Example telescope simulations with the AstroX telescope toolbox for McXtrace

Publication date: 2020

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Example telescope simulations with the AstroX telescope toolbox for McXtrace.

E. B. Knudsena, S. Svendsenb, P. L. Henriksenb, P. K. Willendrupa, D. D. M. Ferreirab

aDTU Physics, bDTU Space

ABSTRACT

We present a number of example studies of telescope optics using the latest version of the AstroX add on toolbox for McXtrace. Among which are first, a benchmark study of effective area and vignetting for the Chandra X-ray Observatory. Second, a convenient way of building a telescope model (in this case NuSTAR) with many similar optical elements scripted using a python module. This lends itself well to be included in online notebooks and/or for teaching. Third, we show a new AstroX module for lobster eye optics, and fourth, a study of the proposed solar axion telescope BabyIAXO.

ASTROX LIBRARY

Component Contents of the AstroX toolbox are move towards release 1.0. The most basic module that could make up a Wolter telescope is the Pore from which the other elements may be derived. The MCP is the basic block of a lobster eye optic.

CHANDRA

Left: Effective area for the Chandra optic as modeled by AstroX (blue) and extracted from the plots Chandra Proposers’ Guide (POG). For AstroX the coatings of the mirrors were modeled using IMD. Bottom: Normalized effective area as a function of off-axis angle, i.e. vignetting function for a set of X-ray energies, matching those reported in the POG.

In both cases, we measure the curves using monitors before and after the optic and compute the effective area as:

\[A_{\text{ eff}} = \frac{I(x)}{I(0)} \]

where:

- \(A_{\text{ eff}} \) is the illuminated area before the optic
- \(I(x) \) is the independent parameter, e.g. Energy
- \(I(0) \) is the incoming intensity
- \(I \) is the recorded intensity

NuSTAR Simulations

We can (easily), through a new python package, script the creation of AstroX/McXtrace simulations. As you would normally do in python scripts, we can create loops etc. to ease building very large and repetitive geometries, and easily inject them into AstroX/McXtrace.

This way integrates well with jupyter notebooks for teaching

NuSTAR simulations show a new AstroX module for lobster eye optics, and fourth, a study of the proposed solar axion telescope BabyIAXO.

REFERENCES