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Summary
The subject of this thesis is the development of methods to efficiently solve 3D shape
optimization problems with isogeometric analysis. Shape optimization is the art of
finding the best possible shape based on a desired property. Such problems often arise
in engineering, where the criterion depends on the solution to a partial differential
equation, that models the underlying physical process.

Isogeometric analysis is a numerical method for solving partial differential equa-
tions posed on a complicated domain. With this method the shape can be represented
exactly, by using splines, and the optimization can be performed directly on param-
eters controlling the shape of the domain.

When using isogeometric analysis for shape optimization one needs to maintain
a valid parametrization of the interior of the computational domain during the op-
timization process. This is not a trivial task, and often methods rely on non-linear
constraints on the validity of the parametrization. When considering 3D shape opti-
mization problems the number of constraints can be huge.

In this work we will investigate a regularization based approach to maintaining
parametrizations, that avoids the expensive constraints. As the first contribution
we demonstrate that this approach performs at par with a constraint based method,
when considering a 2D model problem of designing electromagnetic reflectors.

As the second contribution we use this regularization based shape optimization
approach to find parametrizations. We demonstrate that the method is able to find
parametrizations of complicated shapes both in 2D and 3D, and the result serves as
a benchmark that illustrates the capability of the method.

Finally as the third contribution we consider a 3D shape optimization problem of
designing reflectors for free surface waves. With the proposed approach we are able
to obtain a shape that performs much better than the initial guess, while maintaining
a valid parametrization. However to obtain a valid parametrization the optimization
had to be terminated prematurely.
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Resumé (in Danish)
Denne afhandling beskriver udviklingen af effektive metoder til at løse 3D form opti-
merings problemer med isogeometrisk analyse. Form optimering er kunsten at finde
den bedst mulige form med hensyn til en bestem egenskab. Sådanne problemer op-
står ofte i ingeniør videnskab, hvor den ønskede egenskab afhænger af løsningen til
en partiel differentialligning, der modellerer den underliggende fysiske proces.

Isogeometrisk analyse er en numerisk metode til at løse partielle differential lig-
ninger på domæner med en kompliceret form. Med denne metode kan formen repræs-
enteres eksakt, med brug af splines, og optimering kan dermed blive udført direkte
på parametre der styrer denne form.

Når isogeometrisk analyse bruges til form optimering, har man brug for at vedlige-
holde en valid, dvs. bijektiv, parametrisering af det indre af det beregningsmæssige
domæne i løbet af optimerings processen. Dette er ikke en triviel opgave og ofte
afhænger metoder af ikke-lineære bibetingelser på validiteten af parametriseringen.
Antallet af bibetingelser kan være meget stort når man betragter 3D form optimer-
ings problemer.

I dette studie undersøger vi en metode til at vedligeholde parametriseringer, der
baserer sig på regularisering, og undgår disse dyre bibetingelser. Som det første bidrag
demonstrerer vi at denne metode præsterer sammenligneligt med en metode baseret
på bibetingelser, ved at betragte et 2D model problem med at designe elektromag-
netiske reflektorer.

Som det andet bidrag, bruger vi denne regularisering baserede form optimerings
metode til at finde parametriseringer. Vi demonstrerer at denne metode kan finde
parametriseringer af kompliserede former både i 2D og 3D, og resultatet tjener som
et benchmark der illustrerer kapaciteten af metoden.

Til slut, som det tredje bidrag, betragter vi et 3D form optimerings problem
med at designe reflektorer for fri-overflade bølger. Med den forslåede metode er vi
i stand til at finde former der præsterer mange gange bedre end start gættet, mens
en valid parametrisering er vedligeholdt. For at opnå en valid parametrisering måtte
optimeringen imidlertidigt standes for tidligt.
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Notation and
Abbreviations

Ξ : The knot vector
ξi : The ith knot
p : The degree of a spline
n : The dimension of a spline space
Cr : Continuously differentiable r times
Sp

Ξ : The spline space with knotvector Ξ and degree p
Ni : The ith B-spline
d : The dimension, typically d = 2 or d = 3
Ri : The ith d-variate tensor product B-spline
Ξ : A d-tuple of knot vectors, Ξ = (Ξ1, . . . ,Ξd)
p : A d-tuple of degrees, p = (p1, . . . , pd)
Sp

Ξ : The tensor product spline space given by Ξ and p
S : A spline space or tensor product spline space
ξ : A point in the parameter domain, ξ ∈ Rd

ξ(i) : The ith coordinate of a point in the parameter domain
x : A point in the physical domain, x ∈ Rd

c : The vector of the coordinates of the control points
cB : The vector of the coordinates of the boundary control points
cI : The vector of the coordinates of the inner control points
W : The Winslow functional
G : The geometry map (also called the parametrization)
Sg : The spline space of G
J : The Jacobian matrix of G
Sdet : The spline space of detJ
R̂i : The ith basis spline of Sdet
d : The vector of spline coefficients of det J

d(k) : The vector of spline coefficients of det J when expanded in its spline
space uniformly refined k times



x Notation and Abbreviations

2D : 2-dimensional Euclidean space
3D : 3-dimensional Euclidean space

IGA : Isogeometric Analysis
CAD : Computer Aided Design
FEA : Finite Element Analysis
FEM : Finite Element Method
PDE : Partial Differential Equation



Introduction
Shape optimization problems are problems where the goal is to find the best possible
shape with respect to certain criteria. As shape optimization problems most often
arise from engineering applications, the problems often involve simulations of physical
processes, for example heat dissipation [23], electromagnetism [33], fluid dynamics
[36], etc. Such physical processes are governed by a Partial Differential Equation
(PDE) posed on the domain which shape is to be optimized. The coupling between
the representation of the shape and the simulations are of great importance in shape
optimization, and many strategies has been developed. Examples include topology
optimization [4] where one represent the shape as a material distribution within a
design domain and level set methods [2] where the shape is represented as the level
set of a function defined on a design domain. However, designing in engineering are
commonly done using Computer Aided Design (CAD) software. Here the geometry is
represented using B-splines or NURBS (non uniform rational B-splines). This poses
the requirement on shape optimization framework that one should be able to convert
the result into the CAD software for further design or production. However this is in
many cases not at trivial task.

Isogeometric Analysis (IGA) is a relatively new framework for numerical solution
of PDEs, which was proposed in 2005 [25]. The method was developed with the
aim of bridging the gap between design and simulation It shares features with Finite
Element Analysis (FEA) as both methods are Galerkin methods [12, 46] but the main
difference is that in FEA the computational domain is approximated by a polyhedral
mesh, while in IGA the computational domain is parametrized using splines. This
makes IGA very appealing for shape optimization, as the optimization can be perform
directly on parameters controlling the spline parametrization, namely its so called
control points. This has the potential that the shape optimization algorithm produces
results that can be readily imported into CAD software. In IGA one also uses splines
as the approximation space for the Galerkin method, which has the advantage that
an approximation space of arbitrarily high degree of smoothness can be constructed,
which for smooth PDEs increases the accuracy per degree of freedom [11].

One of the main challenges in IGA in general is that the shape of a domain only
depends on its boundary, but in IGA one needs a parametrization of the interior
of the domain. The quality of this parametrization can affect the accuracy of the
simulations [20, 44] and at the very least it should be a bijective map, e.g., its Jacobian
determinant should be positive, in which case we call the parametrization ’valid’.
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There are some simple methods for generating a parametrization of the interior for
example the Coons patch method [14] and the spring method [20]. These methods
depend linearly on the boundary control points, however they fail to produce a valid
parametrization for more complicated domains. To be able to handle more complex
domains several nonlinear optimization based methods has been proposed [20, 43].
Notably the minimization of the Winslow functional [20, 42] has proved to be effective
for finding 2D parametrizations, and this functional will be used multiple times in this
work. Finally some recent development in this field includes a PDE-based approach
[22] and an approach based on elastic deformations [39]. The challenge of constructing
parametrizations is especially important when using IGA for shape optimization, as
a valid parametrization has to be maintained during an optimization process where
the shape of the domain changes.

IGA has been successfully applied to shape optimization problems in 2D in many
studies. For example for vibrating membranes [29], for problems in electromagnetic
and electrical systems [34, 17] and in fluid dynamics [36]. Often methods rely on
constraints on the spline coefficients of the Jacobian determinant, to ensure that the
parametrization is valid, for example [34, 17]. These constraints are sometimes too
strict, in which case it is necessary to relax them by refining the spline space in which
the Jacobian determinant is expanded. This can lead to an excessive number of
constraints, especially in 3D where in addition to the extra dimension, the Jacobian
determinant also has higher degree. A new promising attempt to avoid these con-
straints have been proposed in [23] where the geometry parametrization enters the
formulation as an additional PDE constraint. However it is not clear whether this
approach generalizes to 3D problems. Another approach to shape optimization that
avoids constraints on the Jacobian determinant is where one optimizes over all the
control points of the parametrization (not only the ones affecting the boundary) and
adds a regularization term to the objective function that drives the optimization to-
wards parametrizations of good quality. This method has been investigated for shape
optimization with FEM in [37] and has, to my knowledge, only been investigated very
briefly in the context of shape optimization with IGA in [15].

There has been relative few studies that consider shape optimization problems in
3D with IGA. In [28, 7] a Boundary Element Method (BEM) is used for 3D shape
optimization using IGA with T-splines. In BEM the PDE is reduced to to an integral
formulation on the boundary, and thus a parametrization of the interior is not needed.
The disadvantage of BEM is that even though the system matrices are smaller, they
are not sparse and generally not symmetric. Additionally the Greens function for the
PDE has to be known to be able to use BEM, which is not always the case. Other
methods heavily constraint the geometry, for example by only allowing deformations
along a radial direction [24].

In this work the overall objective is to develop methods for efficient 3D shape opti-
mization. In particular we will consider the challenge of maintaining valid parametriza-
tions during the optimization process, in a way that allows for large deformations.
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We will first consider a method based on using linearizations of the Winslow mini-
mization problem for constructing parametrizations, coupled with constraints on the
Jacobian determinant, similar to the method in [34]. The new aspect in this work
is that we use adaptive refinement to relax the constraints on the coefficients of the
Jacobian determinant where needed, and hence reduce the number of constraints com-
pared to uniform refinement. We will compare this method to a regularization based
method, similar to the one in [15], on a 2D model problem of designing electromag-
netic reflectors. This method avoids explicit constraints on the Jacobian determinant,
however it only guarantees that the Jacobian determinant is positive in the quadra-
ture points.

Next we consider a new application of shape optimization, by formulating the
parametrization challenge as a shape optimization problem. We demonstrate how the
regularization based shape optimization approach can be used to find parametriza-
tions of complicated domains in 2D and 3D, avoiding the explicit constraints on the
Jacobian determinant.

Finally we investigate the regularization based approach on a 3D shape optimiza-
tion problem of designing reflectors for free surface flow. The structure of the thesis
is as follows.

Structure

• In Chapter 1 we introduce splines and IGA. The goal of this chapter is to set
the scene and fix the notation for the rest of the thesis.

• In Chapter 2 we consider some methods for finding parametrizations in IGA,
that will serve as benchmarks.

• In Chapter 3 we introduce the two shape optimization frameworks considered
in this work. We will compare the two methods on a 2D problem of designing
electromagnetic reflectors.

• In Chapter 4 we use the regularization based shape optimization approach to
find parametrizations in 2D and 3D. We demonstrate that this is an effective
technique for finding parametrizations in its own right. However this application
will also serve as benchmark for shape optimization problems, that demonstrate
the capabilities of the method.

• In Chapter 5 we investigate the regularization based approach on the 3D shape
optimization problem of designing reflectors for free surface flow.

• Finally, in Chapter 6 we conclude and consider possible directions for future
work.
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The methods are implemented for multi patch geometries using the IGA library
G+Smo1 [30]. For performing the optimization we use the optimization library
IpOpt2 [41].

1https://github.com/gismo
2https://github.com/coin-or/ipopt



CHAPTER 1
Preliminaries

In this chapter we will give an overview of splines, B-splines and Isogeometric analysis
for discretizing PDE’s. The aim of the chapter is to set the scene and fix the notation
for the rest of the thesis. For a more thorough introduction to IGA we refer the reader
to [11].

1.1 Splines and B-splines
Given a degree p ∈ R, an integer n ∈ N and a set of points ξi ∈ R for i = 1, . . . , n+p+1
a spline is a function γ : [ξp+1, ξn+1[→ R which is a polynomial on each of the intervals
[ξi, ξi+1[ for i = p+1, . . . , n. The points ξi is called the knots, and together they form
the knotvector Ξ = (ξ1, . . . , ξn+p+1). The knots ξp+1, . . . , ξn+1 will be referred to as
the inner knots. A spline is Cp−k at a knot with multiplicity k, meaning that the
knot is repeated k times. We will in this work consider open knotvectors, i.e., where
the first and last knot has multiplicity p + 1. Given a knotvector Ξ and a degree p
we will let Sp

Ξ denote the space of splines with this degree and knotvector.
A particular nice basis for the spline space Sp

Ξ is the so called B-splines Ni. They
can be constructed by the Cox de boor algorithm, for details see [11]. An example of
B-splines are shown in Figure 1.1.

Theorem 1. For B-splines, Ni(ξ) for i = 1, . . . , n, of degree p with open knotvector
Ξ the following properties holds

• They are non-negative: Ni(ξ) ≥ 0

• They form a partition of unity:
∑n

i Ni(ξ) = 1

• The restriction of a B-spline Ni to an open knot interval ]ξj , ξj+1[ is a polynomial
of degree p.

A spline curve in R2 is a curve γ = (x, y) such that x ∈ Sp
Ξ and y ∈ Sp

Ξ. It can be
written in terms of the B-splines as

γ(ξ) =
n∑
i

ciNi(ξ) (1.1)
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Figure 1.1: B Splines of degree p, with inner knots (0, 0.25, 0.5, 0.75, 1)

Spline curve

Control points

Control polygon

Figure 1.2: A spline curve of degree p = 2, with inner knots (0, 0.25, 0.5, 0.75, 1)

where ci = (cx
i , c

y
i ). The points ci are called the control points and together they

form the control polygon. An example of a spline curve is shown in Figure 1.2.
Until now we have considered the univariate case. For the multivariate case we will

consider tensor product splines. We let d denote the dimension. Given d knotvectors
Ξ = (Ξ1, . . . ,Ξd) and d degrees p = (p1, . . . , pd) the d-variate tensor product spline
is a function r :]ξ(1)

p1+1, ξ
(1)
n1+1] × · · ·×]ξ(d)

pd+1, ξ
(d)
nd+1] → R. Such that if the arguments

ξ(1), . . . , ξ(i−1), ξ(i+1), . . . , ξ(d) are fixed then r(ξ) is a spline, where ξ = (ξ(i), . . . , ξ(d)).
We will denote the tensor product splines space with knotvectors Ξ and degrees p by
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Sp
Ξ. A basis for this space is the tensor product B-splines given as

Rj(ξ) = Ri1,...,id
(ξ(1), . . . , ξ(d)) = N (1)

i1
(ξ(1)) · · · · · N (d)

id
(ξ(d)) (1.2)

where j is a global index. We will in this work only consider the cases d = 2 and
d = 3, also referred to as 2D and 3D.

A d-dimensional spline surface can be written as

r(ξ) =
n∑

i=1
ciRi(ξ), (1.3)

Here we misuse the notation a bit, and now let n denote the number of tensor
product B-splines. An example of a spline surface in 2D is shown in Figure 1.3.

Figure 1.3: Spline surface of degree p = 2, with inner knots (0, 1/3, 1/6, 1) in both
directions, and its control polygon. The grey lines are parameter lines, i.e., the image
of a uniform grid.

1.2 Isogeometric Analysis
In this section we will introduce IGA for approximating solutions to PDEs. We will
use a Helmholtz equation as an example, as this is the type of PDE that we shall see
later for our shape optimization examples. We will consider the Helmholtz PDE with
Neumann boundary conditions.

∆̂û+Kû = 0 in Ω, (1.4a)
∂û

∂n
= g on ΓN , (1.4b)

∂û

∂n
= 0 on Γ0. (1.4c)
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Ω
ΓN

Γ0

[0, 1]d

G−1(ΓN )

G−1(Γ0) G

Figure 1.4: Sketch of the parametrization and boundary conditions

IGA is a Galerkin method and the first step is to write (1.4) in the weak formulation.
This is done by multiplying (1.4) with a test function v̂ ∈ H1(Ω) and integrate over
the domain Ω: ∫

Ω
∆̂û · v̂ dx+K

∫
Ω
ûv̂ dx = 0 (1.5)

Now we can use Greens identity to move one of the derivatives in the first term from
û to v̂ yielding

−
∫

Ω
⟨∇̂û, ∇̂v̂⟩2 dx+

∫
∂Ω

∂û

∂n
v̂ds+K

∫
Ω
ûv̂ dx = 0 (1.6)

where ⟨·, ·⟩2 is the Euclidian inner product. Using the boundary conditions (1.4b)
and (1.4c) we arrive at the weak formulation: Find û ∈ H1(Ω) such that∫

Ω
⟨∇̂û, ∇̂v̂⟩2 dV̂ −K

∫
Ω
ûv̂ dV̂ =

∫
Γs

gv̂ dŜ (1.7)

holds for all test functions v̂ ∈ H1(Ω).
With IGA we now consider a parametrization of the physical domain G : [0, 1]d →

Ω such that G([0, 1]d) = Ω, and where d is the dimension. It is assumed that the
parameter domain is the unit square [0, 1]d for simplicity. We need the parametriza-
tion to be bijective, i.e., det J ̸= 0, and we will in this work consider the case where
the Jacobian determinant is to be positive det J > 0. To discretize this equation we
will use splines both for representing the geometry and for approximating u. We will
look for a solution in a tensor product spline space which we will denote by S, we
will consider G ∈ Sg, that is

G =
ng∑
i

ciRg
i . (1.8)

The superscript g indicates that the spline space for the geometry map can be different
from the one we will use to approximate u. The setup is sketched in Figure 1.4.

We have that
∇̂ = J−T∇,
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where ∇̂ are the gradient in the physical domain, such that ∇̂i = ∂
∂x(i) and ∇ is the

gradient in the parameter domain, such that ∇i = ∂
∂ξ(i) . The Jacobian matrix of G

is denoted by J . We now pull back the equation (1.7) to the parameter domain to
get the weak formulation: Find u = û ◦G such that∫

[0,1]d

⟨J−T∇u, J−T∇v⟩2 det J dV −K
∫

[0,1]d

uv det J dV

=
∫

G−1(Γs)
g ◦Gv

∥∥∥∥∂G∂ν
∥∥∥∥ dS,

(1.9)

for all test functions v = v̂ ◦ G. Here ν is the boundary variable. Note that the
measure

∥∥ ∂G
∂ν

∥∥ is for the case d = 2. For d = 3 we get
∥∥∥ ∂G

∂ν1
× ∂G

∂ν2

∥∥∥. We will introduce
the bilinear form

a(u, v) = a1(u, v)− a2(u, v) (1.10)

where a1 and a2 are bilinear forms given by

a1(u, v) =
∫

[0,1]d

⟨J−T∇u, J−T∇v⟩2 det J dV (1.11a)

a2(u, v) = K

∫
[0,1]d

uv detJ dV (1.11b)

Finally we define the linear form

ℓ(v) =
∫

G−1(Γs)
g ◦Gv

∥∥∥∥∂G∂ν
∥∥∥∥ dS, (1.12)

We look for uh ∈ S

uh =
n∑
i

uiRi (1.13)

such that (3.17) holds for all test functions v ∈ S. Since S is a vector space it is
sufficient to test against the basis functions Ri. This yields the system of linear
equations

Au = Bu + Cu = F (1.14)

where u = (u1, . . . , un)T and

Bij =
∫

[0,1]d

⟨J−T∇Ri, J
−T∇Rj⟩2 det J dV, (1.15a)

Cij = K

∫
[0,1]d

RiRj det J dV, (1.15b)

Fj =
∫

G−1(Γs)
g ◦GRj

∥∥∥∥∂G∂ν
∥∥∥∥ dS. (1.15c)
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We have not yet discussed how to choose G given boundary curves that defines the
shape of the computational domain, as this will be the topic of the next chapter. This
challenge will be revisited throughout the thesis, as it is one of the main challenges
when using IGA in general, and especially when using IGA for shape optimization.

1.3 Integration by Quadrature
To compute the integrals in (1.15), we will, unless otherwise specified, use Gauss-
Legendre quadrature. We will refer to this as Gauss quadrature. Here an integral is
approximated by a linear combination of function evaluations∫

[−1,1]
f(t) dt ≈

nQ∑
i

wif(ti) (1.16)

where wi is referred to as the weights and ti is referred to as the Gauss abscissas, or
quadrature points. We will refer to this quadrature rule simply as Gauss quadrature.
For further details we refer the reader to [6]. The integral above is over the interval
[−1, 1] however integration over an arbitrary interval [a, b] can be accomplished by
the change of variables s = (1−t)a+(1+t)b

2 . Throughout this work we will perform the
Gauss quadrature over each knot interval whenever the integrand involves splines, as
for example in (1.15). Gauss quadrature has the property that integrals of polynomi-
als of degree 2nQ − 1 can be computed exactly with this method. This means that
some of the integrals we saw in the last section, for example the one in (1.11b) can be
computed exactly. Other integrals, for example the one in (1.11a) has an integrand
which is a rational polynomial. In this case we will use the number of quadrature
points necessary to exactly integrate the denominator multiplied by the numerator,
unless stated otherwise.

The Gauss-Legendre quadrature is an open quadrature rule, meaning that it does
not include function evaluations at the end points of the interval. But for some
applications, as we shall see later in Chapter 4 and 5, it can be advantageous to
include function evaluations at the end points. Such a quadrature rule is called a
closed quadrature rule and an example that we will use in this work is the Gauss-
Lobatto quadrature. The Gauss-Lobatto quadrature integrates polynomials of degree
2nQ − 3 exactly when using nQ quadrature points.

