
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 19, 2024

Computing Cellulase Kinetics with a Two-Domain Linear Interaction Energy Approach

Schaller, Kay ; Kari, Jeppe; Molina, Gustavo A.; Tidemand, Kasper D.; Borch, Kim; Peters, Günther H.J.;
Westh, Peter

Published in:
ACS Omega

Link to article, DOI:
10.1021/acsomega.0c05361

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Schaller, K., Kari, J., Molina, G. A., Tidemand, K. D., Borch, K., Peters, G. H. J., & Westh, P. (2021). Computing
Cellulase Kinetics with a Two-Domain Linear Interaction Energy Approach. ACS Omega, 6(2), 1547-1555.
https://doi.org/10.1021/acsomega.0c05361

https://doi.org/10.1021/acsomega.0c05361
https://orbit.dtu.dk/en/publications/eea07532-42f5-4f7f-9252-4b701a63c693
https://doi.org/10.1021/acsomega.0c05361


Computing Cellulase Kinetics with a Two-Domain Linear Interaction
Energy Approach
Kay S. Schaller,* Jeppe Kari, Gustavo A. Molina, Kasper D. Tidemand, Kim Borch, Günther H. J. Peters,
and Peter Westh*

Cite This: ACS Omega 2021, 6, 1547−1555 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: While heterogeneous enzyme reactions play an essential role in both nature and green industries, computational
predictions of their catalytic properties remain scarce. Recent experimental work demonstrated the applicability of the Sabatier
principle for heterogeneous biocatalysis. This provides a simple relationship between binding strength and the catalytic rate and
potentially opens a new way for inexpensive computational determination of kinetic parameters. However, broader implementation
of this approach will require fast and reliable prediction of binding free energies of complex two-phase systems, and computational
procedures for this are still elusive. Here, we propose a new framework for the assessment of the binding strengths of multidomain
proteins, in general, and interfacial enzymes, in particular, based on an extended linear interaction energy (LIE) method. This two-
domain LIE (2D-LIE) approach was successfully applied to predict binding and activation free energies of a diverse set of cellulases
and resulted in robust models with high accuracy. Overall, our method provides a fast computational screening tool for cellulases
that have not been experimentally characterized, and we posit that it may also be applicable to other heterogeneously acting
biocatalysts.

1. INTRODUCTION

Most enzymatic reactions, both in vivo1 and in industrial
applications,2 occur at an interface and hence represent
heterogeneous (bio)catalysis. One important industrial exam-
ple is so-called saccharification, where plant biomass is
enzymatically deconstructed into small sugars for subsequent
fermentation to biofuels and green alternatives to petrochem-
icals.3 Several other technical enzyme applications also entail
modification of an insoluble substrate by soluble enzymes.2,4

Nevertheless, general kinetic descriptions of heterogeneous
biocatalysis remain scarce and incomplete, and this restricts
both mechanistic understanding and rational design of
industrial enzymes.5 Recent work has suggested that the
efficacy of heterogeneous enzymes may be rationalized along
the lines of the Sabatier principle.6 This concept7 states that
efficient catalysis occurs at an intermediate strength of
substrate−catalyst interactions, and it is well established within
(nonbiochemical) heterogeneous catalysis.8 In this field, it
makes up a valuable framework for analysis of microkinetic
models and it provides guidance for the computer-assisted
design of inorganic catalysts.9 In the current work, we explore

related applications for heterogeneous biocatalysts using
cellulases as an example. Our starting point is the experimental
observation10 of a linear free-energy relationship (LFER)
between binding energy and the activation barrier for a wide
range of cellulases (see Figure 1). This scaling has the
important corollary that it links the two customary enzyme
kinetic parameters KM (which is related to substrate binding
strength,10,11 see eq 3) and kcat = Vmax/E0 (which is related to
the activation energy of the rate-limiting step at a steady state).
In practice, this means that if the linkage of KM and kcat can be
specified from a workable number of experiments, one could
obtain detailed insights into the function of uncharacterized
enzymes if just one of the kinetic parameters can be
determined in silico. Then, the other could subsequently be
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estimated from the LFER. The computed kinetic parameters
will pertain specifically to the conditions (temperature, pH,
type of substrate, etc.) of the empirical LFER. Nevertheless,
the approach could open up for in silico comparative
biochemistry and hence contribute to the elucidation of the
sequence−function relationship for heterogeneous enzyme
reactions. One application of such a tool would be to predict
and rationalize catalytic properties of isoenzymes from
different organisms. Another would be computer-aided enzyme
design, which strives to find variants with desired properties for
technical applications.
In silico determination of binding free energies is, in general,

