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Distributionally Robust Generation Expansion
Planning With Unimodality and Risk Constraints

Farzaneh Pourahmadi, Member, IEEE and Jalal Kazempour, Senior Member, IEEE

Abstract—As more renewables are integrated into the power
system, capacity expansion planners need more advanced long-
term decision-making tools to properly model short-term stochas-
tic production uncertainty and to explore its effects on expan-
sion decisions. We develop a distributionally robust generation
expansion planning model, accounting for a family of potential
probability distributions of wind forecast error uncertainty.
Aiming to include more realistic distributions, we construct more
informed moment-based ambiguity sets by adding structural
information of unimodality. We include operational-stage unit
commitment constraints and model the risk of operational
limit violations in two distinct forms: chance and conditional
value-at-risk (CVaR) constraints. In both forms, the resulting
expansion planning model is a mixed-integer second-order cone
program. Using a thorough out-of-sample numerical analysis,
we conclude: (i) the distributionally robust chance-constrained
generation expansion planning model exhibits a better out-of-
sample performance only if sufficiently accurate information
about the first- and the second-order moments as well as the mode
location of potential distributions is available; (ii) conversely,
if such accurate information is unavailable, the distributionally
robust CVaR-constrained generation expansion planning model
outperforms; (iii) these two models have a similar performance
when unimodality information is excluded.

Index Terms—Distributionally robust optimization, chance
constraints, CVaR constraints, generation expansion planning,
unimodality information.

I. INTRODUCTION

The increasing penetration of renewable energy sources with
variable and uncertain production necessitates the improve-
ment of existing long-term decision-making tools, enabling
expansion planners to model short-term uncertainties more
accurately and to explore their effects on generation expansion
decisions [1]. One main challenge in long-term expansion
studies is the estimation of the probability distribution of
renewable power generation uncertainty. For decision-making
under uncertainty, different stochastic approaches have been
proposed, among which distributionally robust optimization
(DRO) is potentially more efficient in terms of out-of-sample
performance and computational tractability [2]–[4]. The ad-
vantages of DRO compared to scenario-based stochastic pro-
gramming and robust optimization are discussed in [5].

Distributionally robust generation expansion planning ac-
counts for a family of potential probability distributions of the
underlying short-term uncertainty, collected in the so-called
an ambiguity set. It then determines the optimal expansion
decisions by minimizing the total expected expansion and
operational cost of the system with respect to the worst-case
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distribution picked from the ambiguity set. To construct an
ambiguity set, two paradigms exist in the literature, namely
metric- and moment-based approaches. In the former, the
ambiguity set encompasses all distributions that are close to
an empirical distribution, measured by a probability distance
metric [6]–[9]. In the latter, the ambiguity set contains all
distributions satisfying identical moment constraints [2], [5].
Ambiguity sets based on moment information, e.g., mean
and covariance, provide superior tractability properties [8].
Therefore, the moment-based DRO approach has been used
more often in the existing literature of capacity expansion
planning [10]–[14].

Moment-based ambiguity set contains all distributions with
identical moments but with potentially various shapes and
different structures, which may cause overly conservative
solutions. In practice, in addition to moment information, we
may have access to further information about structural prop-
erties of potential distributions of renewable power generation
achieved from historical data. Adding more information makes
the ambiguity set contain more realistic distributions, resulting
in a satisfactory trade off between the capacity expansion
cost and the cost incurred by the lack of supply security in
long run. This paper explores how important is to incorporate
structural information of distributions describing the short-
term uncertainty into a DRO-based expansion planning model
in a computationally tractable way.

Another concern about DRO-based capacity expansion plan-
ning models is how to control the conservativeness level of
the solution. An appropriate decision-making tool is expected
to provide an expansion planner with different degrees of
freedom to manage risks of operational limit violations. This
expectation raises two research questions: (i) In addition to
shrinking the ambiguity set by adding extra information, how
can the expansion planner adjust the conservativeness level
of the expansion solution? (ii) Under which circumstances
does the expansion planner need to make more conservative
decisions in order to reduce the operational risk?

To address the aforementioned challenges, we develop a
centralized1 generation capacity expansion planning model
based on DRO. This model constructs one ambiguity set for
each operational time period throughout the planning horizon,

1By centralized, we refer to a model with a central expansion planner who
decides on the technology, capacity and location of all new generating units
to be installed throughout the underlying power system. The outcomes of
this centralized model are not necessarily identical to those in a market-based
model, wherein competing producers whose objective is to maximize their
individual profit make investment decisions to expand their own generation
portfolio. However, policy-makers and market regulators need such a cen-
tralized model in order to identify the optimal capacity expansion decisions
for the whole system, and thereby design proper investment incentives in
electricity markets. From this perspective, the centralized model can be used
as an ideal benchmark that provides a lower bound for the total expansion
and operational cost of the system in long run.
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while considering the fact that the most potential distributions
of wind power production have unimodality properties [15],
[16]. By doing so, we incorporate the additional information
of unimodality structure into moment-based ambiguity sets
used in the proposed generation expansion planning model.
It reduces the conservativeness of expansion decisions, and
subsequently leads to a reduced capacity expansion cost while
maintaining the system reliability in the desired level. The
proposed expansion model includes the operational-stage unit
commitment constraints, and models the risk of operational
limit violations in two distinct forms: chance and condi-
tional value-at-risk (CVaR) constraints. These operational-
stage probabilistic constraints contain random variables with
unknown probability distribution. A chance-constrained model
limits the violation probability of probabilistic constraints only.
On the contrary, a CVaR-constrained model restricts not only
the violation probability but also the violation magnitude,
which might be of interest for the expansion planner. As a
result, the conservativeness can be tuned based on (i) the type
of probabilistic constraints, and (ii) the amount of information
included in ambiguity sets. We use tractable reformulations
and some approximation techniques to recast the resulting
DRO problems as mixed-integer second-order cone (SOC)
programs. The performance of the proposed models is even-
tually explored using out-of-sample simulations.

To the best of our knowledge, there is no work in the
existing literature proposing a distributionally robust risk-
constrained generation expansion planning model given uni-
modality information. An extensive literature review about un-
certainty modeling in expansion planning problems including
DRO is available in [10] and [17]. The existing works on
expansion planning problems, e.g., [10]–[14] and [18], neglect
structured distributions in ambiguity sets. Additionally, the
violation magnitude risk of operational limits caused by short-
term uncertainties is not considered in the existing literature on
distributionally robust expansion planning models [10]–[14].

The main findings of our thorough out-of-sample simula-
tions are as follows: In the case the expansion planner does
not access to accurate information about the first two moments,
i.e., mean and covariance, and the mode location of probability
distributions describing wind power generation uncertainty, it
is more appealing to enforce operational-stage constraints in
the form of CVaR constraints. In other words, when informa-
tion drawn from training empirical dataset is different than
that of unseen test dataset, using CVaR constraints improves
the out-of-sample performance. In contrast, as the probability
distance between training and test datasets decreases, the
chance-constrained approach exhibits a comparatively stronger
performance in terms of out-of-sample cost. Moreover, our
numerical analysis highlights the importance of incorporating
structured distributions with unimodality feature into the pro-
posed generation capacity expansion model. Finally, we show
that when structural information of unimodality is neglected,
the chance- and CVaR-constrained approaches have similar
performance.

The remainder of this paper is structured as follows. Section
II provides some preliminaries about the proposed capacity
expansion planning model, explains the unimodality structure,

presents the structured ambiguity sets, and differentiates the
chance constraints from the CVaR constraints. Section III
presents the proposed distributionally robust generation expan-
sion planning model with unimodality and risk constraints.
Section IV describes the solution methodology. Section V
provides numerical results for a case study based on the
IEEE 118-node test system. Section VI concludes the paper.
Appendix A presents a nomenclature. Appendix B explains a
tight relaxation technique used. Finally, Appendix C provides
the final tractable model obtained by the implementation of
several approximations and reformulations.

II. MODELING FRAMEWORK

A. Preliminaries

We focus on the expansion of generation assets, and there-
fore it is assumed that the network topology throughout the
planning horizon is fixed. Similar to [10], the proposed model
follows a static capacity expansion planning model with a
single target year. See [19] for the comparison of static versus
multi-year dynamic capacity expansion model. We consider
both long- and short-term uncertainties. The long-term uncer-
tainty of load growth and wind capacity expansion is described
by a finite set of scenarios. For each long-term scenario, the
short-term uncertainty of wind power production is modeled
by an ambiguity set. We assume that wind power production
is the only source of short-term uncertainty. Moreover, we
incorporate unit commitment constraints into the operational
stage of the proposed model to represent flexibility require-
ments, wherein the commitment status of conventional units
is dependent on the long-term uncertainty, but independent
of the short-term uncertainty. We represent the power flow
across the network through a linearized lossless DC model.
The chronological variability of net load across the target
year is considered. In order to make the problem tractable, we
assign a number of representative days, each comprising 24
operating hours to represent the target year. Accordingly, for
each long-term scenario n, representative day d, and operating
hour t, we construct a separate ambiguity set denoted by Πndt.
For notational clarity, we drop indexes, and represent it by Π.