1.4 Multiple Patches
When considering more complicated topologies of the physical domain, one might not
able to parametrize the domain using one spline parametrization. In this case one
splits the domain into multiple patches, such that each patch can be parametrized
using splines. The interface where two patches meet are referred to as a patch interface.
We will in this work also use multiple patches where material properties change. This
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makes it possible to change shape of parts of the domain with a specific material
property, by changing the patch interfaces.

For each patch p we will have a parametrization Gp, which means that the weak
formulation in the parameter domain will depend on the patch p. However in most
cases the weak parametrization can be written such that the only difference between
patches is the parametrization. Due to this we will give the weak formulations in
general form, in terms of G, even when multiple patches are used.

We enforce C0 continuity of the solution at the patch interfaces. This is accom-
plished in G+Smo by identifying a two connected controlpoints along the interface
between two patches as a single entity. For further details we refer the reader to [11,
chapter 3].

1.5 Computing Derivatives
When using IGA for shape optimization we need to be able to differentiate an objective
function that depends on uh with respect to the coordinates of the control points. We
will illustrate our approach for doing this in this section. We consider a function

E(uh, c) =
∫

Ω
e(uh, c) dξ (1.17)

We will in this work treat uh as a function of c. We can calculate the derivative of E
a with the chain rule

∂E

∂c
(uh, c) = ∂E

∂u

∂u

∂c
+ ∂E

∂c
, (1.18)

where u is the spline coefficients of uh. We will here focus on the first term ∂E
∂u

∂u
∂c , as

this will illustrate the main ideas. By differentiation of (1.14) we find that the term
∂u
∂c has to satisfy

A
∂u

∂c
= ∂F

∂c
− ∂A

∂c
u (1.19)

But to avoid solving this system of equations that has dng right hand sides we use
the adjoint method. Here we rewrite

∂E

∂u

∂u

∂c
= ∂E

∂u
A−1

(
∂F

∂c
− ∂A

∂c
u

)
=

(
∂E

∂u
A−1

) (
∂F

∂c
− ∂A

∂c
u

)
. (1.20)

Now we can compute ∂E
∂uA

−1 which is a linear system with only one right hand side.
Next we demonstrate how to compute the terms ∂A

∂c u and ∂F
∂c . For the term ∂A

∂c u
we will use that the ith element of Au can be written as [Au]i = a(Ri, uh). As an
example we can differentiate a1(Ri, uh) with respect to a coordinate of a controlpoint
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as

∂a1

∂cj
(Ri, uh) =

∫
[0,1]d

⟨∂J
−T

∂cj
∇Ri, J

−T∇uh⟩2 det J dV

+
∫

[0,1]d

⟨J−T∇Ri,
∂J−T

∂cj
∇uh⟩2 det J dV

+
∫

[0,1]d

⟨J−T∇Ri, J
−T∇uh⟩2

∂ detJ
∂cj

dV

(1.21)

here we can use the formulas

∂J−1

∂cj
= −J−1 ∂J

∂cj
J−1, (1.22a)

∂ detJ
∂cj

= det Jtr
(
J−1 ∂J

∂cj

)
. (1.22b)

We have that

G =
dng∑

j

cjRg
j , (1.23)

where

Rg
j = Rg

i+(k−1)·ng = Rg
i ek =



0
...
Rg

i
...
0

 (1.24)

which means that

∂G

∂cj
= Rg

j , (1.25a)

∂J

∂cj
= Jj , (1.25b)

where J is the Jacobian matrix of G and Jj is the Jacobian matrix of Rg
j . This

means that we can write the derivative of a1(Ri, uh) with respect to cj as a bilinear
form da1

uh
applied to basis functions Ri and Rg

j :

∂[Bu]i
∂cj

= ∂a1

∂cj
(Ri, uh) = da1

uh
(Ri,Rg

j ), (1.26)
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where B is the matrix arising from a1 as defined in (1.15a). with

da1
uh

(Ri,Rg
j ) = −

∫
[0,1]d

⟨J−TJT
j J

−T∇Ri, J
−T∇uh⟩2 det J dV

−
∫

[0,1]d

⟨J−T∇Ri, J
−TJT

j J
−T∇uh⟩2 det J dV

+
∫

[0,1]d

⟨J−T∇Ri, J
−T∇uh⟩2 detJtr

(
J−1Jj

)
dV.

(1.27)

This formulation is nice since we use the G+Smo library for the implementations, and
this library has efficient implementations for the assembly of matrices and vectors
arising from bilinear and linear forms, like the one above. The same approach can be
used for computing the derivatives of Cu. When computing the derivative ∂F

∂c the
approach is also the same except that the measure in the integral is different as it is
an integral over the boundary. This measure can be written as∥∥∥∥ ∂G∂ν1

× ∂G

∂ν2

∥∥∥∥ =
√∑

j=1
d detM2

ij (1.28)

where Mij is the i,jth minor of the Jacobian, i.e., where the ith row and the jth
column are removed from J . Here i is the index of the parameter that are fixed on
this boundary. This expression is nice since it is dimension independent, for example
for d = 2 the equality holds:∥∥∥∥∂G∂ν

∥∥∥∥ =
√

(J1j)2 + (J2j)2 =
√∑

j=1
d detM2

ij (1.29)

where Jij are the entry at i, j. This expression can be differentiated with respect to
cj using that the minors Mij are linearly dependent on J , together with (1.25b) and
the rules given in (1.22).
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CHAPTER 2
Parametrization

Techniques
One of the main building blocks of IGA is the geometry parametrization of the physi-
cal domain. As described in the last chapter it is used to pull back the weak formula-
tion of a PDE before discretization. But while the parametrization has to parametrize
the entire domain, the shape of the domain is given only by its boundary. This means
that we need to be able find a parameterization of the interior of the domain, given
the boundary curves.

In IGA the parametrization is represented by a set of control points c. These can
either be on the boundary or in the interior. Typically the boundary control points
will be fixed, but this could also be the case for some of the inner control points. In
this chapter will in the following use the notation

c =
[

cI

cB

]
, (2.1)

where cI are the free control points, typically the inner control points, and cB are
the fixed control points, typically the boundary control points, since these will be
treated differently. We let nI and nB denote the number of inner and boundary
control points, respectively. Note that sometimes some of the inner control points
will be fixed, and some of the boundary control points might be free. Note that
the same control points can have one component fixed and another component free.
An example of such a scenario is seen later in Section 3.3, where the control points
at a symmetry boundary will be allowed to move in the x-direction and not in the
y-direction. When considering multipatch domains, we will often treat the control
points on the patch interfaces as inner control points, such that they are determined
by the parametrization technique.

So the challenge is how to determine the inner control points from the boundary
control points, as illustrated in Figure 2.1.

When performing shape optimization with IGA, parameters that define the shape,
for example the position of boundary control points, is iteratively updated during an
optimization process. This makes the parametrization challenge even more important,
as we need to maintain the geometry parametrization during the optimization process.
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?

γ3 γ4

γ1

γ2

Figure 2.1: The parametrization challenge of finding a parametrization of the interior
from the boundary curves.

Effectively this can limit the designs that you are able to consider, since they need to
be parametrizable with the chosen strategy.

The parametrization can affect the accuracy of the approximation to a PDE [20],
so it is important that it is of good quality. At the very least it should be a bijective
map, meaning that the Jacobian determinant det J should be nonzero det J > 0.

We will in this chapter introduce some techniques for finding 2D parametrizations
as benchmarks for the rest of the work. We will compare the techniques on some
examples in the end of the chapter in Section 2.4.

2.1 Linear Parametrization Techniques

2.1.1 Coons patch
One of the most simple parametrization method is the Coons patch method. The idea
here is to use a combination of linear interpolations to find the inner control points.
We will here consider the 2D case, however the method can easily be extended to 3D.

Given four boundary curves γi : [0, 1]→ R2 for i = 1, . . . , 4 that meets in the four
corners

γ1(0) = γ3(0), (2.2a)
γ1(1) = γ4(0), (2.2b)
γ2(0) = γ3(1), (2.2c)
γ2(1) = γ4(1), (2.2d)
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as illustrated in Figure 2.1, we can interpolate the opposing sides linearly as

L1(s, t) = (1− t)γ1(s) + tγ2(s) (2.3)

and
L2(s, t) = (1− s)γ3(t) + sγ4(t). (2.4)

These linear interpolations are the first two terms that are illustrated in Figure 2.2.
Now if we add these two and subtract the bilinear interpolation of the four corners

B(s, t) = (1− s)(1− t)γ1(0) + s(1− t)γ1(1) + (1− s)tγ2(0) + stγ2(1). (2.5)

as
G(s, t) = L1(s, t) + L2(s, t)−B(s, t) (2.6)

then G will be a map such that

G ↾t=0= γ1, G ↾t=1= γ2, G ↾s=0= γ3, G ↾s=1= γ4. (2.7)

If the boundary curves are given as splines such that γ1 and γ2 shares one spline
space and γ3 and γ4 share another spline space, then this operation can be performed
directly on the control points, as illustrated in Figure 2.2.

+ -

=

Figure 2.2: Illustration of the Coons patch parametrization method. The blue dots
are control points, and the dashed lines are interpolations.

The Coons patch method is a linear parameterization method, in that the position
of the inner control points will depend linearly on the boundary control points, but
it will not always provide a valid parameterization [43].

2.1.2 Spring method
Another linear parameterization methods is the so called spring method. With this
method the inner control points are found such that every inner control points are



14 2 Parametrization Techniques

• •

• •

...
...

...
...

. . . . . .

. . . . . .

Figure 2.3: With the spring method we imagine springs between all the control points,
then we choose the positions of the inner control points such that this system is
balanced.

an average of its neighbours. It corresponds to attaching springs with equal spring
constants between neighboring control points and ’releasing’ the system, when keeping
the boundary control points fixed. This is sketched in Figure 2.3. This corresponds
to solving the linear system

Kc = 0 (2.8)
where the entries in the matrix K is given as

Kij =


1 if ci and cj are neighbours
−4 if i = j

0 otherwise
(2.9)

Note that since we fix the boundary and fixed control points these can be moved to
the right hand side in equation (2.8).

The spring method can sometimes be used when the Coons patch method fail to
produce valid parametrizations, however it still fails to generate valid parametriza-
tions if the shape is too complicated as we shall see in Section 2.4.

2.2 Validity Constraints
In this section we will introduce constraints to ensure that the geometry parametriza-
tion is valid, i.e., det J ̸= 0. Without loss of generality we will consider the case
detJ > 0.
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In the literature there are a few different methods for introducing constraints
that ensure det J > 0. One method is using injectivity cones [45]. In this work we
will use the more common method, where you expand the Jacobian determinant and
introduce constraints on the expansion coefficients [20].

The idea is that if we consider a geometry map of degrees p with knotvectors Ξ
such that G ∈ (Sp

Ξ)d with G ∈ Ck, then the Jacobian determinant detJ ∈ Ck−1 is
also a spline

det J ∈ S p̂

Ξ̂
,

with p̂ = d·p−1 and where Ξ̂i contains the same knots as Ξi but with the multiplicity
of the knots increase by (d − 1)p to account for the increase in degree and decrease
in differentiability. We will denote the space S p̂

Ξ̂
by Sdet to simplify the notation.

This means that we can expand detJ in this space as

det J =
ñ∑

i=1
diR̂i(ξ). (2.10)

We can now introduce the constraints

d ≥ ε, (2.11)

where d = (d1, . . . , dñ
), and ε > 0. Since the tensor product B-splines R̂i are non-

negative, the constraints (2.11) are sufficient, meaning that if d ≥ ϵ holds then also
detJ > 0. However it is not a necessary condition, since we can have detJ > 0 with
d ≯ 0.

2.2.1 Relaxing the constraints
That the condition is only necessary means that it is sometimes too strict. One way
to relax the constraints is to expand the determinant in a larger spline space. Such a
spline space can be obtained by refining Sdet. It is well known that when a spline is
uniformly refined the control polygon, i.e., the expansion coefficients, move closer to
the value of the spline, in this case the Jacobian determinant, for a proof and further
details we refer the reader to [13, 9]. We will denote by S(k)

det the spline space obtained
by applying uniform refinement k-times to Sdet. We will denote the spline coefficients
on the kth refinement level as d(k). Note that we can use local refinement instead of
uniform refinement, as long as the basis satisfy the partition of unity property and
is non negative. We shall later in section 3.1 use by using Truncated Hierarchical
B-splines [19]. This can be used to relax the constraints (2.11) while keeping the
number of constraints low. This strategy will be considered later in the context of
shape optimization in Section 3.1.
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2.2.2 Computing expansion coefficients
In this work we will compute the expansion coefficients d by projection. However
they can also be computed by interpolation. In both methods we end up solving a
linear system of equations to obtain d. When using projection the coefficients can be
found by solving the linear system

Md = D (2.12)

where the entries in M and d are given by

Mij =
∫

[0,1]d

R̂iR̂j dξ (2.13a)

Dj =
∫

[0,1]d

detJR̂j dξ (2.13b)

2.2.3 Note on these as constraints
When using the constraints (2.11) as constraints for an optimization problem it is pos-
sible to avoid having to invert the mass matrix M . 1This can be done by introducing
slack variables to rewrite the constraint

d = M−1D ≥ ε

as

s = M−1D (2.14a)
s ≥ ε (2.14b)

Now we can multiply with M on both sides of (2.14a) to get

Ms = D (2.15a)
s ≥ ε (2.15b)

Note that even though these might look like linear constraints, one has to remember
that det J and therefore D depend non-linearly on the control points. This approach
will not be used in this work.

2.2.4 Number of constraints
In Table 2.1 we show the number of constraints required for different combinations
of number of interior knots and degrees, for 2D and 3D tensor product splines. Note
that in practice the constraints might be too strict and to relax the constraint the
space Sdet has to be refined which increases the number of constraints.

1This approach is from private conversations with Jochen Hinz
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2D 3D
Interior knots p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

2 36 100 196 729 4 096 12 167
4 100 256 484 3 375 17 576 50 653
8 324 784 1 444 19 683 97 336 274 625
16 1 156 2 704 4 900 132 651 636 056 1 771 516

Table 2.1: The number of spline coefficients of the Jacobian determinant.

2.2.5 Maximization of the determinant
One way to use these constraints to generate a valid parametrization is by maximizing
the smallest spline coefficient of the Jacobian determinant. This does not necessarily
give a parametrization of good quality, but it provide us with a way of generating a
valid initial guess for other methods. The following minimization problem is consid-
ered

max
cI

min
i
di (2.16)

which can be rewritten by introducing a slack variable s:

min
cI ,z
− s

s.t. d ≥ s

2.3 Optimization Based Methods
In this section we will consider a class of parameterization techniques based on non-
linear optimization. The idea is that if we introduce a local quality metric q(c, ξ) that
is small for parametrizations of good quality and large for parameterizations of poor
quality, then we can try to minimize the global quality metric,

Q(c) =
∫

[0,1]d

q(c, ξ) dξ, (2.17)

to achieve a parametrization of high quality. If we minimize over the inner control
points we arrive at the following minimization problem

min
cI

Q(c) (2.18)

In some cases we will add the constraints on the Jacobian determinant in (2.11) as

min
cI

Q(c) (2.19a)

s.t. d > ε (2.19b)
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But in order to use many of these methods we need a valid initial guess. We will first
cover one way to get a valid initial guess, and the move on to introduce a number of
quality metrics. We will now move on to consider some different quality metrics

2.3.1 Liao functional
One choice of m is the Liao functional [27]. If we let g be the first fundamental form

g = JTJ =
[
g11 g12
g21 g22

]
=

[
x2

ξ + y2
ξ xξxη + yξyη

xξxη + yξyη x2
η + y2

η

]
, (2.20)

then the Liao measure mL is given by the Frobienius norm of g

qL = g2
11 + 2g2

12 + g2
22 (2.21)

When using the Liao functional will will consider the minimization problem (2.19),
i.e., we will use the constraint on the Jacobian determinant, in order for the method
to produce valid parametrizations. One issue we faced when trying to use the Liao
functional for shape optimization is that after finding a minimizer to (2.19) there are
active constraints, i.e., there exists i such that di = ε. This is a disadvantage due
to two reasons. Firstly it might produce parametrizations which are close to being
degenerate and can lead to discretization error when using IGA. Secondly when using
an optimization based parametrization strategy in a shape optimization algorithm,
one can linearize the method by minimizing a quadratic approximation to the quality
metric, as shall be considered in Chapter 3. However this only works well if we
linearize at a reference parametrization where the metric QL has a local minimum,
which is not the case when there are active constraints. This issue arise since the
method sometimes would produce non valid parametrizations if the constraints 2.11.
In [27] they suggest to combat this by using the modified Liao functional.

The modified Liao functional is given as

mML =
(
g11 + g22

detJ

)2

=
(

tr(JTJ)
det J

)2

. (2.22)

Here the we divide by det J which drives the optimization away from maps with small
Jacobian determinant.

2.3.2 Winslow functional
The Winslow functional is given by the quality measure

mW = tr(JTJ)
det J2/d

. (2.23)

It was introduced in the context of grid generation in finite elements [42]. It was
introduced for the 2D case d = 2, and there are different methods to generalize it to
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3D. In this work we shall use the generalization (2.23). The factor 2/d is chosen such
that the measure is scaling invariant. We use the notation

W (G) =
∫

[0,1]d

tr(JTJ)
det J2/d

dξ. (2.24)

For d = 2 it is the square root of the modified Liao functional. It has some nice
mathematical properties in 2D. First of all it serves as a measure of conformality. We
let λ1 and λ2 denote the eigenvalues of the first fundamental form g = JTJ . Then
the map is conformal if λ1 = λ2. If we assume that λ1 > 0 and λ2 > 0 we have(√

λ1 −
√
λ2

)2

√
λ1λ2

= λ1 + λ2 − 2
√
λ1λ2√

λ1λ2

= λ1 + λ2√
λ1λ2

− 2

The above equation is always larger than zero, and since it attains the value zero if
the map is conformal, it is clear that it is minimal for conformal maps. The Winslow
functional is given by the term λ1+λ2√

λ1λ2
since

tr(JTJ)
det J

= tr(g)√
det g

= λ1 + λ2√
λ1λ2

(2.25)

So when we minimize the Winslow functional we look for a map that is as conformal
as possible. Another nice property of the Winslow functional is that is has a unique
minimum and the inverse of its minimizer is a pair of harmonic functions that is a
diffeomorphism on the interior [42, 20]. This result, to the best of my knowledge, only
holds in 2D. In spite of this result the authors in [20] propose to use constraints on
the Jacobian determinant to safeguard against numerical errors. In our experience
this can be avoided if we set W = ∞ if det J ≤ 0 at one of the quadrature points
used for the integration. This will ensure that the optimization does not find a
parametrization with det J ≤ 0 in one of the quadrature points. However note that
with this modification mW is no longer continuous. For example consider the scaling
G(ξ) = a · ξ, for a ∈ R. When a → 0 then det J → 0 but mW = 2. But with
this modification the step in the line search part of an optimization algorithm is only
accepted when detJ > 0 at the quadrature points. However it requires that we start
the optimization from a valid parametrization.

2.3.3 Harmonic functional
The final metric that we will cover in this section will be referred to as the ’Harmonic
functional’ in lack of a better name. It is proposed in [43]. The idea is, similar to the
Winslow functional, to look for a map whose inverse is a pair of harmonic functions.
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To accomplish this the authors introduce the measure (Lx)2 +(Ly)2 where L is given
as

L = (x2
η + y2

η) ∂
2

∂ξ2 − 2(xξxη + yξyη) ∂
2

∂ξη
+ (x2

ξ + y2
ξ ) ∂

2

∂η2 , (2.26)

where G = (x, y). It can be written in closed form as

Lx = adj(JTJ) : H(x) (2.27)

and similarly for Ly. Here : denotes the Frobenius inner product and H(x) denotes
the Hessian of the map x, and adj(·) is the adjugate matrix. The authors then further
add the two terms to achieve a parametrization with good orthogonality arriving at

mH = (Lx)2 + (Ly)2 + ϵ1∥H(x)∥2
F + ϵ2∥J∥2

F (2.28)

In [43] the authors demonstrate that this method can produce valid parametrizations
without the use of constraints on the Jacobian determinant. We were however not
able to reproduce these results.

2.4 Examples
In this section we will consider the previously proposed parametrization methods
on three different examples. All of the example are in 2D. Examples in 3D will be
considered in Chapter 4.

In Figure 2.4 we will consider a domain that we will call the ’starfish’, which resem-
bles the domain in Figure 4 in [43]. Additionally we will consider two jigsaw puzzle
pieces similar to the ones from [20], the one in Figure 2.5 we will refer to as jigsaw 2
and the one in Figure 2.6 we will refer to as jigsaw 1 . The methods is implemented
in G+Smo and we use the Ipopt optimization library for the optimization.

We will for each example report the smallest spline coefficients of the Jacobian
determinant min d if the parametrization is valid, i.e., if detJ > 0. If it was necessary
to refine the spline space Sdet k times to obtain only positive coefficients we will denote
the smallest one as min d(k). We use ε = 10−5 as a lower bound for the Jacobian
determinant constraints.

In Figure 2.4 we see the results for the starfish. Notably we see that the spring
method and the Harmonic functional without constraints fails to produce a valid
parametrization. Furthermore we see that many of the optimization based methods
has active constraints, since min d ≈ ε = 10−5. When using the Winslow functional
without constraints we arrive at a valid parametrization, but it was necessary to refine
the Sdet thrice to get all positive coefficients.

In Figure 2.5 we consider jigsaw 2 , which is the more simple of the two jigsaw
puzzle pieces. The results here are similar as for the starfish domain.

