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Our Leaders of today need the philosophy of the past,
paired with the scientific knowledge and technology of
tomorrow.
— Anders Indset





S U M M A R Y ( E N G L I S H )

This thesis deals with the investigation and application of optimization
routines for the efficient operation of energy grids.

The uncoordinated penetration of fluctuating generation units and
consumers in the power system leads to increased variability and un-
certainty. This poses challenges for stable grid operation. Introduction
and lifting of flexibility potentials may alleviate these issues. For exam-
ple, grid operation can be stabilized by investments in infrastructure,
such as energy storage systems. While this can be a solution, this is
also associated with substantial economical costs.

Other flexibility potentials are available. It has been shown that
fluctuating distributed energy resources do not have to be part of the
problem, but can be part of the solution. The concept of microgrids
facilitates the integration of such flexibility concepts.

The power system is a complex and expensive infrastructure. The
return of investment may, therefore, be higher when considering
improvements into system controls that address existing infrastructure
in a more efficient manner, rather than to invest into additional power
system infrastructure.

In order to leverage the flexibility potentials of distributed energy
resources, automatic generation control in microgrids can be addressed
by model predictive control (MPC) principles. Proactive action of the
microgrid can then lead to optimized frequency stability. Automatic
generation control is, therefore, a first topic addressed by this thesis
and tested within a case study.

Furthermore, flexibility potentials can be addressed through price–
based control. Hereby, the flexible electricity consumers and pro-
sumers are rewarded by an economical incentive to achieve the desired
response. The integration of price–based controls is, therefore, another
topic addressed by this thesis.
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R E S U M É ( DA N I S H )

Denne afhandling omhandler undersøgelser og anvendelser af opti-
meringsrutiner for effektiv drift af elnet.

Den ukoordinerede penetration af svingende produktionsenheder
og forbrugere i kraftsystemet fører til øget variation og usikkerhed.
Dette medfører udfordringer med hensyn til stabil drift af nettet. In-
troduktion og udnyttelse af fleksibilitetspotentialer kan afhjælpe disse
problemer. For eksempel kan netdrift stabiliseres ved investeringer
i infrastruktur, såsom energilagringssystemer. Selvom dette kan væ-
re en løsning, er dette også forbundet med betydelige økonomiske
omkostninger.

Den ukoordinerede penetration af varierende elproduktion og -
forbrug fra forskelige produktionsenheder og forbrugere i elsystemet
fører til en øget variation og usikkerhed. Dette medfører udfordringer
med hensyn til stabil drift af nettet. Introduktion og udnyttelse af
fleksibilitetspotentialer kan afhjælpe disse problemer. For eksempel
kan netdrift stabiliseres ved investeringer i infrastruktur, såsom ener-
gilagringssystemer. Selvom dette kan være en løsning, er dette også
forbundet med betydelige økonomiske omkostninger.

Andre fleksibilitetspotentialer er tilgængelige. Det har vist sig at
varierende distribuerede energiressourcer ikke behøver at være en del
af problemet, men kan være en del af løsningen. Mikro-grid konceptet
letter integrationen af sådanne fleksibilitetskoncepter.

Elnettet er en kompleks og dyr infrastruktur. Afkastet af investe-
ringer kan derfor være højere, når man overvejer forbedringer af
systemkontroller, der adresserer optimal drift af eksisterende infra-
struktur på en mere effektiv måde, snarere end at investere i yderligere
infrastruktur.

For at udnytte fleksiblitetspotentialerne af distribuerede energires-
sourcer, automatisk genereringskontrol i mikro-grids kan adresseres
med model prædiktive kontrolprincipper (MPC). Proaktiv styring af
mikro-grids kan derved føre til optimeret frekvensstabilitet. Automa-
tisk generationskontrol er derfor det første emne, der behandles i
denne afhandling og testet ved et case-studie.

Yderligere kan fleksibilitetspotentialer opnås ved prisbaseret kon-
trol. Herved belønnes fleksible elforbrugere og -producenter via et
økonomisk incitament til at opnå den ønsket respons. Integrationen
af prisbaserede kontroller er derfor det andet og sidste emne, der
behandles i denne afhandling.
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x0 Initial state

xk DT system state

xt CT system state

xo Augmented state

xs Steady state system state



nomenclature xxxi

yk DT system observation

ym Output measurement

Sets

ē0 Reference trajectory

D̂ Set of disturbance predictions

D0 Set of initial system disturbances

L Set of lines

T Operating trajectory

X0 Set of initial system states

P Inferred system equilibrium

e0 Point of linearization (system equilibrium)

X General set

XN Terminal set





Part I

S U M M A R Y R E P O R T

This summary report documents the context and back-
ground of this thesis, relevant methods and basic models
and key findings.





1 I N T R O D U C T I O N

This chapter shall give an introductory overview of this thesis. There-
fore, Section 1.1 describes the context and motivation of this thesis,
whereas objectives and contributions are stated in Section 1.2. The
chapter closes with an outline in Section 1.3.

1.1 context and motivation

The increasing and partly uncoordinated penetration of fluctuating
generation units and consumers in the power system leads to increased
variability and uncertainty [BGL10; Kat+08]. Accordingly and in order
to achieve a stable system operation in this situation, the flexibility
within the system must be addressed [Mei+13; Mar16]. A high share of
renewable energy systems (RESs), such as wind or photovoltaics (PVs),
is desirable by economic means [Mor+14] and reduction of, amongst
others, carbon dioxide emissions [OED15].

Small sized and locally dispersed RESs are distributed energy re-
sources (DERs). Generation capacity of such units and their iner-
tia is reduced in comparison to conventional power plants [UBA14;
DM16]. Furthermore, such units are often connected via inverters
[GP07; Sch+16a]. Operational properties of these units are, therefore,
different than conventional synchronous generators (SGs) [BH07].

However, DERs at the medium voltage (MV) and low voltage (LV)
levels can increase power quality and reliability [Hat+07; Han17]
and reduce transmission losses [Han17]. They reduce the stress of
transmission and distribution systems [Jus+13].

Coordination of DER and/or distributed generation (DG) within
a spatially confined cluster at LV level can utilize their associated
flexibility potentials [Han17]. A network in which DERs are enabled to
participate in power flow regulation is in literature denoted an active
distribution network (ADN) [HAJ10; Bor+10]. Along these lines we can
identify the MG concept, which can be defined as follows:

"The microgrid encompasses a portion of an electric power distribu-
tion system that is located downstream of the distribution substation,
and it includes a variety of DER units and different types of end users
of electricity and/or heat" [Kat+08].

The history of MGs hereby goes back to the birth years of power
systems itself [Asm10].

MGs are ADNs, that is, networks with potentially bidirectional power
flows. In such systems, DERs become active components in the grid

3
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when properly actuated, such that reliable generation and consump-
tion are feasible in close spatial perimeters. MGs are, therefore, a
concept facilitating the reduction of stress in the transmission system
[Han17].

We can increase flexibility also using additional actuators such as
energy storage systems (ESSs) or additional distribution system compo-
nents such as lines. However, measures as the latter are cost–intensive,
especially when considering the low number of full–load hours during
peak load operation. Another approach is to use existing infrastruc-
ture, and possibly additional infrastructure, in a more efficient way.
This includes adapted controls that act proactively and with higher
degrees of system knowledge. Application of such control strategies
to energy systems is only satisfactory with well–defined control area
boundaries, that is, considering the underlying system structure and
system requirements as well as the modeling capabilities used to
describe the system.

1.2 objectives and contributions

The main objective of this Ph.D. thesis is the development and applica-
tion of model predictive controllers (MPCs) for the operation of energy
systems including flexibility activation, with a focus on power system
operations in context of microgrids. We tested a selection of these
controllers throughout a case study. This objective encompasses the
modeling of grid components, the application of system identification
approaches and the formulation of uncertainty representations.

Resulting from these objectives, we propose the following contribu-
tions:

• An alternative solution to the load frequency control (LFC) prob-
lem (Paper A) based on the related conference contribution
(Paper B). The outlined LMPCs can be used as master controllers
or subordinate controllers.

• A solution to the problem of controlling electric vehicles (EVs)
using indirect control (ICo) approaches (Paper C). Hereby, the
ICo generates price offers for price–sensitive EVs such that they
support grid frequency stability by adjusting their interaction
behavior.

• The Sparsity Promoting System Identification of Nonlinear Dynamics
with control algorithm (SINDyc) in combination with Markov chain
Monte Carlo (MCMC) (Paper D). This setup yields sparse and po-
tentially nonlinear probabilistic system models. Such models can
be used within stochastic model predictive controllers (SMPCs).
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• A case study including a temporal control hierarchy concept
presenting the coupling of multiple optimization routines for
the automatic generation control (AGC) problem using the co–
simulation framework MOSAIK [SSS12] (Paper E).

• Alternative solutions to the coordinated voltage control problem
(Paper G).

1.3 outline

This thesis is structured as follows.
Part i is a summary report outlining the main contributions of this

thesis. Chapter 2 reviews the context and background. Chapter 3

states methods utilized throughout this thesis. Chapter 4 discusses
the key findings of this thesis. Chapter 5 summarizes the thesis and
outlines possible future work.

Part ii consists of the publications contributing to this thesis.





2 C O N T E X T A N D B A C KG R O U N D

This chapter covers the context and background of this thesis. In
particular, the following topics are discussed:

• Relevant microgrid (MG) components. See Section 2.1.

• Automatic Generation Control (AGC) in MGs. See Section 2.2.

• Aspects of energy grids and in this context, flexibility and effi-
ciency. See Section 2.4.

2.1 components of a microgrid

We can distinguish the following technological component groups
within an microgrid (MG):

• Distributed Energy Resources (DER)

– Production side

* Dispatchable production (e. g. combined heat and power
plants (CHPs), diesel generators, battery energy storage
system (BESS))

* Stochastic production (e. g. PV, wind turbines)

– Dispatchable storage capacities (e. g. BESSs, fuel cells, super-
capacitors)

• Load side

– Free loads (e. g. households, industrial loads)

– Flexible loads (e. g. EVs)

– Controllable (dispatchable) loads (e. g. BESSs)

– Base load

• Distribution system components

We cannot influence the free loads apart from curtailment. In con-
trast, we can direct flexible loads towards the desired behavior using
incentives. Flexible loads can, therefore, act as a form of storage, in
the sense of shifting consumption temporally rather than removing
this consumption altogether. Controllable loads can act as a degree
of freedom, similarly to flexible loads. Contrary to the latter, we
may dispatch controllable loads assuming zero associated uncertainty.

7



8 context and background

Electric boilers interfacing the power system with a district heating
system are an example of controllable loads [MT18; MP16]. Further
notions in relation to loads are "residential, commercial and industrial
loads" [Sch+16b], see also [Kat+08]. Storage capacities enable temporal
shifting similarly to flexible loads. Stochastic production units act as
if they have been scheduled by an uncertain dispatch schedule. They
are controllable to a lesser degree, however we may curtail such units
if necessary. Curtailments may be associated with economic losses.
Such losses do not apply if the marginal cost of a production unit is
zero [Mor+14].

As an MG in grid-connected mode (GCM) connects to the utility
distribution system via the point of common coupling (PCC), the dis-
tribution system may be considered as an "electric slack bus" [Kat+08].

Most DERs within the grid include some local controller(s), such
as maximum power point (MPP) trackers in PV systems [AA10]. The
design of such controllers is hereby tailored to a specific operational
mode. Such modes encompass the grid–following mode and the grid–
forming mode and DERs can potentially operate in both modes [Sch+16b;
Kat+08]. Classically, sufficiently large units operate in grid–forming
mode [Kat+08]. Coupled DERs may however also perform this task,
especially in modern MGs with a high penetration of DERs (ibid). RESs,
constituted as DERs driven by stochastic processes, can also contribute
to the operational objectives, by exploiting the operational system
properties associated with the individual plant and its technological
type. [Im+17] show the emulation of virtual inertia using PVs to
support the operation of MGs in islanded mode (IM). See [UEJ13]
as an example. Overlapping all mentioned cases is the potential
of improving the operational performance using model–based and
predictive control approaches. See [Gey17] for related examples.

Distribution system infrastructure includes components such as
transformers, lines, switches or circuit breakers and AC/DC converters.
Inverters are a core component in the modern power system [Sch+16b],
contrary to power systems dominated by SGs. This is due to that a
majority of DGs are inverter–based, consequently such units must
provide system services (ibid).

2.1.1 Inverter Based Microgrids

Inverter interfaced units enable faster response and, therefore, po-
tentially improved operation of the system [GP07]. A fast actuator
response is especially relevant in IM with its reduced available inertia
[KIL07; Im+17].

As a large number of components in future MGs will interface
the network through inverters [Sch+16a; Sch+16b], properties of the
formerly SG–centered power system are going to change. Reference
[GP07] reports such operational properties.
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Inverters are complex systems with internal control loops and filters.
As a result, encapsulation principles are relevant also when working
with inverters in the context of MGs [LD14]. While inherently different
from the SG–focused power system, inverters are flexible and can
mimic SG based production units [BH07]. Inverters can and should
participate in grid–forming applications in order to provide system
services and support the system stability [Sch+16b].

High–frequency harmonics distortions resulting from inverter switch-
ing is an issue, potentially causing power quality problems [GP07].
Filtering may alleviate it (ibid), as well as an increase in the switching
frequency [TTL16]. When using the former, a filter absorbs the har-
monics. When increasing the switching frequency, harmonics caused
by switching are also moved to higher frequencies. Both approaches
can be combined (ibid). Also, model predictive control (MPC) control
has been both proposed and applied in this context [Gey17].

2.1.2 Direct Current Microgrids

Direct current (DC) networks have not been a focus in this thesis,
therefore, they are mentioned here only in brief.

DC–based MGs are commonly named low voltage direct current (LVDC)
distribution networks [Jus+13]. Such LVDCs can improve the efficiency
of power distribution by removal of the need of the DC–AC–DC conver-
sion in inverter–based alternating current (AC) distribution networks
[Jus+13; LH11]. Furthermore, improvements to the reliability of the
distribution system in comparison to conventional AC systems have
been reported [LH11; SS07].

2.2 automatic generation control in micro-
grids

Automatic Generation Control (AGC) aims to achieve the power balance
of generation and load such that the grid frequency stabilizes to the
nominal frequency. This is commonly referred to as secondary control
[Gom+18].

Apart from this balancing task, production units should share the
load. This is traditionally addressed by means of droop control [Sta+16;
Pla+13; KI06; DSB16; DM16; Han17], sometimes denoted as power
sharing. Droop control regulates the frequency by adjusting the unit’s
output active power. I can also track setpoints provided by the dispatch
schedule, while rejecting disturbances by means of proportional action.
Droop control however, as a purely feedback based strategy, leaves
room for improvements.

We can improve AGC with droop by addition of a predictive opti-
mized control layer at aggregation level acting as reference governor to
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plant–level controllers [Kat+08]. Given the reduced inertia in IM of an
MG (see [UBA14] in this context), increasing numbers of DERs [Bas+12],
aggregation schemes in development [Mor+14] or integration of pro-
sumers [Str08] — optimized control strategies facilitate innovations
and provide solutions to operational challenges.

We can distinguish AGC in MGs from AGC in classical distribution
systems by the feature of disconnecting from the overall grid at the
so–called PCC [Kat+08]. The disconnected MG operation — denoted
islanded mode (IM) — has distinctive properties and associated opera-
tional challenges in contrast to grid-connected mode (GCM) [KIL07]. In
IM, available inertia is drastically reduced [DM16; UBA14]. It follows
that these types of operations differ fundamentally. Stable system
operation in IM requires sufficiently short controller response times in
combination with sufficiently fast actors actuating the controller deci-
sions. See for example [Bas+12]. Such a fast system may be a so–called
BESS, for example, allowing for the provision of steep ramps. BESSs may
furthermore provide damping of high–frequency oscillations [BGL10;
Mae+07].

Aside from IM, operational challenges in tendency become more
stringent, as the share of intermittent units such as RESs and EVs

increases. For example, lines and cables may operate close to physical
limitations in such scenario. Intensified requirements in such scenario
then result in heightened requirements for controllers and associated
routines, such as, model accuracy and sensor coverage.

In consequence, MPC based strategies for the AGC problem have been
proposed, in order to account for operational constraints optimally
and incorporate predictions, see for example [EIU16; Ven+08; SRA13;
SS16]. Applied on the aggregated system level, these approaches
enable the overall system to respond to disturbances in a coordinated
and more optimal manner.

2.3 automatic voltage regulation in micro-
grids

Voltages are sensitive to reactive power provided to or absorbed from
the grid. Using automatic voltage regulation (AVR), voltages are main-
tained within desired boundaries [Kun94].