In this paper, R refers to the set of real numbers, whereas
R` represents the set of positive real numbers. We consider
Z number of wind power units, whose short-term production
forecast errors are collected in vector ξndt P RZ . Again, for
notational clarity, we drop indexes, and represent forecast error
vector by ξ.

B. Unimodality Structure

We explain unimodal distributions known as an important
class of distributions commonly encountered in practice. A
distribution admitting a density function is unimodal with
mode ν, if the density function is non-increasing along any
rays starting from ν. In the following, we introduce the
generalized definition of unimodality structure stated in [20]–
[23], that also covers the distributions without density function.
In this definition, distribution P on RZ is α-unimodal with
mode 0, if for any fixed α P R`, uαPpB{uq is non-decreasing
in u ą 0 for any Borel set B P BZ [20]–[23]. Note that
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B represents the Borel σ-algebra containing all Borel sets
on a topological space. From the definition above, it can be
concluded if P is a continuous α-unimodal distribution with
density function fpτ q and mode 0, for every fixed τ ‰ 0,
uZ´αfpτuq is non-increasing in u P p0,8q, meaning that
density function fpτuq does not grow faster than uα´Z on
p0,8q wherein α controls the rate of increase. As a result,
parameter α specifies the shape of the unimodal distribution.
In the case α is equal to the number of random variables,
i.e., α “ Z, then fpτuq or fpτ q is non-increasing on p0,8q
for all τ . In other words, the density fpτuq is non-increasing
along any rays starting from the mode located at the origin
[22], [23]. Relying on our observations from the historical
data of wind power production that we will use later in our
case study, we suppose that the fitted density function of wind
power production is non-increasing along any rays emanating
from the mode (e.g., see Fig. 2 in Section V). Accordingly,
considering the definition of α´unimodality, we set parameter
α equal to Z in this paper.

It is also stated in [16] and [23] that a random vector ξ is
α-unimodal if and only if there exists a random vector X P

RZ such that ξ “ U1{αX where U is uniform in (0,1) and
independent of ξ. Therefore, it can be deduced that as αÑ8,
the unimodality requirement disappears. Note that without loss
of generality, when the true mode value is ν, we can define
a new random vector, i.e., ξ minus ν with mode 0, and then
apply the definition, accordingly.

C. Structured Ambiguity Set with Unimodality Information

We describe the moment-based ambiguity set used in this
paper to model the uncertainty of wind power forecast error.
Considering the fact that empirical distributions of wind power
production and thereby distributions of their forecast error
often follow a unimodal structure, the moment-based ambi-
guity set including all probability distributions with identical
moments and unimodality requirement is written as

Π“tPPΩαpRZq :EPrξs“µ, EPrξξ
J
s“Σ,MoPrξs“νu, (1)

where Ωα denotes plausible α-unimodal distributions on RZ .
Vector µ P RZ and matrix Σ P RZˆZ represent the first-
and second-order moments, i.e., mean and covariance, of wind
forecast error ξ obtained from historical data. Further, p.qJ is
the transpose operator and EPr.s represents the expectation
operator under probability distribution P. Without loss of
generality, it is assumed that the mean of forecast error of
each wind power unit is zero, i.e., µ “ 0. Operator MoPr.s
determines the mode location of unimodal distribution under
probability distribution P. Parameter α determines the degree
of unimodality and ν P RZ specifies the mode location. We
assume that the values for moments and the mode location
estimated from historical data are exact. The last term in (1)
represents the structural information of unimodality, which
leads to excluding non-unimodal distributions from the am-
biguity set. We hypothesize adding this extra information to
the moment-based ambiguity set brings about a lower total
capacity expansion and operational cost. To show that, in the
following, we aim to build a model to stress the importance
of taking into consideration such structural information.

D. Chance Constraint Versus CVaR Constraint

In this paper, we use two risk measures for restricting the
violation of probabilistic constraints in the operational stage.
Let us consider a linear probabilistic constraint as

apyqJξ ď bpyq, (2)

where y is a decision vector and ξ is a random vector. Note
that (2) is an infinite-dimensional constraint. One way to
overcome such an infinite-dimensional nature while managing
constraint violation is to enforce (2) as a distributionally robust
chance constraint, i.e.,

min
PPΠ

PtapyqJξ ď bpyqu ě 1´ ε, (3)

where ε is a given non-negative parameter whose value is lying
between zero and one. The term 1´ ε denotes the confidence
level of satisfying constraint (3) for the worst-case distribution
P within ambiguity set Π. Constraint (3), however, does not
provide any guarantee on the severity of violations. This may
motivate expansion planners to employ another risk measure,
the so-called distributionally robust CVaR constraints, i.e.,

max
PPΠ

CVaRεPrapyq
Jξs ď bpyq, (4)

where the right tail of apyqJξ is examined for the worst-case
distribution P within ambiguity set Π. Note that the conditional
expectation of apyqJξ is measured by CVaRεPrapyq

Jξs, which
is defined as [23]–[26]

CVaRεPrapyq
Jξs “ min

θPR
tθ `

1

ε
EPrapyq

Jξ ´ θs`u. (5)

It is well-known that distributionally robust chance con-
straints can be approximated using distributionally robust
CVaR constraints in a conservative manner [8], [27]. The
rationale behind such a conservative approximation is that
distributionally robust CVaR constraints guarantee the satis-
faction of distributionally robust chance constraints. In [27], it
is proven that in the case the ambiguity set includes the exact
values for the first two moment information without any other
information, the approximation is exact, i.e.,

max
PPΠ

CVaRεPrapyq
Jξsďbpyq ô min

PPΠ
PtapyqJξďbpyquě1´ε.

(6)
The above equivalence means if the last term in (1) is

neglected, distributionally robust chance and CVaR constraints
can be enforced, interchangeably. Because of that, in [27] and
[28], distributionally robust CVaR constraints are used to re-
formulate distributionally robust chance constraints. However,
as we consider structural information in the ambiguity set,
the equivalence (6) does not necessarily hold. As a result, we
examine both types of risk measures to restrict violations of
operational-stage probabilistic constraints.

Note that in the rest of the paper, we consider lower-case
letters for variables, upper-case letters for parameters, bold
lower-case letters for variable vectors, and bold upper-case
letters for parameter matrices. All symbols are defined within
the text. In addition, a nomenclature is provided in Appendix
A.
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III. MODEL

The proposed distributionally robust generation expansion
planning model writes as

min
z,x,v

KJz

`
ÿ

n,d,t

ιnωd

ˆ

SJvndt `max
PPΠ

min
p

EPrC
Jpndtpξqs

˙

(7a)

subject to:

xindt ď zi, @i P IGC

, n, d, t (7b)
´ xindpt´1q ` xindt ´ xindr ď 0,

@r P tt, ..., U up
i ` t´ 1u,@i, n, d, t (7c)

xindpt´1q ´ xindt ` xindr ď 1,

@r P tt, ..., U dn
i ` t´ 1u,@i, n, d, t (7d)

´ xindpt´1q ` xindt ´ vindt ď 0, @i, n, d, t (7e)
z P t0, 1u (7f)
xndt,vndt P t0, 1u, @n, d, t. (7g)

1Jpndtpξq`1Jpwndt `ξq “ 1Jlndt, P´a.s. @n, d, t (7h)
Probabilistic constraints. (7i)

Objective function (7a) minimizes the total cost, including
the annualized expansion cost which is a deterministic cost, as
well as the expected annualized operational cost under long-
term uncertainty and the worst-case probability distribution of
short-term uncertainty. Parameter vector K P RGC

` gives the
annualized capital cost of candidate conventional generating
units i P IGC

“ t1, .., GCu to be built. Binary variable vector
z “ tz1, ..., zi, ..., zGCuJ indicates which candidate units are
selected to be built. As operational costs, parameter vectors
C P RG` and S P RG`, respectively, represent production and
start-up costs of all existing and candidate conventional units
i P IG “ t1, .., Gu. Note that IGC

Ă IG. The operational
cost of wind power units is assumed to be zero. Operational
variable vectors are pndtpξq P RG`, vndt P t0, 1u

G and xndt P
t0, 1uG. In details, continuous variable pindtpξq P pndtpξq
as well as binary variables vindt P vndt and xindt P xndt,
respectively, refer to the production level, start-up status and
on/off commitment status of conventional generating unit i
under long-term scenario n, representative day d and hour t.
For each representative day d, a weight is assigned by ωd P N,
representing the number of days in the target year grouped by
a clustering method, such that

ř

d ωd “ 365. Note that N is the
set of natural numbers. In addition, for each long-term scenario
n, a probability is given by ιn P R`, such that