In Figure 2.6 we consider jigsaw 1 , but here even the method where we maximize
the smallest spline coefficient fails to find a valid parametrization. This can mean
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three things, either there is no valid spline parametrization on the given refinement
level, the constraints on the Jacobian determinant are too strict or it could be that
the optimization get stuck in a local minimum. We will later see that it is actually
possible to find a valid parametrization on this refinement level, when we in Chapter 4
develop a new approach to finding parametrizations. With this approach we are able
to find a valid parametrization for this domain. However to prove that it is valid we
need to refine Sdet several times, which indicates that the constraints considered here
might be too strict, for this domain. As we need a valid parametrization as an initial
guess for the other methods (expect for the harmonic functional) we cannot use these
parametrization methods.

In Figure 2.7 we consider jigsaw 1 but using uniformly refined splines, which al-
lows us to find valid parametrizations. Note the reason the we are able to find a
valid parametrizations might not only be due to the fact that we have more degrees
of freedom to work with, but also due to the fact that the constraints on the Jaco-
bian determinant will also be less strict for this refinement. We observe that in this
case the parametrization found by minimizing the Winslow functional has no active
constraints.
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(a) Spring, det J ≯ 0 (b) max min di, min d =
1.38

(c) Liao, min d = 9.99·10−6

(d) Modified Liao, min d =
1.00 · 10−5

(e) Winslow with con-
straints, min d = 1.02 · 10−5

(f) Harmonic with con-
straints, ϵ1 = ϵ2 = 1,
min d = 1.00 · 10−5

(g) Winslow without con-
straints, min d(3) = 0.21

(h) Harmonic without con-
straints, ϵ1 = ϵ2 = 1,
det J ≯ 0

Figure 2.4: Parameterization for the starfish
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(a) Spring, det J ≯ 0 (b) max min di, min d = 47.4

(c) Liao, min d = 9.99 · 10−5 (d) Modified Liao, min d = 1.69 ·
10−5

(e) Winslow with constraints,
min d = 3.18 · 10−5

(f) Harmonic with constraints,
min d = 9.99 · 10−5

(g) Winslow without constraints,
min d(1) = 9.47

(h) Harmonic without constraints,
det J ≯ 0

Figure 2.5: Parameterization for jigsaw 2
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(a) Spring, det J ≯ 0 (b) max min di, det J ≯ 0

(c) Harmonic without constraints,
det J ≯ 0

Figure 2.6: Parameterization for jigsaw 1
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(a) Spring, det J ≯ 0 (b) max min di, min d = 57.0

(c) Liao„ min d = 1.00 · 10−5 (d) Modified Liao„ min d = 5.30 ·
10−5

(e) Winslow with constraints,
min d = 0.44

(f) Harmonic with constraints,
min d = 9.41 · 10−3

(g) Winslow without constraints,
min d = 0.43

(h) Harmonic without constraints,
det J ≯ 0

Figure 2.7: Parameterization for jigsaw 1
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CHAPTER 3
2D Shape

Optimization using IGA
In this chapter we will discuss different approaches for doing shape optimization with
Isogeometric Analysis. Some of the figures in this chapter is taken directly from the
manuscript in Appendix A. The problem we are interested in are on the following
form

max
Ω∈Oad

E(Ω, ũ), (3.1a)

s.t. ãΩ(ũ, ṽ) = ℓ̃Ω(ṽ) for all ṽ ∈ Ṽ , (3.1b)
where E is the objective and Oad is the set of admissible shapes. The constraint
(3.1b) is the weak formulation of the PDE that governs the physics. This could for
example be the ones considered in Section 1.2. When using Isogeometric Analysis the
solution this weak formulation is approximated by a spline, which coefficients bu can
be found by solving a linear system

Acu = Fc (3.2)
Where Ac and Fc are the system matrix and right hand side that defines the lin-
ear system which arise from the discretization. The subscript c is to indicate that
this matrix and vector depends on the control points c. By introduction a spline
parametrization for representing the physical domain, we can write a discrete shape
optimization problem as

max
α

E(c,u), (3.3a)

s.t. Ac u = fc, (3.3b)
c = c(α), (3.3c)
det J > 0, (3.3d)
αL ≤ α ≤ αU , (3.3e)

where α is the design variables. The vectors αU and αL are upper and lower bounds
for the design variables. The constraint (3.3d) is to make sure that the parametriza-
tion is valid. In the shape optimization frameworks discussed in this work this con-
straint will be handled in two different ways. Firstly, in section 3.1 we will replace it
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with constraints on the spline coefficients of the Jacobian determinant as described in
section 2.2. Secondly, in section 3.2 the constraint (3.3d) will only be imposed implic-
itly by adding a regularization term to the objective, that tends to∞ as det J goes to
0. Finally, the function c(α) describes how the position of the control points depends
on the design variables α. In this work we shall consider two different approaches.
One where the design variables are the boundary control points and c(α) is given by
a linearization of the Winslow minimization problem. And one where all the control
points will enter the formulation as design variables c(α) = α. . Another example
will be where we optimize over all the control points, in which case c(α) = α.

We will in the following use the notation

c =
[

cI

cB

]
, (3.4)

where cI are the inner control points and cB are the boundary control points. We
let nI and nB denote the number of inner and boundary control points, respectively.

3.1 Shape Optimization using Linearizations
In this chapter we will consider a shape optimization framework that is based on using
linearizations of the minimization of the Winslow functional, described in Section 2.

In the following the position of the boundary control points will be the design
variables for the shape optimization α = cB, while the position of the inner control
points is determined by the parametrization strategy, as a function of cI . With this
distinction the boundary control points are not limited to the control points of the
boundary of the physical domain, it could also be control points that represent an
interface between two patches in a multipatch domain, as it will be the case in the
model problem considered in Section 3.3

The goal is to use the parametrization strategy based on minimization of the
Winslow functional for shape optimization. With this strategy the position of the
inner control points of the spline parametrization is found as a minimizer to the
following minimization problem

min
cI

W (c), (3.5)

where
W =

∫
Ω̂

tr
(
JTJ

)
detJ

dξ. (3.6)

with J the Jacobian of the geometry map. Here the design variables are the inner
control points cI while the boundary control points cB are fixed. During a shape
optimization process, the shape of the domain is updated iteratively, and it is therefore
necessary to update the position of the inner control points for each iteration of the
shape optimization problem. To avoid having to solve the minimization problem (3.5)
repeatedly, we linearize this minimization problem, following to the method in [33].
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Given a reference parametrization c0 the problem (3.5) can be linearized by re-
placing W with a second order Taylor expansion, giving the following optimization
problem

min
∆cI

1
2

∆cTH(c0)∆c +∇W (c0)T ∆c +W (c0), (3.7)

Where ∆c = c0 + c. The minimizer to this problem can be found by solving the
linear system

∂c

∂cI

T

H(c0)∆c = − ∂c

∂cI

T

∇W (c0). (3.8)

We can eliminate the boundary and fixed control points since both are fixed, yielding
the system

HcI ,cI ∆cI = −∇WcI −HcI ,cB ∆cB, (3.9)
where [HcI ,cI ]ij = ∂2W/∂cI

i ∂c
I
j , [HcI ,cB ]ij = ∂2W/∂cI

i ∂c
B
j and [∇WcI ]i = ∂W/∂cI

i .

Now if we let ∆cI be given by the linear system (3.9) we can define the parametriza-
tion strategy as follows. Given new positions of the boundary control points we can
find the position of all the control points as

c = c0 + ∆c,

where ∆c =
[
∆cI ∆cB

]T

Until now we have not discussed how to choose the reference parametrization c0.
In principle it could be chosen arbitrarily. However the second order expansion of W
minimized in (3.7) is a good approximation only in a neighborhood of c0. So we want
to choose c0 such that the result of the parametrization strategy given by (3.7) stays
near c0. One way to guarantee this is to require that c(cB

k ) = ck, which means that
if we don’t change the boundary control points, ie. ∆cB = 0, then also the solution
to the linear system (3.9) is zero ∆cI = 0. Inserting ∆cB = 0 into (3.9) we get

HcI ,cI ∆cI = −∇WcI ,

which means that ∇WcI = 0 if ∆cI = 0. In other words the reference parametrization
in that case has to be a minimizer of the original problem (3.5).

We can now use this parametrization strategy to define the subproblem

max
α

E(c,u), (3.10a)

s.t. Kc u = fc, The discretized PDE (3.10b)
c = c0 + ∆c, The parametrization strategy (3.10c)
cB = α, How c depends on α (3.10d)
d ≥ ε, Positivity of det J (3.10e)
αL ≤ α ≤ αU . Design bounds (3.10f)

Note here that the only difference from (3.3) is (3.10c) and (3.10d) which defines the
parametrization strategy and the fact that we optimize over the positions of a subset
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of the control points, that defines the linearization based parametrization strategy.
We can now solve a sequence of these problems where there reference c0 is updated
between in each problem by solving (3.5) to improve the parametrization.

3.1.1 Strategy for Validity Constraints
In [33] the constraints described in Section 2.2 have been added to the minimization
of the Winslow functional in (3.5) arriving at the problem

min
cI

W (c), (3.11a)

s.t. d ≥ ε. (3.11b)

The rationale behind this is that a feasible point to the subproblem (3.10) needs to
satisfy the constraint (3.10e). And since we linearize the parametrization strategy
around c0 it is natural to require c0 to be feasible. This can be enforced by using the
constraint (3.11b) when minimizing W . However the challenge with this approach is
that if any of the constraints (3.11b) are active, meaning that there exists i such that
di = ε, then the problem (3.9) is not a good substitute for (3.11).

This can be seen by considering the case where ∆cB = 0, meaning that the
design variables are not changed. Since we have active constraints we might have
∇WcI ̸= 0, which means that also ∆cI ̸= 0, i.e., the inner control points will change.
This is an issue since it means that the inner control points will not stay in an
neighborhood around c0, and we cannot guarantee that the parametrization will
remain valid. Moreover the approximation (3.9) might not be a good approximation
of ∥∆cB∥ is large. The way the authors of [33] deal with this issue is that if any of
the constraints (3.11b) are active after solving (3.11) then they refine the geometry
via knot insertion.

In this work we take a different approach. In our experiments we found that
when solving the unconstrained problem (3.5) the minimizer would in fact have a
positive determinant everywhere, however the condition d > 0 is not satisfied, since
this condition is often to strict. In order to prove that det J > 0 we often need to
relax the constraint, by refining the spline space in which the spline coefficients d is
found. To avoid an excessive increase in the number of constraints we do this locally,
using locally refinable truncated hierarchical B-Splines [19]. The refinement strategy
goes as follows: After solving (3.5) we compute the spline coefficients of the Jacobian
determinant d. If di < 0 for some i then we refine the knot intervals where the basis
function R̂i has support. This is repeated until all di is positive. The process is
illustrated in Figure 3.1, where we see that even though the Jacobian determinant
has negative spline coefficients at refinement level 0, but not after refining locally
twice.

This loop will only end if det J > 0, which we cannot guarantee.1 We can only
guarantee that detJ is positive on all the gauss quadrature points used to calculate

1In practice we set a limit of the number of refinements, and return an error if this limit is
reached.
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W in (3.5). For example it might not be possible to find a valid parametrization on
the given discretization level. However in our experience this was not an issue when
using the method on the 2D shape optimization that will be considered in Section 3.3.
One explanation for this is that it is not an arbitrary shape that we try to parametrize
using (3.5). It is the shape that is the solution to the previous subproblem (3.10), and
therefore we know that there is a valid parametrization at the given discretization
level, due to the constraint (3.10e). The advantages with this strategy is the number
of control points used to represent the geometry is fixed, contrary to [33], and keep
the number of constraints low during the optimization. This is further investigated
on a specific shape optimization problem in Section 3.3.

The value ε in the constraint (3.10e) will be chosen as ε = ρmin d, where di for
i = 1, . . . , ñ are the spline coefficients of the Jacobian determinant of the reference
parametrization and for 0 ≤ ρ ≤ 1. This is to ensure that the reference parametriza-
tion will be feasible. For the model problem considered in Section 3.3 we shall use
ρ = 1/4.

The full shape optimization algorithm is illustrated as a flowchart in Figure 3.2.

3.1.2 Implementation Details
In this work we use ipopt [41] for solving the subproblems (3.10). Ipopt is an Interior
Point optimization algorithm implemented in C++.

The interior point algorithm requires some parameter tuning to work well, due to
the fact that we start from the design found from the previous subproblem. Since
ipopt uses an interior point algorithm, it pushes the starting guess away from the
boundary to start at an interior point. The amount it is pushed can be adjusted with
the parameter bound_push. It was our experience that using the standard value of
0.1 could lead to a violation of the constraints on the Jacobian determinant, since
these constraint are quite sensitive to changes in the boundary control points. So to
avoid this we needed to decrease the value of this parameter to 10−5.

Another parameter in ipopt is the barrier parameter µ, which penalizes the con-
straints. We use the strategy monotone, where µ is decreased monotonically during
the optimization. However we found that if the initial value of µ, given by the pa-
rameter mu_init, were too large then it pushed the design towards designs with large
Jacobian determinant. This is an issue since it means that the optimization is driven
away from the starting guess c0 which is the point where the parametrization strategy
is linearized. So to avoid this we found that we needed to decrease this parameter
from the default value 0.1 to 10−4.

In general one can argue that an interior point algorithm might not be the best
choice for solving problems that are ’warm started’. Here an Sequential Quadratic
Program (SQP) might be more suited. The main reason that we use ipopt is that,
besides being a state of the art optimization library, it is embedded in G+Smo as
an extension, which makes the implementation easier. With the parameter tuning
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(b) det J level 1

vtkBlockColors

11

10

9

8

7

6

5

4

3

2

1

0

(c) det J level 2
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(d) Mesh level 0
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(e) Mesh level 1 (f) Mesh level 2

Figure 3.1: An illustration of how the constraint d > ϵ can be relaxed. In the top row
we plotdet J with its control net (spline coefficents) and the projection onto {z = 0},
for different refinement levels. The negative spline coefficients are marked with a red
circle. In the bottom row we plot the locally refined mesh. The mesh is refined at
the support of the basis functions corresponding to negative coefficients.

explained above it seems to work well. For more details on the optimization algorithm
used in ipopt see [41].
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Solve (3.5) to find refer-
ence parametrization c0

Compute d

While ∃i di ≤ 0 refine support
of Rdet J

i and recompute d

Solve the shape optimization
subproblem (3.10) at c0 with
ϵ = ρmin di for ρ ∈ (0, 1]

Did we converge?

Stop
Yes

No

Figure 3.2: Flowchart of the optimization algorithm.

3.2 Shape Optimization using Regularization

In this section we will introduce a simpler framework for shape optimization with
IGA, where the inner control points of the spline parametrization are included as
design variables for the shape optimization. To ensure that the method produces
valid parametrizations a regularization term Rτ is added to drive the optimization
towards a parametrization of good quality. With this method a parametrization
strategy is not needed, as the position of the inner control points is an outcome of
the optimization. A similar method has been investigated in the context of shape
optimization in mechanics in [15, 37].

In the following we will use the Winslow functional W as the regularization term
Rτ = τW , as it has proven to be a good quality measure for parametrizations. We
will use numerical quadrature to evaluate W . It is important to note that we again
set W equal to ∞ if det J ≤ 0 in one of the quadrature points. When a line search
method is used as part of the optimization process, then the step size will be chosen
such that W ̸=∞, which means that detJ > 0 is ensured at the quadrature points.
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The optimization problem considered here is on the form

min
c

E(c,u) +Rτ , (3.12a)

s.t. Kc u = fc, (3.12b)
cL ≤ c ≤ cU . (3.12c)

With this approach we avoid the explicit constraints on the coefficients of the Jaco-
bian determinant, however we can only guarantee that it is positive in the quadrature
points used when evaluating the Winslow functional. For our 2D model problem the
designs found with this method still has positive Jacobian determinant everywhere,
but we will see examples of the Jacobian determinant being negative between the
quadrature points when we consider the method for 3D shape optimization, in chap-
ter 4 and 5. We found that the method was less prone to this when using Gauss-
Lobatto quadrature to evaluate the Winslow functional.

The downside with this method is that an appropriate value of τ needs to be
chosen. If τ is too large the regularization term will dominate the objective and the
final shape will be ’easy’ to parametrization but might not have a low objective E. If
τ is chosen too small the final parametrization might be of bad quality, which can lead
to discretization errors in the analysis. This was also what we saw in experiments,
as will be elaborated in Section 3.3. One method to chose an appropriate value of
τ is to solve a sequence of the shape optimization problems (3.12) with decreasing
τ . One can for example evaluate the results by computing the objective using a finer
discretization, to validate the performance of the shape and check if the optimization
has exploited numerical errors.

3.2.1 Shape Optimization by Regularizations of Deformations
Sometimes it can be a disadvantage that the regularization term drives the optimiza-
tion towards shapes that are easy to parametrize, for example if one knows that the
optimal design is close to the initial design.

One way to modify the method is to regularize the deformation of the initial
domain, instead of the geometry map G. We can split the geometry map G into to
parts G = G̃◦G0. Here G0 is a reference geometry map, for example the initial guess
for a shape optimization problem. The setup is sketched in Figure 3.3.

We can compute the Winslow functional of the map G̃ as

W (G̃) =
∫

Ω̃

tr
(
J̃T J̃

)
det J̃ 2

d

dx̃. (3.13)

Using the chain rule we get that

J̃ ◦G0 = J−1
0 J, (3.14)
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Ω̃ Ω[0, 1]d

G0 G̃

G

Figure 3.3: We can use regularization of the deformation G̃ to the initial domain.

which can be used to pull back the integral (3.13):

W (G̃) =
∫

[0,1]d

tr
(
JTJ−T

0 J−1
0 J

)
detJ 2

d

det J
2
d +1

0 dx̃. (3.15)

Now using the simple modification of using Rτ = τW (G̃) means that we regularize
the deformation of G0 instead of G. I did not have time to investigate this approach
further in this work.
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3.3 Optimization of Electromagnetic Reflectors
We will in this section consider the problem of designing electromagnetic reflectors
such that the electrical energy is maximized near a chosen point. It will serve as a
model problem with which we will compare the two strategies presented in Chapter 3
for performing shape optimization with IGA. A similar problem has been considered
in [33] and [1].

3.3.1 Problem description
We consider a 2D scattering problem, where a uniform electromagnetic wave travels
in a dielectric medium (air) and is scattered by two opposing reflectors made from
gold. We let ϵcr and µcr denote the electrical permittivity and permeability of a
material, respectively. The wave travels in the x-direction so we will assume that
the two reflectors are symmetric around the x-axis and only optimize over one of
them. We use a first order absorbing boundary condition and consider a half circle
as the computational (truncated) domain. The setup is illustrated in Figure 3.4.
The electromagnetic field is found by solving the following PDE with the first order
absorbing boundary condition at the boundary of the truncated domain.

∇ ·
(

1
ϵcr
∇û

)
− k2

0µrû = 0 in Ω, (3.16a)

∂(û− ui)
∂n

+ (jk0 + 1
2rt

)(û− ui) = 0 on Γt. (3.16b)

Reflector (Gold)

Air

Point with maximum field

Electromagnetic wave

Truncated Domain

?

?

Figure 3.4: Sketch of the shape optimization problem. The goal is to find a shape of
the reflector that maximizes the field close to a point.
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where û is the electric field, k0 = 2π√ϵ0µ0 is the wave number where ϵ0 and µ0 is the
permittivity and permeability of free space, respectively. The radius of the truncated
domain is given by rt and j denotes the imaginary unit. The far field ui is given as

ui(x, y) = e−jk0
√

ϵcrµcr·x.

As an objective we use the following energy function

E(Ω, û) =
∫

Ω
δ|û|2 dx,

Where û is the solution to the PDE (3.16) and δ is given by a Gaussian function
around (0, 0)

δ(x, y) = e(x2+y2)/(2α2),

with α = 0.1. The physical parameters used for this problem is given in Table 3.1.
The complex permitivitty of the reflector is calculated as ϵscr = ϵr,gold − j σ

ωϵ0

3.3.2 Discretization
In this section we will briefly review the discretization of the problem above.

To discretize the PDE (3.16) we write it in the weak formulation: Find u ∈ H1(Ω)
such that the equation∫

[0,1]2

1
ϵcr
∇̂û · ∇̂v̂ dx+ k2

0

∫
[0,1]2

µrûv̂ dx+
(

jk0 + 1
2rt

) ∫
Γt

1
ϵcr

ûv̂ds

= 1
ϵcr

∫
Γt

(
∂ui

∂n
+

(
jk0 + 1

2rt

)
ui

)
v̂ds. (3.17)

is satisfied for all test functions v ∈ H1(Ω). After pulling back the equations to the
parameter domain, we look for u = û ◦G that satisfy∫

[0,1]2

1
ϵcr

J−T∇u · J−T∇v det J dx+ k2
0

∫
[0,1]2

µruv det J dx

+
(

jk0 + 1
2rt

) ∫
G−1(Γt)

1
ϵcr

uv|∂G
∂ξ
|dξ

= 1
ϵcr

∫
G−1(Γt)

1
ϵcr

(
∂ui

∂n
◦G+

(
jk0 + 1

2rt

)
ui ◦G

)
v

∣∣∣∣∂G∂ξ
∣∣∣∣ dξ (3.18)

f µr µs
r σ ϵ0 µ0 ϵr,gold

4 · 1014[Hz] 1.0 1.0 106[S/m] (µ0c
2)−1 4π10−7 −20.199 + j1.381

Table 3.1: Physical parameters
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for all test functions v = v̂ ◦G. Where J is the Jacobian determinant of the geometry
parametrization G. As the material parameter ϵcr attains a different value in the
dielectric (air) and the reflector (gold), we model the physical domain using 5 different
patches, one for the reflector and 4 for the surrounding air. The patch layout is
sketched in Figure 3.5. We can change the shape opt the reflector by changing the
shape of the interfaces between patch 4 (the reflector) and the surrounding patches, we
effectively change the shape of the reflector. This means that the control points that
defines these interfaces will be used as design variables. Now following the Galerkin
method, the weak formulation can be discretized by searching for a multivariate spline
uh =

∑n
i=1 uiRi(ξ) that satisfy the weak form (3.18) for test functions v = Ri for

i = 1, . . . , n. This can be written as a linear system

Au = (K +M + T )u = F ,

where u = (u1, . . . , un)T and where the entires in K,M,T and F are given by

Kkl =
∫

[0,1]2

1
ϵcr

J−T∇Rk · J−T∇Rl det J dξ, (3.19a)

Mkl = −k2
0

∫
[0,1]2

µrRkRl detJ dξ, (3.19b)

Tkl =
(

jk0 + 1
2rt

) ∫
G−1(Γt)

1
ϵcr
RkRl

∣∣∣∣∂G∂ξ
∣∣∣∣ dξ, (3.19c)

fl =
∫

G−1(Γt)

1
ϵcr

(
∂ui

∂n
◦G+

(
jk0 + 1

2rt

)
ui ◦G

)
Rl

∣∣∣∣∂G∂ξ
∣∣∣∣ dξ. (3.19d)

we can write it as a real linear system[
ℜ(A) −ℑ(A)
−ℑ(A) −ℜ(A)

] [
ℜ(u)
ℑ(u)

]
=

[
ℜ(f)
−ℑ(f)

]
.

