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Abstract

We systematically design composite structures using multi-material topology optimization to achieve tun-

able elastic responses under finite deformations. We formulate an inverse problem where the errors between

the actual (numerical) and the prescribed force-displacement curves are minimized. The framework har-

nesses multiple hyperelastic materials with distinct constitutive relations, which enlarge the design space

of programmable structures compared to the single-material setting. A stress constraint for multi-material

structures is proposed to control the levels of stress and deformation in the optimized composite structures

with distinct stress limits. Through several numerical design scenarios, we design multi-material structures

that achieve a variety of programmed load-displacement curves, some of which are physically unattainable

with single materials. The optimized structures exhibit unconventional geometries and multi-material dis-

tributions and reveal distinct mechanisms, such as converting deformation modes from flexure-dominated

to stretch-dominated. Multiple designs achieving the same target response are identified, demonstrating

the effectiveness of the proposed methodology to explore various composite structures with programmable

responses.

Keywords: Programmable structures, force-displacement relations, topology optimization, multi-material,

finite deformation, stress constraint

1. Introduction

Novel material and structural systems with programmable properties are highly desirable in various

engineering applications. A vast amount of studies have devoted to realize those systems with various

unconventional properties, such as negative Poisson ratios [1, 2], prescribed stress-strain relations [3, 4],

enhanced energy trapping and absorption capabilities [5, 6], tunable material elastic properties [7, 8], and5

tunable deformation [9]. Among the various properties, this work focuses on designing structures with

programmable force-displacement responses, which has many important applications such as programming

the touch response of physical buttons [10], patterning cell alignments with soft materials [11], and designing

strong-action soft robots [12, 13].

As a powerful computational design methodology, topology optimization has demonstrated its great po-10

tential in designing novel materials and structures with unique behaviors. At the material level, topology
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optimization has been adopted in many studies to design novel microstructures with engineered properties,

such as negative Poisson’s ratio [1, 2], negative thermal expansion coefficient [14], tunable elastic modulus

[7, 8] and stress-strain relations [1, 2], photonic and phononic bandgap [15, 16], and improved piezoelec-

tric properties [17]. At the structure level, topology optimization has been adopted to program unconven-15

tional force-displacement responses, including programming the snap-through [18] and hardening/softening

responses of slender structures [19] and controlling the force-displacement path of compliant mechanisms [20].

Composite materials and structures possess many attractive properties that are unavailable in single-

material ones. Recent advances in both manufacturing and design make the realization of novel composites

with programmable behaviors possible. On the manufacturing side, advances in multi-material additive man-20

ufacturing (AM) technologies allow for the fabrication of composites with complex geometries and material

distributions [21]. From the design perspective, multi-material topology optimization has gained growing

interests and has been applied to, e.g., designing engineering structures [22] and composites with tunable

thermal expansions [23] and auxetic behaviors [24]. Comparing to single-material topology optimization, the

consideration of multiple candidate materials with distinct properties in the multi-material topology opti-25

mization greatly enlarges the design space and, thus offers more freedom and flexibility to achieve a wider

range of programmable behaviors.
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Figure 1: Illustration of the overall goal of this work. The goal is to optimize geometry, material types, and material
distributions to achieve the prescribed load-displacement curve. At a control point di, f

∗(di) and f(di) are the prescribed
force and actual force.

In this study, we systematically design composite structures through a multi-material topology optimiza-

tion methodology to achieve a wide range of programmed force-displacement relations under finite deforma-

tions. The overall goal of the proposed methodology, as illustrated in Figure 1, is to minimize the maximum30

norm of errors between the actual and prescribed load-displacement curves on a set of control points. Given

a problem setup with an initial design, the proposed approach not only optimizes the structural geometry

but also selects the types and amount of different materials, so that the actual force-displacement response of

the optimized design achieves the prescribed target response. Existing multi-material topology optimization

formulations in the literature, consider either multiple linear materials or nonlinear materials (described by35

the same stored energy function) with different Young’s moduli, which cannot effectively interpolate nonlinear

and deformation-dependent response of multiple soft materials and severely limits the range of programmable

responses. The proposed formulation accounts for two (can be directly generalized to any number) hyperelas-

tic materials characterized by distinct stored energy functions and nonlinear elastic behaviors (e.g., hardening

and softening) as well as a void phase. To address the excessive distortion and numerical instability of low-40

density (void) elements in topology optimization under large deformations [1, 25], the energy interpolation

approach based on a linear modeling of the void regions [1, 25] is adopted and shown to be effective in
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the design examples. Another challenge is to effectively prevent the potential appearance of thin members

and unrealistically large deformation concentration in the multi-material optimized structures. To address

this challenge, we propose a novel stress constraint formulation that simultaneously accounts for both the45

distinct nonlinear elastic behaviors and stress limits of different candidate materials. Through several design

scenarios, we discover unconventional composite structures with force-displacement responses and reveal the

underlying mechanisms under large deformations, including a linear one (achieved by mixing highly nonlinear

materials), and a mechanism-like one with an acute stiffening region. We also show that considering two

materials can realize certain force-displacement relations that are physically unattainable with either of the50

two.

The remainder of the paper is organized as follows. Section 2 briefly reviews the hyperelastic material

model used and the nonlinear finite element method (FEM). Section 3 presents the design parameterization

of composite structures and formulates the multi-material topology optimization framework. Section 3 also

introduces a stress constraint function that accounts for both distinct nonlinear elastic behaviors and stress55

limits of different candidate materials. In section 4, we present several numerical experiments considering

three design scenarios with different target load-displacement relations, and discuss the design, performance,

and implications of the obtained structures. Section 5 contains several concluding remarks. An appendix com-

plements the paper, which presents an alternative formulation and corresponding designs with programmed

responses.60

2. Hyperelastic constitutive models and nonlinear finite element approximation

This section reviews the hyperelastic material model and the nonlinear FEM for finite elasticity, which

forms the basis of this study. The behavior of an isotropic, inhomogeneous hyperelastic solid can be character-

ized by a stored energy function W (x, λ1, λ2, λ3), where x is the position vector in the reference configuration,

and λa, a = 1, 2, 3 are the principal stretches of the right Cauchy-Green deformation tensor C = F TF with

F = I + ∇U being the deformation gradient tensor and U being the displacement vector. We adopt the

second Piola-Kirchhoff (2nd PK) stress measure, which is expressed in spectral form as

S =

3∑
a=1

1

λa

∂W

∂λa
M (a) ⊗M (a), (1)

where M (a) is a unit vector pointing to the principal direction of C associated with λa.