much easier than computational assessment of activation free
energies as the former can be done within the framework of
molecular dynamics (MD)/molecular mechanics (MM) and
the latter needs, at least partly, expensive quantum mechanical
(QM) calculations. While QM/MM simulations became
common for mechanistic studies in enzymology, they still
remain computationally expensive.17−24 It follows that
implementation of the approach discussed above should rely
on computed binding free energies and subsequent estimate of
the activation energy based on an experimental LFER.
However, the computational description of complex formation
for an interfacial enzyme reaction is not trivial. In the case of
cellulases, there are still many open questions regarding their
interplay with the surface of the solid substrate.25 Computa-
tional methods have previously been used to probe these
interfacial interactions on a molecular level.26−41 This type of
work has provided important mechanistic insights, but the
setup of large enzyme−substrate systems with multiple
domains and phases remains cumbersome and their study
computationally expensive. While binding and QM/MM
calculation have been reported for single domain cellulases
on a shorter substrate,26,30,33,35,37,38 the same has not yet, to
the best of our knowledge, been feasible for multidomain
cellulases in complex with their native, insoluble substrate.
The exploitation of experimental LFERs in computational

analysis of enzymes will require robust methods to estimate
binding energies of multidomain, interfacial enzymes with low
computational cost. One established method is the so-called
linear interaction energy (LIE) approach.42−51 LIE approx-
imates the free energy of binding from the end states via linear-
response approximations. It utilizes the average electrostatic

and van der Waals (vdW) interaction energies from MD
simulations. A common form of the classical LIE equation is

α β γΔ = Δ⟨ ⟩ + Δ⟨ ⟩ +G U Upred
vdW Coul

(1)

where α is the scaling factor for the van der Waals interactions
(vdW), β is the scaling factor for the electrostatic interaction
(Coul), γ is an offset parameter, and ΔUi is the change in
internal energy for the energy term i compared to a
reference.49 LIE parameters are obtained empiricallyeither
from the literature or through fitting to experimental data.52

LIE has successfully predicted binding free energies of small
molecules to proteins,42,44,45,47−49 but we are unaware of
earlier applications to multidomain proteins and surface
binding.
Many cellulases have a modular structure (see Figure 2)

consisting of a catalytic domain (CD) and a noncatalytic

carbohydrate-binding module (CBM) connected by a flexible
linker.55−59 CBMs adsorbs to the cellulose surface and hence
promotes the proximity of the enzyme and the substrate. Once
adsorbed, the CD abstracts a single cellulose chain from the
cellulose crystal and binds it in an extended cleft before it
hydrolyzes a glycosidic bond. Depending on the type of
cellulase, the catalytic cleft has a different degree of openness60

and a varying number of glucopyranose subsites to
accommodate multiple monomers of the polymeric sub-
strate.25

In this study, we propose a two-domain LIE method (2D-
LIE), which accounts for substrate interactions of both CD and
CBM. This method may be used as a flexible and computa-
tionally inexpensive approach to assess cellulase binding
strength. We demonstrate that the combination of 2D-LIE
and an experimental LFER can be effective for in silico
prediction of enzyme kinetic parameters. We envision that the
approach can be more widely applicable both in attempts to
assess the kinetics of uncharacterized isoenzymes identified, for
example, through metagenomics and in computer-aided design
of enzyme variants with improved kinetic properties.

2. MATERIALS AND METHODS
2.1. 2D-LIE Model. The classical LIE equation (eq 1) was

expanded to include one electrostatic and one van der Waals
term per protein domain. In the case of cellulases with two
domains, this leads to a 2D-LIE model with

Figure 1. Simplified energy diagram of the processive cycle of
cellulases and the schematic representation of the LFER for different
cellulases acting on the same substrate.12 Desorption has been found
to be the rate-limiting step of the processive cycle.13−16 The
experimental LFER provides a simple correlation between the
strength of the enzyme−substrate interaction and the maximal
turnover. This, in turn, opens for fast computational assessment of
enzyme kinetics because the turnover can be predicted from the
LFER if accurate estimates of binding strength can be determined in
silico.