P1

P2

P3

P4

P5

Figure 3.5: Patch layout. Patch 4 is (the symmetric half of) reflector while the rest
is the surrounding air.
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As we do not have the exact solution of the PDE, we do not have the exact objective
value, but use:

Eh(c, uh) = E
(
G([0, 1]2), uh

)
=

∫
[0,1]2

δ ◦G|ûh|2 detJ dξ (3.20)

To solve the shape optimization problem we will the two methods described in Chap-
ter 3. The one in section 3.1 is based on solving a sequence of subproblems given as

max
α

Eh(c, uh), (3.21a)

s.t. A u = F , (3.21b)
c = c0 + ∆c, (3.21c)
HcI ,cI ∆cI = −∇WcI −HcI ,cB ∆cB, (3.21d)
cB = α, (3.21e)
d ≥ ε, (3.21f)
αL ≤ α ≤ αU . (3.21g)

We will refer to this method as the ’linearization based’ method. After solving each
subproblem (3.21) we find a new reference parametrization c0. We will refer to
this as ’reparametrizations’, so when we state ’after 5 reparametrizations’ it means
that we have solved 5 of the subproblems (3.21)The other method we will apply is
the one described in section 3.2. With this method we solve a single optimization
problem, with the position of all control points entering the formulations as design
variables. We include a regularization term to drive the optimization towards high
quality parametrizations. The discrete optimization problem is given as

max
c

Eh(c, uh)−Rτ , (3.22a)

s.t. A u = F, (3.22b)
cL ≤ c ≤ cU . (3.22c)

We will refer to this method as the ’regularization based’ method. We use design
bounds where the design variables, eg. the boundary control points, should be inside
a box of width 0.675rt and height 0.475rt centered around (0, 0.025rt) to allow for a
gap between the two reflectors. We will here impose these constraint on the boundary
control points, which guarantees that also the boundary curve of the reflector is within
these bounds. For the regularization based method we only impose these bounds on
the boundary controlpoints, even though the design variables are not limited to the
position of the boundary control points. For both methods the position of the control
points that control the half circle that defines the truncated domain are fixed. The
control points on the boundary at x = 0, eg. between the two symmetric halves, are
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only fixed in the y-direction. The fact that we do not fix these in the x-direction
allows for better parametrizations. 2

We will consider a few different starting guesses for the shape of the reflector,
howeve if not stated otherwise the starting guess will be a circular reflector as sketched
in Figure 3.5.

3.3.3 Results using Linearizations
In this section we will present the results when using linearization based method
described in section 3.1. We will consider two different meshes, a coarse one where
the number of degrees of freedom are N = 2548 and a finer mesh with N = 9300
degrees of freedom.

As a tolerance for solving the subproblems (3.10) we use tol = 10−3. We use a
fixed number of reparametrizations namely 10 for the coarse mesh and 5 for the fine
mesh, as no further progress was seen hereafter.

In Figure 3.6 we show the shape of the reflector at different stages of the op-
timization process. We see that the designs become more complicated after each
reparametrization. This might be since the linearized parametrization methods some-
what limits the shapes that are feasible in each subproblem and therefore you need
to reparametrize a few times for the shape to change significantly.

The objective function during the optimization process is shown in Figure 3.7 with
a blue line. We see that after each reparametrization, marked with a vertical line, the
objective increases until it flattens again. After around 5 or 6 reparametrizations less
progress is observed in each subproblem. The fact that the objective flattens during
each subproblem suggest that a lower tolerance for the subproblems might reduce the
number of iterations needed.

In Figure 3.7 we mark the value of the objective when calculated with a twice
uniformly refined mesh. When calculated on this refined mesh the objective is
Eh/4 = 1.556 while the objective calculated with the mesh used for the optimization
is Eh = 1.803. This is a difference of 16% which might indicate that the optimization
algorithm exploits discretization error to achieve an artificial high objective value.

In Figure 3.8 we plot the designs during the optimization process when using
the fine mesh. We see that the final design are qualitatively similar to the one
obtained with the coarse grid. However the objective is more accurate as seen from
the objective function shown in Figure 3.7. The objective calculated on on a twice
uniform refined grid is Eh/4 = 1.628 while the objective calculated with the mesh
used for the optimization is Eh = 1.638. This is a 0.6% difference. The algorithm
seem to converge faster when using the fine mesh, as we saw no further progress after
5 reparametrizations.

2 Note that since we are not using NURBS, the shape of truncated domain is in fact an approx-
imation to the half circle and therefore both coordinates of the associated control points has to be
fixed. If we were to use NURBS here you could in principle also allow these to move while preserving
the shape of the truncated domain.
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(a) The initial design, Eh = 0.200 (b) After 1 reparametrization, 67 iterations,
Eh = 1.230

(c) After 2 reparametrizations, 143 itera-
tions, Eh = 1.484

(d) After 10 reparametrizations, 579 itera-
tions, Eh = 1.803

Figure 3.6: The designs at different stages of the optimization process, when using
the linearization based method and the coarse mesh. The reflector is outlined with a
black line, and the control points of this boundary is colored black. The grey lines are
parameter lines mapped with the geometry map, to illustrate the parametrization.
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Figure 3.7: The objective function during optimization process with the linearization
based method for the coarse and fine meshes. The vertical lines indicates where the
parametrization is updated. Eh/4 is the objective calculated on a refined mesh.

Until now we have only considered one starting guess, namely where the reflector
is shaped as a circle. To investigate how the starting guess affects the result, we
consider two additional starting guesses. One is where the reflector is shaped as a
square while the other one is the final design when using the regularization approach
described in section 3.2, with regularization parameter τ = 0.125. In Figure 3.9 the
starting guesses, the final designs and the objective are shown. We see that we in fact
find quite different designs when using the different starting guesses. The objective
values of the final designs differs with up to 3%. Shape optimization problems are
know to be prone to local optima, so it is not surprising that the final design depends
on the starting guess.

Another thing we found while experimenting with the method were that the num-
ber of quadrature points used for calculating the Winslow functional can affect the
result of the optimization. In the results presented here we use 12 quadrature points
for each knot interval in each direction, unless otherwise stated. In Figure 3.10 we
show the final designs, after 5 reparametrizations, for a different number of quadra-
ture points. Here the circular reflector from Figure 3.9(a) is used as a starting guess.
We see that we end up with different designs in all 4 cases, but with similar objective
value.
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(a) The initial design, Eh = 0.202 (b) After 1 reparametrization, 52 iterations,
Eh = 1.245

(c) After 2 reparametrizations, 100 itera-
tions, Eh = 1.495

(d) After 5 reparametrizations, 433 itera-
tions, Eh = 1.638

Figure 3.8: The designs at different stages of the optimization process, when using
the linearization based method and the fine mesh.
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(a) Eh = 0.202 (b) Eh = 0.114 (c) Eh = 1.545

(d) 5 reparametrizations,
Eh = 1.638, Eh/4 = 1.627,
433 iterations

(e) 5 reparametrizations,
Eh = 1.695, Eh/4 = 1.659,
328 iterations

(f) 5 reparametrizations,
Eh = 1.692, Eh/4 = 1.698,
316 iterations
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Figure 3.9: Results for different starting guesses using the fine mesh. In the top row
we show the starting guesses, in the middle row the design after 5 reparametrizations
and in the bottom row we show the objective value during the optimization process.
The reflector is outlined with a black line, and the control points of this boundary is
colored black. The grey lines are parameter lines mapped with the geometry map, to
illustrate the parametrization.
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(a) 4 quadrature points, Eh = 1.623, Eh/4 =
1.613

(b) 8 quadrature points, Eh = 1.640, Eh/4 =
1.634

(c) 12 quadrature points, Eh = 1.638,
Eh/4 = 1.627

(d) 16 quadrature points, Eh = 1.625,
Eh/4 = 1.621

Figure 3.10: The design after 5 reparametrizations, when using a different number
of quadrature points pr knot interval in each direction. The fine mesh is used for
approximating solutions to the PDE and the circular reflector in Figure 3.9(a) is used
as a starting guess.
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3.3.4 Results using Regularizations
In this section we will present the results for the problem of designing electromag-
netic reflectors, when using the regularization based method described in Section 3.2.
We will present the final designs and objective for different choices of regularization
parameter τ .

In Figure 3.11 the final designs for different values of τ is presented. From this
figure it is clear that the results are sensitive to the value of τ . If τ is too large then the
final design has a low Winslow functional but also a low (poor) objective Eh, as it is
the case in Figure 3.11(a) for τ = 1/4. On the other hand if τ is chosen too small the
placement of the inner control points will be exploited by the optimization algorithm
to find designs with artificially large objective due to discretization error. This is
observed in Figure 3.11(b) for τ = 1/32. Note that in this case the optimization
did not even succeed, since the maximum number of iterations were reached. But
in between these two extremes there is a sweet spot as seen in Figure 3.11(c) where
we have τ = 1/16. Here the parametrization seems to have a good quality while the
objective Eh is large. The quality of the parametrization is indicated by the fact that
the difference between Eh/4 and Eh is small, in this case the relative difference is
(Eh −Eh/4)/Eh/4 = 0.0006. This indicates that the discretization error is also small.
It should be noted that not only the parametrization affects the magnitude of the
discretization error, also the field we are approximating affects it. But as a comparison
we have (Eh − Eh/4)/Eh/4 = 0.53 for τ = 1/32, where to parametrization looks of
poor quality. In Figure 3.12 we plot the electrical energy Eh, the regularization term
τW and the regularized objective Eh − τW .

In Figure 3.13 we show the final designs when using the fine mesh. Importantly

(a) τ = 1
4 , Eh = 0.973,

Eh/4 = 0.980, W = 12.82, 165
iterations

(b) τ = 1
16 , Eh = 1.645,

Eh/4 = 1.646, W = 17.12, 357
iterations

(c) τ = 1
32 , Eh = 2.227,

Eh/4 = 1.457, W = 24.79,
3000 iterations1

Figure 3.11: The final designs when using the regularization based method and the
coarse mesh for different values of τ . 1For τ = 1/32 the optimization algorithm termi-
nated from reaching the maximum number of iterations. The reflector is outlined with
a black line, and the control points of this boundary is colored black. The grey lines
are parameter lines mapped with the geometry map, to illustrate the parametrization.
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Figure 3.12: The optimization history when using the regularization based method
and the coarse mesh for different values of τ . We plot the electrical energy Eh, the
regularization term and Eh − τW which is the actual function that is maximized.
1For τ = 1/32 the optimization algorithm terminated from reaching the maximum
number of iterations.

we see here that the sweet spot with τ = 1/16 produce similar results with the fine
mesh. But we further observe that τ can in this case be further reduced without
resulting in poor parametrizations, specifically produce good results for τ = 1/64 as
seen in Figure 3.13(b). It can still be too small though, as seen in Figure 3.13(c) for
τ = 1/128.

In Figure 3.14 we show the final designs when using different starting guesses
where we use the fine mesh. We have chosen to report these for τ = 1/16 as it were a
sweet spot for both the coarse and fine mesh. Moreover for this value of τ we actually
find a different design when starting from a reflector shaped as a square, as seen in
Figure 3.14(e). How ever if τ is decreased to τ = 1/32 the same design in was found
for all three starting guesses, as seen in Appendix B, Figure B.6.

(a) τ = 1
16 , Eh = 1.646,

Eh/4 = 1.646, W = 17.11, 382
iterations

(b) τ = 1
64 , Eh = 1.688,

Eh/4 = 1.688, W = 18.84, 581
iterations

(c) τ = 1
128 , Eh = 1.734,

Eh/4 = 1.688, W = 22.71, 734
iterations

Figure 3.13: The final designs when using the regularization based method and the
fine mesh for different values of τ .
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(a) Eh = 0.202 (b) Eh = 0.114 (c) Eh = 1.638

(d) τ = 1
16 , Eh = 1.646,

Eh/4 = 1.646, 382 iterations
(e) τ = 1

16 , Eh = 1.534,
Eh/4 = 1.534, 348 iterations

(f) τ = 1
16 , Eh = 1.646,

Eh/4 = 1.646, 372 iterations

Figure 3.14: Results for different starting guesses when using the regularization based
method and the fine mesh. In the top row we show the starting guesses and in the
bottom row we show the final designs.

Final designs for more values of τ can be seen in Appendix B.
In Figure 3.15 we plot the squared magnitude of the field u, for 3 different designs;

the initial design, the final design when using linearizations and for the design using
regularization for τ = 1/32. The field is calculated on the fine mesh. We see that
with both methods the final design of the reflector concentrate energy at the desired
point.

3.4 Comparison and Discussion
I this section we will compare the two methods in Section 3 based on the results from
the model problem of designing electromagnetic reflectors. In Table 3.2 we compare
the two methods on the two different meshes, corresponding to two discretization
levels.

We see that the objective, when calculated on a refined mesh, Eh/4 is quite similar
for the two methods on both grids. However when using the linearization based
method for the coarse mesh, the objective Eh is artificially large, indicating that the
optimization likely exploits discretization error. This is seen by the fact the relative
difference of Eh/4 and Eh is 16%. The regularization based approach yields more
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(a) The field u for the initial design. (b) The field u for the final design using lin-
earizations.

(c) The field u for the final design using regularization,
τ = 1/32.

Figure 3.15: The field u for three different designs, calculated on the fine mesh.

Method Mesh τ Eh Eh/4
Eh−Eh/4

Eh/4
Avg time/Iter Total time

Lin coarse - 1.803 1.556 16% 9.68 sec 1.56 h
Reg coarse τ = 1/16 1.645 1.646 0.5% 11.0 sec 1.19 h
Lin fine - 1.638 1.628 0.6% 53.5 sec 6.43 h
Reg fine τ = 1/16 1.646 1.646 0.006% 70.4 sec 7.20 h
Reg fine τ = 1/32 1.680 1.680 0.01% 63.8 sec 6.22 h

Table 3.2: Comparison of the two methods from Section 3 on two different meshes
named ’coarse’ and ’fine’. The linearization based method is referred to as ’Lin’ while
the regularization based method is referred to as ’Reg’. Eh is the objective computed
on the mesh used in the optimization. Eh/4 are the objective computed after refining
the mesh uniformly twice. The execution time was measured on a 64 bit HP EliteBook
840 G4 with and Intel(R) Core(TM) i7-7500U CPU, with clock rate of 2.70 GHz.
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reliable results with respect to this. On the fine mesh the relative differences are
smaller, as expected due to the lower discretization error. The regularization based
approach seems to produce more reliable results on both refinement levels.

In Table 3.2 we also show the average time per optimization iteration. This time is
fairly similar for the two methods. The execution time per iteration is dominated by
assembly of the system matrix and the derivatives, which means that, at least for this
2D problem, the constraints on the determinant in the linearization based method
does not increase the execution time significantly. The difference in the average time
for the two method is due to a different number of steps taken in the line search part
of the optimization algorithm. We experienced that generally more line search steps
was necessary for the regularization based method. Also the total running times for
the two methods are comparable.

In Section 3.3.3 we saw that when using the linearization based method different
designs were found when using different starting guesses, and also when using different
number of quadrature points for calculation the Winslow functional. So it seems that
the result is quite sensitive to parameters of the algorithm, which might indicate that
there are many local minima. This could be explained by the non linear constraints
on the Jacobian determinant, that might introduce additional local optima. For
the regularization based approach we generally got more similar results for different
number of quadrature points and different starting guesses, which indicates that this
method is more robust.

One difference between the two methods that are not apparent from the results,
are that the regularization based approach is a lot easier to implement. The key
ingredients are the objective function, the Winslow functional and their first order
derivatives with respect to controlpoints.

To implement the linearization based method you additionally need the hessian
of the Winslow functional, the linearized parametrization method, constraints on the
Jacobian determinant, and to setup the outer loop where the subproblems are solved
and the design is reparametrized. There are also some more subtle challenges, for
example that there is much more bookkeeping as derivatives has to be calculated with
respect to inner controlpoints in some cases, and boundary control points in other
cases. For this reason the regularization based method could be and easy starting
point for investigating a shape optimization problem with IGA.



CHAPTER 4
Isogeometric

Parameterizations
using Shape

Optimization Methods
In section 2 the challenge of finding parametrizations in IGA was presented, and
some techniques the finding parametrizations was demonstrated. We saw that the
optimization based methods that was able to handle complicated domains, relied on
either using constraints on the Jacobian determinant during the optimization or as a
mean to generate a valid starting guess. We will introduce the methods for a single
patch only, and extend the approach to the multi patch case in Section 4.5. But
as covered earlier the number of constraint can become very large especially when
going to 3D, making a method like maximizing the smallest spline coefficient of the
Jacobian determinant in section 2.2.5 expensive. In this section we will apply the
shape optimization method from section 3.2 to find spline parametrizations for IGA,
with the goal of developing a method that do not use explicit constraints and that
does not require a valid parametrization as a starting guess.

Let cB
goal denote the boundary control points of the shape we want to parametrize.

Now the main idea is to write the parametrization challenge as a shape optimization
problem, where the distance between the boundary control points cB and cB

goal is
minimized:

min
cB

1
2
∥cB − cB

goal∥2
2, (4.1a)

s.t. det J > 0, (4.1b)

which has an optimum at cB = cB
goal with inner control points such that det J > 0,

if there exist a parametrization. We will now use the regularization approach from
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section 3.2 on this problem and consider the optimization problem

min
c

1
2
∥cB − cB

goal∥2
2 + τW (c), (4.2)

where we optimize over all control points c. Again here we set W = ∞ if det J ≤ 0
at one of the quadrature points. This optimization problem looks similar to the
minimization of the Winslow functional in section 2.3, with the added term 1

2∥c
B −

cB
goal∥2

2. However the key difference is that here we minimize over all control points,
not only the inner control points. That means that while we in section 2.3 needed to
start from a valid parametrization with cB = cB

goal, we can here start from a design
where cB ̸= cB

goal. One can therefore avoid the issue of finding a valid initial guess as
one can start from a design which is easy to parametrize.

The contribution with the proposed method is twofold. Firstly it serves as a
parametrization technique in its own right, and secondly it illustrates the ability
of the regularization based shape optimization approach from section 3.2 to find
complicated shapes while maintaining a valid parametrization.

4.1 Finding an Initial Guess
In this section we will consider different ways to find an initial guess for the proposed
method. In principle the initial guess can be chosen arbitrarily, as long as it has a
positive Jacobian determinant. For example one could start with the identity map.
However since the regularization term require that det J > 0 in the quadrature points
throughout the optimization process, it can be beneficial to start with an initial guess
that are close to the goal, but still being easy to parametrize.

4.1.1 Multilinear initial guess
The first method we will consider is to use multilinear interpolation of the corners of
the target domain. Examples are shown in Figure 4.1.

However while this method produces a start guess that are close to the final
domain, it does not necessarily produce a valid starting guess, i.e., with detJ > 0.
Examples of such cases are shown in Figure 4.1.

4.1.2 Affine initial guess
Another method we will consider is to use the best possible affine map as a starting
guess. If we let cId denote the control points of the identity map when expanded in the
spline space used for the geometry map, then we can compute an affine parametriza-
tion as

ci = AcId
i + b ∀i = 1, . . . , n (4.3)
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where A ∈ Rd×d and b ∈ Rd. We can now pose the minimization problem:

min
A,b

1
2
∥cB − cB

goal∥2
2, (4.4a)

s.t. cB
i = AcB,Id

i + b for i = 1, . . . nB. (4.4b)

This is a quadratic and convex optimization problem with d2+d unknowns. Examples
are shown in Figure 4.1.

4.1.3 Outlook
One way to guarantee a valid initial guess is with the following approach. Take a
corner of the goal domain where det J > 0 and calculate the d directional derivatives
of G at this point. Then a parallelepiped can be constructed using these directions.
We will not investigate this choice of initial guess further in this work, as the methods
mentioned above sufficed in the examples that will be considered here.

4.2 Snapping Strategies
After solving the optimization problem (4.2) we end up with a parametrization that
which boundary does not match the goal. We let c∗ denote the minimizer of (4.2).
Our general observation is that the smaller the regularization parameter τ is chosen,
the closer the final design will be to the goal. But some action has to be taken to
achieve a parametrization with the desired boundary cB

goal. We will consider two
different approaches in this work.

The first approach we will call “snapping”. With this approach you simply take
the minimizer c∗ and set the boundary control points to the goal cB

goal as

csnapped
i =

{
[c∗]i if i is an inner CP
[cB

goal]j if i is a boundary CP with index j
, (4.5)

where CP is short hand for control point. After the snaping the parametrization need
not to be valid, so one has to check whether this is the case. Our general observation
is that if τ is small enough the boundary control points are so close to the goal that
the parametrization will remain valid after the snapping.

