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ABSTRACT
The performance of active noise controllers based on adaptive filters like the Filtered Reference
Least Mean Square algorithm (FxLMS) is optimal in small zones around the error sensor
locations. These locations provide the maximal possible reduction of noise but are not accessible
by people due to the presence of the sensors. Virtual sensing algorithms can be applied to move
the optimal zone of control away from the error sensors. Such methods have been investigated
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during the last three decades and the most of them rely on initial transfer-function estimation
with physical sensors in the virtual locations. This paper investigates how additional physical
knowledge about the inherent physics of an active noise control application can be used to
derive models, that can extrapolate an arbitrary number of e.g. virtual error sensor signals. A
denser grid of error sensors leads to a more homogeneous reduction of noise in a target area
and can extend the frequency range of controllability to higher frequencies. The idea of the
model based remote microphone technique (MBRMT) is introduced, which is the motivation
for this study, and three models for sound-field extrapolation are investigated that could be
integrated into the MBRMT.

1. INTRODUCTION

Active noise control based on adaptive filters minimises the error at locations of a set of error
sensors. Consequently is the best performance in terms of noise reduction given in places that are not
accessible by people. Virtual sensing methods have been developed to overcome this limitation, see
[1] for a review of virtual sensing methods. These methods minimise the error in virtual error sensing
locations that are remote from the physical sensors. All methods rely on measured or estimated
transfer functions, which are then fixed and do not adapt to changing acoustic conditions like a change
of air temperature or people entering the virtual error sensing locations. If the conditions change the
performance of active control will decrease and the algorithms might diverge. A model that can
extrapolate the virtual microphone signals from a set of physical measurements might be able to
adapt to changes of the acoustic conditions. Furthermore, the need of measuring transfer functions
to the virtual error locations becomes obsolete. This can save massive effort in case many virtual
microphones are needed. A dense grid of virtual error sensors can produce a more homogeneous
quiet zone area and extend the performance of active control to higher frequencies. The idea of the
model based remote microphone technique (MBRMT) will be introduced as the motivation for this
paper. The MBRMT makes use of sound field reconstruction in order to predict the sound pressure in
remote locations. The focus of this paper will then be on the analysis of three reconstruction methods
in order to understand their limitations for the application in active control.

The important parameter of sound-field reconstruction is here the accuracy in predicting the
level and phase of a pressure in remote locations. The range in which a minimum accuracy can be
guaranteed is of special interest for active control where errors can destabilise the control algorithm.
When accurate predictions can be obtained far away from the measurement array, then is the
placement of the virtual sensors more flexible. With the virtual sensors moves the actual zone of
quiet. While an error in the reconstruction of the pressure level will decrease the insertion loss of
active control, so can phase errors of > | ± π

2 | cause divergence of the ANC algorithms which needs
to be avoided [2].

The reconstruction methods compared here are utilising plane wave decomposition (PWD), the
spherical harmonic decomposition (SHD) and the equivalent source method (ESM). These methods
are well known and will be quickly reviewed in section 2. All three decompose a set of measurements
into a set of basis functions by posing an inverse problem. The obtained coefficients will then be
used to predict the sound pressure in remote locations. The inverse problems might be ill-posed,
presumably under-determined in the most cases, since there will be most likely fewer measurements
available than basis-functions in the models. Solution to these inverse ill-posed problems can be
found via e.g., a regularized least squares inversion (LS), or via sparse reconstruction methods, such
as compressive sensing (CS). LS and CS are quickly reviewed in section 2.