ř

n ιn “ 1.
Fig. 1 shows the chronological sequence of decision-making

and uncertainty realization. Accordingly, capacity expansion
decisions z are made before the realization of long-term
uncertainty, and therefore these decisions are not indexed by
long-term scenario n, and are not a function of short-term
uncertainty ξ. In addition, these capacity expansion decisions
are made for the whole planning horizon, and therefore they
are not indexed by representative day d and hour t. The
operational commitment and start-up variables xndt and vndt
are indexed by long-term scenario n, because their optimal
values are determined after the realization of the long-term

Long-term 
uncertainty realized

Short-term 
uncertainty realized

z x,v p
Time

Fig. 1. Chronological sequence of decision-making and uncertainty realization

TABLE I
THE RELATION OF VARIABLES TO LONG- AND SHORT-TERM

UNCERTAINTIES

Variable Indexed by Function of short-
long-term scenario n term uncertainty ξ

Expansion (z) No No
Commitment (x) Yes No
Start-up (v) Yes No
Production (p) Yes Yes

uncertainty. In addition, xndt and vndt are indexed by d
and t, since they are operational-stage variables. However,
as we make these decisions before the short-term uncertainty
realization, they are not considered as a function of short-
term uncertainty ξ. By doing so, we implicitly assume that
conventional generating unit i cannot be started up or shut
down in the real-time operation when the short-term uncer-
tainty is realized. Finally, the production variable pndtpξq is
indexed by long-term scenario n, and considered as a function
of short-term uncertainty ξ. This implies that if conventional
generating unit i is on (i.e., xindt “ 1), its production level
can be modified after the realization of short-term uncertainty
in order to offset the supply-demand power imbalance of the
system. Table I summarizes the relation of variables to long-
and short-term uncertainties.

Constraint (7b) enforces that a candidate conventional gen-
erating unit can be committed only if it is selected to be built.
Constraints (7c) and (7d) limit the minimum up and down
time of unit i to U up

i and U dn
i , respectively. Constraint (7e)

determines the start-up status of unit i. Constraints (7f) and
(7g) impose the integrality conditions. The power balance is
enforced by (7h) under any realization of short-term uncer-
tainty with a probability of almost surely one. Note that 1 is
a vector of ones with an appropriate dimension. According to
(7h), the production of conventional units, i.e., pndtpξq, and
the production of wind farms, i.e., wndt ` ξ, supply inelastic
loads. Note that parameter vector wndt P RZ` represents the
mean of wind power production forecast, while ξ represents
the forecast error with respect to wndt. Furthermore, parameter
vector lndt P RL` gives the load level of inelastic demands.
Finally, (7i) includes the rest of operational-stage probabilistic
constraints which are dependent on ξ. Unlike power balance
conditions (7h) which is also ξ-dependent, we allow prob-
abilistic constraints (7i) to be violated to some extent in
order to control conservativeness. These constraints will be
presented in form of either distributionally robust chance or
CVaR constraints in the next two subsections.

A. Distributionally Robust Chance Constraints

As the first alternative, probabilistic constraints (7i) can be
written in form of distributionally robust chance constraints as
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min
PPΠ

Ptpindtpξq ď Pmax
i xindtu ě 1´ ε, @i, n, d, t (8a)

min
PPΠ

Ptpindtpξq ě Pmin
i xindtu ě 1´ ε, @i, n, d, t (8b)

min
PPΠ

Ptpindtpξq ´ pindpt´1qpξq ď Rup
i xindpt´1q

`Rst
i p1´ xindpt´1qqu ě 1´ ε, @i, n, d, t (8c)

min
PPΠ

Ptpindpt´1qpξq ´ pindtpξq ď Rdn
i xindt

`Rst
i p1´ xindtqu ě 1´ ε, @i, n, d, t (8d)

min
PPΠ

PtMG
j pndtpξq `MW

j pwndt`ξq

´MD
j lndt ď Fmax

j u ě 1´ ε, @j, n, d, t (8e)

min
PPΠ

PtMG
j pndtpξq `MW

j pwndt ` ξq

´MD
j lndt ě ´F

max
j u ě 1´ ε, @j, n, d, t. (8f)

Without loss of generality, we consider an identical ε for
all distributionally robust chance constraints (8). The upper
bound Pmax

i and lower bound Pmin
i for production level of

conventional unit i are enforced in (8a) and (8b), respectively.
In addition, the ramping constraints are enforced by (8c) and
(8d), wherein Rup

i and Rdn
i give the ramp-up and ramp-down

capabilities while Rst
i represents the start-up and shut-down

ramp rate capability. Finally, the power flow in transmission
line j P J is restricted by Fmax

j in (8e) and (8f), wherein
power transfer distribution factor matrices MG P RJˆG,
MW P RJˆZ and MD P RJˆL map the power of conventional
generating units, wind farms, and loads on the power flow of
line j, respectively. Note that subscript j in M

p.q
j picks a row

corresponding to line j from matrix Mp.q.

B. Distributionally Robust CVaR Constraints

As the second alternative, constraints (7i) are enforced in
form of distributionally robust CVaR constraints as

max
PPΠ

CVaRεPrpindtpξqs ď Pmax
i xindt, @i, n, d, t (9a)

max
PPΠ

CVaRεPr´pindtpξqs ď ´P
min
i xindt, @i, n, d, t (9b)

max
PPΠ

CVaRεPrpindtpξq ´ pindpt´1qpξqs ď Rup
i xindpt´1q

`Rst
i p1´ xindpt´1qq, @i, n, d, t (9c)

max
PPΠ

CVaRεPrpindpt´1qpξq ´ pindtpξqs ď Rdn
i xindt

`Rst
i p1´ xindtq, @i, n, d, t (9d)

max
PPΠ

CVaRεPrM
G
j pndtpξq `MW

j pwndt`ξq

´MD
j lndts ď Fmax

j , @j, n, d, t (9e)

max
PPΠ

CVaRεPr´MG
j pndtpξq ´MW

j pwndt ` ξq

`MD
j lndts ď Fmax

j , @j, n, d, t. (9f)

IV. SOLUTION STRATEGY

Both proposed models, i.e., distributionally robust chance-
and CVaR-constrained models, are computationally intractable
owing to the relatively high number of binary variables as well
as the infinite dimension of the problem. Similar to [10], we
reduce the number of binary variables by deploying a tight
relaxation of unit commitment constraints [29]. This technique

relaxes the integrality condition of operational constraints (7g)
in form of 0 ď xindt ď 1 and 0 ď vindt ď 1. Additional
constraints are added to the problem in order to tighten the
relaxation. These additional inequalities are considered in
the form of risk constraints which are given in Appendix
B. Note that the discrete nature of expansion decisions zi
imposed in (7f) is still preserved. In order to further reduce
the computational burden, we use a linear decision rule [30]
to approximate the recourse action of conventional generating
units. In this way, production pindtpξq of unit i under long-
term scenario n, representative day d and hour t is approx-
imated by pindt ` βindt1

Jξ, where variable pindt P R` is
the nominal (tentative) dispatch of unit i before the short-term
uncertainty realization. In addition, variable βindt P R, the
so-called participation factor, is the linear response of unit
i to short-term uncertainty. This variable takes a value lying
between -1 and 1, and gives the contribution of unit i to coping
with total renewable forecast error uncertainty of the system,
i.e., 1Jξ. In the following, we explain how to reformulate
different parts of the proposed models in the previous section,
leading to computationally tractable models.

A. Reformulation of Constraints (8)
For example, let us consider the distributionally robust

chance constraint (8a) enforcing the capacity constraint of unit
i. By applying the linear decision rule, it reformulates as

min
PPΠ

Ptβindt1JξďPmax
i xindt ´pindtu ě1´ε,@i, n, d, t.

(10a)
From now on, we drop indices n, d and t for notational
clarity from tpindt, xindt, βindt, ηindtu and present them in
form of tpi, xi, βi, ηiu. According to [15], constraint (10a) can
be exactly reformulated as
c

1´ ε´ η´αi
ε

}βi1
JΦ} ď ηipP

max
i xi ´ pi ´ βi1

Jνq

´ p
α` 1

α
qpβi1

Jqpµ´ νq, @i, ηi ě p
1

1´ ε
q1{α, (10b)

where Φ “ α`2
α pΣ ´ µµJq ´ 1

α2 pµ ´ νqpµ ´ νq
J. Note

that (10b) includes an infinite number of SOC constraints,
originating by the infinite number of ηi. This maintains the
intractability of the problem. To achieve tractability, [15] sug-
gests to consider a finite number of ηi, indicated by parameters
ηis, whose values are systematically selected as explained
in iterative Algorithm 1. By implementing it, a sequence of
monotonically increasing values for objective function (7a) is
obtained, which eventually converges to a fixed value. The
convergence rate of Algorithm 1 will be numerically explored
later in Section V. The proposed algorithm does not guarantee
optimality to the original problem.

