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Preface

This PhD thesis entitled Modelling passenger behaviour in mixed schedule- and frequency-
based public transport systems is submitted to meet the requirements for obtaining a PhD
degree at the Department of Technology, Management and Economics, DTU Manage-
ment, Technical University of Denmark. The PhD project was supervised by Professor
Otto Anker Nielsen and co-supervised by Associate Professor Thomas Kjær Rasmussen,
both from DTU Management. The thesis is paper-based and consists of the chapters
listed in the tables of content, including separate chapters for each of the following pa-
pers:

Paper 1: M. Eltved, O. A. Nielsen, and T. K. Rasmussen (2019). “An assignment
model for public transport networks with both schedule- and frequency-
based services”. In: EURO Journal on Transportation and Logistics 8,
pp. 769–793. DOI: 10.1007/s13676-019-00147-4.

Paper 2: C. B. Gardner, S. D. Nielsen, M. Eltved, T. K. Rasmussen, O. A. Nielsen,
and B. F. Nielsen (2020). “Conditional passenger travel time distribu-
tions in mixed schedule- and frequency-based public transport networks
using Markov chains”. Under review at Transportation Research Part B:
Methodological.

Paper 3: M. Eltved, O. A. Nielsen, and T. K. Rasmussen (2018). “The influence of
frequency on route choice in mixed schedule- and frequency-based public
transport systems - The case of the Greater Copenhagen Area”. In: Pro-
ceedings of the 14th Conference on Advanced Systems in Public Transport
(CASPT2018). Brisbane, Australia. URL: http://www.caspt.org/wp-
content/uploads/2018/10/Papers/CASPT_2018_paper_81.pdf.

Paper 4: O. A. Nielsen, M. Eltved, M. K. Anderson, and C. G. Prato (2020). “Rel-
evance of detailed transfer attributes in route choice models for public
transport passengers”. Re-submitted after second round of review to Trans-
portation Research Part A: Policy and Practice.

Paper 5: M. Eltved, N. Breyer, J. Blafoss, and O. A. Nielsen (2020). “Impacts of
long-term service disruptions on passenger travel behaviour: A smart card
analysis from the Greater Copenhagen area”. Submitted to Transportation
Research Part C: Emerging Technologies.
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Paper 6: M. Eltved, N. Christoffer, and P. Lemaitre (2020). “Estimation of transfer
walking time distribution in multimodal public transport systems based on
smart card data”. Submitted to Transportation Research Part C: Emerging
Technologies.

Paper 7: M. Eltved, H. N. Koutsopoulos, N. H. M. Wilson, K. Tuncel, and Z. Ma
(2020). “A note on unusual path choice behavior caused by congestion in
metro systems”. Working paper.
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Summary

Transport systems in metropolitan areas are on both the road and public transport side
challenged on providing sufficient capacity for the increasing mobility needs. An increasing
number of hours is wasted in congestion on the roads, and good public transport service
is needed to provide sufficient capacity in the transport system. Public transport is not
only seen as a way of increasing the mobility in metropolitan areas, but also as one of
the important contributors to the transition for more sustainable mobility in urban areas.
The public transport systems must thus be an attractive alternative to taking the car
to attract more passengers, and facilitate the transition for a more sustainable transport
system.

The public transport systems are often complex with a mix of lines, where passengers for
some services rely on a published detailed timetable (schedule-based lines), while they for
other high frequency lines rely on the headway between consecutive services on the line
(frequency-based lines). Due to the complexity of these systems, advanced models are
needed to analyse the level of service provided to the passengers given the timetable of
the network. Furthermore, the inputs for these models require analysis of various aspects
of passenger travel behaviour based on reliable data sources.

This PhD thesis concerns several aspects within modelling of public transport systems
with a passenger oriented perspective. The thesis is split into three main parts; Part I,
Assignment models for mixed schedule- and frequency-based public transport systems,
presents novel methodological approaches for determining the level of service for passen-
gers in public transport networks with both schedule- and frequency-based services; Part
II, Route choice models for mixed schedule- and frequency-based public transport sys-
tems, focuses on passengers’ route choice preferences from origin to destination in these
complex networks, based on revealed passenger route choice surveys. The third and final
part of the thesis, Studies on public transport passenger behaviour based on smart card
data, covers three analyses of passenger travel behaviour based on smart card data.

Part I of the thesis covers the difficult task of assigning (predicting) passengers to routes
from origin to destination in order to evaluate the level of service provided to the passen-
gers. Specifically, two studies focus on the combination of schedule- and frequency-based
services in public transport networks and how to assess the travel times on the attractive
routes in such a network. The first paper develops a novel methodology to assign passen-
gers in a mixed schedule- and frequency-based network. First, choice-sets with different
possible routes are generated based on a heuristic, which requires that the passenger can
reach the destination within a certain threshold using the specific route. A subsequent
step distributes the passengers across the alternatives using a discrete choice model. The
resulting flow distributions across alternatives are stable regarding the specification of
a line as either schedule- or frequency-based. Compared to other models, this allows
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the modeller to make fewer assumptions on the actual schedule of a line, and eases the
evaluation when several timetable scenarios need to be compared.

The second paper proposes a method that uses Markov chains to identify the travel time
distributions for different route choice alternatives, when stochastic running times of a
line due to delays are taken into account. Given a set of attractive lines for passengers
travelling from origin to destination, the methodology calculates the travel time distribu-
tion for different combinations of lines and thereby alternative routes through the network.
Both schedule- and frequency-based lines can be part of the input to the model. By us-
ing Markov chains the probability of reaching a connecting service, can be analytically
described, whereby the use of traditional demanding simulation models can be avoided.
Several detailed analyses can be derived based on the resulting travel time distributions,
which can become an important tool for timetable planners.

While Part I of the thesis covers the evaluation of the level of service offered to the
passengers, Part II covers the input to these models by investigating the route choice
preferences of the passengers. Travellers evaluate the attractiveness of a route based on
several features such as travel time and number of transfers, but the specific challenge
concerning how passengers trade off for example routes with a high travel time vs. routes
with lower travel time which include more transfers persist. These trade-offs are investi-
gated in two papers using a dataset covering self-reported trips using public transport in
the Greater Copenhagen area. In both papers a discrete choice model is the basis for the
extraction of the passenger route choice preferences, and this is achieved by comparing
the observed routes with a large set of alternative routes the passenger could have chosen.

The third paper investigates the trade-offs passengers have to make when choosing be-
tween alternatives with different waiting times and in-vehicle times. Waiting time for
schedule-based services, such as regional trains and local busses, are estimated separately
from frequency-based services (metro and high-frequency busses) and this shows, that
passengers have a higher nuisance for waiting for frequency-based services compared to
waiting for schedule-based services with a known timetable. However, in general lower
waiting times for frequency-based services makes the decision between alternatives with
schedule- or frequency-based services almost the same. If the differences in parameters
of waiting time are not accounted for in assignment models, there is a risk of creating
a biased flow estimation, which can eventually lead to wrong conclusions in feasibility
studies. The paper also investigates whether the marginal dis-utility of in-vehicle time
varies across and within each sub-mode, i.e. metro, bus and trains. It is shown, that the
marginal dis-utility for metro considerably increases for longer trips whereas the marginal
dis-utility decreases for in-vehicle time in trains.

The fourth paper focuses on the choice of transfer location in passenger route choice.
The paper reviews existing literature on transfer attributes which affects passenger route
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choice, and selects three attributes found to be important for passenger route choice. The
analysis shows that passengers prefer routes, which includes a shop available at any of the
transfer stations visited during the trip, thus indicating the preference for being able to do
smaller grocery shopping en-route. Passengers also prefer escalators over regular stairs,
and prefer that transfers should be easy to navigate through. Using these attributes, it is
possible to disentangle the transfer penalty for stations with different characteristics. The
best possible transfer thereby has a penalty equivalent to spending 5.4 minutes extra in a
bus, whereas the worst possible transfer is comparable to spending 12.1 minutes in a bus.
The results have important policy implications for evaluation of different station designs
and how the resulting passenger flows will be, if stations are upgraded or redesigned.
Such investments can turn out to be more cost effective than track upgrades or other
improvements of the railway, while still providing a better level-of-service to passengers.

The final part of the thesis, Part III, covers three analyses based on smart card data.
Smart card data is available in rich numbers from automatic fare collection systems and
is becoming an increasingly important tool for analysing passengers’ travel behaviour.
This thesis uses smart card data with different degrees of detail, and the studies span
from analysing the individual mobility to more aggregated analysis, where smart card
data covers the heterogeneity of passenger behaviour.

The fifth paper investigates individual mobility over a long time period based on data from
the Danish smart card, Rejsekort. The study analyses travel behaviour before, during and
after a three month track closure on a suburban rail line in the Greater Copenhagen area,
where replacement busses served the line resulting in significantly increased travel times.
Passengers are clustered based on their travel behaviour before and after the track closure.
A similar track section is used as comparison to the changes in ridership at the suspended
track section, as the individual passenger travel behaviour changes considerably over time
due to changes in individual employment and general seasonal trends. By comparing the
changes in travel behaviour for passengers travelling frequently before the disruption on
either the affected or reference line, no apparent difference is seen for the period after
normal operations resumed. However, the total ridership on the affected line decreased
compared to the reference line, and a comparison of the changes in passenger travel for the
different groups, suggests that the deficit is a result of less attraction of new passengers
on the affected line. By analysing the daily travel patterns for the group who commuted
on the affected line before the disruption, it is found that 17% of the passengers almost
entirely stopped using public transport during the disruption, but returned to a regular
usage of public transport after the normal operations resumed. This indicates, that at
least some passengers favor public transport and are not forced to use the public transport
system.

Data from Rejsekort is also used in the sixth paper, but on a more detailed level. The
paper fuses smart card data and automatic vehicle location data to estimate the walking
time used from alighting a bus until the passenger taps in at a train platform. This walking
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time is essential to know, as it is used in timetabling and synchronisation of busses and
trains. Using the raw observed times from the data fusion leads to significantly over-
estimated walking times, as some passengers are doing activities during their transfer.
Therefore, a hierarchical Bayesian mixture model is used to isolate the passengers doing
activities during the transfer from the passengers walking directly. The results show that
the model is able to accurately replicate the observed walking times and estimate the
walking time necessary to walk from bus stop to train platform. The study establishes a
more data-driven procedure for estimation of walking times at transfers, and is applied
to 129 stations in the Eastern part of Denmark. Tests show that the share of passengers
doing activities during their transfers increases with the number of shops available near
the transfer station.

Whereas the two preceding papers focus on the use of data from Rejsekort, the seventh
and final paper utilises an extensive smart card dataset from Hong Kong. The number
of passengers in the Metro in Hong Kong exceeds the available capacity during the peak
hours, and the paper describes and analyses unusual path choice behaviour that stems
from the excessive crowding. Under the excessive crowding situations passengers can be
observed to do reverse routing, namely choose to transfer at a station further down a line
in order to travel backwards and pass the station where passengers would usually transfer
in uncrowded conditions. Such reverse routing can increase the travel time reliability and
also increase the chance for the passenger to get a seat or better standing position in
the train. However, based on the analysis, no final conclusions can be made on the share
of passengers using this option of reverse routing. However, the results indicate that
passengers travelling furthest after transferring have a slightly different behaviour, which
could stem from a higher degree of reverse routing. It can also be substantiated by the
finding in the third paper, that the marginal value of time is increasing for passengers
using the metro. A short paragraph in the paper also considers whether such unusual
route choices are occurring in the Danish Metro, but based on analysis of data from
Rejsekort, this can quickly be ruled out to be the case.

In summary, this PhD thesis has contributed to i) new methodologies to assign passen-
gers to routes for detailed and analytical evaluation of the level of service provided to
passengers in mixed schedule- and frequency-based public transport system, ii) revealing
and quantifying of the significant dis-utility of transfers in public transport route choice in
combination with detailed analysis of the important characteristics of station attributes,
and iii) develop two novel methods using data from Rejsekort for analysing both long-
term travel behaviour and walking times at transfers, and iv) investigate the effects of
crowding on passenger path choice in congested metro systems. Overall the thesis covers
a broad span of public transport modelling and contributes to already existing knowledge
in the domain. Several new methodologies are developed, especially on the use of smart
card data, and these can be used for further research within the domain.
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Resumé (Danish summary)

Transportsystemer i storbyområder er under pres som følge af stigende behov for mo-
bilitet, og for både vejtrafikken og den kollektive transport er kapaciteten ved at være
opbrugt. Mange timer spildes hver dag i trængslen på byernes veje, og såfremt trans-
portsystemet skal kunne følge med mobilitetsudviklingen, kræver det, at den kollektive
transport bidrager med væsentlig kapacitet til at flytte mennesker fra A til B. Den kollek-
tive transport er, udover gang og cykling, derudover også en væsentlig bidragsyder til den
grønne omstilling af transportsystemerne i storbyområderne, og det er derfor vigtigt med
modeller og analyser, der kan benyttes til at gøre den kollektive transport mere attraktiv.

Kollektive transportsystemer er often komplekse med en kombination af linjer med en rel-
ativ lav frekvens og faste afgangsminuttal (køreplansbaserede linjer såsom tog og lokale
busser), samt linjer med høj frekvens (frekvensbaserede linjer såsom metro og A-busser),
hvor kun tiden mellem afgange publiceres til passagererne. På grund af systemernes kom-
pleksitet kræver det avancerede modeller for at kunne evaluere, hvilket serviceniveau en
given køreplan giver passagererne, da der skal tages højde for skift mellem linjetyper og
disses attraktivitet. Desuden kræver sådanne modeller detaljerede input fra pålidelige
datakilder, der beskriver passagerernes adfærd på de forskellige delkomponenter af den
samlede kollektive rejse. Denne ph.d.-afhandling omhandler adskillige aspekter inden for
modellering af kollektiv transport set fra et passagerperspektiv. Afhandlingen er inddelt
i tre dele: Del 1 præsenterer nyskabende rutevalgsmodeller, der bruges til at evaluere
serviceniveauet baseret på netværk med både frekvens- og køreplansbaserede linjer. Del
2 fokuserer på rutevalgspræferencer for passagererne fra dør til dør i sådanne komplekse
netværk på basis af rapporterede ture med kollektiv transport. Den tredje og sidste del in-
deholder tre forskellige analyser af passagerers rejseadfærd baseret på data fra Rejsekortet,
samt et lignende automatisk billetsystem fra Hong Kong.

Den første del af afhandlingen dækker de udfordringer der er, når serviceniveauet for
passagerernes rejse fra A til B skal evalueres. To studier og artikler fokuserer på kombina-
tionen af frekvens- og køreplansbaserede linjer i ét kollektiv transportnetværk og hvordan
rejsetider for attraktive ruter vurderes heri.

Den første artikel udvikler en ny metode, hvorved evalueringen af hvilke ruter passagererne
vælger fra A til B, kan beskrives på en mere adfærdsmæssig korrekt måde. Først genereres
de mulige ruter fra A til B i et net med kombinerede køreplaner vha. en heuristik, hvor
det sikres at passagerer ved et valg af en inkluderet rute også ankommer til destinationen
indenfor en rimelig tidsramme. I et efterfølgende skridt fordeles passagerer i mellem de
inkluderede alternative ruter vha. en diskret valgmodel. Resultaterne fra modellen viser
sig at være stabile uagtet om en linje defineres med en eksakt køreplan med minuttal eller
blot dens frekvens. En af modellens fordele er, sammenlignet med andre modeller, at
trafikplanlæggerne kan nøjes med færre antagelser om den faktiske køreplan for en linje
og derved gøre det lettere at evaluere og sammenligne adskillige køreplansscenarier.
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Den anden artikel foreslår en metode, der benytter Markovkæder til at identificere re-
jsetidsfordelinger for forskellige rutevalgsalternativer, mens der samtidig tages højde for
stokastiske køretider som følge af forsinkelser. Givet relevante alternativer kan metoden
udregne rejsetidsfordelingen for rejsende fra A til B for forskellige kombinationer af lin-
jer og således også ruter gennem netværket. Både køreplans- og frekvensbaserede linjer
kan bruges som input til modellen. Ved at benytte Markovkæder, kan sandsynlighederne
for at nå et skift beskrives analytisk, hvorved traditionelt krævende simulationsmodeller
kan undgås. Flere detaljerede analyser kan udledes baseret på de resulterende rejsetids-
fordelinger, hvilket kan blive et vigtigt værktøj for køreplanlæggere.

Mens Del 1 af afhandlingen afdækker nye metoder til at vurdere serviceniveauet af en
given køreplan, omhandler Del 2 inputtet til disse modeller ved at undersøge passager-
ernes rutevalgspræferencer. Rejsende evaluerer en rutes attraktivitet baseret på adskillige
komponenter såsom rejsetid og antal skift, men det vigtige er hvordan f.eks. et ekstra
skift mellem transportmidler vægtes i forhold til en evt. kortere samlet rejsetid. To forskel-
lige artikler i afhandlingen beskriver passagerernes præferencer baseret på data indsamlet
i Transportvaneundersøgelsen (TU), hvor passagerer har rapporteret hvilken rute de har
valgt i kollektiv transport i Hovedstadsområdet. I begge artikler findes præferencerne ved
brug af diskrete valgmodeller, hvor sandsynligheden for den valgte rute maksimeres ud
fra delkomponenterne af den valgte rute og de alternative ruter.

Den tredje artikel omhandler således, hvordan passagerer vælger i mellem frekvens- og
køreplansbaserede linjer. Separate parametre estimeres for ventetid for hhv. frekvens- og
køreplansbaserede linjer, og dette viser, at passagererne har en højere gene ved at vente
på frekvensbaserede linjer ift. køreplansbaserede linjer. Dette kan muligvis forklares ved
frygten for at vente på en bus der aldrig kommer (fordi ingen fast køreplan kendes), men
opvejes til dels ved at ventetiden for frekvensbaserede linjer generelt er kortere end for
køreplansbaserede linjer. De separate parametre er vigtige at inkludere i rutevalgsmod-
eller, da det ellers risikeres at skabe skævheder i fordelinger mellem frekvens- og køre-
plansbaserede linjer. Sådan skævheder kan i sidste ende lede til fejlagtige konklusioner
i cost-benefit analyser. Artiklen undersøger ligeledes hvordan passagerernes præferencer
for tid i de enkelte kollektive transportmidler ændrer sig, i forhold til hvor lang tid der
tilbringes i køretøjet. Her findes det, at der er en meget lav marginal negativ nytte for
at tilbringe kort tid i f.eks. metro, men at længere tids ophold i et metrotog marginalt
opleves væsentligt værre. Dette er i kontrast til tiden i et regionaltog, hvor kort tid i toget
har en marginalt stor negativ nytte, mens den marginale negative nytte falder væsentligt
jo længere tid passageren er i toget.

Den fjerde artikel har fokus på hvordan passagerer vælger ruter givet hvilke stationstyper
der besøges undervejs. Artiklen gør i første omgang rede for, hvilke stationskarakteristika
som udenlandske studier fundet har en stor påvirkning på passagerernes rutevalg. Ud
af disse bliver tre karakteristika udvalgt, som formodes at have indvirkning på danske
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passagerers rutevalg. Analysen viser, at rutevalgssandsynligheden påvirkes positivt af,
hvorvidt der på en af skiftestationerne er en lille butik eller lignende, samt hvorvidt der
er rulletrapper, der kan lette gangturen i skiftet. Ydermere er det også signifikant, at
passagerer fravælger stationer, hvor det er svært at orientere sig i skiftet. Det er således
muligt at estimere separate skiftestraffe for stationer med forskellige karakteristika. Det
bedst mulige skifte har således en straf svarende til 5,4 minutter i bus, hvorimod det
værste er sammenlignligt med 12,1 minutter i bus. Disse resultater er vigtige, da de
kan bruges til at kvantificere effekten på passagerflows af stationsopgraderinger eller nye
designs. Sådanne mindre ændringer kan vise sig at være mere omkostningseffektive end
sporopgraderinger eller andre forbedringer af jernbanenettet, og samtidig give en bedre
oplevelse til passagererne.

Den sidste del af afhandlingen, Del 3, omhandler tre analyser baseret på rejsekortdata
samt et system som ligner Rejsekortet i Hong Kong. Rejsekortdata dækker efterhånden
flere og flere rejser i den kollektive transport, og datamængden er både god i forhold til
analyser af passagerernes rejsemønstre over længere perioder samt for detaljerede studier
af enkeltdele af rejserne. Desuden kan forskelle i passagerernes adfærd analyseres med en
høj detaljegrad.

Den femte artikel omhandler sporarbejdet på S-togsbanen mellem Valby og Frederikssund
i sommeren 2018. Rejsekortdata benyttes til at analysere passagerernes rejsemønstre både
før og efter den tre måneder lange lukning af banen, hvor togbusser servicerede linjen med
tilhørende forlængelser af rejsetiderne. Passagererne inddeles i forskellige grupper baseret
på deres rejsemønstre før og efter sporarbejdet. Da passagerenes rejsemønstre ofte ændrer
sig selvom der ikke er sporarbejder, sammenlignes ændringerne på banen til Frederikssund
med en tilsvarende bane til Køge, som ikke havde nogen større sporarbejder. Der ses ingen
større forskel mellem banerne i ændringen fra forår til efterår for passagerne med en høj
rejsefrekvens i foråret. Dog sker der en nedgang i passagertallet på Frederikssundsbanen
efter sporarbejdet, når der sammenlignes med banen til Køge. Dette skyldes til dels, at der
ikke tiltrækkes lige så mange frekvente rejsende til Frederikssundsbanen henover sommer.
Ved at analysere de daglige rejsemønstre for passagerer der pendlede på Frederikssunds-
banen før sporarbejdet, kan det konkluderes at 17% næsten stoppede med at benytte
kollektiv transport under sporarbejdet, men returnerede til et frekvent rejsemønster efter
sporarbejdet. Dette indikerer, at nogle passagerer faktisk tilvælger kollektiv transport,
selvom de ikke er tvunget til det.

Den sjette artikel benytter også data fra Rejsekortet, men i stedet for at fokusere på
passagerernes rejsemønstre, fokuseres der på at estimere gangtiderne, der er nødvendige
for skift mellem bus og tog. Denne tid er vigtig at kende, så gode korrespondancer
mellem bus og tog kan skabe et endnu mere attraktivt kollektivt transportsystem. Ved at
kombinere data fra Rejsekortet med data fra GPS-lokationer for busserne, så kan tiden,
fra bussen ankom til passageren tjekkede ind på perronen, relativt simpelt beregnes. Dog
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er de rå data behæftet med store bias, da passagerer i nogle tilfælde venter i ventesalen
før de går ned på perronen eller ligefrem benytter muligheden for at shoppe i løbet af
skiftet. Derfor benyttes en maskinlæringsmodel til at klassificere de passagerer, som gik
direkte ned til perronen i forhold til de passagerer, som foretog sig noget andet under
skiftet. Dermed kan der opnås relativt sikre estimationer af gangtidsfordelingen for de
skiftende passagerer, som kan benyttes i stedet for tidskrævende manuelle processer med
at definere gangtiden fra et busstoppested til perronen. Modellen benyttes til at estimere
gangtidsfordelinger for 129 stationer i Østdanmark, og resultaterne heraf viser, at der er
en større andel af passagerer med aktivtet, når der findes flere butikker i stationsområdet.

Den sidste artikel i afhandlingen, baserer sig på data fra metroen i Hong Kong, som i
myldretidsperioderne har så mange passagerer, at det væsentligt overskrider den kapacitet
der er i systemet. Én specifik situation, som udløses af den enorme trængsel i systemet,
analyseres i artiklen. I situationen vælger nogle passagerer at køre forbi den station, hvor
de under ikke trængselspåvirkede omstændigheder ville skifte. Derefter skifter de på en
anden station længere nede af linjen og kører tilbage forbi den normale skiftestation. Dette
kaldes ’Reverse routing’ og sker udelukkende fordi passagerer kan risikere, at de ikke kan
komme med de første 3-4 tog der afgår fra stationen på grund af trængsel. Der findes i
artiklen ingen endelig konklusion på omfanget af denne ’Reverse routing. Et interessant
resultat er dog, at de passagerer som skal rejse længst efter skiftet har en væsentlig anden
adfærd, end dem som kun skal rejse kort efter skiftet. Dette kunne indikere, at nogle af
disse passagerer, som skal langt efter skiftet, vælger at benytte sig af ’Reverse routing’
for at opnå en højere sandsynlighed for en siddeplads eller blot et bedre sted at stå. Dette
kan også hænge sammen med de stigende marginale tidsværdier, som blev fundet for
metropassagerer i den tredje artikel. Artiklen belyser også kort, hvorvidt der ses lignende
eksempler på specielle rutevalg i den danske Metro, men ud fra rejsekortdata kan det
hurtigt konkluderes, at trængselsniveauet ikke er højt nok i Metroen, til at dette sker.

Sammenfattende bidrager denne ph.d.-afhandling til fire hovedpunkter: i) udvikling af
nye og detaljerede modeller for evalueringen af serviceniveauet af forskellige køreplanss-
cenarier med frekvens- og køreplansbaserede linjer, ii) afdækning og kvantificering af
den signifikante negative betydning af skift for rejser med den kollektive transport, samt
analyser af hvilke stationskarakteristika der kan sænke denne negative påvirkning, iii) at
vise hvorledes den enorme mængde af data fra Rejsekortet kan benyttes til at analysere
passageradfærd over tid, samt gangtider på skiftestation, og iv) at analysere trængslens ef-
fekt på rutevalg i metronetværk. Samlet set dækker afhandlingen bredt modelleringen og
analyser af passageradfærd i kollektiv transport, og bidrager med yderligere viden til den
allerede eksisterende literatur. Flere nye metoder er udviklet i ph.d.’en, især ift. brugen
af Rejsekortdata, og dette kan forhåbentlig benyttes som springbræt i fremtidige studier
med fokus på kollektiv transport.
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1 Introduction

This chapter is an introduction to the PhD thesis. The chapter first outlines the overall
motivation in Section 1.1 and is followed by the aim of the thesis in Section 1.2, which
divides the thesis into three parts. Each part presents the aim and main contributions of
the part and associated papers. Finally, the chapter outlines the remainder of the thesis
in Section 1.3.

1.1 Background

The transport sector accounts for 23 % of the green house gas emissions. To lower this
share, United Nations are trying to lead a change through the sustainable development
goals, away from car usage to more use of sustainable transport modes, i.e. walking,
biking and public transport (United Nations, 2020). The goal is to lower the emissions
from the transport sector, and the current COVID-19 crisis has shown that a reduction
is possible. For example, local emissions were lowered with around 25 % in the city of
Copenhagen due to, primarily, less car traffic (Ellermann and Hertel, 2020).

In metropolitan areas like Greater Copenhagen the problem of emissions is not the only
one. According to The Government Commision on Congestion (2013) the number of
hours wasted in car traffic will increase over the coming years, and lead to an extra
18.3 million hours per year spent in traffic in 2025 due to congestion. Another report
by Region Hovedstaden (2019) estimates, that the number of trips for all modes will
increase by 20 % in 2035 compared to the current number of trips. If these trips are
mainly taken by car, this will lead to major congestion in the road network, which can
not be expanded due to land use restrictions. Thus, the strategy for the future transport
system in Greater Copenhagen is focused on an increase in the use of sustainable transport
modes and especially a more effective and attractive public transport system (Region
Hovedstaden, 2019). The development of a more attractive public transport system in
Greater Copenhagen requires more knowledge on passenger behaviour, which is the overall
topic of this PhD project.

Public transport has historically been a relatively data-poor sector, where counts of pas-
sengers were manual and with very little knowledge on the full trip chain from origin to
destination (Kurauchi and Schmöcker, 2017). But with the development of automated
fare collection systems based on smart cards (AFC), automatic vehicle location data (AVL)
and automatic passenger count systems (APC), the public transport sector has in recent
years become one of the most data-rich sectors. Especially the implementation of smart
card systems has enabled public transport agencies to gain more detailed information
on the actual travel patterns of the passengers, due to the continuous stream of data
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generated (Pelletier et al., 2011; Faroqi et al., 2018). Smart card data has in the recent
years been used to examine travel behaviour for several purposes, for example origin to
destination (OD) matrix estimation (Alsger et al., 2016), modelling passenger waiting
times (Ingvardson et al., 2018), and analysis of year-to-year changes for passengers in
public transport (Briand et al., 2017).

While the literature on the use of smart card data to analyse passenger route choice
behaviour is growing (see e.g. Jánošíková et al. (2014), Shelat et al. (2019) or Zhao et al.
(2017)), it is difficult to get a complete picture on the full journey from door to door, as
smart card data only records the movements inside the public transport system. Smart
card data also typically lacks information about the individual socio-demographic profile
of passengers and the purpose of the trip. As such, other data sources for including the
access and egress to the system are needed. This can for example be data from online
travel surveys, as described in Anderson (2013), which provides more details on access
and egress to the transport system as well as the trip purpose. Such data can reveal
passenger route choice preferences with a high degree of detail, however, only relatively
small data samples can be collected compared to data from smart cards.

Having knowledge of the route choice preferences of passengers is important, but to
evaluate a given timetable and for predicting the impact of potential infrastructure in-
vestments, the preferences need to be used as an input to passenger assignment models.
Such models are a central part of feasibility studies of public transport investments and
are also used to assess the effects of timetable changes. The timetables and public trans-
port networks in metropolitan areas are typically a mix of schedule-based services (e.g.
local busses and regional trains) with detailed timetables and frequency-based services
(e.g. metro and high-frequency busses) where only the headway between two vehicles
on a line is known by the passenger (Ingvardson et al., 2018). Although such mixed
systems have existed for a long time, the assignment models have only considered either
schedule-based or frequency-based services in one model (Liu et al., 2010). The traffic
planner analysing future timetables of a system is therefore required to make a choice
between a schedule-based or a frequency-based approach (Gentile and Noekel, 2016). A
choice of a frequency-based model can be problematic, as connections between services
are typically not described explicitly in these models, while on the other hand a choice of a
schedule-based model requires the planner to make several decisions on specific departure
times for all lines.

This PhD thesis contributes to the development and application of assignment models for
networks with co-existing schedule- and frequency-based services, and analyses the route
choice preferences of passengers based on a dataset with a high level of details of the
chosen routes. In addition, the thesis develops and applies methodologies using smart
card data for studying i) the impacts of long-term service disruptions on passenger travel
behaviour, ii) the walking times at transfer locations, and iii) the impact of crowding on
passenger route choice in congested metro systems.
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1.2 Aim and main contributions

The main ambition of this thesis is to develop and apply methodologies for better un-
derstanding and representing passengers’ travel behaviour in public transport systems in
metropolitan areas. The thesis is split into three parts. The first part focuses on devel-
opment of assignment methodologies for analysis of the level-of-service provided to the
passengers. The second part focuses on estimation of public transport passengers’ route
choice preferences, which are an important input for assignment models. The final part
focuses on using the increasingly available data from smart card systems for different
types of analysis of actual revealed behaviour of the passengers. The work is presented
across seven papers categorised into one of the three research areas, that each constitutes
a part of the thesis:

I. Assignment models for mixed schedule- and frequency-based public transport systems

II. Route choice models for mixed schedule- and frequency-based public transport systems

III. Studies on public transport passenger behaviour based on smart card data

The motivation and aim of each part and their associated papers are presented in the
following subsections.

1.2.1 Assignment models for mixed schedule- and frequency-based
public transport systems

Part I of the thesis focuses on development of new assignment models for public transport
systems with co-existing schedule- and frequency-based services. Such models are needed
for assessing which routes passengers choose in the public transport network. The com-
bination of having both schedule- and frequency-based services in one system requires
advanced modelling techniques for handling transfers between the two types of services.
The advanced models are especially needed to avoid that the traffic planner must de-
cide between a schedule-based or frequency-based model representation, when in fact the
network is a mix of both types of services (Gentile and Noekel, 2016).

The first study in this part, An assignment model for public transport networks with both
schedule- and frequency-based services, published in EURO Journal on Transportation
and Logistics 8, 2019 (Paper 1) proposes a novel assignment methodology for mixed
schedule- and frequency-based public transport systems. The assignment of passengers
follow a two-step procedure: firstly, a choice set is generated using a modification of
the event-dominance algorithm developed by Florian (1999), which generates alternative
routes through the network where all alternative routes can reach the destination within
a time threshold compared to the fastest possible route; secondly, passengers are dis-
tributed across alternatives using a logit-based discrete choice model given the utility of
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the alternatives (Train, 2002). The model is a first approach for integrated modelling of
both schedule- and frequency-based lines in a unified model. Delays of schedule-based
services are not taken into account, however, the headway for frequency-based services
follows a binomial distribution. The main contribution of the paper is the inclusion of
the probabilities of different arrival times to the destination, accounting for the risk of
missing transfers from frequency- to schedule-based services.

The second paper, Conditional passenger travel time distributions in mixed schedule-
and frequency-based public transport networks using Markov chains, under review at
Transportation Research Part B: Methodological (Paper 2), develops a methodology for
calculation of the distribution of travel time between origins and destinations in public
transport networks with both schedule- and frequency-based services present. Usually,
calculations of such travel time distributions for any public transport network require
simulation models, which can keep track of different realisations of delays for busses and
trains. However, with the proposed approach these distributions are obtained analytically
and therefore with a higher degree of stability in the results. Few studies have previously
used Markov chains for assigning passengers to different routes, and those who have
are only considering frequency-based networks (Bell et al., 2002; Kurauchi, Bell, et al.,
2003; Schmöcker et al., 2008). The developed methodology, however, takes as input both
schedule- and frequency-based lines where both have stochastic travel times between stops.
Markov chains are used for keeping track of the probability of reaching a connection
at transfer stations. Efficient matrix calculations are used to calculate the travel time
distribution from origin to destination, and more importantly, the model also enables
calculations of conditional travel times based on the use of specific lines and combination
of lines. As such, the novel methodology can avoid time consuming simulations. It
contributes to the existing literature by providing a tool for detailed route choice and
travel time analyses mixed schedule- and frequency-based public transport systems.

1.2.2 Route choice models for mixed schedule- and frequency-based
public transport systems

Part II examines revealed route choices of passengers in public transport reported by
passengers in a continuously collected travel survey in Denmark (Center for Transport
Analytics DTU, 2020). The reported routes, taken by passengers in the public transport
network, include detailed information on origin, destination, lines used, and partial infor-
mation on transfer locations. The dataset used in this part of the thesis is a sub-sample of
the routes matched in Anderson (2013). The dataset includes around 5,000 trips, which
all have origins and destinations in the Greater Copenhagen area. For both studies, a
logit-based discrete choice model is used for estimating the route choice preferences of
the passengers (Train, 2002).
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The first paper in this part, The influence of frequency on route choice in mixed schedule-
and frequency-based public transport systems - The case of the Greater Copenhagen
Area, in Proceedings of the 14th Conference on Advanced Systems in Public Transport
(CASPT2018) (Paper 3), aims at discovering differences in waiting preferences for ei-
ther schedule- or frequency-based services, and also testing different specifications of
the marginal utility of in-vehicle times. The idea for testing differences in waiting time
preferences stems from estimations in Ingvardson et al. (2018), where it was found that
passengers to a certain extent time their arrival to schedule-based services, while they
arrive randomly for frequency-based services. The aim is thus to estimate separate pa-
rameters for the two ”types” of waiting times, to test if, for example, the uncertainty of
not knowing the exact departure time of frequency-based services affect the passengers’
preferences. To correct for the large difference in headway of the two types of services, a
variable covering the hidden waiting time of the trip (i.e. time between the passenger can
take the same alternative route) is included in the model. For testing possible differences
in marginal utility (due to changes in marginal value of time), Box-Cox variables are in-
troduced for each sub-mode. The paper contributes to the vast amount of route choice
preference studies in the literature by detailing some of the important aspects of waiting
time and in-vehicle time, which have not previously been estimated in such detail using a
large dataset of observed door-to-door routes.
The second paper utilising the detailed dataset is, Relevance of detailed transfer attributes
in route choice models for public transport passengers, re-submitted after second round
of review to Transportation Research Part A: Policy and Practice (Paper 4). The paper
firstly reviews relevant attributes of transfer stations, which can affect passengers’ route
choice. These attributes are then rated according to how they can be measured and
whether they are relevant for passengers in a Danish context. Three transfer station
characteristics are selected and included in the detailed route choice model; i) availability
of escalators, ii) availability of a shop, and finally, iii) ease of wayfinding. As outlined
in Iseki and Taylor (2009), not all transfers are weighted equally, and as such a general
transfer penalty should be enriched with knowledge on the type of transfer. The study
contributes to the limited number of studies focusing on station characteristics in route
choice analysis, such as Raveau et al. (2011) and Garcia-Martinez et al. (2018). The
study is the first to use such an extensive and detailed dataset of revealed passenger
route choice for disentangling the general transfer penalty, which can be used to further
enhance for example the assignment models presented in Part I.

1.2.3 Studies on public transport passenger behaviour based on smart
card data

The final part, Part III, consists of three studies, which have in common that they are all
based on data from smart cards (AFC data). Smart card data have been used for many
purposes (Pelletier et al., 2011), but this part presents two innovative use cases of smart
card data along with a route choice analysis based on smart card data.
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The first paper, Impacts of long-term service disruptions on passenger travel behaviour:
A smart card analysis from the Greater Copenhagen area, submitted to Transportation
Research Part C: Emerging Technologies (Paper 5) presents an innovative approach to
measure the impact of long-term planned disruptions on passenger travel behaviour. To
isolate the effect of a three month track closure of a suburban train line in the Greater
Copenhagen, passengers on the disrupted track segment are compared to passengers on
a comparable track section, which did not have any major disruptions. Data from the
Danish smart card - Rejsekort - is used for the study, which enables a comprehensive
longitudinal analysis. The passengers are clustered based on three travel characteristics
using k-means clustering; share of active weeks in the period, the number of active days
during active weeks, and the share of trips taking place during weekends. A subsequent
analysis, based on hierarchical clustering for active travel days for the most regular pas-
sengers, is used to analyse the specific changes for these passengers during and after
the disruption. The proposed approach overcomes typical issues of analyses of the effect
of long-term disruptions by explicitly considering behavioural changes of passengers over
time. Normally, such studies focus on the overall changes in travel demand (Yap et al.,
2018; Nazem et al., 2018) or use small before and after surveys (Zhu et al., 2017). How-
ever, this neglects that individual passenger travel behaviour in public transport changes
significantly over longer time spans (Deschaintres et al., 2019; Egu and Bonnel, 2020).