As for AGC, droop controllers have been proposed also for the
primary AVR problem [CDA93]. As stated in [Sch+16a], droop control
in AVR suffers from that "it does in general not guarantee a desired
reactive power sharing". Similarly to AGC, secondary control by means
of integrative action can remove this offset. LMPC has been successfully
applied for this task, for example in [VC13; JR18].
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2.4 energy grids, flexibility and efficiency

Energy grids are a backbone technology of every modern society.
The electric power system, district heating (DH) or gas distribution
networks are examples of such. Every energy grid is a complex
system comprising sensors and actuators, monitoring, optimization
and control routines. Interlinking of such domains offers additional
degrees of freedom. For example, DH systems in Denmark facilitate the
integration of RES, predominantly wind power, at large scale [MP16;
MT18]. Hereby, additional degrees of freedom in the distribution
system is a spatial source of flexibility whereas the high inertia of the
DH system is a temporal source of flexibility.

Integrated energy system optimization considers multiple energy
carriers [Gei07], contrary to single–domain optimization methods.
Co–optimization of physically linked multi–energy domains increases
the available degrees of freedom of operating the system. As a con-
sequence, synergies of the different energy domains lead to higher
overall system performance, with increased economic performances.
[OED15; Gei+07; GA07] are typical examples. The cost of unlocking
such synergies appears through an increase in system complexity and
computational burden.

The former affects the modeling process, as the engineer has to un-
derstand relevant aspects of the multi–domain energy system. This is
commonly addressed by means of encapsulation, such that complexity
reduces to a desirable level for the given modeling task.

A larger computational burden results from the larger operational
space available to the system operator. Similarly to the modeling
problem, the encapsulation of the optimization problem is a method
to address complexity in the operational problem.

Efficiency denotes the performance of a system with respect to
some performance metric. In energy systems operation, different
performance metrics are relevant:

technical metrics such as electric energy transformed into thermal
energy within the distribution network of a power system.

economic metrics such as a price on an energy commodity.

environmental metrics such as CO2 release.

In rare situations, different metrics may lead to a equivalent outcome.
More often, a trade–off in–between these metrics must be searched.
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2.5 microgrids: organizing and optimizing
subsystems

The definition of a microgrid (MG) differs in literature. Historically,
MGs were operated solely in islanded mode (IM): "In fact, Thomas
Edison’s first power plant [. . . ] was essentially a microgrid" [Asm10].

The definitions below are valid for this thesis:
"A microgrid gathers a combination of generation units, loads and

energy storage elements at distribution or sub-transmission level into
a locally controllable system, which can be operated either in grid-
connected mode or in islanded mode, i.e., in a completely isolated
manner from the main transmission system. The microgrid concept
has been identified as a key component in future electrical networks."
[Sch+16b] (consider citations therein).

A formal definition of the AC MG is given as [Sch+16b]:

"An AC electrical network is said to be an AC microgrid if
it satisfies the following conditions.

1. It is a connected subset of the LV or MV distribution
system of an AC electrical power system.

2. It possesses a single point of connection to the remain-
ing electrical power system. This point of connection
is called point of common coupling (PCC).

3. It gathers a combination of generation units, loads
and energy storage elements.

4. It possesses enough generation and storage capacity
to supply most of its loads autonomously during at
least some period of time.

5. It can be operated either connected to the remain-
ing electrical network or as an independent island
network. The first operation mode is called grid-
connected mode and the second operation mode is
called islanded, stand-alone or autonomous mode.

6. In grid-connected mode, it behaves as a single con-
trollable generator or load from the viewpoint of the
remaining electrical system.

7. In islanded mode, frequency, voltage and power can
be actively controlled within the microgrid."

Virtual Power Plant, Market Participation and Commitments
As a result of bullet 6, we may consider a coordinated MG as a power
plant. Then, the MG is commonly labeled as a virtual power plant
(VPP).
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"Formally, a VPP, also referred to as Virtual Utility, can be defined as
a cluster of dispersed generating units, flexible loads, and storage sys-
tems that are grouped in order to operate as a single entity" [Mor+14,
P. 243].

A VPP may by design outperform a conventional power plant in
terms of flexibility [Mol+10; Jus+13] and efficiency [Jus+13].

By aggregating DERs the VPP can participate in energy markets
and provide system services in response to market requests in order
to obtain economic profit [Mor+14; VM19; Jus+13]. Such market
designs can also be formulated for the local system, such that peer–
to–peer trading is established [Men+17]. Peer–to–peer trading is
an approach to leverage flexibility potentials, as a single consumer,
producer or prosumer can gain a monetary revenue for hers system
service provision. Local market design can hereby benefit from agent–
based simulation studies [RKF16].

Commitment to services may be binding [Mor+14]. Failing to pro-
vide the contracted service may then constitute penalties. The market
interaction is, therefore, both desirable as well as constraining. This
tendency furthers beneficial investments for a particularly attractive
operational mode. Conclusively, an MG operator can and will as
consequence to economic considerations tend to exploit the specific
strengths of the MG. Technical limitations are partly dynamic, and
consequently so are services that the MG can provide. Therefore, we
should not consider the control structure used to operate the MG as a
static construct, but rather such that the time–varying system can be
optimally operated as desired.





3 M E T H O D O LO G I E S

This chapter provides an overview of central methods in this thesis.
Section 3.1 discusses modeling related aspects. Section 3.2 intro-

duces the unit commitment (UC). Section 3.3 considers model predic-
tive control (MPC) techniques. Section 3.4 introduces estimations and
predictions in context with real–time (RT) system operation. Section
3.5 discusses the topic of control hierarchies.

3.1 models

3.1.1 Dynamical Systems

Dynamical systems can be solely based on knowledge of the governing
physical equations (white–box (WB) models) or solely based on data
(black–box (BB) models). We may combine both approaches in order
to obtain grey–box (GB) models [Lju99].

3.1.1.1 Differential Equations

We can describe dynamical systems by ordinary differential equations
(ODEs):

dxt

dt
= f (xt, ut, t, θ) (3.1a)

yk = h(xk, uk, tk, θ) (3.1b)

Equation (3.1a) denotes the continuous time (CT) system dynamics,
Equation (3.1b) describes discrete time (DT) system measurements. xt

is the system state, ut the system input, t the time variable, θ is the
system parameterization. The latter is here assumed static but may be
time–varying. In correspondence, we denote the DT system variables.
f and h are in general nonlinear functions.

By inclusion of stochastic processes into the system we obtain the
stochastic differential equations (SDEs) below, as given in [KMJ04]:

dxt = f (xt, ut, t, θ) dt + σ(ut, t, θ) dωt (3.2a)

yk = h(xk, uk, tk, θ) + vk | vk ∼ Niid(0, Sm(uk, tk, θ)) (3.2b)

15
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σ is a nonlinear function and ω is a standard Wiener process. vk is
a random normal process with zero mean and independent individ-
ual samples, that is, white noise. ut and uk may include controlled
and uncontrolled system inputs. From here on, we denote uncon-
trolled system inputs as disturbances dt (CT) and dk (DT) respectively.
Consequently, (3.2a) and (3.2b) become:

dxt = f (xt, ut, dt, t, θ) dt + σ(ut, dt, t, θ) dωt (3.3a)

yk = h(xk, uk, dk, tk, θ)+

vk | vk ∼ Niid(0, S(uk, dk, tk, θ)) (3.3b)

3.1.1.2 Linear System Approximation

Linear system models reduce the computational burden compared
to nonlinear system representations stated previously and enable the
application of the broad range of tools available within linear control
theory. As a result, the linear model approximates the nonlinear
system well within an operating polytope O and with respect to some
objective. O depends on the sampling rate of the controller. A higher
sampling rate results in a reduction of the nonlinearity of the problem.

In the following, we describe the linearization with respect to an
operating point (see Section 3.1.1.2) and with respect to a operating
trajectory (see Section 3.1.1.2). We refer to these two cases as operating
reference from here on.

We also briefly discuss the linearization over an operating polytope
(see Section 3.1.2.2) and the treatment of uncertainty (see Section
3.1.1.2).

operating point: We can obtain the linear perturbation model at
an approximated stable system equilibrium e0:

A =
∂ f
∂x
|e0 (3.4a)

B =
∂ f
∂u
|e0 (3.4b)

G =
∂ f
∂d
|e0 (3.4c)

C =
∂h
∂x
|e0 (3.4d)

We hereby neglect the feedthrough coefficients D. f and h refer to
Equation (3.1), the deterministic nonlinear system model. The stable
system equilibrium is hereby a set of linearization coordinates:

e0 = {xe0 , ue0 , de0} (3.5)
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The model {A, B, G, C} is a local linear model (LLM), locally valid
at e0 [Nel01]. When deviating from e0 the mismatch of this linear
system approximation to the true dynamics increases. See Figure 3.1
as an example.
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Figure 3.1: Linearization example: Approximation at an operating point.
The linear approximation illustrated as a plane in the left plot
approximates the nonlinear function illustrated as solid mani-
fold. The approximation error when deviating from the point of
linearization increases when deviating from the latter, illustrated
as a manifold in the right plot.

In the case of a single operating point, we can denote the time–
invariant discrete–time deterministic linear system model:

∆xe0
k+1 = A∆xe0

k + B∆ue0
k + G∆de0

k (3.6a)

∆ye0
k = C∆xe0

k (3.6b)

This is a linear on–step prediction model in perturbation form
evaluated at sampling instance k. If Equation (3.3) on the facing page
is considered, we may use instead:

∆xe0
k+1 = A∆xe0

k + B∆ue0
k + G∆de0

k + ∆we0
k (3.7a)

∆yk = C∆xe0
k + ∆vk (3.7b)

∆wk and ∆vk are zero–mean normal distributed white noise pro-
cesses, reflecting the impact of the noise processes σ and v in Equa-
tion (3.3) on the preceding page.
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The state, input, disturbance, and output of the overall model are:

xe0
k = xe0 + ∆xe0

k (3.8a)

ue0
k = ue0 + ∆ue0

k (3.8b)

de0
k = de0 + ∆de0

k (3.8c)

ye0
k = ye0 + ∆ye0

k (3.8d)

xe0 , ue0 , de0 denote state, controlled system input and disturbance
system input at the point of linearization e0.

The overall system output is then

yk = h(e0, k, θ) + ∆yk,e0 (3.9)

The discrete system dynamics A, B, G and C are valid in O until
some routine triggers the update of the linear model. This may, for
instance, be some local model error evaluation or an update of a
disturbance prediction.

A, B, and G are impulse response coefficients (IRC) 1 matrices with
state x, input u and disturbance d related elements, respectively. C is
a linear mapping from state space to output space. Potentially, the
output Equation (3.11b) includes a feed–forward term from control
decisions to the system output. This term is omitted here. Consider
an exemplary linearization in Figure 3.1

The model {A, B, G, C} is a local linear model (LLM), locally valid
with respect to the nonlinear system model at e0. For simplicity, we
drop the ∆ notation and the subscript e0 from here on and conse-
quently yield the deterministic system:

xk+1 = Axk + Buk + Gdk (3.10a)

yk = Cxk (3.10b)

And, respectively, the stochastic system:

xk+1 = Axk + Buk + Gdk + wk (3.11a)

yk = Cxk + vt (3.11b)

prediction model: Impulse response coefficients obtained from
Equations (3.10a) or (3.11) enable the iteration of the model forward
in time, subject to the states and exogenous inputs. Based on the prin-
ciple of superposition, we may decompose the linearized system with
respect to states and exogenous inputs. See for example [CB04]. The
uncontrolled and undisturbed system portion is commonly denoted

1 Also known as Markov parameters.
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as free–response and the forced system portion as forced–response. For
the free–response, we denote the corresponding IRC as Φx and Φw,
following the notation given in [JHR11]. Φx are then IRC relating to
the states x, Φw are IRC relating to the state noise w. Due to that most
systems are subject to disturbances, we may decompose the forced–
response into exogenous forcing portions. Following the notation ibid,
we denote the corresponding IRC as Γu and Γd in relation to controlled
system input u and uncontrolled system input d, respectively.

As stated in for example [Mac02; CB04], we can derive the IRC with
respect to the free system response and forced system response as a
consequence of the principle of superposition:

y =

CA

CA2

...

CAN

xk +

CB

CA2B
...

∑N−1
i=0 CAiB

uk−1

+




B . . . 0

C(AB + B) . . . 0
...

. . .
...

∑N−1
i=0 CAiB . . . ∑N

i=0 CAiB




u (3.12)

N is hereby the prediction horizon. In contrast to the formulation
given in [CB04, P. 29], we neglect a dedicated control horizon Nu for
simplicity. Using the latter approach offers an additional degree of
freedom for tuning. The prediction horizon should at least encompass
80-90% of the open loop (OL) rise time of the system, as stated for
example in [Mau+88].

Let the IRC with respect to the states from here on be Φx, IRC

with respect to the controlled inputs be Γu, IRC with respect to the
uncontrolled inputs be Γd. Φw denotes the IRC with respect to the state
noise w. The N–step system output prediction ŷ using the linear model
and considering both controlled and uncontrolled system inputs, u
and d respectively, is then

ŷk = Φxxk|k + Γuuk + Γddk|k + Φwwk|k + vk|k (3.13)

uncertainty treatment: States and disturbances may be uncer-
tain. We can then infer the initial state value by the evaluation of its
probability conditioned on available information at present time I:

x0 = P(x0|It−1) (3.14)
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where:

It−1 = [yt−1, . . . , y0, ut−2, . . . , u0] (3.15)

and, by means of applying the Bayesian estimation principle

Pr(xt−1|It−1) =
Pr(yt−1|xt−1)Pr(xt−1|It−2)

Pr(yt−1|It−2)
(3.16)

as formulated in [RL19, P. 76].
Similarly, we may consider the conditional probability:

d0 = Pr(d0| fp(θ f , t− 1)) (3.17)

fp hereby may be a prediction function with some arguments θ f
that provides us with a guess on d. Such function may furthermore
provide the expectation E(d̂) of the predicted disturbance trajectory d̂.

Contrary to assuming an expected initial state x0, disturbance d0 or
disturbance trajectory d̂, we may consider sets of such quantities and
associated realization probabilities. Then, we may consider X0, D0

and D̂ as such sets.

additional methods:

adaptive linearization: For certain dynamical systems, we may
consider adaptive linearization techniques. This may apply when ro-
bustness can be certified also with the adaptive linearization approach.
See Section 3.1.2.2 on adaptive linearization in context of static system
models.

operating trajectory: The linearization procedure described in
Section 3.1.1.2 is hereby performed over a time–varying reference tra-
jectory ē0 = {xref, uref, dref}. When considering the SDE Equation (3.3)
on page 16, this results in:

d∆xē0
t

dt
= At∆xē0

t + Bt∆uē0
t + Gt∆dē0

t + ∆wē0
t (3.18a)

∆yē0
t = Ct∆xē0

t + ∆vē0
t (3.18b)

Where the perturbation model relates to the reference trajectory:

xt = xē0
t + ∆xē0

t (3.19a)

ut = uē0
t + ∆uē0

t (3.19b)

dt = dē0
t + ∆dē0

t (3.19c)

yt = yē0
t + ∆yē0

t (3.19d)
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Notice that we may potentially interpolate linear models [Nel01, P.
610].

3.1.1.3 Computational Graphs, Algorithmic Differentiation

Computational graphs (CGs) capture the causality structure in mathe-
matical operations and enable the optimized exploitation of the latter.
We can apply algorithmic differentiation (AD) 2 to a computational
graph (CG) in order to obtain linear system approximations as out-
lined in Section 3.1.1.2. AD is commonly used within nonlinear model
predictive control (NMPC) schemes in order to obtain the linear ap-
proximation implicitly in the optimization step.

Grouping within CGs enables us to apply operations on sub–CGs.
This aspect is relevant in aggregated system models, see Section 3.1.1.4.
Recall that an aggregated system model is heterogeneous. Subsystems
operate within distinct operational domains. Consequently, accuracy
requirements within these domains differ. CG facilitate the evaluation
of local error metrics which can be used to trigger updates of the
corresponding linear model. Such a model is commonly denoted an
LLM [Nel01].

In automatic generation control (AGC), we aim to coordinate a
portfolio of such heterogeneous plants, leading to frequent need to
perform AD for some subsystems in order to retain accuracy. This also
depends on the operational mode. In IM, accuracy requirements may
be higher. See also Section 2.2 on AGC.

Independent of the MG constitution, the organization of subsequent
models using CG is an important aspect in optimized MG operation.

3.1.1.4 Unit Models, Aggregation and Graphs

We can characterize system units within energy systems as a collection
of properties. Dynamics, confined operating polytopes and switching,
measurements and more, are relevant during RT operation. As such,
we can describe system units as objects with properties. Aggregation
of system units closely relates to encapsulation. When aiming to
optimize the system at a chosen aggregation level, we can inform
the assembly of the required aggregated system model by means of
graphs. Graphs encode the causality structure and are a fundamental
ingredient of efficient energy system’s operations. See Figure 3.3 on
the next page as an example.