Figure 2. Illustration of cellobiohydrolase (CBH) I from glycoside
hydrolase (GH) family 7 from Trichoderma reesei (Tr), abbreviated as
TrCel7A, bound to a cellulose fibril53 (black). The enzyme consists of
a catalytic domain (CD, red, PDB 4C4C 29), a linker (orange), and a
carbohydrate-binding module (CBM, yellow, PDB 2MWK 54). The
ligand is a single cellulose strand, abstracted from the fibril surface and
threaded into the CD and is highlighted in gray.
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α β

α β γ

ΔΔ = Δ⟨ ⟩ + Δ⟨ ⟩

+ Δ⟨ ⟩ + Δ⟨ ⟩ +

G U U

U U

pred CD CD
vdW

CD CD
Coul

CBM CBM
vdW

CBM CBM
Coul

(2)

where αi (i = CD, CBM) is the van der Waals interaction
scaling parameter of the domain i, βi is the electrostatic
interaction scaling parameter, and Δ⟨Ui

j ⟩ is the change of the
average internal energy of term j (j = Coul, vdW) of the
domain i compared to the reference. In this work, a common
reference within the data set was used, resulting in ΔΔG values
relative to the reference (see the Supporting Information for
further detail). LIE is usually applied for the assessment of the
binding of a series of small molecules toward a common
receptor. For cellulases, the substrate (cellulose) remains the
same, while different enzymes are evaluated. The use of a
common ligand alleviates possible systematic errors in the
modeling of the still challenging carbohydrate−protein bind-
ing.61−63 Additionally, both simulationsCD in complex with
polymeric cellononaose and CBM bound to a cellulose
crystaldiffer from typical small-molecule binding studies.
Therefore, no empirical parameters from the literature could
be used for the 2D-LIE model. Instead, the LIE parameters
were obtained through fitting to experimental values. In the
development of the 2D-LIE model, we made several
assumptions. First, the 2D-LIE model does not include the
linker (see Figure 2). The role of the linker has been found to
be more complex than simple spacing between the CBM and
CD, and its function is still not fully understood.64−66

Therefore, the linker is disregarded for simplicity. Second,
the assumption is made that the unspecific binding of the CD
toward the crystal surface is negligible compared to the
productive binding of the threaded cellulose chain in the
binding tunnel. Third, we do not include any glycosylation in
our setup. Most of the glycosylation lies on the neglected linker
and the glycosylation sites on the CD are located away from
the binding tunnel.25

2.2. Data Set Preparation. For the development of the
method, we used the recent kinetic data set from Kari et al.10

for cellulases. As the method does not account for any linker
interaction, all variants with modifications in the linker from
this set were disregarded. GH family 12 was disregarded due to
the high outlier ratio in the experimental data set. This resulted
in a data set of 65 cellulases (see Table S1 in the Supporting
Information for a comprehensive list), which contained a
diverse range of cellulases with different folds, catalytic
mechanism (inverting/retaining), substrate preferences (re-
ducing/nonreducing end), mode of attack (exo/endo acting),
domain composition (with/without CBM), and organisms of
origin (see Figure 3). All enzymes were of fungal origin and
about half were wildtypes. The remainder were different types
of variants made with the overall purpose of adjusting the
substrate binding strength. The reported Michaelis constant
KM and maximal turnover number kcat = Vmax/E0 were
converted to the corresponding binding or activation free
energies using the standard approach10,11,67

κ
κ

ΔΔ =
i
k
jjjjj

y
{
zzzzzG RT ln

ref (3)

where κ is either KM or kcat. As a reference (κref), we used the
parameters KM,ref and kcat,ref from Cel6A of T. reesei. TrCel6A is
a well-characterized cellulase and its binding strength lies in the
middle of the investigated affinity range, making its

experimental measurement easier and propagated errors
smaller. It follows that all ΔΔG values reported below specify
the difference with respect to TrCel6A.

2.3. Structure Preparation. For all enzymes, UniProt68 or
GenBank69 entries were gathered and simulations for the CDs
were set up. All sequences were run through InterPro-
Scan (5.39−77.0)70,71 and searched against the Superfamily
database.72 If a CBM was found, an additional simulation was
set up for this domain. If available, a crystal structure (CS) was
taken from the Protein Data Base (PDB).73 For the majority of
enzymes, no crystal structure was available (47 out of 65 CDs,
25 out of 42 CBMs), and the partial sequences annotated to
contain the domains were used for homology modeling (HM)
with MODELLER (2.2.00).74−77 All CD systems were
simulated bound to a cellononaose ligand. CBM systems
were initialized unbound above the cellulose surface. Figure 4
provides a processing scheme, and further details concerning
the structure preparation can be found in the Supporting
Information.