Various hyperelastic material models are available with different expressions of W . This work adopts a

compressible Ogden model [26, 27] for its generality and flexibility in controlling the level of nonlinearity

and tension-compression asymmetry of the stress-strain relations. The stored energy function of the adopted

Ogden model is

W (λ1, λ2, λ3) =

M∑
a=1

[
µa
αa

(λαa1 + λαa2 + λαa3 − 3)

]
+

M∑
a=1

µa
αaβa

(J−αaβa − 1), (2)

where µa, αa, and βa are material parameters, M is the number of terms, and J
.
= detF . The initial shear

modulus G and bulk modulus κ are given as G = 1
2

∑M
a=1 µaαa and κ =

∑M
a=1 µaαa

(
1
3 + βa

)
.

In this work, we focus on two-dimensional structures and assume a plane stress condition with M = 1

and drop the subscript a in subsequent expressions for conciseness. According to the following states of C
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and S in this condition (expressed in indicial notation): 1) Ci3 = C3i = 0, i = 1, 2, and C33 6= 0 [28]; and 2)

S33 = 1
λ3

∂W
∂λ3

= 0; we obtain the expression of λ3 in terms of λ1 and λ2 as

λ3 (λ1, λ2) = (λ1λ2)
−β/(β+1)

. (3)

Substituting (3) into (2) gives the stored energy function of the Ogden model under the plane stress condition,65

Ŵ (λ1, λ2) = W (λ1, λ2, λ3(λ1, λ2)), based on which the stress-stretch relation can be obtained. We note that

the plane stress condition allows for modeling near-incompressible behaviors (as in most elastomers) using

standard FEM without locking.

We adopt the standard displacement-based formulation with a total Lagrangian approach [28]. Given a

mesh of the domain discretized by the bi-linear quadrilateral finite elements, the total potential energy of the

discrete system is given by:

Π (u) =
∑
e

∫
Ωe

W (ue) dx−
(
fext

)T
u, (4)

where u is the displacement vector, fext is the external force vector. Equilibrium is given by the stationary

condition of the total potential energy

r(u) =
∂Π

∂u
(u) = f int (u)− fext = 0, (5)

where r(u) is the residual vector, and f int(u) is the internal nodal force vector. Detailed expressions and

implementation procedures can be found in [28]. The nonlinear equation (5) is solved using the Newton’s70

method with inexact line search [29, 30]. In this study, all numerical examples consider displacement loading.

3. Multi-material topology optimization formulation

This section introduces the multi-material design parameterization and optimization formulation to design

composite structures with programmable nonlinear elastic responses. The density-based topology optimiza-

tion approach [31] is adopted.75

3.1. Design parameterizations of composite structures

The overall design parameterization consists of two major components: 1) representing multi-material

structures with several design and physical variables and 2) interpolating the stored energy function, stress

tensor, and stress limits of the multi-material structures. This subsection describes these components in

detail.80

3.1.1. Representing multi-material structures

Design optimization of a composite consisting of two material phases (Material 1 and Material 2) requires

the parameterizations of both topology and material phase distributions [32, 33]. The topology parameteri-

zation characterizes the spatial occupancy of material, i.e., whether a location in space is solid or void, and

is associated with the density design variables, denoted by ρ, with ρe for element e. The material param-

eterization describes the material types at each location in the design and is associated with the material

design variables, denoted by ξ, with ξe for element e. To regularize the design space and enhance the design

discreteness, we employ the Heaviside projection [34] to both sets of design variables to obtain the physical
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density and material variables, which are used to represent composite structures. The physical variables are

computed by

ρ̄e =
tanh(βρηρ) + tanh (βρ (ρ̃e − ηρ))
tanh(βρηρ) + tanh(βρ(1− ηρ))

and ξ̄e =
tanh(βξηξ) + tanh(βξ(ξ̃e − ηξ))
tanh(βξηξ) + tanh(βξ(1− ηξ))

, (6)

where βρ and βξ are parameters controlling the discreteness of the projection, ηρ and ηξ are projection

thresholds, and ρ̃e and ξ̃e are filtered variables defined as

ρ̃e =

∑
j∈Ne(Rρ) w (xj) vjρj∑
j∈Ne(Rρ) w (xj) vj

and ξ̃e =

∑
j∈Ne(Rξ) w (xj) vjξj∑
j∈Nee(Rξ) w (xj) vj

, (7)

where xj is the location of the centroid of element j, vj is the corresponding element volume, Ne is the

neighborhood of element e defined by a filter radius R, i.e. Ne(R) = {j : ‖xj − xe‖ ≤ R}, w (xj) is the linear

weight function defined as w (xj) = R−‖xj − xe‖, and Rρ and Rξ are filter radii for ρe and ξe, respectively.

By construction, the physical density variable ρ̄e parametrizes the topology of the design with ρ̄e = 1 and85

ρ̄e = 0 representing solid and void, respectively. The physical material variable ξ̄e characterizes the material

types with ξ̄e = 1 and ξ̄e = 0 indicating Material 1 and Material 2 for elements with ρ̄e = 1, respectively.

A schematic illustration of such design parameterization is provided in Figure 2. The optimization design

variables are ρ and ξ, and the variables representing the physical structure are ρ̄ and ξ̄. The procedures

of smoothing and projection, which map design variables to physical variables, are standard regularization90

techniques (i.e., three-field scheme) in topology optimization required to achieve a mesh-independent and

near-discrete final designs. For more details about these techniques, see [31, 34]. We remark that, although

we restrict our attention to composites with two material constituents in the above discussion, the concept

is directly extendable to more than two material constituents.

Projection,     ,

Smoothing, Projection,     ,

= 1
= 1

= 0

= 1
= 0

Material 2
Material 1

Smoothing,

Design variables
for optimization

Intermediate procedures
for design regularization

Final representation
of physical structures

Figure 2: Design representation of a two-material structure using filtered and physical density and material variables.
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We aim at obtaining near-discrete final designs with spatially exclusive solid materials with minimal95

mixing of phases and physically well-defined properties when ρ̄e and ξ̄e are close to 0 or 1. In Appendix D,

we verify the discreteness of all the optimized designs in this study and show that both the grayness and the

mixing of solid materials are below < 1%.

