we identified general bioclimatic requirements of tree species 144 

as an indicator: thermal requirement for the growing season (Warmth Index; WI), chill 145 

requirement for adequate frost hardening (Chilling Requirement; CR), and optimum 146 

minimum temperature in winter (Minimum Temperature; MinT). Furthermore, based on 147 

expert’s opinion, not only species bioclimatic requirements (WI, CR, and MinT), but also 148 

risks of occurrence on spring drought (SD), extra-ordinary warmer winter (WW), and spring 149 

frost (SF) were regarded as a node in BBN.  150 

http://www.kma.go.kr/
http://www.kma.go.kr/
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The structuring of a network with selected indicators was performed based on expert 151 

knowledge and relevant studies demonstrating such linkages. In summary, major risks were 152 

identified as frost that occurs in winter and spring. The nodes were linked to discern 153 

“vulnerability to winter frost” and “vulnerability to spring frost.” Specifically, the following 154 

principles were applied:  155 

(i) The most crucial phenological stage was determined to budburst. Trees can be most 156 

susceptible in such stage, as the first appearance of spring foliage often has a strong 157 

response to temperature change (White et al., 1997; Schwartz et al., 2006). The 158 

failure of proper budburst can ultimately impact a species abundance (GRUBB, 159 

1977; Nitschke and Innes, 2008). Therefore, the BBN was structured with a 160 

particular focus on the budburst stage, hence the network started with the timing of 161 

“after budburst”, and the last part of the BBN was concentrated on the timing of 162 

“budburst” to measure the risks at bud flushing.  163 

(ii) The major climate risk was investigated as SF, and the related risks that were 164 

causally increasing vulnerability were investigated as WW and SD. That is, recent 165 

warming in winter often caused earlier bud sprouting, which increased the 166 

vulnerability of the following SF. Moreover, not only warmer winter, but also co-167 

occurring drought was observed to increase susceptibility to the occurrence of SF. In 168 

line with expert knowledge, Arnold et al., (2014), Augspurger (2013), and Schwartz 169 

et al (2006) empirically demonstrated such a mechanism.  170 

(iii) Frost that occurred in winter was also regarded as a major threat prior to SF. It has 171 

long been known that if trees are exposed to temperatures below their normal 172 

minimum temperature, the distribution of trees may change over time (Sakai and 173 

Weiser, 1973; Woodward, 1987; Prentice et al., 1992). Specifically, such a threat can 174 

increase when an adequate temperature range in the growing season and appropriate 175 

frost hardening period are not satisfied beforehand (Cannell and Smith 1986; Burton 176 

and Cumming 1995; Nitschke and Innes 2008). Hence, vulnerability to winter frost 177 

was determined regarding multiple impacts related to WI, CR, and MinT.  178 

(iv) This study hypothesized that if the vulnerability to winter frost was high, the 179 

subsequent vulnerability to spring frost would increase. 180 

[Figure 2] please refer to the back page of this manuscript 181 
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 182 
Each indicator was basically classified and ordered based on the chronological order 183 

and co-occurring features regarding the above principles (Fig. 2). To constitute the BBN, we 184 

used Netica software (www.norsys.com/netica). Though there were several tools for 185 

developing the BBN such as Netica, Hugin, xBaies, and JavaBayes, Netica was identified as 186 

the most frequently and widely applied tool in ecosystem management (Pérez-Miñana, 2016), 187 

because it has the strengths of a user-friendly GUI, computational power, and good 188 

performance (Zou and Yue, 2017). Hence, we applied Netica for construction of the BBN.  189 

Calculating probabilistic suitability of tree species on projected years  190 

To evaluate species suitability affected by climate change, we quantified satisfaction 191 

rate of the species bioclimatic requirement and occurrence rate of extreme climate at the 192 

target site. For the climate from current to future (2016–2099), representing climate change, 193 

the overall probabilistic suitability value was quantified. This shows the degree of how the 194 

projected climate will be suitable for tree growth.  195 

First, species bioclimatic requirements, WI, CR, and MinT, were calculated by 196 

comparing species-specific threshold values and the target site’s projected climate. 197 