2. METHODS

2.1. Model Based Remote Microphone Technique - Contribution
This section presents very quickly the idea of the MBRMT. An in depth analysis will be executed

in subsequent research. The method is based on the remote microphone technique (RMT), which has
been presented the first time by A. Roure in 1999 [3]. The RMT minimises the error in locations
remote from a set of physical sensors. To do this it is needed to measure the secondary paths between
the virtual sensors and control sources Gvu and between the physical sensors and control sources Gpu.
Also the primary paths are needed from the virtual and physical sensors to the primary noise sources:
Gvn and Gpn. The G matrices contain multi-channel transfer-functions. With these measurements
it is possible to construct a matrix M1 that transforms the estimated primary noise contribution at
the physical sensors dp to the respective contribution at the virtual sensors dv. ep is the error at the
physical sensors, ev the error at the virtual sensors, u the control signal, and yp and yv the contribution
of the secondary sources at the physical and virtual sensors respectively.

dv = M1dp, with M1 = GvnG−1
pn and dp = ep −Gpuu. (1)

Figure 1: The scheme of the The Remote Microphone Technique

The estimated virtual error ev = dv + Gvuu and the virtual secondary path Gvu are then used to
update the control filter w(ω, L) with the FxLMS update equation 2 at each frequency ω in block L.

w(ω, L + 1) = w(ω, L) − λFH
x ev(ω, L), (2)

with Fx = Gvu(ω)x(ω, L), the filtered reference signal. The filter w is then used to update the control
signal u = wx. Equation 2 is the most basic block based FxLMS algorithm in frequency domain.
Its derivation and numerous derivatives can be studied in [2, 4]. Note that for the measurement of all
involved transfer functions it is needed to place physical sensors temporarily at the virtual locations
during an initialisation stage. The effort of measuring these transfer-functions can be huge, especially
when many physical and virtual error sensors are involved. The access to the primary sources might
even be restricted or impossible [5].

The MBRMT replaces the matrix M1 with a sound field reconstruction method that predicts the
contribution of the primary noise in remote locations dv. The estimate of the virtual error can then
be obtained with ev = dv + yv. yv is not yet available and can be predicted via extrapolation from
yp = Gvuu. The virtual secondary path can be estimated via the extrapolation matrix M2 e.g., with
Gvu = M2Gpu. Figure 2 shows the block-diagram of the MBRMT.



Figure 2: The Model Based Remote Microphone Technique. M1 and M2 represent prediction
algorithms. The virtual secondary path Gvu and the virtual error ev are used to update the control
filter coefficients w(L + 1) according to the FxLMS algorithm shown in Equation 2.

2.2. Extrapolation via plane wave decomposition
A pressure p in location r in a source free domain Ω can be approximated by a series of plane

waves for a constant frequency ω, see also [6].

p(ω, r) ≈
N∑

j=1

X je jk jr + n(ω, r), (3)

where X j is the jth complex coefficient of the jth plane wave and n is additive Gaussian noise. The
wave number vector k indicates the direction of the plane waves and r is the position vector of the
observation point in 3D Cartesian coordinates. This series can be expressed in matrix form.

p = Hx + n (4)

H contains the plane-wave basis functions in the rows with direction k j and relates them to the
observed pressures pi ∈ C

M in the points ri in 3D space with Hi j = e jk jri . The vector x ∈ CN

consists of complex plane wave coefficients and ni = Ae jφi is the noise vector with A a constant scalar
according to the chosen signal-to-noise-ratio (SNR) and a randomised phase φi. The solution for x
can be found via the inverse of the matrix with

x = H−1p. (5)

The inversion of the matrix H is typically not possible due to the miss-match of the number of basis
functions and measurement points. Details about the inversion will be addressed in section 5. With
the obtained coefficients vector x it is possible to predict the pressure p̃ in arbitrary locations rR ∈ Ω

with

p̃ = HRx. (6)

2.3. Extrapolation via spherical harmonics decomposition
The spherical harmonics decomposition or spherical Fourier transform is an established method

for sound field analysis [7–9]. When microphones are used to sample the sound-field on the surface
of a sphere, centered at the origin, it is possible to describe the measured pressures pi as a linear
combination of spherical harmonics with

pi(r, θ, φ) =

∞∑
n=0

n∑
m=−n

Bmn jn(kr)Ym
n (θ, φ), (7)



where Ym
n (θ, φ) are the spherical harmonics describing the angular dependency, jn is the spherical

Bessel function representing the radial dependency and Bnm ∈ C the coefficients of the transform.