3.1.2. Interpolations of the stored energy functions, stress tensors, and stress limits

The key to characterize the mechanical behavior of multi-material structures lies in the interpolation of

the stored energy function through the two physical variables ρ̄e and ξ̄e. The stored energy function of a

two-material structure at a point in element e is interpolated as [33, 35]:

We

(
ρ̄e, ξ̄e, γe,ue

)
= [εp + (1− εp) ρ̄pρe ]

[
ξ̄e
pξW (1)

e (γe,ue) +
(
1− ξ̄e

)pξW (2)
e (γe,ue)

]
, (8)

where pρ and pξ are the SIMP [31, 36] penalization parameters, εp = 10−6 is a small number to avoid singular

state equation. To prevent severe element distortion and numerical instability in low-density regions, the

interpolation approach proposed in [25] is employed to interpolate the stored energy function W
(j)
e of material

phase j as

W (j)
e (γe,ue) = Ŵ (j) (γeue)−W (j)

L (γeue) +W
(j)
L (ue) , (9)

where Ŵ (j) (·) is the hyperelastic stored energy function of Material j (introduced in Section 2), and W
(j)
L

is a linear elastic stored energy function of the form W
(j)
L (ue) = 1

2ε (ue) : C(j) : ε (ue) with C(j) being the

(plane stress) linear elasticity tensor of material j under small deformation theory, and ε (ue) being the linear

strain tensor. The interpolation factor γe is defined as

γe (ρ̄e) =
tanh(βγρ0) + tanh

(
βγ
(
ρ̄
pρ
e − ρ0

))
tanh(βγρ0) + tanh(βγ(1− ρ0))

, (10)

where ρ0 is the projection threshold and is set to 0.01, and βγ is set to 500. According to the above expression,100

γe ≈ 1 when ρ̄e > ρ0 and the corresponding element is modeled as hyperelastic materials with stored energy

function Ŵ (j). On the other hand, γe ≈ 0 when ρ̄e < ρ0 and the corresponding element is modeled as linear

elastic materials with stored energy function W
(j)
L . We emphasize that in the final near-discrete optimized

designs, the parameter γe is 1 in solid regions and 0 in void regions as a result of the Heaviside projection (10)

with βγ = 500. Therefore, the behavior of the final design is governed by the objective and physically well-105

defined nonlinear stored-energy functions Ŵ (j), and the linear stored-energy function Ŵ
(j)
L has a negligible

impact on the final design as it is associated with void regions only. The energy interpolation scheme (9)

that effectively alleviates numerical instabilities induced by low stiffness elements has been verified to have

negligible influence on the performance of final optimized single-material designs in [25]. We further provide

a numerical verification on a two-material design in Appendix B.110

The interpolated stored energy function (8) (together with (9) and (10)) captures the mechanical behavior

of the composite structure and is consistent with the schematic illustration in Figure 2. It can be seen that: 1)

an element with ρ̄e = 1 and ξ̄e = 1 corresponds to Material 1, i.e. We (1, 1, 1,ue) = Ŵ (1) (ue); 2) an element

with ρ̄e = 1 and ξ̄e = 0 corresponds to Material 2, i.e. We (1, 0, 1,ue) = Ŵ (2) (ue); and 3) an element with

ρ̄e = 0 corresponds to void (with ersatz stiffness to avoid singular state equation), i.e., We

(
0, ξ̄e, 0,ue

)
≈ ερ.115

To prevent the appearance of thin members and unrealistically large deformation concentration in the

optimized designs, we propose a novel stress constraint for two-material structures that accounts for both

distinct nonlinear behaviors and strength requirements of different materials through interpolation. The
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interpolated Cauchy stress tensor of the multi-material structure for element e derived based on (8)–(9) is:

σ
(
ρ̄e, ξ̄e, γe,ue

)
= [εp + (1− εp) ρ̄pρe ]

[
ξ̄
pξ
e σ

(1) (γe,ue) +
(
1− ξ̄e

)pξ σ(2) (γe,ue)
]
, (11)

where σ(j) (γe,ue) is the Cauchy stress tensor associated with Material j given by:

σ(j) (γe,ue) = σ
(j)
NL (γeue) + (1− γe)σ(j)

L (ue) , (12)

with σ
(j)
NL and σ

(j)
L being the nonlinear and linear parts of the Cauchy stress based on the interpolation

scheme (9) given by:

σ
(j)
NL (γeue) =

1

J (γeue)
F (γeue)S

(j) (γeue)F
T (γeue) and σ

(j)
L (ue) = C(j) : ε (ue) . (13)

In the above expressions, S(j) is the 2nd PK stress associated with Material j, which is calculated from Ŵ (j).120

We note that the interpolated Cauchy stress tensor in Eq. (11) recovers the Cauchy stress of Material 1

when ρ̄e = 1 and ξ̄e = 1, i.e. σ (1, 1, 1,ue) = σ
(1)
NL (ue); and reduces to the Cauchy stress of Material 2 when

ρ̄e = 1 and ξ̄e = 0, i.e. σ (1, 0, 1,ue) = σ
(2)
NL (ue). In addition, the interpolated Cauchy stress tensor in Eq.

(11) gives σ
(
0, ξ̄e, 0,ue

)
= 0 (neglecting ερ) in the void region with ρ̄e = 0.

In the proposed stress constraint, we adopt the von Mises stress as the measure to control the level of

deformation as it is closely related to distortional deformation. In Appendix C, we demonstrate the proposed

stress constraint with von Mises stress to be effective in eliminating excessive deformations and thin members.

We note that the von Mises stress is used as an effective design tool to control the deformation level rather

than the indicator of materials’ physical failure, and other stress-based failure criteria for soft materials can

also be employed in the proposed stress constraint. The interpolated von Mises stress limit for the two

materials is defined as:

σ̄
(
ρ̄e, ξ̄e

)
= [εq + (1− εq) ρ̄qρe ]

[
ξ̄
qξ
e σ̄

(1) +
(
1− ξ̄e

)qξ σ̄(2)
]
, (14)

where σ̄(j) is the assigned von Mises stress limit for Material j, and εq = 10−6. To prevent singularity issues125

in stress constrained topology optimization, relaxation approach is generally needed [37, 38]. The relaxation

can be achieved by letting qρ < pρ and qξ < pξ [39]. This work uses qρ = pρ − 0.5 and qξ = pξ − 0.5. Similar

to the stress interpolation, when ρ̄e = 1 and ξ̄e = 1, (14) recovers σ̄ (1, 1) = σ̄(1); when ρ̄e = 1 and ξ̄e = 0,

σ̄ (1, 0) = σ̄(2); and when ρ̄e = 0, σ̄
(
0, ξ̄e

)
= 0 neglecting the εq.