Specifically, depending on the geographic range of the target species, threshold values of WI, 198 

CR, and MinT were identified as shown in Table 2. Second, satisfaction and dissatisfaction 199 

rates of such threshold values of the target site climate were calculated. For instance, when 200 

the threshold value of MinT was exceeded in the whole evaluated period from 2016 to 2100, 201 

the satisfaction and dissatisfaction rates were quantified as 0% and 100%, respectively.  202 

[Table 2] please refer to the back page of this manuscript 203 
 204 

The risks on occurrences of warm winter, spring drought, and spring frost were 205 

calculated for the parent nodes, WW, SF, and SD. These represent the occurrences of extreme 206 

events at the target site for the projected years. As such, the occurrence rate of each event for 207 

the evaluated period (a total of 84 years) was quantified. For instance, when spring drought 208 

occurred for 2020, 2030, and 2050, the occurrence rate was quantified as 3.6% (84 divided by 209 

3).  210 

2.3.2. Generating a conditional probability table to integrate the bioclimatic impact 211 

We generated a Conditional Probability Table (CPT) or link matrix, when multiple 212 

nodes were integrated in a causal relationship. We applied two main rationale to integrate the 213 

http://www.norsys.com/netica
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nodes: 1. conditional probability (%) for multiple nodes -occurrence rate, satisfaction rate- is 214 

quantified; 2. discrete choice -high, middle, low- is made for two discrete nodes, that are 215 

vulnerability to winter and vulnerability to spring frost. Expert knowledge was applied to 216 

identify the discrete nodes.  217 

2.4. Sensitivity analysis 218 

We applied the entropy reduction (mutual information) function in Netica to evaluate the 219 

node with greater influence on the target nodes “vulnerability to winter frost and spring frost” 220 

in the case of the two species. The entropy reduction (mutual information) function, which is 221 

symmetric between nodes, indicates how much of the variation on the target node is 222 

explained by the rest of the nodes in the network (Pearl, 1988; Dlamini, 2010), hence it 223 

indicates which part of the network most affects the target node (Norsys Software Corp, 224 

2012). As such, for the model evaluation process, the function was applied to identify the 225 

most influential factors.  226 

 227 

3. Results of the case study 228 

3.1. Projected climate change of the study site 229 

Climate projection shows that the study site would experience a constant temperature 230 

increase during the growing season, 11 ~ 33°C (monthly mean temperature from April to 231 

September). Coldness in winter would show high variability, ranging from -15 ~ 9.5°C 232 

(minimum temperature from December to January). The risk on extreme climate, including 233 

WW, SF, and SD in Seoul, was highest for WW, and 48% of the projected years showed the 234 

mean daily temperature of early spring exceeding its mean daily temperature of the past 30 235 

years (Table 3). The spring frost and spring drought was projected to occur at 24% and 35% 236 

until 2099, respectively (Table 3).  237 

[Table 3] please refer to the back page of this manuscript  238 
  239 

3.2. Evaluated management priorities for target species 240 

Risks on bioclimatic factors were identified for the study site and target species 241 

(Table 3). By constituting the conditional probability table (CPT) depending on Bayes rule, 242 

the rationale to combine the values on individual risks identified in Table 3 was determined 243 
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(See Table 4, Table 5, S2, and S3).  244 

[Table 4] please refer to the back page of this manuscript  245 
[Table 5] please refer to the back page of this manuscript 246 
[S2] please refer to the back page of this manuscript 247 
[S3] please refer to the back page of this manuscript 248 
[Figure 3] please refer to the back page of this manuscript 249 
 250 

As a result, two BBNs were generated as shown in Fig. 3. In the growing season for 251 

Z. serrata, the results showed that the required optimum range for growing temperature will 252 

be unsatisfied for 38.1% until 2099 (Fig. 3). In comparison, since C. japonica had a broader 253 

threshold range for growing temperature, especially high temperature (Table 3), it showed 254 