The second paper, Estimation of transfer walking time distribution in multimodal pub-
lic transport systems based on smart card data, submitted to Transportation Research
Part C: Emerging Technologies (Paper 6), takes advantage of the high degree of details
when passengers use Rejsekort, in order to analyse the necessary walking times needed at
transfers. Compared to most other systems, it is unique in the way that passengers must
tap-in at each boarding location and must tap-out at the final destination. As such, it is
relatively simple to fuse transactions in smart card data with AVL data from the busses,
and thereby extract the time from when the passenger arrived to the station and sub-
sequently tapped-in at the platform (where validators are placed on stations). However,
the raw data also includes a share of passengers who may be doing an activity during the
transfer such as shopping, buying coffee, etc. To isolate the time needed for walking, a
hierarchical Bayesian mixture model is estimated for 129 stations and even more combina-
tions of bus stops and validators (platforms). It includes one distribution for passengers
walking directly and another distribution for passengers having an activity during the
transfer. The paper is the first to analyse the walking times in such detail based on smart
card data, where no information of whether a passenger did an activity is present. The
paper contributes to the literature with an innovative approach for the estimation of the
needed walking times, known to vary significantly due to passengers choosing different
paths through the station (Daamen, Bovy, et al., 2006), general passenger walking speed
heterogeneity (Daamen and Hoogendoorn, 2006), and distance walked (Du et al., 2009).
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The final paper in this part and the thesis, A note on unusual path choice behavior caused
by congestion in metro systems, Working paper (Paper 7), regards the effects of crowding
on route choice. Crowding is known to affect passengers’ route choice in congested metro
systems (Kim et al., 2015; Zhang et al., 2018), and in the particular case study in the
paper, the Metro in Hong Kong (MTR), passengers experience excessive crowding during
peak hours. The paper investigates the specific route choice problem, reverse routing.
This behaviour occurs when passengers who need to transfer between two lines choose to
stay in the train and pass the normal transfer station. The passenger then transfers at a
station further down the line, before returning and bypassing the normal transfer station.
The concept is related to the behaviour of travelling backwards (Tirachini et al., 2016;
Yu et al., 2020), where passengers board a train in the ”wrong” direction and turn back
at a station further down the line, to again bypass the origin station. However, in the
case of reverse routing, there is no additional transfer for the passengers doing so, and
this makes it more attractive to do in cases with severe crowding at the normal transfer
station. The paper uses a passenger-to-train assignment model based on the exit time
at the destination to isolate the time from origin to departure from the normal transfer
station. This enables the use of a multiple linear regression model for comparing the travel
time of passengers, which can indicate who are using the option of reverse routing. The
study also briefly covers the crowding situation in the Copenhagen Metro, Denmark, by
using data from Rejsekort, to shed light on whether unusual path choice is also occurring
in Denmark. No previous studies have focused on analysis of the unusual reverse routing
path choice behaviour. While the problem is very specific to few congested networks,
e.g. the metro systems in Hong Kong, Beijing and Santiago, the results contribute to
knowledge on differences in passenger travel behaviour for excessively crowded metro
systems.

1.3 Outline

With the motivation and aim for the PhD thesis defined, the remainder of the thesis
includes the papers for the three parts and a concluding chapter summarising the main
findings. Part I contains Chapters 2-3, which presents novel methodologies for analysing
the level of service in public transport in Papers 1 and 2. Part II contains Chapters 4-5
with a focus on analysing passenger route choice preferences based on observed routes
from door to door (Papers 3 and 4). The final part, Part III, including Papers 5, 6 and
7, presents new and innovative uses of smart card data and is divided in Chapters 6-8.
Finally, Chapter 9 sums up the findings and outlines the potential policy impacts of the
developed methodologies and outcomes of the analyses.
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Abstract
This paper presents an assignment modeling framework for public transport net-
works with co-existing schedule- and frequency-based services. The paper develops, 
applies and discusses a joint model, which aims at representing the behavior of pas-
sengers as realistically as possible. The model consists of a choice set generation 
phase followed by a multinomial logit route choice model and assignment of flow 
to the generated alternatives. The choice set generation uses an event dominance 
principle to exclude alternatives with costs above a certain cost threshold. Further-
more, a heuristic for aggregating overlapping lines is proposed. The results from 
applying the model to a case study in the Greater Copenhagen Area show that the 
level of service obtained in the unified network model of mixed services is placed 
between the level of service for strictly schedule-based and strictly frequency-based 
networks. The results also show that providing timetable information to the passen-
gers improve their utility function as compared to only providing information on 
frequencies.
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1 Introduction

Urban public transport networks are by their nature often complex with many 
lines and alternative routes through the network. When passengers make their 
route choice in a public transport network, they seldom depart at the minute they 
desire, but must wait until the first possible departure on the considered line. But 
how do passengers plan their route, if they have a combination of high- and low-
frequency services, where some routes from a passenger perspective are without 
a specific timetable and running as a frequency-based (FB) service, while other 
services run schedule-based (SB) with runs at specific times? Ingvardson et  al. 
(2018) showed that the distribution of passenger arrivals to the first station on 
their trip differs significantly for schedule- and frequency-based services with 
completely random arrivals to frequency-based services and more timed arriv-
als for schedule-based services. This behavior should be taken into account when 
considering the assignment of passengers in networks with co-existing sched-
ule- and frequency-based services which are found in most metropolitan regions 
in Europe. For example, the network in the Greater Copenhagen area has a mix 
of frequency-based services such as high-frequency buses and metro lines and 
schedule-based services such as the suburban trains and local bus lines.

In the field of public transport assignment models, there have been two main 
ways to represent the supply in the model, frequency based or schedule based. 
The supply side started as being described with frequencies, implying that the 
passenger would assume that a line would run with a given headway, but with-
out knowing the exact timetables (Nökel and Wekeck 2007). This allows the path 
searches to be made in a static model with no time dimension. Later, the models 
developed into schedule-based models where each run on a line is included with 
the times when it passes different stops on the route (see, for example, Wilson 
and Nuzzolo (2009) for examples of schedule-based models). The schedule-based 
models allowed the modeler to better represent coordination between lines and 
thereby describing the passengers’ route choice in a more detailed way (see Liu 
et al. (2010) for a comprehensive overview of different modeling techniques for 
public transport assignment).

The advantage of a schedule-based model is that coordination between lines 
is well defined. Representing this realistically is particularly important in low-
frequency systems, as waiting times between corresponding lines might be a sig-
nificant part of the cost of a route. But schedule-based models require more data 
input and more calculation time because the model should run for several pos-
sible departure times. The frequency-based models are on the other hand much 
simpler and require less input and calculation time. Frequency-based models 
work well with high-frequency services, where the passenger might not consult 
the public timetable (if it is available), but if there are low-frequency services in 
the network, it is very difficult to estimate the transfer times between two lines, 
and thereby, if a route including this transfer is attractive.

As mentioned in Gentile and Noekel (2016, chap. 6), there exists currently 
no framework to include these two different ways of representing the supply in 
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the same model. They propose to take a decision on whether the network is bet-
ter described with schedules or frequencies and choose the best option, since no 
simple way of making a combined model is available. The proposal if choos-
ing the frequency-based approach is that one should assume truncated waiting 
time distributions for schedule-based services. But this is an assumption which 
requires many decisions on how the truncated distributions should be defined and 
for which services the passenger behavior should be treated as schedule-based 
behavior. Another proposal in Gentile and Noekel (2016, chap. 6) is to rely on a 
schedule-based network and incorporate passenger cost functions for frequency-
based lines, while still keeping a completely schedule-based network. This is a 
possible solution for modeling the current system, but when evaluating changes 
in the public transport network, it requires the modeler to take decisions on the 
exact departure times of the line which might influence the transfer times to cor-
responding lines (Cascetta and Coppola 2016). A unified model will be able to 
relieve some of the work for the modeler and possibly results in more stable fore-
casts, as the level of service is not relying so heavily on how the modeler defines 
the specific runs of the public transport services.

This paper proposes a new approach for solving the assignment problem in 
mixed schedule- and frequency-based public transport networks. The remainder of 
the paper is organized in the following way: Sect. 2 describes the developed assign-
ment framework; Sect. 3 describes the case study network and presents the results 
of different tests of the framework; Sect. 4 discusses the results and some further 
improvements that could be made; and finally, Sect. 5 concludes the main findings 
of the paper.

2  Assignment framework

This section first lists some general assumptions of the model and describes the dif-
ferent transfer possibilities in a mixed schedule- and frequency-based network. Then, 
the network structure used in the model is presented followed by the two phases 
of the model: first, a choice set generation phase, where different alternative routes 
through the network are generated; second, a flow allocation phase to assign flow to 
the generated alternatives. Both of these phases are described in detail in this section 
and followed by a description of a heuristic for considering frequency aggregation 
of overlapping services. The notation used in the model is summarized in Table 1.

2.1  General assumptions

The framework is governed by a set of general assumptions, which make it pos-
sible to assign the passengers on a mixed schedule- and frequency-based network. 
The assumptions are stated and explained below. Some of the assumptions can be 
changed if necessary, and some of these possible changes are discussed in Sect. 4.
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1. The public transport network is given as input to the model including exact runs 
and departures for schedule-based services and the headways for frequency-based 
services in whole minutes. No coordination between frequency-based lines and 
any other line is assumed.

2. The model considers a day with normal operations and is, therefore, not applica-
ble for days with major incidents in the network. For this reason, the headways 
for frequency-based services are assumed to be constant. Schedule-based services 
are considered as being deterministic and no delays are assumed for these.

3. The framework is developed to distribute a group of passengers across alterna-
tives between an origin and a destination, and the paths are predetermined at the 
origin and no real-time information on services is assumed.

4. The flow of passengers at a given preferred departure time (PDT) is considered 
being exogenous.

Table 1  Table of notation

Symbol Description

q Hidden waiting time before passenger leave the origin and go to the first stop
a Access/egress time between respective origin and first stop and last stop and destination
s In-vehicle time for S-train
b In-vehicle time for bus
o Walking time between stops
m Transfer penalty
p Success parameter describing the waiting time for FB services
r A specific route from origin to destination following the same lines and stop sequence
n Individual passenger
Rn Bundle of routes in choice set for passenger n
� Threshold parameter
PDT Preferred departure time
e ∈ E Events (physical movements) in the network graph
s(e) Start time of an event e
t(e) Time duration of an event e (either a, s, b or o)
T(e) End time of an event e
w(e) Waiting time for an event e
Pt(e) Probability of reaching event e when transferring
Pr(e) Probability of reaching specific event e at the transfer on route r
Pa(e) Probability of actualizing the specific event e on route r
Pu(e) Probability that event e can be reached on route r
h(e) Headway of line (only FB services)
c(e) Cost of event e
C(e) Cumulative cost at the end of event e following a specific sequence of events until event e
C(r) Total cost of route r

Modelling passenger behaviour in mixed schedule- and frequency-based public transport systems 17
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5. The public transport network is considered to be cyclic around the day, so a late 
departure at the end of the day can be completed into the next day. This means 
that all relations will have a viable path if a viable path exists throughout the day.

2.2  Network structure

The network is a dynamic graph with edges e ∈ E , which is dynamically built up 
along the graph search. The events e in the algorithm are meant as spatial move-
ments in the network, which in this paper are the following:

• Access or egress network on connectors
• Ride on line (schedule or frequency based)
• Walking at transfers between stops

The time of an event t(e) is deterministic for all of the events since no delays are 
assumed in the model. For all movements in vehicles, a concept similar to the 
route section method used in de Cea and Fernández (1993) is proposed. de Cea and 
Fernández (1993) establish route sections between two nodes on a line, which are 
not necessarily consecutive, to allow aggregation of common lines between stops. 
The purpose of doing this in de Cea and Fernández (1993) is to model congestion 
in public transport and model the waiting times for the aggregated lines and not just 
the individual lines. This paper uses the term “direct arcs”, which are also route 
sections between nodes which are not necessarily consecutive on a line. Direct arcs 
are created from a stop to all following stops on the line for both schedule- and fre-
quency-based services as shown in Fig. 1. This allows for a simpler route genera-
tion, as a route is then defined as a set of direct arcs, where origin and destination 
are, respectively, the first and final node, and all other nodes in the route are points 
where the passenger transfers between walking and riding edges or directly between 

Fig. 1  Description of unfolding of direct arcs from one stop to all following stops on a single line
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riding edges. The direct arcs also have another important usage, as they in Sect. 2.6 
are used for aggregating common lines.

The costs of the network arcs are not measured in the unit of time solely. Many 
studies have shown that passengers do not weight the different time components in 
a trip in the same way (see, i.e., Anderson et al. (2014) for an overview of some of 
the estimated parameters in the literature). This paper applies the parameters used in 
the Danish National Transport Model1 in the choice set generation and subsequent 
flow allocation, and Table 2 lists the route choice parameters for leisure trips from 
the Danish National Transport Model. These parameters are close to the parame-
ters estimated in Anderson et al. (2014, Table 5), where a path size correction logit 
model was estimated. This paper does not include the PSC factor in the allocation of 
flow, but it is considered that the parameters in Table 2 will be sufficient to prove the 
ideas behind a unified assignment model.

The cost of an event c(e) is the sum of all the possible components for that event 
multiplied by the parameter for the given component, i.e.,

2.3  Definition of waiting times and transfer probabilities

When considering a public transport network with both schedule- and frequency-based 
services, there is a need to define the waiting times and the different transfer probabili-
ties between the service types. Given that the model should only be used for strategic 
planning and no real-time information is included, a choice was made to rely on a dis-
cretization of the time unit to integers, since timetables for schedule-based services are 
usually discretized to whole minutes. As passengers using frequency-based services are 
not aware of the specific departure time (and thereby arrival time) of a specific line, 
the waiting time for frequency-based services must be defined. The waiting time of a 
frequency-based service is naturally depending on the headway of a line, and in the lit-
erature, exponential distributions and Poisson distributions have been used to describe 

(1)c(e) = q ∗ �q + a ∗ �a + s ∗ �s + b ∗ �b + w ∗ �w + o ∗ �o + m ∗ �m

Table 2  Route cost parameters 
used in the modeling

Parameter Symbol Estimate Unit

Hidden wait (Zone wait) �q − 0.12 min.
Access/egress �a − 0.21 min.
In-vehicle S-train �s − 0.15 min.
In-vehicle bus �b − 0.19 min.
Waiting �w − 0.20 min.
Walking �o − 0.21 min.
Transfer penalty �m − 1.05 nb. of transfers

1 The parameters are based on parameters from the Danish National Transport Model (http://www.lands 
trafi kmode llen.dk/), which have been estimated to fit the counts in the National Transport Model, where 
the case study area in Sect. 3 is a subnetwork of the full national network.
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the headways between vehicles and thereby also the passenger waiting times for fre-
quency-based services (Chriqui and Robillard 1975; Schmöcker et al. 2013). However, 
both of these distributions do not have an upper bound and is, therefore, not applicable 
to describe a system with constant headways. The assumption of constant headways 
with the passenger unaware of the specific departure time of a frequency-based service 
would naturally lead to the use of a discrete uniform distribution to describe the waiting 
time for these services. However, as will be discussed further down in this subsection, 
the use of discrete uniform distributions is not possible, and therefore, a choice was 
made to describe the waiting time for a frequency-based service by a binomial distribu-
tion. The binomial distribution takes two inputs: the maximum number of trials and the 
probability of success. In the case when describing waiting times for frequency-based 
services, the parameters of the binomial distribution is then the headway of the line 
and a parameter describing the probability of success, i.e., the mean waiting time, such 
that w(e) ∼ B(h(e), p), where B denotes the binomial distribution, i.e., the probability 
of waiting f minutes is

where h(e) is the headway of the frequency-based line and p is the parameter con-
trolling the distribution of the waiting time. Since the passengers are unaware of the 
specific departure time of the frequency-based service, the parameter p is set to 0.5, 
as the mean of the binomial distribution is h(e) ∗ p and thereby half the headway as 
also shown in Ingvardson et al. (2018).

Given that the system is assumed to be completely reliable, meaning that sched-
ule-based services run according to their timetable and frequency-based services 
run with constant headways, four waiting time scenarios are identified for transfers 
between schedule- and frequency-based services, as listed in Table 3. Considering 
these waiting time scenarios, we can write up the waiting times for the different 
cases in the following way:

where T(ek) describes the arrival time to a node using the waiting time and duration 
of the event and is defined as follows:

(2)P
(

w(e) = f
)

=

(

h(e)

f

)

pf (1 − p)h(e)−f ,

(3)w(ek) =

{

s(ek) − T(ek−1), cases 1&3

B(h(ek), p), cases 2&4

(4)T(ek) = T(ek−1) + w(ek) + t(ek)

Table 3  Waiting times for transfers between schedule- and frequency-based services

Transfer from/to (A) SB line (B) FB line

(A) SB line The waiting time is deterministic  
(Case 1)

Waiting time follows statistical  
distribution (Case 2)

(B) FB line A probability to catch next service  
and for this an associated waiting  
time (Case 3)

Waiting time follows statistical  
distribution (Case 4)
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Given this arrival time, the probability of reaching an event when transferring from 
another line Pt(ek) is given as

where s(ek) is the departure time of the service. This results in a situation, where 
transfers between schedule-based services (case 1) are certain as long as the depar-
ture time is the same or later as the arrival time of the previous schedule-based 
event. The probability of reaching a frequency-based event from a previous event, 
no matter if the previous event is schedule or frequency based (cases 2 & 4), is 
always 1. However, the waiting time for the frequency-based service is not known. 
The arrival time T(ek) of an event ek in case 3 is given by Eq. 4, where the waiting 
time follows the binomial distribution. In case 4, with transfers between consecutive 
frequency-based services, the arrival time T(ek) of event ek is not only dependent of 
the waiting time w(ek) but also the waiting time for the previous event w(ek−1) . To 
determine the arrival time T(ek) of event ek , it is necessary to sum the waiting times 
of both events. The sum of distributions is also known as a convolution (Olds 1952). 
A route can follow several consecutive frequency-based lines, and it is, therefore, 
necessary to use the convolution of the waiting times. The choice of binomial distri-
bution to describe the waiting times stems from the need for the convolution of sev-
eral distributions. Convolutions of more than two discrete uniform distributions do 
not have any analytic closed-form expression; however, the convolution of multiple 
binomial distributions has a closed form. When several consecutive frequency-based 
lines are followed on a route, the arrival time at the end of event ek can, therefore, be 
described as follows:

where j describes the number of consecutive frequency-based lines taken prior to 
event ek.

The final case of the transfer scenarios is for transfers from a frequency- to a 
schedule-based service (case 3). In this case, the passenger is, as mentioned above, 
unaware of the exact arrival time of the frequency-based service, and as such, there 
is a probability to catch the first departure of the schedule-based line Pt(ek1) (here-
after called a candidate) and for this an associated transfer time. If the first possible 
run on the schedule-based line can not be reached with certainty, multiple runs of 
the schedule-based line must be taken into account when determining the expected 
waiting time for the schedule-based line at the transfer. To describe this probabil-
ity of reaching a specific candidate i of the schedule-based line, we use the symbol 

(5)Pt(ek) = P
(

T(ek−1) ≤ s(ek)
)

(6)

T(ek) ∼ T(ek−j−1) +

j
∑

l=0

w(ek−l) +

j
∑

l=0

t(ek−l)

= T(ek−j−1) +

j
∑

l=0

B(h(ek−l), p) +

j
∑

l=0

t(ek−l)

= T(ek−j−1) + B(

j
∑

l=0

h(ek−l), p) +

j
∑

l=0

t(ek−l), 0 < p < 1 h(ek−l) = 1, 2,…
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Pr(eki) , where the first candidate have Pr(ek1) = Pt(ek1) , while the second candidate 
ek2 have Pr(ek2) = Pt(ek2) − Pr(ek1) and so forth for the remaining candidates until a 
candidate has a Pt(ek1) = 1

In Fig. 2, an example of a case 3 transfer from a frequency-based service (line x) 
to a schedule-based service (line y) is shown. Line x is a frequency-based service 
with a headway of six minutes and line y is a schedule-based service with departures 
from stop z in minutes 13 and 19. The probability of reaching the departure at min-
ute 13 is then the same as the probability of waiting 3 minutes or less at the origin, 
i.e.,

The probability of reaching the second candidate of line y is 100% since 
P(T(ex) ≤ s(ey2) = 1 , but since this departure is only relevant if the first candidate of 
line y is missed, the probability of boarding the second candidate when using route r 
from origin to destination is Pr(ey2) = Pt(ey2) − Pr(ey1) = 0.34.

A route is defined as a specific sequence following the same stops and the same 
lines. The cost of a route is defined by all the possible candidates and the probability 
of actually ending up being on a specific candidate on route r. The probability of 
actually ending up on a specific candidate on a route Pa(e) is given by the probabil-
ity of the previous event multiplied by the probability of reaching a specific candi-
date at the transfer, i.e.,

The total cost of a route (C(r)) is then defined by the probability of actualizing a spe-
cific event on a route and the cost of the specific event.

As an example of the calculation of the total cost of a route, the total cost of the 
example route in Fig. 2 is then:

(7)

Pt(ey1) = P(T(ex) ≤ s(ey1) = P(w(ex) ≤ 3) =

3
∑

f=0

(

6

f

)

0.5f (1 − 0.5)6−f = 0.66

(8)Pa(ek) = Pa(ek−1) ∗ Pr(ek)

(9)C(r) =
∑

e∈Er

Pa(e) ∗ c(e)

Fig. 2  Example of path with a transfer from a frequency-based service to a schedule-based service
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2.4  Choice set generation phase

In previous studies by Friedrich et al. (2001) and Hoogendoorn-Lanser et al. (2007), 
Branch and Bound techniques were used to generate a choice set in a SB network. 
They incorporated different behavioral constraints to limit the choice set and gener-
ate realistic alternatives. For example, Hoogendoorn-Lanser et al. (2007) developed 
criteria that feasible routes should fulfill, and routes were excluded from the choice 
set if failing to fulfill one of these. Obvious criteria included departure after arrival 
time at a node, and that routes should not include cycles. After this, criteria on time, 
space and money were used to prune out non-reasonable alternatives. The idea of 
applying different criteria/rules to fulfill is used as base in the following algorithm 
to generate a proper choice set in a network with mixed schedule- and frequency-
based services. Moreover, the idea is to build upon the event dominance principle in 
Florian (1999) and Florian (2004) with the introduction of a relaxation of the event 
dominance by considering a threshold for including nonoptimal paths. The event 
dominance algorithm is, in its original implementation, used to find the shortest path 
in a schedule-based network (see Nielsen and Frederiksen (2006) for a description 
of implementation and optimization of the original event dominance algorithm). It 
thus finds only the best path in terms of cost of a route, but can, however, with a 
slight modification identify additional routes if the event dominance at each node 
is relaxed. Algorithm 1 describes the overall concept of the event dominance algo-
rithm, where events are pruned at each node. 

The criterion used in the original event dominance algorithm is shown in Eq. 11. 
An earlier arriving event is denoted e1 compared to the later arriving event e2 . C(e) 
denotes the cumulative cost of following a specific route and arriving with event 
e. T(e) is for schedule-based services defined as the planned arrival time to a stop, 
while T(e) for frequency-based services is defined as the mean arrival time. It is 
important to note that all events are only checked against later events that arrive 
at the same stop. Events which fulfill this criterion will always be inserted in the 
algorithm proposed below, ensuring that the optimal path is always found. Further-
more, this paper proposes and applies the criterion in Eq. 12. In this, the strict event 
dominance principle is relaxed, and it allows nonoptimal events to be included in 
the event heap. The threshold parameter � defines the threshold and is set to 20% in 

(10)
C(r) =

∑

e∈Er

Pa(e) ∗ c(e) = 1.00 ∗ c(ex) + 0.66 ∗ c(ey1) + 0.34 ∗ c(ey2)
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this paper meaning that events which have a cost 20% higher at a stop are discarded. 
As mentioned in the beginning of the section, there are cases where it is not 100% 
certain to catch the first departure on a schedule-based line when transferring from 
a frequency-based line. In these cases, all runs (candidates) of the schedule-based 
lines are investigated until one of the runs is 100% certain, i.e., departs after a full 
headway of the frequency-based service.

In Algorithm 2, a more detailed pseudocode for the full algorithm with the new cri-
terion is shown. In the algorithm, it is only events which are certain, i.e., Pu(e) = 1 
which can dominate other events at a node. Pu denotes the probability that an event 
could be realized on the route, i.e., a multiplication of Pt of all the events used to 
arrive with event e. Events which are uncertain can thereby only be dominated, but 
will not be used for pruning other events at the same stop. efat describes the first 
possible arrival time at a specific node with a specific event. For schedule-based ser-
vices, this is equal to the scheduled arrival time, while for frequency-based services 
it is the first possible arrival time. 

Having established the feasible events to be included in the network graph, the 
routes are compiled by events which use the same lines and stop sequence, as exem-
plified in Fig.  2. Note that if some candidate event on the route is not within the 

(11)C(e1) + (T(e2) − T(e1)) ∗ �w ≤ C(e2)

(12)(C(e1) + C(e1) ∗ �) ≤ C(e2)
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overall threshold, the full route alternative is not included in the choice set. Hav-
ing identified the unique feasible routes (in terms of line- and stop sequences), the 
choice set Rn is then composed of this set of routes which are all within the threshold 
with certainty.

2.5  Flow allocation phase

The allocation of flow to the generated alternatives in the choice set is based on 
the multinomial logit discrete choice model (Train 2002). The utility of a route r is 
described with a deterministic term and an error term, and the utility that each deci-
sion maker n associates to an alternative r in a choice set Rn is given as:

where Vrn is the deterministic part of the utility and the error term �rn describes the 
random part of the utility. The total deterministic utility of a route Vrn is the same as 
the cost C(r) of route r with a negative sign in front, which indicates that all compo-
nents of the trip is a cost to the traveler. The choice probability of route r by traveler 
n is given by Eq. 14:

2.6  Frequency aggregation of overlapping lines

Passengers can possibly choose between a number of different lines in corridors 
with multiple lines serving the same stops (Nielsen 2000). From a passenger per-
spective, these lines might be observed as common lines and then chooses between 
either of the lines (Chriqui and Robillard 1975). This paper proposes a heuristic 
solution accommodating this, by combining lines which are serving the same stops 
and which have similar driving times [as seen in Nielsen (2000)]. The aggregation 
is done on stop level, meaning that the direct arcs from a stop to all stops still to be 
served by the line are created. If any of these direct arcs are similar on stop level 
between the two lines, then they are aggregated. The specific rules are, that arcs are 
aggregated if:

 (i) the lines belong to the same submode, i.e., Suburban train or bus, and
 (ii) the relative difference in driving time is less than 15% or the absolute differ-

ence is less than or equal to two minutes.

The frequency of the aggregated line is then the sum of the frequencies of the 
lines aggregated, and the driving time is a weighted average by the number of 
departures/h. The aggregated line is always described as a frequency-based line, 
even though the original lines are schedule based. An example of frequency aggre-
gation of two lines with frequencies of, respectively, 10 and 15 departures/h is 
shown in Fig. 3. As the driving times for the two lines are very similar, the lines can 

(13)Urn = Vrn + �rn

(14)Prn =
exp(Vrn)

∑

j∈Rn
exp(Vjn)

.
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be aggregated to a single line serving the stops with a frequency of 25 departures/h. 
The number of passengers on the aggregated lines are distributed across the specific 
lines proportionally to the frequencies of the respective lines. The proposed heuristic 
for frequency aggregation is tested in Sect. 3.5.

3  Results

This section presents the results of applying the proposed methodology to a case 
study. The case study covers a part of the Greater Copenhagen Area public transport 
network. First, the case study is presented followed by the results of tests on five 
different network configurations. The first configuration is the actual network involv-
ing a combination of frequency- and schedule-based services (unified network). 
The second and third configurations are, respectively, a strictly schedule- or strictly 
frequency-based representation of the network. The last two tests (configurations) 
involve a network representation where certain schedule-based lines are represented 
as frequency based and a representation that allows evaluating the frequency aggre-
gation heuristic. Lastly, the results of all tests are compared and discussed.

3.1  Case study network

The case study consists of a specific travel relation in the Greater Copenhagen Area 
in Denmark. The relation is from the Technical University of Denmark, located in 
the outskirts of Copenhagen, to Brønshøj, which is located in the northern part of 
Copenhagen. The travel relation is not frequently used in real life, however, the rela-
tion has no obvious shortest path and no paths without a transfer. The relevant part 
of the real-life network includes a mix of schedule- and frequency-based lines (with 
most schedule-based lines) with a total of 21 lines (see Fig. 4). The headways of the 
different lines are presented in “Appendix 1”. The example is quite similar to the 
one studied in Nielsen (2000), where it was shown, that passengers in this relation 
choose a number of distinct routes.

Fig. 3  Example of frequency 
aggregation
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3.2  Unified network

In Fig. 5, the route shares for a launch of passengers at a preferred departure time 
at 7.30 a.m. are shown. The main alternative is to take line 300S to Herlev and 
transfer to line 5C, inducing arrival time at 8:19 a.m. The two lines are perfectly 
coordinated at the interchange in Herlev, where the passengers have no waiting 
time when transferring. There are paths which arrive earlier (8:15), but because 
these paths require two transfers, they are less attractive than the path via Herlev 
St. In total, the choice set consists of the eight different alternatives outlined in 
Table 4, including an 3-transfer alternative via Lyngby Station, Hellerup St. and 
Nørrebro St. However, this path is still attractive because it primarily involves 

Fig. 4  Overview of network with lines and type of line
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Fig. 5  Flow resulting from assignment on the unified network

Table 4  Route shares for paths 
with maximum 20% higher 
cost—departure 7:30 a.m. in 
the unified network ( ∗ indicates 
paths which are grouped by two 
candidate paths)

Path sequence Mean arrival time Utility Probability

300S → 5C 08:19 − 10.50 23%
150S → 21 → 5C 08:15 − 10.65 20%
150S → F → 350S∗ 08:15 − 10.71 19%
30E → 250S → 5C 08:19 − 11.15 12%
180 → B → F → 350S∗ 08:15 − 11.44 9%
150S → 8A → 5C∗ 08:21 − 11.85 6%
30E → 200S → 350S 08:23 − 11.96 5%
15E → 350S 08:30 − 12.17 4%
Log-sum − 9.05
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S-train which has in-vehicle time parameter around 20% lower than the param-
eter for bus. Other alternatives, for example, the alternative via Nørreport St. 
with only one transfer is assigned 4 % probability even though it is a large spatial 
detour, since travel speed of the included lines is high and the alternative only 
has one transfer. It is important to note that the number of generated alternatives 
and which alternatives that are generated are depending on the preferred depar-
ture time. So the 4 % assigned probability to the alternative via Nørreport St. can 
change, if another preferred departure time is considered. For the preferred depar-
ture time at 7.30 a.m. the average arrival time to the destination (weighed by the 
probability of taking each path) is 8:18 a.m. and the log-sum is − 9.05. The log-
sum can be used to compare with the other examples on this network.

Using a threshold of 20% induces, in general, all relevant paths to be gener-
ated for the case example. It is, however, important to note, that no paths are 
100% spatially overlapping. This means that the path of taking line 150S to 
Ryparken St. and going with the F line to Nørrebro St. and then taking line 350S 
is included, while the alternative where the trip would end with line 5C instead of 
line 350S is not included. Leaving out this latter alternative is probably not realis-
tic, as it seems a relevant path; If a passenger doesn’t catch the first departing line 
350S (transfer from the frequency-based F line), the passenger would probably 
consider taking line 5C instead if it departs before the next bus on line 350S. This 
problem is further described in the example with frequency aggregation.

Fig. 6  Flow allocation for strictly schedule-based (left) and frequency-based (right) scenarios
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3.3  Strictly schedule‑ or frequency‑based network representations

Two additional tests are performed to compare the results of the unified network 
to the results when using strictly schedule- or frequency-based representations 
of the network. Firstly, the network is transformed into a strictly schedule-based 
network, where the frequency-based lines are allocated explicit runs. Afterward, 
all lines in the network are only described by their frequencies. In Fig. 6, the flow 
allocation for both of the configurations is shown. For the schedule-based repre-
sentation, the flow in the different corridors is only very slightly different than for 
the unified network. The flows differ more for the frequency-based assignment, 
which assigns more flow to the alternatives via Herlev and via Ryparken St. The 
log-sums for the two alternative configurations are on each side of the log-sum 
for the unified network, with a log-sum of − 8.90 for the strictly schedule-based 
network and −  9.76 for the strictly frequency-based network. The cost in the 
frequency-based network is thus around 8% higher than for the unified network, 
since the waiting times are now always half of the headway.

3.4  Change of some schedule‑based services to frequency‑based services

As a test of how the framework reacts to changes in the network, three lines are 
changed from schedule-based services to frequency-based services. These lines 
are 5C, 150S and 350S, which runs with, respectively, 4, 5 and 6 minutes head-
way. They are changed so that they run with the same frequency as in their sched-
ule-based representation, but without explicit departure times. In contrast to the 
original network, it is now possible to have paths using only frequency-based ser-
vices in the choice set. Also, the passengers do not have any option to arrive in 
Brønshøj using a schedule-based service, since line 5C and 350S are the only 
lines serving Brønshøj. The assignment on the modified network leads to slightly 
different paths in terms of the line level, and one new path (via Herlev St. and 
Husum St.) has replaced the path via Tuborgvej and Hulgårds Plads. The rea-
son that the path via Tuborgvej and Hulgårds Plads using line 21 is excluded, is 
because the probability of catching the first candidate on line 21 from line 150S 
is 97% and the second candidate is not within the threshold of 20%. The shares 
between the paths are similar to the assignment in the unified network, with the 
probability of the alternative using line 21 spread across the other alternatives. 
The log-sum is − 9.35, and is thereby worse than the unified network, but bet-
ter than the strictly frequency-based network configuration. The worse log-sum 
is primarily the result of some well-coordinated transfers not being as good as 
they were with schedule-based services. The difference in route shares between 
the existing network and the new more frequency-based network can be seen in 
Fig. 7.
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3.5  Frequency aggregation of network

In the existing (unified) network there exist a few corridors, where travelers 
could possibly perceive two parallel lines as the same and therefore just board 
the first departing line. This is the case for line 5C and 350S and for line 150S 
and 15E. Aggregating these and running the assignment results in the flow dif-
ferences compared to the existing (unified) network shown in Fig. 8. The alter-
native with line 300S and line 5C via Herlev is the most attractive alternative as 
it is also the case in the existing network. The cost for the path is the same for 
the two examples, but the other paths in the frequency aggregated network have 
higher costs due to higher waiting times at transfers, and the choice probability 

Fig. 7  Difference in flow allocation for scenario with more frequency-based lines (unified as base)
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for the alternative via Herlev is, therefore, higher. Moreover, the alternative via 
Nørreport St. is not included in the choice set for the frequency aggregated net-
work. This is because it has a cost which is 20.5% higher than the best alterna-
tive and it is, therefore, just outside the threshold. Overall, the flows are gener-
ally not different from the original flows, but the higher costs for alternatives 
going south at the beginning of the trip gives a slight change in the flow dis-
tribution. The log-sum is − 9.26 and thereby closer to the result of the unified 
network than the frequency-based scenario.

Fig. 8  Difference in flow allocation for frequency aggregated scenario (unified as base)
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3.6  Comparison of overall cost of the different scenarios

In Table 5 an overview of the choice probabilities and log-sums for each scenario 
is shown. The lowest cost in terms of the log-sum is for the strictly schedule-based 
scenario, while the highest cost is for the strictly frequency-based scenario. This 
result is as expected as the schedule-based assignment can take the coordination 
between services into account, while the frequency-based assignment applies an 
average coordination between lines. The average cost of the unified network con-
figuration lies between the strictly schedule-based and strictly frequency-based solu-
tions. This seems reasonable, as passengers would have to include some buffer in the 
planning of their route when taking frequency-based services into account in their 
route choice. For the final two configurations, the costs are higher than for the uni-
fied network configuration, but significantly lower than the strictly frequency-based 
scenario. This indicates that a strictly (traditional) frequency-based assignment will 
estimate the level of service with higher costs than the other scenarios. When com-
paring the flow across alternatives, some alternatives perform better in some con-
figurations, which is due to the coordination between lines when assuming the lines 
to be schedule-based.

4  Discussion

The proposed framework is able to generate a reasonable choice set and the flow 
assignment process results in a fair split across the alternatives and thereby han-
dle the combination of both schedule- and frequency-based services in a network. 
The inclusion of both schedule- and frequency-based services in one model can, for 
example, allow for different arrival distributions to the first stop, which was shown 
in Ingvardson et al. (2018) to differ significantly between schedule- and frequency-
based services, and thereby give a more behaviorally realistic assignment. The 
model can, however, be improved further and calibrated to better replicate and pre-
dict the flows in the network. This section presents some of the possible improve-
ments that can be made.

Firstly, the model assumes no delays on any of the services, and hence is not able 
to capture how reliability affects passengers’ route choice. However, with the cur-
rent choice set generation algorithm, it is possible to represent delays as it allows for 
headway distributions being higher than the deterministic headway of a line. But, it 
is not possible to assume, for example, exponential headway, as the unbounded tail 
of the distribution would imply that there will then always be a risk, that the pas-
senger will not arrive in the destination inside the threshold. In a normal performing 
network with no major disruptions, the passenger will not wait forever though, and 
the restriction to bounded distributions, therefore, seems behaviorally realistic. In 
this paper, binomial distributions were used to describe the headway of frequency-
based services for the sake of being able to have an analytic solution to the choice 
set generation. If different services had different types of headway distributions 
such as beta, Johnson or uniform distributions, the computation of the probability 
of boarding the first candidate, when transferring from a frequency-based service 
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to a schedule-based service, would require numerical integration of the probability. 
However, if the model is only evaluated at a discrete-time resolution, the numerical 
integration will not be computationally heavy.

Secondly, the framework is flexible in terms of how different lines can be mod-
eled. Table  6 gives an overview of how different transfers could be described, if 
some schedule-based lines are simplified to frequency-based lines. This could, for 
example, be useful for strategic planning of public transport networks, as it allows 
the modeler to simplify some lines and thereby reduce the need to check if all sched-
ule-based lines correspond well at transfer points.

Thirdly, the framework in its current form does not allow modeling of in-vehicle 
congestion, denied boarding or seat availability. The introduction of these factors 
requires some sort of iterative scheme, where the capacity of runs and services is 
updated and new choice sets are generated in each iteration. The choice sets in each 
iteration would then depend on seat availability, in-vehicle congestion and if it is 
possible to board a service, and the iterative scheme would need some converge cri-
teria to ensure that the model stops when it is converged.

Fourthly, the choice of a multinomial logit model governs the independence of 
irrelevant alternatives property. It thereby disregards previous findings showing that 
passengers tend to value overlapping lines, as it gives more possibilities in case of 
delays in the network (Anderson et al. 2014). In the current framework, it is pos-
sible to calculate a path-size factor or another measure of route correlation that 
could adjust the choice probabilities of overlapping lines2 and thereby, possibly, give 
higher behavioral realism. The fit of the model should be tested against observations 
of real flows in the network.

Table 6  Waiting times for transfers between schedule- and frequency-based services with some sched-
ule-based services modeled as frequency-based services

Transfer 
from/to

(A) SB line (B) SB line simplified to FB (C) FB line

(A) SB line The waiting time is 
deterministic

Waiting time is deterministic 
in “real life”, but must 
be assumed to follow a 
statistical distribution

Waiting time follows statistical 
distribution

(B) SB line 
simplified 
to FB

There is a probability 
to catch the line and 
for this a statistical 
distribution for wait-
ing time

Waiting time is deterministic 
in “real life”, but must 
be assumed to follow a 
statistical distribution

Waiting time follows statistical 
distribution

(C) FB line There is a probability 
to catch the line and 
for this a statistical 
distribution for wait-
ing time

Waiting time follows statisti-
cal distribution

Waiting time follows statistical 
distribution

2 See Prato (2009) for an overview of different discrete choice models which adjust choice probabilities 
based on route correlation
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Finally, the assumption that the threshold is strictly a percentage of the best alter-
native should be investigated further. In the case described in Sect. 3.4, one of the 
alternatives is disregarded in the choice set, because there is a 3% probability that 
the passenger will not arrive within the given threshold. The prospect theory devel-
oped by Kahneman and Tversky (1979), however, emphasizes that decision makers 
over-weights the smaller probabilities, which would indicate, that it is reasonable 
to have a strict cut-off for alternatives not being within the threshold. Another point 
related to the threshold is the challenge inherent in estimating the threshold to fit 
the behavior of travelers best possible. Watling et al. (2018) develop an assignment 
model based on a bounded choice model for car networks, which consistently facili-
tates a strict cut-off of flow allocation at a certain bound to the optimal route. They 
motivate their approach (partly) by empirical evidence from car users showing that 
95% of all observed routes are within 20% of the cost of the optimal route. A similar 
analysis could also be made for public transport trips, to reveal a reasonable thresh-
old to use in the algorithm, for example, based on data from automatic fare collec-
tion systems.