3.2. Multi-material design optimization formulation130

We formulate the design of a multi-material structure with a prescribed force-displacement curve as

minimizing the maximum errors between the actual and the prescribed curve for a given range of loaded
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displacement:

min
ρ, ξ

{
max
di

(
f(di)− f∗(di)

f̄

)2

+ θ
vT ρ̄

v̄

}
, i = 1, ..., n

s.t. r
(
ρ̄, ξ̄,ui

)
= 0, i = 1, ..., n

vT ρ̄ ≤ v̄{
N∑
e=1

[
1
ve

∫
Ωe
σVM

(
σ
(
ρ̄e, ξ̄e, γe,u

n
e

))
dx

σ̄
(
ρ̄e, ξ̄e

) ]p} 1
p

≤ 1

0 ≤ ρ ≤ 1

0 ≤ ξ ≤ 1

(15)

where N is the total number of elements in the finite element mesh, di is the ith displacement control point

in the assigned displacement range
[
d0, d1

]
, f(di) and f∗(di) are the actual and prescribed forces at control

point di, f̄ is the averaged prescribed force f̄ = 1/n
∑n
j=1 f

∗(dj), n is the total number of control points, v

is the element volume vector, v̄ is the assigned maximum volume for materials, ui is the displacement vector

at the ith control point, and θ is a volume penalization factor taken to be 0.01. The volume penalization135

term θvT ρ̄/v̄ eliminates potential superfluous materials when the volume constraint is inactive. The stress

constraint in the optimization formulation is expressed in quotient form, where the numerator is the averaged

von Mises stress of element e, with σVM (·) denoting the von Mises stress function, σ defined in (11), and

σ̄ being the interpolated stress limit in (14). The stress constraint is handled by the p-norm approach [40]

with p = 16.140

Using the adjoint method, the sensitivity of a generic function φ with respect to the physical variable ρ̄e

and ξ̄e can be computed as:

∂φ

∂ρ̄e
=
∂φ
(
ρ̄, ξ̄,ui

)
∂ρ̄e

+ λT
∂r
(
ρ̄, ξ̄,ui

)
∂ρ̄e

and
∂φ

∂ξ̄e
=
∂φ
(
ρ̄, ξ̄,ui

)
∂ξ̄e

+ λT
∂r
(
ρ̄, ξ̄,ui

)
∂ξ̄e

, (16)

respectively, and λ is the adjoint vector obtained through solving the adjoint system:

KT
(
ρ̄, ξ̄,ui

)
λ = −

∂φ
(
ρ̄, ξ̄,ui

)
∂ui

, (17)

with KT
(
ρ̄, ξ̄,ui

) .
= ∂2Π(ρ̄, ξ̄,ui)/∂u2 being the tangent stiffness matrix evaluated at ui. The above

procedure ((16) and (17)) applies to both the objective and stress constraint functions. The sensitivity with

respect to the design variable ρe and ξe can be obtained through (16)-(17) and chain rule [41, 34].

The parameter pρ is set as 3, and we use continuation strategies for parameters pξ (and therefore qξ), βρ,

and βξ. Based on numerical experience, all the three parameters are initially set to 1, and the sequence of145

continuation is: 1) pξ is increased to 3 with a 0.5 increment every 40 steps starting at step 300 and ending

at step 460; 2) βρ is doubled every 30 steps starting from step 460 until finishing as 64 at step 640; 3) βξ

is doubled every 30 steps starting at step 640 until finishing as 64 at step 820. The continuations of βρ and

βξ are not activated simultaneously to alleviate the perturbations of the optimization problem. We apply

continuation of βρ before βξ in order to first achieve the near-discrete structural boundaries before realizing150

the near-discrete material interfaces. The min-max problem (15) is solved using the bound formulation [42]

to circumvent the non-differentiability, and the Method of Moving Asymptotes (MMA) [43] is adopted to

perform the iterative design variable update. The optimization is terminated when the change of the design
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variables is smaller than the tolerance value 0.01 with the maximum step of 870 (which provides 50 additional

steps after the parameter continuation finishes at step 820).155

4. Numerical results

In this section, we use the proposed framework to design structures that achieve various prescribed

nonlinear elastic responses. We consider a design domain with load and boundary conditions shown in

Figure 3 a. The out-of-plane domain thickness is 2mm. We investigate three design scenarios under large

deformations. Scenario 1 aims to achieve a linear force-displacement response with nonlinear materials;160

Scenario 2 aims to achieve a bi-linear one with hardening behavior; Scenario 3 aims to achieve a bi-linear

force-displacement response that cannot be attained with either Material 1 or Material 2 alone. In each

scenario, we consider two candidate materials of distinct nonlinear behaviors: Material 1 has a hardening

behavior with a positive curvature in the stress-stretch curve, and Material 2 has a softening behavior with

a negative curvature. The materials considered in this paper can be realized by silicon-based elastomers,165

e.g., polydimethylsiloxane (PDMS) [44]. The uniaxial stress-stretch curves and parameters of Material 1 and

Material 2 for Scenarios 1 to 3 (in Figure 3 b–d) are chosen based on the uniaxial test results of PDMS

with various base-agent compositions [44]. The ratio of the bulk modulus κ and shear modulus G is set to

500 to mimic the near-incompressible behavior of elastomers. The Material 1 used in Scenario 2 is chosen

to be slightly stiffer than that used in Scenario 1 to accommodate the steeper slope in Curve C (Figure 3170

f). In Scenario 3, we choose two materials with stress-stretch curves forming a cross to study the situation

where using either material alone cannot achieve a target curve (see later elaboration). These material

models are rank one convex within the range of stretch values in the two-material designs of this study. The

corresponding target force-displacement curves are shown in Figure 3 e–g, respectively. For all scenarios, we

use 10 control points (i.e., n = 10) and the maximum prescribed displacement is set as 40mm, which is 40%175

of the domain height H. The optimized designs are dependent on initial guesses because of the non-convex

nature of the optimization problem (15). Thus, for each scenario, we investigate four initial guesses of ρ shown

in Figure 3 h-k (same setup for both 1:1 and 1.5:1 domains) and present the design with the smallest fitting

error. The initial guesses of ξ are uniformly equal to 0.5 in all cases. To compare fitting errors of different

optimized designs, we use the normalized maximum absolute error defined as maxdi [f(di)− f∗(di)] /f̄ as the180

error measurement, which is the same quantity used in the objective function of (15). The discreteness of all

optimized designs are examined by quantitative measures and is summarized in D.2.

To gain better insights on whether the force-displacement curve is attainable through optimization for-

mulation (15), we plot in Figure 3 e-g the bounding curves of the force-displacement relations for Scenarios

1–3, respectively. Those curves serve as the estimated bounds of the maximum force-displacement curves185

achievable given the design parameters and material properties in each scenario. Each point on the bounding

curve is obtained by solving a topology optimization problem to maximize the applied external force under a

prescribed displacement value on the x-axis. Once the bounding curve is obtained, any force-displacement re-

lation that goes above it is considered unachievable. This provides an indicator to rule out those unattainable

force-displacement curves before the optimization 15 is performed. We note that the two bounding curves190

in each scenario have similar shapes with the material stress-stretch curves under uniaxial tension because

of the tension-dominated structural behavior in the example setup (Figure 3 a). Because the two material

behaviors in Scenario 3 form a cross, we further plot the two-material bounding curve, which indicates a

higher achievable maximum force-displacement response when using two materials.