100% satisfaction until 2099 (Fig. 3). Therefore, by comparing the current growing 255 

temperature range with projected climate, it shows that high temperatures in the growing 256 

season should be carefully managed for Z. serrata. 257 

We hypothesized that if the vulnerability to winter frost was high, the subsequent 258 

vulnerability to spring frost would increase. The evaluated satisfaction rate on CR and MinT 259 

indicated that cautious supervision on coldness is necessary, especially for C. japonica. That 260 

is, Z. serrata and C. japonica presented similar dissatisfaction rates to the frost hardening 261 

requirement, 59.5% and 60%, respectively (Fig. 3). However, C. japonica showed high 262 

vulnerability to extreme coldness; 79.1% of the measured years exceeded the species-specific 263 

threshold of minimum temperature (Table 3). The constituted BBN model indicated that a 264 

lack of satisfaction of the heat requirement, chilling requirement, and limiting minimum 265 

temperature would impact vulnerability to winter frost. As such, the vulnerability to winter 266 

frost was determined based on the satisfaction condition of child nodes, as illustrated in 267 

Tables 4 and S2. Consequently, the highest vulnerability values of Z. serrata and C. japonica 268 

to winter frost were 3.67% and 47.5%, respectively (Fig. 3). That is, Z. serrata distinctively 269 

demonstrated a low vulnerability to winter frost. However, C. japonica exhibited a high 270 

vulnerability to winter frost because the prior lack of satisfaction of the chilling requirement 271 

and limiting minimum temperature reduced its adaptability to winter frost. 272 

One of major climate hazards, vulnerability to spring frost, was evaluated based on the 273 

previously defined vulnerability to winter frost and occurrence risks of spring drought, warm 274 

winter, and spring frost. In the study site, the results showed that warm winter will occur for 275 

approximately half of the projected years (Table 3). However, the occurrence of spring frost 276 

immediately after the occurrence of warm winter (cascading occurrence) was about 40% (S3). 277 
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Regarding spring drought, it was estimated that the study site would have a spring drought 278 

occurrence rate of around 35% until 2099 (Table 3). Consequently, vulnerability to spring 279 

frost was determined by integrating all the prior responses to climatic events before the stage 280 

of budburst (Table 5). C. japonica was analyzed to have a higher vulnerability to spring frost 281 

than Z. serrata owing to its low adaptability to coldness. C. japonica was in a high and 282 

middle vulnerable state for about 22.5% of the projected years (Fig. 3). Since spring frost 283 

decreased in the future, the projected management requirement for spring frost was lower 284 

than the vulnerability to winter frost.  285 

3.3. Influence of bioclimatic factors on vulnerability to frost 286 

The entropy reduction analysis on two target nodes, vulnerability to spring and 287 

winter frost, indicates the bioclimatic elements with the greatest influence (Fig. 4). The 288 

results for both evaluated species showed that the CR satisfaction rate was the main factor 289 

influencing vulnerability to winter frost. As for C. japonica, the dissatisfaction rate of MinT 290 

was also an important bioclimatic factor. For the target node, vulnerability to spring frost, the 291 

rate of occurrence of spring frost after a warmer winter was the major element that influenced 292 

the variance of vulnerability. In the case of Z. serrata, vulnerability to winter frost and 293 

occurrence of spring drought were also evaluated to have a greater influence. 294 

  295 

[Figure 4] please refer to the back page of this manuscript  296 

 297 

4. Discussion 298 

Climate change increases extreme weather events, which accelerates the mortality of 299 

trees (Bonan, 2008; Kurz et al., 2008). Accordingly, it is necessary to assess how tree species 300 

will respond to climate change for effective tree management practices. The vulnerability of 301 

vegetation regarding climate change has been quantified mostly based on an empirical 302 

relationship between the geographical distribution of species and climate variables, which is 303 

called a climatic niche (Hutchinson, 1957; Pearson and Dawson, 2003). However, it has been 304 

challenging to reflect co-occurring and cumulative climate risks for evaluating a tree’s 305 

vulnerability (McDowell et al., 2008, Adams et al,. 2013). Therefore, in this study, an 306 

analytical framework based on a Bayesian network was developed and applied, which 307 
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identified the priorities of management issues by modeling the occurrence of cascading and 308 

co-occurring bioclimatic risks under climate change. 309 

4.1. Effectiveness and strength of the BBN to reflect multiple bioclimatic risks 310 

By reviewing existing applications of BBNs on climate change assessment, Sperotto 311 

et al. (2017) identified its effectiveness and strength: it can include multiple stressors or 312 

elements with great flexibility. Although few studies have applied the BBN approach to 313 

evaluate the impact of climate change on natural resources, most of the applications 314 

considered multiple risks (Catenacci and Giupponi, 2013; Dyer et al., 2011; Gutierrez et al., 315 