Ym
n (θ, φ) =

√
(2n + 1)

4π
(n − m)!
(n + m)!

Pm
n (cos(θ))e jmφ (8)

In order to compute the coefficients Bnm Equation 7 can be written in matrix form and the solution
expressed via inversion

bj = Y−1p, (9)

with the spherical harmonics matrix

Y =


Y0

0 (θ1, φ1) Y−1
1 (θ1, φ1) Y0

1 (θ1, φ1) ... YN
N (θ1, φ1)

Y0
0 (θ2, φ2) Y−1

1 (θ2, φ2) Y0
1 (θ2, φ2) ... YN

N (θ2, φ2)
... ... ... ... ...

Y0
0 (θQ, φQ) Y−1

1 (θQ, φQ) Y0
1 (θQ, φQ) ... YN

N (θQ, φQ)

 (10)

and b j,nm = Bmn jn(kr). Also here will the inversion most likely not be possible and requires the pseudo
inverse, e.g. Reconstruction can then be executed as follows

p̃R = YRb, (11)

with b the vector of the coefficients Bmn = b j,nm/ jn(kr).

2.4. Extrapolation via Equivalent Source Method
The equivalent source method (ESM) is closely related to the plane wave decomposition method.

Instead of plane waves, monopoles are chosen as basis functions which has the advantage that the
decay of sound pressure with distance from the sources is taken into account with HESM

i j = 1
4πri j

e jkri j .
ri j = ||ri − r j||2 is the euclidean distance of an equivalent source to a measurement point. This
way further physical knowledge is utilised and better reconstruction is expect. The locations of the
equivalent sources are placed in a regular grid surrounding the sound sources. The sound sources are
represented with multiple monopoles to extend their size according to the size of a membrane of a
PA loud-speaker. Furthermore is a sound source always centered in between the grid of equivalent
sources so that the results represent the worst case of the chosen configuration, see Figure 3. The ESM
can be represented in matrix form like Equation 4 and the coefficients can be computed via inversion.

2.5. Inverse Problem
Ill posed inverse problems can be solved via minimisation utilising the `1-norm and `2-norm with

x`1 = arg min
x
||x||1, subject to ||Hx − p||2 ≤ ε (12)

and

x`2 = arg min
x
||Hx − p||2 + λ||x||2. (13)

In case of a sparse distribution of noise sources it might be beneficial to pose an `1-norm minimisation
problem while in some cases the `2-norm could lead to better results, as will be shown.
`1-norm minimisation is also known as compressive sensing [9,10] and `2-norm minimisation can

be expressed as pseudo inverse. The constant ε in Equation 12 is an inequality constraint. A good
choice for this constant has been experimentally investigated for the specific cases presented here and
is ε = 20

√
nT n/M for all three extrapolation methods. The constant λ in Equation 13 is the Tikhonov



regularisation factor which was different for each extrapolation method. The constant λ = 1
√

nT n/M
has been chosen, which is an average that works well for all methods presented here. The `1-norm
minimisation has been solved with the CVX library in Matlab. Equation 13 is a Least Mean Square
approach which has been computed with the closed form regularised pseudo inverse

x`2 = (H∗H + λI)−1H∗p, (14)

where ∗ indicates the complex conjugate transposed.