2.4. General MD Settings. The CHARMM36 force field
was used to describe all systems.78−81 The topologies for the
nonaose ligand and the cellodecaose fibers of the crystal were
prepared with the CHARMM GUI.82 All simulations were run in
GROMACS (2018.6).83−89 Boxes with minimal edge distances
of 1.4 nm were constructed and solvated with TIP3P water
(see the Supporting Information for structure preparation).90

To neutralize the net charge of the system, random water
molecules were exchanged with ions. All minimization steps
were done in a steepest-descent over 10 000 iterations. A time
step of 2 fs was used. The long-range electrostatics were
treated with the particle-mesh Ewald method with a cubic
interpolation and a cutoff of 12 Å.91 Van der Waals interactions
were treated in a Verlet scheme with a cutoff distance of 12 Å
and a switching function for the forces starting at 10 Å.92

Hydrogen bonds were restrained using the LINCS algorithm.93

The solutes and the solvent were coupled to individual heat
baths with a Berendsen thermostat.94 Pressure coupling was

Figure 3. Illustration of representatives from all GH families studied
in this work. CDs bound to cellononaose are shown on the left, CBMs
bound to a cellulose crystal on the right (all from CBM family 125).
TrCel7A and TrCel6A are processive cellobiohydrolases (CBHs) with
a closed binding tunnel, while TrCel7B, HiCel45A, and TrCel5A are
endoglucanases (EGs) with a more open cleft.
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done with a Parrinello−Rahman barostat.95 Analysis of the
trajectories was performed with GROMACS. The trajectories
were visualized in PyMOL (2.3.3).96

2.5. Simulations of the CD Systems. Minimization was
conducted in three steps: First, keeping all solutes restrained.
Second, keeping only the protein restrained. Lastly, allowing
the complete system to move freely. Afterward, NVT
simulations with incremental temperature (100−300 K in 50
K steps) were performed in succession for 20 ps each with
restrains on the solute. Thereafter, NPT simulations with and
without restraints on the solute were performed for 100 ps in
series. The production was run in the NPT ensemble at 300 K
for 10 ns without any restrains applied and energies were
recorded every 10 ps. This simulation length was chosen, as
the increase of performance of the method levels out at this
time scale (see the Supporting Information).
2.6. Simulations of the CBM Systems. The CBM

systems were treated in a similar fashion than the CD systems
but with a few differences. During the second minimization,
only the crystal was restrained. During all simulations, restrains
were applied to the crystal. After the NPT equilibration with
restrains on the solute, a soft-docking step was inserted by
performing a steered MD (SMD) simulation. The pull rate was
set to −0.01 nm/ps along the direct connection of the center
of masses of the crystal and the CBM in all dimensions. The
SMD was performed over 200 ps. Afterward, the same
workflow as for the CD was resumed.
2.7. Analysis. The 2D-LIE fit and subsequent analysis were

performed with Python (3.7.3).97 The first 100 ps were
disregarded and the average energy terms over the rest of the
production simulation were extracted from the GROMACS
output files. For the CD, the electrostatic and van der Waals
interaction energy terms between the ligand and its
surroundings as well as the ligand with itself were extracted.
For the CBM simulation, the energy terms between the protein
and its surroundings were taken. The usage of different LIE
terms per domain has several advantages. It equalizes the
different energy terms taken per domain and allows individual
weighing of the binding contribution for each domain. The
sign for UCBM

vdW changes as compared to the corresponding CD
term, which is captured by the scaling parameter. The CD
simulations and CBM simulations were normalized by
subtracting the energy values obtained from the TrCel6A
CD simulation and TrCel6A CBM simulation, respectively.
The multidimensional fit was performed with SciPy
(1.5.2).98

3. RESULTS AND DISCUSSION
The energies obtained from the simulations were used to fit
2D-LIE models to the binding free energies derived from KM
and to the activation free energies derived from kcat according
to eq 3. For fitting, three different approaches were
employedfirst, a global fit to all investigated cellulases;
second, a 5-fold cross-validation (CV) over the data set; and
lastly, a fit toward a small representative subset of well-known
enzymes from model organisms.25 The subset consisted of
seven enzymes from the industrially relevant fungi T. reesei and
Humicola insolens (Hi), specifically TrCel6A (WT and a CBM-
less variant), TrCel7A (WT and a CBM-less variant), TrCel7B,
TrCel5A, and HiCel45A.25 The three types of approaches
(subset/CV/global) were applied using two different sets of
experimental values (KM and kcat). This resulted in six sets of
2D-LIE parameters (see Table 1). The parameters obtained by
the fittings were used to predict the binding of the remaining
cellulases.