2011; Kelly et al., 2013; Kotta et al., 2009; Sperotto et al., 2017), as it has the capability to 316 

integrate diverse factors based on conditional probability. Accordingly, in this study, multiple 317 

factors affecting “vulnerability to winter frost” and “vulnerability to spring frost” were 318 

included as a network. We could consider how often multiple bioclimatic risks such as warm 319 

winter and spring frost would occur simultaneously under climate change by constituting the 320 

BBN based on insights from expert knowledge and previous studies. When we only 321 

considered climate risk individually, there was a risk of exaggeration in projecting the 322 

vulnerability of trees affected by climate change. The lack of reality in the model could 323 

increase the uncertainty (IPCC, 2014). For instance, when we only considered vulnerability 324 

to MinT, we could conclude that C. japonica may have a vulnerability rate of 79% under 325 

climate change, which indicated that for 79% of the projected years it would be vulnerable 326 

for proper growth (Table 3). However, not only an individual impact, but also the overlapping  327 

impact of multiple stressors should be considered to offer more useful and abundant 328 

information that supports urban tree management.  329 

In line with that, multi-risk assessment requires the conceptualization of interactions 330 

and processes relevant to an objective (Dawson, 2015). The graphical representation ability 331 

of the BBN was a powerful function for conceptualizing the possible relations among nodes, 332 

and it helped to systematically understand the confused structure (Aguilera et al., 2011). As a 333 

result, the graphical function effectively illustrated what cascading and co-occurring 334 

bioclimatic risks could occur, and how they are linked.  335 

4.2. Guiding tree management  336 

The network identified among selected bioclimatic risks informed how tree managers 337 

can perform proactive monitoring and make preparations to reduce vulnerability under 338 
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climate change. Overall, the BBN stressed the importance of monitoring throughout the year-339 

round phenological cycle. As for winter frost, continuous monitoring of heat requirements, 340 

duration of chilling and excess of species-specific coldness tolerance are required to be 341 

fulfilled. In particular, the results clearly emphasized the risk of occurrence of an inadequate 342 

frost hardening period for the two species (Fig 4). That is, an insufficient chilling period due 343 

to temperature rise should be monitored as a priority; also, precautionary actions on covering 344 

trees should be taken depending on the monitored duration of the chilling period. Specifically, 345 

in the case of C. japonica, as susceptibility to winter frost is notably high, damages due to 346 

extensive coldness in winter would be continuously problematic, although the temperature 347 

range throughout the growing season is adequate. On the other hand, Z. serrata may face 348 

increasing heat stress (e.g., leaf scorch) during the growing season (Fig 3), as intense heat 349 

would occur, emphasizing the importance of careful measures such as proper watering to 350 

avoid heat injury (Roloff, 2016). To reduce vulnerability to spring frost, the occurrence of 351 

related risks in regard to an extraordinarily warmer winter and co-occurring drought was 352 

evaluated. The results showed that about 50% of projected years were assessed to have 353 

warming in winter, and related occurrences of spring frost and drought were quantified as 354 

about 24% and 35%, respectively (Fig 3). That is, even though mean temperature would 355 

increase in winter, trees may face sudden freezing due to an increase in temperature variance 356 