9



0 10 20 30 40
Displacement (mm)

0

2

4

6

8

10

12

Fo
rc

e 
(N

)

B = 100 Mesh: 200×200

Material 1
Material 2

Uniform Single cross Double cross Checkerboard

H = 100 B = 150 Mesh: 240×160
Mesh: 200×200

H = 100
B = 100 H = 100

B = 100 Mesh: 200×200H = 100

uy

B

H

a

b c d

e

h i j k

f g

Scenario 1

Dimension (mm) & mesh

Material stress-stretch
curves and paramerter

values

Prescribed curves and
bounding curves

Initial guesses for the
optimized designs

Scenario 2 Scenario 3

= 0.20 MPa = 6

= 50 MPa

= 100 MPa

= 0.10 MPa = -2

= 167 MPa = 0.33 MPa = 6

= 50 MPa = 0.10 MPa = -2

= 8.33 MPa = 0.02 MPa = 15

= 167 MPa = 0.33 MPa = -2

Material 1 bound
Material 2 bound
Two-material bound
Prescribed curve

Material 1
Material 2

1.0 1.2 1.4 1.6 1.8 2.0
Stretch

0

0.2

0.4

0.6

0.8

1.0

N
om

in
al

 S
tre

ss
 (M

Pa
)

1.0 1.2 1.4 1.6 1.8 2.0
Stretch

0

0.2

0.4

0.6

0.8

1.0

N
om

in
al

 S
tre

ss
 (M

Pa
)

1.0 1.2 1.4 1.6 1.8 2.0
Stretch

0

0.2

0.4

0.6

0.8

1.0

N
om

in
al

 S
tre

ss
 (M

Pa
)

Curve C

Curve A

Curve B

0 10 20 30 40
Displacement (mm)

0

5

10

15

Fo
rc

e 
(N

)

0 10 20 30 40
Displacement (mm)

0

10

20

30

Fo
rc

e 
(N

)

= 0.2

= 0.5= 0 = 0.5= 0 = 0.4= 0

Figure 3: (a) Design domains, boundary conditions, dimensions, and FE mesh sizes; (b)–(d) uniaxial stress-stretch curves of
the three sets of materials and associated material parameters corresponding to the three scenarios (shapes and magnitudes

are chosen based on test results of silicon-based elastomer PDMS); (e)–(g) bounding curves and prescribed force-displacement
curves for the three scenarios; (h)–(k) initial guesses of ρ.

4.1. Scenario 1: linear force-displacement response with nonlinear materials under finite deformations195

This scenario aims to design structures that harness highly nonlinear materials to achieve a linear force-

displacement curve under large deformations. The target linear force-displacement curve is shown in Figure 3

e, which lies between the bounding curves of the two candidate materials. For this target force-displacement

curve, considering only single material (i.e., either Material 1 or Material 2) in the optimization leads to

optimized designs with poor fitting quality. Figure 4 shows the single-material optimized structures (with200

uniform initial guess, Figure 3 h) and the comparisons of their actual force-displacement curves versus the

target one. The optimized structure obtained by considering Material 1 alone achieves a force-displacement

curve having similar magnitude to the target one with a normalized maximum error of 0.185. However,

an apparent positive curvature appears in the actual force-displacement curve, which is inherited from the

stress-stretch curve of Material 1. On the other hand, the optimized design obtained by considering Material205
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2 alone achieves a force-displacement curve that is far below the target one with the normalized maximum

error being 1.260. This is expected because, unlike Material 1, the bounding curve of Material 2 suggests

that the target force-displacement curve is unattainable by only considering Material 2.
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Figure 4: Scenario 1 using single material: (a) Optimized design and fitting of force-displacement curve for case using only
Material 1; (b) optimized design and fitting of force-displacement curve for case using only Material 2.
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Figure 5: Scenario 1 using both Material 1 and Material 2: (a) Optimized design; (b) maximum principal stretch; (c) von
Mises stress; (d) fitting of force-displacement curve.

To enlarge the design space and achieve the prescribed curve, the use of both materials is necessary. We

demonstrate that, by harnessing two highly nonlinear materials, i.e., using both Material 1 and Material 2 in210

the optimization, a linear force-displacement structural response under large deformation is attainable. The

stress limits for both Material 1 and Material 2 are chosen as 6MPa. Figures 5 a and d show the optimized

design (with the uniform initial guess, Figure 3 h) and the comparison between the actual and target force-

displacement curves, respectively. Both candidate materials appear in the optimized design, leading to a

composite structure composed of two straight members that deform in a stretch-dominated pattern. In each215

member, Material 2 appears in the middle, and Material 1 shows up at the top and bottom, forming a system

similar to the “springs in series”. In addition, the final volume fraction of the optimized composite structure

is 17.8% (lower than 20% prescribed upper bound), showing that the material usage is also optimized to

achieve the prescribed force-displacement curve.

The fringe plots of principal stretch and von Mises stress distributions in the optimized composite design220
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are provided in Figures 5 b and c, respectively. From both fringe plots, we observe that the stress constraint is

effective in limiting the deformation and stress levels in the optimized design to prevent local material failure,

which we found could otherwise happen without the stress constraint. According to the stretch fringe plot,

deformation localizes in the Material 2 regions with a maximum stretch of 3.26. For Material 1, the stretch is

lower than 1.7 in most regions. These levels of stretch can be achieved by typical elastomers without failure225

(see [45]). From the von Mises stress fringe plot, the distribution of von Mises stress is relatively uniform

along most areas of two branches, and the highest von Mises stress appears in the thin strip made of Material

1 with a value of 2.63MPa. The localization of deformation and the relative uniformity of stress are typical

behaviors of the “springs in series” system composed of springs with distinct stiffness.

The fitting quality of the composite structure is considerably better than the ones obtained using only230

single materials. As shown in Figure 5 d, the actual force-displacement curve of the optimized composite

structure is almost perfectly linear and has a normalized maximum error of 0.016. The linearity comes

from the optimized material composition and the serial layout of the two materials with hardening (Material

1) and softening (Material 2) behaviors, resulting in a collectively linear behavior. Both the material and

geometric nonlinearities have contributed to forming the linear force-displacement response. Comparing235

with the optimized designs obtained by single materials, the significantly reduced fitting error achieved by

the optimized composite structure (0.016 versus 0.185 and 1.260 in the single-material cases) showcases

the enhanced capability of the multi-material topology optimization in programming a wider spectrum of

force-displacement responses than the single-material one.

4.2. Scenario 2: bi-linear force-displacement responses with hardening behavior240

The second scenario aims to design structures by exploiting the geometric variations to achieve three

bi-linear force-displacement curves with hardening behaviors. We also investigate the influences of domain

aspect ratios and initial guesses on the designs. The three bi-linear curves, as shown in Figure 3 f, have the

same initial low-stiffness region (for displacement < 20 mm) followed by hardening regions with increasing

slopes. We first use a 1.5 : 1 design domain to investigate these three target bi-linear curves. We then restrict245

our attention to the curve with the most hardening response (i.e., Curve C) and use a 1:1 design domain

to explore different initial guesses. We show that the optimization leads to mechanism-like structures that

change their deformation modes from flexure-dominated to stretch-dominated to realize the hardening. We

also show that there exist multiple structures with distinct geometries that achieve fairly accurate fits to the

same prescribed curve. For this design scenario, we set the respective stress limit for Material 1 and Material250

2 to be 5MPa and 0.5MPa for Curves A, B, and C.