5  Conclusion

This paper has presented a novel framework for modeling the passenger assignment 
problem in public transport networks with co-existing schedule- and frequency-
based services. The framework first generates a choice set based on a variant of the 
event dominance principle, where also suboptimal paths are allowed in the choice 
set. The different paths can be combined from different candidates, if transfers are 
made from a frequency-based to a schedule-based service and the first run of the 
schedule-based line can not be reached with certainty. A threshold controls that not 
all possible paths are included in the choice set, but that only reasonable routes are 
included. A flow allocation using a multinomial logit model distributes the flow 
across the different alternatives and does so without taking the overlap of different 
alternatives into account.

The methodology proposed was applied to different configurations of a case 
study network covering a part of the Greater Copenhagen Area. These tests showed 
that the level of service in the unified network configuration lies in between network 
configurations with strictly schedule- or frequency-based services, with the strictly 
frequency-based network representation having the worst level of service due to 
higher waiting times. The choice sets for all scenarios seem reasonable, and with the 
frequency aggregated network configuration the resulting level of service is close to 
the level of service in the unified network configuration.

Future research should focus on the application of the model to large-scale net-
works including the calibration of the assignment parameters and comparisons of 
the generated choice sets to observed routes from, e.g., smart card data.

36 Modelling passenger behaviour in mixed schedule- and frequency-based public transport systems



792 M. Eltved et al.

1 3

Appendix 1: line frequencies in unified network

See Table 7.
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Conditional passenger travel time distributions in mixed schedule- and1

frequency-based public transport networks using Markov chains2

Clara Brimnes Gardner, Sara Dorthea Nielsen, Morten Eltved*,3

Thomas Kjær Rasmussen, Otto Anker Nielsen, Bo Friis Nielsen4
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Abstract7

Calculation of passenger travel times in public transport networks is important for the evaluation of the level
of service provided to passengers. The passenger travel times are deterministic for punctual and uncongested
networks, but have random fluctuations when including delays and crowding. Hence, advanced methods are needed
to calculate the passenger travel time distribution between a given origin and destination. This paper presents a
novel approach for calculating the travel time distribution from origin to destination based on vehicle delays and
possible missed connections in a mixed schedule- and frequency-based public transport network. Markov chains
are used to model the network, making the travel time from the origin to the destination phase-type distributed.
The approach is flexible with regards to the specification of vehicle travel times and provides the distribution of
passenger travel times without any need for simulation. Additionally, it facilitates detailed analyses of passenger
travel times conditional on the usage of specific line segments or stops. The merits are demonstrated using a real-life
case study from Copenhagen.

Keywords: Markov chains, phase-type distributions, public transport, travel time distribution8

1. Introduction9

Modelling passenger travel times in urban public transport systems is not straightforward. Typically, the network10

structure is complex with multiple overlapping lines and a mix of frequency-based (FB) and schedule-based (SB)11

services. Furthermore, delays occur on a daily basis and it is essential to capture realistically the impacts of network12

delays on realised passenger travel times, including their distribution.13

14

Estimation of the level of service provided to passengers in a public transport network has been dealt with using15

two main representations of the network, i.e. frequency-based or schedule-based (Liu et al., 2010). In the early16

stage of public transport assignment models, the evaluation of level-of-service for passengers was based on service17

frequency (headway) in the network using frequency-based assignment models (Spiess and Florian, 1989; Nguyen18

and Pallottino, 1988; Nielsen, 2000). The frequency-based models entail assumptions on the passenger route choice19

strategy, allowing selection from a subset of the lines in the network called the attractive line set. When the network20

is based on frequencies, it is not possible to calculate detailed waiting times at transfers between specific vehicle21

∗Corresponding author: morel@dtu.dk
Preprint submitted to Transportation Research Part B July 24, 2020
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runs in the network. However, the concept of hyperpaths introduced in Spiess and Florian (1989) and Nguyen and22

Pallottino (1988) allowed for day-to-day supply variations, with more accurate travel times obtained by allowing23

passengers to choose different travel strategies (Nökel and Wekeck, 2009; Schmöcker et al., 2013; Oliker and Bekhor,24

2018).25

26

With the public transport network by nature being time-dependent and based on specific runs of a service, much27

research has also been focused on exploring the travel times in network representations, where each run on a line has28

specific arrival and departure times at stops. These models, usually known as either schedule-based or run-based29

models, allow for modelling detailed trajectories through the network. Early models focused on fixed networks with30

no delays for vehicles (Tong and Richardson, 1984). Later, delays and supply variations were included by specifying31

day-to-day dynamics and supply variations (Nuzzolo et al., 2001; Tong and Wong, 1999; Landex and Nielsen, 2006;32

Nielsen et al., 2008; Hamdouch et al., 2014). Recent works on unreliable schedule-based networks include the work33

by Khani (2019) who proposed an online shortest path algorithm to find the optimal assignment of passengers and34

showed that passengers were primarily assigned to the most reliable paths.35

36

In the past, bridging the gap between frequency- and schedule-based models has been discussed to allow a more real-37

istic representation of the actual network structure in urban regions, where some services run with a given headway38

while other low-frequency services have a fixed published schedule (Gentile and Noekel, 2016, chap. 6). Recently,39

Eltved et al. (2019) proposed a method attempting to capture the effects of mixed schedule- and frequency-based40

networks on passenger route choice, since it has been shown that passengers have varying preferences for waiting41

to board a schedule- or frequency-based service (Eltved et al., 2018). Moreover, a framework was proposed for42

finding the flow between origin and destination based on a choice set generation step using a modified version of43

the event-dominance principle proposed in Florian (1999) and a subsequent assignment of flows to the choice set44

using a discrete choice model. However, Eltved et al. (2019) do not consider effects of stochastic vehicle travel times45

originating from e.g. delays in the road network or higher dwell times due to demand variations, both of which are46

considered in this paper.47

48

A relatively small branch of research has focused on the use of Markov chains and Markov decision processes for49

modelling travel times in public transport networks. Teklu et al. (2007) use Markov chains to model the day-to-day50

variation in the costs of each link. Costs are observed at the end of each day, and a learning filter is applied to the51

observations to determine the costs on the following day. This method does not use the Markov chains directly in52

the modelling of passenger route choices, but as a method of updating the network costs.53

54

For network loading, Markov chains have mostly been used to model congested networks with a high failure-to-board55

probability. In Bell et al. (2002), a discrete Markov chain is used, where each stop is represented by multiple nodes,56

one for each service leaving the stop. Links between the stops are represented with transition-probabilities that57

specify the probability of moving from one stop to another. The possibility of not boarding a service is modelled58

by letting the row-sum be less than one, implying a possibility of exiting the network without being allocated to59

2
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another state. This idea of modelling failure-to-board by means of Markov chains is considered further in Kurauchi60

et al. (2003) and Schmöcker et al. (2008). In Kurauchi et al. (2003), failure nodes and failure links are introduced61

to represent the probability of not boarding a service. Passengers not boarding a service due to capacity limits62

are sent to their destination by the failure links. In Schmöcker et al. (2008) a time interval is included, allowing63

variation of the congestion over time. Furthermore, passengers who have not reached the destination can be reas-64

signed in the next interval allowing them to reach the destination. This includes passengers failing to board a vehicle.65

66

A related topic regarding the application of Markov chains in public transport modelling is the use of a Markov67

Decision Problem (MDP) for modelling adaptive route choice by passengers. Rambha et al. (2016) introduce the68

concept of MDP’s for adaptive route choice modelling, focusing on how to reduce the dimensionality of finding the69

optimal route choice by using pre-processing steps. Nuzzolo and Comi (2019) build upon the work in Rambha et al.70

(2016) and present a run-based strategy model which takes into account the real-time information that can be given71

to the passengers, and further reduces the state space by only considering the state space for the traveller decisions72

and not for the buses.73

74

In this paper, we propose a model based on the use of Markov chains. We (i) use a combined schedule- and75

frequency-based public transport network, (ii) use phase-type distributions for flexible modelling of the vehicle76

travel times and (iii) consistently calculate the travel time distributions conditional on the usage a specific lines in77

the set of attractive lines between origin and destination. The idea is to have a flexible approach to the specification78

of vehicle travel times and to provide the passenger travel time distributions without a need for simulation. We79

define the state space of the Markov chain such that states not only represent stops, but also vehicles. Furthermore,80

we include a time dimension in the states, making it possible for the model to handle both schedule-based and81

frequency-based services. Vehicle delays can be represented by the model, which makes it possible to calculate the82

travel times for a specific route of the passenger by taking in to account possible missed connections at transfers.83

The time to absorption in such a Markov chain is said to follow a discrete phase-type distribution. Phase-type84

distributions are well-known as a tool in other fields for modelling different phenomena. This class of distributions85

has many benefits such as flexibility and closure under a number of operations such as addition. Applications86

include the risk theory in Bladt (2005) and the health-care systems in Fackrell (2007). The model outputs the route87

choice probabilities and distributions for the travel times, which are also random due to the inclusion of random88

delays. Furthermore, the model can be used to find conditional travel time distributions based on the stops used89

in a route.90

91

The paper is organized as follows: The model is described in Section 2 and applied to an example network in Section92

3. In Section 4 formulas for extracting results from the model are presented, and Section 5 presents the results93

from the example network. Finally, the perspectives of using Markov chains for modelling travel times in mixed94

schedule- and frequency-based networks are provided in Section 6, and Section 7 concludes the paper.95

3
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2. Traffic assignment by a discrete Markov chain model96

Before introducing its application to public transport modelling, we briefly introduce some of the important prop-97

erties of discrete Markov chains. A discrete-time and integer-valued stochastic process, X = {Xn;n ∈ N}, is a98

countable collection of random variables that take integer values. A discrete Markov chain is a stochastic process99

which satisfies the Markov property (Pinsky and Karlin, 2011, p. 79)100

Pr (Xn+1 = j | X0 = i0, . . . , Xn−1 = in−1, Xn = i) = Pr (Xn+1 = j | Xn = i) . (1)

If the probabilities in (1) do not depend on n such that Pr (Xn+1 = j | Xn = i) = Pr (X1 = j | X0 = i), the Markov101

chain is said to be time-homogeneous, then Pr (Xn+1 = j | Xn = i) = pij . Let N be the dimension of the state102

space, and let α0 be a row vector of probabilities of dimension N describing the initial distribution of the stochastic103

process. A finite time homogeneous Markov chain can then be described by the transition matrix P = {pij} and α0.104

105

In the following subsections, a discrete time-homogeneous Markov chain model for journeys is presented. The106

Markov chain models the movement of a single passenger through the network. First a suitable state space is107

defined, after which the transition probabilities, pij , in the Markov chain are described.108

2.1. State space109

The state space consists of a number of transient states representing the journey, and one absorbing state repre-110

senting the destination, D. In this, the state space of the transient states, Etransient, is described.111

112

The description of a state is multivariate by nature as both time and location are needed. The scheduled services113

induce a bound tmax on the range of possible values of the time variable, t. In our example, the time is measured114

in minutes making tmax = 60 a suitable bound. We denote the set of possible time values by115

T = {1, . . . tmax}.

Let S be the set of services for the trip. Let SF be the frequency-based services and let SS be the schedule-based116

services. Then117

S = SF ∪ SS .

Furthermore let W denote the set of stops for the trip. The set of possible locations for the passenger, L, during118

the trip is then119

L = W ∪ S.

The location of the modelled passenger is hereafter described by the location parameter l ∈ L.120

121

To allow the time spent at each location to follow various probability distributions – for example negative binomial122

– a third auxiliary parameter, phase, is introduced. The phase parameter, r, is used to divide the locations123

4
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into different segments. The space of the phase parameter is location-specific, and it is therefore denoted Rk =124

{1, . . . , rk}.125

Combining these parameters the transient state space, Etransient, becomes126

Etransient =
⋃
k∈L

T ×Rk.

A transient state in the transition matrix is classified by three indexes. Thus (k, i, t) refer to the state where127

Ln = k, Rn = i, Tn = t. The use of both location and phase in the notation can be considered redundant, as each128

phase belongs to a location, but both parameters are included to ease readability.129

The full state space of the Markov chain, X, becomes130

E = Etransient ∪D

It is beneficial to arrange the state space in lexicographical order, such that the index of the time parameter is131

changed first, then the index of the phase parameter, and finally the index of the location.132

2.2. Transitions between transient States133

We will now define the transient part of the transition matrix for X. The one-step transitions on the defined state134

space can be written in the general form135

Pr (Ln+1 = l, Rn+1 = j, Tn+1 = u | Ln = k,Rn = i, Tn = t) = p(k,i,t),(l,j,u), (2)

where
∑
lju∈E p(k,i,t),(l,j,u) = 1 and p(k,i,t),(l,j,u) ≥ 0.136

137

A number of restrictions are imposed on (2). Transitions between the majority of the states are not possible,138

resulting in a sparse transition matrix. As every transition corresponds to one time unit (minutes in our example)139

being spent, p(k,i,t),(l,j,u) is only non-zero when u = t+1 mod tmax. This means that P can be described as
∑
l∈L rl140

sub-matrices, M(k,i),(l,j), with dimension tmax × tmax, and with non-zero elements only in the superdiagonal and141

in the lower left corner.142

M(k,i),(l,j) =



0 p(k,i,1),(l,j,2) 0 0 · · · 0

0 0 p(k,i,2),(l,j,3) 0 · · · 0

0 0 0 p(k,i,3),(l,j,4) · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · p(k,i,tmax−1),(l,j,tmax)

p(k,i,tmax),(l,j,1) 0 0 0 · · · 0


In the following, the non-zero transitions are described in terms of these sub-matrices.143

Transitions between states representing the same location Ln = Ln+1 = k, are collected in a larger sub-matrix
denoted Tkk. Let rk be the number of phases associated with location k. Then the dimension of Tkk is (rk · tmax)×

5
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(rk · tmax) and in terms of the sub-matrices, M(k,i),(l,j), it can be written as

Tkk =


M(k,1),(k,1) M(k,1),(k,2) · · · M(k,1)(k,rk)

M(k,2),(k,1) M(k,2),(k,2) · · · M(k,2),(k,rk)

...
...

. . .
...

M(k,rk),(k,1) M(k,rk),(k,2) · · · M(k,rk),(k,rk)

 .

No further restrictions are imposed on transition probabilities between states representing the same location.144

145

Transitions between states representing different locations, Ln = k, Ln+1 = l are collected in a sub-matrix denoted146

Tkl. Let rl be the number of states associated with location l. The dimension of Tkl is then (rk · tmax)× (rl · tmax).147

In terms of the submatrices, M(k,i),(l,j) it can be expressed as148

Tkl =


M(k,1),(l,1) M(k,1),(l,2) · · · M(k,1),(l,rl)

M(k,2),(l,1) M(k,2),(l,2) · · · M(k,2),(l,rl)

...
... · · ·

...
M(k,rk),(l,1) M(k,rk),(l,2) · · · M(k,rk),(l,rl)

 .
The matrix Tkl can only contain non-zero elements in cases where the location l follows immediately after the149

location k. If k ∈ S, l follows immediately after if and only if l represents the arrival stop of k. If on the other150

hand k ∈ W , l follows immediately after if and only if l is a service departing from k. Furthermore, if k ∈ W and151

l ∈ SS is a service departing from k, only elements representing the times where l is scheduled to depart from k can152

be non-zero. Let T ∗l be the set of departure times of the schedule-based service. Then the elements of M(k,i),(l,j),153

p(k,i,t),(l,j,t+1) are only non-zero for t ∈ T ∗l .154

155

To satisfy
∑
lju∈E p(k,i,t),(l,j,u) = 1, Tkk and the (possibly multiple) Tkl have to be chosen such that the row sum156

is one157 ∑
l∈L

Tkle = e (3)

where e is a column vector of appropriate dimension with all entries equal to one.158

2.3. Destination159

The destination is treated as one state. The transitions to the destination follow the restrictions described in Section160

2.2 replacing the state (l, j, u) with D. Transitions from the destination are not possible.161

2.4. Initial distribution162

To properly describe the Markov model, an initial distribution, α ,should be defined. The initial distribution should163

satisfy164

αe = 1, αi ≥ 0.

6
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The entries in the initial distribution are equal to the probability of the passenger starting in the corresponding165

state. Therefore the entries of α should only be non-negative for states representing the starting location(s) of the166

passenger.167

3. Example network168

In this section, the model proposed in Section 2 is applied to the example network shown in Figure 1. A schematic169

version is shown in Figure 2. The network models a trip from DTU Lyngby Campus (abbreviation: DTU) to170

Copenhagen Airport (abbreviation: CPH). The network pictured in Figures 1 and 2 should be considered as the171

set of attractive lines. The attributes of the six lines considered are shown in Table 1.172

Figure 1: The example network shown on a map of the Copenhagen area. Figure based on map in
Eltved et al. (2019).

7

46 Modelling passenger behaviour in mixed schedule- and frequency-based public transport systems



DTU Nørreport

Lyngby

CPH

300s

150s

E-line of S-Train
B-line of S-Train

Regional Train

Metro

Figure 2: Schematic version of the example network shown in Figure 1.

Name Type Departure
Stop

Arrival Stop Departure Times Average
Headway

Abbreviation

Bus 150S SB DTU Nørreport St. 04, 14, 24, 34, 44, 54 - 150S
Bus 300S SB DTU Lyngby St. 02, 22, 42 - 300S
S-Train, line E SB Lyngby St. Nørreport St. 00, 10, 20, 30, 40, 50 - E
S-Train, line B SB Lyngby St. Nørreport St. 05, 15, 25, 35, 45, 55 - B
Regional train SB Nørreport St. CPH 00, 20, 40 - R
Metro FB Nørreport St. CPH - 6 M

Table 1: Attributes for the set of attractive lines.

The transition matrix, P, then takes the following form. Notice that D, L, N and C are used as abbreviations for173

DTU, Lyngby St., Nørreport St. and CPH, respectively.174

P =



TD,D TD,150S TD,300S 0 0 0 0 0 0 0

0 T150S,150S 0 0 0 0 T150S,N 0 0 0

0 0 T300S,300S T300S,L 0 0 0 0 0 0

0 0 0 TL,L TL,B TL,E 0 0 0 0

0 0 0 0 TB,B 0 TB,N 0 0 0

0 0 0 0 0 TE,E TE,N 0 0 0

0 0 0 0 0 0 TN,N TN,M TN,R 0

0 0 0 0 0 0 0 TM,M 0 TM,C

0 0 0 0 0 0 0 0 TR,R TR,C

0 0 0 0 0 0 0 0 0 1



(4)

3.1. Modelling the service times and waiting times175

First we consider transitions from stops to departing schedule-based services – i.e. TD,150S, TD,300S, TL,B, TL,E and176

TN,R. In the example network, the transitions from stops to a departing schedule-based service are deterministic.177

Only one phase is used to model stops where only schedule-based services depart and, at times where the schedule-178

based services depart, the probability of transitioning to the first phase of the next location is 1. This corresponds179
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to an assumption of the passenger taking the first available service. Therefore, when l is a schedule-based service180

departing from k, Tkl takes the form181

Tkl =
[
M(k,1),(l,1) 0 0 · · · 0

]
,

with182

p(k,1,t)(l,1,t+1) =

0 if t /∈ T ∗l
1 if t ∈ T ∗l

. (5)

This choice corresponds to the initial distribution αl being concentrated on the first phase, and thus deterministic.
As only one phase is used to model the stop k,

Tkk = M(k,1),(k,1).

The entries of Tkk are found from Equation (3).183

184

The service times in the example network are random, following phase-type distributions with representations185

(αk,Tkk), where Tkk is chosen such that the runtime of service k is distributed according to the negative binomial186

distribution. In terms of the sub-matrices, M(k,i),(k,j) described in Section 2.2 this means that all the non-zero187

entries in M(k,i),(k,i) will equal 1 − qk and all the non-zero entries in M(k,i),(k,i+1) will equal qk. The rest of the188

sub-matrices in Tkk will be zero-matrices. Thus189

Tkk =



M(k,1)(k,1) M(k,1)(k,2) 0 · · · 0 0

0 M(k,2)(k,2) M(k,2)(k,3) · · · 0 0

0 0 M(k,3),(k,3) · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · M(k,rk−1)(k,rk−1) M(k,rk−1)(k,rk)

0 0 0 · · · 0 M(k,rk),(k,rk)


The number of phases, rk, and the value of qk are location dependent as specified in Table 2. The matrix Tkl is190

only non-zero when l is the arrival stop of k. In agreement with Equation (3) it takes the following form191

Tkl =



0 0 · · · 0

0 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

M(k,rk),(l,1) M(k,rk),(l,2) · · · M(k,rk),(l,rl)


.

The non-zero entries of M(k,rk),(l,j) are set equal to
qk
rl
, which corresponds to the initial distribution for l, αl being192

uniform over the phases.193

194
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The waiting time distribution for the frequency-based service Metro is chosen to be negative binomial. Notice that195

the choice of qk = 1 results in deterministic transitions to the next state. However, as the schedule-based Regional196

train service also departs from the same stop, Nørreport St., modifications to TN, TN,R and TN,M have to be made197

such that Equation (3) is still satisfied. Modifications are only needed for t ∈ T ∗R. For i < rN transitions are either198

to another state representing Nørreport St., or to the Regional train, and the latter is preferred.199

p(N,i,t),(N,j,t+1) = 0 if t ∈ T ∗R, i < rN ,

p(N,i,t),(R,1,t+1) = 1 if t ∈ T ∗R, i < rN .

For i = rN transitions to another state representing Nørreport St., to the Regional train and to the Metro are200

possible, and the two latter are preferred.201

p(N,rN ,t),(N,rN ,t+1) = 0 if t ∈ t∗R,

p(N,rN ,t),(M,1,t+1) =
1

2
qN if t ∈ t∗R,

p(N,rN ,t),(R,1,t+1) = 1− 1

2
qN if t ∈ t∗R.

Service Name rk qk Initial Distribution Average Time Spent

Runtime of Bus 150S 24 0.9 First state 26.7
Runtime of Bus 300S 9 0.8 First state 11.3
Runtime of S-train, line E 15 0.875 First state 17.1
Runtime of S-train, line B 18 0.875 First state 20.6
Runtime of Regional train 18 0.875 First state 20.6
Waiting time for Metro 6 1 Uniform 3.5
Runtime of Metro 15 0.85 First state 17.6

Table 2: Specifications for the distributions of the different runtimes of services and for the waiting
time for the Metro, the number of phases, rk, used to model the location, and the probability of moving
to the next phase, qk. The initial distribution is the initial distribution over the phases of the location.

3.2. Modelling the initial distribution202

The initial (arrival) distribution for the model, α, specifies the starting time and location for the modelled passenger.203

In the example network the passenger always begins the journey at the DTU stop, and thus α is only non-zero at204

states representing this stop. The initial distribution therefore models the arrival time of the passenger at the DTU205

stop. Possible strategies for the arrival of the passenger might be:206

• Random arrival, not taking timetable into account207

• Arrival to minimize waiting time for 150S only208
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• Arrival to minimize waiting time for 300S only209

As suggested in Ingvardson et al. (2018), a uniform distribution is used to model the random arrival times, and a210

beta distribution is used to model the timed arrival times. The headway (Table 1) for 150S is 10 minutes, and the211

headway for 300S is 20 minutes. Using the shape parameters in Ingvardson et al. (2018), the shape parameters for212

the normalized waiting times (in terms of headway) are defined as213

a150S = 0.36 b150S = 3.39

a300S = 0.27 b300S = 4.57

By discretizing the beta-distribution and changing back to the minute-domain, two initial distributions are obtained.214

Figure 3 shows the probability density functions (pdf’s).215
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Figure 3: The two initial distributions of arrivals timed for 150S and 300S. The red lines indicate an
arrival of 150S and the green lines indicate an arrival of 300S.

4. Analysis of the travel time distribution216

In this section formulas for the distribution and expectation of the travel time are derived using phase-type distri-217

butions. Hereafter it is described how to invoke conditioning in phase-type distributions, which allows us to extract218

properties of conditional travel times.219
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4.1. Discrete phase-type distributions220

As described in Section 2, the Markov chain, X = {Xn;n ∈ N}, consists of a number of transient states and one221

absorbing state. The transient state space consists of states where the probability of ever returning to that state222

is less than one. Once entered, the absorbing state cannot be left. The travel time, τ , then equals the time un-223

til absorption in the Markov chain, which follows a discrete phase-type distribution (Bladt and Nielsen, 2017, p. 29).224

225

Let X be defined on r+ 1 states. Assume for simplicity that the states {1, . . . , r} are transient, while state r+ 1 is226

the absorbing destination state. The transition matrix can then be written as:227

PX =

[
T t

0 1

]
, (6)

where T is an r × r dimensional subtransition matrix with transitions between the transient states, and t is an228

r-dimensional column vector containing the absorption probabilities. Let α be the r-dimensional vector specifying229

the initial distribution of X on the transient states. Then τ is discrete phase-type distributed with parameters α230

and T, τ ∼ PH (α,T). The probability density function, the cumulative distributive function and the expectation231

are given as (Bladt and Nielsen, 2017, p. 30):232

fτ (n) = αTn−1t, (7)

Fτ (n) = 1−αTne, (8)

E(τ) = α (I−T)
−1

e = αUe = µ. (9)

The matrix U = (I−T)−1 = {uij} is called the green matrix, and {uij} is the expected time spent in state j given233

that the process starts in state i.234

4.2. Conditioning in discrete phase-type distributions235

Conditional travel times – for instance travel times depending on the usage of a certain service – can be calculated236

by conditioning in the phase-type distribution. A phase-type distribution with an underlying Markov chain with237

multiple absorbing states is then considered, as this makes it possible to distinguish between the absorbing states.238

By making appropriate changes to the Markov chain, X, this theory can be used to condition on the visit to any239

state. The continuous case is treated in Andersen et al. (2000). In the theorem we will need the probability vector,240

π = µ−1α(I−T)−1. When dealing with phase type distributions with α fixed, one can without loss of generality241

assume that all elements of π are positive, as zero elements correspond to states that can never be visited. In our242

modelling framework, however, some choices of α might lead to zero elements of π and it would be cumbersome243

to adjust the model to ensure strict positivity of π in each individual case. We define the operator ∆(·) as the244

operator that given the vector v returns a diagonal matrix with the elements of v in the diagonal. Furthermore,245

we will define the operator ∆−1∗(·)246
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∆−1∗(v)(i,i) =

v
−1
i if vi 6= 0

0 if vi = 0
.

Using these operators and π we define the matrix V = ∆−1∗(π)T′∆(π).247

248

Theorem249

Consider a discrete Markov Chain, Z, with r transient states, and m absorbing states. Now let α be the initial250

distribution on the transient states, and let the transition matrix, PZ , be given as251

PZ =

[
T T0

0 I

]
, (10)

where T0 is an r ×m sub-transition matrix containing the absorption probabilities. Let τ denote the time until252

absorption in some state. Then τ ∼ PH (α,T). Let now tj denote the j’th column of T0, and let Zτ = r+ j denote253

the event that Z absorbs in state r + j. Then254

Pr [Zτ = r + j] = α(I−T)−1tj . (11)

The conditional distribution of τ on absorption into state r + j is PH. A representation is (α̂j , T̂j) with255

α̂j =
α∆−1∗(hj)

α∆−1∗(hj)e

T̂j = ∆(hj)T∆−1∗(hj)

t̂j =
∆(hj)tj
νe′∆(π)tj

,

(12)

where256

βj =
t′j∆(π)

t′j∆(π)e
,

ν = β(I−V)−1e,

φ = ν−1β(I−V)−1,

hj = ∆(π)∆−1∗(φ)

Proof of theorem257

To prove that (α̂j , T̂) is indeed a representation of the conditional distribution, we prove that258

• (α̂j , T̂) is a phase-type representation and calculate the expression for t̂j259

• The probability generating function of Pr[τ = x|Z = r + j] is equal to the probability generating function of260

a PH (α̂j , T̂ j) distributed variable261
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To show that (α̂j , T̂) is PH, we show that α̂j is a probability vector, that α̂je = 1, that αi ≥ 0, and that the262

entries of T̂j are non-negative, T̂j ≥ 0, with row sums bounded by 1.263

264

α̂je = 1 and α̂j ≥ 0 follows directly from the definition of α̂j265

α̂je =
α∆−1∗(hj)

α∆−1∗(hj)e
e =

α∆−1∗(hj)e

α∆−1∗(hj)e
= 1.

266

267

The expression for t̂j can be found by noting that t̂j = (I− T̂j)e.268

t̂j = (I− T̂j)e

= (I−∆(hj)T∆−1(hj))e

= (I−∆−1∗(φ)∆(π)T∆−1∗(π)∆(φ))e

= ∆−1∗(φ)(I−
(
∆−1(π)T′∆(π)

)′
)∆(φ)e

= ∆−1∗(φ)(I−V′)φ′

= ∆−1∗(φ)(I−V′)(β(I−V)−1ν−1)′

= ∆−1∗(φ)(I−V′)(I−V′)−1βjν
−1

= ∆−1∗(φ)βjν
−1

=
∆−1∗(φ)∆(π)tj
νe′∆(π)tj

=
∆(hj)tj
νe′∆(π)tj

.

By Bladt and Nielsen (2017)[p. 34] the probability generating function of a PH distribution with representation269

(α,T) is270

H(z) = E [zτ ] = zα(I− zT)−1te. (13)

Conditioning on absorption into state r + j the probability generating function becomes271

H(z | Zτ = r + j) =
E [zτ ,1{Zτ = r + j}]

Pr [Zτ = r + j]
=
zα(I− zT)−1tj
α(I−T)−1tj

= (µj)
−1zα(I− zT)−1tj (14)

We now algebraically manipulate with Equation (14), so it appears in the same form as Equation (13).272
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H(z | Zτ = r + j) = (µj)
−1zα(I− zT)−1tj

= (µj)
−1zα

(
I − z∆−1(hj)∆(hj)T∆−1(hj)∆(hj)

)−1
tj

= (µj)
−1zα∆−1(hj)(I− z∆(hj)T∆−1(hj))

−1∆(hj)tj

= (µj)
−1zc1α̂j(I− zT̂)−1c2t̂j

By definition (µj)
−1c1c2 = 1 which finalizes the proof. The calculations are verified in appendix A. This finishes273

the proof as274

H(z | Zτ = r + j) = zα̂(I− zT̂)−1t̂je.

4.3. Extracting results from the model275

As described in Section 4.1 the travel time, τ , follows a discrete phase-type distribution. When the model has been276

formulated and a proper transition matrix P has been created, T can be found by excluding the row and column in277

P representing the destination. Likewise t can be found by extracting the column in P representing the destination.278

When an initial distribution α has been defined, the pdf, cdf and expectation of τ can be found using (7), (8) and (9).279

280

The probability of visiting one location can be found by collapsing the states representing this location into one281

absorbing state. The probability of visiting this location then equals the probability of absorption into this state,282

which can be found using (11).283

284

The mean time spent at a location can be found by using the Green matrix, U = (I−T)−1. Let K be the indices285

of the states representing the location k. The mean time spent at a location is286

E [Time spent in location k] =
∑
i

∑
j∈K

αiuij .

Notice that not visiting the location is a possibility. The mean time spent in the location, given a visit to the287

location, is found as288

E [Time spent in location k | Visiting location k] =

∑
i

∑
j∈K αiuij

Pr [Visiting location k]

Finally, the distribution of τ conditioned on visiting a certain location can be found by modifying the Markov chain289

such that journeys through this location absorb into a special absorbing state. The conditional distribution of τ290

can then be found using the representation given in Equation (12).291

5. Results from example network292

This section presents key statistics of the (conditional) travel time distributions and route choice probabilities of293

the example network shown in Section 3. The section presents several detailed analyses, which would in most other294

cases only be available through simulation approaches.295
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5.1. Impact of arrival distribution to first stop296

At first the model is analyzed using the different arrival distributions to the first stop. Table 3 shows the expected297

travel times for the different α presented in Section 3.2, and Figure 4 shows the distributions of the travel time.298

Passengers timing their arrival to 150S experience a lower travel time of around 4 minutes compared to passengers299

arriving randomly to the first stop, while the passengers timing the arrival to 300S have a higher expected travel300

time than random arriving passengers. From the distributions, it is noticeable that the passengers timing their301

arrival to 300S experience a bi-modal distribution due to the probability of catching either line B or E at Lyngby302

St. It is also worth noting the quite large variance in travel time when arriving uniformly to the first stop, where303

the passenger can experience a travel time on a wide bane of 40 minutes and up to approximately 70 minutes. This304

example shows one of the strengths of the model, as planners can now analyse in detail the travel time distributions305

of passengers and not only aim at lowering the average passenger travel time and/or individual vehicle travel time306

variation.307

α Expected Travel Time

Uniform 55.65
Timed for 150S 51.40
Timed for 300S 58.01

Table 3: Expected travel times for different initial distributions, α.
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Figure 4: The densities of the travel time for a uniform and two peaked initial distribution where the
passenger arrives one minute before the departure of 150S or 300S. Smoothed refers to the plotting
technique where the area under the curve is equal to 1.

The model also allows for assessing the probability of choosing each service which can be determined by using308

Equation (11). Table 4 shows the probabilities of using each service for the three initial distributions. This shows309

that passengers timing their arrival to a specific line at the first stop largely end up on this line, with respectively 85310

% on 150S when timing the arrival to this line and 98 % on 300S when timing for this line. The timing to the first311

stop does not influence which of the S-train lines (B or E) are boarded, since the distribution between these two312

is only determined by the arrival of 300S to Lyngby St. The distribution between the Metro and Regional train is313

more dependent on how the passengers time their arrival to the first stop, but in all scenarios with most passengers314

boarding the Metro.315

Service Uniform α α Timed for 150S α Timed for 300S

Bus 150S 0.60 0.85 0.02
Bus 300S 0.40 0.15 0.98

S-Train, line E 0.08 0.03 0.20
S-Train, line B 0.32 0.12 0.78

Metro 0.74 0.82 0.64
Regional train 0.26 0.18 0.36

Table 4: The probabilities of choosing each service.
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Table 5 shows the expected time spent waiting at the transfer stations, Lyngby St. and Nørreport St.. Notice that316

the passenger always arrives to Lyngby St. by Bus 300S, and therefore the waiting time at transfers on Lyngby St.317

does not change with the initial distribution. The waiting time at Nørreport St. is in all scenarios around three318

minutes, which is less than if the passenger only chooses to wait for the Metro with a headway of 6 minutes.319

Stop Uniform α α Timed for 150S α Timed for 300S

Nørreport St. 2.96 3.10 2.92
Lyngby St. 2.79 2.79 2.79

Table 5: The expected transfer time at Nørreport St. and Lyngby St. for the different choices of α.

5.2. Impact of route choice320

The impact of the route choice is investigated by extracting conditional results from the model. Table 6 shows the321

expected travel times for the use of the different services for the uniform α, and some considerable differences are322

seen. The results show that passengers boarding 150S have a lower expected travel time compared to passengers323

boarding 300S. Furthermore, the passengers boarding the Metro at Nørreport St. also have a lower expected travel324

time compared to passengers boarding the Regional train, which is intuitive due to the lower runtime of the Metro325

(15 minutes) compared to that of the Regional train (18 minutes).326

Choice of Service Expected travel time

Bus 150S 52.72
Bus 300S 60.05
S-Train, line E 61.34
S-Train, line B 59.72
Metro 54.75
Regional train 58.14

Table 6: Expected travel time when using each of the services.

Figure 5 shows the probability density function of the travel time conditioning on the use of specific services. Note327

the two peaks in the distribution for the regional train in Figure 5b, which are the results of some missed connections328

to the Regional train.329
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Figure 5: Conditional travel times.

5.3. Modifying the example network330

To investigate the effect of whether lines are represented using a frequency- or schedule-based representation, the331

example network is now modified in two ways:332

• Modification 1: The Metro is changed to a schedule-based service333

• Modification 2: Bus 150S is changed to a frequency-based service334

Both modifications are made such that the average headway does not change. Table 7 shows the expected travel335

times for the uniform initial arrival distribution, corresponding to α having all elements equal. The modifications336

affect the expected travel time with a maximum of around one minute.337

Expected travel time
Original Network Modification 1 Modification 2

55.65 55.69 54.53

Table 7: The expected travel times for the original network, and for the two modified networks with
uniform α.

Table 8 shows the route choice probabilities for the uniform α for the original network and two modified networks.338

The change of the Metro to a schedule-based service does not change the route choice probabilities for any of the339

services, while the change of Bus 150S to a frequency-based service changes the distribution between Bus 150S and340

Bus 300S slightly and thereby also the distribution between the Metro and the Regional train.341
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Service Original network Modification 1 Modification 2

150S 0.60 0.60 0.75
300S 0.40 0.40 0.25

S-Train, line E 0.08 0.08 0.05
S-Train, line B 0.32 0.32 0.20

Metro 0.74 0.74 0.78
Regional train 0.26 0.26 0.22

Table 8: The probabilities of choosing each service for the original network and the two modified
networks.