3.1. Binding Energy Prediction. Binding strengths were
derived from the subset scaled with experimental values (eq 3)
with the Pearson’s correlation coefficient of r2 = 0.76 and a
root-mean-square error (RMSE) of 1.91 kJ/mol for the
binding energy (see Figure 5a). The 5-fold CV resulted in r2

= 0.78 and RMSE of 1.85 kJ/mol. A global fit over all 65
cellulases resulted in r2 = 0.78 and RMSE of 1.85 kJ/mol. For
all three cases, the RMSE was around the typical accuracy of
LIE models.52 The obtained 2D-LIE parameters and perform-
ance indicators can be found in Table 1 and the corresponding
binding energy results in Table S2 (Supporting Information).

3.2. Activation Energy Prediction. The prediction of
activation free energies derived from the subset resulted in r2 =
0.75 and RMSE of 1.58 kJ/mol (see Figure 5b). The 5-fold CV
resulted in r2 = 0.77 and RMSE of 1.45 kJ/mol. The model
derived from the global fit yielded r2 = 0.77 and RMSE of 1.43
kJ/mol. As shown previously, the RMSE is around the typical
accuracy of LIE models for all three cases.52 Overall, the
parameters and the results show the same trend as for the
prediction of the binding energy. The performances of the
models are comparable to the ones of the previous models for
the binding free energies, even though the underlying
experimental measure is more error prone.

3.3. Parameters and Performance. All three approaches
(subset/CV/global) yielded very similar fitting parameters and
performances for both target values (KM/kcat). Especially, the
low standard deviation of the parameters and performance
indicators for the CV indicate that the fit is very robust. The
performance of the subset fitting cases was quite similar to the
global/CV approach, indicating that it is possible to build a

Figure 4. Schematic illustration of the preparation process for a two-domain protein (here TrCel7A) for the 2D-LIE approach.
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rather robust 2D-LIE model from an experimental data set of a
manageable size.
The van der Waals scaling factors (αCD) seem reasonable as

similar values have been reported for other systems.49,99 For
the β electrostatic scaling factor, Hansson et al.42 observed that
hydroxyl groups lower the parameter. They found β = 0.43 for
apolar compounds, β = 0.37 for compounds bearing a single
hydroxyl group, and β = 0.33 for compounds bearing multiple
hydroxyl groups. Therefore, low βCD values for cellononaose
with a multitude of hydroxyl groups seem reasonable. The
CBM simulations (small proteins bound to a crystalline
surface) are a further stretch from the known application of
LIE for small-molecule drugs and cannot be readily compared
to literature values. The CBM scaling factors αCBM and βCBM
are smaller than the CD values, which is in line with the
experimental observation that CBM contributes less to the
binding free energy compared to the CD.12,15,100 The
magnitude of βCBM is smaller compared to αCBM, which is in
line with results in the literature38,101,102 and reflects that the
crystal face pointing toward the CBM is hydrophobic and,
therefore, the van der Waals terms of binding are more
important than the electrostatic interactions in contrast to the
CD.
3.4. Robustness and Transferability. To test the

workflow, domains with available crystal structures (CS)
were remodeled using the same approach and the obtained
values were compared to those obtained from simulations with
their crystal structures (see the Supporting Information). On
average, a mean-absolute error MAECS↔HM

bind,pred = 0.13 kJ/mol and
an MAECS↔HM

‡,pred = 0.08 kJ/mol was observed between the

prediction using the crystal structure and remodeling of the
same. These changes are well below the general precision of
the method and illustrate the robustness of the workflow as
well as the ease of modeling of these well-studied enzyme
families.
The built 2D-LIE models with their parameters and their

predictive capability should work for all enzymes for which the
underlying experimental LFER holds. As Kari et al.10 state, this
should be the case for all cellulases. Predictions for values at
different experimental conditions would require a new fitting
to experimental values at these conditions or even new
simulations (e.g., different temperature). While this is
admittedly a narrow use case, our intention within this work
is to present a broader, more general applicable approach to
computationally predict kinetic parameters of heterogeneous
enzymes as a whole, rather than the direct usage of the specific
obtained parameters. Still, the prediction of kinetic properties
of cellulases, in particular, is interesting for the industry.
Furthermore, Kari et al.10 claim a general occurrence of LFERs
for heterogeneous enzyme−substrate systems and, therefore, a
similar approach to in silico to predict their kinetics should be
applicable. Beyond the prediction of catalytic rates by
assessment of binding strength, the 2D-LIE approach itself
can potentially be used to model the binding of multidomain
proteins, which constitute 65% of all eukaryotic proteins.103