Figure 6 shows optimized designs (both undeformed and deformed configurations) that achieve three target

bi-linear curves, their stretch fringe plots, and corresponding fitting of the force-displacement responses. For

each curve, we test the four initial guesses (Figure 3 h – k) and present the design with lower fitting errors

in Figure 6 (a and b are obtained with the checkerboard and c are from the uniform initial guess).255

All three optimized designs exhibit a similar mechanism, which transits from a flexure-dominated defor-

mation to a stretch-dominated one, to achieve the bi-linear hardening force-displacement curves. Comparing

the overall shapes of three optimized designs, they have similar topology that resemble a frog, and the de-

formed configurations resemble a “jumping frog”. The “legs” first undergo flexure-dominated deformations to

unfold themselves, producing the initial region of the force-displacement with the small slope. As the “legs”260

gradually become straight, they start to undergo stretch-dominated deformations to achieve the hardening

responses in the second part of three curves. The “legs” have hinge-like joints with high deformation con-

centration (as shown in all three maximum stretch plots in Figure 6) to form the mechanism-like behavior.
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In terms of the differences in the topology and consumed volume, as the second part of the target curve

becomes stiffer from Curve A to Curves B and C, the “legs” in the three optimized designs become thicker265

so as to achieve a stronger hardening response, and the final volume fraction of the designs increases from

10.9% to 16.6% and 20%, respectively. This suggests that more intensive hardening curve may require a

higher amount of material to form the thicker bottom members.
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Figure 6: Scenario 2 (1.5:1 design domain) with three target curves. Optimized designs, maximum principal stretches, and
fittings of force-displacement curves for (a) target Curve A; (b) target Curve B; (c) target Curve C; respectively.

Notably, the optimization leads to three designs using mostly Material 1, indicating geometric variations

(rather than mixing multiple given materials) are exploited in this scenario to achieve the bi-linear target270

curves with hardening responses, which is in agreement with the hardening behavior of Material 1. In terms

of fitting quality, the normalized absolute errors of the three optimized designs are 0.081, 0.087, and 0.214,

respectively. The normalized maximum error of the optimized design for Curve C occurs at the control

point at the kink (the transition point between two slopes). Because the actual force-displacement curves

are usually smooth, the poor fit at the kink is expected. Moreover, curves with more hardening have a more275

drastic change of the discontinuous slopes, and thus, are more difficult to fit. Finally, the optimized design in

Curve C reaches the 20% prescribed maximum volume limit and has a larger fitting error than the other two

designs with less hardening, this may indicate that a larger material usage in the design could potentially

enhance the hardening behavior and hence improve the fitting.
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Figure 7: Scenario 2 with Curve C (1:1 design domain) using two initial guess cases. (a) Optimized design and fitting of
force-displacement curve using “double cross” initial guess (Figure 3 j); (b) optimized design and fitting of force-displacement

curve using “checkerboard” initial guess (Figure 3 k).

Next, we use target Curve C to study a different domain size (with a smaller width-to-height ratio) and280

various initial design configurations (initial guesses). We consider a 1:1 design domain using the same mate-

rials with four initial guesses (in Figure 3) and present results from the “double cross” and “checkerboard” as

these two initial guesses result in the lowest fitting errors, as shown in Figure 7. For both designs, the stress

constraints are inactive and the maximum stretch values are below 3.1. Different from the topology obtained

using the wider 1.5:1 domain (Figure 6 c), both designs from the narrower 1:1 domain are attached to the285

side supports instead of the bottom, which is a result of the shorter distance between the loading area and

side supports, allowing for a more efficient use of materials toward the side. Although having different topol-

ogy from the one in the 1.5:1 domain, the optimized designs in the 1:1 domain exhibit similar mechanisms,

i.e., the flexture-to-stretch deformation mode, to achieve the target bi-linear force-displacement curve. In

addition, better fitting quality is obtained with the 1:1 ratio design domain, with the normalized maximum290

error in force being 0.123 and 0.149. Finally, the distinct optimized designs from different initial guesses

are manifestation of the non-convexity of the optimization problem, where multiple local optima exist. The

proposed formulation with non-convexity enables the exploration of a variety of distinct designs that achieve

the same programmed nonlinear elastic behaviors by employing different initial guesses and domain sizes,

which has merit from a design perspective.295

4.3. Scenario 3: bi-linear force-displacement response unachievable by a single material

The third scenario aims to demonstrate that harnessing multiple materials can enlarge the programmable

force-displacement space and lead to structures with force-displacement curves that are physically unachiev-

able using either of the candidate material alone. The target force-displacement curve is a bi-linear one shown
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in Figure 3 g. Materials 1 and 2 considered in this example form an intersection in the corresponding bound-300

ing curves. Different from the ones in Scenario 2, the target curve considered here is physically unattainable

by neither Material 1 nor Material 2, as it contains regions above the bounding curves of both Material 1 and

Material 2. The target curve before the intersection of two bounding curves is above the Material 1 bound

and hence unachievable for structures with only Material 1. The target curve after the intersection is above

the Material 2 bound and hence unreachable for structures made of only Material 2. This is further verified305

by numerical results presented in Figure 8 (designs are obtained with the uniform initial guess, Figure 3 h),

which show poor fittings of the single-material designs. As shown in Figure 8, because the bounding curves

of both Material 1 and Material 2 are partially below the target curve, the actual curves of the single ma-

terial designs have poor fittings to the targets (since the actual force-displacement curves cannot exceed the

bounding curves). For the design with Material 1 alone (Figure 8 a), the actual curve has a large discrepancy310

with the target curve when displacement < 30mm. The optimized design considering Material 1 alone has

a normalized maximum error of 0.413. For the design with Material 2 alone (Figure 8 b), the actual curve

matches well with the target before displacement reaches 30mm, but a large discrepancy appears after 30mm

because the bounding curve of Material 2 is far below the target curve. The optimized design considering