6. Perspectives342

The framework proposed in this paper is capable of modelling the distribution of travel times from origin to343

destination and of calculating the route choice probabilities for the alternatives in the choice set. This section344

discusses how the framework can be used by e.g. policy makers to make various detailed analyses of the route345

choices and travel time distributions. Subsequently, the section discusses scalability and elaborates on possible346

further extensions allowed by the flexibility of the modelling framework.347

Possibilities of disaggregate analyses348

A great asset of the proposed model is that it outputs both the distribution of the travel times and the probability349

of choosing a service. The travel time distributions for the possible routes from origin to destination reveal the350

variance of travel times, which has been shown to be of great annoyance for travellers in general (Carrion and351

Levinson, 2012). Furthermore, the travel time distributions can reveal whether some connections between services352

result in distributions with two or more peaks due to missed connections, especially between schedule-based services.353

354

The possibility of extracting conditional travel times based on the chosen lines or stops allow for very detailed355

analyses of the travel patterns. This can help planners to understand why specific lines are attractive, for instance356

when travel times have both a low mean value and low variance. On the other hand it can also reveal lines that have357

non-optimal coordination with other services. If more origin and destination pairs are examined, an analysis will358

determine whether the non-robust synchronization is related to a specific line or is due to a more general network359

problem.360

361

Estimation of model parameters for vehicle travel times362

As described in Sections 2 and 4.1, discrete phase-type distributions are used to model in-vehicle times and headways363

between frequency-based services. The realism of the model outcome is thus highly dependent on the specification364

of these distributions. The parameters in the phase-type distributions can be estimated from real data, such as365

widely available Automated Vehicle Location data, by using the relatively simple EM algorithm described in Bladt366

and Nielsen (2017)[Ch. 13].367
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Complexity and scalability368

Markov chains provide an efficient modelling tool, as most calculations consist of matrix multiplications and inver-369

sions. As seen in Equation (7), the density function of a discrete phase-type distribution evaluated in n requires370

n− 1 matrix-vector multiplications (alternatively log2(n) matrix multiplications). Similarly, the distribution func-371

tion in Equation (8) requires n matrix-vector multiplications (alternatively log2(n) matrix multiplications). The372

expectation shown in Equation (9) is found by performing an inversion. As the transition matrix is very sparse,373

the calculations can be done efficiently. For comparison, the transition matrix constructed for the example network374

has dimension 6480 × 6480, but only 13,323 non-zero entries. This corresponds to 0.0317% of the matrix being375

non-zero. The computational effectiveness of Markov chains indicates that the method should be suitable for large376

scale applications.377

Inclusion of alternative passenger route choice strategies378

For the example presented in this paper, a route choice strategy of boarding the first departing line from a given379

stop was implemented. This strategy is well-known from the first examples of frequency-based models (Spiess380

and Florian, 1989). In the last decade, the increasing availability of real-time information has driven the need for381

models to represent route choice in more detailed ways, e.g. through adaptive route choice strategies. Additionally,382

utility-based models (e.g. logit or probit-type models) have been proposed, providing a more realistic descrip-383

tion of route choice. The flexible specification of the proposed modelling framework allows the implementation384

of alternative route choice strategies. For instance, the boarding probability in Equation (5) could be computed385

based on the expected remaining travel time or expected utility of boarding a specific line, thus inducing a logit386

route choice probability. Adopting such a choice strategy is similar to the approach for road networks presented in387

Fosgerau et al. (2013) and for schedule-based public transport networks in Rambha et al. (2016) and Nuzzolo and388

Comi (2019). An implementation of such a strategy could for example lower the probabilities of boarding 300S and389

the Regional train in the example network, since both services lead to higher travel times (see Table 6 and Figure 5).390

391

Further extensions of the model framework392

In this paper stops are represented in a relatively simple way, but the framework allows these to be modelled in more393

detail. First, a natural extension of the stop representation is to introduce another phase parameter to account for394

delays in schedule-based services arising before the passenger boards the service. In the current modelling frame-395

work the schedule-based lines run according to their planned departure times from the stops, but arrive randomly396

according to the delay distribution to the following stops.397

398

Secondly, in the current formulation it is assumed that the passenger can board a service arriving immediately399

after having exited another service, as seen in the creation of the transition matrix Tkl. It is rarely a possibility400

that the passenger can instantaneously move from one service to another, as both the layout of stops and crowding401

may delay the passenger. An extra phase parameter can be introduced to account for this. It should then only be402

possible to board a new service when the passenger is in a specified set of the phases (e.g. the last phase). This403
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forces the passenger to spend a minimum amount of time at the stop.404

405

Lastly, an important aspect of modelling route choice in public transport in metropolitan areas is the inclusion of406

the effect of crowding in the network. The inclusion of denied boarding for specific runs can be handled by the407

inclusion of extra phase-type parameters to allow the passenger to be denied boarding and to wait for the next408

departure.409

7. Conclusion410

This paper presents a framework for calculating the distribution of passenger travel times and the route choice411

probabilities for trips in a public transport network. The method allows both frequency-based and schedule-based412

services and takes vehicle delays into account. This is especially important for schedule-based services, as the impact413

on the passenger travel time by a missed connection between services due to delays can be considerable. The model414

is based on a multi-dimensional Markov chain that models both the position of the passenger and the time. Vehicles415

and stops are possible locations of the passengers and are thus represented by states in the Markov chain. This is an416

extension of earlier usage of Markov chains in transport modelling, which, however, only represented stops as states.417

418

The time spent in each service is modelled by discrete phase-type distributions, a very flexible class of distributions.419

This makes it possible to model many different types of running time distributions for the vehicles. The model was420

demonstrated using a small real-life case study that provided many detailed outputs useful for analyses of the route421

choice probabilities and travel time distributions for the passengers.422

423

The introduction of phases with a view to modelling the time spent at each location has many possible extensions,424

e.g. the introduction of phases at each station to represent possible crowding. Phases could also be used to model425

possible delays in schedule-based services before their arrival at the departure station of the passenger.426

427

In addition to outputting the route choice probabilities, the model also finds the distributions of the travel times428

and not just the mean values. This is an advantage as it allows the modeller to analyze all possible travel times.429

The model can also find the conditional distributions of travel times, allowing the modeller to focus on the effects430

of one particular service.431

432
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Appendix A: Verification of conditioning result505

We verify that (µj)
−1c1c2 = 1

(µj)
−1c1c2 =

α∆−1(h)eνe′∆(π)tj
α(I−T)−1jj

=
α∆−1(hj)eνe

′∆(π)tj
α(I−∆−1(hj)∆(hj)T∆−1(hj)∆(hj))−1tj

=
α∆−1(hj)eνe

′∆(π)tj
α∆−1(hj)(I−∆(hj)T∆−1(hj))−1∆(hj)tj

=
α∆−1(hj)eνe

′∆(π)tj
α∆−1(hj)(I−∆−1(φ)∆(π)T∆−1(π)∆(φ))−1∆(hj)tj

=
α∆−1(hj)eνe

′∆(π)tj
α∆−1(hj)∆−1(φ)(I−∆(π)T∆−1(π))−1∆(φ)∆(hj)tj

=
α∆−1(hj)eνe

′∆(π)tj
α∆−1(hj)∆−1(φ)(I−∆(π)T∆−1(π))−1∆(π)tj

To finish the proof we need to show the equality

∆−1(φ)(I−∆(π)T∆−1(π))−1 = ee′ν.

This is done by manipulating with the expression for ν

ν = 1 · ν · 1

⇒ν = βeνe′∆(φ)e

⇒β(I−V)−1e = βeνe′∆(φ)e

⇒(I−V)−1 = eνe′∆(φ)

⇒(I−∆−1(π)T′∆(π))−1 = eνe′∆(φ)

⇒
(
(I−∆−1(π)T′∆(π))−1

)′
= (eνe′∆(φ))

′

⇒(I−∆(π)T∆−1(π))−1 = ∆(φ)eνe′

⇒∆−1(φ)(I−∆(π)T∆−1(π))−1 = ee′ν.

506
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Abstract  

Understanding and analysing passengers’ route choice preferences is critical to realistically predict the level 

of service for the passengers’, when timetables change or new infrastructure is build. This paper argues and 

presents evidence on the influence of frequency of public transport services and whether published timetables 

are schedule- or frequency-based when describing passengers’ route choice in mixed schedule- and 

frequency-based public transport systems. The study is based on a revealed preference survey with 5,121 

reported trips in the Greater Copenhagen Area. Given the observed trips and a corresponding large choice 

set with alternative routes, passenger preferences are revealed using the well-known Multinomial Logit 

model.  

 

Utilising recently published research on how passengers time their arrival to the first stop, the paper shows 

how to estimate passengers’ preferences for avoiding waiting at the first stop. The analysis also shows that 

passengers prefer high frequency routes. This is shown by considering the highest headway in any leg of a 

trip, as well as by introducing a variable capturing passengers’ higher preference for frequency-based 

compared to schedule-based services. On the other hand it is shown, that passengers prefer waiting for a 

schedule-based service compared to a frequency-based service when transferring, implying that passengers 

want to be certain about the time they need to wait when transferring. Finally, the paper examines the 

transformation of the in-vehicle time components according to a Box-Cox transformation, and highlights the 

varying trade-offs between in-vehicle times of different vehicles at different travel time levels.  
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1 Introduction 

The public transport system in most metropolitan areas, including the Greater Copenhagen Area, is a mix of 

high and low frequency services where the published timetable for some lines is schedule-based (SB), while 

being frequency-based (FB) for others. The passengers are therefore often in a situation where the route 

choice includes options where both SB and FB services are viable alternatives relevant to consider. The 

combination of the two types of services, independent of public transport mode, leads to a more complex 

route choice, where the frequency of services are important for various reasons, e.g. in relation to transfers. 

 

In the literature, the utility function of passenger’s route choice primarily includes the quantifiable time 

components (in-vehicle, access/egress time, waiting time at transfers and walking time), a transfer penalty 

and in relevant cases the ticket price (Gentile and Noekel, 2016, chap. 4). Some applications also include the 

other factors such as in-vehicle crowding, level changes at transfers and other attributes at transfer stations 

as well as topological characteristics for the spatial dimension of a trip (Raveau et al., 2014). Implicitly, the 

impact of frequency on route choice has typically been captured by the hidden waiting time and waiting time 

in a linear way. However, as it was shown in Anderson et al. (2014) the inclusion of headway of the trip 

proved to provide a significantly better model fit.  

 

This paper utilises a large disaggregate dataset of observed behaviour in the Greater Copenhagen Area. The 

results demonstrate, that the model fit to observed behaviour can be improved further by (i) separating 

waiting for SB and FB services at transfers; (ii) using new knowledge identified in (Ingvardson et al., 2018) 

about passengers’ waiting time at the first station to enrich the detailed dataset; (iii) relating passengers’ route 

choice to the published timetables to identify preferences for FB and SB services by including a dummy for 

FB services; and (iv) analysing trade-offs between in-vehicle times at different travel time levels. 

 

The paper is structured as follows; Section 2 introduces the dataset used in the study and the methodology 

for estimating passenger preferences, Section 3 presents the results, followed by a discussion and conclusion 

of the study in section 4.  

2 Data foundation and methodology 

The dataset used in this study consists of 5,121 observed routes made by public transport in the Greater 

Copenhagen Area. The data were collected in the years 2009-2011 as part of the Danish National Transport 

Survey (Center for Transport Analytics DTU, 2017). The observed routes were matched to a SB 

representation of the public transport network as described in Anderson and Rasmussen (2010). A choice set 

of alternatives corresponding to each observed route was generated using a simulation-based choice set 

generation method described in Rasmussen et al. (2016). The final choice sets consist of between 18-200 

alternatives for each observation with an average of 128 unique alternatives per observed route. 

2.1 Description of network 

The public transport network in the Greater Copenhagen Area is a mix of SB and FB services. The FB 

services are found in the most densely populated areas of Copenhagen, consisting primarily of the metro 

operating with a headway of 2-4 minutes during peak hour, and the “A-buses” (high frequency buses), with 

headways between 3-8 minutes during peak hours. All other buses, regional trains and suburban trains (S-

tog) in the Greater Copenhagen Area operate with published schedules with headways between 5-90 minutes. 

The figures below show examples of the published timetable for a FB and a SB bus line. In particular, note 

in the case of line 3A and 150S, the SB bus line 150S runs with a higher frequency than the bus line 3A.   
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Figure 1 - Example of a frequency-based bus (3A between 7am-5pm)  

and a schedule-based service (150S) (Movia, 2011) 

Figure 2 gives an overview of the public transport system in the Greater Copenhagen Area, when dividing 

the network into SB (rail and most busses) and FB lines (metro and some busses) respectively. The map 

clearly shows the concentration of FB services in the central part of Copenhagen. 

 
Figure 2 - Schedule-based (SB) and frequency-based (FB) services in the Greater Copenhagen Area 
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2.2 Observed routes 

The observed routes are distributed across the whole case-study area, and have a large variation in terms of 

the components (Table 1). All variables have large standard deviations, which for most of the variables, e.g. 

sub mode specific in-vehicle times and waiting time at transfers, is due to the many routes which have not 

used a specific sub mode or made any transfers, i.e. not having any waiting times at transfers. The most used 

sub modes in the data are buses and S-trains which are also the primary services covering the case-study 

area. 

 

All variables, except the headway variables and waiting time at the first stop, are directly extracted from the 

matched observed routes. The headway of each leg in the trip is found by the minimum amount of the time 

to the previous and next departure (run) of the same line between the same stops. The highest headway of 

the trip is defined as the highest headway of the legs in the trip.  

 

 
Table 1 - Trip characteristics for observed routes 

Trip component Mean Std. dev. 

Total travel time 36.47 20.82 

In-vehicle time total 20.21 13.76 

   In-vehicle time bus 8.25 11.08 

   In-vehicle time SB bus 6.14 10.33 

   In-vehicle time FB bus 2.11 5.91 

   In-vehicle time metro 1.39 3.56 

   In-vehicle time S-train 7.44 11.18 

   In-vehicle time local train 0.60 4.00 

   In-vehicle time regional train 2.53 8.43 

Nb. of transfers 0.48 0.64 

Waiting time at transfers 2.52 6.10 

Waiting time at first stop 3.85 2.64 

Walking time 0.97 1.58 

Access/egress 12.78 9.36 

Headway of first leg 11.88 16.29 

Highest headway in trip 14.32 17.42 

Include frequency-based service (dummy) 0.34 0.47 

Total number of observations 5,121 

 

The waiting time at first stop is derived from the headway of the first leg, and whether the first leg is a SB or 

FB service. The distinction between SB and FB services is made because a recent study from Ingvardson et 

al. (2018) showed that passengers who know the exact planned departure time of a run come partially planned 

to the first stop thereby minimizing the waiting time at the first stop. The study by Ingvardson et al. (2018) 

only covered rail services, but the assumption of this present work is that the calculated waiting times also 

applies for bus services. The waiting time at the first stop for FB services is given by half of the headway, as 

passengers are assumed to arrive completely random to these services, which was also shown to be true in 

the study. For SB services the passengers arrive more timed the longer the headway is as shown in Figure 3. 

The waiting time at the first stop (𝐹) increases with the headway, and is found by the following formula:  

 

𝐹 =  {
0.5 ∗ 𝐻                                𝑖𝑓 𝐿 =  𝐹𝐵

0.5181 ∗ exp(𝐻) ∗ 𝐻      𝑖𝑓 𝐿 = 𝑆𝐵 
 

 

, where 𝐿 is the first leg in the trip and 𝐻 is the headway of the first leg in the trip. 
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Figure 3 -Average waiting time at first stop in percent of headway for respectively SB and FB services 

Figure 4 illustrates the total travel time and in-vehicle time for the observed trips. As seen in the cumulative 

distribution function for the total travel time, the dataset include a wide range of travel times, with most 

observations having around 20 to 40 minutes total travel time. Around 15% of the 5,121 trips last for more 

than one hour, and 27 observed routes have a travel time exceeding two hours. The total in-vehicle time 

varies between very short trips with only a few minutes of in-vehicle time to in-vehicle times of more than 

an hour. Most trips include between 15-30 minutes in-vehicle time, which is also reflected in the total travel 

time for most trips being 20-40 minutes. 

 

 
Figure 4 - Cumulative distribution function for total travel time and total in-vehicle time for observed trips. 

(27 observations have a total travel time higher than 120 minutes – max 232 minutes) 
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Figure 5 -Cumulative distribution functions of sub mode in-vehicle times of observed trips 

including trips that did not use the specific sub mode (zeros) 

 

 

Figure 6 - Cumulative distribution functions for in-vehicle times of observed trips  

excluding trips that did not use the specific sub mode (zeros). 

Few observations for local train result in a less smooth curve than for other sub modes. 
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Figure 5 and Figure 6 illustrate the distribution of the different variables related to the in-vehicle times of 

sub modes of the observed routes. Figure 5 shows the distributions when also including trips where the 

passenger did not use the specific sub mode, while Figure 6 shows the distributions only including trips 

where passengers used the sub mode. More than 50% of the trips use a bus and almost half of the trips use 

the S-trains, while only around 20% use the metro, and the regional and local trains are used even less 

frequently than the metro. When removing all trips not including a specific sub mode, the plots in Figure 6 

shows a wide range of in-vehicle times for S-train, buses and regional train, while the in-vehicle times for 

metro use is significantly shorter. This is due to shorter lines which serve more trips centred in the inner areas 

of Copenhagen, which would be expected to have shorter trips.  

 

Figure 7 shows the cumulative distribution for the other component of the trips. The access/egress times 

varies between a few minutes and 30 minutes, where the waiting times at the first stop is centred from two 

to five minutes. The walking and waiting times at stops is proportional to the number of transfers in the trips, 

where more than half of the trips are single legged. The final variable is the highest headway of the trip, 

where most trips have headways of 10 minutes or below, while few have headways higher than thirty minutes. 

 

 

Figure 7 - Cumulative distribution functions for trip components other than IVT of observed trips 

2.3 Methodology 

Various multinomial logit models are estimated to reveal the route choice preferences of travellers (Train, 

2002). The utility 𝑈𝑘𝑛 of an alternative k in the choice set 𝐶𝑛 for each observed route n is described with the 

following utility specification: 

 

𝑈𝑘𝑛 = 𝑉𝑘𝑛 + 𝜖𝑘𝑛       ∀ 𝐾 ∈ 𝐶𝑛 

 

, where, 𝑉𝑘𝑛 is the deterministic part of the utility and 𝜖𝑘𝑛 is the random utility assumed to be gumbel 

distributed.  
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The deterministic part of the utility 𝑉𝑘𝑛 is specified as: 

 

𝑉𝑘𝑛 = ∑ 𝛽𝐼𝑉𝑇,𝑚𝐼𝑉𝑇𝑚𝑘𝑛

𝑚

+ ∑ 𝛽𝑡,𝑐𝑡𝑐𝑘𝑛

𝑐

+ ∑ 𝛽𝑦,𝑞𝑦𝑞𝑘𝑛

𝑞

 

, where 𝐼𝑉𝑇𝑚𝑘𝑛 is the in-vehicle time for component m, 𝑡𝑐𝑘𝑛 is the time component c not related to in-vehicle 

time (e.g., waiting, walking, access/egress and headway) and 𝑦𝑞𝑘𝑛  is component q not related to time (e.g., 

transfer penalties and dummy variable for trips including FB services). The choice probability of route k for 

observation n is given as: 

 

𝑃𝑘𝑛 =
exp (𝑉𝑘𝑛)

∑ exp (𝑉𝑙𝑛)𝑙∈𝐶𝑛

 

 

The estimations made in the analysis for this paper build on the work made in Anderson et al. (2014), but 

exclude the path size correction factor, as the factor proved not to be significant when adding multiple new 

variables. The focus of the estimation procedure was to test the hypothesis concerning waiting time 

preference when transferring to either a SB or FB service; estimating first waiting time correctly; check for 

passenger preferences by including a dummy variable for trips including a FB service; and finally to estimate 

Box-Cox transformations for in-vehicle times. The Box-Cox transformations estimated follow the formula 

given below: 

𝑥(𝜆) =  
𝑥𝜆 − 1

𝜆
 

where 𝜆 is the transformation parameter to be estimated (Box and Cox, 1964), and x is the variable, which is 

transformed.  

3 Results 

This section presents the results of estimations of models including different variables, which describe 

passengers’ route choice preferences in the Greater Copenhagen Area. In total more than 100 different 

specifications were tested to achieve the best model fit. This section presents the base model followed by the 

elaborate model; including the waiting time at first stop, highest headway of trip, split between waiting for 

SB and FB services, and dummy for whether the route includes a FB service. 

3.1 Base specification 

Table 2 show the estimates of the base specification including the variables access/egress, in-vehicle time of 

the sub modes, waiting times at transfers, walking time at transfers and transfer penalty. The results show 

that passengers prefer S-train, local trains and, especially metro compared to bus and regional trains. The 

higher disutility of regional trains compared to bus use is not as expected, but could be a result of few good 

viable alternatives to trips using regional trains, because there are typically no other services running in the 

same corridors as the trains. The access and egress time is, as expected a higher disutility than being inside 

a vehicle. 

 

From the model it appears that walking and waiting time at transfers is preferred compared to in-vehicle 

time, but this is due to the transfer penalty, and it is therefore important to note that waiting and walking time 

at transfers have to be seen in the context of the high transfer penalty. The transfer penalty is equivalent to 

approximately 9 minutes of in-vehicle time in bus, but is lower for work related trips and higher for leisure 

trips. For work trips this could be due to passengers primarily trying to minimize the total travel time, while 

leisure trips avoid transfers to a higher extent possibly because they are not as familiar with the transfer 

options and the certainty of reaching a connecting service.  
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Table 2 - Estimates (robust t-test) for model with base specification and rates of substitution scaled to bus in-vehicle time 

 Model estimates Rates of substitution (to bus IVT) 

 Trip purpose Trip purpose 

Parameter All Work Leisure All Work Leisure 

In-vehicle times       

  Bus -0.190 (-32.84) -0.216 (-26.47) -0.163 (-21.61) 1.00 1.00 1.00 

  Metro -0.066 (-7.37) -0.086 (-6.54) -0.044 (-3.74) 0.35 0.40 0.27 

  S-train -0.146 (-22.46) -0.170 (-17.23) -0.117 (-14.60) 0.77 0.79 0.72 

  Regional train -0.200 (-20.57 -0.215 (-16.61) -0.183 (-10.87) 1.05 1.00 1.12 

  Local train -0.150 (-9.63) -0.189 (-8.80) -0.117 (-4.50) 0.79 0.88 0.72 

Other time components       

  Access/egress -0.352 (-30.74) -0.375 (-27.38) -0.329 (-18.24) 1.85 1.74 2.02 

  Waiting time at transfers -0.034 (-13.43) -0.036 (-15.02) -0.030 (-6.72) 0.18 0.17 0.18 

  Walking time at transfers -0.087 (-7.45) -0.083 (-5.48) -0.098 (-5.27) 0.46 0.38 0.60 

Other components       

  Transfer penalty -1.750 (-30.71) -1.740 (-24.22) -1.800 (-19.65) 9.21 8.06 11.04 

Number of observations 5,121 2,667 2,454    

Null log-likelihood -24,722 -13,063 -11,659    

Final log-likelihood -12,592 -6,229 -6,327    

Adjusted rho square 0.490 0.523 0.457    
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3.2 Elaborate specification  

Taking outset in the base specification, various alternative specifications including additional variables were 

estimated. This process led to the model specification and parameters presented in Table 3. The log-

likelihood of this specification is significantly better than the base specification (-12,075 vs. -12,592), and 

all parameters are significant and with the expected sign. Looking at the rates of substitution, the results show 

that waiting time at the first stop is preferred compared to bus in-vehicle time. However, this is most likely 

due to the inclusion of the highest headway of the trip, because many trips only have one leg and the waiting 

time at the first stop depends on the headway and service type (SB/FB) of the first leg. When considering the 

highest headway of the trip, the reduction of one minute in bus in-vehicle time is equivalent to a reduction 

of the headway of 7 minutes. This headway should also be reflected in a lower waiting time at the first stop, 

so the reduction in utility would be greater than just the contribution from the headway parameter.  

 

The distinction between waiting for a FB vs. SB service gives significantly different parameter estimates as 

waiting for FB services is four times worse than waiting for SB services. It is important to note, that the 

interval covered by FB waiting time is between 0 to 14 minutes, while waiting times for SB services extend 

into more than an hour. Moreover, tests using piecewise linear parameters and Box-Cox transformations for 

the split waiting times showed that waiting time for FB services is in all cases worse than waiting for SB 

services. The difference in the parameter estimates could be due to the higher uncertainty of waiting time for 

a FB service, as the passenger does not know when the next service will depart exactly. For SB services the 

waiting time is more certain, as it is given from the explicit timetable, and this could influence the passenger’s 

route choice because they are more certain on when they will arrive at their destination. 

 

The specification also includes a dummy describing whether the route includes a FB service. The parameter 

estimate of 0.545 indicates that passengers prefer routes with FB services compared routes without FB 

services. The positive parameter could be explained by the fact, that routes including FB services are typically 

high frequent routes, which gives a security for the passenger to not be significantly delayed if the first 

departure is missed.  
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Table 3 - Model estimates (robust t-test) for model with elaborate specification with linear parameters and rates of substitution scaled to bus in-vehicle time 

 Model estimates Rates of substitution (to bus IVT) 

 Trip purpose Trip purpose 

Parameter All Work Leisure All Work Leisure 

In-vehicle times       

  Bus -0.180 (-29.84) -0.205 (-24.67) -0.154 (-19.1) 1.00 1.00 1.00 

  Metro -0.096 (-9.29) -0.117 (-7.92) -0.072 (-5.23) 0.53 0.57 0.47 

  S-train -0.152 (-22.00) -0.176 (-16.77) -0.124 (-14.53) 0.84 0.86 0.81 

  Regional train -0.209 (-19.83) -0.221 (-16.00) -0.196 (-10.30) 1.16 1.08 1.27 

  Local train -0.156 (-10.45) -0.193 (-9.90) -0.126 (-4.40) 0.87 0.94 0.82 

Other time components       

  Access/egress -0.377 (-29.79) -0.405 (-26.48) -0.351 (-17.83) 2.09 1.98 2.28 

  Headway -0.026 (-8.61) -0.028 (-6.39) -0.025 (-5.80) 0.14 0.14 0.16 

  Waiting time at first stop -0.100 (-5.31) -0.118 (-5.05) -0.085 (-2.79) 0.56 0.58 0.55 

  Transfer waiting time for SB service -0.027 (-11.43) -0.029 (-12.92) -0.023 (-5.64) 0.15 0.14 0.15 

  Transfer waiting time for FB service -0.116 (-12.36) -0.128 (-9.35) -0.105 (-8.16) 0.64 0.62 0.68 

  Walking time at transfers -0.098 (-8.18) -0.095 (-6.00) -0.106 (-5.74) 0.54 0.46 0.69 

Other components       

  Transfer penalty -1.820 (-29.68) -1.830 (-23.54) -1.850 (-18.98) 10.11 8.93 12.01 

  Trip include FB service 0.545 (8.17) 0.576 (5.75) 0.521 (5.75) -3.03 -2.81 -3.38 

Number of observations 5,121 2,667 2,454    

Null log-likelihood -24,722 -13,063 -11,659    

Final log-likelihood -12,075 -5,944 -6,089    

Adjusted rho square 0.511 0.544 0.477    
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3.3 Elaborate specification with Box-Cox transformations of in-vehicle time 

As shown in the previous subsections passengers have different preferences for the individual sub modes. To 

test whether the marginal utility of each of the variables change depending on time spent in the vehicles, a 

specification identical to the one described in section 3.2 is estimated, however using Box-Cox 

transformations of all variables related to in-vehicle times. The resulting parameters of the estimation on the 

full dataset are for all non in-vehicle time parameters almost identical to the elaborate model presented in 

Table 3 and all parameters remain significant. The log-likelihood is improved from -12,075 in the linear 

elaborate model to -11,901 in the elaborate model with Box-Cox transformations. Figure 8 shows how the 

marginal utility decreases over time for regional train, while for S-train and metro the marginal utility 

increases. The high marginal increase in utility for in-vehicle time in metro (𝜆 = 2.02) could be a result of 

the few seats in the metro and thereby simulating a standing penalty, which is mostly in place for longer trips 

of more than 10 minutes. For the in-vehicle time in S-trains the marginal increase is less than for metro (𝜆 =

1.47), but with no tables at the seats and a high load on the trains in peak hours, the marginal increase for 

longer in-vehicle times seem behaviourally correct. The marginal decrease in utility for regional train (𝜆 =

0.70) is as expected, as passengers in regional trains can use the time more efficient with tables at the seats 

and a general higher comfort level. Figure 8 only shows the utility on the central 95% of the observations, 

but from the figure it is clear, that for trips longer than an hour, the regional train is preferred. In-vehicle time 

for bus is almost linear (𝜆 = 0.95) and could be explained by a high disutility for shorter trips, where a seat 

might not be available, and a lower disutility for longer trips, where a seat will often become available on the 

bus at some point. 

 

 

Figure 8 - Utility of in-vehicle time for model with elaborate specification with Box-Cox transformation  

of the variables related to in-vehicle time.  

Curves only shown for the central 95% of observations for each variable (zeros excluded) 
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4 Discussion and conclusion 

This section discusses and concludes on the findings presented in section 3 and how these findings can be 

used for further improving public transport assignment models. 

4.1 Dealing with departure time choice within route choice models 

An important aspect of public transport route choice is when the passenger can depart from the origin, and 

in most cases even more important when the passenger can arrive to the destination. For FB networks (and 

FB assignment models) this aspect is not as important, as departures are possible at all times. In SB networks 

(and SB assignment) the possible departure and arrival times are crucial, because passengers want to time 

their arrival to for example work or leisure activities. As the departure times are discrete in time, it might be, 

that passengers need to arrive earlier or later than the preferred arrival time. This time between preferred and 

actual arrival time is called hidden waiting time. Departure time choice is a well-established research field 

(see Thorhauge (2015, chap. 1) for a comprehensive list of previous studies), and for this study it would be 

relevant to include, as many alternatives have a departure time which differs significantly (more than 10 

minutes) from the reported departure time. It has not been possible to estimate a parameter for this hidden 

waiting time, because the observed route will always be the best on this variable, making it impossible to 

estimate the parameter. Future research will focus on how to deal with this issue by for example fixing the 

parameter according to the total in-vehicle time based on stated preference surveys.  

4.2 Implications of findings for public transport traffic assignment models 

The findings of this paper can be used to model the route choice of public transport users in traffic assignment 

models at a higher level of detail. The difference in preferences for SB and FB services underlines the need 

to focus on creating an assignment model that can take both types of services into consideration. Modellers 

today are faced with only the choice between either a FB or SB assignment model to model a certain area, 

but if the model could represent realistically both FB and SB services there might be a potential benefit in 

the ability to better replicate passenger choices in public transport. 

4.3 Conclusion 

The estimations using real-life observed route choice data collected in a complex multi-modal public 

transport network have provided an insight into the impact of several factors that affect passengers’ route 

choice in mixed SB and FB public transport systems. Findings related to preferences for waiting time for FB 

and SB services show that passengers prefer to be more certain about their waiting time. On the other hand, 

the positive parameter for whether a route includes a FB service shows that passengers prefer highly frequent 

services, which FB services typically are when compared to SB services. This indicates that passengers’ 

value having many possible departures, which is in line with the preference for routes with lower headways. 

Finally, the paper showed, that the preferences for in-vehicle time in sub modes change according to how 

much time is spent in a specific sub mode. 
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ABSTRACT 

Given the aim of increasing public transport patronage, it is important to understand how 
passengers perceive different trip characteristics. Most of the existing studies about public transport 
demand and route choice assigned a higher value of time to transfers than in-vehicle time and used a 
general transfer penalty to capture an average increase in the travel disutility because of the amount 
of transfers. However, it is likely that there are nuances to the transfer behaviour depending on 
specific transfer conditions that existing models do not capture and hence it is difficult to evaluate 
measures aimed at improving transfers to make public transport more attractive. 

This study presents a route choice model for the multimodal public transport network in the 
Greater Copenhagen Region where a variety of transfer attributes were explicitly considered within 
a unified model framework. The model was estimated on an extensive dataset of 4,810 observed 
routes that made it possible to evaluate the rates of substitution of transfer related attributes. The 
model results revealed that travellers do consider attributes for transfers such as ease of wayfinding, 
presence of shops and escalators at stations when choosing routes in the public transport network and 
this influences the attractiveness of the respective routes with a quite large range of the transfer 
penalty from 5.4 minutes compared to bus in-vehicle time for the best possible transfer to 12.1 
minutes for the worst. Furthermore, the model results revealed some differences in the preferences 
for transfer attributes across passengers. This suggest a quite large potential for improving transfers 
and hence public transport patronage focusing on the attributes of the transfers. 

KEYWORDS 

Multimodal, Public Transport, Route Choice, Transfer Penalty, Transfer Attributes 

1 INTRODUCTION 

The attractiveness of public transport depends certainly on the services offered by the public 
transport agencies, but also on terminals and transfer conditions (Cascetta and Cartení, 2014). Public 
transport agencies may choose between a number of different suggestions to improve the terminals 
and thus create more attractive transfers. Supporting informed decisions requires the understanding 
of travellers’ preferences and route choice behaviour to be able to predict traffic flows and passenger 
benefits under different scenarios. 

In a public transport network, travellers perceive time differently according to how time is 
spent. It is for example well known that most people prefer travelling by train rather than bus (Nielsen, 
2000; Fosgerau et al, 2007; Varela et al., 2018), as factors such as comfort and reliability are perceived 
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as inherent mainly to travelling by train. It is also well known that a transfer in a public transport 
system not only adds disutility to the trip proportionally to the time spent on the transfer, but also 
includes a fixed disutility for each additional transfer on the trip, also known as transfer penalty. 
Previously, many public transport route choice models and value of time studies have revealed quite 
large transfer penalties varying between 5 and 20 minutes of in-vehicle time (Van der Waard, 1988, 
Vrtic & Axhausen, 2003, Bovy & Hoogendoorn-Lanser, 2005, Nielsen, 2004, Nielsen & Frederiksen, 
2006), where the penalties added a fixed disutility regardless of the characteristics of the transfer 
stations or terminals.  

In recent years, different studies have focused on exploring the differences of the experienced 
penalty of transferring by considering transfer related characteristics. Iseki and Taylor (2009) 
described the importance of modelling transfer penalties and suggested that three factors are key 
contributors: (i) operational factors that influence the waiting time at the terminal, (ii) physical 
facilities at the terminal such as safety and security measures as well as facilities to provide comfort 
such as correct signing and shelters, and (iii) factors relating to passengers’ familiarity with the 
network. For unimodal (metro) networks, Raveau et al. (2011), Guo and Wilson (2011) and Raveau 
et al. (2014) estimated the effect of attributes such as escalator presence, differences in platform levels 
and ramp lengths, as well as network knowledge of the passengers. For multimodal networks, 
Chowdhury and Ceder (2013) and Chowdhury et al. (2014) looked at the effect of attributes such as 
transfer information, real-time display and security measures; Navarrete and Ortúzar (2013) estimated 
the effect of intermodal transfers (bus/metro) and escalator presence at transfers; Schakenbos et al. 
(2016) took a more aggregate approach defining different typical transfer stations based on shop 
availability; Anderson et al. (2017) modelled the effect of intermodal transfers; and Garcia-Martinez 
et al. (2018) modelled intermodal transfers, real-time information and difference in levels when 
transferring.  

All the multimodal studies were based on surveys, including stated preference (SP) surveys, 
while most unimodal studies were based on observed trips. For the unimodal studies, Gou and Wilson 
(2011) mentioned that it was difficult to obtain detailed data about the transfer attributes, and Raveau 
et al. (2011) mentioned that a limitation of their study was the unimodality and hence the inability to 
describe the full journey, which in many cases consisted of combinations of legs with bus, train and/or 
metro. The limitation of unimodality has been approached in the multimodal studies (Chowdhury and 
Ceder, 2013, Chowdhury et al., 2014, Navarrete and Ortúzar, 2013, Schakenbos et al., 2016, 
Anderson et al., 2017, Garcia-Martinez et al., 2018), but none of these studies have tackled the issue 
of obtaining detailed data about the transfer attributes, as they have used SP surveys to estimate their 
effect.  

The aim of this study is thus to analyse in detail the components of transfer penalties by 
modelling observed route choices in a multimodal network and collecting relevant transfer attributes 
of the respective transfer terminals. The analysis was performed on the multimodal public transport 
network of the Greater Copenhagen Region, which is served by metro, three different train services 
(local, regional and suburban) and bus services. The analysis focused on revealed preferences by 
modelling 4,810 actual route choices that were collected and map-matched for all trips with both start 
and end in the Greater Copenhagen Region (for details, see Anderson, 2013).  
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The relevance of the transfer attributes to the route choices of travellers was investigated via the 
estimation of route choice models with different formulations to capture the effects of transfer 
attributes on passenger preferences. Choice sets were generated via a doubly stochastic generation 
method (Nielsen, 2004; Rasmussen et al., 2016) that produced up to 200 alternative routes to each 
observed route. Most importantly, the estimation of route choice models considered several 
specifications given the exploratory nature of the study and the absence of reference values for the 
sensitivity to transfer attributes. The applications of the findings are as follows: (i) they can be applied 
to suggest effective improvements to existing transfer stations with the aim of decreasing the disutility 
of public transport trips, (ii) they can be applied to provide design guidelines to new transfer stations, 
and (iii) they can improve route choice models for public transport enabling them to evaluate overall 
passenger effects of improved public transport terminals.  

The remainder of this paper is structured as follows. Section 2 introduces the transfer attributes 
and their measurement. Section 3 provides the description of the methodology and Section 4 presents 
the case-study. Section 5 illustrates the results prior to the last section discussing the results and giving 
recommendations about the conclusions from the findings of the study.  

2 SELECTION AND DEFINITION OF TRANSFER ATTRIBUTES 

As aforementioned, several studies in the past decade have focused on unraveling passenger 
preferences while considering the characteristics of the transfer terminals. Table 1 summarizes the 
transfer attributes considered in these previous studies and differentiates whether the attributes have 
been estimated or just mentioned as possibly considered in the route choice. All the attributes in table 
1 can potentially be relevant to the passengers’ route choices, but the data availability and the variable 
definition possibility for modelling purposes can be critical. The process of selecting the most 
important variables for passengers’ route choice and the possible definition of the variables is 
described below. 
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Table 1. Transfer attributes in previous studies (attributes with an X have been estimated, while 
attributes with an (x) have only been mentioned)  
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Anderson (2013)        (x)    
Chowdhury and Ceder (2013)     X X X     
Chowdhury et al. (2014)    X  X    (x)  
Garcia-Martinez et al. (2018) X    X       
Gou and Wilson (2011) X X X         
Iseki and Taylor (2009) (x) (x)  (x) (x) (x) (x)  (x)  (x) 
Navarrete and Ortúzar (2013)  X    X      
Raveau et al. (2011) X X          
Raveau et al. (2014) X X          
Schakenbos et al. (2016)        X    

 

2.1 Selection and definition of transfer attributes to be estimated 

Since the data for this paper is from the period 2009-2011, real-time information was not 
included in the long-list of variables to consider and also ramp length was disregarded as it would 
almost only be present for transfers to and from metro services in the Greater Copenhagen network. 
With the aim of finding the most suitable attributes to consider for the estimations, the remaining 
eight attributes from table 1 were then evaluated in further detail with regard to four criteria: validity, 
reliability, measurability, and data availability (Dyrberg & Christensen, 2015). 

The validity criterion defined how well an attribute measures what it is supposed to measure. 
In this case, how much impact the attribute has on the transfer. The reliability criterion evaluated 
how objective the measure of the attribute can be: ideally, two independent measures of the same 
attribute under the same circumstances would give the same result, but this might be a problem when 
measuring more qualitative attributes. The measurability criterion assessed how easy to measure each 
of the eight attributes are. The data availability checked how demanding the data collection would 
be for each attribute (Joumard et al., 2010). 

Table 2 shows the long-list of eight attributes along with the evaluation over each criterion. 
Shelters, shops and level changes were rated as “high” on all four criteria and were all included in the 
short-list of attributes to collect data for. Seat availability at a transfer performed rather well in all 
criteria except for validity, due to the fact that travellers do not always use seats. Furthermore, this 
attribute would probably be correlated with the attribute representing shelters. Occupancy scored well 
in several criteria without making it to the short-list, mainly due to poor data availability. Ease of 
wayfinding was rated as “high” or “medium” for all criteria, and despite the fact that this attribute has 
some issues especially on the reliability criterion, it was considered to be highly valid and was 
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therefore included in the short-list. The attributes appearance and safety were both disregarded as 
they were rated as “low” in terms of validity and measurability. Security was also disregarded as it 
would be difficult to measure considering the “medium” validity and measurability.  

Data were then collected for the four attributes shelters, shop availability, level changes and 
ease of wayfinding. However, during the estimation of the route choice models the shelter attribute 
was found to be non-significant regardless of the model specification and hence the attribute is not 
discussed further. The data collection and specification for shop availability, level changes and ease 
of wayfinding follows below. 

Table 2. An overview of how each attribute has been rated according to the four criteria 

 Validity Reliability Measurability Data availability 

Appearance Low Low Low Low 

Seats Medium High High Low 

Safety Low Low Low Medium 

Security Medium Medium Medium Medium 

Shop availability High High High High 

Level changes High High High High 

Shelters High High High High 

Ease of wayfinding High Medium Medium Medium 
 
 
Shop availability 

Three levels of shops were considered to capture shop availability at a given transfer: (i) no 
shop; (ii) a kiosk; (iii) several shops. No shop was defined as a transfer without access to any kind of 
shop. This is often the case for bus-bus transfers away from stations. A kiosk was defined as a transfer 
with access to a small shop where it is possible to buy snacks, drinks, magazines, tickets etc. Many 
suburban train (S-train) stations have at least a kiosk. Several shops were registered when there is 
more than a kiosk, for example a grocery store, a bakery or any other type of shops. Some stations 
have a shopping mall right next to the station and transfers here are registered with several shops, 
since there is direct access to the shopping mall from the station. 