Aggregation and dimensionality reduction techniques relate to each
other. As an example, units 2 and 3 in Figure 3.3 may be accurately rep-
resented as lumped system model. An example of a model reduction
technique is the application of the singular–value decomposition (SVD)
to linear time invariant systems (LTIs) in combination with rank trun-
cation. See for example [BK19] and Figure 3.4.

2 Also called Automatic Differentiation.
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Figure 3.3: Exemplary aggregated system graph.
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Figure 3.4: Model order reduction example. Around 20 modes capture
around 90% of the input–output energy. See [See BK19, P. 334].
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By design, state space models enable efficient indexing and sparse
forms which we can relate to computational graphs. The combination
of both state space models and graphs leverages mutual benefits.

additional methods: Here we state methods that have not been
explicitly covered within the publications in this thesis, however do
pose reasonable additions.

model order reduction: A simplified model can reduce computa-
tional load while retaining a high degree of accuracy. Such a model is
typically referred to as reduced order model (ROM). Some techniques
such as sparse Sys-ID aim to directly obtain a balance of model com-
plexity and accuracy. Other techniques, such as neural networks (NNs),
may yield a high dimensional model. Reduction of such model can
then be a prerequisite to the usefulness of the model itself.

[LD14], for example, propose ROM for inverter–based MGs in IM.
They perform both temporal and spatial model order reduction. The
latter leads to isolation of the inverter interactions, an aspect that can
be used in controller design.

error propagation in aggregated system models: A controller
shall compensate for uncertainty with respect to the dynamics and
uncertainty with respect to the measurements. An example for such
uncertainty is the linear approximation error. As a plant deviates from
the point of linearization, the linearized model loses its accuracy in
comparison to the nonlinear model. The linearization error propagates
to the model output and contributes to its uncertainty. The growth
rate of the linearization error is hereby individual for each plant,
depending on their dynamics magnitude. In fast plants, such error
may require more frequent compensation as in slow plants.

An aggregated system typically consists of multiple causally con-
nected plants as described in Section 3.1.1.4. In this situation, the
evaluation of uncertainty measures at a plant level enables the preven-
tion of error propagation by assigning feasible countermeasures. This
may entail to specify the relinearization frequency on a plant level for
a given operating point.

Consider Figure Figure 3.3 on the preceding page for example.
Compensating for uncertainty at the plant level improves the decision
making for the aggregated system.

3.1.1.5 System Identification

While system identification (Sys-ID) has always been part of control
and systems operation, ongoing technological transitions change how
we can use these technologies. The abundant availability of sensor
data at high sampling rates and low noise levels or the long term
data–storage in combination with improvements of existing Sys-ID
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approaches result in the trend to conduct system modeling and control
based on data–driven principles [BK19; Tu13]. The modern power
system "will be a combination of both power system and information
and communication system networks" [Jus+13].

While this has been the case for some time, this trend to cyber–
physical systems is going to prevail. Along these lines, data–driven
techniques are relevant for system operation [Cre+19].

Given sufficiently informative experimental Sys-ID data, sparsity
promoting algorithms aim to derive a model explaining this data with
the fewest active terms [Nel01]. We can state such model as [Nel01,
Pp. 219], describing the relation of model output ŷ to the data X by
regressors Θ:

ŷ = ΘX (3.20)

With change in the notation, such as to reflect the notation used in
Paper D, as well as extension of X to both model states and inputs x
and u, we can write

ẋ = ΞΘT(x, u) (3.21)

We may infer Ξ using least–squares methods [Lju99]. Furthermore,
we may estimate the probability density function (PDF) associated with
Ξ using maximum likelihood estimation (MLE) or markov chain monte
carlo (MCMC) methods. See [MZM16; Mad07; KMJ04].

3.1.2 Stationary System Models

Stationary system models aim to approximate the system in steady–
state. Such point of view on the system is useful and appropriate
when operating around a system equilibrium, alongside a range of
assumptions. In the context of Microgrid operation, see [Sch+16b]
for a discussion on these assumptions. A stationary system model
is — as modeling approaches in general — an approximation. This
simplification may be desirable when the trade–off of accuracy in
representing the system dynamics versus reduced computational load
is in favor for the latter. This typically is the case when considering
large timesteps and large scale models. Notice that large scale models
here can refer also to high model complexity.

As a result from these considerations, stationary system models are
commonly used to determine feasible operating points of the system.

3.1.2.1 The AC Power Flow equations

Using the notation and formulation given in [MMD18], the real power
flow in a line (l, m) modeled as symmetrical π –model is given by
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plm = glmv2
l − glmvlvm cos(θl − θm)− blmvlvm

sin(θl − θm) (3.22a)

and the reactive power flow

qlm = −(blm + bsh,lm/2)v2
l + blmvlvm cos(θl − θm)−

glmvlvm sin(θl − θm) (3.22b)

The set of model spaces consists of the buses i ∈ B and the lines
(l, m) ∈ L. Real and reactive power injections and extractions are
denoted pi and qi respectively, voltages and phasor angles vi and θi
respectively. We may assume that the angle reference for the MG is
set at PCC and is, therefore, θref = θPCC = 0◦. See [MMD18] further
details upon notation.

Power balance is achieved by restricting feasible states at each bus,
see 3.23.

pi = ∑
(l,m)∈L|l=i

plm + ∑
(l,m)∈L|m=i

pml + gsh,iv2
i (3.23a)

qi = ∑
(l,m)∈L|l=i

qlm + ∑
(l,m)∈L|m=i

qml + bsh,iv2
i (3.23b)

Notice that unbalanced and unsymmetrical systems are common in
MGs, depending on their topology [Sch+16b].

3.1.2.2 Additional Methods: Adaptive Linearization

In contrast to the linearization with respect to one nominal operat-
ing point or an operating trajectory (see Section 3.1.1.2) in context
of dynamical systems, we may optimize the approximation over a
chosen operating polytope O as suggested in [MMD18]. They obtain
a linearization minimizing the worst–case error of this approximation
over a specified operational range, see an implementation of their in
algorithm in Listing 1. See also an exemplary result in Figure 3.5.

This may be reasonable for dynamical system models as well, if
the closed loop (CL) is robust enough to compensate for the resulting
inaccuracies. Further, O should be chosen sufficiently small, such that
the linearization error remains bounded in some range associated with
robust controller performance. It can then lead to an LLM approximat-
ing the nonlinear system sufficiently well over a broader operating
range.
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Algorithmus 1 : FindOptLin algorithm, see [MMD18]
Input : f, S , O
Output : l
// Minimize worst-case error

1 for S do
2 min

l
|| max

x,u
|| fl(x, u, l)− f (x, u) ||2||2

3 if optimal then
4 return l
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Figure 3.5: Approximation over an operating polytope O, highlighted by a
red circle in the left plot.

3.2 unit commitment

The unit commitment (UC) problem considers stationary system mod-
els (see Section 3.1.2). For the scope of application of such model and
its optimization, dynamics are of inferior importance. The scope of
UC is consequently the static system behavior. As result of this, UC

enables the solution of large problem sizes using mixed integer linear
problems (MILPs). Examples of static UC problems in context with MGs

are given in [Bor+10; PRG16; Han+14; Com+16; NX17; KS12].
An UC considering stochasticity in steady state operation is denoted

as stochastic unit commitment (SUC). This variation of the UC enables
the treatment of uncertainty, for example, by application of stochastic
programming (SP) approaches [CCM10a].

The UC or SUC may generate a new dispatch schedule ū every
15 minutes, for example, as in [PRG14]. For an MG with moderate
number of DERs, this provides sufficient time to apply scenario based
optimization approaches [PRG16; ZG13].

The sampling rate and optimization horizon in general depend
on the addressed problem. Typical problems are day–ahead (DA)
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market and balancing market dispatch, for which different variations
of problem formulations exist [CCM10b; CCM10c; CCM10d; Mor+14].

Such approaches may include guarantees for a distinct security
threshold, see [BKV13, Pp. 70-83].

3.3 control

In model based control, the model is the central component and affects
the controller performance. Linear model predictive control (LMPC)
provides sufficient performance in presence of mild nonlinearity, or
over well chosen dynamics approximations. Furthermore, deriving
control solutions based on linear models may reduce computational
load compared to optimizing based on nonlinear models. By solving
underlying nonlinear equations, we can warm–start linear model
predictive control (LMPC) at well–chosen initial conditions [PRW11].
Such conditions are, therefore, candidate operating points for LMPC,
see [HJS08; RMD17; CB04] for examples. Transients in the system
dynamics are then treated for example by means of relinearization
with respect to a given operating point.

3.3.1 Trajectory Planning

We need to translate the dispatch schedule Ū, obtained using steady
state optimization methods (see the SUC in Section 3.2), into a trajectory
T = {X̃, Ũ} feasible for the real–time (RT) system.

We may define the temporal period during which Ū is constant as
operating period. A subsequent operating period is, then, associated
with an updated Ū.

We can state this problem as open loop (OL)–optimal control (OC)
problem, involving the nonlinear dynamical system (Equation (3.1b)
on page 15 or Equation (3.3b) on page 16), the dispatch schedule Ū
and the set of constraints active in the corresponding operating period.
Notice that Ū is optimal with respect to the objective considered by
the generating routine. This typically is a minimum economic cost
objective. Furthermore, Ū must satisfy system constraints in order to
be well–posed.

Therefore, it may be redundant to consider the same objective al-
ready treated in the commitment problem. Yet, Ū is typically available
at a lower temporal resolution, resulting from the properties of the
generating routine and its scope, see Section 3.2. Additional differ-
ences in the problem parameterization apply, which further justify
the dedicated treatment RT trajectory planning problem. Application
of the same objective, or an alternative objective, in the trajectory
planning problem is, therefore, reasonable.

Typical objectives are:
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• Minimum time of converging to Ū

• Minimum economic cost

Additional objectives may encompass the minimization of CO2 or
other emissions. Commonly, combinations of such objectives are
reasonable, due to that:

• The minimum time objective may lead to intense wear and tear
of the actuators.

• The minimum economic cost objective may lead to inadequate
system performance.

Furthermore, we may consider constraints that enforce convergence
to the dispatch schedule. Then, the main scope of the trajectory
planning problem is to optimize for an interpolated target trajectory
informed by the chosen objective. We can solve this OC problem using
shooting or collocation methods [NW06].

As an example of a simple planning problem, assume the ODE

Equation (3.1b) on page 15 is used, and furthermore, that Ū is derived
by minimizing economic cost. We may then consider the planning
objective:

min
u,x,s

= ||u− ū||2P∆ū
+ ||s||2P∆y

(3.24)

s.t. (3.25)

y− ȳ + ε∆y + s = 0 (3.26)

s ≥ 0 (3.27)

y = h(x, u, t, θ) (3.28)

H̄ u ≤ h̄ (3.29)

F̄ x ≤ f̄ (3.30)

Here, we account for the dispatch schedule Ū by transforming it to
vector form using a suitable transformation. We then consequently
consider ū. Furthermore, we may account for an output reference ȳ
in a similar manner. Here, we assume ȳ = 0. We may yield y = 0 for
an inactive slack bound where s = 0 and consequently resolve this
constraint up to computational precision. A defined precision ε∆y may
relax the precision in this equality constraint up to a prescribed value.
P∆y are economic costs of deviating from the reference to the controlled
variable ȳ, associated with the slack variables s. We must transform
P∆y in order to reflect the proper cost terms per slack variable sj.

Equation (3.24) minimizes the sum of squared errors of the RT input
trajectory u from its reference ū weighted by deviation prices P∆ū.
These are economic costs arising from deviating from the economi-
cally optimal schedule ū. s ensures feasibility. P∆y may relate to the
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cost of activating backup capacities in the case when ȳ denotes the
power balance within the grid. Equation (3.29) on the preceding page
are general input constraints, Equation (3.30) on the previous page
are general state constraints. These constraints may represent both
limits on the absolute magnitude of {u, x, y}, as well as ramp–rate
limitations.

The system dynamics Equation (3.28) on the preceding page and
constraints (3.29), (3.30) model the system. This entails the alternating
current power flow (AC-PF) Equation (3.22) on page 25 and bus power
balance equations Equation (3.23) on page 26.

The solution set T = {U, X}, transformed to matrix form, is then
denoted as operating trajectory for linear model predictive controls
(LMPCs) described in Section 3.3.2.

See also [ST14] and [Moh+18].

3.3.2 Linear Model Predictive Control

3.3.2.1 Constraints

input constraints: In general, we may formulate input con-
straints as inequality constraints:

H̄k+i|k uk+i|k ≤ h̄k+i|k (3.31)

Equation (3.31) may specify limitations on the magnitude of u and
associated ramp rate:

umin,k+i|k ≤ uk+i|k ≤ umax,k+i|k (3.32)

∆umin,k+i|k ≤ ∆uk+i|k ≤ ∆umax,k+i|k (3.33)

A broad range of quadratic programming (QP) solvers support
specialized and/or optimized handling of (3.32). Both Equation (3.32)
and Equation (3.33) can be dynamic, as indicated by the subscript k.

state and output constraints: In general, we may formulate
state and output constraints as inequality constraints:

F̄k+i+1|k xk+i+1|k ≤ f̄k+i+1|k (3.34)

In conjunction with augmentation of the considered regulator ob-
jective by slack variables associated with soft output limits, we may
formulate so–called soft constraints. See for example [RMD17, P. 8].
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general set: Constraints (3.35) below restrict the state x to lie in
the set X:

x ∈ X (3.35)

Similarly, we can formulate constraints for the output space y. These
constraint types can lead to infeasibility and are therefore commonly
reformulated to soft constraints, see for example [GJ09].

terminal set: For robustness considerations in deterministic MPC,
we may enforce the terminal set constraint, requiring that the state at
optimization horizon instant k = N lies in XN associated with a stable
system operation [May+00]:

xN ∈ XN (3.36)

As discussed in, for example, [RMD17, P. 248], this does not suffice
in enforcing stability in context of SMPC.

chance constraints: We may consider the probabilistic constraints
on the states, using the formulation given in [Hei+18a]:

Prk
[
H̄jxk+i+1|k ≤ h̄j

]
≥ 1− γ (3.37)

where:

j = 1, 2, . . . , ns (3.38)

ns is the number of considered scenarios.

3.3.2.2 Target Problem

The RT system status may differ from the system status anticipated by
the SUC problem (see Section 3.2) or the trajectory planning problem
(see Section 3.3.1).

Convergence to the dispatch schedule Ū is then circumvented. No-
tice that here, Ū is the input reference feasible for the RT system, see
Section 3.3.1 on trajectory planning.

We can test feasibility of Ū given the RT system status using the
steady state target problem, modified from [RMD17, P. 48]:
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min
xs,us

1
2
||us − ū||2Ws

(3.39a)

s.t.
[

I − A −B

C 0

] [
xs

us

]
=

[
Gd̄

ȳ

]
(3.39b)

ū− εū ≤ us ≤ ū + εū (3.39c)

Cxs ≤ f̄ (3.39d)

Notice that we here assume Equation (3.39b) to satisfy the require-
ment of linear independence. This holds when the number of system
outputs is less than the number of system inputs (ibid). Furthermore,
notice that ū is a transformation of Ū to a suitable vector representa-
tion. Equation (3.39c) states the required precision of convergence with
respect to ū. The tuning weights matrix Ws is positive definite (PD).

If Equation (3.39) is infeasible, we trigger the recalculation of the
trajectory planning problem with the currently observed lumped
disturbance d̂l .

3.3.2.3 Setpoint Tracking

The quadratic control cost J in (3.40) below denotes the accumulated
squared output errors in relation to the control effort and control rate
of movement, weighed by the weights Wy, Wu, W∆ and WT:

J =
1
2

N−1

∑
i=0

[
yT

k+i+1|kWy yk+i+1|k + uT
k+i|kWu uk+i|k+

∆uT
k+i|kW∆u ∆uk+i|k

]
+

1
2

yT
k+N|kWT yk+N|k (3.40)

Weights Wy and WT are positive semi–definite (PSD), Wu and W∆u are
positive definite (PD) [RMD17]. By minimizing Equation (3.40) subject
to operational constraints, we obtain the associated deterministic
optimal control input sequence u?:

min
u

(3.40) (3.41)

s.t.

xk+i+1 = Axk+i|k + Buk+i|k + Gdk+i|k (3.42)

yk+i+1 = Cxk+i|k (3.43)

H̄k+i|k uk+i|k ≤ h̄k+i|k (3.44)

F̄k+i+1|k xk+i+1|k ≤ f̄k+i+1|k (3.45)
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u? is the minimizing argument to this constrained QP:

u? = arg min(3.41) (3.46)

In general receding horizon control, the inputs associated with the
first control horizon iterate k = 0 are actuated in the plant.

In order to generalize this controller to the constrained linear
quadratic regulator (LQG) form, we combine (3.41) with an augmented
state observer (SO) in form of a Kalman filter. This generalization
includes the assumption of normally distributed state noise and mea-
surement noise. We drop the assumption of exact state knowledge
and replace the state x with its estimate x̂. Furthermore, we add
the disturbance residual estimate d̂r, in order to enable for residual
disturbance rejection3 in conjunction with the estimation of x̂. See
Section 3.3.2.3 below.