The second approach we will consider we will call “Winslow snapping”. The idea
here is that we use the parametrization strategy from section 3.1, where we minimize
a linearization to the Winslow functional, to update the inner control points when we
do the snapping. Note that this approach is considerably more expensive as we need
to compute the Hessian of W .
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4.3 Choice of Regularization Parameter
Again in this application the pressing question now is how to choose the regularization
parameter τ . An easy answer is to choose it very small, since we then expect ∥cB −
cB

goal∥2
2 to be small, and therefore the snapping strategy is more likely to succeed.

However as we shall see later we find that often the optimization algorithm needs more
iterations to converge when τ is small. Motivated by this we develop an approach
where we start with a large value for τ and solve a sequence of the problems on
the form in (4.2). After each problem we use ’snapping’ and check if the resulting
parametrization has det J > 0, and if not we decrease τ with the factor ρ. We repeat
this process until we have found a valid parametrization. The algorithm is illustrated
in Figure 4.2. The reason that we include a check of the positivity of det J in the
quadrature points is that this is much cheaper than computing spline coefficients of
the Jacobian determinant. As we solve a sequence of optimization problems we use
a large tolerance for the optimization too avoid spending too many iterations during
one problem.

4.4 Scaling
It is sometime beneficial to scale the objective with 1/τ . This is due to the fact that
when τ is small the minimizer will typically also achieve small 2-norm ∥cB − cB

goal∥2
2.

This means that the objective become very small, and also the gradient becomes
small, which can lead to premature termination of the optimization algorithm. So to
address this one can consider the problem

min
c

1
2τ
∥cB − cB

goal∥2
2 +W (c). (4.6)

We will only use this approach for the 3D Jigsaw puzzle piece, as it was not necessary
for the other examples.

4.5 Multipatch Strategies
Until now we have only considered the single patch case, but often a computational
domain is split into a collection of patches. In this case one cannot apply this method
one patch at a time since we might not know shape of the interfaces between patches.

One way to extend the method to multipatch domains is to treat the control
points on the interfaces as inner control points, and treating two control points, on
an interface, that should match as one design variable. This means that the interfaces
are guaranteed to match after the optimization. However this approach requires that
we have a valid initial guess where the interfaces meet. If one for example uses the
multilinear initial guess from section 4.1.1, the interfaces are guaranteed to meet.
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One can also find the best affine parametrization as in section 4.1.2, where the affine
transformation is the same for each patch.

But sometimes one might want to start from an initial guess where the interfaces
do not match. To allow this we can modify the method by adding the distance
between the interface control points that should match to the objective, such that we
minimize

1
2
∥cB − cB

goal∥2
2 + 1

2
∑

i,j should match
∥ci − cj∥2

2 + τW (c). (4.7)

Then when we use snapping we also need to snap the interfaces, for example by setting
each set of control points that should match to their mean value.
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(a) Goal (b) Multilinear initial guess. (c) Affine initial guess.

(d) Goal (e) Multilinear initial guess. (f) Affine initial guess.

(g) Goal (h) Multilinear initial guess. (i) Affine initial guess.

(j) Goal (k) Multilinear initial guess. (l) Affine initial guess.

Figure 4.1: The two approaches for computing initial guesses for some examples. Note
that the multilinear interpolation of the corners fail to find a valid initial guess for
the second and third example, since the corners lies on a line. Note that for the last
example the affine method also fails to find a valid initial guess since the box found
has det J < 0, so its orientation is wrong.
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Choose a starting value τ = τ0

Solve (4.2) to get c∗

τ ← ρτ

Compute the snapped
control points with (4.5)

Is det J > 0 in
quadrature points?

Can we find a refinement
level k where min dk > 0?

A valid parametriza-
tion was found!

Yes

Yes

No

No

Figure 4.2: Flowchart of the decreasing τ approach. In our experiments we use τ0 = 8
and ρ = 1/4
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4.6 2D Examples
In this section we will demonstrate the proposed parametrization technique on some
examples. We will use a tolerance of 10−3 for the optimization when using a fixed
regularization parameter. When we use the approach from Section 4.3 where a se-
quence of problems are solved where τ is decreased between each problem. We will
here use a lower tolerance of 10−1, and the factor of ρ = 1/4 for decreasing τ . The
presented are scaled such that the area are equal to 1. We use 12 quadrature points
per knot interval and the Gauss-Legendre quadrature unless otherwise specified.

4.6.1 Jigsaw 2
We start off by considering the jigsaw 2 , which was also considered in section 2.4.
The initial guess and final design for τ = 1/2 is shown in Figure 4.3. The results for
different values of τ is reported in Table 4.1. For τ ≤ 1/2 both our snapping strategies
gives a valid parametrization. It is also seen that the smaller τ is the more number of
iterations are needed to reach the tolerance of 10−3. This is also seen when we plot
the objective in Figure 4.4.

In Figure 4.5 we plot the optimization history when using the approach suggested
in Section 4.3. Here we solve a sequence of problems in between which we decrease
the value of τ . We start with τ = 8. We see that with relative few iterations we find
a valid parametrization.

The parametrization we found with this method is, not suprisingly, identical to
the one found when minimizing the Winslow functional alone in Figure 2.5(e).

(a) Initial guess (b) τ = 1/2

Figure 4.3: The initial guess and final design for jigsaw 2 .
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Figure 4.4: The objective function during optimization process, for the jigsaw 2 .
E = 1

2∥c
B − cB

goal∥2
2.

τ 1 1/2 1/4 1/8 1/16
#Iters 78 76 102 115 178
1
2∥c

B − cG∥2
2 0.757 0.0213 5.78 · 10−3 1.58 · 10−3 3.84 · 10−4

W 3.27 3.34 3.39 3.41 3.43

det J for snapping ≤ 0 > 0 > 0 > 0 > 0

det J for Winslow
snapping

≤ 0 > 0 > 0 > 0 > 0

Table 4.1: Results from parametrization tests for the jigsaw 2 puzzle piece. The
refinement level needed to prove the validity of the parametrization was k = 1.
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Figure 4.5: The objective function during the optimization for jigsaw 2 , when de-
creasing tau. The dashed lines indicates the points where tau is decreased.
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4.6.2 Jigsaw 1
We now consider the more difficult jigsaw 1 puzzle piece. Note that in Section 2.4 we
were not able to find a valid parametrization without refining the spline space. But
with the method proposed in this chapter we are able to find a valid parametrization,
as seen from table 4.2. A valid parametrization was found for τ ≤ 1/16 when using
the Winslow snapping and for τ = 1/32 with regular snapping. This parametrization
is shown in Figure 4.6. To prove that the parametrization is valid we need to refine
the spline space in which we expand the Jacobian determinant k = 4 times. So to be
fair, the maximization of the smallest spline coefficient in Section 2 might have worked
if the we used this refined spline space for expanding the determinant. However the
number of constraints would in this case be 21025.

In Figure 4.8 we use the approach from Section 4.3. After only 160 iterations we
find a valid parametrization. For comparison when using the fixed value τ = 1/32 we
needed 898 iterations.

(a) Initial guess (b) τ = 1/32

Figure 4.6: The initial guess and final design for jigsaw 1 .

τ 1/2 1/4 1/8 1/16 1/32
#Iters 359 347 534 541 898
1
2∥c

B − cG∥2
2 0.213 0.0709 0.0207 6.12 · 10−3 1.59 · 10−3

W 6.10 6.49 6.76 6.92 7.05

detJ for snapping ≤ 0 ≤ 0 ≤ 0 ≤ 0 > 0

detJ for Winslow snapping ≤ 0 ≤ 0 ≤ 0 > 0 > 0

Table 4.2: Results from parametrization tests for the jigsaw 1 puzzle piece. The
refinement level needed to prove the validity of the parametrization was k = 4.
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Figure 4.7: The objective function during optimization process, for the jigsaw 1 .
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Figure 4.8: The objective function during the optimization for jigsaw 1 , when de-
creasing τ . The dashed lines indicates the points where τ is decreased.
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4.6.3 Jigsaw 1 Uniformly Refined
To be able to compare with the parametrizations found in Chapter 2 we have included
the results when considering the jigsaw 1 puzzle piece on a uniformly refined mesh.
Here we are able to find valid parametrizations for τ ≤ 1/8. The number of iterations
that are needed becomes quite large when τ is decreased, with as much as 3150
iterations for τ = 1/32, as seen in Table 4.3. This behaviour is also seen in Figure 4.10,
where we plot the optimization history. For this example the approach where τ is
sequentially decreased is able to find a valid parametrization in 339 iterations.

Again the parametrization we find with this method is similar to the one found
when minimizing the Winslow functional alone shown in Figure 2.5(e)

(a) Initial guess (b) τ = 1/8

Figure 4.9: The initial guess and final design for jigsaw 1 uniformly refined once.
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Figure 4.10: The objective function during optimization process, for the jigsaw 1
uniformly refined once. E = 1
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2.
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τ 1/2 1/4 1/8 1/16 1/32
#Iters 710 1190 1575 1936 3150
1
2∥c

B − cG∥2
2 0.119 0.0356 0.102 3.18 · 10−3 7.42 · 10−4

W 5.58 5.81 5.96 6.05 6.13

detJ for snapping ≤ 0 ≤ 0 > 0 > 0 > 0

detJ for Winslow snapping ≤ 0 ≤ 0 > 0 > 0 > 0

Table 4.3: Results from parametrization tests for the jigsaw 1 uniformly refined once.
The refinement level needed to prove the validity of the parametrization was k = 1.
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Figure 4.11: The objective function during the optimization for jigsaw 1 uniformly
refined once, when decreasing tau. The dashed lines indicates the points where tau
is decreased.
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4.7 3D Examples

4.7.1 Water passage
As a 3D example we will consider a water passage from inside a water turbine1. The
two possible initial guesses and final design from two different viewpoints are shown
in Figure 4.12. The result we will present here are with using the multilinear initial
guess. However similar results were obtained when using the affine initial guess and
the objective function in (4.7). The only difference was that the number of iterations
needed to converge for a fixed value of τ was 50% larger when using the affine initial
guess.

In Figure 4.13 we show the objective during the optimization process for different
values of τ for this example more or less the same number of iterations are used for
different values of τ . We also do not save iterations with the approach where we start
with a large value of τ and decrease it, as seen in Figure 4.14, rather the number of
iterations increase. The reason for this is that after the first and second subproblem
the distance E = 1

2∥c
B − cB

goal∥2
2 have increased compared to the initial guess, due to

the large regularization parameter. This behaviour was not seen in the other examples
in the chapter, as they all start from a square (or cube) which is a minimizer for the
Winslow functional. One way to solve this issue is to use the method presented in
Section 3.2.1 however we have not investigated this further.

τ 1/2 1/4 1/8 1/16 1/32
#Iters 86 106 82 81 81
1
2∥c

B − cG∥2
2 0.51 0.27 0.13 0.058 0.024

W 10.36 11.03 11.82 12.64 13.41

det J for snapping > 0 > 0 > 0 > 0 > 0

det J for Winslow snapping > 0 > 0 > 0 > 0 > 0

Table 4.4: Results from parametrization tests for the 3D water passage. The refine-
ment level needed to prove the validity of the parametrization was k = 3.

1The domain was suggested and supplied by Angelos Mantzaflaris and it originates from [38].
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(a) Affine initial guess (b) Multilinear initial guess (c) τ = 1/32

(d) Affine Initial guess (e) Multilinear initial guess (f) τ = 1/32

Figure 4.12: The initial guess and final design for the water passage domain.
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Figure 4.13: The objective function during optimization process, for the 3D water
passage domain
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Figure 4.14: The objective function during the optimization for the 3D water pas-
sage domain, when decreasing τ . The dashed lines indicates the points where τ is
decreased.
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4.7.2 3D Jigsaw piece

τ 1/2 1/4 1/8 1/16 1/32
#Iters 149 103 1389 Failed (1042) 1153
1
2∥c

B − cG∥2
2 0.10 0.035 0.011 0.31 0.00078

W 3.79 3.97 4.12 3.87 4.23

detJ for snapping ≤ 0 ≤ 0 ≤ 0 ≤ 0 ≤ 0

detJ for Winslow snapping ≤ 0 ≤ 0 ≤ 0 ≤ 0 ≤ 0

Table 4.5: Results from parametrization tests for the 3D Jigsaw puzzle piece. For
τ = 1/16 the optimization failed after 1042 iterations with the error message ’Restora-
tion Failed’ which means that ipopts restoration phase was unable to find a point
acceptable to the line search filter.

As a final example we consider a 3D jigsaw puzzle piece as seen in Figure 4.15(a).
For this example we were not able to find a valid parametrization when using a fixed
value of τ as seen in the Table 4.5. Also solving a sequence of subproblems, decreasing
τ did not yield a valid parametrization when using a fixed number of 12 quadrature
points per knot interval with the Gauss-Legendre quadrature. As an example the
Jacobian determinant is plotted in Figure 4.15(b), after solving 6 subproblems starting
with τ = 1/4 and decreasing it by a factor 4 after each subproblem. Note here
that the plotted determinant are without applying any of the snapping strategies,
meaning that the parametrization is already invalid before snapping the boundary
control points.

One way to get the method to work on this example is to increase the number
of quadrature points between each subproblem, when using the approach from Sec-
tion 4.3. We started with 12 points per knot interval and increased this number by
3 after each sub problem. When starting with the value τ = 1/4 and decreasing
with the factor ρ = 1/4, a valid parametrization was found after the 6th subproblem
where τ = 1/4096. Here the number of quadrature points where 27 per knot interval.
The smallest spline coefficient was 2.15 · 10−5 and we had to refine the spline space
where we expand the Jacobian determinant 5 times to find only positive coefficients.
At this refinement level the number of coefficients were 24,137,569. The optimization
history can be seen in Figure 4.16. For this approach starting with another values of
τ , specifically τ = 8 did not yield a valid parametrization.

Another way to get the method to work is to use the Gauss-Lobatto quadrature
rule discussed in Section 1.3. With this quadrature rule we could keep the number of
quadrature points used to evaluate the Winslow functional constant, using 12 points
per knot interval. For this quadrature rule starting with τ = 1/4 yielded a valid
parametrization after 7 subproblems. The smallest spline coefficient after refining
the spline space where we expand the Jacobian determinant 4 times was 6.6 · 10−4.
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(a) The 3D jigsaw puzzle piece, the domain
is mirror symmetric.

-0.000425

0

0.000425

-8.500e-04

8.500e-04
det J

(b) Jacobian determinant, after 6 subproblems.
The white circle shows the place where det J ≤ 0.

Figure 4.15: The 3D jigsaw puzzle piece, and the Jacobian determinant after solving
a sequence of 6 subproblems starting with τ = 1/4 and decreasing it by a factor 4
after each subproblem. We use 12 quadrature points per knot interval to evaluate the
Winslow functional.

When using the Gauss-Lobatto quadrature we also found a valid parametrization
when starting with τ = 8, so the proposed method seems to perform better using the
Gauss-Lobatto quadrature.

4.8 Conclusion
In this chapter we proposed a parametrization strategy based on the regularization
based shape optimization method presented in Section 3.2. This method avoids ex-
plicit constraints on the Jacobian determinant.

It performs really well as a 2D parametrization method, and we were able to find
a parametrization of the difficult jigsaw 1 on the coarsest refinement level where the
methods in Section 2 failed. Moreover it is very simple to implement as only the
Winslow function and its derivatives are needed.

Furthermore the problem (4.2) can be seen as a benchmark shape optimization
problem, where the final shape is known. In 2D the results obtained here indicates
that this method is able to find very complicated shapes, and a corresponding valid
parametrization. So it supports the conclusion from chapter 3 that this is a very
promising method for 2D shape optimization with isogeometric analysis.

It was observed that in many cases the number of iterations to find a valid
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Figure 4.16: The objective function during the optimization for the 3D jigsaw puzzle
piece, when decreasing τ . The dashed lines indicates the points where τ is decreased.
Note that the number of quadrature points is increased by 3 per knot interval after
each subproblem.

parametrization could be significantly reduced, when solving a sequence of problems
in between which τ is decreased, compared to using a fixed value of the regularization
parameter τ , and at the same time this avoids having to find a suitable value of τ .

As a 3D parametrization method, the results are promising. The method worked
well for a 3D water passage domain, where a valid parametrization was found for
many different values of τ . We were also able to parametrize a complicated 3D jigsaw
puzzle piece. For this domain some tuning of the method was needed, to get the
method to work with Gauss-Legendre quadrature. Namely we had to increase the
number of quadrature points used to calculate the Winslow functional, and even
when decreasing τ between a sequence of problems, the initial value of τ affected the
outcome. However when using the Gauss-Lobatto quadrature a constant number of
quadrature points could be used, and the method performed more robustly. So all
in all as a 3D parametrization method the results are promising and support further
testing of the method as a shape optimization framework for 3D shape optimization
with IGA.



CHAPTER 5
3D shape optimization

with IGA
In this chapter we will consider a 3D shape optimization problem, and use the regu-
larization based approach described in Section 3.2.

The problem we consider is, similar to the 2D problem in Section 3.3, a problem of
designing reflectors, but in this case it is in the setting of free surface hydrodynamics.
The aim is to find the shape of two opposing reflectors, that maximizes the scattered
energy from a plane wave at a point between the two reflectors, as illustrated in
Figure 5.1.

5.1 Problem Description

5.1.1 Governing Equations
We consider an incompressible fluid and assume that it is inviscid. We will consider
a domain that extend to infinity in all directions. If we assume the waves to be small
we can assume that the free surface located at z = 0 at all time. A similar setup
was considered in [31], with the goal of optimizing an array of cylinders to cloak an
object. More details on free surface hydrodynamics can be found in [32]. We assume
harmonic time dependency such that the velocity potential Φ : Ω∞ ×R→ R is given
as

Φ(x, t) = ℜ
(
ϕ(x)ejωt

)
, (5.1)

where t is the time, ω is the angular frequency and j is the imaginary unit. The field
ϕ is complex, and satisfy the Laplace equation

−∆̃ϕ = 0 in Ω∞, (5.2a)

Kϕ− ∂ϕ

∂z
= 0 on Γf , (5.2b)

∂ϕ

∂n
= 0 on ΓSymm, (5.2c)

∂ϕ

∂n
= 0 on Γs, (5.2d)
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Figure 5.1: The setup of the 3D problem. The three squares and the arrow indicates
that we consider a plane wave coming from the right of the domain. The blue surface
is the surface of the water. Finally the two opposing objects are the reflectors that
we want to design.

where ∆̃ is the laplace operator and Γf is the free surface at z = 0. Since the
problem is symmetric around y = 0 we will only optimize over half of the domain.
The symmetry boundary at y = 0 is denoted ΓSymm and here ϕ has to satisfy (5.2c).
The setup is sketched in Figure 5.2 from the front and from the top.

We will split the field ϕ into an incident part ϕI and scattering part ϕS such that

ϕ = A (ϕI + ϕS) , (5.3)

where A is the amplitude. We will consider the incident field corresponding to a plane
wave that decays exponentially in the z-direction:

ϕI(x, y, z) = g

ω
eKz−jKx. (5.4)
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(a) Sketch of the setup from the front.
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(b) Sketch of the setup from the top.

Figure 5.2: Infinite domain

The incident wave satisfy

∆̃ϕI = 0 in Ω∞, (5.5a)

KϕI −
∂ϕI

∂z
= 0 on Γf , (5.5b)

∂ϕI

∂n
= 0 on ΓSymm. (5.5c)

Consequently, by inserting ϕ = A(ϕI +ϕS) into (5.2), we see that the scattering field
ϕS satisfies the PDE:

−∆̃ϕS = 0 in Ω∞, (5.6a)

Kϕ− ∂ϕS

∂dz
= 0 on Γf , (5.6b)

∂ϕS

∂n
= 0 on ΓSymm, (5.6c)

∂ϕS

∂n
= −∂ϕI

∂n
on Γs. (5.6d)

We will in this work use the physical parameters K = 3.00m−1, g = 9.82m/s2 and
ω =
√
Kg = 5.43s−1

To deal with the infinite domain we will use a technique called Perfectly Matched
Layers (PML). Here an absorbing layer ΩP ML is added around the domain of interest
Ω0 as illustrated in Figure 5.3. The details on this formulation can be found in
Appendix C.

We need to emphasise that since the goal of this shape optimization problem to
increase the wave energy, this model is not the best physical model, as it assumes
that the waves are small. So the problem is to be regarded as an academic problem,
where the goal is to demonstrate and investigate the approach from Section 3.2 on a
PDE-constrained shape optimization problem in 3D.
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ΩP ML

Ω0

Γs

Figure 5.3: A sketch of the setup for the 3D water reflector. The colors denote
different patches, the black lines indicate the interface between the PML layers and
the domain of interest. The white lines indicate the part of the boundary that we
optimize, namely Γs. We let Ω = Ω0 ∪ ΩP ML denote the full domain.

5.1.2 Convergence test
To test the PML formulation we will consider a problem where the solution is known.
Specifically we consider the PDE (5.2) but replacing the Neumann boundary condition
at Γs with a Dirichlet boundary condition

ϕ = ϕexact on Γs.

We will also change the domain of interest such that Γs has center at (0, 0, 0). A
solution to this problem is given by

ϕexact = eKz
(
J0

(
K

√
x2 + y2

)
+ jY0

(
K

√
x2 + y2

))
, (5.7)

where J0 is the 0th Bessel function of first kind and Y0 is the 0th Bessel function
of the second kind. To implement the Bessel functions J0 and Y0 we use the power
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series

J0(z) =
∞∑

i=0
(−1)k (1/4z2)k

(k!)2 , (5.8)

Y0(z) = 2
π

(ln(1/2z) + γ)J0(z) + 2
π

∞∑
i=1

(−1)n+1(1 + 1
2

+ · · ·+ 1
n

) 1
(n!)2

(
1/4z2)n

)
,

(5.9)

where the Euler constant is given by γ = 0.57721566490153286060 [35]. We truncate
the series at N = 50. Note that numerical evaluation of the Bessel functions by
this power series is not the most effective method, nor is it numerical stable for large
values of r =

√
x2 + y2. We here use these power series as they are easy to implement

and since they are only used to test the implementation. For a more efficient method,
see for example [21].