(IPCC, 2014). Along with the occurrence of spring drought, monitoring of the duration and 357 

rate of warming is required to perform precautionary frost management. As even moderate 358 

frost can significantly damage vegetation at the timing of budburst (Schwartz et al., 2006), 359 

such a precautious approach is highly required for urban tree management.  360 

4.3. Limitations and next steps 361 

An analytical framework that reflected multiple bioclimatic risks and their causal 362 

relation to vulnerability to frost can be applied to other regions or species. However, the 363 

duration and sequence of bioclimatic impacts could differ, thus detailed climatic conditions 364 

and its network could be modified for each region. Specifically, in this study, representative 365 

bioclimatic factors that frequently affect urban trees were primarily selected, which reflected 366 

major phenological events and the notable climatic risk of Seoul. That is, we identified and 367 

applied several important factors integrating expert knowledge. However, as ecological 368 

response can be more complex, and other non-ecological factors (e.g., location of a tree) can 369 

affect vulnerability, for further research, more nodes can be identified and applied to develop 370 
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the BBN. For instance, management practices such as frequency of irrigation or 371 

characteristics of the urban environment can affect the degree of vulnerability. Thus, as 372 

uncertainty is present in a vulnerability assessment, an adaptive approach is required to 373 

improve the BBN (Landis et al., 2013). That is, improved knowledge and observations of 374 

reactions of a system are recommended to be continuously reviewed and applied, as BBN is 375 

highly flexible (Sperotto et al., 2017).  376 

Specifically, the BBN is fundamentally limited in considering the dynamic response 377 

of trees and feedback loop of the sequence of vulnerability. Compared to a system dynamics 378 

model, another model based on a systematic approach that supports causal loops reflecting 379 

positive and negative feedback (Reynolds and Holwell, 2010), BBN generally do not assist 380 

the dynamics and feedback effects in the system (Sperotto et al., 2017). In line with that, in 381 

this study, we posed static assessment, rather than dynamic assessment that reflects dynamic 382 

responses reflecting each tree’s resilience. Dynamics such as a tree’s changing resilience 383 

regarding age or management options were not considered in the BBN. Though the dynamic 384 

resilience of species to multiple risks is hard to be reflected due to limitations in data 385 

availability and limited known information, a feedback loop is often important in ecology 386 

(Nyberg et al., 2006; Mccann et al., 2006). Hence, a Dynamic Bayesian Network (DBN) can 387 

be considered for analyzing a tree’s vulnerability based on multiple impacts, as it supports the 388 

function to monitor and update the system over time (Murphy and Russell, 2002). Otherwise, 389 

a simple solution can be applied to improve the BBN structure by adding nodes that reflect 390 

different types of possible responses to multiple risks.   391 

However, though such limitations exist, this study provided insights to consider 392 

multiple chronological impacts in a climate change vulnerability assessment regarding a 393 

tree’s phenological cycle. There are a lot of possibilities with climate risks and their 394 

combinations that affect a tree’s adequate growth. The evaluation of such sequences is hardly 395 

performed due to difficulties in identifying systematic sequences and collecting available 396 

empirical data. In this context, a BBN’s advantage in systematically integrating knowledge in 397 

data-poor condition and its strength in supporting optimum decision making can be further 398 

applied to consider multiple hazards in urban tree management. 399 

 400 

5. Conclusion 401 
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Assessments of future impacts of climate change on ecosystems are rapidly developing. 402 

However, attempts to consider multiple climate hazards in urban tree management are often a 403 

challenge. There should be an attempt to develop methodologies to comprehensively consider 404 

each climatic event. In this respect, this study suggested that a BBN could be used as an 405 

effective tool to consider multiple climate hazards for a climate change vulnerability 406 

assessment. The assessment framework suggested a method to conditionally interlink the 407 

suitability of each bioclimatic requirement and risk in the occurrence of simultaneous 408 

climatic threats regarding the phenological cycle. Heat requirement, frost hardening, coldness, 409 

and major climate risks (e.g., warmer climate in winter) were systematically evaluated as a 410 

network. The results of this study identified prioritized management issues such as a 411 

subsequent reduction of chilling period and simultaneous occurrence of spring frost after a 412 

warmer winter to reduce vulnerability to frost for two species, Z. serrata and C. japonica. 413 