Instead of considering only the first moment of x, the mean µx,
we may propagate the hyper–state ξ = P(µx, σ2

x) through the corre-
sponding LLM. This linear projection provides an approximation of
the uncertainty associated with future states. In conjunction with
probabilistic constraints on the states or the outputs, this enables the
implementation of stochastic model predictive controllers (SMPCs). See
Section 3.3.2.5 on SMPC.

residual disturbance rejection: Unknown disturbances lead
to offset in steady state, if the regulator cannot infer such distur-
bance by means of a state observer (SO). We may denote the residual
disturbance causing such offset as dr and its estimate d̂r.

We can account for dr by using the estimate d̂r, alongside the state
estimate x̂, within the constrained regulator Equation (3.41) on the
preceding page. This includes the assumption of observability and is
also referred to as offset–free control. The considered system model
is then an extension of Equation (3.11) on page 18, the stochastic LTI

model:

x̂k+i+1|k = Ax̂k+i|k + Buk+i|k + Gd̂k+i|k + Grd̂r,k+i|k (3.47a)

yk+i+1|k = Cx̂k+i+1|k (3.47b)

Notice that the residual disturbance associated dynamics Gr are
unknown. We have to estimate Gr, or choose them similarly as con-
troller tuning parameters (see Section 3.3.3). See also [PGA15; PR03;
RMD17].

We then consider the minimization of the following constrained
objective:

3 Also referred to as offset–free control.
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min
u

J =
1
2

N−1

∑
i=0

[
ŷT

k+i+1|kWy ŷk+i+1|k+

uT
k+i|kWu uk+i|k + ∆uT

k+i|kW∆u ∆uk+i|k
]
+

1
2

yT
k+N|kWT yk+N|k (3.48)

s.t.

(3.47a) (3.49)

(3.47b) (3.50)

H̄k+i|k uk+i|k ≤ h̄k+i|k (3.51)

F̄k+i+1|k xk+i+1|k ≤ f̄k+i+1|k (3.52)

Alternatively, we can search a combination of states and inputs
compensating d̂r, as described in [PR03]. For each system model M,
we can hereby formulate the following system of equations. Notice
that here, I is a nx × nx identify matrix.

M︷ ︸︸ ︷[
A− I B

C 0

]
P︷︸︸︷[
x

u

]
=

[
Bddr

ȳ

]
(3.53)

A feedback gain K∞ from the residual disturbance dr balances the
system:

[
A− I B

C 0

] [
Kx,∞

Ku,∞

]

︸ ︷︷ ︸
K∞

=

[
Bd

ȳ

]
(3.54)

Then, we can determine the couple x, u compensating for d̂r by:

P = {x , u} = K∞d̂r (3.55)

The minimizer of the constrained target adjusted residual distur-
bance rejection output error objective, using an augmented SO, is then
given by:
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min
u

J =
1
2

N−1

∑
i=0

[
(x̂k+i+1|k − x)TWx (x̂k+i+1|k − x)+

(uk+i|k − u)TWu(uk+i|k − u)] + Gd̂k|k+

1
2

xT
k+N|kWT xk+N|k (3.56)

s.t.

x̂k+i+1|k = Ax̂k+i|k + Buk+i|k + Gd̂k+i|k + Grd̂r,k+i|k (3.57)

yk+i+1|k = Cx̂k+i+1|k (3.58)

H̄k+i|k uk+i|k ≤ h̄k+i|k (3.59)

F̄k+i+1|k xk+i+1|k ≤ f̄k+i+1|k (3.60)

Notice that contrary to considering a single target adjustment within
the prediction horizon x (and u), we may consider targets at sampling
resolution xk+i+1 (and uk+1).

3.3.2.4 Trajectory Tracking

The objective in Equation (3.61) includes both input–reference and
output–reference tracking. See [MR93] or [CB04; GFH88; RMD17].
Equation (3.40) on page 32 is hereby augmented with the output
reference ȳ and the input reference ū:

J =
1
2

N−1

∑
i=0

[
(yk+i+1|k − αȳk+i+1|k)

TWy (yk+i+1|k − αȳk+i+1|k)+

(uk+i|k − βūk+i|k)
TWu (uk+i|k − βūk+i|k)+

∆(uk+i|k − βūk+i|k)
TW∆u ∆(uk+i|k − βūk+i|k)

]
+

1
2

yT
k+N|kWT yk+N|k (3.61)

In contrast to the setpoint tracking problem described in Section
3.3.2.3, the tracking error minimization problem enables the direct
modification of controller goals in the output and input spaces.

α and β switch the tracking in the output space and input space
respectively:

α ∈ {0, 1} (3.62)

β ∈ {0, 1} (3.63)

We obtain the deterministic optimal control input sequence similar
as for the setpoint tracking regulator by minimization of Equation
(3.61) subject to a deterministic system representation:
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min
u

(3.61) (3.64)

s.t.

xk+i+1 = Axk+i|k + Buk+i|k + Gdk+i|k (3.65)

yk+i+1 = Cxk+i|k (3.66)

H̄k+i|k uk+i|k ≤ h̄k+i|k (3.67)

F̄k+i+1|k xk+i+1|k ≤ f̄k+i+1|k (3.68)

With α = 1 and β = 0, (3.61) is a convex combination of output
space tracking and input space tracking. The challenge in using this
objective is the increased complexity of the associated tuning problem,
compared to the setpoint tracking objective Equation (3.40) on page 32.
We have to choose Wū such that we obtain balance in output tracking
and input tracking precision while retaining sufficient stability. If ū
is ill–posed and Wū is too restrictive, we may face operational issues.
As for general MPC, tuning is the main issue associated with this
regulator form. Tuning must respect stability and robustness, see
related citations in Section 3.3.2.3.

Similarly as in the previous Section 3.3.2.3, we can state this objective
as SMPC, see Section 3.3.2.5.

residual disturbance rejection: In tracking error minimiza-
tion regulator form, we can achieve residual disturbance rejection4

similarly as described in relation to the setpoint tracking regulator
(see Section 3.3.2.3) by using an augmented SO. We then minimize
Equation (3.61) subject to the stochastic system representation:

min
u

(3.61) (3.69)

s.t.

x̂k+i+1|k = Ax̂k+i|k + Buk+i|k + Gd̂k+i|k + Grd̂r,k+i|k (3.70)

yk+i+1|k = Cx̂k+i+1|k (3.71)

H̄k+i|k uk+i|k ≤ h̄k+i|k (3.72)

F̄k+i+1|k xk+i+1|k ≤ f̄k+i+1|k (3.73)

Using the target adjusted approach described in Section 3.3.2.3, we
can formulate the following objective in tracking error minimization
regulator form:

4 Also referred to as offset–free control.
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J =
1
2

N−1

∑
i=0

[
(x̂k+i|k − x)TWx (x̂k+i|k − x)+

β(uk+i|k − uk+i|k−1)
TWu(uk+i|k − uk+i|k−1)+

(1− β)(uk+i|k − ū)TWū(uk+i|k − ū) + Gd̂k+i|k
]
+

1
2

xT
k+N|kWT xk+N|k (3.74)

Again, we here use the system model Equation (3.70) and Equation
(3.71) in conjunction with this objective.

3.3.2.5 Stochastic Control

If the disturbance acting on the system is bounded, we can apply
stochastic control principles to the system [RMD17, P. 248].

The residual disturbance rejection regulators discussed in Section
3.3.2.3 and Section 3.3.2.4 consider stochastic linear system models
such as Equation (3.11) on page 18. We can cast them as stochastic con-
trollers when considering probabilistic state constraints, in literature
often referred to as chance-constraints.

The general state constraint (or output constraint) we can formulate
as:

H̄jxk+i+1|k ≤ h̄j (3.75)

We can then state the chance–constraint [Hei+18a]:

Prk[(3.75)] ≥ 1− γj, j = 1, 2, . . . , ns (3.76)

The left–hand–side here states the probability of satisfying (3.75)
with a prescribed lower bound 1− γj, where j is the scenario index.
ns is the number of considered scenarios.

The main challenge associated with this constraint formulation is
to achieve the desired trade–off between robustness and cost. See for
example [Hei+18a; SGM13; PRG16; Can+10; RMD17]. In context of the
optimal power flow (OPF) problem, see for example [Old+15; Sum+14;
Roa+13; RA17].

Sampling based stochastic formulations for LMPC may be prohibitive
for RT application due to their elevated computational complexity
[Kou+10].

These issues may be alleviated when making assumptions about
the disturbance. An example is [DBK06], in which they assume a
norm–bounded disturbance and computation of control decisions for
the worst–case realization. They approximate this worst–case linearly
and can guarantee the worst–case feasibility.
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3.3.3 Tuning and Stability

While tuning is a key aspect in controller design in general, this applies
specifically to model based controllers:

"The first act of ’tuning’ is to develop an appropriate process model.
If the model is accurate enough, then the rest of the tuning is straight-
forward. And if the controller exhibits poor performance, then one
should consider the model poor (inaccurate) unless proven otherwise"
[GS10].

Tuning entails a multitude of aspects, some of which compete in
the considered objectives. Then, balancing measures are required.
Multi–objective optimization can facilitate the determination of well
balanced adjustments, see for example [YZO16].

While some tuning aspects apply in general, some are highly specific
to the operational situation. In relation to control related topics, a
selection of tuning aspects is discussed below.

3.3.3.1 Trajectory Planning

We must solve this nonlinear OC problem intermittently, hereby the RT–
supervisory control and data acquisition (SCADA) system triggers the
solver calls. The call frequency depends, in general, on the operating
situation. In relation to performance, tuning of this problem may
therefore be more relevant for specific operating situations. Tuning
of the call frequency can lead to sufficient accuracy in the control
decisions while reducing the computational load.

A related tuning problem is the selection of the temporal resolution.
For example, in [RMD17, P. 513], an example of efficiency tuning of
NMPC is given by the "adaptive stepsize selection". They underline the
importance of this measure for the efficiency of NMPC.

The parameterization of this problem entails process models of both
the system and uncertain disturbance processes driving the former.
Depending on the process models and available data, tuning may
then entail adjustment of the associated data analysis routines or the
model used within the optimization problem. For example, uncertain
disturbance process prediction models may generate prohibitively
large number of scenarios to be efficiently treated with RT controls.
Scenario reduction techniques can then provide a reduced set of
scenario clusters. Along those lines we can also optimize the models
for RT controls. We may first transform a complex process model to a
ROM representation prior to using it during RT operation.

3.3.3.2 Linear MPC

The linearization approach utilized to derive the local linear model
(LLM) used in linear model predictive control (LMPC) is a starting point
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for tuning. When we obtain the LLM through Sys-ID experiments, we
must consider tuning of the candidate Sys-ID method [Lju99].

The underlying system model may be precise in vicinity of the
system’s operating point but generalize poorly when leaving it. Active
learning techniques such as [Hei+18b; HSM19] or adaptive control
[Ngu17] techniques can support the reduction of uncertainty during
online operation. Along these lines, [MDG17; Sir+10; DE18; Vaj+85]
are publications in relation to energy– and power systems.

The evaluation of the stability of the LLM is a prerequisite to its
utilization in MPC. Stability evaluation must hereby include the deriva-
tion of stability margins defining the operating region O.

Regularization of the objective is commonly achieved by tuning of
the control decision related penalization matrices:

control magnitude penalization coefficients Wu must be adjusted
in both absolute magnitude and in relative magnitude.

control effort penalization coefficients W∆u must be adjusted,
similarly as the control magnitude penalization.

See Equation (3.40) on page 32 for a utilization of these penalization
coefficients.

We can simplify the tuning problem by removing the control effort
penalization term while retaining the control magnitude penalization.
This highlights the typical balancing issue associated with tuning.
Additional complexity in the control objective may lead to desired
controller performance but complicates the tuning problem.

Other tuning approaches involve specification of a surrogate prob-
lem for which tuning is easier. An example is [DB09], in which they
tune MPC such that the unconstrained controller obtains equal proper-
ties as a discrete time linear quadratic regulator (DLQR) with desired
static gain K.

By using soft constraints we can modify the objective function
such that we penalize overshoot of state– or output soft–limits, as
exemplified in [GJ09], while retaining feasibility. This comes at expense
of elevated computational load, depending on the number of slack
variables and added constraints in the augmented objective.

We can treat stochasticity in LMPC using chance-constraints. The
controller is then cast as SMPC. See Section 3.3.2.5. The accuracy of the
estimated back–off depends on the knowledge of the disturbance, for
which reason the quality of the disturbance model is central in SMPC.
[Hei+18a] provide a related discussion.

3.3.3.3 Stability

Stability in MPC we can assess by Lyapunov stability theory. As
stated in [RMD17, P. 164, 165], a local control Lyapunov function (LCF)
enhances the performance of MPC. A terminal cost is such LCF (ibid,
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P. 165). In order for such terminal cost to take its desired effect, one
can add a terminal constraint, requiring the state to lie in a desired set
in which the terminal cost is an LCF (ibid). This terminal constraint
must be control invariant (ibid), we briefly state it in Equation (3.36)
on page 31.

Dual mode control is a related approach that uses the beneficial
stability properties associated with infinite horizon control. See for
example [KC16, Pp. 28]. Sufficiently large optimization horizons5

enforce robust asymptotic stability [Tee04], [RMD17, P. 169]. In the
limit, an MPC with theoretical infinite optimization horizon approaches
an infinite horizon optimal controller and then inherits its stability
properties (ibid). The optimization horizon should hereby at least
encompass 80-90% of the OL rise time of the system, as stated in
[Mau+88], for example.

A seminal paper in context of stability is [May+00], where they
identify stability ingredients appearing in MPC, so–called stability
axioms [RMD17, P. 169]. For additional requirements, assumptions
and variations see for example [KC16, P. 13 and following] or [RMD17;
CB04; Mac02].

In this thesis we consider the principle of long horizons. Reduction
of the optimization horizon may reduce computational load, but may
require the consideration of terminal constraints. The latter however
add to the computational load, which in return is undesirable. Fur-
thermore, terminal constraints complicate the MPC design process, as
it may require constraint tightening as employed in [Tee04]. [PRW11]
underline the importance of feasibility resolution whenever state or
output constraints are considered.

They furthermore stress the importance of a "well–defined set of
initial conditions" (ibid). This initial value problem entails the require-
ment of a guarantee of feasibility [Kou+10].

[PRW11] "conclude that there is no qualitative change in robustness
when shifting from optimal MPC to suboptimal MPC for the class
of models considered here". In consequence, they show that we can
achieve robustness also when using suboptimal MPC.

3.3.4 Additional Methods

Here we state methods that have not been explicitly covered within
the publications in this thesis, however do pose reasonable additions.

3.3.4.1 Economic Model Predictive Control

While tracking of economic operating references Ū inherently accounts
for economic considerations, economic MPC treats economics implicitly
within the optimization step. The dynamic problem is then informed

5 Here, equivalent to prediction horizons.
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by, for example, per–unit excursion prices. Deviations from this
operating reference Ū are in LMPC informed by the control effort
matrix W∆u and the model as such. [OM16] propose a tuning method
for conventional MPC such that similar economic performance as when
using economic MPC is achieved. Consider also [EDC14; DAR11].

3.3.4.2 Nonlinear Model Predictive Control

Modern algorithms used in NMPC may converge to the optimal so-
lution in similar time as LMPC, depending on the problem at–hand
[Gro+20]. As NMPC can directly handle the nonlinear model and non-
linear constraints it may simplify the control pipeline by removal of
the distinction into trajectory planning (see Section 3.3.1) and online
control (see Section 3.3.2). Robust NMPC implementations are also re-
ported to provide comparable performance as LMPC schemes [KAM19;
Koh+].

3.3.4.3 Explicit Model Predictive Control

Lookup tables are commonly used in control. Explicit MPC uses
such principles [Bem+00; AB09] by precomputing the control law
and storing it within a lookup table. For some applications, this can
improve performance as the problem reduces to applying the correct
gain for a given operational situation. Such approaches have been also
applied to stochastic nonlinear problems [GKJ07; GJ12].

3.3.4.4 Adaptive Control and Active Learning

Adaptive control enables online–reformulation of the control law for a
given system uncertainty. We may consider it, therefore, as an online
tuning approach:

"An adaptive control system can be broadly described as any control
system that has the ability to adjust control design parameters such as
control gains online based on inputs received by the plant in order to
accommodate the system uncertainty [. . . ]" [Ngu17, P. 2].

Active learning on the other hand aims to augment the control law
such that uncertainty in the system can be identified by making it
observable [Mes18; HSM19; Hei+18b].