We will use splines of degree p = 2 and inner knots 0, 0.5, 1 to parametrize each
patch of the domain Ω. We will approximate the solution to the PDE on three
different refinement levels r = 0, . . . , 2. At refinement level r use the spline space
used for representing the geometry refined r times uniformly, to approximate the
solution ϕh. The largest knot interval is of size h = 0.5, h = 0.25 and h = 0.125
respectively.

The results at refinement level 2 is shown in Figure 5.4. We see that the waves
decay in the PML regions, and the difference between ϕh and ϕexact is small, except
where there is a singularity for Y0 at x = y = 0.

In Figure 5.5 we plot the error of the real and imaginary part at different levels
of refinement. We use splines of degree p = 2. Since we ran the code on a laptop we
were not able to decrease h further that h = 0.125, which is necessary to verify the
convergence rate. That said, it seems that the real and imaginary part converge. We
see that the imaginary part converge slower that the real part, however since there is
a singularity at x = y = 0 for the imaginary part, we do not expect the same rate of
convergence.

We will use the refinement level 1 and 2 when performing shape optimization.
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(a) ℜ(ϕh) (b) ℜ(ϕexact)

(c) ℑ(ϕh (d) ℑ(ϕexact)

(e) ℜ(ϕh − ϕexact) on Ω0 (f) ℑ(ϕh − ϕexact) on Ω0

Figure 5.4: The solution to the test equation compared with the exact solution, at
refinement level 2. There is a singularity for ℑ(uexact) at x = y = 0
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Figure 5.5: The L2-error
√∫

Ω0
ℜ(ϕh − ϕexact)2 dV and

√∫
Ω0
ℑ(ϕh − ϕexact)2 dV

against the mesh size, for the three refinement levels: 0, 1 and 2. The expected
rate of convergence O(h3) is plotted as a reference.
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5.2 Shape Optimization Framework
We will consider the shape optimization problem

max
c

Eh (5.10a)

s.t. cL ≤ c ≤ cU (5.10b)

with objective
Eh = 1

2

∫
Ω
δ|ϕh|2 dx (5.11)

where ϕh is the spline approximation of the solution to the PDE. The weight function
δ is given by the Gaussian function

δ = 1
σ3(2π)(3/2) e

x2+y2+z2

2σ2 (5.12)

where the constant a is chosen such that
∫
R3 δ dV = 1. We will use σ = 0.1. The

weight function δ is plotted in Figure 5.6. In this Figure we also show the initial
design and the bounding box of Γs. We use bounds so that all the control points
of Γs has to be inside this bounding box. In the z-direction the controlpoints can
be between 0 and -0.5, for reference the PML region starts a z = −1 and ends at
z = −2. We also bound each side such that its x and y coordinate does not pass
the x and y coordinate of the center of the initial square. This was in an attempt to
ensure that opposing sides would not intersect. We will fix the parametrization of the

Figure 5.6: The weight function δ. The initial design is marked with white. The
bounding box of the control points of Γs is marked with red.

PML patches, mainly to avoid to differentiate the PML terms with respect to control
points, and to ensure that the optimization cannot exploit a poor parametrization in
the PML region such that energy is reflected back into the domain. This also reduces
the number of optimization variables.
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We will apply the method for shape optimization based on regularization described
in 3.2. While experimenting with this optimization problem we found that the bound-
ary Γs would self intersect after the optimization. This can happen without any of
the parametrizations becoming invalid and is a well known challenge in shape opti-
mization with IGA [33]. One possibility is to derive self intersection constraints as in
[33]. However in this work we will instead parametrize the interior of Γs and maintain
a parametrization Gs via the same regularization approach. This is done by adding
an extra regularization term

min
c,α
− Eh + τ (W (G) +W (Gs)) (5.13a)

s.t. cL ≤ c ≤ cU (5.13b)

where α are coordinates for the control points of Gs.
To avoid confusion we shall avoid using the term objective function, but rather

refer to Eh as the energy, and to τ (W (G) +W (Gs)) as the regularization term.
Another thing we experienced, as will be demonstrated in the results section 5.3,

was that the parametrization became invalid on the boundary or interfaces. To
combat this we will try to use Gauss-Lobatto quadrature to compute the Winslow
functional. This quadrature rule is a closed rule, meaning that it includes values at
the end points of the integration interval.

5.3 Results
In this section we will go through the results when applying the regularization based
approach to this problem. We will show results for two different quadrature rules,
the Gauss-Legendre quadrature rule, and the Gauss-Lobatto quadrature that includes
function evaluations at the endpoints of the interval.

We will use degree p = 2 and inner knots 0, 1
2 , 1 in all directions for representing

the geometry. We will consider two different refinement levels for solving the PDE. At
refinement level r we use the spline space used for representing the geometry refined
uniformly r times. We will consider the cases r = 1 and r = 2, i.e., the inner knots
are 0, 1

4 ,
1
2 ,

3
4 , 1 and 0, 1

8 ,
1
4 ,

3
8 ,

1
2 ,

5
8 ,

3
4 ,

7
8 , 1, respectively.

5.3.1 Gauss-Legendre Quadrature

5.3.1.1 Minimizing Winslow

In our first experiment we disregard the energy Eh and minimize the Winslow function
alone. This corresponds to letting τ → ∞. The design that minimizes the Winslow
functional, when calculated with the Gauss-Legendre quadrature using nQ = 12
quadrature points per knot interval, is shown in Figure 5.7(a). The geometry map
found here is not a valid parametrization. This is since the Jacobian determinant
becomes negative in two corners of patch 4, as seen in Figure 5.7(b). Since it is only
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negative very close to the corner, and since the Gauss-Legendre quadrature is open,
it is not negative in a quadrature point. Even though we are interested in minimizing
a combination of the energy and Winslow, this result is concerning, since we cannot
expect to get a valid parametrization even if τ goes to∞. It also indicates that using
a closed quadrature rule might be better, since it includes values at the corners.

(a) The final design. Patch 4 is yellow. (b) The Jacobian determinant on patch 4. The
places with negative determinant are marked with
white circles.

Figure 5.7: The design that minimizes Winslow. For this design we have W = 86.2145.
It has negative determinant in two of the corners of patch 4. Note that the color map
only covers the values around 0.

5.3.1.2 Water Reflector

When we use our method for solving the problem (5.13) we found that the Jacobian de-
terminant would be negative for all the values of τ we tested (τ = 0.0625, 0.25, 1, 4, 16, 64).
In Figure 5.8(a) we show the design found after 50 optimization iterations, when us-
ing refinement level 1 and regularization parameter τ = 1, as an example. Here the
Jacobian determinant is negative in some places, as seen in Figure 5.8(b) where we
plot the Jacobian determinant for patch 0 and patch 4.
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(a) The design where patch 0 is white and
patch 4 is yellow.

(b) The Jacobian determinant on patch 0 and
4. The patch boundaries is outlined with black.

Figure 5.8: The design after 50 iterations for refinement level 1 and τ = 1. It has
negative determinant for example at patch 0 and 4. Note that the color map only
covers only values around 0.

5.3.2 Gauss-Lobatto Quadrature
We will here show the results obtained when using the Gauss-Lobatto quadrature rule
to calculate W . Again using nQ = 12 quadrature points per knot interval.

5.3.2.1 Minimizing Winslow

When minimizing the Winslow functional alone we, as expected, get a design that is
almost identical to the one in Figure 5.7(a), as seen in Figure 5.9(a). The value of W
is only 0.00081% larger, however this time the Jacobian determinant is positive. Its
smallest spline coefficient is min d = 0.0013.

5.3.2.2 Water Reflector

When using the Gauss-Lobatto quadrature to calculate the Winslow functional, we
find a design with a valid parametrization after 50 iterations of the optimization
algorithm. The squared magnitude of the velocity potential for the initial design and
the design after 50 optimization iterations is shown in Figure 5.10. To prove that
the parametrization is valid, the spline space in which the determinant is expanded
was refined 4 times to obtain positive coefficients. Its smallest spline coefficient is
5.91 · 10−6. The energy after 50 iterations is around 50 times larger than for the
initial design. As mentioned before we maintain a parametrization of the interior of
the reflector, to avoid that the boundary Γs fold over it self. This parametrization
is shown in Figure 5.11, the parametrization of the center is also valid, with smallest
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(a) The final design. Patch 4 is yellow. (b) The Jacobian determinant on patch 4

Figure 5.9: The design that minimizes Winslow. For this design we have W = 86.2152.
It has positive determinant. Note that the color map only covers the values around
0.

spline coefficient of 0.0735. Also we see that on the bottom, the reflector is shaped
as a square. For this problem both the velocity potential and the weight δ decays
exponentially in the z-direction. It seem that the bottom of the reflector is affected
more by the Winslow functional, while the shape at the free surface z = 0 affects the
velocity field more.

However later in the optimization the parametrization becomes invalid. The de-
sign and a spot with negative determinant is shown in Figure 5.12.

In Figure 5.13 we plot the optimization history. The optimization algorithm did
not converge, rather it stopped due to a time limitation of 72 hours, on the server on
which the code was run. We see that the energy still increases after 500 optimization
iterations. The energy has increased with more than a factor 300, which means that
it might be hard to reach a balance between the Winslow functional and the objective.
That said, the regularization term is in this case still several times larger than the
energy, so it is unclear why the parametrizations become invalid, and it could very
well be that the optimization exploits the places where the determinant is very small,
to create an artificially large energy.
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(a) Initial domain, Eh = 0.071 (b) Initial domain

(c) After 50 iterations, Eh = 3.52 (d) After 50 iterations

Figure 5.10: The energy |ϕS |2 for the initial design and at iteration 50 for refinement
level 1 and τ = 1.

(a) Seen from above. (b) Seen from the side. (c) Seen from below.

Figure 5.11: The shape and parametrization of the reflector, from 3 different view
points. The red lines are the image of the knot lines. Note that we do not force
the controlpoints on the upper boundary to have z = 0 as we only parametrize the
reflector to keep the boundary Γs from self intersecting.
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(a) The design after 100 iterations. Patch 0 is
white.

(b) The Jacobian determinant on patch 0.

(c) The design after 500 iterations. Patch 4 is
yellow.

(d) The Jacobian determinant on patch 4.

Figure 5.12: The design after 100 and 500 iterations for refinement level 1 and τ = 1,
using Gauss-Lobatto quadrature. It has negative determinant on patch 0 after 100
iterations, and on patch 4 after 500 iterations. The locations where det J < 0 are
indicated with a white circle. Note that the color map only covers the values around
0.
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Figure 5.13: The optimization history for refinement level 1 and τ = 1.
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5.3.3 Refinement level 2
We will now consider some of the results on a finer discretization, the refinement level
2. Here we were only able to perform 57 iterations in the, 72 hours that the code
were running. We will report the results after 50 iterations, to be able to compare
with the results on refinement level 1 in Figure 5.10. We consider two different values
of τ namely τ = 1 and τ = 0.25. In Figure 5.14 we plot the squared magnitude of
the velocity potential after 50 iterations. For both values of τ the parametrization
obtained is valid. For τ = 0.25 we had to refine the spline space in which we expand
the Jacobian determinant 4 times to prove that the parametrization was valid. The
smallest spline coefficient was 1.65 · 10−4. The number of spline coefficients at this
refinement level is 96,916 for all patches and 82,275 for the domain of interest. For
τ = 1 we only had to refine the spline space in which we expand the Jacobian
determinant 2 times to prove that the parametrization was valid. The smallest spline
coefficient was 1.67 · 10−3. The number of spline coefficients at this refinement level
is 24,878 for all patches and 10,237 for the domain of interest Ω0.

In Figure 5.15 we show the shape of the reflector for the two values of τ . The
shapes are similar but not identical, but bear in mind that the optimization did not
converge. However we still found an increase in the objective from 0.067 to 4.75 and
5.77 for τ = 0.25 and τ = 1 respectively. It might be surprising that a higher energy
is found for higher value of τ . However note that the optimization did not converge,
so a balance between the energy and the regularization term are not achieved. One
explanation could be that in Chapter 4 we saw that sometimes convergence is faster
for larger τ which might explain the difference.
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(a) Initial design, Eh = 0.0673 (b) Initial design

(c) τ = 0.25, Eh = 4.75 (d) τ = 0.25,

(e) τ = 1, Eh = 5.77 (f) τ = 1

Figure 5.14: The energy |ϕS |2 for the initial design and at iteration 50 for refinement
level 2.
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(a) τ = 0.25, seen from
above.

(b) τ = 0.25, seen from the
side.

(c) τ = 0.25, seen from below.

(d) τ = 1, seen from above. (e) τ = 1, seen from the side. (f) τ = 1, seen from below.

Figure 5.15: The shape and parametrization of the reflector at iteration 50 for τ = 0.25
and τ = 1, from 3 different view points. The red lines are the image of the knot lines.
Note that we do not force the controlpoints on the upper boundary to have z = 0 as
we only parametrize the reflector to keep the boundaries from folding over.
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(a) τ = 0.25
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(b) τ = 1

Figure 5.16: The optimization history for refinement level 2 and τ = 0.25.
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5.4 Discussion
We have in this section applied the regularization based shape optimization approach
to the 3D shape optimization problem of designing reflectors for free surface flow.
We were with the method able to improve the energy with up to a factor 86, while
generating a valid parametrization at the same time. However to get this result we
had to stop the optimization prematurely, after 50 optimization iterations. After more
iterations, the Jacobian determinant becomes negative between the quadrature points
used to evaluate the Winslow functional. The negative determinant were mainly seen
on the boundary Γs or on the patch interfaces, however, although not shown here,
we did find cases where the Jacobian determinant were negative in the interior of the
domain.

With the regularization based approach one looks for a shape and parametrization
where a balanced between the energy and the Winslow functional is attained, i.e.,
a shape with high energy and a good quality parametrization. However for this
problem after 500 iterations the calculated energy were up to a factor 300 greater
than for the initial guess. This observation indicates that it might be hard to find
a balance between the energy and the regularization term. That said it was already
after between 50 and 100 optimization iterations that the parametrization became
invalid and here the regularization term were still several times larger that the energy
for some of the values of τ that we tested.

For the designs with valid parametrizations that we found, we had to refine the
space where we expand the Jacobian determinant several times to prove that these
parametrizations were valid. In the worst case we ended up with 82,275 spline co-
efficients. This can be due to different scenarios. Maybe the shape found by the
algorithm is indeed very difficult to parametrize. In that case the proposed method
performs well, in that it is able to find shapes that would require many constraints on
the Jacobian determinant to be found with a constraint based method. However it
could also be that we find a shape where minimization of the Winslow functional is a
poor parametrization strategy, in which case we might be able to find the same shape
by using another parametrization strategy coupled with constraints on the Jacobian
determinant. Finally it can also be that the optimization exploits the small Jacobian
determinant to introduce numerical errors that artificially increase the energy.

To avoid having the boundary Γs self intersect, we had to maintain a parametriza-
tion of the interior of the reflector, even though the PDE was not defined on this do-
main. This was not a major issue with our setup, since it did not increase the number
of optimization variables significantly. This illustrates that for more complex topol-
ogy additional regularization has to be considered to avoid self intersections. For
example self-intersection constraints similar to the ones used in [33].

If one wants to apply this method for a shape optimization problem, then it
might be important first to investigate what happens when the Winslow functional
is minimized alone, since this can indicate whether additional regularity has to be
enforced.

We observed that the while the shapes we found had a complex shape near the free
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surface they all seemed to be close to a square lower in the domain. This might be due
to the fact that both the weight function δ and the waves decay exponentially in the
z-direction and therefore the Winslow regularization term will dominate away from
the free surface. One idea would be to let the regularization parameter vary spatially.
For example have a large value at the surface and lower value when z decrease.

We also saw that the results of the approach depended a lot on the quadrature rule
used to calculate the Winslow functional. When using the Gauss-Legendre quadrature
the Jacobian determinant would become negative on patch boundaries. It seems that
the Gauss-Lobatto quadrature is a better choice for this application. However it
is concerning that different quadrature rules give completely different results, as it
indicates that the Winslow functional is not approximated well. One can increase
the number of quadrature points, but this can decrease the efficiency of the method.
It would be interesting to try to use an adaptive quadrature rule, such that we can
approximate the integrals better without introducing two many quadrature points.
One way to do this is to use different number of quadrature points on different knot
intervals. There are other alternatives in the literature, see for example [18, 16].

5.5 Conclusion and outlook
The proposed method for 3D shape optimization using regularization shows potential,
as we were able to increase the energy with a factor 86 and obtain a valid parametriza-
tion by solving one optimization problem, without additional constraints. However
this was at at intermediate state of the optimization, and after more than 100 it-
erations it seems to produce designs with negative Jacobian determinant. It seems
that the method is sensitive the specific choice of quadrature rule use to compute the
Winslow functional.

These results motivate several further investigations. Firstly it would be inter-
esting to compare this framework to a method based on constraints on the Jacobian
determinant. This could for example be using the spring method as the parametriza-
tion strategy with constraints on the spline coefficients of the determinant if the large
number of constraints on the Jacobian determinant are manageable. We unfortu-
nately did not have time to investigate this in this work.

Secondly it could be interesting to investigate this method using an adaptive
quadrature rule to compute the Winslow functional, such that the integral in the
areas where the determinant is small is still well approximated.

Thirdly an important question is whether it is possible to develop a better regu-
larization term than the Winslow functional. It would for example be interesting to
use an error estimate as an additional regularization term as this might guard against
exploitation of the numerical errors.

Finally it would be interesting to take the results found in this section, and try
to find a parametrization using another 3D parametrization strategy for example the
method proposed in [39] and compare the outcome with the one found here. Perhaps
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some of the designs with an invalid parametrization we found, can be parametrized
using another method.
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CHAPTER 6
Conclusion and

outlook
6.1 Conclusion

In this work we have investigated methods of maintaining valid parametrizations
for IGA during a shape optimization process, with the aim of developing methods
applicable for efficient 3D shape optimization with IGA.

We have considered two different approaches, namely a boundary driven approach
based on using constraints on the positivity of the Jacobian determinant and a reg-
ularization based approach where the inner control points enter the formulation as
additional design variables. We found that for a 2D model problem of designing elec-
tromagnetic reflectors, the regularization based approach performed comparably to
the state of the art constraint based method. Furthermore it seemed to produce more
reliable results on coarse meshes, while being significantly easier to implement.

Formulating the challenge of finding parametrizations as a shape optimization
problem, we further demonstrated that the regularization based approach can be
used to find parametrizations of complicated domains. This method worked really
well in 2D as it was able to parametrize a difficult jigsaw puzzle piece on a coarse
refinement level where the other parametrization techniques we have investigated
failed. Additionally it avoids the explicit constraint on the Jacobian determinant.

We also demonstrated that the method could produce valid parametrizations for
complicated 3D domains, as we were able to parametrize a 3D jigsaw puzzle piece.
There are not many 3D parametrization techniques in the literature, and the proposed
method is promising and simple to implement.

Finally we investigated the regularization based approach on a 3D shape optimiza-
tion problem of designing reflectors for free surface waves. We were able to improve
the objective by a factor 86 compared to the initial guess, while still obtaining a valid
parametrization of the domain. However this was at an intermediate stage of the
optimization, and in several cases the parametrization became invalid if more than
50 iterations of the optimization process was taken.
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6.2 Outlook
One of the issues with the regularization based approach is how to choose the regular-
ization parameter. When using the method for finding parametrizations in chapter 4
we investigated an approach where a sequence of problems with decreasing regular-
ization parameter are solved. This method did not only provide a way to choose
the regularization parameter, but we also found that it could reduce the number of
optimization iterations needed to find a valid parametrization. This motivates the
investigation of a similar approach for PDE-constrained shape optimization prob-
lems. When finding parametrizations the procedure can be stopped when a valid
parametrization is found, however for PDE-constrained optimization problems it is
not clear what an appropriate stopping criterion should be. One idea would be to
estimate the discretization error between each subproblem and stop if it increases
above some threshold, indicating that the optimization might exploit the position of
inner control points.

For the 3D shape optimization problem considered here, the proposed method
would produced parametrizations with small Jacobian determinant, or even invalid
parametrizations. It would be interesting to try to reparametrize these shapes with
other methods, as this would indicate whether the Winslow functional is a good
quality measure in 3D. It would also be interesting to investigate a hybrid approach,
where the inner control points are determined by a parametrization technique, but
where one uses the regularization term instead of the explicit constraints on the
Jacobian determinant.

We found that the results from the shape optimization were sensitive to the quadra-
ture rule used for evaluating the Winslow functional. The constraint based method
in section 3.1 were sensitive to the number of quadrature points used to evaluate the
Winslow functional for our 2D model problem. For the 3D model problem we saw that
the Gauss-Legendre quadrature produced invalid parametrizations, while the Gauss-
Lobatto quadrature could produce valid parametrizations. These results encourage
the investigation of other, perhaps adaptive, quadrature rules for the evaluation of
the Winslow functional. This could for instance be accomplished by identifying the
knot intervals where the Jacobian determinant is small and increasing the number of
quadrature points used here.

Another question is whether there are better regularization terms. In 2D the
Winslow functional performs very well, but it is not clear whether the 3D generaliza-
tion considered here is the best choice. One idea is to use an error estimate as an
additional regularization term, to drive the optimization towards a parametrization
that allow for an accurate analysis.
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Abstract

Shape optimization based on Isogeometric Analysis (IGA) has gained popularity in recent
years. Performing shape optimization directly over parameters defining the CAD geometry,
such as for example the control points of a spline parametrization, opens up the prospect of
seamless integration of a shape optimization step into the CAD workflow.