Furthermore, we suggested the strengths and limitations of BBN to consider multiple 414 

stressors and their complex influence. In the end, even though it is a challenge to apply 415 

multiple causal risks along with the phenological cycle in predicting vulnerability to climate 416 

change, as precautionary and proactive tree management is required, further consideration 417 

and implications are necessary. 418 

 419 
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Figure 1. Conceptual framework to develop BBN. Individual bioclimatic risk was defined 

as node and structured to BBN. Selection of nodes, identification of linkage, and 

development of related conditional probability table were performed.  
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Figure 2. Conceptual diagram for linkage of nodes. Based on the phenological cycle and 
identified seasonal climate events, chronological sequences and co-occurrences of bioclimatic 
factors were identified to link the nodes. Such identified linkages are organized as a network 
for constituting Bayesian belief network (BBN). The dotted line indicates conceptual duration 
for each noted bioclimatic event. 

 

 

WI (warmth index); CR (chilling requirement); MinT (minimum temperature); WW (warm winter); 
SF (spring frost); SD (spring drought) 
The figure (left) was modified based on Burton and Cumming (1995). 
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Figure 3. Developed Bayesian belief network (BBN) for target species. Based on the 
defined Conditional Probability Table (CPT), the vale for parent and child nodes were 
identified as follows. It represents final assessed values on multiple risks. 
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Figure 4. Sensitivity on nodes ‘vulnerability to winter frost’ and ‘vulnerability to spring 
frost’ using the entropy reduction (mutual information) analysis in Netica. The larger the 
value, the greater the influence on the target node ‘vulnerability to spring frost and winter 
frost’. 

 

 
Bar chart indicates influence of each factor, which was measured in bits (unit for entropy).  
Nodes with influence < 0.2 bits are not shown.  
WI (warmth index); CR (chilling requirement) 
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Table 1. Selected bioclimatic indicators and quantification methods  
Indicators are selected based on species bioclimatic requirement and occurrence risk of 
extreme climate. Quantification method and criteria for selection are as follows.   

Td: mean daily temperature; Tw: mean weekly temperature; Tc: mean temperature of the coldest 
month; T: mean monthly temperature; Td30: mean daily temperature of past 30 years; L: literature 
review; E: expert interview; P: general phenological cycle for temperate climate  

 

Category Indicator Quantification methodology 
Selection 
criteria 

L E P 

Species’ 
bioclimatic 
requirement 

Warmth Index 

(WI) 

Minimum and 
maximum heat 
requirement for 
growing season 

∑ (Td > 5°C ) 
Species-
specific 

threshold value 
was calculated 

based on 
species present 

geographic 
range 

⊙ ⊙ ⊙ 

Chilling 
Requirement 

(CR) 

Chilling 
requirement for 

frost harden 

∑ (-5°C < Tw 
<5°C ) ⊙ ⊙ ⊙ 

Minimum 
Temperature 

(MinT) 

Threshold 
optimum 

temperature on 
coldness 

0.006 Tc
2 + 1.316 

T-21.9 

See Müller (1982) 
⊙ ⊙ ⊙ 

Occrrence 
risk of 

extreme 
climate 
event 

Spring Drought 

(SD) 
Occurrence of 
spring drought 

the ratio of 
potential 

evapotranspiratio
n (PET) to actual 
evapotranspiratio

n (AET), 

See Thornthwaite 
and Mather 

(1957) 

Occurrence of 
target climate 
event at study 

site was 
quantified 

⊙ ⊙  

Spring Frost 

(SF) 
Occurrence of 
frost in spring Td < -2°C ⊙ ⊙ ⊙ 

Warm Winter 

(WW) 

Occurrence of 
extraordinary 
warmer winter 

Td > Td30 ⊙ ⊙  
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Table 2. Threshold value on species bioclimatic requirements 

Bioclimatic threshold values are identified based on the geographic range of two species. 
Regarding the warmth index, a wide range of bioclimatic thresholds on the heat requirement, 
and geographic distribution, including Japan, were considered (See S1).  