3.4 estimation and prediction

3.4.1 State Observer

For linear systems and Gaussian noise, the Kalman filter [Kal60] is
the optimal SO. In this thesis, we assume this setting and refer to the
large body of literature in context with nonlinear system estimation
and non–normal distributions.
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System Prediction
Residual

estimation

Figure 3.6: Residual estimation and prediction in a dynamical system: We
can infer the approximated residual error using an augmented SO.
The residual error may partly result from suboptimal predictions.

The Kalman filter consists of the prediction step6:

x̂k|k−1 = Ax̂k−1|k−1 + Buk−1 (3.77)

Σk|k−1 = AΣk−1|k−1AT + Qk (3.78)

and following update step:

Kk = Σk|k−1CT(CΣk|k−1CT + Rk)
−1 (3.79)

Σk|k = (I − KkC)Σk|k−1 (3.80)

x̂k|k = x̂k|k−1 + Kk(yk − Cx̂k|k−1) (3.81)

Notice I is here an identify matrix of suitable dimension. Σ is the
state precision or state covariance matrix. Q denotes the variance of
the state noise, R denotes the variance of the measurement.

Both the state estimate x̂ and the precision P characterize a Gaussian
distribution ξx

7:

ξx,k|k = N (x̂k|k, Σk|k) (3.82)

See also [KMJ04].
By mapping the distribution ξx into the system output, we obtain

the estimated output distribution:

ξy,k|k = Cξk|k (3.83)

We may augment the considered system in order to estimate ad-
ditional system states as described in the following Section 3.4.2 on
disturbance rejection.

Tuning of such state observer is equally important for the regulator
performance as tuning of the controller. See also [RMD17] for further
discussions, for example on the unscented Kalman filter (ibid, Pp.
310).

6 Also referred to as time–update.
7 In literature sometimes referred to as hyperstate of x.
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3.4.2 Disturbance Rejection

Model–plant mismatch always occurs, due to that the model is merely
an approximation of the true system. Disturbance rejection, therefore,
is a central aspect in control. See for example [PR03].

3.4.2.1 Augmented State Observer

We estimate the system state x alongside a residual disturbance dr in
order to enable system controllers to account for the latter.

static filter: As described for example in [PR01; PR03], we may
consider the augmented system dynamics:

Ao =

[
A Bd

0 I

]
(3.84a)

Bo =

[
B

0

]
(3.84b)

Co =
[
C Cd

]
(3.84c)

I here is an identity matrix of dimensions corresponding to the resid-
ual disturbance dr, that is, a unity scalar. Bd are hereby model residual
disturbance d̂r associated dynamics. When neglecting feedthrough
of the residual disturbance dr to the output, we let Cd = 0. Due to
that Bd are commonly unknown we have to approximate them. Re-
sulting from that this models the residual disturbance acting on the
model input space, this is in literature referred to as input–disturbance
model.

Furthermore, we consider the augmented states:

xo =

[
x

dr

]
(3.85)

and the augmented static Kalman gain:

Lo =

[
Lx

Ld

]
(3.86)

The filter gains Lo = {Lx Ld} are result of solving the discrete time
algebraic riccati equation (DARE), see [Van81; Lau78]. The static input
disturbance residual filter equations are then given by:

x̂o,k|k = Ao x̂o,k|k−1 + Bouk + Lo(ym,k|k−1 − Co x̂o,k|k−1) (3.87)

In relation to Equation (3.85), x̂o then denotes the estimate of the
augmented state xo. x̂ and d̂r are consequently estimates of the system
state and the residual disturbance. ym is the output measurement.
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dynamic filter: Using the augmented system equations stated in
Equation (3.84) in the previous section, we can state the augmented
dynamic filter equations as:

x̂o,k|k−1 = Ao x̂o,k−1|k−1 + Bouk−1 (3.88)

Σk|k−1 = AoΣk−1|k−1AT
o + Qk (3.89)

and following update step:

Kk = Σk|k−1CT
o (CoΣk|k−1CT

o + Rk)
−1 (3.90)

Σk|k = (I − KkCo)Σk|k−1 (3.91)

x̂o,k|k = x̂o,k|k−1 + Kk(ym,k|k−1 − Cx̂k|k−1) (3.92)

3.4.3 Predictions

Predictive capabilities are at the core of modern energy system control
approaches. Disturbances acting on the system, switching actions or
other events affect the system and its performance. Predicting such
events within the operational routines enables anticipatory action,
thereby improving the systems actual performance. See an example
of proactive action of an MPC in Figure 3.7.
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Figure 3.7: Predictive MPC/ reactive MPC example. The control horizon
is chosen as N = 10. Perfect knowledge of the disturbance
trajectories is assumed.

Forecasting services may provide probabilistic forecasts of stochastic
processes, such as wind speed. See [Mor+14, Pp.26] and [BKV13] for
examples. See [ZL16] in context of load forecasting.



3.5 control hierarchies 45

Apart from central drivers of power conversion, forecasts for ramp
detection [BKV13, Pp. 40-54] may provide valuable information for
preparing the system for such events.

In the real setting associated with limited information, we can only
anticipate a share of upcoming RT system disturbances. Even when
aiming to predict a substantial share of such potential disturbances, we
cannot remove the stochasticity arising, amongst others, from human
behavior. Announcement of switching may, therefore, improve the
system operation. For example, EV owners may provide information
on an upcoming trip some minutes ahead of time. The RT controls can
then prepare the system by means of proactive action.

3.4.3.1 Combining Process Estimates and Predictions: Probabilistic
Weighting

Multiple sources of information of a process can be available for
system operation. Probabilistic approaches enable informed weighting
of such information for improved decision making. See for example
[Sim06; Sco15]. Erroneous predictions are not only uninformative,
but moreover can harm the system performance and its stability.
Considering the uncertainty associated with the prediction using Bayes’
theorem is one approach to deciding which source of information is
to be trusted.

3.5 control hierarchies

Control hierarchies8 are layered constructs of controllers. We may
refer to subsequent controllers as superordinate for a relative supe-
rior hierarchy position and subordinate for a relative inferior position.
These enable the design of controllers tailored to the requirements
corresponding to a given layer9. Such requirements can include, for
example, the complexity for the derivation of appropriate control
decisions.

More specifically, such requirements are:

• associated with the calculation of well–posed control signals at a
desired sampling rate

• associated with the precision in the control decisions

We may address these potentially contradictory requirements by
identification of the problem structure. Consider the following exam-
ples:

8 In literature also referred to as control cascades.
9 In literature also referred to as level.
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Figure 3.8: Exemplary block diagram of a turbine with governor system and
approximated influence on the system frequency. The primary
control loop here is a proportional factor (droop), the secondary
control loop may be an optimized controller with integral action.
See for example [Bev14; Kla17; Bem].

• In the load frequency control (LFC) problem the primary, sec-
ondary and tertiary frequency controls act on different dynamics
and have different properties, see Figure 3.8. The main task of
primary controls is to reject fast disturbances. The main task of
secondary controls is to restore the grid frequency to the nominal
frequency using integral action. See [Kun94; Bev14].

• Lower layers derive control decisions for potentially fast actu-
ators. If such unit is to participate to its full capability, the
controller formulation must be accordingly. See [Gey17] for
examples along these lines. Precision with respect to the remain-
ing system is then accounted for by tracking references from a
superordinate layer that takes the overall system into account.
Such layer naturally considers problems only solvable with con-
siderable computational effort. Therefore, accurate references
from the global system perspective are available at comparable
lower sampling rates.

Analysis of subsequent layer requirements and integration within
the control hierarchy enables us to exploit the causality of the problem.
Consequently, we can treat computationally demanding tasks in su-
perordinate layers while focusing on the requirements at subsequent
subordinate layers.

A hierarchy of controllers arranged for different magnitudes of
dynamics is, therefore, denoted a temporal control hierarchy.

Aside from generating control references, superordinate controllers
may generate additional information relevant to subordinate con-
trollers. For example, these may be risk values or economic prices.
Such information may then be available at the subordinate level with-
out additional computational expense.

Consider along these lines Figure 3.10. This control hierarchy com-
prises an energy management system (EMS) layer, optimized aggre-
gated layer and basic layer. This hierarchy consists of two main layer
groups:
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Figure 3.9: Exemplary block diagram of aggregated system controls for the
AGC problem with a secondary controller.

static problem which we may formulate as stochastic program-
ming (SP) (see Section 3.2). This layer focuses on the long–term
optimization, the treatment of forecasts of stochastic processes
and a detailed system description in steady state. This layer gen-
erates a dispatch schedule Ū. The dispatch schedule is passed
to subordinate layers.

dynamic problem for the RT system operation, hereby consisting of
an aggregated optimized control layer and basic controllers at
subsequent plants.

optimized aggregated control coordinates the RT system,
such that the overall system can participate in, amongst oth-
ers, disturbance rejection, tracking of the dispatch schedule
Ū or activation of additional flexibility when needed.

basic controllers actuate the plants for fast RT control objec-
tives, such as compensation of fast frequency fluctuations.

Both EMS and RT are relevant in context of this thesis and are,
therefore, highlighted in Figure 3.10. For an energy system with
considerable uncertainty, the operating points specified in the dispatch
schedule Ū must be feasible during real–time operation.

Related to the control hierarchy concept are associated tuning tasks.
For example, the trajectory tracking controller discussed in Section
3.3.2.4 must be parameterized such that it tracks the input reference
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Figure 3.10: A temporal control hierarchy and associated scopes.

provided by a superordinate layer with sufficient precision. Further-
more, such parameterization should also provide sufficient degrees
of freedom for such RT controller in order to compensate for exces-
sive fluctuations and disturbance events. An example is the loss of
a plant, where the RT controller can orchestrate the overall system to
compensate for this loss in a coordinated manner. A sufficient decou-
pling of layers within the hierarchy therefore improves robustness, as
subordinate controllers can deviate from provided control references.



4 B A S I C M O D E L S A N D K E Y
F I N D I N G S

This chapter summarizes models and key findings in this thesis.
Section 4.1 discusses the real–time Supervisory Control And Data

Acquisition (RT–SCADA) system. Section 4.2 considers control scopes.
Section 4.3 discusses automatic generation control (AGC) in context of
microgrids (MGs). Section 4.4 gives a brief discussion on automatic
voltage regulation (AVR) in context of MGs. Section 4.5 considers the
activation of prosumers.

4.1 real–time supervisory control and data
acquisition

The real–time (RT) supervisory control and data acquisition (SCADA)
system organizes the optimized controls associated with the aggre-
gated real–time (RT) layer. It is, therefore, a central component of the
RT MG layer.

As mentioned in Section 2.5 on MG operations, operational require-
ments of an MG are most likely time–varying. This may involve:

target trajectory type to be optimized for, such as a minimum
time or a minimum economic cost trajectory (See Section 3.3.1
on trajectory planning).

controller formulation, involving a selection of the controller type
and its parameterization.

type selection. (See Section 3.3.2 on LMPC).

parameterization of the controller, involving the controller
model and treatment of the tuning problem.

tuning problem involving the specification of the control
effort penalization (See Section 3.3.3 on tuning).

model composition. This involves the selection of active
units during the upcoming operation period.

probing constraints formulation. Such constraints may
trigger the execution of a backup routine should the
controller fail. Equation (3.35) on page 31 is an exam-
ple. Instead of provoking controller failures, we may
instead examine slack variable values sj active when
well–define boundaries are violated. This can allow us

49
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to call a backup routine while actuating the currently
valid control decision in the plant.

This list can may be extended given the operational requirements.
Two characteristic operational scenarios are:

system stabilization Hereby the system operates with a constant
operating point, see Section 3.1.1.2.

trajectory tracking Hereby the system operates with respect to
an operating trajectory, see Section 3.1.1.2.

4.2 control scopes

We aim to operate the RT system with respect to a given dynamic
system trajectory set T , obtained by solving the trajectory planning
problem (see Section 3.3.1). We can derive local linear models (LLMs)
in perturbation form with respect to T . Consequently, we state such
LLMs in a local coordinate system1.

The temporal resolution in T is a relevant metric defining the RT

system performance. While a coarsely meshed T may be well–posed,
it translates to more dominant discontinuities in the RT trajectory.
Higher sampling rate in the trajectory planning problem alleviates
undesirable magnitudes in such discontinuities, while resulting in
elevated computational load. A suboptimal workaround is naive
interpolation.

We can operate along T by either using the setpoint tracking regula-
tor (see Section 3.3.2.3) or the trajectory tracking regulator (see Section
3.3.2.4). In Sections 4.2.1 and 4.2.2 below we discuss the differences to
consider when using either regulator formulation.

4.2.1 Setpoint Tracking

An optimized predictive setpoint tracking regulator can drive the
system to the origin in a local coordinate system, when conditions for
residual disturbance rejection apply. See Section 3.3.2.3 on setpoint
tracking.

The local coordinate system is defined by the operating point and
approximated system dynamics within the local coordinate system by
the LLM using by the controller. See Section 3.1.1.2.

Due to that disturbances in the considered control situations always
occur, we formulate this regulator with the goal of residual disturbance
rejection. See Section 3.3.2.3. We may consider such regulator as SMPC

formulation in order to stabilize the system states or outputs within a
chosen set with chosen probability.

1 Also referred to as local reference frame.
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In either regulator formulation, the single reference of this regulator
is the local coordinate system. Discontinuities of the RT trajectory T
translate into discontinuities in the objective of such regulator. There-
fore, the quality of T determines a large share of the overall control
performance. In consequence, we need to solve the nonlinear trajec-
tory planning problem with a smaller timestep in order to improve
RT performance. Due to being a nonlinear problem, computational
limitations arise to this effect.

We can partly improve on this issue by considering the trajectory
tracking regulator formulations, as discussed in Section 3.3.2.4 below.

4.2.2 Trajectory Tracking

Contrary to the setpoint tracking regulator formulations, the trajectory
tracking regulator formulations can consider interpolations of the
input and output references ū and ȳ. See Section 3.3.2.4. While still
considering a local coordinate system, this enables smoothing of the
trajectory tracking problem informed by the local LMPC law. Naive
interpolation of T is suboptimal. However, when interpolating using
LMPC we retain some optimality. We can state such regulators similarly
as discussed in the previous section 3.3.2.3.

4.3 automatic generation control in micro-
grids

By augmenting the temporal control hierarchy depicted in Figure 4.1
on the next page with an aggregated RT layer we can optimize the
power sharing problem. For brevity, we denote the aggregated real–
time (RT) controllers as real–time (RT) controller and the temporal control
hierarchy as control hierarchy, from here on.

The swing equation is the main model component in this control
problem and describes the approximated inertia of the rotating system:

d
dt

∆ f (t) = − Da

2H(t)
∆ f (t) +

1
2H(t)

∆Pmech(t) (4.1)

∆ f is the frequency excursion in relation to the nominal frequency,
D is the load damping factor, H(t) the inertia based supply time.
∆Pmech denotes the power balance. Notice that we here state H as
function of time as suggested in [UBA14].

By combining plant models with Equation (4.1) we obtain an ap-
proximated mapping of active power injections and extractions to
frequency excursions. We use this model in the RT controller(s) to
the drive frequency excursion to zero and, therefore, the frequency
towards the nominal frequency.
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Figure 4.1: Control hierarchy for AGC with optimized aggregated RT con-
troller. The alternating current optimal power flow (AC-OPF) is
the problem with highest complexity, magnitude of dynamics
increase when descending the hierarchy.

We can address efficiency considerations and uncertainty treatment
at distinct layers in a control hierarchy as depicted in Figure 4.1.

We may denote efficiency metrics at a layer–level as local efficiency
metrics and system efficiency metrics as global efficiency metrics.
While we may optimize the local efficiency at a distinct layer, this may
have adverse impacts on the overall system efficiency. This observation
follows from that the control hierarchy is coupled. Consequently,
global system efficiency in this setting is a multi–objective problem. A
well–balanced trade–off of this problem depends, among others, on
the MG, its current composition and operational goals of the system
operator. The chosen efficiency metric is therefore also time–varying.

Disturbances act on the system at the subsequent layers and asso-
ciated magnitudes of dynamics. Feasibility of the system operation
therefore depends on uncertainty treatment at least on the upper lay-
ers. Performance can then be further improved by treating uncertainty
also in subsequent lower layers.

We may improve RT system performance further by exploiting ad-
ditional degrees of freedom. See along these lines Section 4.5 on
prosumer response activation.

Papers Paper A, Paper B, Paper C and Paper E are related to the
AGC problem.

4.3.1 AGC Combining Nonlinear and Linear Model Predictive
Control

The optimized control layer depicted in Figure 4.1 may consist of an
RT–SCADA system (see Section 4.1), including:
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• The trajectory planning problem (see Section 3.3.1).

• The target problem (see Section 3.3.2.2).

• At least one optimized aggregated system controller (see Section
3.3.2.3)2.

• A set of models (see Section 3.1).