B. Reformulation of Constraints (9)
Similar to the reformulation of distributionally robust

chance constraints (8), the reformulation of distributionally
robust CVaR constraints (9) results in a mixed-integer SOC
program. However, unlike Algorithm 1, the reformulation
procedure is not iterative. For example, we provide here
the reformulation of CVaR constraint (9a). The other CVaR
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Algorithm 1 Iterative procedure for selection of ηis
Step 1. Input: A small tolerance ϑ to control convergence.
Step 2. Initialization: Set iteration index k “ 1 and ηi0 “
p 1

1´ε q
1{α, @i.

Step 3. Optimization: Given values for ηis where s “
t0, ..., k´1u, replace original infinite-dimensional constraint
(10b) by
c

1´ ε´ η´αis
ε

}βi1
JΦ} ď ηispP

max
i xi ´ pi ´ βi1

Jνq

´ p
α` 1

α
qpβi1

Jqpµ´ νq, @i, s, (11)

which includes a finite number of SOC constraints. Replace
other distributionally robust chance constraints (8b)-(8f) in
the same manner. Solve the resulting mixed-integer SOC
program, and save the optimal solutions p˚, x˚ and β˚,
where superscript p.q˚ stands for the optimal value. Finally,
save f pkq indicating the optimal value of the objective
function (7a) in iteration k.
Step 4. Parameter η Selection: Given optimal values p˚,
x˚ and β˚ while treating ηi as a variable, find the worst
value for ηi, indicated as ηpkq

˚

i , causing the largest violation
of (11). Repeat this step for other SOC constraints related
to distributionally robust chance constraints (8b)-(8f).
Step 5. Termination: If fpkq´fpk´1q

fpk´1q ď ϑ, stop and report
the optimal generation expansion decisions with a level of
accuracy ϑ. Otherwise, set ηik Ð η

pkq˚

i , k Ð k ` 1, and
continue the algorithm in Step 3.

constraints are reformulated in the same manner. Using the
linear decision rule, (9a) can be rewritten as

max
PPΠ

CVaRεPrβi1
Jξs ď Pmax

i xi ´ pi, @i. (12a)

Considering the definition of CVaR operator in (5), the left
side of (12a) is equal to

max
PPΠ

CVaRεPrβi1
Jξs“min

θiPR
tθi`

1

ε
max
PPΠ

EPrβi1
Jξ´θis

`u,

(12b)
where θi P R is an auxiliary variable. Therefore, (12a) boils
down to

θi `
1

ε
max
PPΠ

EPrβi1
Jξ ´ θis

` ď Pmax
i xi ´ pi @i. (12c)

According to [23] and [26], computing max
PPΠ

EPrβi1
Jξ´θis

`

requires to calculate the worst-case expectation of a non-
linear function, which is computationally prohibitive to solve.
Hence, [23] and [26] propose to approximate this non-linear
function by two piece-wise linear supporting functions, each of
which consists of two linear pieces. By computing the worst-
case expectation of the approximated functions, (12c) can be
reformulated as∥∥∥∥θi ´ pα`1

α qβi1
Jµ

Φβi1

∥∥∥∥ ď r2εpα` 1q

α
spPmax

i xi ´ piq

´ r
2εpα` 1q

α
´ 1sθi ´ p

α` 1

α
qβi1

Jµ, @i (13a)∥∥∥∥θi ´ pα`1
α qβi1

Jµ
Φβi1

∥∥∥∥ ď r2εpα` 1q

α
spPmax

i xi ´ piq

´ r
p2ε´ 1qpα` 1q ´ 1

α
sθi ´ p

α` 1

α
qβi1

Jµ, @i (13b)∥∥∥∥pα`1
α qθi ´ p

α`1
α qβi1

Jµ
Φβi1

∥∥∥∥ ď r2εpα` 1q

α
spPmax

i xi ´ piq

´ r
p2ε´ 1qpα` 1q

α
sθi ´ p

α` 1

α
qβi1

Jµ, @i. (13c)

The extensive proof is provided in [23]. Note that the
exact reformulation of (12a) is intractable [22], [23]. Tighter
approximations are proposed in [23] by increasing the number
of pieces of the two linear supporting functions. However, the
implementation of such conservative approximations results in
semi-definite constraints, which may also make the problem
computationally intractable. Therefore, we do not use a tighter
approximation in this paper, and as a result, the proposed
reformulation does not guarantee optimality to the original
problem.

C. Reformulation of Power Balance and Objective Function

We first reformulate the power balance constraint (7h) in
a tractable way. Given the linear response of conventional
generating units to cope with the uncertainty of wind power
forecast error, we rewrite the power balance constraint (7h) as

1J
´

pndt ` p1Jξqβndt
¯

`1J pwndt ` ξq“1Jlndt, @n, d, t.

(14)
By separating the nominal ξ-independent terms from the

ξ-dependent terms, (14) decomposes to the following two
equations:

1Jpndt`1Jwndt “ 1Jlndt, @n, d, t (15a)

1Jβndt “ ´1, @n, d, t. (15b)

Note that the forecast error ξ has been cancelled out from
the two sides of (15b).

Next, we reformulate the objective function (7a). Again,
by applying the linear decision rule and reformulating the
probabilistic and power balance constraints, the objective
function and constraints no longer include the forecast error
ξ. Recall that we assume EPrξs “ µ “ 0. As a result, the
objective function (7a) boils down to a single-stage function
as

min
z,p,x,v,β,r.s

KJz`
ÿ

n,d,t

ιnωd
`

SJvndt `CJpndt
˘

, (16)

where the annualized total expansion and operational cost is
minimized with respect to variables z,p,x,v and β along
with auxiliary variables denoted by [.] resulting from the
reformulation of probabilistic constraints.

A fully reformulated version of the original model (7) as a
mixed-integer SOC program is available in Appendix C.

V. CASE STUDY

We implement the proposed distributionally robust chance-
and CVaR-constrained models on an adapted version of the
modified IEEE 118-node test system [31]. Data for technical
parameters of 19 existing and 22 candidate conventional
generating units, two existing wind farms, 99 demands and
186 transmission lines are provided in the online companion of
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Fig. 2. Frequency of wind power realizations of farm w1 in an arbitrarily
selected operating hour. Test dataset (red) and two training datasets 1 and 2
(blue and green) follow unimodal distributions, but with relatively different
places for the mode. The mode and mean of wind power production in the
test dataset (red) are 1,637 MW and 1,520 MW; in training dataset 1 (blue)
are 1,747 MW and 1,616 MW; and eventually in training dataset 2 (green) are
1,637 MW and 1,591 MW, respectively. Training dataset 2 (green) is more
similar to the test dataset (red).

the paper [32]. We consider four types of conventional units,
namely, nuclear, coal, combined cycle gas turbine (CCGT),
and gas turbines (GT1 and GT2), such that GT2 is more
flexible than GT1. Similar to [10], we model the long-term
uncertainty of demand growth with 2 long-term scenarios in
which the yearly penetration of wind power is 35%. The
capacity of wind farms and load level under each scenario
are given in [10]. In order to avoid congestion in the system,
we increase the capacity of transmission lines by a factor of
nine with respect to those in [31].

All simulations are implemented in Matlab using the
YALMIP toolbox with Gurobi solver 8.1.1, on a 16-GB RAM
personal computer clocking at 3.1 GHz. Relying on the value
set for the confidence level ε, the distributionally robust CVaR-
constrained problem is solved with the computational time of
around 4 to 5 hours, whereas the iterative procedure for solving
distributionally robust chance-constrained problem terminates
in 4 to 6 iterations with the computational time varying from
9 to 12 hours. The computational time grows with increasing
the value of confidence level in both distributionally robust
chance- and CVaR-constrained models. All source codes are
publicly available in the online companion of the paper [32].

A. Data for Wind Power

As in-sample data, two training datasets for wind power
production of each farm are taken into consideration such that
the distribution of one of them is more similar to that of the
test dataset used for out-of-sample analysis. For each training
dataset, 5,000 power trajectories are used to construct ambi-
guity sets, whereas another 5,000-trajectory data is considered
as a test dataset to evaluate the capacity expansion solution.
Note that each trajectory contains the wind power production
over 24 hours.

0 1000 2000
1000

2000

3000

Te
st

 D
at

as
et

w
1,

t

0 1000 2000
0

500

1000

1500

2000

0 1000 2000
1500

2000

2500

1000 2000 3000

1000

2000

Tr
ai

ni
ng

 D
at

as
et

 1
w

1,
t

1000 2000 3000
1000

2000

1000 2000 3000

1000

2000

1000 2000 3000

w2,t

1000

2000

3000

Tr
ai

ni
ng

 D
at

as
et

 2
w

1,
t

1000 2000 3000

w1,t-1

500

1500

2500

1000 2000 3000

w2,t-1

1500

2000

2500

0.3

0.28

0.26 0.77

0.81

0.22

0.23

0.230.83

Spatial and Temporal
Correlation

Spatial Correlation Temporal Correlation

Fig. 3. Illustration of the spatial and temporal correlation in the test dataset
(red) and two training datasets 1 and 2 (blue and green) for two wind farms
w1 and w2 and two arbitrarily selected subsequent hours t ´ 1 and t. The
numbers in black within the plots give the correlation coefficients.