WImax: maximum warmth index; WImin: minimum warmth index; MinT: minimum temperature; 
CR: chilling requirement 

Species WImax WImin MinT CR 

Zelkova serrata 140°C 63°C -34°C 12 weeks 

Camelia japonica 180°C 68°C -26°C 12 weeks 
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Table 3. Individual risk on considered bioclimatic factors 
Occurrence risk of extreme climates for the study site and dissatisfaction rate (%) on defined 
species bioclimatic thresholds is illustrated. When the threshold (See Table 2) is exceeded, it 
indicates the conditions for optimum growth is not met. Shaded cell indicates the maximum 
rate (%) among considered factors.  

Occurrence risk 

of extreme 

climate event 

Study site 

Occurrence rate (%) 

Maximum value 

WW SF SD 

48% 24% 35% 48% 

Risk on species’ 

bio-climatic 

requirement 

Target Species 
Dissatisfaction rate (%) 

Maximum value 

WI CR MinT 

Zelkova serrata 38% 60% 10% 60% 

Camellia japonica 0% 60% 79% 79% 

WW (warm winter); SF (spring frost); SD (spring drought); WI (warmth index); CR (chilling 
requirement); MinT (minimum temperature) 
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Table 4. Conditional probability table (CPT) on WI, CR, and MinT 

CPT illustrates conditional relationship depending on Bayes’ rule between parent node and 
child node. WI is the parent node for child nodes including CR and MinT. Prior satisfaction 
rate on parent node (WI) influences the child nodes’ satisfaction rate, and each original value 
(See Table 3) is combined as follows.  

Zelkova serrate Camellia japonica 

 
Satisfying  

CR 

Unsatisfying 

CR 
 

Satisfying 

CR 

Unsatisfying 

CR 

Satisfying WI 61.5% 38.5% Satisfying WI 40% 60% 

Dissatisfying WI 6.3% 93.7% Dissatisfying WI - - 

value 40.5% 59.5% value 40% 60% 

 
Satisfying 

MinT 

Unsatisfying 

MinT 
 

Satisfying 

MinT 

Unsatisfying 

MinT 

Satisfying WI 84.6% 15.4% Satisfying WI 20.9% 79.1% 

Dissatisfying WI 100% - Dissatisfying WI - - 

value 90.5% 9.5% value 20.9% 79.1% 

WI (warmth index); CR (chilling requirement); MinT (minimum temperature) 
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Table 5. Conditional probability table (CPT) on discrete node ‘vulnerability to SF’ 

The value on discrete node ‘vulnerability to spring frost’ is determined based on the 
conditional relationships among the nodes ‘occurrences of SF’, ‘vulnerability to winter frost’, 
and ‘occurrences of spring drought’. 

Occurrences of SF Vulnerability to WF Occurrences of SD Value 

Occurred High Occurred high 

Occurred High Not occurred middle 

Occurred Middle Occurred high 

Occurred Middle Not occurred middle 

Occurred Low Occurred low 

Occurred Low Not occurred low 

SF (spring frost); WF (winter frost); SD (spring drought) 
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S1. Values of Warmth Index (WI) 

Species 
WI (Korea) 

Reference 
WI(Japan) 

Reference 
min max min max 

Zelkova serrata 63 123 Yim (1977) 55 140 Kira (1991) 

Camellia japonica 68 125 Yim (1977) 85 180 Kira (1991) 

WI (warmth index); min (minimum value); max (maximum value)  
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S2. Conditional probability table (CPT) on discrete node ‘vulnerability to WF’ 

The value on discrete node ‘vulnerability to winter frost’ is determined based on the 
conditional relationship between CR and MinT. 

Satisfying CR Not exceeding MinT Value  

dissatisfied Unsatisfied high 

satisfied Unsatisfied middle 

dissatisfied Satisfied middle 

satisfied Satisfied low 

WF (winter frost); CR (chilling requirement); MinT (minimum temperature) 
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S3. Conditional probability table (CPT) on the node ‘occurrences of SF’ 

Conditional value between occurrences of WW and SF from 2016 to 2099 is illustrated. 
 SF occurred SF un-occurred 

WW occurred 40% 60% 

WW un-occurred 9% 91% 

value 23.8% 76.2% 

SF (spring frost); WW (warm winter)  