Material 2 alone has a normalized maximum error of 1.272.315
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Figure 8: Scenario 3 using single materials: (a) Optimized design and fitting of force-displacement curve for case using only
Material 1; (b) optimized design and fitting of force-displacement curve for case using only Material 2.
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Figure 9: Scenario 3 using multi-material: (a) Optimized design obtained by using Material 1 and Material 2; (b) maximum
principal stretch; (c) fitting of force-displacement curve.
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By incorporating both Material 1 and Material 2 in the optimization, the target force-displacement curve

is achievable as it is within the two-material bounding curve (Figure 9 c). Figure 9 shows the optimized

composite design (in both undeformed and deformed configurations), maximum stretch plots, and fitting curve

obtained with the uniform initial guess (Figure 3 h). The final volume fraction of the optimized composite

structure is 20%, which uses all available materials. As expected, both Material 1 and Material 2 are present320

in the optimized design, which is composed of two straight members deforming in a stretch-dominated

pattern. The material distribution in each member resembles a system that combines a dominant portion of

“springs in parallel” and a small portion of “springs in series”. As shown in Figure 9 b, the distribution of

principal stretch in the optimized design is mostly uniform (although some deformation concentrates around

the location where the displacement loading is prescribed due to the boundary effect), which agrees with325

the major feature of the dominated “springs in parallel” arrangement. Above-mentioned observations are

different from the ones made for the optimized design in Scenario 1, where a “springs in series” system is

formed with apparent deformation localization in the weak material (i.e., Material 2) regions.

The fitting quality of the force-displacement curve is greatly improved, with a normalized maximum error

of 0.094 as shown in Figure 9 c. In addition, the two-material bounding curve (green dashed curve) is above330

the envelope of the bounds of Material 1 and Material 2, which indicates a higher achievable maximum force-

displacement response and a larger design space when using two materials compared to a single material. The

observation explains the fact that the actual force-displacement curve is slightly above the single material

bounds at 30 mm displacement. The lower fitting error and higher achievable maximum response demonstrate

that harnessing multiple candidate materials enlarges the design space and thus provides the capability of335

programming a wider spectrum of responses than considering one material.

5. Concluding remarks

In this work, we systematically design composite structures with programmable elastic responses under

large deformations through an effective multi-material topology optimization framework. The framework

exploits multiple hyperelastic materials with distinct nonlinear elastic behaviors and formulates an inverse340

design problem to optimize both the topology and material distribution of a composite structure to achieve

target force-displacement curves. A novel stress constraint function that accounts for two materials with

distinct nonlinear elastic constitutive relations and different stress limits is proposed and shown to be effective

in controlling the deformation levels and eliminating potential thin members in the optimized designs. Three

design scenarios are presented which use the proposed multi-material framework to reveal unique structures345

with various programmable force-displacement curves under large deformation, including a linear curve,

several bi-linear curves with hardening response, and a bi-linear curve that is unachievable by single-material

designs. By comparing the designs obtained between single- and multi-material topology optimization, we

demonstrate that harnessing multiple materials can lead to designs with better fitting and achieving a wider

range of target responses.350

The optimized designs reveal distinct mechanisms, unconventional geometric variations, and proper ma-

terial distributions to achieve programmed force-displacement target curves. For the linear target curve, the

design that harnesses two nonlinear candidate materials, forms a “springs in series” system with localized

deformation in weak material and experiences a stretch-dominated deformation mode to achieve the linear

structural response. For three bi-linear curves with small initial stiffness and increasing hardening behaviors,355

the single-material designs consisting of mostly the hardening material (Material 1) with distinct geometries
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are obtained, suggesting geometrical variations are exploited to realize such type of target curves. The op-

timized designs exhibit mechanism-like behaviors, which experience transitions from flexure-dominated to

stretch-dominated deformation modes, to achieve the sudden hardening behavior. Furthermore, increasing

the hardening slopes of the prescribed curves result in an increase use of materials to form thicker bottom360

members exploiting similar mechanisms. By employing different initial design configurations, we obtain mul-

tiple designs achieving the same programmed nonlinear elastic behaviors. For the bi-linear curve that is

unachievable by single-material (Scenario 3), the optimized design makes use of both candidate materials,

forming a system that combines a dominant portion of “springs in parallel” and a small portion of “springs

in series”, leading to a uniform distribution of deformation with a stretch-dominated mode, which results in365

an accurate fitting of the target curve.

We remark that the manufacturing of the optimized designs and experimental validations of the pro-

grammed structures are crucial and part of our on-going research. Manufacturing of composite structures is

in general challenging from two main aspects: 1) how to accurately manufacture different parts of structures

occupied by different materials with irregular geometries and, 2) how to ensure the strength of interfacial370

bonding between the two materials to prevent premature interfacial failure when loaded. These two challenges

shall be addressed through innovative manufacturing procedures.

Finally, we remark that, while this study focuses on hyperelastic materials with loading conditions being

mostly tension-dominated, extensions to more complex loading scenarios and other types of target curves

as well as incorporation of other material behaviors are promising areas for future studies. Additionally, we375

note that while this work focuses on two-dimensional structures, the framework can be extended to three-

dimensional designs, which is planned for future research. The computational cost as well as the difficulty of

manufacturing three-dimensional optimized structures could increase drastically.

Appendix A. Alternative formulation and results

The optimization formulation (15) proposed in the paper aims to minimize the normalized maximum

absolute errors between the actual and prescribed force-displacement curves, as the normalization factor f̄ is

the same for all the control points. In this appendix, we provide an alternative formulation, which minimizes

the maximum relative errors between the actual and prescribed force-displacement curves. The alternative

formulation is stated as

min
ρ, ξ

{
max
di

(
f(di)− f∗(di)

f∗(di)

)2

+ θ
vT ρ̄

v̄

}
, i = 1, ..., n

s.t. r
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)
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∫
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σVM
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e

))
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σ̄
(
ρ̄e, ξ̄e

) ]p} 1
p

≤ 1

0 ≤ ρ ≤ 1

0 ≤ ξ ≤ 1.

(A.1)

In particular, the difference of the above formulation from (15) is in the normalization factor f∗(di) in the380

objective function. The alternative formulation (A.1) normalizes the force error at control point di by the

corresponding prescribed force f∗(di). Depending on different design purposes, one can choose the alternative
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relative error formulation (A.1) that emphasizes on the errors of the overall curve, or the proposed absolute

error formulation (15) that tends to stresses on the points with larger force magnitudes.

We present two examples based on the alternative formulation (A.1). The two examples use the materials385

in Figure 3 c and prescribed Curve B in Figure 3 f. The first example uses a 150mm × 100mm domain with

the “single cross” initial guess (Figure 3 i), and the second uses a 100mm × 100mm domain with the “double

cross” initial guess (Figure 3 j). Other settings are the same as the previous examples.
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Figure A.10: Examples using alternative formulation (A.1). Designs, maximum principal stretches, and fittings of
force-displacement curves of (a) 1.5:1 domain; and (b) 1:1 domain.