For the upcoming operation period, the main task of the RT–SCADA

system is then:

solve the trajectory planning problem as a single objective or
a multi–objective problem in order to obtain a feasible conver-
gence trajectory to T . See Section 3.3.1. This entails the treat-
ment of disturbance forecasts when useful. This is the case, for
example, when disturbance forecasts are available with higher
temporal granularity than the sampling rate of the dispatch prob-
lem. In this case, we can then consider such residual disturbance
forecasts in the RT layer. See Section 3.4.3.

select the rt controller(s) given the system type and its status.
More specifically, dynamics within the system may be heteroge-
neous to a degree where dedicated RT controllers per dynamics
cluster are reasonable. For example, BESSs and diesel generators
are two groups of heterogeneous dispatchable production units.

parameterize the aggregated rt controller(s) for the AGC prob-
lem, including the following tasks:

select the rt controller model based on the current sys-
tem status. Only the active set of controllable units available
as actuators throughout the operation period is relevant.
See Section 3.1. This may involve:

assignment of local error evaluation functions
to each model. Such a function should observe the
linearization error and trigger recurrent linearization
when required. See Section 3.1.1.4.

residual error associated dynamics which we need
to approximate. Evaluation of the uncertainty associ-
ated with subsequent systems (for example, heteroge-
neous loads) can inform the modeling of this quan-
tity and provide an initial guess. We may in this way
improve convergence of the estimation routine to the
global minimum of this problem.

2 We can apply aggregated controllers to distinct groups of actors. For example, one
controller may operate fast actuators (e. g. BESS), another slower actuators (e. g. con-
ventional generators).
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constraint preparation. Subsets of constraints may be time–
varying and based on system observations. This aspect,
therefore, includes the data acquisition for these constraint
groups.

Additional inputs to this RT control problem may apply in different
settings.

Operational scenarios associated with islanded mode (IM) and grid-
connected mode (GCM) differ fundamentally:

• In GCM, the MG has no ability to steer the grid–frequency f . In
GCM, priorities are in consequence tracking and predictive action
with respect to input references Ū provided by the higher control
layer, constraint satisfaction, residual disturbance rejection and
provision of resilience.

• In IM, we can steer the grid–frequency to the nominal frequency.
The local grid is less inert, dynamics are in consequence faster.
In order to account for this, we need sufficiently fast controllers
and actuators. The operating condition is more stringent.

Notice that switching in between these two modes is another rele-
vant mode that is not considered in this thesis.

We can identify two characteristic operational situations, the balanced
operation and the imbalanced operation. See Section 4.3.3.

4.3.2 AGC with Linear Model Predictive Control

With aggregated optimized RT controls using solely LMPC, the opti-
mized control layer depicted in Figure 4.1 may consist of an RT–SCADA

system (see Section 4.1), including:

• The target problem (see Section 3.3.2.2).

• At least one optimized aggregated system controller (see Section
3.3.2.3)2.

• A set of models (see Section 3.1).

This control setup is used in the publications Paper A, Paper B and
Paper E.

Notice that this requires the operational trajectory T to be feasi-
ble during RT operation. Due to disturbances acting on the system,
convergence to T may be prohibited. This infeasibility then requires
consideration of the nonlinear trajectory planning problem and con-
sequently the employment of a control hierarchy as described in the
previous Section 4.3.1.



4.4 automatic voltage regulation 55

4.3.3 Operational Scopes

in balanced operation we can account for the expected distur-
bance d̄. This is characterized by feasibility of the target problem
Equation (3.39) on page 31 (see Section 3.3.2.2) up to some ac-
curacy in the control decisions εū. Then, convergence to the
dynamic dispatch schedule ũ subject to the disturbance d̄ is
possible.

in imbalanced operation convergence to the dynamic dispatch
schedule ũ within the accuracy thresholds ±εū is not possible.
Recalculation of the trajectory planning problem (see Section
3.3.1) is then required. The result of this call is the updated
dynamic dispatch schedule ũ that should result in feasibility of
the target problem Equation (3.39) on page 31.

4.4 automatic voltage regulation

The control approaches described in the previous section 4.3 on AGC

can be applied to the AVR problem as well. In Paper G we examine an
alternative controller formulation for the AVR problem, similar to the
one examined in Paper A. This controller we may use similarly as the
approach provided in [VC13].

4.5 prosumer response activation

Related to the AGC problem discussed in Section 4.3, the prosumer
response activation addresses the prosumer–associated flexibility po-
tential. Posed as problem at the aggregated system level, at minimum
a single price signal provides the incentive to prosumers to perform ei-
ther up–regulation or down–regulation. The approach of using a price
signal to incentivize a desired response in the operational domain is
denoted as ICo, see for example [Mad+14; OH11].

Multiple price signals — up to prosumer–individual prices — can
more effectively activate prosumers. With multiple price signals, ICo

can support congestion management.
We can generate such price signals at different stages in the tem-

poral control hierarchy. The stage to consider for the type of price–
responsive unit depends on its dynamic properties:

fast units such as small ESSs, we may address by lower levels in the
control hierarchy.

slow untis such as large ESSs we may address by higher levels in
the control hierarchy. If dynamics are irrelevant for system



56 basic models and key findings

performance, we can generate such price–signal in the stationary
dispatch problem.

See Figure 4.2 as an example.
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Figure 4.2: Temporal control hierarchy with focus on the highlighted control
routines for flexibility activation of fast prosumers, such as EVs.
The aggregator entity, employs the SUC to derive a dispatch
schedule, here on an hourly basis. direct control (DCo) is sampled
in the magnitude of a few seconds. ICo is sampled depending on
the desired magnitudes of dynamics to be activated regarding
fast prosumers.

In Paper C, we propose such temporal control hierarchy arrange-
ment for the inclusion of fast ESSs such as EVs. EVs with vehicle to
grid (V2G) functionality can support the AGC problem as fast price–
responsive prosumers. See Section 4.5.2.

A price–response model is the main component of the ICo and is
both time–varying and uncertain [MVA13]. In a general case, we may
observe price–response dynamics through grid measurement units3

when the prosumers are subject to the price signal p. By means of
Sys-ID approaches, we can then infer the price–response dynamics. In
Paper D we consider the sparse system identification of nonlinear
dynamics with control (SINDyc) algorithm alongside markov chain
monte carlo (MCMC) for identification of prosumer dynamics and
model uncertainty. See Section 4.5.1 below. Such a model we can then
utilize within stochastic ICo–MPCs (See Section 3.3.2.5).

4.5.1 Prosumer Response Estimation

We can obtain the price–response relationship using Sys-ID approaches,
see Section 3.1.1.5.

3 Such as Phasor Measuring Units (PMUs).
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In Paper C we use linear Sys-ID approaches and aggregate identified
systems in temporal clusters. Given a sufficiently large number of
observations, the evaluation of the response characteristics in these
clusters can yield an approximation of their associated uncertainty.
Using ICo and activation of EVs, we improve LFC in the examined
scenario.

In Paper D we treat this problem by combining the sparse system
identification of nonlinear dynamics with control (SINDyc) algorithm
[BPK16] with markov chain monte carlo (MCMC). For MCMC, we use
the software package Stan [Car+17].

This combination lifts synergies in the following manner:

• SINDyc yields a sparse system model.

• MCMC as computationally demanding algorithm can benefit from
a well–chosen prior, such that the sampling space is bounded in
some feasible set.

Furthermore, it enables the incorporation of system knowledge:

• We can incorporate knowledge on the system dynamics by adapt-
ing the candidate model of the SINDyc algorithm.

• We can modify the model priors in MCMC

This setup yields a detailed posterior distribution which we can uti-
lize to inform stochastic ICo–MPCs. The potentially high computational
load associated with MCMC algorithms is a drawback of this setup for
RT operation [Fri+13]. The RT–SCADA may schedule computational
demanding calculations such as MCMC in computational low–load
times. Then, the updated system uncertainty representation derived
by MCMC is available only at a later time, potentially lacking in the
ongoing system operation. We may combine properties of different
Sys-ID algorithms and approaches in an efficient manner, such as to
circumvent such situations.

Furthermore, we may aim to obtain information of a dynamic
system during ongoing system operation. In the setting of ICo, this
entails that the activation of prosumer flexibility should be possible
while executing an Sys-ID experiment. We can augment the controller
for this purpose with active learning strategies, see Section 3.3.4.4.

4.5.2 Indirect Control and Prosumer Activation

As mentioned previously, we can associate an ICo with different layers
in the control hierarchy. The association of an ICo with lower layers
enables the actuation of faster prosumers as a result of the faster
sampling rates at such layers.
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Furthermore, we can take the causality structure within the control
hierarchy into account, as highlighted in Figure 4.2 on page 56. Here,
it is highlighted that the ICo in this situation is subordinate to the DCo

for the AGC problem. In an event such as the loss of a production
unit, this DCo can send the request to reduce the consumption (and
potentially increase injection) of fast prosumer units by means of ICo.

The ICo can use constrained LQG regulator formulations such as
described in Sections 3.3.2.3 and 3.3.2.4. When the aim is to achieve a
desired response with approximated probability level, such regulators
may be cast as SMPCs as described in Section 3.3.2.5.



5 S U M M A R Y

5.1 conclusions and future research

Think like a man of action, act like a man of thought.

— Henri Bergson

In this thesis we proposed model predictive control (MPC) for the
optimized real–time (RT) operation of microgrids (MGs) in combination
with flexibility estimation and flexibility activation. We investigated
some of these approaches throughout a case study in grid-connected
mode (GCM) operation of an MG.

5.1.1 Contributions

Paper A and Paper B consider the automatic generation control (AGC)
problem by means of optimized load frequency control (LFC) for the
aggregated system. Compared to non–proactive control approaches,
optimized and predictive control can improve the system performance
in the AGC problem by coordinating the power production of sub-
sequent units based on additional system knowledge. While MPC

approaches for this problem exist, we formulate alternative control
approaches including input reference tracking. By tracking input
references, we facilitate the integration of these controllers into ex-
isting control hierarchies while retaining benefits of optimized and
predictive control. These benefits include constraint satisfaction, con-
sideration of process predictions and coordination of dynamics using
multiple–inputs single–output (MISO) and multiple–input multiple–
output (MIMO) system models. Due to that MPC approaches center
around such models, updates to the latter given updated system
knowledge result in improved control performance while facilitating
the tuning problem compared to, for example, proportional integral
derivative (PID)–based control schemes. The proposed controllers have
been tested in a MG test facility1. Paper G considers related control
approaches for the AVR problem.

Paper C proposes a control hierarchy for the AGC problem that
includes the activation of electric vehicles (EVs) as fast prosumers
using price–based indirect control (ICo). Prices generated by such ICo

approach stimulate a desired reaction. By integrating such ICo into
the optimized AGC controller, fast prosumers can support frequency

1 See Section 12.7.
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stability. Stochasticity is a central aspect associated with EVs, due
to that human behavior drives such prosumer units. We consider a
modeled scenario with behavioral clusters in order to highlight the
importance of considering clustering approaches when addressing
such units. Uncertainty in the prosumer response is an important
metric that influences a grid operator’s decision to consider ICo of
such units for a given operating period or operating regime. Only
given manageable uncertainty of the prosumer’s price–response the
benefits of flexibility activation do prevail. Paper C considers linear
models of the prosumer response and estimates response’ uncertainty
through aggregation.

Paper D considers the prosumer response estimation problem us-
ing sparse and potentially nonlinear dynamic models in conjunction
with probabilistic parameter estimation techniques. For the latter,
we here use markov chain monte carlo (MCMC). By providing the
computationally intensive MCMC algorithm with a sparse candidate
model structure, we bound the sampling space in MCMC to a feasible
region. This results in an optimized Sys-ID pipeline yielding sparse and
potentially nonlinear dynamic probabilistic models. We can integrate
such models similarly as described in Paper C.

An RT–SCADA can use this information to decide whether the unit(s)
may be supportive during a given operation period. It can also decide
which RT controller may best treat the underlying system, for example
an MPC considering the parametric uncertainty by means of stochastic
model predictive controller (SMPC) principles.

Paper E presents a case study in which a co–simulation framework
triggers the execution of operational routines and establishes the
information exchange in–between the latter. This case study considers
grid-connected mode (GCM) of a MG test facility2.

5.1.2 Limitations and Future Research

Limitations
In context of microgrids (MGs) as systems with administrative and
technical limits we considered centralized MPC schemes in this thesis.
Prospects to address prohibitively complex problem sizes resulting
from large numbers of individual units do exist in form of aggregation
schemes and model order reduction techniques. Yet, decentralized
approaches may improve the overall performance over the more cen-
tralized approaches discussed in this thesis for large problem sizes.

We consider the Kalman filter in the classical form in context of
this thesis (see Section 3.4.1) assuming linear models and Gaussian
distributions in the estimation problem.

Related to both aspects above are operational situations with active
critical constraints. Likewise, in such situations, the performance of

2 See Section 12.7.
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the overall control architecture is critical. This entails, amongst others,
the accuracy of the assumed models, quality of process predictions
and quality in the estimation problem.

Due to that MGs are heterogeneous technical systems, case studies
for individual systems must examine such critical operating regimes
in order to optimize all relevant aspects accordingly. In context of this
thesis, solely Paper E documents a case study, which does not focus
on such critical operating regime.

Future Research
The case study considered in Paper E may be extended to islanded
mode (IM). In IM, the RT becomes more demanding and associated
issues should be addressed.

Along these lines we can identify the computationally efficient
orchestration of control layers within MG operation as a future research
problem. A related and important research question is to consider
MG control hierarchies as time–varying modular constructs, such that
varying operational conditions can be addressed in an optimal manner.
Such time–varying constructs may encompass all layers in the control
hierarchy — from different treatments of the SUC considering the
AC-OPF problem over distinct controllers tailored to the specific RT

problem(s) at a given time.
Explicit MPC formulations should be considered, both in context of

LMPC and NMPC. Offline computations should be exploited as far as
possible in order to reduce computational load throughout real–time
system operation.

Tuning of all control hierarchy layers using global efficiency metrics
and multi–objective optimization may enable to determine beneficial
controller parameterizations for different MGs and distinct operational
conditions.

An improved RT–SCADA should treat the problem of flexibility acti-
vation to greater detail. Distinct flexibility sources may exist within
an MG. The tailored activation of such flexibility by means of distinct
ICos can further improve the leveraging of flexibility potentials. This
results in flexibility–group’ specific prices. Furthermore — as for all
modules in MG control hierarchies — these controllers and associated
routines must function in an automatized and robust manner. While
underlying algorithms are well–developed, reliability must be proved
and potential issues associated with recipes to circumvent undesired
outcome.

The controllers proposed in Paper A and Paper B could be tested as
stochastic formulations in disturbance scenarios of varying degree of
severity. This could build on the co–simulation approaches outlined
in Paper E. Tube based MPC may be applied to IM operation, such that
robustness can be improved.
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Paper D may be extended to consider alternative candidate model
structures. Additionally, the derivation of probabilistic models from
the generated posterior distributions may be further investigated.

Finally, and most importantly, we must provide stability certificates
for all controllers in order to use them beyond test systems.
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Load Frequency Control in Microgrids using target
adjusted Model Predictive Control

Abstract — MPC has been applied in multiple ways to the Load Fre-
quency Control problem. In this study, the authors illustrate and compare a
target–adjusted MPC to a classical MPC formulation. The target–adjusted
approach is also posed as optimal control law. The target–adjusted MPC is
an alternative formulation that incorporates the system equilibrium into the
control objective. The derived alternative controller can be used as alternative
to classical MPCs.

Authors: Frederik Banis, Daniela Guericke, Henrik Madsen, Niels
Kjølstad Poulsen

Published in the IET RPG journal ([Ban+19]):

This paper is a postprint of a paper submitted to and ac-
cepted for publication in IET Renewable Power Generation
(RPG) and is subject to Institution of Engineering and Tech-
nology Copyright. The copy of record is available at IET
Digital Library

6.1 introduction

The increasing share of renewable energy system (RES) in the energy
production mix is associated with considerable power production
uncertainty. Remedies for the issue can be categorized into improve-
ments of infrastructure and improvements of system controls. An
approach enabling for the combination of the two categories is the con-
cept of microgrid (MG) which makes it possible to unlock the flexibility
required for integrating large shares of fluctuating RES. Coordinated
control of controllable units within the MG enables for leveraging of
synergies in an optimized manner, due to that the limited complexity
of the confined system allows for the implementation of online opti-
mization control strategies at a high degree of precision in the controls.
An example for such control strategy is model predictive control (MPC).
The system operation and resilience can then be improved amongst
others by inclusion of information of uncertain processes in the form
of forecasts, for example with respect to the uncertainty associated
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Table 6.1: Nomenclature. </> denotes unspecified units.