3. RESULTS

In the following the accuracy of the reconstructing methods ESM, PWD and SHD is presented
as sound-field plots and as the point-wise normalised mean square error (NMSE) in the xy-plane in
which the spherical array is placed. The NMSE

εNMS E = 10 log10

(
|pm − pr|

2

|pm|
2

)
(15)

is related to the amount of noise reduction in the case of active noise control. pm is the measured
sound-field and pr the reconstructed. If perfect reconstruction is possible with εNMS = −∞, the
maximum reduction of noise that is possible with active control is achievable. E.g. infinite reduction
in a single channel active control setup without noise. Contour lines are added that indicate the region
of stability in which adaptive control is stable when all other conditions are ideal, for example with
G̃pu = Gpu. In order to save space only the maximum phase error of all frequencies is shown, so the
contour indicates only that there is a stability issue for at least one frequency.∣∣∣∣∣∣tan−1

(
Re(

pm

pr
)/ Im(

pm

pr
)
)∣∣∣∣∣∣ = |∆φ| <

π

2
. (16)

The reconstruction accuracy is shown for two different scenarios which are related to a specific
active noise control problem where the primary noise consists of sources far away (50m) and the
control speakers are close to the quiet zone area (2m). This project has been presented in [11]. It
is the sound-field of the primary noise sources that is to be reconstructed and the sound field of the
secondary sources respectively. A simple scenario is shown first, where the sound source is a single
source in space, which is represented by a collection of monopoles to slightly extend its shape. Ground
reflections are neglected. Figure 3 shows the more complex setup, which will be presented next, with
enlarged sound sources, ground reflections and grids of equivalent sources. The grid density increases
slightly with distance to account for increasing uncertainty in estimating the exact source locations
the further away the sources are. Measurement noise is added with 35 dB SNR, which is realistic
when the sound to be reconstructed is coming from the loud-speakers of a concert venue. The order
of the SHD is manually truncated at N = 2 resulting in (N + 1)2 = 9 modes. The measurement with
64 microphones supports SHD up to order 7 but the noise level of 35 dB contaminates the modes
above order 2. The manual truncation reduces the impact of noise and leads to better results when the
`2-norm is used.



Figure 3: Example of a simulation configuration with 4 extended sound sources in 2m distance from
the origin; spherical measurement array (black dots), monopoles representing the sound sources (red
dots), sources of the ESM (blue dots), the ground with absorption coefficient 0.25 (green surface), the
set of sources below the ground represent ground reflections

The following figures 4 and 5 show the sound-fields and the NMSE of reconstruction for a single
extended source in 50m distance.



Figure 4: Normalised SPL of the true and reconstructed sound-fields of a single sound source in 50m
distance, 35dB SNR, f = 10:10:200 (start:step:end)

Figure 5: Reconstruction Error (NMSE) for a single sound source in 50m distance, 35dB SNR,
contours indicate the region of stability |∆φ| < π/2, f= 10:10:200 (start:step:end)

It can be seen that the ESM and PWD method with `1-norm and ESM with `2-norm provide
stability with respect to active control throughout the whole presented area. PWD and SHD produce a
very small region of stability in which active control would be possible at all with large reconstruction
error. Figures 6 and 7 show the results for a source in 2m distance.



Figure 6: Normalised SPL of the true and reconstructed sound-fields of a single sound source in 2m
distance, 35dB SNR, f = 10:10:200 (start:step:end)

Figure 7: Reconstruction Error (NMSE) for a single sound source in 2m distance, 35dB SNR, contours
indicate the region of stability |∆φ| < π/2, f= 10:10:200 (start:step:end)

Here shows the ESM method with `2-norm much better performance and the PWD with `1-norm
performs worse on the other hand. It is harder to synthesise the curved sound field of a close
sound source with a limited number of plane waves than a nearly plane sound field from a source
far away. The ESM with `2-norm performs better for a close source because in the particular case
presented here it is beneficial to fit more equivalent sources to the large sound source (modeled by 6



monopoles). The `1-norm minimises the number of equivalent sources resulting in only a few active
coefficients that represent the sound source worse. This specific result depends on the chosen grid
of equivalent sources. When the grid covers a bigger volume with equivalent sources further away is
the performance of the `2-norm decreased and similar to `1. Such a case is represented in Figure 8
where a wide and dense grid of equivalent sources has been used. When measurement noise is very
low then `1-norm and `2-norm perform very well and equally well. Plots with noiseless results are
omitted here.