One of the challenges when using IGA for shape optimization is that of maintaining a valid
geometry parametrization of the interior of the domain during an optimization process, as the
shape of the boundary is altered by an optimization algorithm. Existing methods impose
constraints on the Jacobian of the parametrization, to guarantee that the parametrization
remains valid. The number of such validity constraints quickly becomes untractably large,
especially when 3D shape optimization problems are considered.

An alternative, and arguably simpler approach is to formulate the isogeometric shape
optimization problem in terms of both the boundary and the interior control points. In order
to ensure a geometric parametrization of sufficient quality a regularization term, such as the
Winslow functional, is added to the objective function of the shape optimization problem.

We illustrate the performance of these methods on the optimal design problem of elec-
tromagnetic reflectors and compare their performance. Both methods are implemented for
multipatch geometries, using the IGA library G+Smo and the optimization library Ipopt. We
find that the second approach performs comparably to a state of the art method with respect
to both the quality of the found solutions and computational time, while its performance in
our experience is more robust for coarse discretizations.

1 Introduction

Isogeometric analysis (IGA) introduced in [13] is a Galerkin method that uses splines to approx-
imate both the geometric domain and solutions to partial differential equations (PDEs). Splines
are commonly used in computer aided design (CAD) and IGA is an attempt to bridge the gap
between simulation and design [3]. This makes it beneficial for shape optimization as the opti-
mization can be performed directly over parameters defining the CAD geometry, for example the
control points of a spline parametrization, and it opens up the prospect of seamless integration of
a shape optimization step into the CAD workflow.

One of the key challenges when using IGA in general, is that one needs a parametrization of the
interior of the physical domain, on which the PDE is posed [21, 12, 9, 16]. This parametrization
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is used to pull back the weak form of the PDE to the parameter domain where the basis splines
(B-splines) are defined. The choice of parametrization can affect the accuracy of the resulting
IGA discretization [9, 25] and at the very least the parametrization should be valid (a bijective
map), that is its Jacobian determinant should be non-zero. One approach to constructing a valid
parametrization in 2D is to search for the one whose inverse is harmonic. In [12] this property
is reformulated as a nonlinear PDE and the parametrization is found by solving this PDE. In
[11] this PDE based parametrization technique is used for a gradient based shape optimization
algorithm with IGA. In [9, 17] the same property is attained by minimizing the Winslow functional
[24]. The method can be made more flexible by the use of adaptive splines [4], that allow to enrich
the feasible region near to complex boundaries. In the recent works [21, 19] the approach of
parametrizing a complex domain by deforming a given template is explored. In [18] the focus is
on producing parametrizations with low-rank with respect to the coefficient tensor.

When using IGA for shape optimization the challenge of finding a valid parametrization is even
more important, since the shape of the physical domain changes during an optimization process.
This means that a valid parametrization needs to be maintained during this process.

To guarantee that the parametrization remains valid during the optimization process, shape op-
timizations methods based on IGA often rely on constraints on the Jacobian of the parametrization
[7, 17]. These can be enforced either by using injectivity cones or by using the spline coefficients of
the Jacobian determinant [26]. However the number of constraints needed quickly becomes very
large, especially in 3D. Furthermore when using the coefficients of the Jacobian determinant for
the constraints, as we will do in this work, it may be necessary to expand the Jacobian determinant
on a finer spline space, which increases the number of constraints even further.

In this work we will compare the existing approach to IGA shape optimization, relying upon
reparametrizing the domain, with a simple approach to maintaining a valid parametrization with-
out the use of explicit validity constraints. Namely, one lets the positions of all the control points
that defines the parametrization and the shape of the domain enter the formulation as independent
optimization variables and adds a regularization term to drive the optimization towards designs
with a valid parametrization. Such an approach has been considered in the context of shape
optimization in mechanics in [20], and has to the best of our knowlegde, only been considered
very briefly in the context of shape optimization with IGA in [6]. It remains a question whether
this approach performs comparably to state of the art methods and the aim of the work is to
investigate exactly this question.

In this work we illustrate that this simple approach is able to handle complicated geometries,
by comparing its performance to a state of the art shape optimization approach based on using a
linearization of the Winslow minimization problem as a parametrization strategy, and employing
locally refined splines to represent the Jacobian determinant. The method closely resembles the one
in [17]. The main difference is that we use Truncated Hierarchical Basis splines (THB-splines) [8],
which possess the partition of unity property, to refine the spline space in which the determinant
is expanded locally. This reduces the number of constraints needed compared with tensor product
global refinement.

We will apply the two methods and compare their performance on the shape optimization
problem of designing electromagnetic reflectors. In this problem we have two metallic reflectors in
a dielectric medium and search for a shape that maximizes the electrical energy close to a chosen
point. The same problem has been studied with topology optimization in [1, 23, 2], and with IGA
in [17].

The methods are implemented for multipatch geometries, using the IGA library G+Smo1 and
the optimization library Ipopt2.

The paper is organized as follows. In section 2 we outline the relevant notation, and in sections 3
and 4 we describe the two methods we are going to compare. In section 5 we apply these methods

1https://github.com/gismo
2https://github.com/coin-or/Ipopt
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to the aforementioned shape optimization problem, and discuss and compare the performance of
the two approaches. We end the paper with some discussion and conclusions. Some of the more
technical details are presented in the appendices.

2 Preliminaries and notation

Let us consider the following PDE-constrained shape optimization problem:

max
Ω∈Oad

E(Ω, u), (1a)

s.t. aΩ(u, v) = ℓΩ(v) for all v ∈ V, (1b)

where Oad is a set of admissible shapes, E is the objective and (1b) is the governing PDE in the
weak form.

Within the IGA framework both Ω and u will be approximated numerically using splines.
Namely, we have Ω = G(]0, 1[d), with the parametrization

G(ξ) =
Ng∑
i=1

ciR
g
i (ξ), (2)

where ci ∈ Rd are the control points, Ng is the number of control points, and Rg
i are the basis (B)

splines. In this work, unless specifically stated otherwise, we will utilize tensor product B-splines.
The superscript g indicates that the B-splines Rg

i (that is, their degrees and knotvectors) are spe-
cific to the geometry representation. Within the shape optimization framework it will sometimes
be necessary to distinguish between boundary and inner control points. We will therefore introduce
the notation

c =

[
cb

ci

]
, (3)

where cb are the boundary control points and ci are the inner control points. The Jacobian
J = ∂G

∂c will also play an important rôle in the forthcoming development.
Similarly to (2), we approximate the state of our system as a pulled back spline

uh =

N∑
i=1

uiRi ◦G−1, (4)

where Rg
i , i = 1, . . . , N are B-splines. The expansion coefficients ui, i = 1, . . . , N will be found by

solving a system of linear algebraic equations

Kc u = fc.

As standard in the Galerkin approach, the elements of the stiffness matrix Kc and the load vector
fc are computed as Kc,i,j = aG(]0,1[d)(Rj ◦ G−1, Ri ◦ G−1), and fc,i = ℓG(]0,1[d)(Ri ◦ G−1). Note
that the dependence of Kc, fc on the control points is encapsulated in (2) and (4).

Already at this point the importance of geometry parametrization should be apparent. Indeed,
at the very least it should be an invertible map, which is used to pull back the weak form of the
PDE defined on the physical domain Ω into the parameter domain ]0, 1[d. In particular, for all
ξ ∈]0, 1[d it is necessary that det(J(ξ)) > 0. 3 A sufficient condition, which guarantees the validity
of the parametrization, is discussed in Appendix A.

3It is equivalent to require that det(J(ξ)) < 0, however in this work we will use the constraint det(J(ξ)) > 0
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3 Boundary-driven approach to IGA shape optimization

In this section we will consider one possible approach to IGA shape optimization, which follows the
ideas developed in [17, 9]. Within this framework we formulate the optimization problem in terms
of boundary control points cb. The interior control points ci for the geometry parametrization are
treated as an implicit function of cb, see Appendix B. Additionally, the parametrization validity
constraints det(J) > 0, or a sufficient condition for these (cf. Appendix A) have to be explicitly
included into the problem formulation.

In order to compute domain parametrizations of high quality we rely upon minimizing the
Winslow functional (Section B.2). However, to avoid solving a non-linear optimization problem
at each shape optimization iteration, we construct a quadratic approximation to the Winslow
functional around a reference parametrization, and update the reference parametrization when
it becomes necessary to do so. Specifically, given a reference parametrization G0 defined by the
control points c0, to find a new parametrization we consider the quadratic programming problem

min
∆ci

1

2
∆cTH(c0)∆c+∇W (c0)

T∆c+W (c0), (5)

where W is the Winslow functional, and H is its Hessian. The minimizer of this problem can be
found by solving a linear system

H(c0)∆c = −∇W (c0).

Using (3), this can be restated as

Hci,ci∆ci = −∇Wci −Hci,cb∆cb, (6)

where [Hci,ci ]ij = ∂2W/∂cii∂c
i
j , [Hci,cb ]ij = ∂2W/∂cii∂c

b
j and [∇Wci ]i = ∂W/∂cii. The new

parametrization is then defined by the control points given by c = c0 +∆c.
With this in mind, to approximate (1) numerically we solve a sequence of subproblems

max
∆cb

E(c,u), (7a)

s.t. Kc u = fc, (7b)

Hci,ci∆ci = −∇Wci −Hci,cb∆cb, (7c)

c = c0 +∆c, (7d)

d ≥ ε, (7e)

cbL ≤ cb ≤ cbU . (7f)

where c0 is the reference parametrization, ∆c = (∆cb,∆ci), and (7e) is the sufficient condition
for the validity of the parametrization discussed in Appendix A.

Reference parametrizations can be computed as follows. We minimize the Winslow functional
as described in Appendix B, and check if the sufficient condition d > 0 is violated. If it is, then
this condition is too strict and should be relaxed. To facilitate this we refine the spline space Sdet

where we compute expansion coefficients d of det J . To reduce the number of constraints resulting
from such refinement steps, we utilize local refinement. Specifically, we use Truncated Hierarchical
B-splines (THB-splines) as basis functions. Note that it is important here to use the truncated
version of hierarchical splines, since the partition of unity property (cf. [8]) implies that the spline
control polygon converges locally to function values.

The refinement strategy we employ is as follows. For all indices i that have negative spline
expansion coefficient di ≤ 0 of det J , we refine the support of the associated basis function Rdet

i .
This is repeated until di > 0 for all i = 1, . . . , Ndet.

4 In subproblem (7) we then put ε = ρ ·min
i

di

with ρ = 0.25, see (11).

4In practice we terminate this procedure either if d > 0 or when a maximum level of refinement (7 in our
numerical experiments) is attained. The latter termination criterion has not been observed in our experiments.
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Solve min
ci

W to find refer-

ence parametrization c0.

Compute d.

While ∃i di ≤ 0 refine support
of Rdet J

i and recompute d.

Solve the shape optimization
subproblem (7) at c0 with
ϵ = ρmin di for ρ ∈ (0, 1].

Did we converge?

Stop.

Yes

No

Figure 1: Flowchart of the optimization algorithm.

The full optimization loop is illustrated in Figure 1. Note that we have chosen to carry out the
spline space refinement described above only when the reference parametrization, and therefore
also the subproblem (7), is updated. This allows us to keep the number of constraints constant
when solving (7) numerically and therefore employ off-the-shelf optimization software. The initial
guess for the non-linear Winslow optimization problem is generated using Coons’ patches, see
Appendix B.

4 Regularization-driven approach to IGA shape optimiza-
tion

In this section we discuss an alternative approach to shape optimization using IGA, which does
not involve explicit constraints on det J . The positions of the inner control points ci enter this
formulation as independent optimization variables, in the same way as cb. Consequently, we do
not need to explicitly compute a domain parametrization, as this will be part of the outcome of
the optimization process.

To this end we add Winslow functional W as a regularization term to the objective function.
Its role is to penalize configurations of control points that result in poor parametrizations. This
idea has been used previously in the context of shape optimization in mechanics [6, 20]. Thus for
a regularization parameter τ > 0 we consider the optimization problem

min
c

τW (c)− E(c,u), (8a)

s.t. Kc u = fc, (8b)

cL ≤ c ≤ cU . (8c)

We put W (c) = ∞ if det J ≤ 0 at one of the quadrature points used for the integration when
calculating W (c). In this way the Winslow functional acts as a barrier term that ensures that
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Reflector (Gold)

Air
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Electromagnetic wave

Truncated Domain

?

?

Figure 2: Sketch of the shape optimization problem. The goal is to find a shape of the reflector
that maximizes the field close to a point.

the determinant is always positive at the quadrature points. This does not guarantee that it is
positive everywhere, but it means that the numerics will not collapse due to a division by zero.

The regularization parameter τ needs to be tuned for the specific problem at hand. If it is
too large the minimization will find a design with a small value of the Winslow functional but
disregarding the objective E(c,u). If it is too small the optimization will find positions of the
control points that have a low objective E(c,u), but with a poor parametrization, which might
give a large discretization error of the discretized PDE. The appropriate values of τ would lead
to a compromize between these two extreme situations. One simple strategy for choosing such a
value is solve a sequence of problems (8) for decreasing values of τ .5

5 Case study: Optimization of electromagnetic reflectors

In this section we will consider a 2D shape optimization problem originating from the field of
electromagnetism. Our goal is to design a reflector that concentrates electrical energy in a desired
area. This problem will serve as a model problem for comparing the two optimization approaches
outlined in Sections 3 and 4.

5.1 Physical model

We consider a two dimensional scattering problem where a plane wave with frequency f travels
in a dielectric (air) and is scattered by two symmetric metallic (gold) reflectors, as depicted in
Figure 2. Let ϵcr and µr denote the complex permittivity and permeability of the medium. Using
the first order absorbing boundary condition [14] at the boundary Γt of the truncated domain, the
electromagnetic field û should satisfy the following PDE:

∇ ·
(

1

ϵcr
∇û

)
+ k20µrû = 0 in Ω, (9a)

∂(û− ui)

∂n
+ (jk0 +

1

2rt
)(û− ui) = 0 on Γt. (9b)

5We should note that the literature on regularization is quite extensive, see for example [10] and references
therein, and this topic is somewhat beyond the scope of this work.
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f µr µs
r σ ϵ0 µ0 ϵr,gold

4 · 1014[Hz] 1.0 1.0 106[S/m] (µ0c
2)−1 4π10−7 −20.199 + j1.381

Table 1: Physical parameters

In the equations above, k0 = 2π
√
ϵ0µ0 is the wave number and ϵ0, µ0 refer to the permittivity

and permeability of free space, respectively. The imaginary unit is denoted by j, the radius of the
truncated domain is given by rt, and ui is the incident plane wave, given by

ui(x, y) = e−jk0
√
ϵcrµrx.

The objective function of the shape optimization will be given by

E(c, u) =

∫
Ω

δ|û|2dx,

where δ is a Gaussian bell-function

δ(x, y) = e−
x2+y2

2α2 ,

with α = 0.1. Thus we aim to focus the incoming energy in the vicinity of the origin (0, 0). The
physical parameters that we use are given in Table 1. The complex permitivity of the reflector is
calculated as ϵscr = ϵr,gold − j σ

ωϵ0
.

The weak statement of the PDE (9) is to find û ∈ H1(Ω) such that for all test functions
v̂ ∈ H1(Ω) the following equality holds∫

Ω

1

ϵcr
∇̂û · ∇̂v̂dx+ k20

∫
Ω

µrûv̂dx+

(
jk0 +

1

2rt

)∫
Γt

1

ϵcr
ûv̂ds

=
1

ϵcr

∫
Γt

(
∂ui

∂n
+

(
jk0 +

1

2rt

)
ui

)
v̂ds. (10)

Due to the symmetry we only consider the upper half of the geometry shown in Figure 2. To
accommodate the change of material parameters between the metallic reflector and the surrounding
diellectric medium, we will split the domain into five patches, one for the reflector and the other
four for the surrounding air. The layout is shown in Figure 3.6 Each patch is be parametrized using
splines as described in Section 2. Using these parametrizations we can pull back the equation (10)
to the parameter domain and apply the Galerkin method to it, which ultimately results in the
system of linear algebraic equations, see Appendix C for details.

5.2 Results with boundary-driven approach

In this section we apply the method described in Section 3 to our model problem. We start with
an initial design where the reflector has the shape of a circle. We consider two different spline
spaces in which to approximate the PDE (9), namely using the knotvectors used for representing
the geometry refined uniformly 3 and 4 times. Both spline spaces have degree p = 2, and the
number of degrees of freedoms are Ncoarse = 2548 and Nfine = 9300, respectively. We will refer to
these as the coarse and fine meshes.

We will use a tolerance tol = 10−3 when solving the subproblems (7) and a fixed number
of reparametrizations, namely 10 when using the coarse mesh and 5 when using the fine mesh.
We observed that using more reparametrizations did not lead to significant improvements in the

6For automatic generation of patch layouts the interested reader is referred to [28].

7



P1

P2

P3

P4

P5

Figure 3: Patch layout.

design. In our experiments the results with this method are sensitive to the number of quadrature
points used when calculating the Winslow functional. To produce the results presented here we
use 12 quadrature points per knot interval, to avoid under-integration 7.

In our implementation we use the interior point solver from Ipopt to solve the subproblems (7).
Doing this successfully required some parameter tuning. Namely, after solving one of the subprob-
lems (7) some of the design bounds (7f) will be active; however, since Ipopt is an interior point
algorithm, the starting point for the subsequent subproblem will be pushed away from the bound-
ary as controlled by the parameter bound push. We found that this parameter needs to be lower
than the default value since the constraints on detJ are quite sensitive and a relatively small per-
turbation of the control points might violate these constraints, which is undesirable. The default
value is 0.1, but in the experiments we set it to 10−5 instead.

Another key parameter is the barrier parameter mu init. Specifically, we use the monotone

strategy, where the barrier parameter is monotonically decreased as the optimization algorithm
progresses. However, if this parameter is too large in the beginning of the algorithm we found
that it will push the design towards configurations with large detJ . To remedy this instead of
the default value is 0.1 we use 10−4. For more information about the optimization algorithm
implemented in Ipopt and it parameters see [22].

In Figure 4 the design at different stages of the optimization is presented, when using the
coarse mesh. We observe that the design becomes increasingly hard to parametrize as the
objective increases each time we change the reference parametrization. In Figure 5 the objective
is plotted against the number of iterations. We see that the objective function increases after
the reference parametrization is changed, but relatively quickly reaches a plateau. We already
use a fairly large tolerance of 10−3 for the stopping criterion when solving the subproblems (7),
however this behaviour indicates that it might help to relax the stopping criterion even further
in these subproblems to improve the overall efficiency of the method. However to allow for a fair
comparison between the two methods we do not investigate this further and use the same tolerance
for both methods. The final objective, after 10 reparametrizations when using the coarse mesh,
is Eh = 1.803, however if we calculate the objective with a mesh that is refined uniformly twice
we get Eh/4 = 1.556, that is, a 16% difference. This means that there is actually a significant
discretization error at this refinement level, which leads to an artificially large objective value.

As described in Section 3 we use local refinement to adapt the constraints on detJ to the
current design. This is done by using local refinements in the areas where the spline coefficients
are non positive. The resulting meshes are plotted in Figure 6 to illustrate where the refinement is
needed. We see that it is primarily inside the reflector and near the reflector-air interface, that this

7In the IGA formulation (20) we also integrate non-polynomials. We use 3 quadrature points for the mass matrix
M and 7 quadrature points for the stiffness matrix K .
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(a) The initial design, Eh = 0.200 (b) After 1 reparametrization, 67 itera-
tions, Eh = 1.230

(c) After 2 reparametrizations, 143 itera-
tions, Eh = 1.484

(d) After 10 reparametrizations, 579 iter-
ations, Eh = 1.803

Figure 4: The designs at different stages of the optimization process, when using validity con-
straints and the coarse mesh. The reflector is outlined with a black line, and the control points
of this boundary is colored black. The grey lines are parameter lines mapped with the geometry
map, to illustrate the parametrization.
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Figure 5: The objective function during optimization process for the coarse and fine meshes. The
vertical lines indicates where the parametrization is updated. Eh/4 is the objective calculated on
a refined mesh.

(a) Initial mesh,
Ndet = 380

(b) After 1 reparametrization, Ndet = 392.

(c) After 2 reparametrizations, Ndet =
448.

(d) After 10 reparametrizations, Ndet =
572.

Figure 6: The mesh (knot lines), used for representing detJ during the subproblems (7) for the
constraints (11). The number of constraints is given by Ndet and the designs are obtained using
the coarse mesh.
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Figure 7: The final design using validity constraints and the fine mesh, Eh/2 = 1.638

refinement is applied. We see that the number of constraints increases during the optimization
process, but by no more than a factor of two. If we were to use uniform refinement the number of
constraints would increase with more than a factor of 9.

The final design, after 5 reparametrizations, when using the fine mesh is shown in Figure 7.
We see that it is similar to the design obtained using the coarse mesh. The final objective here
is Eh = 1.638. After the mesh is refined uniformly the electrical energy is Eh/4 = 1.628, which
is only a 0.6% difference. The objective function during the optimization process is plotted in
Figure 5. We see that the algorithm converges faster when using the fine mesh as no progress was
observed after 5 reparametrizations.

5.3 Results with regularization-driven approach

In this section we will present the results obtained with the method described in Section 4. With
this method we perform the optimization with all control points as optimization variables while
using the Winslow functional as a regularization term. We will again use a tolerance of tol = 10−3

when solving the problem (8). The regularization parameter is set to τ = 1
8 .

One can compare the design evolution shown in Figure 8 with those obtained previously, see
Figure 4. The designs obtained using the regularization approach seem to have more regular
parametrizations compared to those in Figure 4.