Symbol Description Unit

u? Optimal input sequence (Control variables) pu

ū Input reference trajectory pu

x System state /

x̂ One–step prediction of x /

x̃ State target /

ũ Control target /

d̂ Disturbance estimate pu

d̂e ε augmented disturbance estimate /

y Frequency deviation (Controlled variable) pu

ŷ One–step prediction of y pu

ym Grid frequency measurement Hz

ε Integrated output error Hz

εA, εB, εBd Multiplicative model–plant errors w.r.t. corresponding
model parameters

/

p̃ System equilibrium /

w State error: Wiener process /

v Measurement error: White noise process Hz

θ Model parameter vector /

f , σ, h Nonlinear model functions /

ω Standard Wiener process /

Ts Controller sampling time s

N Prediction horizon /

Lx, Ld Kalman gain w.r.t. states and w.r.t. disturbance /

A, B, Bd, Gs, C,
D

State Space System matrices /

Φx Free Markov parameters /

Γu Forced Markov parameters (controlled) /

Γd Forced Markov parameters (uncontrolled) /

G, h Objective inequality coefficients, bounds /

K Optimal Control feedback gain /

K∞ Lumped deduced disturbance gain /

Ku,∞ Disturbance gain to the system inputs pu

Kx,∞, Disturbance gain to the system states /

∆ f Frequency deviation with respect to nominal fre-
quency

Hz

Wz Output space precision penalization /

W∆u Rate of movement penalization /

Wū Input reference tracking penalization /

β Tuning term: Input reference tracking /

H Inertia based supply time s

D Load damping coefficient /
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with RES. Furthermore, this facilitates the use of the MG as a virtual
and flexible power plant which enhances the possibilities of unlocking
the flexibility required to comply with agreed market bids.

Designing controls for virtual power plants involves the setup of
a control structure with consideration of complexity and system dy-
namics. Incorporation of predictions of stochastic processes introduce
complexity due to the combinatorial explosion of manifold process out-
comes. In contrary, fast system control loops require prompt decision
making. Handling problem complexity in this setting and simultane-
ously providing sufficient sampling rates of well–posed control signals
constitute two major challenges associated with the optimized control
of MGs with high shares of RES. This problem complexity is usually
handled by the setup of a temporal control hierarchy — the problem
complexity is then managed by several specialized control routines
[Sch78]. See Figure 8.2 as illustration of this principle. Control hier-
archies are also considered in related areas such as ancillary services
provision [De +18; Mad+14].

Operational Planning
(EMS)

Uncertainty, Predictions
(Real–Time Redispatch)

Fast response at aggregation level
Frequency stabilization

Secondary control
(PID, Explicit MPC)

Primary control
(Plant level PL)

Static Problem

Dynamic Problem

C
en

tr
al

iz
ed

co
nt

ro
l

Figure 6.1: Exemplary hierarchy of controllers in the centralized control
scheme and their associated dominant focus. An operational
planning layer takes long–term predictions and complex system
requirements in the planning stage into account. The real–time
redispatch adjusts the system operation to altered requirements
during operation. Scope of this paper: The frequency stabiliza-
tion problem at the aggregated system level (centralized controls).

The control structure that evolved historically in the context of
frequency control is split into a primary frequency control loop, a
secondary frequency control loop and a tertiary frequency control
loop. The primary controls hereby serve for the stabilization of the
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system frequency after a disturbance within delay of a few seconds.
Secondary control initiates its compensation to such event in the
magnitude of some seconds to minutes. Tertiary control covers a
longer temporal window [Bev14; Kun94].

Table 6.3: Abbreviations.

RES Renewable Energy Systems

LFC Load Frequency Control

AGC Automatic Generation Control

MG Microgrid

MPC Model Predictive Control

OC Optimal Control

CL Closed Loop

MISO Multiple–Input Single–Output

SDE Stochastic Differential Equation

LQG Linear Quadratic Gaussian regulator

DLQR Discrete–time Linear Quadratic Regulator

GUROBI Optimizer, here used to minimize quadratic pro-
gramming (QP) problems

LAPACK Linear algebra package

GELSD Lapack routine for solving least–squares problems

c0 Classic quadratic regulator formulation

c1 Target adjusted regulator formulation

[PML17; PRG16; Han+14] are examples where the optimization
problem for the aggregated MG system is posed with a sampling rate
in the magnitude of multiple minutes. Consequently, they act on the
tertiary control layer. Stochastic Programming formulations are typi-
cally used for such problems, due their capability to treat uncertainty
associated with process predictions. [PMK13; SSJ09; Sha+17] pro-
vide literature overview over the topic of load frequency control (LFC)
and automatic generation control (AGC). For the secondary control
problem many solution approaches have been proposed, including
optimal control [Cal72; Bar73; FE70; ZTL13] or adaptive controllers
and robust controllers [Sir+10; WZW94]. Often, these approaches
are combined with state observers [YT86] and system identification
techniques [HKN00]. Proactive action in the LFC can improve its per-
formance and MPC is a control strategy enabling for it. Examples can
be found in [EIU16; Ven+08; SRA13]. In this paper we illustrate an
MPC formulation for LFC based on [PR03; GAM08]. To the best of
our knowledge this controller has not yet been presented for the LFC

problem. An optimal control (OC) using the same approach is also
presented. The control problem is stated here in the context of MG LFC
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but can be applied to different problems alike. This paper does not
consider a thorough treatment of the underlying control theory — it
can be obtained by consideration of, among others, [PR03; GAM08].

6.2 models

We consider the swing equation [Ben15; Bev14; Kun94] as our main
state in the controller model:

d
dt

∆ f (t) = − D
2H

∆ f (t) +
1

2H
∆Pmech(t) (6.1)

∆ f denotes the frequency deviation from nominal frequency, D is
the load damping coefficient and H the inertia based supply time.
∆Pmech is the power balance within the grid. The model maps the
overall power imbalance to an angular frequency deviation from the
nominal grid frequency by taking the approximated system inertia into
account. The swing equation is a means to express the lumped system
inertia and its parameters are both unknown and time–varying. Con-
sequently adaptive estimation techniques [UBA14] should be applied
in order to obtain a precise model for varying conditions.

The considered underlying processes are nonlinear and can be mod-
eled using Stochastic Differential Equations (SDEs) such as formulated
for example in [KMJ04]:

dxt = f (xt, ut, t, θ)dt + σ(ut, t, θ)dωt (6.2)

yk = h(xk, uk, tk, θ) + vk (6.3)

where t is the time variable; tk are sampling instants; xt is a vector
of system states with the main state being the frequency deviation
from nominal frequency ∆ f ; ut is a vector of input variables; yk is the
single output variable and equals the main state ∆ f ; θ is a vector of
parameters; f , σ and h are nonlinear functions; ωt is a standard Wiener
process and vk is a white noise process with vk ∈ N (0, S(uk, tk, θ)).
See [KMJ04] for further clarifications and details of this formulation.

All used system models are linearized, enabling the application of
linear control theory. The power balance is obtained by using lumped
system models — groups of actors sharing dominant dynamics and
requirements are hereby lumped together, resulting in a reduced
order model. See in this context [EIU16; Sax19]. The accepted loss
in precision of this reduced model compared to the untreated linear
system model is a design choice and has to be traded against the
gained reduction in computational load in the optimization step. The
linearized discrete time system model can be formulated as stated in
Equation 6.4, see [KMJ04].
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dxt|j
dt

= f0 + A(xt − xj) + B(ut − uj)+

G(dt − dj) + wt (6.4a)

yt = Cxt + et (6.4b)

x is the system state; u the controlled system input, d the uncon-
trolled system input (disturbance). w and e are process and mea-
surement noise respectively. This is a multiple–inputs single–output
(MISO) system if more than one unit in the MG are considered.

6.3 target adjusted dlqr

The feedback control law of the classical DLQR is commonly formu-
lated as

u?
k = −Kx̂k|k (6.5)

Whereas the target adjusted DLQR can be stated as

u?
k = K(x̂k|k − x̃k|k)− ũk|k (6.6)

K is hereby found by solving the discrete–time algebraic Riccati
equation [Van81; Lau78]. The equilibrium operating point of the
system can be stated in terms of the input and state of the system p̃. p̃
can be linearly related to the filtered lumped disturbance d̂:

p̃k|k = {x̃k|k , ũk|k} = K∞d̂k|k (6.7)

K∞ is a gain from a unit disturbance to one corresponding system
equilibrium point. Scaling by the estimate d̂ recovers another system
equilibrium corresponding to d̂. K∞ can be obtained using a least–
squares approximation, due to that the lumped system matrix M for
the considered systems is non–symmetric in the MISO case:

M︷ ︸︸ ︷[
A− I B

C 0

]
K∞︷ ︸︸ ︷[

Kx,∞

Ku,∞

]
=

[
Bd

0

]
(6.8)

This approach is outlined in [MR93; PR03] and related approaches
have been applied e.g. in [Huu+10]. Notice that the system of equa-
tions denoted in Equation 6.8 has to be solved once for each model
formulation. Bd hereby denotes the lumped modeled disturbance
dynamics. Mismatch of Bd related to the real system dynamics lead



6.4 model predictive regulators 89

to loss of controller performance. This loss of performance is then
to be compensated for by application of appropriate robustness and
adaptive control strategies which are not subject of this paper. For an
ideal Bd, this regulator formulation achieves asymptotic stability in
the controlled variable ∆ f .

6.3.1 Offset free frequency tracking

In order to drive the output f → f̄ , where f̄ is the goal frequency
and f̄ = fnom + ∆ f , the control law Equation 6.5 can be augmented to
include the integrated offset

εk+1|k = εk|k + ŷk|k − ȳk (6.9)

ŷk|k here is the output of the system model using the state estimate
x̂k|k and ȳk = ∆ f̄k, the goal frequency deviation. The target Equation
6.7 then becomes

p̃k|k = {x̃k|k , ũk|k} = K∞(εk|k + d̂k|k) (6.10)

6.4 model predictive regulators

6.4.1 Classic quadratic objective

The classic quadratic reference tracking objective can be stated as such:

min
u, k

J0 = ||Φx x̂k|k + Γuuk + Γdd̂k|k − ỹk||2Wz

+ β||uk||2W∆u

+ (1− β)||uk − ūk|k||2Wū
(6.11)

Notice that we could neglect the control action regularization term
||uk||2W∆u

in the case where we use a Kalman filter as smoothing compo-
nent in the control loop. β is a tuning term used to gradually move the
controller from regulatory behavior without input reference tracking
(β = 1) to regulatory behavior with input reference tracking (β = 0).
If offset–free control in the controlled variable ∆ f is aimed for, d̂ can
be augmented with the integrated error in the controlled variable ε.
Then, de is used instead of d. In this case, ỹ = 0. See for example
[Huu+11].

d̂e,k|k = d̂k|k + εk (6.12)

εk+1|k = εk|k + ŷk|k − ȳk (6.13)
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Then

ỹk = 0 (6.14)

Alternatively, offset–free control can be achieved by using the follow-
ing integrating term in the objective function:

ỹk+1|k = ỹk|k + ŷk|k − ȳk (6.15)

A mismatch in the disturbance–associated model dynamics Γd can
lead to loss of performance in the controlled variables.

6.4.2 Target adjusted quadratic objective

The target adjusted approach discussed in Section 6.3 can be applied
in the MPC framework using

min
u, k

J1 = ||Φx(x̂k|k − x̃k|k) + Γu(uk − ũk|k)− ȳk||2Wz

+ β||uk − u?
k−1||2W∆u

+ (1− β)||uk − ūk|k||2Wū
(6.16)

Again β denotes a tuning term used to switch the controller from
regulatory behavior without input reference tracking to regulatory
behavior with input reference tracking. Hereby, the target Equation 6.7
is used. A similar regulator implementation can be found in [Ban+18].

6.4.3 Constraints

Hard input constraints and ramp–rate constraints for both MPCs can
be formulated as

umin,k ≤ uk ≤ umax,k (6.17)

∆umin,k ≤ ∆uk ≤ ∆umax,k (6.18)

Gk uk ≤ hk (6.19)

[JHR11] include examples of hard input constraint and ramp–rate
constraint formulations.

6.5 state observer

We estimate the residual d̂ using a Kalman filter following the formu-
lations given in [PR01; PR03]. The augmented system model with
integrating disturbance estimate and filter equations is then given by:
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[
x̂k+1|k
d̂k+1|k

]
=

[
A Bd

0 I

] [
x̂k|k−1

d̂k|k−1

]
+

[
B

0

]
uk+

[
Lx

Ld

]
(ym,k − Cx̂k|k−1 − Cdd̂k|k−1) (6.20)

where ym is the local grid frequency measurement. This is the one–
step predictor of both estimated state x̂ and disturbance d̂. Notice that
d̂ hereby is a lumped disturbance capturing any mismatch between
desired and effective input–output relation. As improvement to this
approach an Extended Kalman Filter can be used as stated for example
in [KMJ04], in order to achieve faster convergence and to estimate the
uncertainty Pd of the disturbance as well.

The performance of this filter affects the control performance. See
[Huu+10] for additional applications.

6.6 predictions

The classical MPC formulation stated in Equation 6.11 incorporates the
disturbance prediction sequence d̂k+N|k via the disturbance impulse
response coefficients Γd. The discussed target adjusted DLQR and
MPC formulations, Equation 6.5 and Equation 6.16, do not have this
capability. However, they can incorporate an expected future state of
the disturbance process d̂k+j|k. The predictive performance of using
this approach versus consideration of the full disturbance prediction
sequence consequently is lower in most cases.

6.7 tuning

For the discussed controllers — as generally for OC and MPC — a
multitude of tuning opportunities do exist. Tuning is then most
commonly a recursive process in which the controlled parameters
are adjusted such as to comply for example with network standards
[Eur13].

Soft output constraints are one means to adjust the CL performance.
In the context of the LFC problem, soft output constraints allow, for
example, for tailoring of the objective in order to more aggressively
aim for frequency stabilization outside of the specified frequency
band. For soft output constraints and a MISO system, a set of 2N slack
variables are introduced into the optimization problem, N being the
prediction horizon in the presented control objectives. This leads to a
computationally more demanding formulation. See e.g. [GJ09].
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Another important CL system property for the LFC problem is the
capability to balance between variance in the controlled variable and
variance of the control variables. The latter is often referred to as
control effort. The control effort hereby is to be tuned in order to
distribute the regulatory share and balance the wear and tear in the
set of system actors, see e.g. [Huu+10]. As discussed in [EIU16], the
control effort tuning can be augmented to include economical weights
— prices which inform the control law about how to distribute the
control effort. Due to the mixing of operational and economical con-
siderations in the resulting objective, this is a sub–optimal treatment
of economical aspects.

When using controllers within a control hierarchy, input reference
tracking is required. The corresponding tracking precision selection is
adjusted by tuning of the penalization matrix Wū. Both W∆u and Wū

are hereby selected by some tuning method: Genetic Algorithms (GA)
[PY13] is an example for such method.

As generally in context of MPC, online system identification tech-
niques, incorporation of adaptive measures and robustness consider-
ations should be considered in order to compensate for unmodeled
uncertainty. Such methods may be applied for the discussed target
adjusted controller as well.

6.8 simulations

Consider the test system as shown in Equation 6.21 and the constraints
given in Equation 6.22. It consists of

• Swing equation parameterized with D = 1.5 and H = 6.0 as
stated in Equation 7.1

• Actors (control inputs U0, U1, U2 respectively):

– Tie–line dynamics

– Two generators including turbine and governor dynamics

then Control inputs are chosen based on the documented control
laws. The system exposes the poles and zeroes illustrated in Figure
??. The dynamics are selected in order to reflect a simple multi–actor
system with a reasonable range of dynamics, see Table 6.4.

All systems are discretized using the zero–order hold approach
with sampling rate of 2 seconds. The sampling rate here is chosen
arbitrarily. The online optimization problems are solved using the
GUROBI solver [Gur18]. The solution to the least-squares problem
is obtained using the LAPACK GELSD driver [And+99]. Load data
time–series is obtained from [18]. The classical MPC stated in Section
6.4.1 is in the following referred to as c0, the target adjusted MPC
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A =




0.7165 0.0265 0.0165 0.2146 0.0087 0.1125 0.0775

0.0 0.7165 0.0 0.0 0.0 0.0 0.0

0.0 0.0 −0.0066 −0.0825 0.0 0.0 0.0

0.0 0.0 0.066 0.8253 0.0 0.0 0.0

0.0 0.0 0.0 0.0 −0.0036 −0.0454 0.0

0.0 0.0 0.0 0.0 0.0727 0.9085 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.1353




(6.21a)

B =




0.0297 0.0173 0.0089

1.7008 0.0 0.0

0.0 0.066 0.0

0.0 0.1397 0.0

0.0 0.0 0.0727

0.0 0.0 0.1464

0.0 0.0 0.0




(6.21b)

C =
[
1.0 0.0 0.0 0.0 0.0 0.0 0.0

]
(6.21c)

D =
[
0.0 0.0 0.0

]
(6.21d)



−0.5

0.0

0.0


 ≤ u ≤




0.5

0.2

0.3


 (6.22a)



−0.02

−0.01

−0.01


 ≤ ∆u ≤




0.08

0.005

0.0025


 (6.22b)

stated in Section 6.4.2 is referred to as c1.