Ease of wayfinding 

Ease of wayfinding describes how easy it is to find the direction from the stop where the 
traveller arrives to the stop where the next transport mode is departing. Notably, the information level 
can affect the perceived and actual transfer walk time (Iseki and Taylor, 2009). As a longer walk 
exposes the travellers to more situations where they risk taking the wrong turn or getting lost, the two 
parameters are considered somewhat correlated. The ease of wayfinding was divided into four 
categories, where each category was defined as a dummy since a transfer could only be within one of 
the four categories: (i) easy; (ii) low difficulty; (iii) moderate difficulty; (iv) difficult. 

Easy was defined as a transfer where it is straightforward to find the direction between the 
arriving and the departing stop, as the information level is good and the departing stop can be found 
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intuitively. An example could be a transfer from one train to another where the two trains arrive at 
and depart from the same platform.  

Low difficulty described transfers where it takes more than a few seconds to find the direction 
for the next departing stop, but then it is still quite simple to find the departing stop given the 
information signs. The distance from the arriving stop to the departing stop is often relatively short 
because it is somewhat correlated to the number of times a traveller risks getting lost.  

Moderate difficulty indicated transfers where it is more difficult to find the right direction 
towards the next departing stop and, once the direction is found, there are still risks of getting lost on 
the way. Moderate difficulty often includes transfers where the distance between the arriving stop 
and the next departing stop requires walking for several minutes, consequently increasing the risk of 
getting lost. Another possible transfer with moderate difficulty is when finding the direction 
corresponds to low difficulty but, once the departing area is reached, it is confusing to understand 
where the specific line is departing from. An example is finding the correct bus stop at a larger 
terminal with many buses, finding the right platform for a specific train when there are many 
platforms to choose from, or other similar situations. 

Very difficult defined transfers where the information level is low and/or the travellers find it 
very difficult to find the direction when transferring from an arriving stop to the next departing stop, 
and it may be confusing where the specific line is departing from. The traveller risks getting lost more 
than once after locating the departing stop, or facing many options when it comes to finding the 
correct way. Only few transfers in the case study presented below were characterized as being very 
difficult.  

Level changes 

The number of level changes per transfer corresponded to the number of times a traveller has 
to ascend or descend stairs. Furthermore, it recorded whether escalator assistance was available for 
the ascend or descend, and if so the escalators were assumed to be used. The case study area does not 
include stations with more than approximately three storeys vertical difference and hence the vertical 
height differences was captured by counting the number of ascending and descending stairs and 
escalators. The number of ascends and descends at transfer stations were summed for the whole 
alternative route, and since a general transfer penalty is included in the models, the number of ascends 
and descends with and without escalators describes the difference to transfers without level changes. 

3  ROUTE CHOICE MODELS 

Passenger preferences were estimated within a discrete choice modelling framework after 
generating a choice set for each of the observed routes and retrieving information about trip 
components and attributes of the transfer stations.   

3.1 Model formulation 

A random utility model assuming that each traveller n maximises his or her utility by choosing 
route i among a possible set Cn of routes is assumed. The deterministic part 	of the random utility 
Uni for each route is formulated as a linear-in-parameter function (Ben-Akiva & Lerman, 1985). 
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In a multi-modal public transport network, travellers choose their route among a number of 
alternatives that might overlap to some extent. Accordingly, the probability was formulated according 
to a Path Size Correction (PSC) Logit model by considering the length of the common links between 
routes (Bovy et al., 2008) 

exp	 ∙
∑ exp	 ∙∈

 

where PSCi is the Path Size Correction factor for route i, and βPSC is the parameter to be estimated. 
PSCi is given by the following expression (Prato, 2009):  

∈

 

where  is the length in minutes of link  between stops,  is the length in minutes of route , Γ  is 
the set of links belonging to route ,  is the link and route incidence dummy equal to one if route  
uses link  and zero otherwise. The Path Size Correction factor varies from -∞ to 0, where 0 represents 
a completely independent route. 

Heterogeneity across travellers was considered with the estimation of a Mixed PSC Logit 
model. The density distribution for each of the parameters were considered as being either normally 
or log-normally distributed, and the probability Pni of traveller n choosing alternative route i within 
the choice set Cn was expressed as: 

exp
∑ exp∈

β  

where the probability is integrated over the distributions of the ’s, which can be either entered in the 
model as non-distributed, lognormal distributed or normal distributed parameters. All models were 
estimated using PythonBiogeme (Bierlaire, 2016) and the probabilities of the Mixed Logit models 
were simulated with 500 draws for the final models.  

To test whether the extra transfer related variables and allowing heterogeneity across travellers give 
a significant better model fit the likelihood ratio test (LRT) is used. The test statistic is chi-squared 
distributed and takes into account the number of restricted parameters in the restricted model 
compared to the unrestricted model. 

	 2 	~	   

The following subsection introduces the model specification of the base model, which is a restricted 
model of the model including transfer related variables.  

3.2 Model specification 

It is well-known from the literature that time and cost are very important for public transport 
travellers. Previous studies have included various time components, namely in-vehicle time, 
access/egress time, and transferring time (waiting/walking), as the main descriptors of the passengers’  
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route choices together with a general transfer penalty (van der Waard, 1988, Nielsen, 2000, Bovy and 
Hoogendoorn-Lanser, 2005, Tørset, 2005, Eluru et al., 2012). Also fare and/or frequency of the lines 
are commonly used parameters in the models (Vrtic and Axhausen, 2003, Abrantes and Wardman, 
2011, Navarrete and Ortúzar, 2013, Schakenbos et al., 2016). 

In this study, the first and last part of a trip using public transport is always by walking or 
bicycle when considering the trip at the address level. The access and egress time used to the public 
transport network can be a considerable part of the total trip and is perceived as a disutility which the 
travellers seek to minimize and can be modelled in great detail as seen in for example Park et al. 
(2015). For this study, the level of information about the access and egress is only based on the time 
it took and whether it was made by walking or cycling. The access and egress times were therefore 
calculated via a simple regression model that takes into account that longer access/egress trips are 
typically made by bike compared to shorter access and egress legs (Anderson, 2013). 

The in-vehicle travel time is also a factor that the passengers try to minimize, and the literature 
indicates that they do not perceive travel time in different public transport sub-modes to be the same. 
For example, many studies (Nielsen, 2000, Anderson et al., 2017, Varela et al. 2018) suggested that 
travellers prefer trains to buses (more than can be explained by the higher frequencies, faster travel 
time, etc.). 

In public transport network representations, there is in all systems a hidden waiting time that 
captures the fact that passengers cannot always time their departure to the first stop or the arrival to 
the destination at their preferred time. To capture this in the model, the least frequent service in the 
route is used as an indicator of the hidden waiting time for the route. This variable is defined as half 
of the headway of the least frequent service of the route, which was also found to be a good indication 
of the hidden waiting time in Anderson (2013). 

Although fares and prices have been considered relevant in many studies, this is not a parameter 
to include for the case-study considered. The fare structure in the case-study area is zone-based and 
the price of the trip is based on the furthest away zone visited during the trip. This will in almost all 
cases, with very few exceptions, be the destination zone, and hence the price for the trip will be the 
same no matter which route is taken. Also, there are no price difference for the specific sub-modes 
used or extra costs associated to transferring between services. Hence, it was decided not to include 
the price of the trip in the analysis. 

In section 5 the results of a model including these well-known descriptors will be used as a 
baseline model, which is then extended with the selected transfer attributes from section 2. The chosen 
specifications of these new attributes are presented in section 5.2.  

4 CASE-STUDY 

4.1 The multimodal public transport network 

The study analysed the multi-modal public transport network of the Greater Copenhagen 
Region that includes metro, S-trains, local trains, regional trains and busses. The main train corridors 
in the Greater Copenhagen Region are radial, going out from Copenhagen. Only one circular train 
line is operated and this is located rather close to the Copenhagen centre and high frequent express 
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busses serve the circular roads further away. The S-trains are operated with 5-10 minutes headways, 
the metro with 1½-3 minutes, and the regional trains have headways varying from 20 to 120 minutes. 
Busses near the Copenhagen Central Business District (CBD) have headways of 3-10 minutes and 
busses in the outskirts of 20-60 minutes. The Region has a population of about 2 million people and 
is the most densely populated area in Denmark.  

The network structure is complex and a public transport trip between two points often has 
several competing route alternatives consisting of different transport sub-modes, transfer terminals, 
in-vehicle times, transfer times, etc. The network database originates from the Danish National Model 
(NTM) (also described in Anderson et al., 2017). This is a schedule-based network consisting of 369 
public transport lines with a total of 18,487 daily runs, 5,021 stop groups (292 train stations and 4,729 
bus stops) with 1,718 between-mode transfer options (multi-modal transfers). The stop groups are 
represented by nodes and consists of closely located stops served by one or several lines of the same 
type, for example two bus stops at each side of a two-way road. The transfers in NTM are described 
by transfer edges between the stop groups with a transfer walking time depending on the length of 
the edge and transfer waiting time in the final node. For this study, the transfers were considered in 
more details as described in section 4.3. 

4.2 Revealed preference survey 

The observed routes were collected by Anderson (2013) as part of the Danish Travel Survey. 
The travel survey collected information about actual trips from a representative sample of the Danish 
population between 10-84 years. The respondents were asked to describe in details all their trips 
conducted at a specific day with both private and public transport modes. Anderson (2013) map-
matched the details of the observed trips to the GIS network described above by identifying the actual 
public transport lines, bus stops, train stations and schedules used by the traveller. As described in 
Anderson (2013), not all of the observations were possible to match to timetable. Since the 
observations was matched to a planned timetable for a representative day, some observations were 
also discarded since the reported and matched times did not correspond, which could be due to 
timetable changes on the specific day of the observation or large delays in the network. The dataset 
used in this study consists of 4,810 observed trips and routes in the public transport network. The 
purpose of the observed trips was also collected and the trips were divided into two main purposes: 
2,553 work related trips (commute and work trips) and 2,257 leisure trips.   

The observed trips are mainly using the radial fingers of the network, with some trips using the 
different combinations of lines crossing the city. As seen in Figure 1, the trips are expectedly 
distributed across the day, with the work related trips following the typical pattern of outbound trips 
in the morning and homebound trips in the afternoon. The leisure related trips are primarily taking 
place between 10am and 6pm, but also with some trips departing in the evening hours.  
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Figure 1 - Density plots for the departure times of respectively work and leisure related trips 
 

Most of the observed trips are direct trips with no transfers (58 %). The rest of the trips include 
transfers and 34.7 % of the total number of trips have a single transfer, 6.7 % of the trips have two 
transfers and 0.6 % have three transfers. Only a single observation has four transfers. The headways 
in the model area are, as outlined above, in general low, which also results in low waiting times per 
transfer. The average waiting time for observed transfers is around 7 minutes and few observations 
have an average waiting time per transfer of more than 10 minutes as seen in Figure 2. Most 
observations have low average waiting times per transfer of less than five minutes and many of the 
observations have zero minute waiting times giving a perfect coordination in the correspondence 
between services. 
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Figure 2 - Histogram of average waiting time per transfer per observation for the two trip purposes 
 

Information about the non-chosen alternatives for each traveller was also needed in order to 
estimate the route choice models. The method used is based on repeated searches for the shortest path, 
where impedances are randomly drawn from a distribution in a doubly stochastic generation function 
(Nielsen, 2004). The choice set in Anderson (2013) was generated with 200 iterations after which the 
routes that were not unique or coincided with the actual chosen route were removed from the choice 
set, providing choice sets with 18-200 alternative routes for the respective observed routes. 
Rasmussen et al. (2016) investigated the robustness of this choice set generation procedure for model 
estimation purposes for the same case study. The reader is referred to the two mentioned studies for 
further details of the generated choice sets as these have been reused in the present study. However, 
it should be mentioned that for the purpose of this study further tests were conducted to check the 
removal of some irrelevant alternatives. This was, however, not found to significantly improve the 
model fits, which is in line with the finding in Rasmussen et al. (2016), that a large choice set is 
superior to a choice set with some relevant alternatives missing. 

4.3 Data collection of transfer attributes 

Information about all stations in the Greater Copenhagen Region were collected in order to 
assign the correct attributes to each station and thereby determine the design of each transfer. The 
stations were divided into two groups, where the first included the 20 largest transfer stations with 
the attached bus stops and the second included the remaining stations and bus stops. The 20 largest 
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transfer stations cover 65% of all transfers in the observed data and each of these have been examined 
for very detailed information about every possible transfer. For the remaining 35% of the transfers a 
more general method was used to determine the transfer attributes. The stops for each sub-mode were 
divided into several categories explaining the transfer attributes for the specific stop: bus (two 
groups), metro (four groups), S-train (eight groups), regional/intercity train (seven groups), local train 
(two groups). The data was collected by using Google Streetview, personal knowledge of the network 
and visits to some of the stations. All the variables included in the final model are summarised in 
table 3, which includes descriptive statistics about the number of routes which include the specific 
variable.  

From the collected data on transfer attributes, it is also possible to investigate the correlation between 
specific transfer attributes on the transfers in the network, which is important to investigate as 
mentioned in Hoogendorn-Lanser et al. (2006). Figure 3 shows the correlation between the collected 
transfer attributes on the different transfers in the network. Many of the correlations are intuitive, for 
example that the number of ascends and descends is positively correlated since many transfers involve 
a footbridge or tunnel to connect the stops and hence both an ascend and descend. The positive 
correlation between the easy wayfinding and respectively no level changes and no shops at the 
transfer is also intuitive, but importantly these correlations are not critically high being respectively 
0.31 and 0.24. The negative correlations between the variable for no level changes and the variables 
for stairs and escalators is the result of many of the transfers having one of the attributes, but all others 
are then non-existing for the other variables and hence there is a negative correlation with the “no 
level change” variable. For the shopping variables, a similar pattern appear, where the transfers with 
several shops does not just have one shop, and hence there is a high negative correlation between 
these variables. It is noticeable that the very difficult wayfinding is not significantly correlated with 
any of the stairs and escalator variables, which indicates that the definition of the very difficult 
transfers is able to distinguish itself from just reflecting ascends and descends. 
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Figure 3 - Correlation between the transfer attributes for the transfers in the network (color 
indicates correlation and non-significant correlations are marked with the associated p-value) 
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Table 3. Descriptive statistics for the observed routes 
  Work  Leisure 

Parameters 
Mean 

(For obs. 
incl att.) 

Std. dev. 
(For obs. 
incl att.) 

Obs. incl. 
attribute 

Mean 
(For obs. 
incl att.) 

Std. dev. 
(For obs. 
incl att.) 

Obs. incl. 
attribute 

Time components       
Bus (min.) 15.81 10.80 1,278 14.96  11.34 1,229 
Local train (min.) 19.27 10.81 83 20.99 13.80 69 
Metro (min.) 7.16 4.80 541 6.96 5.10 445 
Reg. train (min.) 23.66 12.44 355 23.48 13.60 192 
S-train (min.) 17.15 12.44 1,317 16.31 12.05 937 
Access (min.) 6.97 6.11 2.553 5.97 5.43 2,257 

Egress (min.) 7.00 6.48 2,553 6.37 6.90 2,257 

Transfer attributes       

Walking time 2.97 1.32 1,043 2.91 1.35 620 

Waiting time 6.81 7.51 1,069 7.69 9.79 687 

Number of transfers 1.20 0.44 1,228 1.18 0.42 795 

Ease of wayfinding transfers       
Easy 1.05 0.22 484 1.09 0.28 267 
Little difficulty 1.07 0.26 685 1.08 0.29 444 
Moderate difficulty 1.03 0.16 195 1.02 0.15 135 

Difficult 1.00 0.00 31 1.00 0.00 33 

Shop level       

Shop av. at any transfer 1.00 0.00 1,106 1.00 0.00 686 

Level changes       
Ascending stairs at transfers 1.14 0.36 456 1.13 0.37 267 
Descending stairs at transfers 1.13 0.34 478 1.13 0.34 289 
Ascending escalators at transfers 1.28 0.45 259 1.33 0.48 158 
Descending escalators at transfers  1.36 0.50 250 1.39 0.50 140 

Overall measures       

Half of highest headway in trip 6.87 9.20 2,553 7.23 7.87 2,257 

Total trip time 40.22 19.61 2,553 34.31 21.74 2,257 

Crow flies distance 13.00 10.47 2,553 9.77 10.11 2,257 

Number of observations  2,553  2,257 
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5 RESULTS 

This section first presents a base model where none of the transfer attribute variables are 
included. This is followed by the presentation of the model with the best specification of transfer 
related attributes. Finally, a model that allows for heterogeneity in passenger preferences, based on 
the model with the best specification of transfer attributes, is presented. 

5.1 Base model 

Table 4 shows a base model similar to Anderson et al. (2017), estimated with reasonable sizes 
and signs for in-vehicle time (IVT), number of transfers, waiting and walking time at transfers. 

Both the base model and the model with transfer related attributes included were estimated with 
a path-size factor. However, since the model with transfer related variables yielded a non-significant 
path size correction term (PSC), only the results of the models without the PSC-term are presented to 
ease comparisons between the models.. The PSC would normally correct for overlapping routes in a 
way where utilities for overlapping routes are reduced. However, some studies of public transport 
have showed negative estimates for path-size terms (Hoogendoorn-Lanser & Bovy, 2007, Anderson 
et.al. 2017), most likely because this corresponds to having more opportunities to reach their 
destination from their origin. Given the inherent risk of delays and irregularity in public transport 
networks, travellers might simply value the availability of a large number of en-route alternative 
options over the uniqueness of the route (Anderson et.al. 2017). The non-significance of the PSC in 
the present study may indicate a balance between normal correction of overlapping routes by the 
inclusion of transfer related variables. 

For both travel purposes, the transfer waiting time rate of substitution is low; however, waiting 
time at transfers is always complemented by a transfer penalty, which is equivalent to roughly 8-9 
minutes of bus in-vehicle time depending on the purpose of the trip. The low estimate can also to 
some degree be affected by the highest headway of services in the alternative, since a route with a 
high hidden waiting time can suit the passenger well, and possibly make the passenger disregard more 
frequent alternatives, where the passenger might need to walk further at the access and egress part. 

For the in-vehicle time parameters, the different parameters are slightly different from each 
other. Trips using regional train also in most cases take shorter time compared to busses due to the 
higher speeds of the regional and intercity trains and this might affect the parameter estimate. 
Regional trains had also quite some punctuality problems in the period of the survey, which might 
explain the higher disutility for in-vehicle time for regional and intercity trains for the leisure related 
trips. The reason for the very low rate of substitution for the metro in-vehicle time might be explained 
by metro trips being relatively shorter journeys compared to e.g. regional trains and that the correction 
for highest frequency in the route does not fully cover the very high frequency of the metro, since 
trips using only the metro have low hidden waiting times. 
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Table 4. Estimated parameters and values scaled to bus in-vehicle time for the base models 

 Work Leisure 
Rate of substitution  

(to bus IVT) 
Parameters Coef.  Rob. t-test Coef.  Rob. t-test Work Leisure 

In-vehicle time       

Bus -0.313 -20.80 -0.254 -22.71 1.00 1.00 
Local train -0.274 -9.49 -0.258 -9.12 0.88 1.02 
Metro -0.139 -6.84 -0.082 -4.13 0.44 0.32 
Reg. and intercity train -0.281 -12.72 -0.299 -10.61 0.90 1.18 
S-train -0.234 -15.93 -0.184 -14.05 0.75 0.72 
Transfer components       
Transfer penalty -2.480 -18.75 -2.320 -19.88 7.92 9.13 
Transfer waiting time -0.048 -12.69 -0.042 -9.36 0.15 0.17 
Transfer walking time -0.217 -8.25 -0.178 -7.75 0.69 0.70 
Other components       
Access time -0.488 -18.14 -0.441 -23.90 1.56 1.74 
Egress time -0.418 -17.53 -0.364 -16.57 1.34 1.43 
Half of highest headway in trip -0.120 -8.48 -0.114 -11.15 0.38 0.45 
No. of est. parameters: 11  11    

Number of observations: 2,553  2,257    

Null log-likelihood: -12,589  -10,765    

Final log-likelihood: -2,993  -3,489    

Adjusted rho-square: 0.761  0.675    

 

5.2 Model with transfer attributes  
Dyrberg & Christensen (2015) tested several specifications of the different transfer attributes 

defined in section 2 and found the most suitable representation given significance of the parameters, 
signs of parameters and overall model. These specifications were further tested for this paper and the 
different specifications tested are described below with Table 5 presenting the final MNL estimations 
for both work and leisure trips. A comparison with the restricted base model using a likelihood-ratio 
test shows that the model fit is significantly improved for both trip purposes by introducing the 
transfer attributes to the model, however with the highest degree of impact of the transfer attributes 
in the model for work related trips. 

The parameters capturing ease of wayfinding were tested in four different specifications. 
Recalling that the ease of wayfinding was assigned a value from easy to difficult for each transfer, it 
was tested whether ease of wayfinding could be described by just one number: the sum of all the 
levels encountered (i.e a sum of the levels, when assigning the values 1-4 to the levels), the maximum 
(worst) transfer or the average of the levels. However, none of these definitions proved useful and 
thus the method of counting the individual levels of encountered transfers was found to give the best 
fit. During tests it proved to be of a high importance to include a general transfer penalty for each 
transfer encountered, so the different levels of ease of wayfinding were more distinct. The reference 
level to find differences between the levels was set to “easy”. During tests it was found that there was 
no significant difference between the “little” and “medium” levels and thus they were combined. The 
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negative parameters for the more difficult ease of wayfinding show that passengers prefer stops and 
stations with easy wayfinding. However, these parameters are significant only for work related trips, 
which could be explained by the fact that leisure passengers can be assumed to have less information 
about the available alternative routes and to have lower value of time, so that the ease of wayfinding 
does not play a crucial role in the route choices for this group of passengers. For the work related 
trips, the most difficult transfer stations have a much higher disutility compared to the stations with 
easier wayfinding. Our empirical results are in line with the hypothesis by Iseki and Taylor (2009) 
that the level of information has an influence on the perceived walk time.  

Similar to the tests of the ease of wayfinding attribute it was tested whether a sum, maximum, 
average or sum of individual levels gave the best representation of the shopping availability. The 
tests showed that it did not matter for the passengers which types of shops or how many shops they 
encountered on the transfers on the route, but only whether at any transfer station there was a shopping 
possibility. The shopping parameter estimate is not highly significant for work related trips, but the 
positive estimate shows that passengers prefer routes where transfer stations offer some kind of 
shopping opportunity, whether this is a kiosk or a larger shop. Since the parameter is less significant 
for the passenger with a leisure related trip purpose, this indicates that shopping availability does not 
influence the route choice of leisure passengers because of their assumed lower knowledge of the 
network, but also that commuters find it attractive to have the opportunity of doing smaller grocery 
shopping en-route to and from work.   

When testing the different specifications of the level changes parameters, only the sum of the 
escalators encountered at transfer terminals proved to be significant, leaving the model to describe 
the number of escalators encountered at transfers. Escalators at transfers are preferred by passengers 
for both trip purposes and the parameter estimate is significant for both purposes. The positive effect 
of escalator presence is in line with previous findings by Raveau et al. (2011), Guo and Wilson (2011) 
and Raveau et al. (2014). Escalators reduce the disutility of a trip by about one minute of bus in-
vehicle time. The reason that escalators are experienced positively by the passengers could be 
explained by the fact that it reduces the effort of walking. Also, since the public transport system in 
the Greater Copenhagen Area does not experience excessive crowding, the escalators will in most 
cases move the passenger faster through the transfer station compared to stairs or long walkways. 

The parameters for waiting times at transfers show a clear difference in terms of the 
significance and the estimates of small and higher waiting times. A total waiting time below 10 
minutes is not significant, while the estimate for total waiting time over 10 minutes is significant. The 
non-significant parameter for low waiting times can be explained by the transfer penalties, which 
covers the annoyance of having a transfer in the route. 

Table 5 also presents the rates of substitution with in-vehicle time by bus as the reference. For 
the in-vehicle parameters, the change from the base model is small and metro is still the preferred 
mode when compared to the other sub-modes (everything else being equal). The transfer penalty is 
still equivalent to roughly 8-9 minutes of bus in-vehicle time for both trip purposes. However, when 
different transfer attributes are included, a transfer can now be more or less convenient depending on 
the facilities at the transfer point. The transfer penalties can thus be dissected into several parameters 
that explain the different preferences for the different transfers, and the transfer penalty can range 
between 5.4 minutes of bus in-vehicle time for the best transfer (station with easy wayfinding, 
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shopping available and two escalators) to 12.1 minutes for the worst (station with difficult wayfinding 
and no escalators or shops). Given that the transfer penalties account for up to 12.1 minutes of bus 
in-vehicle time, this can also be reflected by the insignificance of the small waiting times. It is 
important to mention, as shown in section 4.2, that very few observations include average waiting 
times above 10 minutes per transfer and hence these results show that passengers dislike routes with 
many (long) transfers.  

Table 5. Estimated parameter coefficients (robust t-tests) and values scaled to bus in-vehicle time 
for extended model with transfer attributes 

 Work Leisure 
Rate of substitution  

(to bus IVT) 
Parameters Coef.  Rob. t-test Coef.  Rob. t-test Work Leisure 

In-vehicle time       

Bus -0.309 -20.51 -0.251 -22.42 1.00 1.00 
Local train -0.272 -9.47 -0.259 -9.04 0.88 1.03 
Metro -0.144 -7.10 -0.087 -4.30 0.47 0.35 
Reg. and intercity train -0.288 -12.72 -0.300 -10.55 0.93 1.20 
S-train -0.238 -16.17 -0.185 -14.07 0.77 0.74 
Transfer components       

Transfer penalty -2.600 -15.86 -2.380 -15.24 8.41 9.48 
Transfer waiting time 0-10 min. -0.005 -0.38* -0.023 -1.71* 0.01 0.09 
Transfer waiting time +10 min. -0.068 -8.42 -0.047 -6.35 0.22 0.19 
Transfer walking time -0.219 -7.67 -0.193 -7.81 0.71 0.77 
Shop available at any transfer 0.176 1.32* 0.111 0.88* -0.57 -0.44 
Ease of wayfinding – Lit./Mod. -0.285 -2.20 -0.165 -1.27* 0.92 0.66 
Ease of wayfinding - Difficult -1.130 -3.70 -0.127 -0.46* 3.66 0.51 
Escalators at transfer points 0.384 4.83 0.267 2.89 -1.24 -1.06 
Other components       

Access time -0.484 -17.95 -0.440 -23.87 1.57 1.75 
Egress time -0.420 -17.00 -0.365 -16.44 1.36 1.45 
Half of highest headway in trip -0.119 -8.35 -0.113 -11.08 0.39 0.45 
No. of est. parameters: 16  16    

Number of observations: 2,553  2,257    

Null log-likelihood: -12,589  -10,765    

Final log-likelihood: -2,965  -3,482    

LRT - to base model: 56.4  (p=0.00) 13.4 (p=0.02)   

Adjusted rho-square: 0.763  0.675    

*Parameter estimate not significantly different from zero at a 90% confidence level 
  
5.3 Model capturing heterogeneity in passenger preferences 

The estimation of an MNL model with the additional transfer variables showed that the different 
transfers can have a different impact on the transfer penalty perceived by the passengers. A Mixed 
Logit model was estimated based on the final MNL model to investigate possible heterogeneity in 
how passengers perceive the penalties. Initial models were run with only one parameter mixed at a 
time in order to assess whether a parameter should be included as a distributed parameter, and a final 
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model was estimated where all parameters with a significant distribution were included until all the 
distributed parameters left in the model were significant. All time-related variables and the general 
transfer penalty were tested with log-normal distributions, while for the additional transfer variables 
it was tested if either log-normally or normally distributed parameters led to the best model fit. In the 
test of the single parameters it was found that the heterogeneity in perception of ease of wayfinding 
was better captured by normal distributions, while both shopping availability and escalators were 
perceived with heterogeneity better represented by positive log-normal distributions. 

Table 6 shows the final Mixed Logit models for work related trips while Table 7 shows the 
final model for leisure related trips, where likelihood-ratio tests show that the added mixed variables 
significantly improves the model fit compared to the MNL model with transfer related variables. The 
in-vehicle time related variables only have significant distributions for some of these and it differs 
between the trip purposes, with only the parameter for in-vehicle time for regional train distributed 
for both purposes. The access and egress parameters have significant distributions for both purposes 
with similar standard deviations for both access and egress.  

The general transfer penalty has a significant distribution with high standard deviation 
especially for the leisure trips, meaning leisure passengers perceive the penalty of transferring quite 
differently. The waiting and walking times did not show any significant distribution parameter for 
either trip purpose. Regarding the transfer attributes only the parameters for shopping availability for 
work related trips and number of escalators for leisure related trips proved to have significant 
distributions. The shopping availability for work related trips has a significant distribution, while the 
mean of the distribution is not highly significant. The ease of wayfinding is still insignificant in the 
model for leisure related trips, while they are significant in the model for work related trips and with 
an even larger disutility for stations with very difficult wayfinding. 

With the aim of comparing the rates of substitution for different parameters with respect to the 
bus in-vehicle time, Monte Carlo simulations with 1 million draws from the distributions were 
performed and 95% confidence levels were calculated as shown in Table 6 and 7. The rate of 
substitution between the different in-vehicle time parameters are in general within expectations and 
the intervals are in general largest in the model for leisure related trips time and reflects that especially 
these passengers do have different preferences for the different sub-modes. The confidence intervals 
for access and egress rate of substitution is in general higher than the rate of substitution in the MNL 
model, but still with access being the most critical part of the access and egress to stops. The hidden 
waiting time is highly distributed leading to a large span in the rate of substitutions, with some 
passengers finding the possibility of departing frequently very important. 

The rate of substitution for the transfer penalty is between 3.5 and 29.6 minutes of bus in-
vehicle time, with a higher standard deviation for leisure passengers compared to passengers 
travelling for work related trip purposes. This suggests that the leisure passengers are quite a 
heterogeneous group of passengers, with possibly heterogeneous spatial patterns and time constraints 
throughout the day. The importance of walking time at transfers is now closer to bus in-vehicle time, 
while the importance of waiting time is still suppressed by the transfer penalties covering the 
annoyance of transferring. The distribution for shopping available at transfers for work related trips 
show that this is equal to 0.1 to 3.2 minutes of bus in-vehicle time while approximately the same 
range is the case for escalators at transfer for leisure related trips.  
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Table 6 - Mixed Logit estimates, means and standard deviation for the log-normal distribution, rates 
of substitution (w.r.t. bus in-vehicle time) and [95 % confidence intervals] – work related trips 

 Work 
Parameters in 

equivalent normal 
Rate of substitution  

(to bus IVT) 

Parameters Coef.  
Rob. t-

test 
Mean  Std. dev Mean 

95% 
confidence 

interval 
In-vehicle time       

Bus (µ) -0.711 -9.19 -(0.51)  1.00 [1.00-1.00] 
Bus (σ) 0.307 5.91  0.16   
Local train -0.399 -7.70   0.85 [0.44-1.48] 
Metro -0.198 -6.08   0.42 [0.22-0.74] 
Reg. and intercity train (µ) -0.945 -9.55 -(0.41)  0.88 [0.33-1.91] 
Reg. and intercity train (σ) 0.329 4.44  0.14   
S-train -0.355 -12.64   0.76 [0.40-1.32] 
Transfer components       
Transfer penalty (µ) 1.430 15.40 -(4.42)  9.44 [3.49-20.74] 
Transfer penalty (σ) 0.335 5.56  1.52   
Transfer waiting time 0-10 min. -0.008 -0.38*   0.02 [0.01-0.03] 
Transfer waiting time +10 min. -0.109 -6.30   0.23 [0.12-0.41] 
Transfer walking time -0.387 -8.20   0.83 [0.43-1.44] 
Shop available at any transfer (µ) -1.580 -1.44* 0.33  -0.71 [-3.16-(-0.06)] 
Shop available at any transfer (σ) 0.984 2.98  0.43   
Ease of wayfinding – Lit./Mod. -0.377 -1.98   0.8 [0.42-1.40] 
Ease of wayfinding - Difficult -1.840 -3.76   3.93 [2.05-6.85] 
Escalators at transfer points 0.591 4.33   -1.26 [-2.20-(-0.66)] 
Other components       
Access (µ) -0.149 -2.05 -(0.93)  1.99 [0.66-4.66] 
Access (σ) 0.392 7.27  0.38   
Egress (µ) -0.276 -3.48 -(0.82)  1.75 [0.58-4.10] 
Egress (σ) 0.390 7.39  0.33   
Half of highest headway in trip (µ) -1.450 -12.70 -(0.71)  1.52 [0.02-9.48] 
Half of highest headway in trip (σ) 1.490 42.63  2.04   
No. of est. parameters: 23      

Number of observations: 2,553      

Null log-likelihood: -12,589      

Final log-likelihood: -2,596      

LRT - to transfer model: 737.5  (p=0.00)     

Adjusted rho-square: 0.792      

*Parameter estimate not significantly different from zero at a 90% confidence level 
-() for means indicate negative log-normal distributions. Estimate for shop availability at any transfer is the 
only positive log-normal distribution. 
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Table 7 - Mixed Logit estimates, means and standard deviation for the log-normal distribution, rates 
of substitution (w.r.t. bus in-vehicle time) and [95 % confidence intervals] – leisure related trips 

 Work 
Parameters in 

equivalent normal 
Rate of substitution  

(to bus IVT) 

Parameters Coef.  
Rob. t-

test 
Mean  Std. dev Mean 

95% 
confidence 

interval 
In-vehicle time       

Bus -0.412 -14.31   1.00 [1.00-1.00] 
Local train -0.236 -5.27   0.57 [0.57-0.57] 
Metro (µ) -3.600 -4.65 -(0.25)  0.60 [0.00-4.04] 
Metro (σ) 2.100 5.38  2.23    
Reg. and intercity train (µ) -0.944 -8.44 -(0.49)  1.18 [0.25-3.53] 
Reg. and intercity train (σ) 0.674 6.19  0.37    
S-train (µ) -1.590 -12.89 -(0.27)  0.67 [0.11-2.23] 
S-train (σ) 0.768 12.56  0.25    
Transfer components        
Transfer penalty (µ) 1.540 12.64 -(5.26)  12.76 [4.33-29.57] 
Transfer penalty (σ) 0.490 2.66  2.74    
Transfer waiting time 0-10 min. -0.024 -1.10*   0.06 [0.06-0.06] 
Transfer waiting time +10 min. -0.096 -5.86   0.23 [0.23-0.23] 
Transfer walking time -0.400 -7.57   0.97 [0.97-0.97] 
Shop available at any transfer 0.490 1.97   -1.19 [-1.19-(-1.19)] 
Ease of wayfinding – Lit./Mod. -0.337 -1.51*   0.82 [0.82-0.82] 
Ease of wayfinding - Difficult 0.127 0.27*   -0.31 [-0.31-(-0.31)] 
Escalators at transfer points (µ) -0.700 -1.95 0.57  -1.39 [-3.43-(-0.42)] 
Escalators at transfer points (σ) 0.533 3.03  0.33    
Other components        
Access (µ) -0.138 -1.60* -(1.00)  2.42 [0.76-5.89] 
Access (σ) 0.523 3.84  0.56    
Egress (µ) -0.278 -3.56 -(2.05)  2.11 [0.65-5.15] 
Egress (σ) 0.526 12.02  0.49    
Half of highest headway in trip (µ) -1.410 -13.11 -(0.40)  0.98 [0.08-4.2] 
Half of highest headway in trip (σ) 1.000 10.92   0.53     
No. of est. parameters: 24      

Number of observations: 2,257      

Null log-likelihood: -12,589      

Final log-likelihood: -3,017      

LRT - to transfer model: 929.6  (p=0.00)     

Adjusted rho-square: 0.717      

*Parameter estimate not significantly different from zero at a 90% confidence level 
-() for means indicate negative log-normal distributions. Estimate for escalators at transfer points is the only 
positive log-normal distribution. 
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6 DISCUSSION AND CONCLUSIONS 

This study has analysed how passengers consider attributes for transfers in public transport such 
as ease of wayfinding, presence of shops and escalators. We proposed different ways of defining and 
measuring these variables, and based on initial testing in Dyrberg & Christensen (2015) and further 
model tests, concluded on the variable definitions. We then presented route choice models for the 
multimodal public transport network in the Greater Copenhagen Region, where these transfer 
attributes were included in a unified model framework. The models were estimated on an extensive 
dataset of 4,810 observed routes. We believe that this is the first time that such an extensive dataset 
of observed routes has been used to estimate a route choice model that includes a variety of transfer 
related attributes that can be used for explanatory as well as predictive purposes. 

The main overall conclusion is that it was possible to disentangle transfer penalties and values 
of time for transfers into the sub-components mentioned above, and to significantly estimate different 
parameters for this. In the specific case, this was used to improve the route choice modelling of 
passengers in the Greater Copenhagen Region and hence to make it possible to analyse policies to 
improve public transport terminals. While studies in the literature have provided ranges of fixed 
transfer penalties from 5 to 20 minutes for different cases, this paper disentangled the value for one 
transfer, ranging from 5.4 minutes for the best possible transfer to 12.1 minutes for the worst possible 
transfer.  

Although it is difficult to compare the impedance of individual parameters defining the route 
choice preferences across studies, the range of the values for transfer related parameters in this study 
are in line with fixed values of transfer penalties and values of walking and waiting times in other 
studies. We therefore propose that they can be a guideline for more studies to disentangle transfer 
penalties in other cities, as the specific values and ratios between parameters may depend on the case 
context. The three additional transfer variables included in this study, namely presence of shops, ease 
of wayfinding and escalators at transfer points are easily measurable and more detailed data can be 
applied if for example the distance to shops at transfers is available in other datasets. Although 
different weather conditions in different countries can affect the magnitude of the impact on 
passengers’ route choices, we expect that the measures are transferable to other cities in the world. 

The large heterogeneity found in the preferences of different transfer attributes suggest that 
there might be other factors, which influence the transfer penalty. This could for example be different 
socio-economic factors, which influence the perceived importance of shopping availability or the 
comfort of having escalators at stations. The large heterogeneity also indicates that further research 
is needed to refine the definition of the attributes and to explain the differences in passengers’ route 
choice preferences. An interesting line of research to explain more on transfer related variables could 
be including waiting time and boarding strategies at transfer stations (see for example Nassir et. al. 
(2019) or Schmöcker et. al. (2013). Analysing the problem using a sequential choice strategy could 
possibly allow for more detailed descriptions of the choice of different transfer stations. 