For example, Fig. 2 presents the histogram of the production
of a wind farm, namely w1, at a specific operating hour
in a sample representative day pertaining to test and two
training datasets. In particular, this figure illustrates the fitted
probability distribution of each dataset, the place of mode, and
the difference between the distributions of the test and training
datasets. The Kullback–Leibler divergence of the test dataset
(red) from training datasets 1 (blue) and 2 (green) is 0.3663
and 0.3326, respectively. This indicates that training dataset 2
(green) exhibits more similarity to the test dataset (red). This
similarity can also be observed from the distributional char-
acteristics such as mode, mean, and covariance matrix. Fig. 2
illustrates that the training dataset 2 (green) is distributionally
closer to the test dataset (red) not only in terms of the mode
location, but also in terms of mean wind power production.

Another feature for comparison is the correlation coeffi-
cients used to calculate the covariance matrix. The scatter plots
in Fig. 3 show the spatial and temporal correlations between
two wind farms w1 and w2, and between two arbitrarily
selected subsequent hours t ´ 1 and t in the test dataset and
two training datasets 1 and 2. Note that the covariance matrix
that we use to build the ambiguity set includes both spatial
and temporal correlations. From this figure, it is evident that
the correlation coefficients of the test dataset (red) are more
similar to those of the training dataset 2 (green).

For each of these datasets, we use a K-means clustering ap-
proach to draw 10 representative days, representing the target
year. With respect to the samples of each cluster, we compute
the distributional information of the mode νndt, mean µndt
and covariance matrix Σndt to construct the corresponding
ambiguity set for each long-term scenario, representative day
and hour. Note that we consider different ambiguity sets for
different long-term scenarios, representative days and hours,
which do not necessarily include the same mean, mode and
covariance matrix.
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Fig. 4. Distributionally robust chance-constrained results obtained using training dataset 1 (left plots; less similar to the test dataset) and training dataset 2
(right plots; more similar to the test dataset): The upper plots show the new conventional generating units to be built and in-sample system cost. The lower
plots present the out-of-sample system cost in terms of mean and standard deviation. UI: unimodality information included. UE: unimodality information
excluded. Confidence level: 1´ ε.

B. Out-of-Sample Simulation
For the out-of-sample simulation, we first solve the tractable

reformulated version of the proposed generation expansion
planning model (provided in Appendix C), the so-called in-
sample model, given the underlying training dataset. We then
fix the expansion decisions to those obtained from the in-
sample model, and finally re-optimize the operational stage
according to the test dataset. For such a re-optimization, given
the optimal expansion decisions obtained from the in-sample
model, we solve the relaxed unit commitment problem for
each representative day separately and deterministically. The
out-of-sample problem is always feasible with no operational
constraint violation, since we consider wind spillage and invol-
untarily load shedding as two extreme recourse actions. The
former, i.e., wind spillage, occurs when there is wind power
excess but conventional generating units cannot decrease
their production. The latter, i.e., involuntarily load shedding,
happens in the case there is wind power shortage, however
conventional generating units cannot increase their production
to compensate the deficit. We assume a zero cost for wind
spillage since there is no production cost for wind farms,
but a comparatively high cost, i.e., $1,000/MWh, for load
shedding. The out-of-sample cost contains the total expansion
cost achieved from the in-sample model plus the total mean
operational cost obtained from the out-of-sample simulation.

C. Expansion Results With Chance Constraints: Effects of
Adding Unimodality Information

We focus on distributionally robust generation expansion
planning model with chance constraints. Recall that we use
Algorithm 1 in Section IV.A to solve this model. Two cases
are considered: Unimodality excluded (UE) and included (UI).
The mode of the distribution of wind production forecast error
is determined according to the underlying training dataset.

Fig. 4 comprises of four plots illustrating various results,
all as a function of confidence level 1 ´ ε. The left plots
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Fig. 5. Distributionally robust chance-constrained model: Evolution of the
in-sample system cost with solution strategies based on adding constraints in
a systematic way via Algorithm 1 presented in Section IV.A (blue curve) and
in a randomized way (red curve).

pertain to training dataset 1, whereas the right plots correspond
to training dataset 2, which is comparatively more similar to
the test dataset. The upper plots give the optimal units to be
built as well as the in-sample cost, i.e., the value obtained
for objective function (7a). The lower plots illustrate the out-
of-sample cost. The dash lines present the mean cost, while
the shaded area around it shows the mean cost plus/minus its
standard deviation.

According to the upper plots of Fig. 4 for both training
datasets, one can observe that adding unimodality information
(case UI) leads to a comparatively lower capacity to be built,
as well as a lower in-sample cost. In addition, the type of
units to be built in case UI is less flexible, and therefore,
less expensive than that in case UE. This implies that adding
unimodality information leads to less conservative expansion
solutions.

Concerning the out-of-sample results, adding unimodality
information is always appealing, provided that an accurate
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Fig. 6. Distributionally robust chance-constrained (CC) and CVaR-constrained (CVaRC) results obtained using training dataset 1 (left plots; less similar to the
test dataset) and training dataset 2 (right plots; more similar to the test dataset): The upper plots show the new conventional generating units to be built and
in-sample system cost. The lower plots present the out-of-sample system cost in terms of mean and standard deviation. Unimodality information are included.

training dataset is available – the cost in case UI with training
dataset 2 is always lower than that in case UE (see the right
lower plot of Fig. 4). However, this observation is less obvious
when the training dataset is not accurate enough; see the lower
left plot of Fig. 4 related to training dataset 1, where the out-
of-sample performance for case UI becomes better than that
of UE after the confidence level of 0.85.

Next, we numerically explore the performance of Algorithm
1 in selecting parameters η in a systematic way. To do so,
we consider two strategies to select a finite number of values
for parameters η. In the first strategy, parameters η take
those values that are determined in Step 4 of Algorithm 1.
However, in the second strategy, those values are randomly
selected. We set the confidence level to be equal to 0.85 and
use training dataset 2. The tolerance level in Algorithm 1 is
equal to 10´7. Fig. 5 illustrates the evolution of the in-sample
system cost, i.e., the value of objective function (7a), for two
strategies. For the random strategy, we report the best outcome
that we have obtained over 300 efforts, each with different
randomly selected values for η. Fig. 5 shows that Algorithm 1
converges to a fixed in-sample cost after 6 iterations, whereas
the best outcome of the random selection strategy converges
after 16 selections. This numerical observation concludes that
the convergence speed of Algorithm 1 is much higher than a
random selection strategy.

D. Expansion Results With CVaR Constraints and Unimodal-
ity Information: CVaR Constraints Versus Chance Constraints

We keep the unimodality information in the ambiguity sets,
and compare the performance of chance and CVaR constraints,
as illustrated in Fig. 6. This figure contains four plots with the
same structure as in Fig. 4.

As observed in the upper plots of Fig. 6 for both training
datasets, the CVaR-constrained model in comparison to the
chance-constrained one suggests investing in more new gen-
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Fig. 7. The annual amount of load shedding obtained from distributionally ro-
bust chance-constrained and CVaR-constrained models using training dataset
1 (left plot) and training dataset 2 (right plot).

eration capacity and more flexible units, resulting in a higher
in-sample system cost. As an interesting finding, we observe
that although the CVaR-constrained model leads to more
conservative expansion decisions with respect to the chance-
constrained one, it shows a comparatively better out-of-sample
performance in the case there is a higher discrepancy between
the training and test datasets; see the lower left plot of Fig.
6. The reason for this is that the CVaR-constrained model
limits not only the frequency but also the severity of load
shedding. Conversely, when the level of similarity between the
training and test datasets is high, the chance-constrained model
exhibits a comparatively better out-of-sample performance; see
the lower right plot of Fig. 6.

Next, we investigate the effect of information accuracy on
the out-of-sample performance of the proposed models. The
annual amount of load shedding (MW) in the out-of-sample
simulation is considered as a measure of reliability. Fig. 7
shows this amount as a function of confidence level for training
dataset 1 (left plot) and for training dataset 2 (right plot).

The first observation from Fig. 7 is that using training
dataset 2 (more similar to the test dataset) to build the
ambiguity sets leads to a much lower load shedding compared
to another case wherein training dataset 1 is used. With
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training dataset 2 (right plot), the curve for both chance- and
CVaR-constrained models is similar, and the amount of annual
load shedding varies from around 2,500 MW to near zero by
changing the value of confidence level from 0.7 to 0.9. Note
that the amount of annual load shedding with training dataset
1 (left plot) for the confidence level of 0.7 is around 2ˆ 105

MW or 1.3ˆ 105 MW, depending on which model is used.
The second observation from Fig. 7 is that the CVaR-

constrained model does not necessarily outperform the chance-
constrained model when the training dataset is accurate enough
(right plot). On the contrary, the CVaR-constrained model
outperforms the chance-constrained model when the central
planner is not confident about the accuracy of the training
dataset (left plot).