Table A.1: Comparison of fitting errors from the proposed and alternative formulation

Design Normalized max absolute error (N) Max relative error

Figure 6 b (formulation (15)) 0.087 0.603

Figure A.10 a (formulation (A.1)) 0.367 0.182

Figure 7 a (formulation (15)) 0.123 0.775

Figure A.10 b (formulation (A.1)) 0.234 0.171

Figure A.10 shows the designs, deformation, and fittings of the two optimized structures using the al-

ternative formulation. The design in Figure A.10 a is obtained considering the same design parameters and390

target curve as the one shown in Figure 6 b, but with a different initial guess and formulation. Thus, different

from the design in Figure 6 b, the optimized topology forms two branches attached to the side supports and

two thin members connected to the bottom. The design in Figure A.10 b uses identical parameters and

initial guess but different formulation compared with the one in Figure 7 a, which has a different topology.

Both designs obtained using the alternative relative error formulation are governed by the underlying mech-395

anism of changing deformation mode from flexure-dominated to stretch dominated, which is similar to the

ones obtained by the proposed absolute error formulation (15) in Figures 6 b and 7 a. The mechanism is

realized through the multiple hinges across the structures where deformation concentrates, leading to the

acute increase in stiffness when loaded beyond 20 mm.

In terms of the fitting quality, the two designs obtained using the alternative relative error formulation400

achieve more accurate fittings in the first phase (displacement < 20 mm) but less accurate fitting in the
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hardening phase, compared to the designs obtained using the proposed absolute error formulation in Figure

6 b and 7 a. The alternative formulation minimizes the relative error rather than the absolute one, putting

more weight on minimizing the errors in the overall curve. In the absolute error formulation (15), the

hardening phase with points of larger force magnitudes tend to have larger absolute errors, and thus, tends405

to have more weight. The two measurements of fitting errors for the four designs are shown in Table A.1,

with the normalized maximum absolute error defined as maxdi [f(di)− f∗(di)] /f̄ and maximum relative

error defined as maxdi [f(di)− f∗(di)] /f∗(di), the same quantities used in the objective functions of (15)

and (A.1), respectively. As expected, the alternative relative error formulation (A.1) leads to designs with

smaller maximum relative errors but larger normalized maximum absolute errors than the original proposed410

absolute error formulation (15).

Appendix B. Numerical verification of energy interpolation scheme

The energy interpolation scheme (9), which effectively alleviates numerical instabilities induced by low

stiffness elements, has been demonstrated to have negligible influence on the performance of final optimized

single-material designs in [25]. Appendix B further verifies the interpolation scheme on a multi-material415

design. We compare the force-displacement curve of the multi-material optimized structure in Figure 5,

which includes the void regions in the FE analysis, with the force-displacement curve of the same design but

with the void region entirely removed in the FE analysis. The comparison in Figure B.11 shows that the

two force-displacement curves coincide and the deformed configurations are identical. Thus, the comparison

verifies the modeling of the void region in the interpolation scheme (9) does not influence the behavior of the420

optimized structure under large deformations.

Original mesh
(with void regions)

a

b

c

DeformedUndeformed

DeformedUndeformed

Mesh (with void 
regions removed)

Mesh (with void regions removed)
Original mesh (with void regions)

Figure B.11: Comparison of the structural responses of (a) a multi-material optimized design with the energy interpolation
scheme in Eq. (9) and, (b) the same optimized design but with void elements entirely removed. (c) The corresponding

force-displacement curves.

Appendix C. Effectiveness of the proposed two-material stress constraint

This appendix demonstrates that the proposed stress constraint for multi-material structures effectively

eliminates thin members and unrealistically large deformation. We use the material models from Scenario 1
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and a linear target curve, and compare the optimized designs obtained with and without the proposed stress425

constraint. Figure C.12 shows the two optimized designs, deformations, and fitting of target curves. It can

be seen that in the design without stress constraint (Figure C.12 a), extremely thin members appear in the

soft material regions, which leads to excessive deformation in the deformed configuration with a maximum

principal stretch of 10.32. In contrast, the design with the proposed stress constraint (Figure C.12 b) contains

no thin members, and the maximum stretch is 5.14. While both designs have good fit to the target curve, the430

extreme deformation in the non-constrained design should be difficult to realize with most types of elastomers.

The comparison shows that the proposed stress constraint with von Mises stress measures effectively prevents

thin members and extreme deformations in two-material structures.

Without von Mises
stress constraint

a

b b

DeformedUndeformed

DeformedUndeformed

With von Mises
stress constraint

(2 MPa)

Max. principal stretch

max: 5.14
Max. principal stretch

max: 10.32

Figure C.12: Comparison of designs, deformations, and fitted curves obtained (a) without the proposed stress constraint and,
(b) with the proposed stress constraint (2 MPa von Mises stress limit)

Appendix D. Discreteness of optimized designs

We provide quantitative measures for the discreteness of all optimized structures presented in Scenarios

1-3 to demonstrate the discreteness of both the density variable ρ̄e and material variable ξ̄e, indicating solid-

void designs with two spatially exclusive materials. The measure for discreteness of ρ̄e and ξ̄e are defined as

[46] :

Mρ =
1

N

N∑
e=1

4ρ̄e (1− ρ̄e)× 100% and Mξ =
1

NS

∑
e∈S

4ξ̄e
(
1− ξ̄e

)
× 100%,

respectively, where S is the element set with ρ̄e > 0, and NS is the number of elements belong to S.435

Measurement Mρ = 1 when ρ̄e = 0.5∀ e, indicating a fully gray design, and Mρ = 0 when ρ̄e ∈ {0, 1} ∀ e,
indicating a fully discrete, solid-void design. Similarly, Mξ = 1 when ξ̄e = 0.5 ∀ e ∈ S, indicating a design with

evenly-mixed materials, and Mξ = 0 when ξ̄e ∈ {0, 1} ∀ e ∈ S, indicating two materials are fully separated.

The values of Mρ and Mξ for all designs are summarized in Table D.2. Both Mρ < 1% and Mξ < 1% for all

designs, which verify that the optimized designs are near-discrete with minimal mixing of phases.440
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Table D.2: Discreteness of optimized structures

Scenario # Design Figure Mρ Mξ

Scenario 1

Two-material Figure 5 0.52 % 0.59 %

Material 1 Figure 4 a 0.79 % 0

Material 2 Figure 4 b 0.28 % 0

Scenario 2

Curve A Figure 6 a 0.74 % 0.04 %

Curve B Figure 6 b 0.55 % 0.00 %

Curve C Figure 6 c 0.75 % 0.00 %

Curve C, initial guess 2 Figure 7 a 0.71 % 0.00 %

Curve C, initial guess 3 Figure 7 b 0.57 % 0.00 %

Scenario 3

Two-material Figure 9 0.50 % 0.30 %

Material 1 Figure 8 a 0.43 % 0

Material 2 Figure 8 b 0.27 % 0
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