Most politicians are focused on investments that improve the level of service of public transport 
operations, for example travel time savings or increase of frequencies, which require massive 

Modelling passenger behaviour in mixed schedule- and frequency-based public transport systems 105



23 
 

investments in infrastructure and rolling stocks, and which often only improve travel times or waiting 
times with few minutes. The study presented here suggests that improved transfers may be perceived 
by passengers to be of at least the same order of magnitude as such projects, whereas they are often 
much cheaper in terms of investments. We therefore recommend that more detailed route choice 
models and analyses are used when prioritising among investments in public transport. 
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Abstract

Disruptions in public transport are a major source of frustration for passengers
and result in lower public transport usage. Previous studies on the effect of dis-
ruptions on passenger travel behaviour have mainly focused on shorter disrup-
tions while the few studies on impacts of long-term disruptions have had limited
focus on individual passenger behaviour. This paper fills the gap in research
by proposing a novel methodology, based on smart card data, for analysing the
impacts of long-term planned disruptions on passenger travel behaviour. Pas-
sengers are classified into clusters based on their travel behaviour and activity
before and after the disruption using a k-means clustering algorithm, dividing
passengers into eight groups. The method is applied on a 3-month closure of a
rail line in the Greater Copenhagen area. The results showed no considerable
difference between the passengers affected by the disruption compared to those
passengers on a comparable segment not affected by track closures, hence sug-
gesting that most passengers returned after the disruption. However, results
indicate that new passengers are not attracted to the affected lines, thus result-
ing in a decrease in ridership on the disrupted line. The proposed methodology
enables explicit analysis of the impact of disruptions on diverse passengers seg-
ments while the specific results are useful for public transport agencies when
planning long-term maintenance projects.
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1. Introduction1

Disruptions in public transport are a major cause of passenger dissatisfac-2

tion (van Lierop et al., 2018) and can result in decreased public transport usage3

(Nazem et al., 2018). They have large impacts on passengers who rely on us-4

ing the public transport network, especially in places where public transport5

constitute a large part of total travel, e.g. in metropolitan areas. But even6

in areas where public transport only constitutes a small share of total traffic,7

disruptions in the public transport network can have significant impacts also on8

road traffic congestion (Lo and Hall, 2006; Spyropoulou, 2020). This makes it9

important to not only consider impacts resulting from disruptions in the plan-10

ning process, but also to identify detailed behavioural reactions from passengers11

resulting from such disruptions.12

Disruptions in public transport systems can be unplanned, e.g. due to ac-13

cidents or technical failures, or planned, e.g. due to construction works. Most14

previous literature on disruptions has focused on unplanned disruptions, e.g.15

by focusing on robustness of networks (Cats, 2016), network planning during16

disruptions (Van Der Hurk et al., 2016), and passenger information provision17

(Bruglieri et al., 2015). However, planned disruptions, such as the closure of18

a station or an entire corridor, are common, especially due to the aging rail-19

way infrastructure, which needs frequent maintenance and thorough upgrading.20

Such disruptions often last over a long period, thus adding to the complications21

for passengers who need to find alternative means of transport during the dis-22

ruption period while during short-term disruptions passengers can better adjust23

their activities. Despite the large consequences for passengers, only few stud-24

ies have analysed the impacts of planned disruptions on travel behaviour (Zhu25

et al., 2017; Nazem et al., 2018; Yap et al., 2018). However, these previous stud-26

ies have either been based on a small dataset (Zhu et al., 2017), only covering27

limited track closure, i.e. single stations (Nazem et al., 2018), or focusing on28

prediction models rather than evaluating demand effects (Yap et al., 2018).29

This paper contributes to existing literature by analysing in detail the effects30

of a long-term closure on the travel behaviour of public transport passengers.31

We analyse the passenger travel behaviour before, during and after a 3-month32

closure of an important suburban railway line in the Greater Copenhagen area33

in Denmark. Using smart card data from a large-scale automated fare col-34

lection (AFC) system, we identify different types of users based on their travel35

behaviour before the disruption. We analyse how the different users react to the36

disruption and how they change travel behaviour after the disruption. The novel37

approach proposed in this study allows for isolating the effect of the disruption38

from continuous dynamic changes in passenger behaviour. This is important as39

the analysis of a long-term disruption requires analysing data over long time,40

since users change travel behaviour for many reasons, not only caused by the41

disruption. Excluding those is achieved by comparing the changes in passenger42

behaviour on the disrupted track with passengers on a comparable track sec-43

tion. The use of AFC data makes such analysis more feasible than if applying44

traditional survey methods.45

2
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The remainder of this paper starts with an overview of the existing literature46

related to long-term disruptions in public transport in Section 2. The method-47

ology of analysing the temporal changes in passenger behaviour is described in48

Section 3. Section 4 presents the case study and the smart card data used in49

the study for which we present results of analysing the effects of the disruption50

in Section 5. Finally, Section 6 discusses the main findings of the analysis and51

Section 7 concludes on the possible policy implications of the study.52

2. Previous studies on effects of disruptions53

The implications of unplanned disruptions, e.g. strikes and system fail-54

ures, have been discussed in multiple studies. Currie and Muir (2017) found55

lower satisfaction levels among passengers experiencing unplanned rail disrup-56

tions than other rail passengers, and lowest satisfaction among passengers on57

replacement buses. During unplanned rail disruptions two thirds of users used58

the replacement buses, and 28% chose alternative modes. The largest concern59

by passengers was lack of information provision. The relatively large use of60

buses is in line with Saxena et al. (2019), which found that passengers perceived61

cancelled services 3 times more onerous than service disruptions due to delays.62

Several studies analysed the impacts of long-term service disruptions re-63

sulting from strikes, which results in both cancelled trips and mode shifts. A64

13-day transit strike in New York City in 1966 resulted in 10% of travellers65

cancelling their trip (50% on the first day), 16.7% switching to carpooling, and66

50% switching to their own car. This had long-term effects of permanent de-67

crease in ridership of 2.1-2.6% after service was restored (Zhu and Levinson,68

2012). In Pittsburgh, the 1976 transit strike resulted in 38% of users switching69

to cars (alone and car-pool) while most travellers were dropped-off by a non-70

commuter (e.g. spouse). In California, larger effects of the strikes in 1981 and71

1986 were seen as trips were reduced by 15-20% (Ferguson, 1992). In 1995, in72

the Netherlands 30% switched to driving and 10% cancelled their trips (Zhu73

et al., 2017). Reviewing the impacts across 13 major strikes, van Excel and74

Rietveld (2001) found varying impacts dependent on the importance of public75

transport compared to other modes.76

Other studies focused on factors affecting behavioural change caused by ser-77

vice disruptions. Nguyen-Phuoc et al. (2018) found that long-term mode shifts78

after service disruptions were mainly influenced by context-specific factors such79

as car accessibility, travel time and travel costs. This is in line with Adelé et al.80

(2019), which found that user expertise, car availability, perception of service81

recovery time, opinions on passenger information services, available transport82

services, time constraints, and the moment and place at which communication83

about the disruption is received influenced user behaviour.84

Only few studies analysed the influence of planned disruptions on travel be-85

haviour. Mojica (2008) analysed behavioural changes of rail commuters during86

a large scale maintenance project in Chicago. Using AFC data the study found87

that the majority of users continued using the train during deteriorated ser-88

vice conditions whereas between 8% and 11% of the passengers used the bus89

3

114 Modelling passenger behaviour in mixed schedule- and frequency-based public transport systems



system as a commuting alternative. Zhu et al. (2017) analysed the impacts of90

15 separate planned maintenance projects on the Washington D. C. Metrorail91

lines. Based on travel surveys distributed before and after the disruptions three92

types of behavioural changes were identified, i.e. i) same behaviour, ii) change93

of mode, and iii) changed departure time. 20% of the 738 respondents did not94

return to using the metro after service was restored, thus suggesting a critical95

fallout of passengers after planned service disruptions. Utilising a large-scale96

dataset based on smart card data from Montreal, Canada, Nazem et al. (2018)97

analysed travel behaviour changes due to two separate 4-month single metro98

station closures. The study found that demand at both affected stations was re-99

duced several months after the end of the disruption, hence suggesting long-term100

impacts on travel behaviour.101

3. Methodology102

To understand different aspects of the impacts of a long-term disruption, we103

propose a method of analysis on three levels (see Figure 1). The first initial step104

is an analysis of the impact on total ridership. Second, we propose a passenger105

segmentation based on k-means clustering to identify different travel behaviours106

before and after the disruption with the purpose of quantifying changes in travel107

behaviour. In the third level, an in-depth analysis of individual reactions to the108

disruption is done by using hierarchical clustering to segment certain passenger109

groups further according to their daily travel patterns.110

Data cleaning Impact on 
ridership

Clustering travel 
behavior

Post-disruption 
behavior impacts

Impacts on daily 
travel behavior

Clustering daily 
travel behavior

Smart card data

for selected clusters

for active cards

all cards

Figure 1: Overview of the method of analysing the impacts of the long-term disruption

Travel patterns for passengers are known to change significantly over time111

(Egu and Bonnel, 2020), even without disruptions. A challenge in analysing112

long-term smart card data is to distinguish between the change in ridership113

due to the disruption and due to regular seasonal variations. In addition, when114

alternative ticket types are available, passengers’ use of the smart card compared115
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to alternative ticket types might vary over time, which can lead to variations in116

the ratio between trips included in the smart card data and the total number of117

trips. Therefore, instead of directly analysing changes on the affected line, we118

compare the changes on the affected line to the changes on a reference line during119

the same period. The reference line is a line with similar characteristics as the120

affected line, but without any major disruptions during the analysis period.121

3.1. Data cleaning and impact on ridership122

The smart card data in our case study covers the entire region of East123

Denmark, which is much more data than what is needed to understand the124

impacts of a long-term disruption on a particular line. Hence, the first step is125

to extract the relevant data. We exclude invalid trips, e.g. those with missing126

tap-out information. Both the affected and the reference route are defined by127

a list of specific stations. We consider a trip to be using the route if at least128

one of the stations was used. This may be the first tap-in at the start of the129

trip, the final tap-out at the end of the trip, or a transfer tap-in when changing130

between bus and train or vice versa at one of the stations.131

For the initial analysis of the impact on ridership, we count the number of132

passengers on the affected and the reference route. This allows for a comparison133

of the ridership over time on the affected route to an unaffected route thereby134

controlling for the general trend.135

3.2. Clustering of travel behaviour and post-disruption impacts136

To analyse changes in travel behaviour, we first define an analysis period137

consisting of three sub-periods: pre, a period with normal operations before the138

disruption, affected, the period of the disruption, and post, a period with normal139

operations after the disruption. For the clustering, only cards that have been140

active at least once before the pre-period and after the post-period are used.141

This ensures that the card existed and was available for travel during the whole142

analysis period.143

To understand how the disruption impacts different passenger groups, we144

segment the smart cards into a number of groups using data clustering tech-145

niques based on the travel behaviour revealed in each smart card, as also pro-146

posed in several previous studies (El Mahrsi et al., 2017; Briand et al., 2017;147

Kieu et al., 2015). Each card must have had at least one trip on either the148

affected or the reference route during the pre- or post-phase to be included.149

While this constraint significantly reduces the number of cards included in the150

analysis, it is necessary as other cards cannot explain the possible implications151

of the disruption considering that the analysis only concerns the affected and152

reference route.153

The resulting segmentation from clustering is specific to the data used as154

input. To be able to compare and ensure consistent groups, we perform one155

clustering of all observations at once, where each observation is a feature vector156

for a given card during a given period. The observations to cluster is the set157

of all feature vectors Vc,p where c is a smart card and p ∈ {pre, post} a period.158
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Each feature vector Vc,p contains the three variables shown in Table 1. While159

ShareActiveWeeks and ActiveDaysPerActiveWeek together describe the reg-160

ularity and intensity of travel, ShareWeekend describes on which days (weekend161

or weekday) the trips are made. While using more variables could potentially162

allow finding more specific behaviour, these three variables result in an easily163

understandable segmentation of users. We also considered using more detailed164

features, such as for example card specific time profiles as used by several pre-165

vious studies, e.g. El Mahrsi et al. (2017). However, in the context of analysing166

the impacts of a long-term disruption, we did not find more complex variables167

such as specific time profiles on hourly level to give sufficient additional insights168

to motivate the loss of easily explainable clusters.169

Table 1: Card features describing the travel behaviour in each period used for clustering

Variable Domain Description
ShareActiveWeeks 0-1 Share of weeks during the period

with at least one trip
ActiveDaysPerActiveWeek 1-7 Average share of days of each active

week with at least one trip
ShareWeekend 0-1 Share of trips during the period

made on Saturdays or Sundays

We normalize all features to have mean 0 and standard deviation 1 as the170

variables are of different domain. To cluster the observations, we apply k-means171

clustering. K-means clustering has been used extensively in previous research172

to cluster travel behaviour from smart card data, e.g. by Ma et al. (2013),173

Deschaintres et al. (2019), among others. The clusters obtained using k-means174

clustering can be characterised by the distribution of variable values in each175

cluster.176

The clusters assigned to each card for the pre and post period allows for177

analysing whether smart card users changed travel behaviour due to the dis-178

ruption and is thus focusing on the change of behaviour from the pre period to179

the post period. Using the identified travel behaviour clusters (see Section 3.2),180

we can quantify how many cards with a certain behaviour in the pre phase181

changed behaviour after the disruption. To isolate the effects of the disruption,182

we compare the changes between users of the affected and the reference line.183

More specifically, we compare users with the majority of trips on the affected184

line to users with the majority of trips on the reference line. This ensures that185

only users that actually are associated with the respective line are included in186

the analysis. Furthermore, both sporadic and frequent users are included, which187

would not have been the case if requiring an absolute minimum number of trips.188

3.3. Impacts on daily travel patterns by comparing interpersonal variability189

While the passenger segmentation based on the simple and easily measurable190

indicators can explain the change in public transport usage in the pre and post191

period, a complementary methodology is deployed for analysing the passenger192
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behaviour including the disrupted period. This methodology, originally pro-193

posed in Egu and Bonnel (2020), is used for clustering the passengers according194

to their travel regularity. The methodology is applied specifically for segmenting195

the passengers who travelled regularly on the disrupted track before the lines196

were closed for maintenance. Hence, the previous clustering based on the travel197

behaviour is used as an initial filtering of which passengers are included in this198

subsequent analysis.199

The methodology allows for capturing the regularity of passengers travel be-200

haviour by looking at a single variable - whether the passenger travels on a spe-201

cific day or not. For each passenger the boolean vector Xk = [xk1, ..., xkd, ..., xkn]202

is defined, where xkd is 1 if passenger k travelled on day d, and 0 otherwise.203

Using the vectors for each of the passengers allows for creating a dissimilarity204

measure for each combination of cards. This dissimilarity, ς, is computed using205

the Simple Matching Distance (SMD), which, in this case, calculates whether206

two users have the same travel pattern, i.e. both travel on the same day and207

also do not travel on the same day. The calculation of the dissimilarity is then208

given as:209

ςkl = 1−
∑n

d=1[xkd = xld]

n
(1)

Where the Iverson bracket is 1 for the days where passenger k and l either210

both travelled or both didn’t travel. Using these similarity measures, we can211

then compute the similarity matrix S, where the elements correspond to ςkl.212

To cluster passengers based on their (dis)similarities, we use a hierarchical213

clustering methodology (Hastie et al., 2009). Each card is clustered in a recursive214

process using an agglomerative approach. In each step, the Ward method is215

used to merge those two clusters which minimize the change in the total sum216

of squares (Ward, 1963). The agglomerative approach combined with the Ward217

method was selected, as this proved to create compact groups of passengers with218

similar travel patterns, without creating clusters of very few passengers.219

4. Case study220

In 2018, the commuter railway line linking Frederikssund to Copenhagen221

on the suburban rail network was subject to major maintenance works. The222

line, which normally has around 1.6 million monthly passengers (DSB, 2020),223

was closed several times during weekends and public holidays in the spring224

followed by a 13-week closure from June 1st to August 26th 2018. During the225

closures replacement buses were operating the line at similar service frequency,226

but resulting in highly increased travel times for passengers. We analyse the227

effects of this long-term disruption using smart card data.228

4.1. Routes and analysis period229

Although, the track closure of the Frederikssund line covered 35 kilometers230

of the track, cf. Figure 2, only passengers who travelled from or to the stations231
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on the suburban part of the two lines are extracted for this study as outlined in232

Figure 2. The rationale for excluding stations closer to the city center is that233

passengers who travel to and from the suburban stations do not have any other234

parallel or alternative routes which they could use during the disrupted period.235

As such, these passengers were forced to use the replacement bus services if they236

wanted to travel during the disrupted period.237
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Denmark

Figure 2: Overview of the closed track section and the stations included in the analysis.
Background map source: GeoDanmark-data (2020)

The suburban rail network in the Greater Copenhagen area consists of radial238

lines, where passengers mainly travel between stations on the fingers and the239

city. To exclude trends not caused by the disruption, it is reasonable to compare240

the changes on the affected line to one of the other radial lines. We use the line241

going to Køge as the reference line (see Figure 2), which is comparable to the242

Frederikssund line and in 2017 and 2018 did not have any long-term disruptions243

other than a few closures on weekends.244
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Passengers who travel to and from the stations on the outer parts of the245

lines mainly travel to and from the city center, cf. Figure 3, which shows the246

number of trips from the case stations to other stations in the suburban rail247

network during the pre period. Around 25% of the trips from case stations are248

internal trips to other case stations while 15% of trips are to stations on the line249

outside the city center. The remaining approx. 60% of trips are between case250

stations and the city centre.251

Legend
Trips

  <1000
  1001 - 2000
  2001 - 4000
  4001 - 6000
  6001 - 8000
  8001 - 9455
  Disrupted line
  Surburban rail network
  Other rail lines
  Case stations

Figure 3: Most visited destinations during pre-period when passengers board at case stations.
Background map source: GeoDanmark-data (2020)

The analysis period for the case study consists of the three sub-periods given252

in Table 2. Due to several weekend disruptions in the months directly before the253

three month closure, the pre period is set to a period before the first weekend254

closure representing a period of normal travel.

Table 2: The sub-periods of the analysis period.

Period Start End Duration
Pre 2018-01-01 2018-03-25 12 weeks
Affected 2018-06-01 2018-08-26 13 weeks
Post 2018-08-27 2018-11-18 12 weeks

255

4.2. Smart card dataset256

The smart card system in Denmark, Rejsekortet (Rejsekort, 2020), is a na-257

tionwide system where passengers are required to tap-in at the origin and at258

transfer locations as well as tap-out at the destination. The smart cards can259

be of different types. For this study only data for the personal smart cards are260
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used, as these can only be used by a single person. This person can have other261

passengers with him/her tapped-in on the card, but the person, that the card262

was issued for, must always be present when using the card. The two other types263

of cards, flex and anonymous, are disregarded as they may be used by several264

persons. In addition, only personal cards for adults are used whereas cards for265

children, disabled and pensioners are excluded. This was chosen because they266

are expected to have less flexibility in their mode choice and because they only267

constitute a small percentage of the total number of personal cards. The smart268

card database includes such transactions for more than 1.4 million smart cards269

during 2018.270

Many of the passengers using these cards have never travelled on neither the271

affected nor the reference line and are therefore not relevant for the analysis.272

Hence, a total of 299,231 cards with at least one trip on the affected or the273

reference line in 2018 are extracted and used in the analysis. To consider that274

smart cards can be lost and at the latest are replaced when expiring after five275

years of usage, we only use cards with at least one trip in the system before the276

pre period and after the post period. This ensures that passengers’ with lost277

cards or card renewals do not affect the results.278

5. Results279

We apply the methodology for analysing the effects of a long-term disrup-280

tion as presented in Section 3 to the case of the Frederikssund line closure (see281

Section 4). On the first level we present the impacts on the total ridership. Sec-282

ond, we show the results from clustering the travellers by their travel behaviour283

and analyse changes in travel behaviour due to the disruption. Finally, for the284

cards in the regular commuter cluster before the disruption we study in-depth285

the different reactions to the disruption.286

5.1. Impact of the disruption on ridership287

To understand the overall impact of the disruption, we extract all trips using288

one of the case stations, either as origin, destination or transfer station. This289

allows to compare the total ridership in terms of the number of passengers over290

time on the affected line and on the the reference line, cf. Figure 4, which also291

compares to passenger numbers reported by the operator (DSB, 2020). The292

difference in ridership figures between the smart card data and the operator293

data is likely due to the variation in the ratio of trips using the smart card fare294

system versus other fare systems. This deviation highlights the need to compare295

to a reference line representing the general trend instead of solely comparing the296

smart card data from different periods directly.297

On the line affected by the disruption there is a deviation from the reference298

line already starting before the full 3-months closure. This can be explained by a299

number of shorter closures in April and May affecting ridership that mostly took300

place during weekends. Therefore, we use the first 12 weeks of 2018 where no301

such closure took place as the pre period representing normal travel behaviour302
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Figure 4: Number of passengers on the affected (Frederikssund) and reference line (Køge)
normalized by the number of passengers in January 2018 from smart card data as well as
passenger numbers as reported by the operator (DSB, 2020). The stations included differ
slightly between the sources. The red shaded periods indicate period were the Frederikssund
line was closed. The time periods of the analysis period are indicated at the bottom.

(see Table 2). During the long-term disruption the ridership is very low on the303

affected line. However, the data quality might be lower during that period as304

some trips might not have been recorded properly on the replacement buses.305

Even after the disruption the line does not quite catch up to the reference line,306

which could indicate long-term effects of the disruption.307

5.2. Segmentation of smart card users308

We cluster all cards which have been active before and after the analysis pe-309

riod by their travel behaviour during the pre as well as the post period according310

to the method described in Section 3.2. The number of clusters used is k = 8,311

as increasing the number of clusters further did only reduce the cluster-within312

sum of squares marginally. The cluster characteristics can be described by the313

variable values of its members as shown in Figure 5. We also assign a name to314

each cluster based on their characteristics for easier reference. The most active315

clusters are cluster 4 (Commuters) travelling 4-5 days every week and cluster316

8 (Regular weekday users). Clusters 1, 2 and 5 in contrast are rare users with317

few trips only.318

The segmentation of travel behaviour during the pre period is similar on both319

the affected and the reference line (see Table 3), which supports the assumption320

that the affected line would have had a similar development as the reference321

line if no disruption had occurred. On both lines, the travel behaviour clusters322

representing low travel activity contain the majority of cards. A small number323

of users in the high activity clusters 4 and 8, however, account for the majority324

of trips.325
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Figure 5: The characteristics of the travel behaviour clusters

Table 3: Segmentation of cards by travel behaviour cluster in the pre phase for cards with
the majority of the trips on the affected line (Frederikssund) and on the reference line (Køge),
including the share of cards in each cluster and each cluster’s share of the total number of
trips.

Frederikssund Køge
Cluster Card share Trip share Card share Trip share

1: Sporadic weekend users 18.4% 7.0% 15.8% 5.9%
2: Rare weekend users 14.8% 2.9% 12.4% 2.4%
3: Occasional users 12.6% 13.5% 13.1% 13.8%
4: Commuters 6.3% 35.0% 5.9% 31.1%
5: Rare weekday users 30.4% 6.7% 32.6% 7.5%
6: Irregular weekday users 5.1% 5.9% 5.7% 6.4%
7: Regular weekend users 4.2% 5.7% 5.0% 6.5%
8: Regular weekday users 8.1% 23.3% 9.4% 26.3%
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5.3. Post-disruption impacts on individual travel behaviour326

To understand which user groups cause the lower passenger numbers on327

the line after the disruption compared to the reference line (see Figure 4), we328

analyse the change of travel behaviour from the pre to the post phase. Figure 6329

shows how users from the most active clusters 4 (Commuters) and 8 (Regular330

weekday users) are changing their travel behaviour on the Frederikssund and331

Køge line. In general, notable behavioural changes between the pre and post332

period are observed, even on the reference line without disruption. While the333

post-disruption behaviour changes of cluster 4 (Commuter) in the pre phase334

are similar on both routes, there is some difference for those that have been in335

cluster 8 (Regular weekday users). It seems that on the affected line, a smaller336

portion started to commute (cluster 4) in the post phase (7% compared to 10%337

on the reference line), while instead more cards are switching to a more sporadic338

travel behaviour (33% compared to 30% on the reference line).339

While the total number of active cards with the majority of trips on the340

Frederikssund line is only increasing by 1.4%, it was increasing by 5.6% for341

Køge from the pre to the post period (see Table 4). The change of travel342

behaviour is common for an individual card. On an aggregated level, however,343

the sizes of the clusters are not changing as much. Comparing the size of each344

cluster, we find that cluster 4 (Commuters) is decreasing for Frederikssund,345

while it increases for Køge (see Table 4). As this cluster is the most active346

cluster, this difference has an even larger impact on the number of trips. Most347

clusters seem to have been impacted negatively by the disruption as they show348

a lower change in size than on the Køge line. The only exceptions are cluster349

8 (Regular weekday users) to some extent, and in particular cluster 7 (regular350

weekend users), which is a group that increased by 15.8% compared to -0.6% on351

the reference line. However, it should be noted that cluster 7 was the smallest352

of all groups in the pre period.353

Table 4: Number of cards in each cluster before (Pre) and after (Post) the disruption for cards
with the majority of trips on the affected and reference line.

Frederikssund Køge
Cluster Pre Post Change Pre Post Change

1: Sporadic weekend users 1675 1774 5.9% 2126 2489 17.1%
2: Rare weekend users 1343 1376 2.5% 1666 1760 5.6%
3: Occasional users 1145 1211 5.8% 1761 2061 17.0%
4: Commuters 575 553 -3.8% 798 829 3.9%
5: Rare weekday users 2762 2630 -4.8% 4380 4389 0.2%
6: Irregular weekday users 462 449 -2.8% 763 700 -8.3%
7: Regular weekend users 385 446 15.8% 673 669 -0.6%
8: Regular weekday users 738 775 5.0% 1257 1280 1.8%

Total 9085 9214 1.4% 13424 14177 5.6%
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Figure 6: Alluvial diagram of cards in clusters 4 and 8 in the pre phase (left) to the post
phase (right) for the affected and reference line. S groups all clusters with more sporadic use
(that is all clusters except 4 and 8). Users without cluster in the post phase have stopped
travelling on the given line or did at least not have a majority of trips on the line anymore).
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5.4. Impacts on daily travel behaviour354

A majority of trips is taken by passengers in a few travel behaviour clusters355

(see Figure 3). These passengers are thus the main contributors to the overall356

travel demand, and the effect of the disruption for the most frequent passengers357

is analysed further below using the method described in Section 3.3. First,358

separate segmentations for each line are presented and followed up with a joint359

segmentation focusing on the differences between passengers on the two lines.360

Figure 7 presents the hierarchical clustering based on daily travel activity361

for cards in travel behaviour cluster 4 (Commuters) during the pre-period. By362

testing several specifications of the number of reasonable clusters to segment363

the passenger, it was found, that 10 clusters represented compact groups, where364

the longitudinal behaviour between the groups was considerably different after365

the pre-period ended. As seen in Figure 7a, the passenger travel behaviour for366

most clusters is similar for the pre-period, which should be expected, as all of367

the passengers in the plot were in cluster 4 in the pre-period. One group of368

passengers (FH) have a serious decline in travel activity after the pre-period369

ends and never returns to regular usage of public transport. The other groups370

continue to travel regularly until the track closure starts. At this time, group FJ371

and FE stop travelling. While group FE never fully returns to regular usage,372

passengers in group FJ start using public transport frequently after normal op-373

erations resume. This group accounts for 17% of the passengers who commuted374

before the disruption started. It seems that these passengers find other modes375

of transport or is able to reduce the number of trips for a long period.376

For the group of passengers mostly travelling on the line to Køge, two clus-377

ters (KA and KI) experience a serious decline in the number of active days378

during the spring. None of the passengers in these clusters return to frequent379

public transport usage after the summer period. Interestingly, there seems to be380

no major cluster of passengers who abandon the public transport system and381

return, although the passengers in cluster KJ travel less during the summer382

period and returns to a regular pattern in the fall.383

The segmentation based on passengers who were commuters on any of the384

two lines during the pre period, presented in Figure 8, shows considerable dif-385

ferences in the distribution across the clusters for the two lines. Passengers on386

the Frederikssund line is over-represented in cluster H compared to passengers387

on the line to Køge. The cluster includes passengers, who are almost completely388

abandoning the public transport system during the summer, but returns to regu-389

lar use in the fall. With 19.5% and 10.8% of passengers on the Frederikssund and390

Køge lines, respectively, this indicates that the long-term disruption resulted in391

some passengers choosing other modes of transport during the summer, which392

cannot be due to simply choosing to bike or being on vacation. For cluster D,393

which is characterised by passengers who are using public transport less regu-394

larly during the summer, a similar pattern as for cluster H is seen, where the395

majority of passengers in the cluster are from the line to Frederikssund. Gener-396

ally, it seems that larger shares of passengers from the Køge line are placed in397

clusters B,G,I, which have abandoned the public transport system in the fall,398

although the differences between the two lines are not immense.399
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(a) Plot of the passengers, who had most of their trips on the track to Frederikssund in pre-period
and who were high-frequent users (cluster 4) in this period - N = 575. Red areas indicate days
where the track was closed.
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(b) Plot of passengers, who had most of their trips on the line to Køge in the pre-period and who
were high-frequent users (cluster 4) in this period - N = 798. Red areas indicate days where the
track was closed.

Figure 7: Plot of the temporal change in activity for each group of passengers found in the
hierarchical clustering.
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Figure 8: Daily travel activity for passengers who were commuters on either line in the pre-
period - N = 1, 373. F denotes the case line (Frederikssund) and K denotes reference line
(Køge)

6. Discussion400

The detailed analyses of the individual mobility, both during and resulting401

from the long-term disruption, have provided several interesting insights on402

passenger travel behaviour.403

The study design has proven useful for analysing the impacts over time,404

which are usually only studied by before and after surveys. One drawback of405

using before and after surveys is that passengers change behaviour due to sev-406

eral reasons, even when there are no disruptions on the line. As such, it is407

difficult to isolate the effect of the disruption to the dynamic change in passen-408

ger travel behaviour, unless a reference line is also included in the survey. As409

smart card data often is available for a whole network of lines, using a reference410

line for comparison, as in the method we present, is a straightforward way to411

isolate effects that only occurred on the disrupted line. It is however important412

to choose a reference line that is comparable and for example does not have413

different seasonal patterns.414

The proposed methodology allows for analysing the passenger behaviour dur-415

ing the disruption (within the public transport system). This makes it possible416

to reveal when and where passengers abandon the system. While other data417

sources could also identify such changes in passenger behaviour, e.g. GPS-data418

or other telecommunication data, these require that people are willing to be fol-419

lowed for a long period of time in order to analyse the effects of the disruption.420

While providing important behavioural insights resulting from long-term dis-421

ruptions an important limitation persist. The data used for the analysis is based422
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on the subset of commuters and regular passengers using the smart card, which423

requires tap-in and tap-out. The other products for commuters at the time; pa-424

per based monthly-pass, app-based monthly pass and smart card based monthly425

pass with no tap-in or tap-out, have not been available for the study. However,426

data from these ticket types are difficult to analyse as passengers neither need427

to tap-in nor out when travelling. This makes it difficult to draw conclusions428

on the absolute changes in ridership for this group of passengers. Nonetheless,429

the results revealed a small decrease in usage among the cluster representing430

commuters on the affected line, whereas a small increase was observed among431

commuters on the reference line. This suggests that similar patterns can be432

expected among commuters using other ticket types.433

7. Conclusion434

This paper is the first to use data from individual smart cards to understand435

changes in passenger travel behaviour due to a long-term full closure of a rail436

line. The proposed method allows to quantify changes in travel regularity after437

the disruption as well as different reactions of travellers during and after the438

disruption using clustering approaches. By comparing behavioural changes to439

those on a reference line, it is possible to isolate the effects of the disruption from440

the general changes in the individual travel patterns due to seasonal variations441

or changes in use of the smart card fare system.442

The need to compare to a reference line is apparent in the case study of443

a long-term closure on a commuter rail line in the Greater Copenhagen area,444

where we find that a change in behaviour is common for individual cards even on445

the reference line without any major disruption. We find no apparent differences446

when comparing the changes in travel behaviour and travel regularity after the447

disruption of those that were frequent commuters before the disruption on the448

affected line to those on the reference line. However, we find a -3.8% decrease449

of frequent commuters on the affected line after the disruption compared to a450

3.9% increase on the reference line, which indicates that very few new users451

have been attracted to the affected line during the closure. Analysing the daily452

travel behaviour, we find that a noticeable share of 17% of those that were453

frequent commuters before the disruption on the affected line abandon the public454

transport system during the closure, but return as frequent commuters when455

normal operations resume.456

The proposed smart card based method is an alternative, or complement,457

to using traditional travel surveys. The longitudinal structure of smart card458

datasets allows for revealing more detailed changes to individual passenger travel459

behaviour beyond the change in total demand. In future work, combining smart460

card data with other data sources including GPS or cellular network data could461

give an even more complete picture of the impacts of a long-term disruption.462
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Abstract

Transfers are a major contributor to travel time unreliability for journeys in public transport. Thus, con-
nections between services in the public transport network must be reliable. To plan such reliable transfers
from e.g. busses to trains, it is crucial to know the necessary walking times from stops to platforms. This
paper presents an innovative approach for estimation of walking time distributions from bus stops to train
platforms based on a matching of smart card data and automatic vehicle location data. The observed times
from bus stop to rail platform turns out to have a large variance, due to two reasons: differences in passenger
walking speeds, and passengers who are doing activities during the transfer. To account for these variations
a hierarchical Bayesian mixture model is applied, where the time for passengers walking directly and passen-
gers doing activities during the transfer follows separate distributions. The proposed methodology is applied
to 129 stations in the Eastern part of Denmark. Results from two stations with different characteristics are
presented in details along with justifications and analyses of model accuracy. The outcome of the model
with distributions of the necessary walking times from bus stops to train platforms is important input for
timetabling connections, and the data-driven methodology can easily be applied at scale.
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1. Introduction1

The attractiveness of public transport is defined by many parameters, but transfers between services are2

consistently viewed as inconvenient (Iseki and Taylor, 2009; Raveau et al., 2014; Schakenbos et al., 2016).3

Transfers require the passenger to alight a service, and in most cases walk to another stop to board the4

connecting service. When transferring between services there is a risk of a large increase in the journey time5

of the whole trip if a connecting service is missed (Dixit et al., 2019), and thereby decreasing the reliability6

of the trip, which is known to be of large nuisance to passengers (Kouwenhoven et al., 2014).7

Creating good connections between services require knowledge on the time needed for passengers to8

walk from one stop to another (Parbo et al., 2014). This knowledge is usually determined by identifying9

the walkways between stops and assuming a walking speed for the passengers, or by manual surveys where10

passengers are followed through the station (Daamen et al., 2006). Overestimations of the necessary time11

to make a transfer affects passengers’ waiting times when services are synchronised, and it is therefore12

important to get accurate estimates of the time needed to make the transfer (Xiao et al., 2016).13

This paper presents a novel methodology for estimating the walking time distribution for transferring14

passengers from busses to train stations. The study utilises the vast available amount of automatic fare15

collection (AFC) data from smart cards and combines this with automatic vehicle location (AVL) data16

from busses. In this way it is possible to calculate the walking time for passengers from alighting at the17

bus stop until the passenger taps in at a validator on the platform. However, the raw data can not be18

used directly for estimation of the required walking time, since passengers may be doing activities during19

their transfers (Wahaballa et al., 2018). A hierarchical Bayesian mixture model with one distribution for20

passengers walking directly and another distribution for passengers having an activity during the transfer21

is estimated, to obtain accurate estimates of the walking time distribution for directly walking passengers.22

The method is applied to a large scale case study and results are studied in detail for two stations with23

different characteristics.24

The novel methodology adds to existing knowledge of transferring passengers by separating passengers25

walking directly and passengers doing activities during the transfer, and does this using an unsupervised26

method. The approach is able to handle different types of transfers, where either the synchronisation of27

busses and trains or the number of shops near the station increases the amount of activities undertaken by28

passengers during the transfer. The methodology can be easily applied at scale, and thus overcomes the29

scalability issues of time consuming manual surveys where passengers are followed through the station.30

The paper is organised in the following way; Section 2 reviews the existing studies on estimation of31

walking times at transfers, Section 3 outlines the methodology for estimation of walking times based on32

smart card data, Section 4 presents the case study used for testing the methodology and analyses of the33

results, Section 5 discusses the model accuracy with possible verification techniques that can be applied at34

scale. Finally, Section 6 concludes on the findings in the paper.35

2. Literature review36

Walking is a central part of using public transport, and in many cases the passenger also needs to walk37

due to a transfer between services. The number of trips in metropolitan areas requiring a transfer can38

range between anywhere from 30 % to 80 % depending on the network layout and which modes of public39

transport the passengers use (Guo and Wilson, 2011). For the Greater Copenhagen area, which is part of40

the area used for the case study presented in Section 4, the number of trips requiring at least one transfer is41

approximately 40 % (Anderson, 2013). Given the large number of transfers in the network, it is important42

to estimate the necessary walking times for these transfers.43

Walking speeds are known to be heterogeneous (Fruin, 1971), even when there is nothing that constrains44

the walkways (Daamen and Hoogendoorn, 2006). A number of studies have spent significant efforts for45

obtaining walking times at different transport facilities. Young (1999) for example studies the walking46

speeds in airport terminals and find that moving walkways and passing obstructions in a corridor significantly47

impact the walking speed. For public transport stations, Chen et al. (2016) studies the walking speeds for48

transfer passengers in a subway passage in Beijing and finds that the speeds differ significantly between49
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males and females and between passengers walking alone and passengers in a company, with the walking50

speed generally following a log-normal distribution. A similar finding on the walking speeds following a51

log-normal distribution is reported in Zhu et al. (2017). Kasehyani et al. (2019) studies the walking times52

at different times of the day and finds that these differ, but other factors such as if passengers carry luggage53

also affects the walking speed.54

Due to the varying walking speeds, the walking times at public transport stations are also not a constant55

factor of the distance walked. Daamen et al. (2006) studies passenger walking times for both boarding56

and alighting passengers at two stations in the Netherlands and specifically investigates which paths they57

use to and from the platform. By following passengers from when they enter the station to the platform58

and vice versa, they find that passengers mainly choose the shortest path through the station. A similar59

methodology on following passengers to observe the walking times is used in Du et al. (2009), but with a60

focus on transferring passengers in Beijing. Significantly different walking times are found for passengers61

in the peak period and outside this period due to effects of crowding. The effect of crowding is also found62

to be significant in the study by Zhou et al. (2016) on walking speeds at different cross-sections of stations63

such as escalators, horizon passage and on the platform.64

In recent years the focus has shifted from manual observations of walking times to estimations of the65

walking times based on smart card data. Smart card data is a valuable source for different types of analysis of66

passenger travel behaviour, such as travel time estimation, estimation of demand from origins to destinations67

and analysis of passenger route choice (Pelletier et al., 2011). The availability of the data is increasing in68

almost any major city and can help public transport agencies for better planning of the system and thereby69

for attracting more passengers to the system (Faroqi et al., 2018).70

The vast majority of the studies using smart card data for estimation of walking times focus on the71

access and egress part of the trip from gate to platform and vice versa (Leurent and Xie, 2017; Xie and72

Leurent, 2017; Li et al., 2020; Singh et al., 2020), while only few studies focus on estimating the walking73

times at transfers (Zhu et al., 2020; Wahaballa et al., 2018), which are the times investigated in this paper.74

Zhu et al. (2020) estimates the walking time of transferring passengers by finding the egress speed percentile75

of an individual passenger compared to other passengers. This percentile is used to find passengers’ walking76

times at transfers by again comparing to the group of transferring passengers. The model is part of a77

complete approach for estimation of the total travel times from origin to destination and no validation of78

the transfer walking times are provided, other than fitted distributions of the walking times, which is a79

result of a fifth-degree polynomial estimation of the total travel time. The other study with a focus on80

transfer times, Wahaballa et al. (2018), studies the walking and waiting times at transfers between bus and81

rail using smart card data. The study proposes a stochastic frontier model, which aims at estimating the82

waiting time at transfers, while also considering the heterogeneity in walking times as these differ between83

passengers. The walking times can be observed from bus to the entry-gate, and these times are used directly84

as the walking time from rail to bus. A clear advantage of the smart card system used in the study, when85

considering walking times, is that the cards also are used for shopping and thereby these passengers are86

removed. No numbers are provided on the share of passengers shopping during the transfer, and hence it is87

difficult to tell how many observations can be removed due to this information.88

This information on whether a passenger is doing an activity during the transfer is not generally available89

in smart card systems and no studies investigating this have been found. However, Fujiyama and Cao (2016)90

has shed some light on this for terminal stations by studying the additional time spend at terminal stations91

in London before boarding the train. This can be observed, as passengers tap-in when entering the station92

and again near the platform. By assuming a general walking speed and a calibration for the individual paths93

made by the authors, they measure the additional time spend in the station. Interestingly, no correlation94

is found between the additional time spend and neither the total travel time or frequency of the line used.95

However, the additional time spent at the station is longer in the afternoon and evening compared to the96

morning.97
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3. Methodology98

In this section the methodology is presented, along with preliminary requirements and data pre-processing99

needed prior to modelling. Figure 1 illustrates a transfer site, and the overall terminology for the proposed100

method. The goal is to estimate the walking time distributions for the different path pairs (4 shown), without101

explicit knowledge of passengers true walking time nor knowledge on whether or not they performed an102

activity during their transfer.103

Bus Stop A

Bus Stop B

Train Platform 1

Train Platform 2

Tap-in Device
Path Pair A1

Path Pair B2

Path Pair
A2

Path Pair
B1

Figure 1: Overview of challenge and infrastructure setup.