Figure 8: Coefficients of the ESM basis functions (equivalent sources) for the `1-norm (left) and
`2-norm (right), points in gray scale are the coefficients, red points represent the sound source.

Figures 9 and 10 present more complex scenarios where 4 sound sources are placed in 50m and 2m
distance respectively. Moreover are ground reflections included, see Figure 3 for the configuration.
The sound-field plots showing the true and reconstructed sound fields are omitted because of space
limitations.

Figure 9: Reconstruction Error (NMSE) for 4 sound sources in 50m distance, 35dB SNR, contours
indicate the region of stability |∆φ| < π/2, f=10:10:200 (start:step:end)



Figure 10: Reconstruction Error (NMSE) for 4 sound sources in 2m distance, 35dB SNR, contours
indicate the region of stability |∆φ| < π/2, f=10:10:200 (start:step:end)

The PWD with `1-norm handles the distant array of sources slightly better than a single source.
Multiple sources in a distant linear array produce a more plane sound field that is easier to fit for the
PWD method. The ground reflections just shape another plane wave with lower level which can be
fitted well, too. The ESM and PWD with `1-norm show good reconstruction in the overall presented
region while SHD and PWD with `2-norm produce large errors even close to the measurement
sphere. Close sources with ground reflections are hard to handle by all the methods. The ESM
based reconstructions seem to produce a longer corridor of stable reconstruction on the x axis, in line
of sight with the sound source array, but with a NMSE of only ≈ −10dB. Note that the region of stable
reconstruction with respect to active control always surrounds the measurement array. The symmetry
of the contour lines is corrupted by the noise.

4. DISCUSSION

The results have shown that reconstruction of sources far away is possible in a bigger area with a
NMSE < 20dB. The same is true for multiple sources in a linear array and with ground reflections.
It could further be validated that reflections on close by objects could be fitted as well, when the
main source is far away. These simulations were omitted because of space limitations. Note that the
results presented are bound to a specific scenario of active noise control on which the choice for the
presented source configuration is based. Randomly distributed sources have not been investigated
e.g. and might produce worse results. On the other hand might a different shape of the sound source
arrays produce better results. A curved array in 2m distance has shown some improvement with the
ESM e.g. Also these results are omitted.

Moreover is the sampling of the sound field a critical element. While a spherical measurement
array might be best suited for the SHD method so can a different sampling scheme support one of
the others. Compressive sensing e.g. relies on incoherent measurements, so a randomised sampling
could improve the reconstruction accuracy.

The grid size of the ESM affects the accuracy of reconstruction. A wide grid of sources can account
for reflections and unexpected noise sources but the performance using the `2-norm will suffer when
noise is present. At the same time can the `1-norm lead to worse results for close sources, when the
sources are large. `1 minimises the number of active coefficients while many would be needed to
synthesize large sound sources.

The SHD has generally shown minor performance. When very low measurement noise is present,



the SHD can show better reconstruction and even outperform the PWD. Simulations with low noise
are omitted because noise is generally present in realistic scenarios of active noise control.

5. CONCLUSIONS

Good reconstruction is achievable for sources far away with the ESM and PWD method. Therefore
are these valid candidates for the integration into the MBRMT. On the other hand are close sound
sources hard to fit by all methods when ground reflections and noise are present. Therefore are
the investigated methods finally critical for the application in the MBRMT since the prediction of
the contribution of the close secondary sources in the virtual error sensing location is an important
element of the MBRMT. The sampling scheme of the measurement array and the secondary source
configuration can still be optimised and might lead to better reconstruction, also for close sources.

Apart from that is the utilisation of the `1-norm recommended when noise is present and the
sources are far away. The `2-norm seems to work better for close sources but suffers like the `1-
norm when noise and ground are present. Note that the computation of the `1-norm minimisation
is computationally much more expensive than the `2-norm which can be applied via pseudo-inverse.
The computational effort is critical for ANC applications.
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