E. Relaxing Unimodality Requirement

Our next out-of-sample analysis explores the effects of re-
laxing unimodality requirement on the performance of chance-
and CVaR-constrained models. Recall that two wind farms are
considered, therefore, α “ 2 for cases with the unimodality in-
formation. In the following, we consider two cases wherein the
unimodality degree α is equal to 2 and 8, respectively. Note
that when parameter α goes towards infinity, i.e., αÑ8, the
unimodality requirement is relaxed. In such a case, constraint
(10b) boils down to
c

1´ε

ε
}βi1

JpΣ´µµJq
1
2}ďPmax

i xi´pi´βi1
Jµ,@i. (17)

In addition, (13) transforms to∥∥∥∥ θi ´ βi1
Jµ

pΣ´ µµJq
1
2 βi1

∥∥∥∥ ď 2εpPmax
i xi ´ piq

´ p2ε´ 1qθi ´ βi1
Jµ, @i. (18)

The out-of-sample system costs are given in Fig. 8 for the
case of α “ 2 (left plot) and the case of α Ñ 8 (right
plot). According to this figure, as α goes to infinity, the out-
of-sample performance of both models becomes similar. In
other words, the proposed distributionally robust chance- and
CVaR-constrained models are asymptotically equivalent if the
unimodality information is excluded from the ambiguity sets.

VI. CONCLUSION

This paper proposes a distributionally robust risk-aware
generation expansion planning model to manage the viola-
tion risk of operational limits arising from the uncertainties
pertaining to the wind power production. Since the empirical
observations illustrate the unimodality properties of potential
distributions of wind forecast error uncertainty, the inclusion
of distributions with non-unimodal structures in the ambiguity
set leads to unnecessarily conservative expansion decisions.
Aiming to build more realistic moment-based ambiguity sets,
this paper incorporates structural feature of unimodality, elim-
inating non-structured distributions from the ambiguity sets.
Two risk measures, namely chance and CVaR constraints,
are used to adjust the violation of operational limits with a
specific confidence level. Out-of-sample analyses are used to
highlight the importance of incorporating structural informa-
tion into the model. We numerically find out when training
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Fig. 8. The out-of-sample performance of distributionally robust chance-
constrained (CC) and CVaR-constrained (CVaRC) models for training dataset
1 when (a): α “ 2 and (b): αÑ8.

datasets achieved from historical observations cannot give a
clear insight into the distributional information of uncertainty,
the CVaR-constrained model provides a comparatively better
performance in terms of out-of-sample cost. Conversely, when
an accurate estimation of distributions is available, the chance-
constrained model outperforms the CVaR-constrained one.
These two models, however, give a similar performance when
unimodality features are excluded.

As potential future works, it is of interest to explore the
effects of having inexact information about moments and
unimodality features. From the application perspective, it is
of interest to extend the current model and conduct a capac-
ity expansion planning study with coordinated investment in
generation, storage and transmission assets.

APPENDIX A: NOMENCLATURE

A. Indices and Sets
d P t1, ...,Du Index for representative days.
i P t1, ..., Gu Index for conventional generating units.
j P t1, ...,J u Index for transmission lines.
n P t1, ...,N u Index for long-term scenarios.
t P t1, ..., 24u Index for operating hours.
IG Set of conventional generating units.
IG

C

Ă IG Set of candidate conventional generating units.
B. Uncertainty modeling
µ P RZ Mean vector of wind forecast error ξ.
ν P RZ Mode vector of wind forecast error ξ.
Σ P RZˆZ Covariance matrix of wind forecast error ξ.
Ωα Set of potential α-unimodal distributions.
P P Π Worst-case distribution of the short-term un-

certainty selected from the ambiguity set Π.
L Number of loads.
Z Number of random variables (wind farms).
C. Parameters
ιn P R` Probability of long-term scenario n.
C P RG` Vector of production cost of conventional gen-

erating units [$/MWh].
K P RGC

` Vector of annualized capital cost of candidate
conventional generating units [$].
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lndt P RL` Vector of load level under long-term scenario
n in representative day d at hour t [MW].

MD P RJˆL Matrix of power transfer distribution factor for
loads.

MG P RJˆG Matrix of power transfer distribution factor for
conventional generating units.

MW P RJˆZ Matrix of power transfer distribution factor for
wind farms.

S P RG` Vector of start-up cost of conventional gener-
ating units [$].

wndt P RZ` Mean vector of power production of wind
farms under long-term scenario n in represen-
tative day d at hour t [MW].

ωd P N Number of days in cluster of representative
day d [day].

Fmax
j P R` Capacity of transmission line j [MW].
Pmax
i P R` Capacity of conventional generating unit i

[MW].
Pmin
i P R` Lower bound for production level of conven-

tional generating unit i [MW].
Rst
i P R` Start-up and shut-down ramp rate capability of

conventional generating unit i [MW].
Udn
i P R` Minimum down time of conventional generat-

ing unit i [hour].
Uup
i P R` Minimum up time of conventional generating

unit i [hour].
E. Variables
βndt P RG Vector of participation factor of conventional

generating units under long-term scenario n in
representative day d at hour t [per-unit].

η, θ Auxiliary variables.
pndt P RG` Vector of nominal (tentative) dispatch of con-

ventional generating units under long-term
scenario n in representative day d at hour t
[MW].

vndt P t0, 1u
G Vector of start-up status of conventional gen-

erating units under long-term scenario n in
representative day d at hour t.

xndt P t0, 1u
G Vector of on/off commitment status of conven-

tional generating units under long-term sce-
nario n in representative day d at hour t.

z P t0, 1uG
C

Vector of binary variables indicating whether
the candidate conventional generating units are
selected to be built.

APPENDIX B: RELAXATION OF UNIT COMMITMENT
INTEGRALITY CONSTRAINTS

In order to tightly relax the operational-stage binary vari-
ables xindt and vindt to lie between zero and one, we use
the convex relaxation approach proposed in [29]. By relaxing
the binary variables and adding extra constraints, the feasi-
ble set of the unit commitment problem is substituted by
an approximation of its convex hull. Additional constraints
for tightening the relaxation are considered as probabilistic
constraints. As the first alternative, they can be written in the
form of distributionally robust chance constraints as

min
PPΠ

Ptpindpt´1qpξq ď Rst
i xindpt´1q

`pPmax
i ´Rst

i qpxindt ´ vindtqu ě 1´ ε,@i, n, d, t (19a)
min
PPΠ

Ptpindtpξq ď Pmax
i xisrt

´ pPmax
i ´Rst

i qvindtu ě 1´ ε, @i, n, d, t (19b)
min
PPΠ

Ptpindtpξq ´ pindpt´1qpξq ď

pPmin
i `Rup

i qxindt ´P
min
i xindpt´1q

´pPmin
i `Rup

i ´R
st
i qvindtuě1´ε, @i, n, d, t (19c)

min
PPΠ

Ptpisrpt´1qpξq ´ pindtpξq ďR
st
i xindpt´1q

´ pPmin
i `Rdn

i ´R
st
i qvindt

´pRst
i ´R

dn
i qxindtuě1´ε, @i, n, d, t. (19d)

As the second alternative, they can be added in the form of
distributionally robust CVaR constraints as

max
PPΠ

CVaRεPrpindpt´1qpξqs ď Rst
i xindpt´1q

` pPmax
i ´Rst

i qpxindt ´ vindtq, @i, n, d, t (20a)
max
PPΠ

CVaRεPrpindtpξqs ď Pmax
i xisrt

´ pPmax
i ´Rst

i qvindt, @i, n, d, t (20b)
max
PPΠ

CVaRεPrpindtpξq ´ pindpt´1qpξqs ď

pPmin
i `Rup

i qxindt ´P
min
i xindpt´1q

´pPmin
i `Rup

i ´R
st
i qvindtsě1´εi, @i, n, d, t (20c)

max
PPΠ

CVaRεPrpisrpt´1qpξq ´ pindtpξqs ď

Rst
i xindpt´1q ´ pP

min
i `Rdn

i ´R
st
i qvindt

´pRst
i ´R

dn
i qxindt, @i, n, d, t. (20d)

APPENDIX C: FINAL MODEL

The final tractable model for distributionally robust genera-
tion expansion planning problem (7) is a mixed-integer second
order cone program as given below:

Objective function: (16)
Subject to:

(7b)´ (7f), (15)
0 ď xindt ď 1; 0 ď vindt ď 1, @i, n, d, t

Reformulated probabilistic constraints.