We assume an AFC infrastructure, where tap-ins occurs both when boarding a bus, and when entering104

a train platform. We assume the tap-in devices are located at platforms so it is possible to board a train105

immediately after tapping in.106

3.1. Data Requirements and Pre-Processing107

To apply the proposed method we need to prepare a data fusion between AVL data and AFC data. The108

following describes this fusion of data. We generally distinguish information belonging to the k’th stop of bus109

trip j (bus AVL dataset) and information belonging to the n’th trip leg of passenger trip i (AFC dataset).110

We assume that the following information on bus AVL data is available or can be transformed to a111

similar structure. For each bus trip j we assume the availability of the following information:112

• Bus Refj : A unique reference to the vehicle that was observed running bus trip j113

• Bus Stop Point Refj,k: A unique reference to k’th stop point for bus trip j which was observed arriv-114

ing/departing.115

• Bus Arrivalj,k: Moment at which the vehicle was measured arriving to the k’th stop point of bus trip116

j.117

• Bus Departurej,k: Moment at which the vehicle was measured departing from k’th stop point of bus118

trip j.119

This information is standard output for most public transport AVL systems, and is included as part of the120

GTFS-RT feed specification (Google, 2020), although not all variables are considered mandatory.121

From the AFC system we assume data is available or transformable to the following form:122

• Tap Ini,n: Moment at which the passenger tapped in for the n’th time on passenger trip i.123

• Bus Refi,n: A unique reference to the vehicle in which the Tap Ini,n occurred. For tap-ins conducted124

on train platforms Bus Refi,n = ∅.125

• Stop Point Refi,n: A unique reference to bus stop point or train station platform this tap-in was126

conducted at.127

• Tap Outi: The final tap out time for passenger trip i, i.e. at the passengers’ destination.128
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We further assume the availability of a function D(x, y) which measures the Euclidean walking distance129

between bus stop point x and train stations platform y.130

The matching and data fusion between bus AVL and AFC data is a two-step process where we iterate
AFC entries. First step is to match the passenger boarding to the bus AVL and secondly match the
passenger alighting given the constraints of the boarding match. The match of the boarding is done by
searching in bus AVL entries. For the n’th trip leg in passenger trip i we identify j and k by minimizing
|Tap Ini,n − Bus Departurej,k| where Bus Refi = Bus Refj and Stop Point Refi,n = Stop Point Refj,k. We
denote the result of the boarding match:

Match Departurei,n ← (j, k)

We have now aligned information between bus AVL and AFC data for the boardings using tap-ins
from AFC. To complete the second step we also want to match the alightings, and thus allowing the
measurement of the observed walking time WO. We need to identify the alighting stop k′ prior to Tap Ini,n

and do so by minimizing D(Stop Point Refj,k′ ,Stop Point Refi,n) where j = Match Departureji,n−1 and

k′ > Match Departureki,n−1. I.e. we search for the closest alighting stop on the matched bus trip j on the
previous trip leg (n− 1) of passenger trip i. We constrain the search to only stops visited by the bus after
the boarding stop. We denote the result of alighting stop match:

Match Arrivali,n ← (j, k′)

The final result of the data pre-processing and matching process is a fused dataset for train tap ins (i.e.131

Bus Refi,n = ∅), along with the matched bus alighting of the previous trip leg. Since we wish to estimate132

walking time for bus to train transfers we denote each combination of bus alighting stop point and train133

platform as a path pair. We split the data into separate data sets for each train station, and for each station134

data set we will consider the number of unique path pairs as Q ∈ N with q ∈ {1, . . . , Q}. We denote the i’th135

observed walking time on path pair q as WO
q,i.136

3.2. Model137

To model the behaviour of walking time during a transfer, we propose a hierarchical mixture model138

for each station with transfers of bus stop to train stations. Each station will have Q path pairs, where139

the observed variable is the walking time WO
q ∈ RN

q of Nq ∈ N trips along the q’th path pair. The140

observed walking time is assumed to originate from two types of unobserved behaviours Z ∈ {D,A}:141

(i) passengers walking directly, and (ii) passengers doing an activity during the transfer, which gives the142

following assumption and definitions:143

Assumption 1 (Origin of walking time). It is assumed that the i’th walking time, WO
q,i, originates from144

either walking directly (Zi = D) or activity-based walking (Zi = A), given the direct walking time, WD
p,i, and145

activity walking time, WA
p,i.146

Definition 1. Direct walking time, WD, is assumed to stem from a transfer done by a passenger who walks147

directly from a bus stop to a train platform.148

Definition 2. Activity walking time, WA, is assumed to stem from a transfer, where an activity affects the149

walking time, such as shopping, buying coffee, etc.150

Using the first assumption to derive equation (1), the direct and activity walking times can be inferred151

by applying Bayes’ rule to write the posterior distribution as the walking time given the direct and activity152

walking time.153

P (WD,WA,Z|WO) ∝ P (WO|WD,WA,Z)P (WD,WA,Z) (1)

To obtain the final model the following two assumptions are made relating to the walking time and path154

pairs.155
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Assumption 2 (Independent path pairs and trips walking time). It is assumed that the walking time of
trip i is independent of the walking time of all other trips and that all path pairs are independent of all other
path pairs, such that

P (WO|WD,WA,Z) =

Q∏
q=1

Nq∏
i=1

P (Wq,i|WD
q ,W

A
q , Zq,i)

P (WD
q ,W

A
q , Zq) (2)

Assumption 3 (Conditional independence between walking types). The conditional probabilities of direct
and activity walking time are assumed to only depend on its own given behaviour, i.e. P (WA

q |Zq) = P (WA
q )

and P (WD
q |Zq) = P (WD

q ) , such that

P (WD
q ,W

A
q , Zq) ∝ P (WD

q |WA
q , Zq)P (WA

q |Zq)P (Zq)

= P (WD
q )P (WA

q )P (Zq) (3)

Using equation 1 in combination with the assumption 2 and 3 relating to the path pairs and walking
time, we can derive equation 4, given

P (WO|WD,WA,Z) =

Q∏
q=1

Nq∏
i=1

P (Wq,i|WD
q ,W

A
q , Zq,i)

P (WD
q )P (WA

q )P (Zq) (4)

Using the law of total probability equation, 4 can be rewritten as the probability of walking directly with
P (Z = D) = λ, giving the final equation

P (WD,WA,λ|WO) ∝
Q∏

q=1

Nq∏
i=1

λqP (WO
i |WD

q ) + (1− λq)P (WO
i |WA

q )

P (WD
q )P (WA

q )P (λq) (5)

In equation 5 the three latent variables WD, WA and λ are assumed to be beta distributed, where λ is
given a weakly informed prior, assuming that most passengers are walking directly.

λq ∼ B(4, 2) WD
q ∼ B(αD

q , β
D
q ) WA

q ∼ B(αA
q , β

A
q )

The mean of walking times for directly walking passengers is assumed be below half of the maximum transfer
time, in case of danish transport system 15 minutes, which is modelled by the constraint

αD
q ≤ βD

q

Since activities can be many things and most activities will likely increase the walking time of the passenger,156

the hyper-priors αA and βA are constrained to the range of [2, 3] to insure a large variance and mean between157

12 and 18 minutes.158

4. Case study159

Our case study is conducted for the entire Eastern Denmark for November 2019. We include most train160

stations serviced by the national rail service provider, metro stations and some local train stations. Figure 2161

shows a map of the included stations. The model was estimated on 129 stations with a total of 1,145 path162

pairs. Only path pairs with 100 or more observations during November were estimated, as these pairs then163

have an average of at least three transferring passengers pr. day. The final dataset consists of 542,713164

observations, i.e. unique transfers. Each station was estimated separately by the probabilistic language165

STAN using NUTS sampling with four chains, each with 3,000 iterations, and a warm-up period of 2,000166

iterations. Since it is not feasible to present all the results in detail, two stations have been selected for167

detailed analysis of the results and verification of the model assumptions.168
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Copenhagen city extent

Denmark

Figure 2: Overview of included stations in the analysis. Background map source: GeoDanmark-data (2020)

To illustrate and analyse the model estimations in more detail, the stations at Valby (case 1) and Korsør169

(case 2) will be used as examples. As a larger transfer station in the Copenhagen area, Valby Station has170

an expected distribution of the walking times as shown in Figure 3a, where most passengers have a relative171

low walking time. The layout of the station is presented in Figure 4a, where the path pairs selected for the172

analysis are also presented.173

In contrast to Valby, Korsør is a small rural station with an abnormal observed walking time distribution174

with two peaks shown in Figure 3b. The first peak has the expected location of a relative low walking time,175

where second peak is located above the median of 10 minutes. The station layout of Korsør station is shown176

in Figure 4b. The station building includes a waiting hall and a convenience store.177

4.1. Case station 1: Valby178

Valby has 32 different path pairs, where we have selected the results from six path pairs, which are179

combinations of the two bus stops and three platforms shown in Figure 4a. The six path pairs include a180
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(a) Observed walking times (from alighting the bus until tap-in
at platform) from AFC data at Valby Station (urban station on
Zealand, Denmark)
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(b) Observed walking times (from alighting the bus until tap-in
at platform) from AFC data at Korsør Station (rural station on
Zealand, Denmark)

Figure 3: Histograms of the raw walking time observations for two stations (all path-pairs)

(a) Overview of Valby Station (b) Overview of Korsør Station

Figure 4: Overview of station layouts for selected stations. Background source: OpenStreetMap

total of 11,875 observations, which is a subset of the 19,439 total observations at Valby Station. The four181

path pairs V-A1, V-A2, V-B1 and V-B2 are transfers to platforms used by suburban train services, whereas182

V-A3 and V-B3 are transfers to regional trains. Table 1 shows that the path pair with the largest distance183

V-A3 and V-B3 have the highest mean observed walking time with respectively 4 and 5 minutes. From stop184

B the passengers walking have to cross a pedestrian crossing to get to the different platforms, which results185

in a mean difference between stop A and B of 50 seconds on average.186

The observed walking times are compared to the scheduled walking time, which is used in travel planners187

and for planning of connection. This shows that at least 4% of the passengers transferring to platform 1188

and 2 are not able to make the scheduled transfer time, where in the case of V-A3 and V-B3 there are189

respectively 27% and 35%. If the raw walking time was to be used as an indicator for the direct walking190

time, the scheduled walking time for both stops to platform 3 should be increased to accommodate the191

higher walking times.192

Table 2 presents the results of the model for both the share of passengers walking directly, the direct193

walking time ŴD, walking time for passengers with activity ŴA and the predictive posterior distribution194

Ŵ from each stop to the three platforms. If we compare the direct walking time ŴD to the scheduled195

walking time, there is larger share of the passengers that are able to make the transfer compared to the196

observed walking time. All transfers for direct walking passengers to platform 1 and 2 have less than 1%197

of the density above the scheduled walking time, where V-A3 has 1.35% and V-B3 has 24.85% above. For198

path pair V-A1 and V-A2 it is possible to reduce the scheduled walking time to 2 minutes and still have less199

than 1% of the density above the scheduled walking time.200
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Observed walking time Scheduled Walking time
Path Pair N Mean Std 2.5%-tile 50%-tile 97.5%-tile Value Above

V-A1 2206 90.61 121.15 40.00 65.00 426.62 240 4.26%
V-A2 523 103.18 180.29 35.05 60.00 541.90 240 6.69%
V-A3 3460 244.72 235.25 82.00 149.00 981.93 240 27.57%
V-B1 2878 142.86 107.70 68.00 119.00 394.00 240 5.77%
V-B2 1153 159.08 139.79 77.00 126.00 579.00 240 7.37%
V-B3 1655 283.68 236.92 100.00 199.00 1054.95 240 35.59%

Table 1: Observed walking time and Schedule walking time of path pairs at Valby.

Above

Parameters ID Mean Sd 2.5%-tile 50%-tile 97.5%-tile ess R̂ scheduled time

λ

V-A1 0.93 0.01 0.92 0.93 0.94 5958 1.0 -
V-A2 0.89 0.01 0.86 0.89 0.92 7274 1.0 -
V-A3 0.73 0.01 0.71 0.73 0.74 4574 1.0 -
V-B1 0.95 0.00 0.94 0.95 0.96 6428 1.0 -
V-B2 0.93 0.01 0.92 0.93 0.95 6691 1.0 -
V-B3 0.80 0.01 0.78 0.80 0.83 5009 1.0 -

ŴA

V-A1 724.77 365.30 113.18 695.17 1462.60 3970 1.0 -
V-A2 728.12 361.87 129.06 703.23 1460.16 4000 1.0 -
V-A3 724.14 358.89 121.91 694.96 1457.00 3650 1.0 -
V-B1 725.68 362.40 120.31 706.11 1461.97 3895 1.0 -
V-B2 735.94 361.96 128.52 712.20 1462.73 4025 1.0 -
V-B3 728.23 357.04 122.51 711.24 1455.79 3964 1.0 -

ŴD

V-A1 66.64 16.63 37.93 65.20 102.55 4089 1.0 0.00%
V-A2 61.58 16.54 33.39 60.14 97.70 4202 1.0 0.00%
V-A3 142.63 39.08 76.35 139.00 228.43 3643 1.0 1.35%
V-B1 124.82 36.65 63.08 121.48 205.15 3700 1.0 0.45%
V-B2 130.05 37.27 65.68 126.91 208.48 4083 1.0 0.43%
V-B3 198.52 65.34 89.80 192.48 343.95 4008 1.0 24.85%

Ŵ

V-A1 112.99 187.74 38.51 66.84 804.97 3834 1.0 10.72%
V-A2 139.13 245.37 33.84 62.72 1036.08 3995 1.0 6.82%
V-A3 301.25 324.48 78.56 155.33 1246.30 3903 1.0 25.85%
V-B1 159.09 169.34 63.13 124.04 763.39 4119 1.0 5.65%
V-B2 169.55 177.39 66.06 129.79 827.76 4015 1.0 6.42%
V-B3 294.88 263.69 90.96 207.85 1162.98 3896 1.0 37.05%

Table 2: Valby - Posterior means and statistics in seconds.

Continuing to the fit of the model, we see that the direct walking time ŴD aligns with the differences201

between path pairs described for the observed walking time. The highest walking times from both bus stops202

are found for passengers walking to platform 3 and the model estimates that it takes on average 1 minute203

longer for passengers to walk from stop B than stop A. A visual inspection of the model estimations in204

Figure 5A of the predictive posterior walking Ŵ shows that all path pairs have a peak at the same position205

as the observed walking time followed with a long tail. The peak originates from the direct walking time206

distribution shown in Figure 5B, where the long tail originates from the activity. The figure shows that207

density of the activity distribution ranges over the direct walking time distribution, which results in an208

underestimation of the direct walking share λ giving the smaller peak of the predictive posterior walking209

compared to the observed walking time. Examining the posterior predictive walking time closer in Table 2,210

9
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the median values of each path pair is on average 4,7 seconds higher than observed walking time. For211

the upper percentiles, the estimation is notable above the observed walking time, supporting the visual212

inspection of the underestimation of the direct walking share. The model estimates a share of passengers213

walking directly λ ranging from 73% to 95%, where the two lowest λ values (73% and 80%) are estimated for214

path pairs to the regional train services at platform 3. Compared to the suburban rails services on platform215

1 and 2, the headway is larger for the regional, making it easier for passengers to do an activity without216

missing their train.217
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(A) The predictive posterior walking time distribution is generated from the weighting of the direct walking share of activity
and direct walking time. (B) The distribution of activity and direct walking time distribution without the direct walking share.

Figure 5: Valby station - Predictive posterior of walking time compared to observed walking time.
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4.2. Case station 2: Korsør218

Korsør has three path pairs shown in Figure 4b, which are three different bus stops to the same platform219

at the station. As shown in Table 3 the path pair K-C has the lowest mean observed walking time of 3.7220

minutes in combination with the highest schedule walking time of 4 minutes compared to the two others221

path pairs schedule walking time of 3 minutes. With a lower scheduled walking time, it would be expected,222

that the observed mean walking time would be smaller for the path pairs K-A and K-B, but we can see from223

the Table 3 that the mean walking time is nearly double for both. Comparing the scheduled walking time to224

the observed, we see that path pair K-C has 30% of the observed walking time above the scheduled walking225

time, while path pairs K-A and K-B have respectively 50% and 70% above. Using the raw walking time as226

an indicator for the needed walking time, would thus increase the scheduled walking time significantly.

Observed walking time Scheduled Walking time
Path Pair N Mean Std 2.5%-tile 50%-tile 97.5%-tile Value Above

K-A 130 427.32 449.57 59.22 199.00 1443.10 180 50.77%
K-B 187 577.06 416.16 56.00 596.00 1327.40 180 69.52%
K-C 386 227.41 260.37 41.87 94.50 960.12 240 29.53%

Table 3: Korsør - Observed walking time and Schedule walking time of path pairs.

227

The model estimates a low degree of the transfer passengers walking directly from the bus to the station,228

where the mean share of passengers walking directly ranges from 26% to 63%. The highest activity share is229

the path pair K-B, which was suspected of having an abnormal transfer pattern. If we look at the posterior230

predictive walking time Ŵ of the path pair K-B in Figure 6A, we see that a large part of the density is231

spread in the tail. At the same time, we see a significant number of the observed walking time samples are232

located here, thus supporting the high degree of activity. A comparison between the distribution of Ŵ in233

Table 4 and the observed walking time in Table 3 shows a reasonable match between the two. The fit does234

not seem as good as for the other case station, since the lower percentiles underestimates and the upper235

percentiles overestimates values. Looking at the predictive posterior of the directly and activity walking236

time we see separated peaks for the two distributions, but there are, as with the estimation for the other237

case station, areas where the density of the activity and directly walking time overlaps. This could possibly238

affect the models ability to separate the two distributions.

Above

Parameters ID Mean Sd 2.5%-tile 50%-tile 97.5%-tile ess R̂ scheduled time

λ
K-A 0.63 0.03 0.57 0.63 0.68 2779 1.0 -
K-B 0.26 0.04 0.19 0.26 0.34 2059 1.0 -
K-C 0.52 0.06 0.41 0.52 0.63 2536 1.0 -

ŴA

K-A 730.26 359.86 119.92 709.46 1471.66 4042 1.0 -
K-B 742.19 359.35 142.14 726.35 1460.54 3933 1.0 -
K-C 755.01 366.21 143.12 728.99 1490.58 3933 1.0 -

ŴD

K-A 78.88 28.54 32.26 75.27 141.04 3906 1.0 0.35 %
K-B 75.94 21.41 42.27 73.06 124.90 3743 1.0 0.18 %
K-C 100.36 42.17 37.95 93.46 200.68 3799 1.0 0.88 %

Ŵ

K-A 314.31 381.38 35.96 99.72 1307.28 4138 1.0 34.35 %
K-B 577.97 426.36 51.14 549.11 1428.90 3900 1.0 71.90 %
K-C 408.92 411.18 43.10 167.40 1378.21 4121 1.0 44.35 %

Table 4: Korsør - Posterior means and statistics in seconds.

239

If we compare the scheduled walking time to the direct walking time ŴD distribution, there is less than240

1% of the density above the scheduled walking time for three path pair K-A, K-B and K-C, making them241
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Figure 6: Korsør station - Predictive posterior of walking time compared to observed walking time.

reasonable scheduled walking times. This indicates that the high number of the observed walking time, is242

due to the high degree of activity at the station.243

5. Discussion244

The validation of the proposed method is indeed difficult. As described in Section 3.1 we do not assume245

ground truth about whether passengers transferred directly is available, nor do we assume availability of246

their true walking time or choice of path.247

As a consequence of the desire for a general and large scale applicable solution, manual validation in the248

form of accompanying or somehow recording passengers during their transfers in order to determine their249

true walking time and possible time used for activities were deemed infeasible. Such an approach would be250

both error-prone due to the human factor, and very time-consuming for collection of a representative sample.251

It can also be argued, that people might not recollect doing activities during transfers as for example used252

in Mosallanejad et al. (2018) for splitting trip chains into separate trips. On top of this, passengers also253

have difficulties in reporting reasonable walking times in surveys (Anderson, 2013). Therefore validation254

with classic surveys and interviews are considered insufficient and impractical.255

To overcome this challenge we suggest two generalizable verification approaches that are applicable at256

scale: (i) Verification using number of feasible trains; and (ii) Verification using shop availability data. In257

the following sections we detail the two verification approaches. We recognize that the verification can be258

further improved for concrete cases, depending on the data available.259
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5.1. Verification of model results using number feasible trains260

Verification using train assignment requires access to train AVL data similar to the bus AVL data261

described in Section 3.1. We only consider passengers who finished their journey after riding the train,262

i.e. Tap Ini,n is the train tap in on the last trip leg, n, for passenger trip i. We assign each passenger263

a set of feasible trains which runs directly to the destination station based on Tap Ini,n and Tap Outi.264

We likewise assign each passenger a set of feasible trains based on Bus Arrivalj,k′ and Tap Outi, where265

(j, k′) = Match Arrivali,n−1. The latter one corresponds to feasible trains given the passenger had absolutely266

no walking time at all.267

Table 5 shows the number of observations decomposed by the number of feasible trains based on the two268

approaches for train assignment cf. above for passengers at Valby station.

Using Tap Ini,n

Using Bus Arrivalj,k′ 1 2 3 4 Total

1 9,287 9,287
2 2,421 90 3,323
3 270 351 117 738
4 79 116 90 111 396

Total 12,057 1,369 207 111 13,744

Table 5: Decomposition of feasible trains for Valby station by approach.

269

The table indicates that around 85% of the passengers have only one feasible train given their Tap Ini,n270

time and the final Tap Outi. Most of these passengers have also only one feasible train given the Bus Arrivalj,k′271

time. However, there are also a considerable number of passengers who have a difference in the number of272

feasible trains given the two criteria. Some of these passengers, especially those who have a large difference273

on the number of feasible trains given the two criteria, are possibly more likely to have had an activity274

during the transfer, as they did not board some possible trains they could have caught if they walked fast275

to the platform. To test how the model predicts passengers within these groups, the observations can be276

combined with the prediction of the model. 4,000 samples of the set of parameters in the model are used to277

categorise passengers into three groups:278

• Directly - All sampled sets of parameters assigned the highest probability of the observation belonging279

to the directly walking distribution.280

• Activity - All sampled sets of parameters assigned the highest probability of the observation belonging281

to the activity walking distribution.282

• Mixed - The observation was not consistently assigned to one of the groups.283

Figure 7 presents the share of passengers within each of the predicted groups belonging to the combination284

of each count of feasible trains. There is a noticeable difference between the distribution of passengers in285

the respective groups across the different combinations. For the group predicted to walk directly, around286

70% of these have only one feasible train given both their tap in time and the arrival time of the bus. The287

shares for the group predicted to have an activity during the transfer is lower for this combination, and288

instead higher for the combination with two feasible trains given the bus arrival time and only one feasible289

train given the tap in time. The result that almost no passengers predicted to walk directly is placed in the290

group with three feasible trains given the bus arrival time and only one feasible train given the tap in time291

is reassuring, as this cluster indicates that the passenger could have possibly reached at least one train prior292

to the one boarded.293

At Korsør station the dataset consists of 490 passengers who tapped out at the end of the train leg.294

Only 10 of these passengers had more than one feasible train given the bus arrival time, and hence the long295

observed walking times found in Section 4.2 stems from passengers who spend time at the station building296

13

146 Modelling passenger behaviour in mixed schedule- and frequency-based public transport systems



1-1 1-2 1-3 1-4 2-2 2-3 2-4 3-3 3-4 4-4
(Number of feasible trains by tap in time - Number of feasible trains by bus arrival time)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
ha

re
 w

ith
in

 p
re

di
ct

iv
ed

 g
ro

up

Predictive group
Directly
Mixed
Activity

Figure 7: Distribution of passenger groups predicted to respectively walk, do an activity, or not uniquely identified, across
combinations of number of feasible trains (tap in time vs. bus arrival time)

instead of walking directly to the platform. The long walking times are thus an effect of the long transfer297

times, due to the lack of coordination between busses and trains.298

5.2. Verification using shop availability data299

One of the main assumptions for passengers not walking directly during the transfer is shopping activities.300

In order to support this assumption and provide a weak, but scalable verification of the proposed method,301

the share of activity transfers (1 − λq) is correlated with shop availability. Since a unique value of λq per302

path pair q is obtained, we also use this granularity for shop availability.303

Data is extracted from Open Street Map (OpenStreetMap contributors, 2018) using a buffer zone around304

the crow flies distance of path pair q as illustrated by Figure 8. The size of the buffer zone has been fixed to305

500m in this experiment. We search this buffer zone using the Open Street Maps tag features, specifically306

nodes containing the tag shop.307

We denote the number of shops in the buffer zone formed from path pair q as Shop Availabilityq, and308

investigate the correlation between 1 − λq and log(Shop Availabilityq). We apply the logarithm based on309

an expectation that the marginal effect of extra shops will eventually have a limited effect on how many310

passengers will take advantage of the availability.311

Figure 9 shows the relation between 1 − λq and log(Shop Availabilityq). We see a positive correlation312

between the two variables. The result supports some relationship between the estimated activity share for313

each path pair, and the shop availability along the path pair. Although the relationship is clearly not linear314

(R2 = 0.25), given that a high availability of shops does not guarantee a high share of passengers with315

activities. On the other hand, in all cases where the presented method has estimated high activity transfer316

share, we find a high availability of shops.317

5.3. Waiting times for different passenger groups318

Given the already identified feasible trains cf. Section 5.1 we extend this further to an actual train319

assignment by minimizing the exit time (i.e. Tap Outi−Train Arrivalj,k). With the passenger trips assigned320

to trains it is possible to calculate the waiting time on the train platform. Since some trips has several feasible321

trains we have only focused on the trips with exactly one feasible train itinerary to limit the uncertainty of322

the true waiting time. Having these groups, the observed waiting and walking time can be plotted for each323

station as seen in Figure 10.324

For Valby, the passengers predicted to the directly walking group have the lowest walking and waiting325

time compared to the activity group. The low walking and waiting time align with the assumption that326
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Figure 8: Example of shop availability buffer zone for Valby Station. Crow flies distance of path pair (black), Buffer zone
(transparent red), Shops (red). Background source: OpenStreetMap
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Figure 9: Results of shop availability and activity share relation. Only path-pairs with more than 2000 observations are
included.

the directly walking group describes the passengers who walk directly to minimize their overall transfer327

time. In the case of Korsør we see the same pattern for the walking time, with lowest mean walking time328

for the directly walking group and highest for activity group, but the reverse pattern for the waiting time.329

This indicates that the bus arrival and train departures are not synchronised, especially when taking into330

account that the median transfer time is 14.7 minutes for Korsør compared to Valby’s 6.5 minutes. The331

lack of synchronisation between busses and trains make it difficult to minimize the overall transfer time for332

the directly walking passengers, which just results in a high waiting time. This shows that it is possible for333

the model to separate the activity of waiting in the station building and walking directly to train platform,334

thereby being able to identify inefficient connections.335
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Figure 10: Observed waiting and walking time distribution for Valby and Korsør for each prediction group.

6. Conclusion336

This study has presented a novel methodology for providing accurate walking time distributions at337

transfers from bus to train based on smart card data. The model requires AVL data from busses and338

smart card data where the passenger must tap-in at the train station, preferably at the platform to avoid339

uncertainty of possible time spent in a station building.340

The proposed approach is able to reproduce the observed times between the passenger alights a bus taps341

in at the platform using a hierarchical Bayesian mixture model, where passengers are assumed to either walk342

directly to the platform or perform an activity during the transfer. The model is applied to a large-scale343

case study with 129 stations in the Eastern part of Denmark. Detailed investigations from two stations show344

that the model is able to estimate accurate walking time distributions for two types of stations: i) stations345

where passengers are spending extra time during the transfer due to poor synchronisation between busses346

and trains, and ii) stations where passengers or are doing shopping, buying coffee other short errands during347

the transfer.348

The model can be easily applied at scale, and thus offer a more feasible methodology than manual349

surveys where passengers are followed through the transfer, when public transport agencies need to estimate350

the necessary walking time to perform transfers. The resulting distribution for walking time for the direct351

walking passengers can be compared to the scheduled walking time published by public transport agencies,352

and thereby identifying places where extra scheduled walking time is needed. In this way the agencies are353

able to plan more reliable connections between busses and trains.354
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Abstract 

Passenger path choice in congested metro systems is affected by crowding in vehicles which can 

lead to denied boardings onto trains. This paper deals with special situations where passengers 

choose unusual paths due to overcrowding. An analysis of a special case, in this paper referred to 

as reverse routing, where passengers choose to remain longer in a train and then transfer to 

another train, which ultimately involves reversing their direction, is presented.  

The case study is a heavily crowded section of the MTR metro system in Hong Kong. Smart card 

data and a passenger-to-train assignment model combining automatic fare collection data and 

automatic vehicle location data, are used to analyze the possible underlying causes for this 

reverse routing behavior. It is found that passengers travelling furthest have significantly higher 

travel times based on the passenger-to-train assignment model. This indicates that the passengers 

travelling furthest behave differently than passengers travelling shorter distances, which could  

be due to these passengers choosing to reverse route. The analysis also examines the impact of 

travel experience, and shows that more experienced passengers have lower journey times than 

less experienced passengers. For comparison with the heavily congested metro system in Hong 

Kong, a brief analysis of unusual path choice behavior in the Copenhagen metro system is also 

presented. Using simple statistics it can be easily shown, that such unusual path choice behavior 

does not exist in the Copenhagen system, at least not due to overcrowding. 

Finally, the paper discusses different methodologies for obtaining correct estimates of the 

fraction of passengers making unusual path choices, when the ground truth can not be directly 

obtained. The results of such estimations can help agencies evaluate new operational strategies 

and reduce overcrowding, ultimately benefitting the passengers. 

 

Keywords: Transit, Metro systems, Crowding, Reverse routing, Travelling backwards  
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1 Introduction 
Ridership in transit systems is constrained by the capacity of the system, and overcrowding in 

peak hours on some systems can lead to special circumstances, in which a passenger can gain an 

advantage by choosing a path, which under normal conditions would be a dominated alternative. 

This note investigates possible causes of such unusual travel behavior by first analyzing its 

potential causes using a case from the metro system in Hong Kong (MTR), and secondly using 

smart card data from the Copenhagen metro to test whether similar unusual path choice behavior 

also exists in this system. 

It is well-known in the literature that crowding in public transport is uncomfortable for 

passengers (see e.g. Batarce et al., 2017, Haywood et al., 2017, Li and Hensher, 2013 or 

Tirachini et al., 2017). Under very crowded situations, passengers perceive in-vehicle time to be 

up to 2.5 times as onerous as in-vehicle time (Batarce et al., 2017). However, it is also important 

to note that while some passengers put a high penalty on crowding, others give it a much lower 

weight (Tirachini et al., 2017). 

Given the large potential discomfort of in-vehicle crowding, some passengers also may react to 

this by changing their path choice in metro systems. Kim et al., 2015 investigated the effect of 

crowding on passenger path choice, and found that the increased travel time resulting from 

crowding can affect path choice, but, also the discomfort of crowding itself can affect path 

choice. This shows that passengers do not base their path choice solely on travel time, but also 

take into account the comfort of the trip on top of well-known parameters such as waiting time, 

walking time and number of transfers (see e.g. Raveau et al., 2014). 

This paper concerns two unusual path choice behaviors, which would not occur in normal (i.e. 

uncrowded) situations - travelling backwards (TB) and reverse routing, as illustrated in Figure 1. 

The concept of travelling backwards involves a passenger boarding a train on a given line going 

in the “wrong” direction from where the passenger actually wants to go. The passenger then 

transfers at a “turn-back” station and boards a train going in the correct direction, and passing 

back through the origin station. This path choice is relevant in cases where the denied boarding 

rate at origin station O is high. In uncrowded situations, this would not be a reasonable path.  

 
        Figure 1A – Concept of travelling backwards                     Figure 1B – Concept of reverse routing 

FIGURE 1 – Illustration of unusual path choice behaviors considered in the paper 

 

The concept of reverse routing can be considered a special case of travelling backwards. 

However, a difference is that in the travelling backwards situation the reverse routing behavior 

does not add an extra transfer to the alternative path. As illustrated in Figure 1B, a passenger 

travelling from O to D would, under normal conditions, transfer at station T, given that the 

transfer at T is as convenient as the transfer at station A. Transferring at station T minimizes the 

in-vehicle time and in a high-frequency system, almost certainly allows the passenger to board 
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an earlier train than if the transfer was made at station A. However, if the passenger risks being 

denied boarding several times at station T, or has a higher probability of obtaining a seat by 

transferring at station A, the passenger might choose to stay on line X until station A and transfer 

there, thus performing what in this paper is defined as reverse routing.  

This paper analyses both types of unusual path choice behavior, but in two different settings. 

First, the concept of reverse routing is analysed using a case from the MTR metro network in 

Hong Kong and second, the paper briefly describes possible travelling backwards situations in 

the Copenhagen metro system. Finally, recommendations are made for further analysis of these 

problems.  

 

The paper consists of the following sections: Section 2 introduces the existing literature on the 

topic of unusual path choice behavior; Section 3 describes the methodology used for analyzing 

different aspects of reverse routing in the MTR system; Section 4 investigates the MTR case 

study and presents the main results of this analysis; Section 5 briefly describes the Copenhagen 

metro case study, and analyses whether travelling backwards behavior can be observed in the 

system; Section 6 describes possible ways forward for further analysis of the travelling 

backwards and reverse routing situations in other systems. Finally, Section 7 concludes the 

paper.  

2 Prior studies of unusual path choice behavior 
Although, many studies have focused on evaluating the cost of crowding and investigated the 

effect on path choice in transit systems, very few studies have dealt with unusual path choices 

such as travelling backwards and reverse routing. No studies have specifically dealt with the 

example of reverse routing as shown in Figure 1B, although a handful of studies have considered 

the concept of travelling backwards. The concept of travelling backwards has been identified in 

the metro systems in Singapore (Chakirov & Erath, 2011, Othman et al., 2015,Tirachini et al., 

2016) and Bejing (Li et al., 2017, Xu et al., 2018, Yu et al. 2020). Although the behavior can 

potentially be seen in many parts of a network, it is most often seen at stations near the start of a 

line, where passengers at the second or third station travel back to the starting station for a much 

higher probability of obtaining a seat.  

Chakirov & Erath (2011) was the first paper to verify the unusual behavior of travelling 

backwards based on data from Singapore. They used estimates of waiting times calculated based 

on the fastest possible person through the system to find that the distribution of waiting times at 

stations close to the starting station was bimodal. Since no denied boarding was observed at these 

stations they explained this bimodal distribution by some passengers choosing to travel 

backwards. Based on this finding, they concluded that some passengers were in this case willing 

to exchange ten minutes extra in-vehicle time for a seat. Othman et al. (2015) also studied the  

Singapore case and focused on the development of an agent-based model to estimate the effects 

of crowding in the metro system. They developed a simple model to replicate the empirically 

observed bimodal journey time distributions, which took into account the number of stations the 

passenger had to travel on a given line and for how many stations the passenger travelled 

backwards. This improved their model and gave a more realistic estimation of the crowding 

levels in the system. The final study which used Singapore as the case was Tirachini et al. 

(2016). They specifically used the observations of passengers travelling backwards and 

quantified the standing multiplier as around 1.2 compared to being seated with the current 

crowding levels.  
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The Beijing studies focused on analyzing the fraction of passengers travelling backwards and 

also focused on cases where passengers at stations close to the start of the line travel backwards 

to the first station of the line. Li et al. (2017) developed a clustering methodology to group 

passengers based on their journey times. By comparing the results with observed travel behavior 

at some stations, they estimated that up to 10% of passengers on some OD pairs travelled 

backwards in peak hours, and that the proportion of passengers travelling backwards increased 

with the trip length. Xu et al. (2018) refined the methodology developed in Li et al. (2017) and 

developed a clustering methodology to determine if the passenger travelled backwards or not. 

They were able to identify specific stations on a specific line, where up to 10% of passengers 

travel backwards. Finally, Yu et al. (2020) developed a hierarchical Bayesian model to further 

investigate the problem of travelling backwards. They first split the passengers into passengers 

travelling normally and passengers travelling backwards, and subsequently estimated 

distributions for passengers boarding the respective trains. The approach is based on the 

assumption that the tail of bi-modal travel time distribution can be attributed mostly to 

passengers travelling backwards. This means that the passengers travelling backwards most 

likely have longer travel times than passengers being denied boarding one or two trains. They 

used a survey in which passengers were counted if they transferred between trains at a “turn-

back” station to verify the results of the model, and used the results to optimize the passenger 

flow assignment. The results for the stations in the case study showed, that around 25 % of the 

passengers travelled backwards in peak hours. 

A related topic is the passenger choice of boarding station. This has previously been investigated 

in Hassan et al. (2016), where elements like access time to a specific stop, the expected waiting 

time and possible route choices from a station were included in the analysis. In the context of 

unusual path choice behavior, it is related to the travelling backwards concept, where the 

passenger can choose to walk (or bike) to a stop further upstream on a line to have a higher 

probability of boarding the first possible train. The stop choice problem is not analysed in this 

paper, but some notes on possible ways to analyse the problem are given in Section 6. 

3 Methodology for analysis of reverse routing passenger behavior in 

metro systems 
For studying the behavior of reverse routing passengers in Hong Kong two data sources are 

available: automatic fare collection (AFC) data with tap-in and tap-out information and 

automatic vehicle location (AVL) data with train departure and arrival times at stations. 

Passengers in most closed metro systems only tap-in at the origin and tap-out at the destination 

and no information on the transfer stations is recorded. The idea for analyzing the potential 

factors affecting the reverse routing behavior is therefore to use passenger-to-train assignment 

models to identify which trains passengers boarded, thus eliminating some uncertainty in the 

journey times from tap-in to tap-out time. The focus is on determining the train that passengers 

boarded on the second legs of their trips. Returning to the sketch in Figure 1B, this means that 

the time which is analysed is the time from tap-in at station O to when the passenger leaves 

station T. The time spent on line Y between station T and D can be eliminated from the journey 

time since the passenger is assigned to a specific train with the departure time from station T  

known. Below, the passenger-to-train assignment methodology is described in further detail.  
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Passenger-to train assignment 

The passenger to train assignment utilizes the egress time at the destination station. It is assumed 

that each group of passengers who board different trains have the same egress time distribution. 