The final objective is Eh = 1.684. If we calculate the electrical energy for this design on a
twice refined mesh we get Eh/4 = 1.546, that is, a difference of 9% . This is less than the 16% we
observed when using the boundary-driven method. This increase in accuracy might be due to the
parametrization being of higher quality.

In Figure 9 we plot the electric energy Eh, the regularization term τW and the objective
function τW − Eh.

When using the method with the fine mesh we get the final design shown in Figure 10. We see
that the shape of the reflector is very similar to that shown in Figure 8d. The main difference is that
when using the fine mesh the parametrization is more regular, since the error in the discretization
of the PDE is smaller, and therefore the optimization cannot exploit it to the same extend. This is
especially notable at the bottom of the reflector were the inner control points where moved away
from the point of interest when using the coarse mesh, as seen in Figure 8d. The final objective is
Eh = 1.545 and when evaluating it on a refined mesh we get the same result Eh/4 = 1.545 with the
difference at the 5th digit. The objective during the optimization process is plotted in Figure 9.
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(a) The initial design, Eh = 0.202 (b) 67 iterations, Eh = 1.461

(c) 143 iterations, Eh = 1.593 (d) The final design after 432 iterations ,
Eh = 1.683

Figure 8: The designs at different stages of the optimization process when using the regularization
approach. The reflector is outlined with a black line, and the control points that controls this
boundary is colored black. The grey lines are parameter lines mapped with the geometry map, to
illustrate the parametrization.
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Figure 9: The objective function during the optimization process when using the regularization
based approach, with the fine and coarse mesh.
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Figure 10: The final design when using the regularization approach and the fine mesh, Eh/2 =
1.545.

The behaviour is similar for the two meshes, however the tolerance tol = 10−3 is reached with
fewer iterations when using the fine mesh.

5.4 Comparison and discussion

In Table 2 we summarize the performance of the two methods. We report the objective after
a fixed number of iterations, in this case after 100 iterations, the final objective computed on 3
different refinement levels and the average running time per iteration.

We observe that the average execution time per iteration is the same order of magnitude for
the two methods. The main portion of the running times is spent on solving the state equation
and computing the gradient of the objective function. The difference in the running time that
we observed between the two methods might be due to a different number of function evaluations
per iteration needed for trial steps of the algorithm. If we were to consider a larger problem, for
example in 3D, the large number of validity constraints would likely lead to an increase in running
time for the boundary-driven approach.

Regarding the quality of the designs we find, we note that shape optimization problems are
prone to having many local optima, so it could be that the two methods find two different local
optima. Therefore it can be futile to directly compare objective values. That being said, we
observe that the boundary-driven approach happens to find solutions with slightly higher (better)
objective value. On the other hand, the regularization based approach seems to estimate the
objective value more accurately on coarser meshes, since our results were more reliable using this
method, probably due to the better quality of the parametrizations it produced.

Also, observe that with the regularization based approach we only need the objective Eh, the
Winslow functional and their first order derivatives. In addition we can solve a single optimization
problem with design bounds as the only constraints. This means that the method is significantly
easier to implement.

5.5 Conclusion

We described and compared two methods for shape optimization on spline-based representations.
One uses validity constraints to enforce the validity of the geometry parametrization. The other
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Method Eiter=100 Eh Eh/2 Eh/4
Eh−Eh/4

Eh/4
Avg time per iteration

Linearizations coarse mesh 1.482 1.803 1.589 1.556 16% 9.68 sec
Regularization coarse mesh 1.529 1.684 1.561 1.546 9% 11.54 sec

Linearizations fine mesh 1.495 1.638 1.629 1.628 0.6% 53.5 sec
Regularization fine mesh 1.482 1.545 1.545 1.545 0.003% 71.0 sec

Table 2: Comparison of the two methods from Section 3 and 4 on two different meshes. Eiter=100

is the objective after 100 iterations. Eh is the objective computed on the mesh used in the
optimization. Eh/2 and Eh/4 are the objectives computed after refining the mesh uniformly, once
and twice. The execution time was measured on a 64 bit HP EliteBook 840 G4 with and Intel(R)
Core(TM) i7-7500U CPU, with clock rate of 2.70 GHz.

uses a regularization term, and thus avoids both the validity constraints and the need of an ex-
plicit parametrization strategy altogether. We demonstrated how this simple approach performed
comparably to the more complicated approach in terms of the final design, while requiring similar
running times for the 2D problem we considered. The regularization based approach seems to
produce more reliable results and it is in addition much simpler to implement, since we only need
the objective, the Winslow functional and their first order derivatives.

These results are encouraging and we plan to use the regularization based approach for 3D
problems, where we expect that the efficiency advantages of the regularization approach will be
more prominent, since the number of validity constraints for 3D parametrizations grows quickly.
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[12] J. Hinz, M. Möller, and C. Vuik. Elliptic grid generation techniques in the framework of
isogeometric analysis applications. Computer Aided Geometric Design, 65:48–75, 2018.

[13] T. Hughes, J. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement. Comp. Meth. Appl. Mech. Engrg., 194(39–41):4135–
4195, 2005.

[14] J.-M. Jin. The finite element method in electromagnetics. Wiley, 1993.

[15] A. Mantzaflaris, B. Juettler, B. N. Khoromskij, and U. Langer. Low rank tensor meth-
ods in Galerkin-based isogeometric analysis. Computer Methods in Applied Mechanics and
Engineering, 316:1062 – 1085, 2017. Special Issue on Isogeometric Analysis: Progress and
Challenges.

[16] T. Martin, E. Cohen, and M. Kirby. Volumetric parameterization and trivariate b-spline
fitting using harmonic functions. In Proceedings of the 2008 ACM symposium on Solid and
physical modeling, pages 269–280, 2008.

[17] D. Nguyen, A. Evgrafov, and J. Gravesen. Isogeometric shape optimization for electromag-
netic scattering problems. Progress in Electromagnetics Research B, 45:117–146, 2012.

[18] M. Pan and F. Chen. Low-rank parameterization of volumetric domains for isogeometric
analysis. Computer-Aided Design, 114:82–90, 2019.
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A A sufficient condition for a valid parametrization

As pointwise constraints det(J) > 0 are generally speaking difficult to deal with, we utilize the
spline nature of the geometry parametrization (2). Namely, when the geometry map G ∈ Ck is a
spline of degree p, then det J ∈ Ck−1 is a spline with degree d · p − 1. This means that we can
construct a spline space Sdet that contains det J .

8 We can therefore find the expansion coefficients
d of det J with respect to B-splines in this space.9

Now we can use this expansion to derive a sufficient condition to replace the pointwise parametriza-
tion validity constraints det(J) > 0, by requiring that

d ≥ ε, (11)

where ε is a small positive algorithmic parameter. This condition guarantees that detJ > 0
since B-splines are non-negative and form a partition of unity. This is not a necessary condition,
meaning that we might have di ≤ 0 for some i even though det J(ξ) > 0, ∀ξ ∈]0, 1[d. But if the
spline space Sdet is refined then the spline expansion coefficients will move closer to values of the
spline. So if ε is small enough and det J > 0 then the constraint is likely to be satisfied for a
sufficiently refined spline space Sdet.

B Domain parameterization techniques

In this section we review some techniques of finding a parametrization of the interior given the
boundary. In IGA this comes down to finding the position of the inner control points given
boundary control points. We do not aim to give a thorough review of all the techniques that are
available, as this is out of the scope of this work. We will only introduce the methods that are
related, or directly used, by the two shape optimization methods considered in this work

8Specifically, the smallest spline space containing det J can be obtained by increasing the multiplicity of each
knot in geometry map knotvector by (d− 1) · p to account for the reduction in the differentiability and increase of
the degree.

9This could be done using either interpolation or L2 projection. In either approach one has to solve a linear
system to obtain the expansion coefficients. The linear system matrix needs to be inverted only once for a given
spline basis and, moreover, the matrix has a Kronecker/separable structure (cf. [15]) therefore the solution can be
obtained extremely fast.
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B.1 Coons patch and spring method

Two simple methods for constructing a grid of control points is the Coons patch [5] and the
spring method [9]. They both produce inner control points that depend linearly on the boundary
control points, however they only produce valid parametrizations for geometries that are not too
complicated. In this work we will use these methods for finding an initial guess for the optimization
based approach that is described below.

B.2 Optimization–based techniques

Amore complex, and in general nonlinear, class of parametrization methods consists of optimization–
based methods. Here the geometry map G is chosen such that it minimizes a quality metric w(ξ)

min
G

∫
]0,1[d

w(ξ) dξ, (12)

s.t. G|∂[0,1]d = γ, (13)

where γ is a given boundary curve.
There are several different quality metrics to choose from, cf. [9, 27]. In this work we will

consider the Winslow functional which is given in terms of the Jacobian matrix J as

W =

∫
]0,1[d

w(ξ) dξ, (14)

with

w =
tr
(
JTJ

)
det J

. (15)

In 2D the Winslow functional has the nice property that its minimizer has a harmonic inverse [9].
This guarantees that the minimizer of (12) is unique and bijective, i.e. detJ ̸= 0. It should be noted
that this minimizer is not necessarily a spline, so looking for a spline parametrization on the form
(2) by minimizing (12) with the Winslow functional will only guarantee a valid parametrization if
the spline space used for the parametrization has high enough resolution.

Within the shape optimization context we also need first and second order partial derivatives
of w. The derivative with respect to a parameter α is given by

∂w

∂α
= 2(detJ)−1tr

(
JT ∂J

∂α

)
− tr

(
J−1 ∂J

∂α

)
tr(JTJ)

det J
, (16)

where we used the relation
∂

∂α
det J = det J tr

(
J−1 ∂J

∂α

)
. The second order derivative is given

by

∂2w

∂α∂β
= 2(detJ)−1tr

(
∂J

∂α

T ∂J

∂β

)

− 2(det J)−1tr

(
J−1 ∂J

∂α

)
tr

(
JT ∂J

∂β

)
− 2(det J)−1tr

(
J−1 ∂J

∂β

)
tr

(
JT ∂J

∂α

)
+

tr(JTJ)

det J
tr

(
J−1 ∂J

∂α

)
tr

(
J−1 ∂J

∂β

)
+

tr(JTJ)

det J
tr

(
∂J

∂β

T

J−1 ∂J

∂α
J−1

)
(17)
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using the fact the fact that ∂
∂αJ

−1 = −J−1 ∂J
∂αJ

−1 and assuming that J depends linearly on α,

which is the case when α is a coordinate of a control point. Calculation of ∂w
∂α and ∂2w

∂α∂β can be
implemented as an assembly of a linear and bilinear forms within IGA framework. In G+Smo this
can for instance be accomplished using the gsExprEvaluator class that is typically employed for
isogeometric stiffness matrix assembly purposes.

C IGA discretization details

Using the spline parametrizations of patch geometries we pull back the weak form (10) to the
parameter domain, which results in the following equation:∫

]0,1[2

1

ϵcr
J−T∇u · J−T∇v |detJ |dξ + k20

∫
]0,1[2

µruv |det J | dξ

+

(
jk0 +

1

2rt

)∫
G−1(Γt)

1

ϵcr
uv

∣∣∣∣∂G∂t
∣∣∣∣dt

=
1

ϵcr

∫
G−1(Γt)

1

ϵcr

(
∂ui

∂n
◦G+

(
jk0 +

1

2rt

)
ui ◦G

)
v

∣∣∣∣∂G∂t
∣∣∣∣dt (18)

where we have u = û ◦G, v = v̂ ◦G and where t is the parameter on the boundary. After applying
the Galerkin method to (18), we arrive at the linear system of linear algebraic equations

Au = (K +M + T )u = f (19)

where u = (u1, . . . , uN )T and K, M , T and f is given by

Kkl =

∫
[0,1]2

1

ϵcr
J−T∇Rk · J−T∇Rl |det J | dξ, (20a)

Mkl = k20

∫
[0,1]2

µrRkRl |detJ | dξ, (20b)

Tkl =

(
jk0 +

1

2rt

)∫
G−1(Γt)

1

ϵcr
RkRl

∣∣∣∣∂G∂t
∣∣∣∣ dt, (20c)

fl =

∫
G−1(Γt)

1

ϵcr

(
∂ui

∂n
◦G+

(
jk0 +

1

2rt

)
ui ◦G

)
el

∣∣∣∣∂G∂t
∣∣∣∣ dξ. (20d)

Note that the values of εcr and µr are set to the properties of gold in patch 4 and for air in the
other patches. Owing to the restriction of the IGA library we are utilizing, we further reformulate
the system of complex algebraic equations (19) as[

ℜ(A) −ℑ(A)
−ℑ(A) −ℜ(A)

] [
ℜ(u)
ℑ(u)

]
=

[
ℜ(f)
−ℑ(f)

]
.
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APPENDIX B
Results using

Regularizations
In this appendix we give some results from the optimization problem described in
Section 3.3, for additional choices of the regularization parameter τ .
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(a) τ = 1
4 , Eh = 0.973, Eh/4 = 0.980, 165

iterations
(b) τ = 1

8 , Eh = 1.373, Eh/4 = 1.377, 310
iterations

(c) τ = 1
16 , Eh = 1.645, Eh/4 = 1.646, 357

iterations
(d) τ = 1

32 , Eh = 2.227, Eh/4 = 1.457, the
optimization algorithm terminated from
reaching the maximum number of itera-
tions (3000)

Figure B.1: The final designs when using the regularization based approach and the
coarse mesh for different values of the regularization parameter τ . The reflector is
outlined with a black line, and the control points of this boundary is colored black.
The grey lines are parameter lines mapped with the geometry map, to illustrate the
parametrization.
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16
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(d) τ = 1
32

1

Figure B.2: The optimization history when using the regularization based method
and the coarse mesh for different values of τ . We plot the electrical energy Eh, the
regularization term and Eh − τW which is the actual function that is maximized.
1For τ = 1/32 the optimization algorithm terminated from reaching the maximum
number of iterations.
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(a) τ = 1
4 , Eh = 0.982, Eh/4 = 0.982, 199

iterations
(b) τ = 1

8 , Eh = 1.376, Eh/4 = 1.376, 395
iterations

(c) τ = 1
16 , Eh = 1.646, Eh/4 = 1.646, 382

iterations
(d) τ = 1

32 , Eh = 1.680, Eh/4 = 1.680, 443
iterations

(e) τ = 1
64 , Eh = 1.688, Eh/4 = 1.688, 581

iterations
(f) τ = 1

128 , Eh = 1.734, Eh/4 = 1.688, 734
iterations

Figure B.3: The final designs when using the regularization based approach and the
fine mesh for different values of the regularization parameter τ .
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Figure B.4: The optimization history when using the regularization based method
and the fine mesh for different values of τ . We plot the electrical energy Eh, the
regularization term and Eh − τW which is the actual function that is maximized.
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(a) Eh = 0.202 (b) Eh = 0.114 (c) Eh = 1.638

(d) τ = 1
16 , Eh = 1.646,

Eh/4 = 1.646, 382 itera-
tions

(e) τ = 1
16 , Eh = 1.534,

Eh/4 = 1.534, 348 itera-
tions

(f) τ = 1
16 , Eh = 1.646,

Eh/4 = 1.646, 372 itera-
tions

(g) τ = 1
32 , Eh = 1.680,

Eh/4 = 1.680, 443 itera-
tions

(h) τ = 1
32 , Eh = 1.677,

Eh/4 = 1.677, 521 itera-
tions

(i) τ = 1
32 , Eh = 1.685,

Eh/4 = 1.685, 456 itera-
tions

Figure B.5

Figure B.6: Results for different starting guesses, when using the fine mesh. In the
top row we show the starting guesses, in the middle row the final design when using
the regularization based approach. The reflector is outlined with a black line, and
the control points of this boundary is colored black. The grey lines are parameter
lines mapped with the geometry map, to illustrate the parametrization.



APPENDIX C
Perfectly Matched

Layers
In this appendix we will explain how to use PML for free surface flow. We will start by
introducing the method in 1D and then extend this result to the 3D PDE of interest.
We will consider the Helmholtz equation in 1D

− ϕ̈−Kϕ = 0 in R (C.1)

The method was first proposed in [5] with the idea of replacing absorbing bound-
ary conditions with absorbing layers. The formulation was in the beginning derived
by computing solutions for incident waves and solving for the conditions where the
reflections vanish. However it was later found that PML formulations can be derived
in a more elegant and general way, by using a complex-coordinate stretch [8, 40].
This technique is what we shall consider here. The main idea is as follows:

The solution to (C.1) is a plane wave

h(x) = e−jKx.

This solution is analytic at can therefore be extended to C by analytic continuation
[10]. Now if we consider this solution along a trajectory that goes into the complex
plane γ(s) = s+ jf(s) then we get

h(γ(s)) = e−jKxeKf(s) (C.2)

which decays exponentially when f(s) < 0.
Now we choose a trajectory such that is on the real line within a domain of interest

[−l, l] and then bends into the complex plane on the intervals ]l, L] and [−L, l[. The
solution along this trajectory will be the same as the original solution within the
domain of interest [0, l], and the radiating waves will decay in the layers ]l, L] and
[−L, l[. Inspired by [3] we will here consider trajectories on the form

γ(s) =


s if − l < s < l,

s+ j C
ω

(
−s−l
L−l

)n

if − L < s < −l,

s− j C
ω

(
s−l
L−l

)n

if l < s < L,

(C.3)
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with parameters L, l, n, C ∈ R. An example of such a trajectory is shown in Figure C.1.
The function γ is called the stretching function.

- L -  l 0  l  L

-0.5

0

0.5

Figure C.1: The streching function γ for l = 2, L = 3, n = 2, C = 5 and for
ω =
√
K ·G with gravitational constant g = 9.82 and wavenumber K = 3.

We denote complex derivatives as ′ or ∂
∂z and let ˙ or ∂

∂x denote real derivatives in
the physical space.

We will now solve for the analytic extension along the trajectory γ, so we will
consider the equation

−ϕ′′ −Kϕ = 0 in γ([−L,L]) (C.4a)
ϕ′ = 0 on ∂γ([−L,L]) (C.4b)

where [−L,L] is the truncated domain. As the wave decays exponentially in the
PML region, it is tiny when it reaches the boundary of the PML region, so it is not
so important which boundary condition we use here [26]. In this work we shall use
homogenous Neumann conditions, ϕ′ = 0 at z = γ(−L) and z = γ(L). We can now
multiply with a test function ψ ∈ H1(γ([−L,L])) to get

−
∫

γ([−L,L])
ϕ′′ψ dz −K

∫
γ([−L,L])

ϕψ dz = 0 (C.5)

Note here that dz denotes complex integration.
If the functions γ and ϕ are holomorphic, i.e., complex valued functions that are

complex differentiable in every point, then we have that

∂

∂x
(ϕS ◦ γ) = dγ

dx
∂ϕS

∂z
◦ γ = γ̇

∂ϕS

∂z
◦ γ

so along γ we have that
∂

∂z
= 1
γ̇

∂

∂x
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and
dz = γ̇dx

We can use this to pull pack the equation (C.5) with γ. This gives

−
∫ L

−L

1
γ̇

d
dx

(
1
γ̇
ϕ′

)
ψγ̇ dx−K

∫ L

−L

ϕψγ̇ dx = 0. (C.6)

We can now use Greens identity to get

−
∫ L

−L

1
γ̇

dϕ
dx

1
γ̇

dψ
dx γ̇ dx = 0. (C.7)

If we parametrize the interval [−L,L] with splines, we can pull back (C.7) to the
parameter domain, and derive the system matrices with the same approach as demon-
strated in Section 1.2.

We will now consider how to use the method for the 3D problem

−∆̃ϕ = 0 in Ω∞, (C.8a)

Kϕ− ∂ϕ

∂z
= 0 on Γf , (C.8b)

∂ϕ

∂n
= 0 on ΓSymm, (C.8c)

∂ϕ

∂n
= 0 on Γs, (C.8d)

for ϕ : R3 → C. Here ∆̃ is the laplace operator in physical space and Γf is the free
surface z = 0.

We will let x1, x2, x3 denote the 3 components of x ∈ R3 as we will use z1, z2, z3
to denote the componenents of z ∈ C3.

The trajectory given in (C.3) is univariate, so to use the technique for our 3D
domain we will consider uniaxial stretching. That is for each direction i = 1, 2, 3
we will use a stretching function γi on the form (C.3) with parameters Li, li. Note
that in the z-direction of our problem the field already decays exponentially, so in
principle PML is not needed in this direction, as long as our domain is deep enough.
There exists techniques to speed up this decay via real stretching [26]. However as
this work is focused on the application of IGA and not PML we shall not investigate
this further, and we will apply the stretching function above in all directions.

If we let Jγ denote the Jacobian of the map (x1, x2, x3)T 7→ (γ1(x1), γ2(x2), γ3(x3))T ,
we can write the weak formulation as: Find ϕ ∈ H1(Ω) such that∫

Ω
⟨J−1

γ ∇̃ϕS , J
−1
γ ∇̃ψ⟩ detJγ dV +K

∫
Γf

ϕSψ detJγ dA = −
∫

Γs

∂ϕI

∂n
ψ dA (C.9)

for all test functions ψ ∈ H1(Ω). Where we have used that Γs is within the domain
of interest Ω0 where γi(s) = s for all i = 1, 2, 3. Note that it is sufficient for this to
hold for real test functions since (C.9) is linear in ψ.
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We will now pull back this weak formulation to the parameter domain yielding.∫
Ω
⟨J−1

γ J−T∇u, J−1
γ J−T∇v⟩ detJγ det J dV+

K

∫
Γf

uv detJγ

∥∥∥∥ ∂G∂ν1
× ∂G

∂ν2

∥∥∥∥ dA = −
∫

Γs

∂ϕI

∂n
◦G v dA (C.10)

where u = ϕS ◦G and v = ψ ◦G.
We will in this work use the parameters li = 3 and Li = 5 for i = 1, 2 and l3 = 1

and L3 = 1, C = 5 and n = 2.
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