As mentioned earlier, probabilistic constraints can be en-
forced in the form of either distributionally robust chance
constraints, i.e., (8) and (19), or in the form of distributionally
robust CVaR constraints, i.e., (9) and (20). In the following, we
present their resulting reformulations. Owing to the ramping
constraints of conventional generating units that enforce inter-
temporal coupling between hours t and t´1, we define a new
uncertainty parameter vector ξ̂ndt P R2Z for these constraints
as

ξ̂ndt “

„

ξndt
ξndpt´1q



. (21)

Parameters µ̂ndt P R2Z and Σ̂ndt P R2Zˆ2Z represent the
mean and covariance of ξ̂ndt, respectively. In addition, ν̂ndt P
R2Z refers to the mode location. Similar to the definition of
Φndt, matrix Φ̂ndt is defined as

Φ̂ndt “
α`2

α

´

Σ̂ndt ´ µ̂ndt µ̂
J
ndt

¯
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´
1

α2
pµ̂ndt ´ ν̂ndtq pµ̂ndt ´ ν̂ndtq

J
. (22)

For notational clarity, we drop indices n and d from tpindt,
xindt, βindt,pndt,xndt,βndt, lndt,wndtu and from all auxil-
iary variables. We also drop indices n, d and t from tµndt,
νndt, Σndt, Φndt, µ̂ndt, ν̂ndt, Σ̂ndt, Φ̂ndtu.

A. Reformulated Distributionally Robust Chance Constrains
According to the reformulation algorithm explained in Sec-

tion IV-A, the resulting constraints from the reformulation of
(8) and (19) are written as

c

1´ ε´ η´αits
ε

}βit1
JΦ} ď ηitsrP

max
i xit ´ pit ´ βit1

Jνs

´ p
α` 1

α
qpβit1

Jqpµ´ νq, @i, t, s (23a)
c

1´ ε´ γ´αits
ε

}βit1
JΦ} ď γitsrpit´P

min
i xit`βit1

Jνs

` p
α` 1

α
qpβit1

Jqpµ´ νq, @i, t, s (23b)
c

1´ ε´ δ´αits
ε

}β̂
J

itΦ̂} ď δitsrpipt´1q ´ pit`R
up
i xipt´1q

`Rst
i p1´xipt´1qq´β̂

J

itν̂s´p
α` 1

α
qβ̂
J

itp̂µ´νq,@i, t, s (23c)
c

1´ ε´ ζ´αits
ε

}β̂
J

itΦ̂} ď ζitsrpit ´ pipt´1q `R
dn
i xit

`Rst
i p1´ xitq`β̂

J

itν̂s`p
α` 1

α
qβ̂
J

itpµ̂´ ν̂q,@i, t, s (23d)
d

1´ ε´ ϕ´αjts
ε

}pMG
j βt1

J `MW
j qΦ} ď

ϕjtsrF
max
j `MD

j lt´MG
j pt´MW

j wt´pM
G
j βt1

J`MW
j q1

Jνs

´ p
α` 1

α
qpMG

j βt1
J `MW

j qpµ´ νq, @j, t, s (23e)
d

1´ ε´ σ´αjts
ε

}pMG
j βt1

J `MW
j qΦ} ď

σjtsrF
max
j ´MD

j lt`MG
j pt`MW

j wt `pM
G
j βt1

J`MW
j qνs

` p
α` 1

α
qpMG

j βt1
J `MW

j qpµ´ νq, @j, t, s (23f)
c

1´ ε´ λ´αits
ε

}βipt´1q1
JΦ} ď λitsrR

st
i xipt´1q

`pPmax
i ´Rst

i qpxit´vitq´pipt´1q´βipt´1q1
Jνs

´ p
α` 1

α
qpβipt´1q1

Jqpµ´ νq, @i, t, s (23g)
c

1´ ε´ π´αits
ε

}βit1
JΦ} ď πitsrpP

max
i ´Rst

i qvit

´ pit ´ βit1
Jνs ´ p

α` 1

α
qpβit1

Jqpµ´ νq,@i, t, s (23h)
c

1´ ε´ ρ´αits
ε

}β̂
J

itΦ̂} ď ρitsrpipt´1q ´ pit

` pPmin
i `Rup

i qxit´pP
min
i `Rup

i ´R
st
i qvit

´Pmin
i xipt´1q´β̂

J

itν̂s´p
α` 1

α
qβ̂
J

itp̂µ´ν̂q,@i, t, s (23i)
c

1´ ε´ ψ´αits
ε

}β̂
J

itΦ̂} ď ψitsrpit ´ pipt´1q `R
st
i xipt´1q

´ pPmin
i `Rdn

i ´R
st
i qvit´pR

st
i ´R

dn
i qxit

`Rst
i p1´ xitq`β̂

J

itν̂s`p
α` 1

α
qβ̂
J

itpµ̂´ ν̂q,@i, t, s, (23j)

where index s indicates iteration s and auxiliary variables
tηits, γits, δits, ζits, ϕjts, σjts, λits, πits, ρits, ψitsu are used to
reformulate constraints (8a)-(8f),(19a)-(20d), respectively. In
(23c)-(23d) and (23i)-(23j), variable vector β̂it is defined as
β̂it “ rβit1

J ´ βipt´1q1
JsJ.

B. Reformulated Distributionally Robust CVaR Constraints
In the case that probabilistic constraints are considered in

the form of distributionally robust CVaR constraints, i.e. (9)
and (20), they are approximately reformulated as∥∥∥∥θit ´ pα`1

α qβit1
Jµ

Φβit1

∥∥∥∥ ď r2εpα` 1q

α
spPmax

i xit ´ pitq

´ r
2εpα` 1q

α
´ 1sθit ´ p

α` 1

α
qβit1

Jµ, @i, t (24a)∥∥∥∥θit ´ pα`1
α qβit1

Jµ
Φβit1

∥∥∥∥ ď r2εpα` 1q

α
spPmax

i xit ´ pitq

´ r
p2ε´ 1qpα` 1q ´ 1

α
sθit ´ p

α` 1

α
qβit1

Jµ, @i, t

(24b)∥∥∥∥pα`1
α qθit ´ p

α`1
α qβit1

Jµ
Φβit1

∥∥∥∥ ď r2εpα` 1q

α
spPmax

i xit ´ pitq

´ r
p2ε´ 1qpα` 1q

α
sθit ´ p

α` 1

α
qβit1

Jµ, @i, t (24c)

∥∥∥∥γit ` pα`1
α qβit1

Jµ
Φβit1

∥∥∥∥ ď r2εpα` 1q

α
sppit ´ P

min
i xitq

´ r
2εpα` 1q

α
´ 1sγit ` p

α` 1

α
qβit1

Jµ, @i, t (25a)∥∥∥∥γit ` pα`1
α qβit1

Jµ
Φβit1

∥∥∥∥ ď r2εpα` 1q

α
sppit ´ P

min
i xitq

´ r
p2ε´ 1qpα` 1q ´ 1

α
sγit ` p

α` 1

α
qβit1

Jµ, @i, t

(25b)∥∥∥∥pα`1
α qγit ` p

α`1
α qβit1

Jµ
Φβit1

∥∥∥∥ ď r2εpα` 1q

α
sppit ´ P

min
i xitq

´ r
p2ε´ 1qpα` 1q

α
sγit ` p

α` 1

α
qβit1

Jµ, @i, t (25c)

∥∥∥∥∥δit ´ pα`1
α qβ̂

J

itµ̂

Φ̂β̂it

∥∥∥∥∥ ď r2εpα` 1q

α
sppipt´1q ´ pit

`Rup
i xipt´1q `R

st
i p1´ xipt´1qqq

´ r
2εpα` 1q

α
´ 1sδit ´ p

α` 1

α
qβ̂
J

itµ̂, @i, t (26a)∥∥∥∥∥δit ´ pα`1
α qβ̂

J

itµ̂

Φ̂β̂it

∥∥∥∥∥ ď r2εpα` 1q

α
sppipt´1q ´ pit

`Rup
i xipt´1q `R

st
i p1´ xipt´1qqq

´ r
p2ε´ 1qpα` 1q ´ 1

α
sδit ´ p

α` 1

α
qβ̂
J

itµ̂, @i, t (26b)∥∥∥∥∥pα`1
α qδit ´ p

α`1
α qβ̂

J

itµ̂

Φ̂β̂it

∥∥∥∥∥ ď r2εpα` 1q

α
sppipt´1q ´ pit
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`Rup
i xipt´1q `R

st
i p1´ xipt´1qqq

´ r
p2ε´ 1qpα` 1q

α
sδit ´ p

α` 1

α
qβ̂
J

itµ̂, @i, t (26c)