Naturally, the basic split approach of the method is more
sensible for proteins with loosely connected domains acting on
different parts of the substrate.

3.5. In Silico Prediction of Kinetic Parameters. To
illustrate the application of this model, the two major cellulases

Table 1. 2D-LIE Parameters (Equation 2), Root-Mean-Square Errors (RMSEs), and Pearson’s Correlation Coefficients (r2)
Obtained through Fits to the Complete Data Set (Global), 5-Fold Cross-Validation (CV), or a Small Representative Subseta

exp. fit αCD βCD αCBM βCBM γ RMSE [kJ/mol] r2

KM subset 0.286 ± 0.042 0.094 ± 0.063 0.054 ± 0.015 −0.008 ± 0.003 −0.119 ± 0.946 1.914 0.76
global 0.298 ± 0.031 0.131 ± 0.018 0.047 ± 0.011 −0.006 ± 0.002 −0.686 ± 0.339 1.827 0.78
CV 0.30(11) 0.131(11) 0.047(3) −0.006(4) −0.68(12) 1.85(11) 0.776(24)

kcat subset 0.226 ± 0.054 0.078 ± 0.082 0.034 ± 0.019 −0.006 ± 0.004 −0.016 ± 1.229 1.582 0.75
global 0.233 ± 0.024 0.105 ± 0.014 0.032 ± 0.009 −0.004 ± 0.002 −0.891 ± 0.266 1.433 0.77
CV 0.23(1) 0.11(1) 0.032(3) −0.004(8) −0.89(11) 1.45(1) 0.767(3)

aFor the global and subset cases, error estimation of the fitting parameters are provided. For the 5-fold cross-validation, the standard deviation is
reported. For the subset fitting and cross-validation, RMSEs and correlation coefficients were derived from nonfitted entries.

Figure 5. (a) Predicted binding free energies and (b) predicted free activation energies from the 2D-LIE models versus the experimental values. A
small representative subset was used to derive the fitting parameters.
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from GH family 7 of the industrial workhorse Aspergillus
niger 104 were investigated, as detailed in the Supporting
Information. The 2D-LIE parameters obtained from the global
fit were used to predict KM and kcat for both enzymes. Even
though they differ in modularity (±CBM), we found quite
similar values for the kinetic parameters (see Figure 6). No

experimental kinetic parameters are available for these enzymes
and we await such data for further assessment of the approach.
Prediction of parameters at experimental conditions different
from those used in the underlying experiments10 would require
new experiments to establish the relevant scaling relation.

4. CONCLUSIONS AND OUTLOOK
Heterogeneous enzyme reactions are widespread in the nature
and industry, but compared to bulk processes, they are
generally poorly understood on the molecular level. This
deficiency is linked to the complexity of interfacial reaction
mechanisms29,105 but also reflects a shortage of rigorous and
comparative kinetic data. This shortage results from limitations
of both assays technologies and kinetic theory, and there is
currently no generally accepted rate equation for enzyme
reactions at interfaces. As a result, structure−function relation-
ships remain poorly developed compared to bulk enzymology.
Here, we addressed this by proposing an in silico method for
the assessment of kinetic parameters of cellulases acting on
their insoluble substrate. The approach relies on the recent
experimental observation of an LFER10 for a wide group of
cellulases with different structures and mechanisms. When this
type of scaling indeed occurs, the computationally challenging
task of determining the activation free energies for different
enzymes can be replaced by more tractable assessments of
binding energy. Subsequently, calculated binding free energies
are readily linked to activation free energies through the LFER
(see Figure 1), and estimated values of KM and kcat can be
derived. However, the practical importance of this strategy
relies on the availability of robust and computationally cheap
methods to quantify binding strength in silico. Such (fast)
methods have the potential to cover reasonable sequence
spaces and hence assess the function of many wildtypes or
potential enzyme variants. Here, we investigated the potential
of an LIE-based approach in this regard. We found that LIE
principles could be expanded to compute binding strengths of
two-domain cellulases on the surface of their natural, insoluble
substrate (2D-LIE). The proposed method is computationally
relatively inexpensive,52 and in combination with homology
modeling and the experimental LFER, it allows rapid in silico
prediction of KM and kcat for cellulases belonging to different
structural and mechanistic classes. Computational convenience
was obtained through a number of simplifying assumptions
including negligible nonspecific adsorption to the solid surface
of both linker and CD. Extensive testing against a large data set