Thus the egress times of passengers tapping-out in different time intervals are assumed to be 

generated from the same distribution that is specific to the destination platform. Based on this 

assumption, a sample of egress times can be acquired by looking at the passengers who have a 

single feasible train (given the tap-in and tap-out time) in their feasible itineraries and tapped-in 

on the same line. However, this is a biased sample since the passengers who have a single 

feasible train have an egress time that is smaller than the headway between their boarded train 

and the next train. Therefore, some correction for this bias is necessary. This correction is made 

using a truncated distribution to represent the observed egress times (Zhu et al., 2017). Given 

that the headway experienced by each passenger serves as the upper bound for their egress time, 

the egress time distribution can be written as a truncated random variable as follows; 

 𝑓(𝑡𝑒|𝑡𝑒 < 𝐻) =
𝑔(𝑡𝑒)

𝐹(𝐻)
 (1) 

where 𝑡𝑒  is the egress time, 𝐻 is the headway, 𝑓(𝑡𝑒) is the probability density function 

associated with the egress time and 𝐹(𝐻) is the cumulative distribution function associated with 

the egress time. Also, 𝑔(𝑡𝑒) = 𝑓(𝑡𝑒) for all 𝑡𝑒 < 𝐻 and 𝑔(𝑡𝑒) = 0 for other values. Using this 

formulation, any continuous probability distribution can be fitted to the observed egress times 

using the following likelihood function; 

 𝐿 =  ∏ 𝑓(𝑡𝑖
𝑒|𝑡𝑖

𝑒 < 𝐻𝑖)

𝑖

 (2) 

where 𝑡𝑖
𝑒is the egress time for ith passenger. Based on the corrected egress time distribution, we 

can evaluate all the possible egress time values for a passenger. Then, it is trivial to assign each 

passenger to the train with the highest probability within her feasible train set. A posterior 

probability can be calculated for each passenger and each feasible train using the possible egress 

times; 

 𝑃𝑖𝑗 =  
𝑓(𝑡𝑖𝑗

𝑒 )

∑ 𝑓(𝑡𝑖𝑘
𝑒 )𝑘

 (3) 

where 𝑃𝑖𝑗 is the probability of passenger i boarding train j and  𝑡𝑖𝑗
𝑒  is the egress time associated 

with passenger i, if that passenger boarded train j. Thus 𝑓(𝑡𝑖𝑗
𝑒 ) is the pdf of observing that egress 

time value. For the purposes of this study, a lognormal distribution is used to represent the egress 

time distribution, since it has been used to represent walking times (Zhu et al., 2017). In Figure 2 

an example of the passenger-to-train assignment is shown. The egress time distribution is 

modelled in a previous step and, based on this distribution, the most likely train the passenger 

boarded on line Y is train Y3. With this knowledge the departure time from station T can be 

found using the AVL data and the time from tap-in to departure from station T denoted 𝜏 is 

defined by: 

 
𝜏 = 𝑡𝑇 − 𝑡𝑂 

 
(4) 

Modelling passenger behaviour in mixed schedule- and frequency-based public transport systems 159



Eltved, Koutsopoulos, Wilson, Tuncel and Ma  

7 

 

The time 𝜏 does not define whether the passenger transferred at station T or station A, but can 

indicate whether some passengers spend more time than others, given that they departed on the 

same train on line Y. 

 

 
FIGURE 2 - Passenger to train assignment 

Model with factors affecting the journey time τ 

Given the journey times 𝜏 it is possible to analyze several factors leading to different behavior in 

terms of reverse routing, using a multiple linear regression model. The dependent variable is the 

journey time 𝜏, which is explained by the following function:  

 

 
𝜏𝑜,𝑑,𝑘,𝑥  ∼ 𝛽𝑏𝑎𝑠𝑒 + 𝛽𝑑 + 𝛽𝑜 + 𝛽𝑘 + 𝛽𝑥, 𝑑 ∈ 𝐷, 𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾, 𝑥 ∈ 𝑋 

 
        (5) 

where 𝑑 ∈ 𝐷 are the possible destinations, 𝑜 ∈ 𝑂 are the possible origins, 𝑘 ∈ 𝐾 is a specific 15-

minute timeinterval and 𝑥 ∈ 𝑋 is the travel experience in different categories. In order not to 

clutter the notation for the journey time 𝜏𝑜,𝑑,𝑘,𝑥, the subscripts are omitted, i.e. 𝜏. Note that each 

of the 𝛽’s in this way characterizes separate parameters for each origin, destination, timeinterval 

and experience, respectively.  
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In previous studies on reverse routing in metro systems, one of the clear findings is that 

passengers travelling furthest are most likely to travel backwards (e.g. Tiranchini et al. 2016, 

Othman et al., 2015 and Li et al., 2017). This hypothesis is tested by using the destination 

stations as explanatory variables for the journey time from tap-in until departure from station T. 

The origins are included in the model, as passengers naturally have higher journey times for trips 

to more remote stations, and the variable for time interval is included to explain the extra travel 

time imposed from crowding in the peak hours. 

Variables on passenger experience are also included, since Kim et al. (2014) showed that 

passengers with more experience chose a specific metro car to minimize the walking distance at 

the destination station. In the case of reverse routing a hypothesis is that passengers with more 

experience have lower journey times as they are able to observe the current conditions, and 

choose whether to transfer at the normal transfer station T or to reverse route through station A.  

4 Case study on reverse routing in Hong Kong 
The MTR system in Hong Kong has almost 5 million daily passengers (MTR, 2019) and some 

sections experience severe congestion in peak hours. The specific case study concerns two major 

stations in the central part of Hong Kong, station 1 and 2 in Figure 3 below. Passengers 

travelling from stations 27-30 on the blue line must transfer at either station 1 or 2 to reach 

stations 3-17 on the red line. 

 
FIGURE 3 - Case study network 
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Overcrowding at station 2 leads to some passengers being denied boarding for one (or more) 

trains. In a 2017 MTR survey, denied boarding was observed for all Red line passengers, no 

matter if they were transferring or entering at station 2, see Table 1. This showed, that no 

passengers in the peak period between 18:15 and 18:45 were able to catch the first possible train 

and only around 10% were able to board the second train. Most passengers were able to board 

the third train, but some passengers were only able to board the 4th possible train. 

 
1st train 2nd train 3rd train 4th train 

18:00-18:15 27% 61% 12% 0% 

18:15-18:30 0% 7% 80% 14% 

18:30-18:45 0% 10% 65% 25% 

18:45-19:00 7% 20% 63% 10% 

TABLE 1 – Denied boarding at station 2 based on a manual survey  

on January 10th 2017 (MTR, 2017)  

In a survey carried out in 2012 and analyzed in Li (2014) approximately 30,000 MTR passengers 

across the whole system were asked about their route choice. The survey revealed that around 

8% of the passengers in the evening peak period going from the blue line to the red line 

transferred at station 1, whereas all passengers outside the peak period transferred at station 2. 

This indicates that denied boarding and overcrowding leads to a different behavior for some 

passengers. Since 2012 the number of passengers in the system increased by 14% until 2017 

when a new line opened terminating at station 2, adding more congestion to this already crowded 

station (MTR, 2019). The transfer at station 2 is cross-platform whereas passengers at station 1 

have to walk up one flight of stairs (or use escalators to ascend two levels and descend one level) 

to transfer to the red line. The additional train travel time to station 1 is around 3 minutes (1.5 

minutes in each direction). The headways on both the blue and red line are between 90-120 

seconds. 

Data description and passenger-to-train assignment 

To analyze the factors influencing reverse routing behavior data from three weekdays, 21st-23rd, 

March 2017 (Tuesday-Thursday), was used. These days were selected, as they had very regular 

headways, thus eliminating some uncertainty on the in-vehicle travel time. A decision was made 

to limit the sample to adult passengers, as other passenger groups, such as pensioners, might 

have more heterogenous travel behavior. The passenger-to-train assignment model was used to 

assign passengers to specific trains on the red line and outliers, those with a journey time (𝜏) 

greater then three standard deviations from the mean for passengers on a given OD pair and a 

specific train, were removed. Outlier detection with both two and three standard deviations were 

tested, and it was found that the resulting estimates of the model did not differ significantly. 

Passengers who most likely departed station 2 between 17:30 and 19:30 based on the passenger 

to train assignment are included in the analysis, since the behavior of reverse routing is mainly 

observed for this time period (see table 1 above). This results in a sample of 37,050 trips of 

which 698 trips are removed as outliers. In Figure 4, the probability of the most likely train, a 

passenger is assigned to, is shown grouped by the destination station. Passengers with destination 

stations 4, 5, 16 and 17 can be assigned to a single train with very high confidence. For 
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passengers going to station 3 or 6 the assignment probability is somewhat lower, but still 50 % of 

the passengers are assigned to the most likely train with more than 96 % confidence. Passengers 

assigned to the most likely train with at least 80 % confidence are included in the further 

analysis, which reduces the sample size to 32,451 observations.  

 

FIGURE 4 – Kernel density plot of the distribution of assignment percentage for most likely train 

 

Naturally, the stations in the analysis have different numbers of boardings and alightings. In 

Table 2 the numbers of passengers from each origin to each destination are presented. The 

largest origins (by far) are stations 27 and 28, while the distribution across destination stations is 

more evenly spread, but with most passengers alighting at station 3. 

  Destination  

O
ri

g
in

 

 3 4 5 6 16 17  Total  

27  5,196   2,183   1,894   2,886   1,701   1,673   15,533  

28  4,927   1,585   1,299   2,292   1,137   1,027   12,267  

29  530   227   176   339   164   187   1,623  

30  1,076   417   375   560   324   276   3,028  

 Total   11,729   4,412   3,744   6,077   3,326   3,163   32,451  
TABLE 2 – Origin - destination matrix 

Since the passengers are assigned to a single train, the journey time 𝜏 from each origin to 

departure at station 2 is similar. In Figure 5 the journey time distributions from each of the four 

origins to departure at station 2 are shown. As seen from the plots, the journey time distributions 

are not bi-modal, but there is a large variance in the travel times for all origins. 

Modelling passenger behaviour in mixed schedule- and frequency-based public transport systems 163



Eltved, Koutsopoulos, Wilson, Tuncel and Ma  

11 

 

 

FIGURE 5 – Travel time distribution from each origin station to departure from station 2 

When looking in more detail at the travel time distributions for each time interval, as shown in 

Figure 6, it comes apparent, that severe crowding is seen at the peak of the peak. The travel time 

in the shoulders of the peak period is around 7.5 minutes from station 27 to departure from 

station 2, while the mean travel time in the most congested 15 minutes from 18:30-18:45 is 11.6 

minutes - a difference of 4 minutes in mean travel time. 

When plotting the journey times 𝜏 by the origin – destination pair, as shown in Figure 7, there is  

a tendency that passengers travelling furthest on the red line (i.e. second leg of the trip) have 

longer travel times from origin to departure from station 2. The journey times for passengers 

going to station 3 are higher than for passengers going to station 4 and 5, but rarely higher than 

the times for passengers going to station 16 and 17.  
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FIGURE 6 – Travel time distribution for passengers from station 27 to departure from station 2  

in time intervals 

 
FIGURE 7 – Boxplot of travel times from origin to departure of station 2 (between 18.00-19.00)  

by destination 
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As mentioned in Section 3, previous studies have shown that passenger experience has an 

important effect on path choice and travel time. In this study smart card data from March 2017 

was available, and by testing different specifications of the variable describing passenger 

experience, it was found that intervals of <5, 5-9, 10-19 and >=20 trips in March 2017 from the 

blue line to the red line between 17:00 and 20:00 resulted in the best fit. Figure 8 clearly shows 

that passengers with more experience have lower journey times than less experienced passengers 

for a specific OD pair.  

 

 
FIGURE 8 - Boxplot of travel time from origin to departure from station 2 (between 18.00-19.00) by 

destination and travel experience 

Results of model for factors affecting the journey time τ 

Table 3 below shows the final model explaining the journey time 𝜏 from origin to departure from 

station 2. The intercept of 7.66 minutes represents the journey time for a passenger from station 

27 to destination station 3 (closest origin and destination to the transfer stations), between 17:30-

17:44 and with less than five trips on this route in March 2017. The estimates for the origin 

stations are reflecting the approximately 2 minutes between two consecutive stations on the blue 

line. The estimate for station 30 is only around 1.25 minutes higher than for station 29, but this is 

due to a much shorter access distance from the fare gates to the platform at station 30 than at the 

other stations.  

The variables indicating the different time periods show significant differences between the eight 

15-minute intervals. The most congested time period is from 18:30-18:44, where passengers 

spend almost four minutes extra compared to the reference level from 17:30-17:44. The 
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estimation of the differences between time intervals does not add information on whether reverse 

routing is more likely in a given time period, but helps correct for the extra congestion in the 

system, so that the parameters for destinations and travel experience are unaffected by the 

additional congestion. 

Given that the journey time 𝜏 is explaining the time from tap-in to departure from station 2 there 

should intuitively be little difference in the journey times for passengers going to different 

destinations. However, as seen in Table 3, the estimates for destinations 6, 16 and 17 are 

significantly different from the reference level of destination 3. The estimates for stations 4 and 5 

are not significantly different from that for station 3. For passengers going to station 6 the 

journey times are approximately 20 seconds longer, for station 16 the journey times are around 

half a minute higher than for station 3, and the journey times for passengers going to station 17 

are 40 seconds higher than for station 3. This indicates, that passengers travelling further on the 

second leg have a different behavior than passengers only traveling a few minutes on the red 

line. This could indicate that some of these passengers are reverse routing via station 1, which 

could be due to a preference for a seat, or getting a better standing position in the train as also 

indicated in Tiranchini et al. (2016).  

When investigating the parameters for travel experience there is a clear tendency, similar to the 

boxplots in Figure 8, that passengers with more experience have lower journey times. This is 

consistent with the findings in Kim et al. (2014), where passengers with more experience chose 

metro cars which minimize walking distance and thereby their journey time. A very experienced 

passenger on the route from the blue line to the red line saves around one minute compared to 

inexperienced passengers. As only data from March 2017 was available for the analysis, it was 

not possible to check whether passengers also travelled many times in other months, and thereby 

could be classified as commuters. However, more detailed clusterings of different passenger 

groups could give more insight into which types of passengers are most effective at minimizing 

their journey times.  

The adjusted R^2 of the model is 0.35, meaning that the model only explains a portion of the 

variance in passenger travel times. Some of the remaining variation is due to the unknown access 

times from gate entry to the platform and that it is not possible to assign passengers to a specific 

train on the blue line. Tests were carried out on whether the findings of longer journey times with 

longer travel on the red line was due to any correlations not accounted for in the model. Models 

where the dates were included showed that all three days had similar travel times, and that the 

difference for the destination stations were similar. Also, a model where each specific train on a 

specific day was a variable in the model showed that this did not increase the explanatory power 

of the model, nor did it change the difference on the destination stations. This indicates that 

passengers travelling furthest on the red line probably do have different behavior than other 

passengers.  
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TABLE 3 - Results of Multiple Linear Regression Model for Journey Time 𝜏 

Sig. levels: *0.05, **0.01, ***0.001 

Parameter  

Estimate 

(minutes) T-value 

Base (intercept) 7.66 123.31*** 

Origin Station 27 - Ref. Level 

Origin Station 28 2.15 58.62*** 

Origin Station 29 4.32 55.49*** 

Origin Station 30 5.38 90.82*** 

Destination Station 3  -   Ref. Level 

Destination Station 4 -0.03 -0.52 

Destination Station 5 0.09 1.55 

Destination Station 6 0.35 7.45*** 

Destination Station 16 0.46 7.90*** 

Destination Station 17 0.68 11.25*** 

Time interval 17:30-17:44 - Ref. Level 

Time interval 17:45-17:59 0.56 7.66*** 

Time interval 18:00-18:14 0.68 9.62*** 

Time interval 18:15-18:29 2.47 34.91*** 

Time interval 18:30-18:44 3.78 54.73*** 

Time interval 18:45-18:59 2.57 36.89*** 

Time interval 19:00-19:14 1.00 13.83*** 

Time interval 19:15-19:30 0.51 7.07*** 

Less than 5 trips in month - Ref. level 

5-9 trips in month -0.45 -9.66*** 

10-19 trips in month -0.61 -13.75*** 

More than 20 trips in month -0.93 -12.88*** 

Number of observations 32,451 

Adj. R-Squared 0.35 
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5 A small case study of the Copenhagen metro 
While the metro in Hong Kong has severe problems with congestion, this is not the case for the 

Copenhagen metro. However, the Danish Transport Authority already reported passengers being 

denied boarding in a 2012 analysis, although this was only true in very short time periods and on 

the central section (Trafikstyrelsen, 2012). The metro has since been increasing service to keep 

up with the increasing demand and is attempting to limit the occurrence of denied boarding to the 

central section as shown in Figure 9 (Metro, 2018). 

 

FIGURE 9 – Map of the metro in Copenhagen (before opening of the metrocity circle line)  

Source: Metroselskabet 

Since the Danish smart card system requires passengers to tap-in at all transfers, it is possible to 

test whether any backwards travel occurs at stations with possible denied boarding. Data from 

the Danish smart card system from November 2019 was used to test whether passengers 

travelled backwards at any time. The stations analysed were Forum, Christianshavn and 

Amagerbro, which are known to have large numbers of boarding passengers. For each station, a 

query selecting all passengers who tapped in at the station and since visited Nørreport Station 

(the central station on the metro network, see Figure 9) were used to find passengers who might 

have travelled backwards. For these passengers, a check was made on whether they had tapped-

in at the first possible “turn-back” station. In Table 4 the total number of passengers travelling 

backwards is shown for each of these stations. Although the shares show a negligibly small 

percentage of passengers travelling backwards, it is clear from the split across timebands that 

these passengers are not doing it due to overcrowding. Rather, it could be passengers accidently 

taking the train in the wrong direction or passengers who had a short errand at the “turn-back” 

station and then combining their trips. Through this short analysis it has been shown, that 

although there might be some denied boarding at some stations in the peak of the peak, there are  

few, if any passengers who are travelling backwards. 

TABLE 4 – Results of analysis of travelling backwards observations on Copenhagen, Denmark 
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Forum 
 

Christianshavn 
 

Amagerbro 
 

Direct to Nørreport 21,731 Direct to Nørreport 42,012 Direct to Nørreport 37,341 

via Frederiksberg 53 via Amagerbro 40 via Lergravsparken 20   
via Islands Brygge 30 

  

TB share 0.24% TB share 0.17% TB share 0.05% 

TB pax in timebands 
 

TB pax in timebands 
 

TB pax in timebands 
 

From 0.00-7.00 4 From 0.00-7.00 2 From 0.00-7.00 2 

From 7.00-9.00 2 From 7.00-9.00 5 From 7.00-9.00 8 

From 9.00-15.00 29 From 9.00-15.00 31 From 9.00-15.00 6 

From 15.00-17.00 10 From 15.00-17.00 6 From 15.00-17.00 3 

From 17.00-0.00 8 From 17.00-0.00 26 From 17.00-0.00 1 

6 Potential approaches for identifying the extent of unusual path choice 

behavior 
This section discuss possible ways to validate the extent of unusual path choice behavior. As 

described in the literature review, there are already some studies on the problem of travelling 

backwards, which were used as a basis for the models developed for the analysis. For most of the 

studies the validation data are surveys, where the number of passengers transferring between 

trains in opposite directions at “turn back” stations are counted. This information is valuable for 

model development, as the model parameters used to find the share of passengers travelling 

backwards can then be calibrated. However, there is some uncertainty in this validation 

technique, as it is not known whether the passengers travelling backwards travelled one, two or 

three stations before turning back. A way to overcome this uncertainty would be to use Bluetooth 

or Wifi tracking at stations, to follow (anonymized) persons. This would facilitate large-scale 

samples, and give a clear indication of the behavior of travelers, e.g. whether passengers really 

travel three stations back before turning back, as for example found in Yu et al. (2020).  

For the problem of reverse routing, a less data-driven approach than the one presented above, 

could also be using surveys to estimate the shares of passengers who reverse route. As mentioned 

in the case study, a survey was conducted in 2012 (Li, 2014) in the Hong Kong MTR, which 

showed that around 8% of passengers in the evening period were reverse routing. However, the 

data sample for the specific case of reverse routing at stations 1 and 2 was small (around 120 for 

the evening peak period), since the survey covered the entire MTR system. If a more dedicated 

survey was distributed, either through a web-based questionnaire or a survey on the platforms, a 

more precise estimate could be used for validating models estimating the fraction of passengers 

who reverse route. Such a model could be similar to the one presented in Yu et al. (2020) where 

several Gaussian distributions combined, reveal the share of passengers travelling backwards. 

However, the problem of using such an approach for the case of reverse routing is that 

passengers can very well catch an earlier train by reverse routing via station 1 than transferring at 

station 2. The extra travel time (3 minutes) plus additional walking time at station 1 (estimated 

from station layout maps to be between 30 seconds and two minutes) can be lower than being 

denied boarding several times at station 2, where the headway is approximately 90 seconds. 

An additional approach for analyzing the problem of reverse routing, could be to fuse train load 

data (for example from automatic train weighing systems) and information from smart cards. 

Since the smart card system covers a very large proportion of the trips in the system, combining 

these with a naïve assumption that all passengers transfer at the first possible transfer, and 
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comparing this to the estimated count between station 1 and 2, could reveal a large difference. 

This could indicate that some passengers are actually reverse routing. Such knowledge could 

further be used to develop more realistic route choice models, for example including extra 

parameters for discomfort accounting for denied boarding in a logit-based route choice model 

(see e.g. Raveau et al. (2014)). The information could also be used in the estimations of 

hierarchical Bayesian models as shown in Yu et al. (2020). If results of the fraction of reverse 

routing passengers could be obtained, this could provide valuable information to the operations 

management team of the MTR, since this could lead to different operational strategies by, for 

example, dispatching empty trains from station 1 to station 2. This could relieve the pressure on 

station 2 and encourage more passengers to transfer there. However, this might not lead to better 

operations, as the dwell time on station 2 could increase, since more passengers then need to 

board at this station. Since station 1 is the terminal station on the red line, the dwell times at this 

station are not as critical for operations and the optimal operating strategy might well be to have 

some passengers reverse routing and in this way cause more congestion on the segment between 

stations 1 and 2. 

Finally, an interesting research avenue for the problem of stop choice in metro networks could be 

to test whether passengers in peak hours choose stations further upstream on a line, to have a 

better chance of getting a seat or lowering their probability of being denied boarding. The 

problem in using smart card data for this purpose is that the origin and destination of a trip are 

unknown: only the place where the passenger enters and exits the system is known. So more 

detailed data on this problem is needed, which could for example come from surveys. In the 

Danish National Travel Survey (Transportvaneundersøgelsen, 2020) detailed information on 

trips in public transport is collected; origin, destination, stations visited, lines used etc. This 

information could be used to test whether passengers in peak hours access other stations than in 

non-peak hours. A limitation of the Danish survey, however, is that persons only report on one 

day of travel, making it difficult to find a pattern. However, if the survey was collected through 

an app, for example TravelVu (2020), persons are usually tracked over several days, and this 

could give more precise estimates of whether the stop choice is different in peak hours. Although 

a survey through an app could potentially show some differences in behavior between peak and 

non-peak hours, it is likely that the congestion in the metro system would have to be higher than 

in the Danish system. However, in the case of Hong Kong or other major systems where 

passengers risk being denied boarding several trains, the stop choice may well be affected by the 

crowding situation.  

7 Conclusion 
This paper investigated unusual path choices, where passengers choose different routes due to 

congestion in metro networks. The paper analyses possible causes and indication for reverse 

routing behavior by applying a passenger-to-train assignment model to the second leg of the trip. 

It is then possible to calculate the time from tap-in to departure from the transfer station which 

would be used under uncrowded conditions.  

The results show that passengers who travel further on the second leg of the trip spend 

significantly more time from tap-in to departure from the normal transfer station, when 

accounting for the time from the origin and the longer travel times during different time intervals 

in the evening peak period. The extra time spent may be largely due to the effects of reverse 

routing passengers. The analysis also shows that passengers who travel more during a month 

have significantly lower travel times compared to passengers who travel less frequently. This 
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indicates that passengers’ decisions are heavily influenced by their previous experience and 

knowledge, and that passengers with extensive travel experience can assess the current crowding 

level and possibly choose whether, or not, to reverse route.  

A small case study in Denmark showed that travelling backwards in the Copenhagen metro is 

rare, since the crowding conditions do not often result in passengers being denied boarding. 

Finally, the paper discusses possible approaches to detect and predict the fraction of passengers 

with unusual path choice behavior. The fractions can e.g. be relevant to the operations 

management team, as different operational strategies, such as dispatching empty trains, could 

potentially relieve congestion in some areas of the metro, but might lead to worse overall 

performance of the network. 
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9 Conclusions

This PhD thesis presents several novel modelling frameworks for analysing passenger travel
behaviour in mixed schedule- and frequency-based public transport systems. While each
of the presented papers include separate conclusions, Sections 9.1-9.3 concludes on the
main findings in this thesis. Section 9.4 discusses the potential policy implications of the
developed methodologies and results. Finally, Section 9.5 outlines possible future research
based on the findings in this thesis.

9.1 Assignment models for mixed schedule- and frequency-based
public transport systems

Part I of the thesis, constituting Paper 1 and Paper 2, develops novel methodologies
for assignment of passenger flows in mixed schedule- and frequency-based public trans-
port systems. As modellers typically have to choose between either a schedule-based or
frequency-based model design (Gentile and Noekel, 2016), the proposed models bring
flexibility for the modellers to choose the most suitable representation of each line in a
joint modelling framework.

The development of a complete passenger assignment model for mixed schedule- and
frequency-based networks in Paper 1, demonstrate that it is possible to generate rea-
sonable choice sets, which vary both in terms of arrival times, but also in the spatial
dimension when routing through the network. Generating a diverse set of alternatives is
important, as passengers’ route choice preferences have been shown to be heterogeneous
(Paper 4). The model allows to assign passengers to different routes through the network,
which is more behaviourally realistic than an all-or-nothing assignment procedure. The
case study tests of the model, where representation of lines are changed between schedule-
and frequency-based, show that the frequency-based representation results in higher travel
times and costs to the passengers. This is due to the coordination of schedule-based lines,
which results in lower waiting times than half of the headway, as assumed in the frequency-
based representation. As the assignment of passengers to different routes is based on a
discrete choice model, where the utility of an alternative is based on the generalised cost,
the model can be calibrated to fit observed route choices by changing the weights of the
individual components of the trip.

While Paper 1 assumes a regular public transport network with no delays, Paper 2 incor-
porates vehicle delays and their effect on connections between services. By the use of
Markov chains to model transfer probabilities, the model calculates analytically (no simu-
lation required) the travel time distribution from origin to destination. The use of efficient
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matrix operations allows detailed analysis of travel time distributions including travel time
distributions conditional on the usage of specific lines. In a case study the change of
frequency-based services to a schedule-based representation shows that this only induces
minor differences in the travel time distributions. The introduction of phases to model
the time spent at each location has many possible extensions, e.g. the introduction of
phases at each station to represent possible crowding or differences in the walking times
as found in Paper 6. Phases could also be used to model possible delays in schedule-based
services before their arrival at the departure station of the passenger, and introduce more
dynamic routing decision for passengers than simply boarding the first arriving vehicle at
a given stop.

9.2 Route choice models for mixed schedule- and
frequency-based public transport systems

Part II of the thesis, constituting Paper 3 and Paper 4, investigates passenger route choice
preferences based on reported door-to-door trips. The papers partially solve the problem
of correcting the choice probabilities for spatially overlapping alternatives by adding more
easily interpretable variables to the models. Such corrections have typically been solved
by introducing path-size corrections (Prato, 2009). The path-size factors generally lowers
the choice probabilities of overlapping alternatives, but in public transport they have also
been found to increase the choice probabilities with the interpretation that passengers
value a large number of en-route alternative options (Anderson et al., 2014). However,
the extended models seem to capture some of these effects by adding the more easily
interpretable variables.

The main conclusions in Paper 3 is that frequency of services and in-vehicle time are
two factors which explain a large part of passengers’ route choice preferences. The
frequency affects the waiting time for services, and lower waiting time parameters are
found for schedule-based services compared to frequency-based services. However, it is
important to note, that passengers usually wait longer for schedule-based services, as they
generally have higher headways than frequency-based services. The finding of difference
in parameters is important, as it can be used in assignment models to find more accurate
flows than if a single parameter is used for waiting time. The final model includes a
binary variable showing that passengers prefer frequency-based services, although the
interpretation and potential use in assignment models is difficult, as this variable does
not take into account differences in the total travel time or other modes used during the
trip. The introduction of Box-Cox variables for the different in-vehicle times explains to
some degree which modes are preferred depending on the length of the trip. The results
show that passengers have a low inconvenience for short metro trips, but with a rapidly
increasing nuisance for longer metro trips. For in-vehicle time in regional trains this is
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different, as the marginal dis-utility of longer times in the train is decreasing compared to
shorter trips using regional trains.

While Paper 3 focus on the in-vehicle times and the effect of frequencies on passenger
route choice preferences, Paper 4 focus on disentangling the transfer penalty and increas-
ing the knowledge on the effect of different characteristics of transfer stations. The
results show that passengers are indeed taking the characteristics of transfer stations into
account when choosing their route in the public transport system. It is found that esca-
lators increase the probability of choosing a specific transfer station, which can possibly
be explained by the comfort of these and that they move passengers faster to the con-
necting service. Having a shop at any of the transfer stations on the route also increases
the choice probability of this, and as shown in Paper 6 passengers are indeed spending
extra time at transfers in this case, which could be due to shopping, buying coffee etc.
Furthermore, it is found that transfers, which are difficult to navigate through, decrease
the probability of passengers using such a transfer station. While typical estimates of the
general transfer penalty ranges from 5 to 20 minutes, this paper is able to disentangle the
transfer penalty for stations with different characteristics. As such, the penalty ranges
from 5.4 minutes for the best possible transfer to 12.1 minutes for the worst possible
transfer. These results are important as they can improve the fit of current public trans-
port assignment models and moreover can be used to improve the transfer experience for
passenger, and ultimately make public transport more attractive.

9.3 Studies on public transport passenger behaviour based on
smart card data

Part III of the thesis, constituting Paper 5, Paper 6 and Paper 7, presents three papers
with new approaches on how to model passenger behaviour using smart card data. The
papers show some key benefits of having a large number of observations, but also the
importance of being able to record passengers’ travel behaviour over time.

Paper 5 presents an analysis of passengers’ travel behaviour before, during and after a
track closure which lasted almost three months. The results underline the importance of
detecting the dynamic changes to passengers’ travel behaviour, when the goal is to isolate
the effect of the service disruption on passengers’ travel behaviour. When comparing to
the reference line it is found, that there is no apparent impact on the travel behaviour after
the disruption for passengers who travelled frequently before the disruption. However, it
is shown that around 17% of the frequent travellers on the disrupted line almost entirely
stopped using public transport during the disruption, but returned when normal operations
were resumed. Although no considerable differences for the passengers already using the
affected line compared to passengers on the reference line were found, there is a deficit in
the number of frequent travellers after the disruption, which to some degree can explain
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the overall decrease in ridership after the disruption. The proposed smart card based
method to investigate the impact of long-term service disruption is an alternative, or
complementary, approach to traditional surveys, which is able to isolate the effects of the
disruption from the ongoing dynamic changes in passengers’ travel behaviour.

While Paper 5 makes use of the longitudinal and panel structure of Rejsekort, Paper 6
takes advantage of the massive number of observations collected in the system. The
proposed methodology allows for separating directly walking passengers and passengers
with activities during the transfer for stations with different characteristics. Firstly, the
model estimates accurate walking time distributions from bus stop to train platform at
stations where the passenger activities stem from passengers shopping or doing other
errands during the transfer. Secondly, the model is able to detect poor synchronisations
between busses and trains, where passengers are waiting in the station building instead of
walking directly to the platform. The validation of the proposed model is indeed difficult,
as this would require manual surveys with inspectors following transferring passengers or
tracking systems which are more intrusive on passengers’ privacy. To overcome this, two
verification techniques are proposed based on i) passenger-to-train assignment and tests
of whether the model predicts passengers with many missed trains as passengers with
activities during the transfer, and ii) the relation between number of shops at a transfer
station and the share of passengers predicted to do activities during the transfer. Although
the tests can not validate the predicted distributions, as the ground truth walking time is
unknown, the tests indicate that the model does indeed provide reasonable estimates of
the necessary walking times at transfers.

The final paper, Paper 7, investigates unusual path choices in congested metro systems.
The reverse routing behaviour in the specific part of the metro system in Hong Kong is
investigated using passenger-to-train assignment and a multiple linear regression model.
The results of the model shows an excessively extra amount of travel time needed during
the evening peak hours, where passengers are denied boarding two to three trains when
transferring at the normal transfer station. The analysis shows that passengers travelling
furthest on the second leg have an increased travel time to the departure from the nor-
mal transfer station, which exceeds the travel times for passengers only travelling short
distances on the second leg. This extra time spent for passengers travelling further on
the second leg could possibly indicate that some of these passengers are reverse routing.
Doing reverse routing can in the cases where passengers are denied boarding several times
at the normal transfer station be an optimal route choice, both in terms of travel time
and also if the passenger wants a chance of getting a seat or a better standing position
in the train. The main part of the research project was carried out just months before
the protests in Hong Kong began in the middle of 2019 (BBC, 2019). This has certainly
changed the travel patterns in the metro system along with the changes due to COVID-19.
Since the work on the presented paper was not finalised before the protests began, it has
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not been possible to do any types of surveys or other counts to verify the extent of the
reverse routing behaviour. However, the paper suggests several further investigations that
could be performed, including suggestions on the use of train load data or counts using
Bluetooth technology. The paper also briefly investigates possible travelling backwards
behaviour in the Danish metro. However, using simple statistics it can be shown, that
such behaviour is non-existing.

9.4 Policy implications

While the conclusions of the different parts span across several topics within the modelling
of passenger travel behaviour, there are some general takeaways for the implications
on future policies and design of mixed schedule- and frequency-based public transport
systems.

Firstly, the thesis has contributed to the design of models for evaluating passenger route
choice in greater detail. The novel assignment methodology presented in Paper 1 has
already been used as inspiration to the public transport assignment model in COMPASS
(Copenhagen Greater Area Model for Passenger Transport - Kjems et al. (2019)), the
new state-of-the-art activity-based transport model for Greater Copenhagen. As such,
this newly developed model has contributed to ease the tasks needed for traffic modellers
to run several timetable scenarios, as they can now choose to let some lines have a
frequency-based representation. When combining the newly developed models with the
results from the analyses on route choice preferences in Paper 3 and Paper 4, it is possible
to gain more accurate estimations on the level-of-service provided to the passengers by
the public transport network. The studies have confirmed the significant negative impact
of transfers on the behaviour of public transport passengers, and hence the number of
transfers is an important measure when new timetables or networks are implemented. The
results in Paper 4, which suggest that not all transfers are weighted equally, are in this
regard especially important for the evaluation of the effect of improved public transport
terminals. Such improvement to stations can be more cost effective than building new
infrastructure, while still resulting in better level-of-service for the passengers.

Secondly, the study on walking time estimations can have a considerable impact on public
transport planning in Denmark. The current practice in Denmark of assessing the neces-
sary walking times, when transferring between bus and train, is based on GIS-analysis of
the Euclidean distance between stop points and an added extra time buffer accounting
for possible delays. The proposed approach based on smart card data facilitates more
accurate estimations than just using simple Euclidean distances, as these may differ from
the actual walking paths. This is especially the case for transfers between bus and under-
ground metro stations, where the vertical distance is difficult to account for. Since the
approach outputs distributions of walking times, these can also be used to enhance online
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route planning apps, such as the Danish travel planner Rejseplanen. While Rejseplanen is
already capable of handling whether passengers set their walking speed to ”slow”, ”fast”
or ”normal”, this is only used for the access/egress part of the trip. Combining passen-
gers’ selection of their walking speed and the estimated walking time distributions enables
better route suggestions, as the current point estimates does not take into account the
probability of a passenger reaching a suggested connection. The proposed approach is
expected to be used as part of a larger project between DSB (rail operator) and Movia
(bus agency). This project will investigate the synchronisation for busses and trains at
rural stations, and the methodology will play a key role in the estimation of whether
passengers can reach a planned connection or not.

A final implication of this thesis is based on the study on effects of long-term disruptions
on passengers travel behaviour. The study not only provides valuable insights on the
effect of the specific track closure, but more importantly it shows the value of being
able to follow the dynamic changes in passenger travel behaviour over time. Although
the study only includes adult passengers with a personal smart card, it is possible to
segment the passengers in eight distinct groups based on easily measurable indicators of
travel regularity. As also shown in Deschaintres et al. (2019) and Egu and Bonnel (2020),
passenger travel behaviour in public transport changes significantly during the year. New
passengers enter the system while others leave the system and possibly return. The study
on the impacts of the track closure shows that it is not sufficient to solely analyse the
effects before and after the closure, without taking into account the significant changes
to passenger behaviour over time. As such, the methodology provides a much clearer
distinction between normal changes over time and those actually related to the severe
level-of-service degradation during the affected period.

9.5 Future research

Although, this thesis has made several contributions to the existing literature on passenger
travel behaviour in mixed schedule- and frequency-based systems, there are still plenty of
research needed for making public transport more attractive. Most of the papers have
outlined directions for future research, but a few general directions based on the findings
in this thesis are worth highlighting.

Firstly, there are much further research to be done in the area of route choice modelling,
especially considering the vast available data from smart card and the detailed data
from travel surveys. As Rejsekort includes both origin, destination and transfer stations,
this is a treasure chest filled with detailed information on how passengers choose routes
within public transport systems. Smart card data has been used in several studies on
route choice, see e.g. Raveau et al. (2014) and K. M. Kim et al. (2015), but can
also be used to see if passengers choose different routes over time J. Kim et al. (2017).
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However, smart card data does not include information on access and egress, which, from
a passenger perspective, is also an important part of using public transport. Luckily,
the route choice data from the Danish National Travel survey includes this information
(Center for Transport Analytics DTU, 2020). An interesting line of research would thus be
to combine these datasets for route choice estimations, which could add to an emerging
research area combining big-data sources with data sources which includes more socio-
demographic information (see e.g. Zhang et al. (2018) who combine revealed preference
and smart card data for route choice estimations).

Secondly, this thesis has shown the potential of passenger segmentation based on smart
card data. Smart card data comes in large numbers and there are several use cases for
this as outlined in Pelletier et al. (2011) and Faroqi et al. (2018). Especially in the area of
passenger segmentation, the data is relatively simple to analyse. Passengers can easily be
tracked over time and thereby creating a large longitudinal survey, which is otherwise not
simple to observe in any other survey formats. For example, the temporal pattern of trips
within specific days and spatial patterns can shed more light on the purpose of trips and
thereby understanding of which type of passengers are using public transport (Egu and
Bonnel, 2020; Zhao et al., 2017). Analysis on passenger segmentation can help public
transport agencies understanding their customers better, and use this for creating a more
attractive public transport system, which better serves the mobility needs of people living
in metropolitan areas.
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This PhD thesis contributes to several topics concerning modelling and analysis of passenger
behaviour in metropolitan public transport systems.

Firstly, the thesis develops novel methodologies for evaluating the flows in public transport sys-
tems with co-existing schedule- and frequency-based services. Secondly, the thesis investigates
the route choice preferences in terms of the penalties for transferring and waiting. Thirdly, the
thesis presents a study of the impact of long-term service disruption on passenger travel be-
haviour based on smart card data. Finally, smart card data is also used in two innovative studies
for analysing walking times and how crowding affects passenger route choice, respectively.
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