∥∥∥∥∥ζit ` pα`1
α qβ̂

J

itµ̂

´Φ̂β̂it

∥∥∥∥∥ ď r2εpα` 1q

α
sppit ´ pipt´1q

`Rdn
i xit `R

st
i p1´ xitqq

´ r
2εpα` 1q

α
´ 1sζit ` p

α` 1

α
qβ̂
J

itµ̂, @i, t (27a)∥∥∥∥∥ζit ` pα`1
α qβ̂

J

itµ̂

´Φ̂β̂it

∥∥∥∥∥ ď r2εpα` 1q

α
sppit ´ pipt´1q

`Rdn
i xit `R

st
i p1´ xitqq

´ r
p2ε´ 1qpα` 1q ´ 1

α
sζit ` p

α` 1

α
qβ̂
J

itµ̂, @i, t (27b)∥∥∥∥∥p ὰ 1
α qζit`p

α`1
α qβ̂

J

itµ̂

´Φ̂β̂it

∥∥∥∥∥ ď r2εpα`1q

α
sppit´pipt´1q

`Rdn
i xit `R

st
i p1´ xitqq

´ r
p2ε´ 1qpα` 1q

α
sζit ` p

α` 1

α
qβ̂
J

itµ̂, @i, t (27c)

∥∥∥∥ϕjt ´ pα`1
α qpMG

j βt1
J `MW

j qµ

ΦpMG
j βt1

J `MW
j q
J

∥∥∥∥ ď
r
2εpα` 1q

α
spFmax

j `MD
j lt´MG

j pt´MW
j wtq

´r
2εpα`1q

α
´ 1sϕjt´p

α`1

α
qpMG

j βt1
J`MW

j qµ,@j,t (28a)∥∥∥∥ϕjt ´ pα`1
α qpMG

j βt1
J `MW

j q
Jµ

ΦpMG
j βt1

J `MW
j q
J

∥∥∥∥ ď
´r
p2ε´1qpα`1q ´ 1

α
sϕjt´p

α`1

α
qpMG

j βt1
J`MW

j qµ

` r
2εpα` 1q

α
spFmax

j `MD
j lt´MG

j pt´MW
j wtq,@j,t (28b)∥∥∥∥pα`1

α qϕjt ´ p
α`1
α qpMG

j βt1
J `MW

j qµ

ΦpMG
j βt1

J `MW
j q
J

∥∥∥∥ ď
´ r
p2ε´ 1qpα` 1q

α
sϕjt ´ p

α` 1

α
qpMG

j βt1
J `MW

j qµ

r
2εpα` 1q

α
spFmax

j `MD
j lt´MG

j pt´MW
j wtq,@j, t (28c)

∥∥∥∥σjt ` pα`1
α qpMG

j βt1
J `MW

j qµ

´ΦpMG
j βt1

J `MW
j q
J

∥∥∥∥ ď
r
2εpα` 1q

α
spFmax

j ´MD
j lt`MG

j pt`MW
j wtq

´r
2εpα`1q

α
´ 1sσjt`p

α`1

α
qpMG

j βt1
J`MW

j qµ,@j,t (29a)∥∥∥∥σjt ` pα`1
α qpMG

j βt1
J `MW

j q
Jµ

´ΦpMG
j βt1

J `MW
j q
J

∥∥∥∥ ď
´r
p2ε´1qpα`1q ´ 1

α
sσjt`p

α`1

α
qpMG

j βt1
J`MW

j qµ

` r
2εpα` 1q

α
spFmax

j ´MD
j lt`MG

j pt`MW
j wtq,@j,t (29b)

∥∥∥∥pα`1
α qσjt ` p

α`1
α qpMG

j βt1
J `MW

j qµ

´ΦpMG
j βt1

J `MW
j q
J

∥∥∥∥ ď
´ r
p2ε´ 1qpα` 1q

α
sσjt ` p

α` 1

α
qpMG

j βt1
J `MW

j qµ

r
2εpα` 1q

α
spFmax

j ´MD
j lt`MG

j pt`MW
j wtq,@j, t (29c)

∥∥∥∥λit ´ pα`1
α qβipt´1q1

Jµ
Φβipt´1q1

∥∥∥∥ ď
r
2εpα`1q

α
srRst

i xipt´1q p̀P
max
i ´Rst

i qpxit´vitq´pipt´1qs

´ r
2εpα` 1q

α
´ 1sλit ´ p

α` 1

α
qβipt´1q1

Jµ,@i, t (30a)∥∥∥∥λit ´ pα`1
α qβipt´1q1

Jµ
Φβipt´1q1

∥∥∥∥ ď
r
2εpα`1q

α
srRst

i xipt´1q p̀P
max
i ´Rst

i qpxit´vitq´pipt´1qs

´r
p2ε´1qpα`1q´1

α
sλit´p

α`1

α
qβipt´1q1

Jµ,@i,t (30b)∥∥∥∥pα`1
α qλit ´ p

α`1
α qβipt´1q1

Jµ
Φβipt´1q1

∥∥∥∥ ď
r
2εpα`1q

α
srRst

i xipt´1q p̀P
max
i ´Rst

i qpxit´vitq´pipt´1qs

´ r
p2ε´1qpα`1q

α
sλit ´ p

α` 1

α
qβipt´1q1

Jµ,@i, t (30c)

∥∥∥∥πit´p ὰ 1
α qβit1

Jµ
Φβit1

∥∥∥∥ ď r2εpα`1q

α
srpPmax

i ´Rst
i qvit´pits

´ r
2εpα` 1q

α
´ 1sπit ´ p

α` 1

α
qβit1

Jµ,@i, t (31a)∥∥∥∥πit ´ pα`1
α qβit1

Jµ
Φβit1

∥∥∥∥ ď r2εpα`1q

α
srpPmax

i ´Rst
i qvit´pits

´r
p2ε´1qpα`1q´1

α
sπit´p

α`1

α
qβit1

Jµ,@i,t (31b)∥∥∥∥pὰ 1
α qπit´p

ὰ 1
α qβit1

Jµ
Φβit1

∥∥∥∥ďr2εpα`1q

α
srpPmax

i ´Rst
i qvit´pits

´ r
p2ε´1qpα`1q

α
sπit ´ p

α` 1

α
qβit1

Jµ,@i, t (31c)

∥∥∥∥∥ρit ´ pα`1
α qβ̂

J

itµ̂

Φ̂β̂it

∥∥∥∥∥ ď r2εpα` 1q

α
srpipt´1q ´ pit

`pPmin
i `Rup

i qxit´pP
min
i `Rup

i ´R
st
i qvit ´P

min
i xipt´1qs

´ r
2εpα` 1q

α
´ 1sρit ´ p

α` 1

α
qβ̂
J

itµ̂, @i, t (32a)∥∥∥∥∥ρit ´ pα`1
α qβ̂

J

itµ̂

Φ̂β̂it

∥∥∥∥∥ ď r2εpα` 1q

α
srpipt´1q ´ pit

`pPmin
i `Rup

i qxit´pP
min
i `Rup

i ´R
st
i qvit ´P

min
i xipt´1qs

´ r
p2ε´ 1qpα` 1q ´ 1

α
sρit ´ p

α` 1

α
qβ̂
J

itµ̂, @i, t (32b)∥∥∥∥∥pα`1
α qρit ´ p

α`1
α qβ̂

J

itµ̂

Φ̂β̂it

∥∥∥∥∥ ď r2εpα` 1q

α
srpipt´1q ´ pit

`pPmin
i `Rup

i qxit´pP
min
i `Rup

i ´R
st
i qvit ´P

min
i xipt´1qs
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´ r
p2ε´ 1qpα` 1q

α
sρit ´ p

α` 1

α
qβ̂
J

itµ̂, @i, t (32c)

∥∥∥∥∥ψit`p ὰ 1
α qβ̂

J

itµ̂

´Φ̂β̂it

∥∥∥∥∥ďr2εpα`1q

α
srpit`pipt´1q `R

st
i xipt´1q

´pPmin
i `Rdn

i ´R
st
i qvit´pR

st
i ´R

dn
i qxit `R

st
i p1´ xitqs

´ r
2εpα` 1q

α
´ 1sψit ` p

α` 1

α
qβ̂
J

itµ̂, @i, t (33a)∥∥∥∥∥ψit ` pα`1
α qβ̂

J

itµ̂

´Φ̂β̂it

∥∥∥∥∥ ď r2εpα` 1q

α
srpit`pipt´1q `R

st
i xipt´1q

´pPmin
i `Rdn

i ´R
st
i qvit´pR

st
i ´R

dn
i qxit `R

st
i p1´ xitqs

´ r
p2ε´ 1qpα` 1q ´ 1

α
sψit ` p

α` 1

α
qβ̂
J

itµ̂, @i, t (33b)∥∥∥∥∥p ὰ 1
α qψit`p

α`1
α qβ̂

J

itµ̂

´Φ̂β̂it

∥∥∥∥∥ ď r2εpα`1q

α
srpit`pipt´1q

`Rst
i xipt´1q ´pP

min
i `Rdn

i ´R
st
i qvit´pR

st
i ´R

dn
i qxit

`Rst
i p1´ xitqs´r

p2ε´1qpα`1q

α
sψit`p

α` 1

α
qβ̂
J

itµ̂,@i, t,

(33c)

where auxiliary variables tθit, γit, δit, ζit, ϕjt, σjt, λit, πit,
ρit, ψitu are used to reformulate constraints (9a)-(9f) and
(20a)-(20d), resulting in constraints (24)-(33), respectively.
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