suggested that the 2D-LIE method was able to reproduce
experimental binding strengths, and this supported the validity
of the underlying assumptions. Henceforth, the method could
be used for exploratory screening of interfacial enzymes with
known substrate specificity and with unknown kinetic
parameters, provided an LFER can be established. We
demonstrated this aspect by computationally predicting the
kinetic parameters of the GH family 7 enzymes of the
industrially relevant fungus A. niger. The principle of using
LFER as a means to simplify computational methods for
catalyst design came from the field of inorganic heterogeneous
catalysis.9 While many differences between this field and
heterogeneous biocatalysis may be identified, we propose that
the common occurrence of LFER reflects general properties
and limitations of interfacial catalysis. This generality may call
for optimism regarding the implementation of principles from
heterogeneous catalysis within interfacial enzymology. More-
over, it may infer that linear scaling relations are common and
hence exist for other interfacial enzymes than cellulases. If
indeed so, the approach sketched out here could have broader
importance in virtual screening of isoenzymes acting on
insoluble substrates and as a tool for the design of efficient
industrial enzymes. This approach is particularly attractive, if a
rapid computational method for enzyme−substrate binding
free energies can be developed, as this would open up for
phenotypical assessments of larger sequence spaces and benefit
both engineering and discovery of interfacial enzymes. The
ability to assess biochemical parameters in silico also appears
timely in light of the rapidly expanding gap between the wealth
of protein sequence data on the one hand and limited records
of biochemical characterization on the other.
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(7) Sabatier, P. Hydrogeńations et deśhydrogeńations par catalyse.
Ber. Dtsch. Chem. Ges. 1911, 44, 1984−2001.
(8) Nørskov, J. K.; Studt, F.; Abild-Pedersen, F.; Bligaard, T.
Fundamental Concepts in Heterogeneous Catalysis. Angew. Chem.,
Int. Ed. 2015, 54, 10404−10405.
(9) Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H.
Towards the Computational Design of Solid Catalysts. Nat. Chem.
2009, 1, 37−46.
(10) Kari, J.; et al. Physical constrains and functional plasticity of
cellulases: Linear scaling relationships for a heterogeneous enzyme
reaction. bioRxiv 2020, No. 105569.
(11) Sousa, S. F.; Ramos, M. J.; Lim, C.; Fernandes, P. A.
Relationship between Enzyme/Substrate Properties and Enzyme
Efficiency in Hydrolases. ACS Catal. 2015, 5, 5877−5887.
(12) Sørensen, T. H.; Cruys-Bagger, N.; Borch, K.; Westh, P. Free
Energy Diagram for the Heterogeneous Enzymatic Hydrolysis of
Glycosidic Bonds in Cellulose. J. Biol. Chem. 2015, 290, 22203−
22211.
(13) Cruys-Bagger, N.; Tatsumi, H.; Ren, G. R.; Borch, K.; Westh, P.
Transient Kinetics and Rate-Limiting Steps for the Processive
Cellobiohydrolase Cel7A: Effects of Substrate Structure and
Carbohydrate Binding Domain. Biochemistry 2013, 52, 8938−8948.
(14) Cruys-Bagger, N.; Elmerdahl, J.; Praestgaard, E.; Tatsumi, H.;
Spodsberg, N.; Borch, K.; Westh, P. Pre-steady-state Kinetics for

Hydrolysis of Insoluble Cellulose by Cellobiohydrolase Cel7A. J. Biol.
Chem. 2012, 287, 18451−18458.
(15) Kari, J.; Olsen, J.; Borch, K.; Cruys-Bagger, N.; Jensen, K.;
Westh, P. Kinetics of Cellobiohydrolase (Cel7A) Variants with
Lowered Substrate Affinity. J. Biol. Chem. 2014, 289, 32459−32468.
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