We aim to test for:

• Whether c1 is capable of stabilizing the system frequency

• Whether constraints and penalization matrices have the desired
effect on the CL system for c1

• How c1 compares to c0 in terms of sensitivity to model uncer-
tainties

Notice that in all presented simulations no disturbance predictions
are used. Given the presence of uncertainty compensated predictions,
the response characteristics can be improved as a result to the proactive
action of the two discussed controllers.
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Figure 6.2: Poles–Zeroes map of the considered test system (swing equation
Swing, tie–line dynamics Tie-Line, generator dynamics 1 and 2,
Gen. 1 and Gen. 2 respectively). Both Gen. 1 and Gen. 2

have a pole at the origin and a zero in the left–half plane.

6.8.1 Disturbance rejection

c1 is applied to the test system Equation 6.21 with control effort
penalization W̃∆u as stated in Equation 6.23 below and without enabled
input reference tracking term. W̃∆u are the first nu × nu elements of
W∆u.

W̃∆u =




1.0 0.0 0.0

0.0 0.05 0.0

0.0 0.0 1.0


 (6.23)

The second generator (U1) resulting from W∆u is penalized the least
and is consequently most active in terms of control effort. See Figure
6.3. This penalization is exemplary for a real application where the
operation of selected units is to be maintained mostly constant. Unit
U1 saturates in the up–ramp event on the ramp–rate constraints and
partly on the hard input bounds.

6.8.2 Input reference tracking

Another important property for the LFC problem is the tracking of
input–references, illustrated in Figure 6.4.

All three units receive individual input trajectories with step changes
applied at two time instances throughout the experiment. As distur-
bance the trajectory depicted in Figure 6.3 is used. For the time–range
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Figure 6.3: Target adjusted MPC (c1). Uppermost graph: Frequency de-
viation from reference (main state and single output), middle
graph: Control input deviations from reference, lowermost graph:
disturbance deviation from reference (grid load). The control
effort penalization depicted in Equation 6.23 lead to the stronger
utilization of U1. Saturation on the ramp–rate constraints and
hard bounds can be observed for U1.
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Table 6.4: Test system step–response characteristics obtained using MAT-
LAB.

Step–response
characteristic /
unit

Swing Tie–line Gen. 1 Gen. 2

Rise time (s) 18.00 12.00 22.00 44.00

Settling time (s) 32.00 24.00 40.00 80.00

Settling min. (p.u.) 0.6119 0.9030 0.9086 0.9089

Settling max. (p.u.) 0.6667 1.00 1.00 0.9999

Overshoot (%) 0.00 0.00 0.00 0.00

Undershoot (%) 0.00 0.00 0.00 0.00

Peak (p.u.) 0.6667 1.00 1.00 0.9999

Peak time (s) 138.00 138.00 158.00 198

350-600 an ill–posed trajectory is given to the controller: the sum-
mation of active power injection requests does not match the actual
load. The controlled variable is nevertheless maintained close to its
reference due to the chosen tracking penalization term Wū = 1e−2.
For increasing Wū, the tracking precision increases. Consequently, the
performance in ∆ f deteriorates stronger for ill–posed input reference
trajectories with increasing Wū.

0.02

0.00

f /
H

z

Yhat
Ym

100 200 300 400 500 600 700
Timesteps

0.0

0.1

0.2

0.3

0.4

P 
/ p

.u
.

U0
U1
U2
Ubar0
Ubar1
Ubar2

Figure 6.4: Input reference tracking with c1 and Wū = 1e−2. The reference
trajectories given from timestep 350-600 are a mismatch to the
actual disturbance. As disturbance the trajectory given in Figure
6.3 is used.
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6.8.3 Parametric system model mismatch

In Figure 6.5, c0 and c1 trajectories in ∆ f are compared for different
multiplicative model–plant errors εA, εB, and εBd . The disturbance
trajectory given in Figure 6.3 without noise term is used to excite the
system. It is to be noted that the sensitivity in the control effort penal-
ization term W∆u differs for the two controllers. Additional differences
in the sensitivity to available means to tuning apply. Accordingly,
trajectories should be considered and compared in qualitative rather
than quantitative manner. Furthermore, only a selection of lumped
multiplicative parametric mismatches are considered here in order
to exhibit some differences in the two considered controllers. For all
considered experiments the control laws remain asymptotically stable
in ∆ f .

For εA = 1.0 the response of c1 is less aggressive. The opposite is
true for εA = 0.9. c1 oscillates for εA = 0.8, the control law is then
not sufficiently damped. The stabilization of c0 is slower for most of
the corresponding trajectories, see the central graph in Figure 6.5. A
dedicated plot for the mismatch in G is neglected here, due to that the
resulting response characteristics are similar as for the already given
multiplicative mismatch in B in the central graph. For εBd = 0.5, c0
overshoots. When the lumped filter disturbance dynamics Bd exceed
the system disturbance dynamics G by a factor of 1.5 as shown in the
lower–most graph, controller c1 exhibits a faster response.

6.9 discussion

The target adjusted MPC c1 based on LQG is an alternative solution
to the LFC control problem. It exposes different properties compared
to the classical MPC formulation c0. The response to perturbations in
form of disturbance steps is comparatively damped; a characteristic
that is non–desirable. As shown in Figure 6.5, tuning of the Kalman
Filter can alter the response characteristics and lead to a more pro-
nounced response in comparison to the classical MPC formulation c0.
c1 in all considered simulations stabilizes ∆ f unidirectional, that is,
asymptotically from a single deviation direction. c0, at least for the
non–mismatch scenario, exposes the slight overshoot typical to OC

and MPC — an often desirable property.
c1 has only predictive capabilities by using the expected disturbance
considering the optimization horizon E(d̂k+N|k). c0 in contrast eval-
uates a potentially available disturbance prediction sequence d̂k+N|k
directly within the objective function and consequently can achieve
higher precision in the control decisions. Input reference tracking is
successfully demonstrated in Figure 6.4, convergence to the imposed
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Figure 6.5: Comparison of multiplicative lumped parametric mismatches
of the free system response coefficients A (εA), forced system re-
sponse coefficients B (εB) and lumped filter disturbance response
coefficients Bd (εBd ). The disturbance trajectory given in Figure
6.3 without noise term is used.



6.10 conclusion 99

references hereby can be achieved with a chosen precision using the
input reference tuning term Wū.

6.10 conclusion

We present an alternative optimal control and model predictive control
formulation for the LFC problem. To the best knowledge of the author,
these control law formulations are applied in this control problem for
the first time. The formulation is compared to a classical MPC. The
approaches incorporate an approximated system equilibrium into the
controller objective and gain from an estimated lumped disturbance.
We show that the derived MPC controller can be used to stabilize the
frequency using a three–actor system and that it can be used to track
input references. The proposed MPC formulations may be utilized
within existing control hierarchy concepts.

It is shown that the proposed formulation does not expose advan-
tages compared to the classical MPC. However, it can be considered an
alternative in approaching the problem and means to comparison of
different regulator formulations and associated properties.
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Utilizing flexibility in Microgrids using Model Pre-
dictive Control

Abstract — We derive a control strategy for the operation of Microgrids
(MGs) with high shares of Renewable Energy Sources involving MPC. By
combining the MPC with an Energy Management System (EMS) utilizing
stochastic programming techniques and a sufficiently large temporal opti-
mization window we improve the point of operation of the system regarding
both short and long–term operational aspects. We aim for a system operation
that allows for the utilization of the MG as a Virtual Power Plant. In this
work we focus on the predictive controller design and the incorporation of
information derived in the EMS layer.

Authors: Frederik Banis, Daniela Guericke, Henrik Madsen, Niels
Kjølstad Poulsen

Published in the Proceedings of Mediterranean Conference on Power
Generation, Transmission, Distribution and Energy Conversion ([Ban+18]).
Presented at the MedPower 2018 conference.

7.1 introduction

The increasing share of renewable energy system (RES) in the energy
production mix is associated with considerable power production un-
certainty. Remedies for the issue can be categorized into improvement
of infrastructure and improvement of system controls. An approach
combining the two is the concept of Microgrids (microgrids (MGs))
representing small grid compartments at the lower voltage level. Com-
bined control of controllable units within the MG enables utilization
of this system as virtual power plant (VPP). The system operation
and resilience of the VPP can be improved by inclusion of informa-
tion of uncertain processes, such as uncertainties associated with RES.
Designing controls for VPPs involves the setup of a control structure
with respect to complexity and system dynamics. Incorporation of
uncertain process predictions introduces complexity due to the com-
binatorial explosion of manifold process outcomes. A central system
dynamics control problem is frequency stabilization. This is especially
relevant considering the lower available aggregated inertia within MGs

[UBA14; Ben15]. Handling problem complexity in this setting and
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simultaneously providing sufficient sampling rates of optimal control
signals constitute two major challenges associated with the control of
MGs with high shares of RES.

In this work we focus on the frequency stabilization problem while
assuming an energy management system (EMS) formulated as stochas-
tic unit commitment problem. We set up a lumped rotational system
model in an model predictive control (MPC) direct control strategy
balancing production and consumption. We derive the MPC in the so-
called velocityform incorporating dynamic programming approaches
in combination with input sequences tracking and inclusion of op-
erational cost at MPC level. Using the input sequence tracking we
take imposed input sequences uEMS from an EMS into account. In-
put sequences hereby are power production or power consumption
references for the plants in the VPP, referred to as the portfolio.

Expansion planning and maintenance scheduling

Energy Management System
(Stochastic Program)

Optimized control
(MPC)

Basic control
(PI, PID, Explicit MPC)
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(Plant level PL)
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Figure 7.1: Hierarchy of controllers. We focus on the highlighted Model
Predictive Control layer. This control layer optimizes the lumped
system dynamics and we impose it on top of the basic controls
driving each individual plant. See also [Hal+14].

Several publications related to control of MGs with emphasis on
RES assume plant level controls cope with system dynamics such that
aggregated system controls are left with steady state system behavior.
Examples can be found in [PRG16; Han+14; Com+16; KS12]. The
scope of this paper is the case where aggregated system controls
are central to the overall system dynamics control problem. Related
approaches in the area of Grid Frequency Control can be found in
[SRA13; RAF03]. However they do neglect inclusion of long-term
forecasts of uncertain system drivers.
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The work [Com+16] as example does cover long-term predictions.
The sampling time at aggregated control level of 15 minutes however
go along with the assumption of basic controls covering essential
dynamics and that these controls stabilize the system on inputs as
assigned by higher level controls.

7.2 methodology

7.2.1 Methodology

We consider two major control layers in the controller hierarchy. See
Figure 8.2 on page 126.

1. Aggregated system control (VPP)

a) EMS layer

b) MPC layer

2. Basic control (PID, MPC, . . . )

For simplicity we refer to the combined EMS+MPC controller at VPP

level as the VPP controller.
The system dynamics are covered by the MPC and the basic control

layer. For the MPC layer and its main objective of frequency stabiliza-
tion we require sampling rates in the magnitude of a few seconds in
order to capture critical dynamics. Achievable sampling rates depend
on the complexity of the optimization problem.

Incorporation of forecasts is of superior importance when aiming
for high shares of uncertain RES within the VPP. We consider hereby
long-term and short-term forecasts of uncertain processes. Long-term
forecasts are handled by the EMS layer and should yield an input
sequence uEMS passed to the MPC layer allowing for achievement of
power balance with sufficiently high confidence. As a result from this
requirement, long-term forecasts need to suffice in terms of prediction
horizon, temporal resolution and considered scenarios. We assume
the VPP participates in Day-Ahead market and hence considers a long-
term prediction window covered by the EMS layer of minimum 24 hour
with hourly granularity. The input sequence uEMS is an approximation
of the optimal input sequence given information available to the EMS

layer. Upon realization of uncertain processes deviations from the
anticipated realizations occur. This forecasting error is treated at the
MPC layer by allowing for deviations from the input sequence uEMS.
Availability of operational costs to the MPC layer enables for informing
this decision in economical means. The MPC layer handles short-term
forecasts of a time span well below one minute. Short-term forecasts
allow for accounting for disturbances prior to passing through the
system and being visible via excelled frequency deviations.
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Table 7.1: Nomenclature. </> denotes not specified units.

Symbol Description Unit

Variables <40>

u? Optimal input sequence pu

uEMS Optimal input sequence derived in EMS layer pu

Φx N-step free system response coefficients /

Γu N-step forced system response coefficients /

Γd N-step disturbance system response coefficients /

G, h Objective inequality coefficients, bounds /

Π Objective terms: input reference tracking and op-
erational cost

/

x, x̂ System state, one-step prediction /

x∞ Disturbance corrected system state /

w, v Process noise, measurement noise /

d, d̂ Uncontrollable inputs (disturbance), estimate /

y = ∆ f , r̂ Frequency residual, inferred residual Hz

Pch, Pdis Storage charge, discharge power kW

Pmech Power balance within grid pu

L Kalman gain /

c Operational cost Price/kW

σ2, Σ2 Variance /

Parameters

A, B, Bd, G, C,
D

State Space System matrices /

N Controller prediction horizon -

τs Controller sampling time s

H Inertia based supply time s

D Load damping coefficient -

R Governor speed droop Hz/pu

Pnom Nominal grid power kW

α, β, γ Objective function weighing factors -

Names

PCC Point Of Common Coupling

PL Lowest considered plant level in hierarchy
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7.2.2 Model Predictive Control layer

7.2.2.1 Main system model

We consider the swing equation [Ben15; Bev14]:

d
dt

∆ f (t) = − D
2H

∆ f (t) +
1

2H
∆Pmech(t) (7.1)

∆ f denotes the frequency deviation from nominal frequency, D is
the load damping coefficient and H the inertia based supply time.
∆Pmech is the power balance within the grid. This is a lumped model,
where we consider average and aggregated values only. The model
maps the overall power miss-match to an angular frequency deviation
from the nominal grid frequency taking the approximated system iner-
tia into account. The considered underlying process is nonlinear in the
sense that both the produced mechanical power and consumed power
are nonlinear processes. ∆Pmech(t) as sum of the two consequently is
nonlinear.

We model the production and consumption side as linear system
models, approximating the underlying non–linear processes. For
altered operational conditions we may need to relinearize the pro-
cess model in order to maintain accuracy of the linearization within
sufficient limits.

For deriving the regulator, we aim for a discrete time linear state
space description of the process in difference form, where we consider
deviations with respect to a stationary point. As we consider a discrete
time simulation setup, we yield the discrete time state space descrip-
tion using a zero-order hold approximation. We hereby assume that
this represents the process with sufficient accuracy.

xt+1 = Axt + But + Gdt + w (7.2a)

yt = Cxt + v (7.2b)

xt as the system state hereby includes the frequency deviation from
50 Hz as the main state.

7.2.2.2 Storage model

For storage components within the system we formulate time varying
constraints for the regulator derived in following sections of the paper.
We keep the storage process innovation separated from the main
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regulated system model described in Section 7.2.2.1 in order to avoid
computational issues. We consider the conditional charge quantities:

∆Qch,k =





u?
sto,kPnom

Ts
3600 if u?

sto,k ≥ 0

0 if u?
sto,k < 0

(7.3a)

∆Qdis,k =





0 if u?
sto,k ≥ 0

u?
sto,kPnom

Ts
3600 if u?

sto,k < 0
(7.3b)

Note that we formulate all optimal inputs, including the optimal
sequence for the storage u?

sto,k, in the per unit system in relation to the
nominal grid power Pnom. The storage innovation is given by:

Qsto,k+1 = Qsto,k + ηch,k∆Qch,k + ηdis,k∆Qdis,k (7.4)

We then update the general VPP control problem constraints with
the updated degrees of freedom for the storage. Both Equation (7.5)
and Equation (7.6) enter the regulator objective function as part of the
constraints Equation (7.11) on the next page.

hsto,k =

[
SoCmax −Qsto,k

−SoCmin + Qsto,k

]
(7.5)

With the left-hand side:

Gsto,k =

[
−ηch,kPnomTs/3600

ηdis,kPnomTs/3600

]
(7.6)

7.2.2.3 Regulator

We state frequency regulation as deviation minimization problem
consisting of the infinite horizon terms J∞ and the dynamic optimiza-
tion terms JDO. The infinite horizon problem denotes the distance of
the stabilizing couple {uk, x̂k} from the stationary point {u∞,k, x∞,k}
mapped into the output space:

J∞,k = Φx(x̂k − x∞,k) + Γu(uk − u∞,k) (7.7)

Dynamic programming terms enable offset free control also when
constraints are active on parts of the VPP:

JDO,k = uk − u?
k−1 + γW∆u∆uk (7.8)
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Including JC,k we modify the portfolio constitution taking both input
reference sequences uEMS and operational costs into account:

JC,k = (1− γ)Πk (7.9)

With W∆u we introduce weights on the dynamic terms. The dynamic
optimization weight W∆u is one major tuning weight for modifying
the controller behavior in this setting. Increasing this weight leads to
higher control effort and better performance in the controlled variable
when activating the least-squares term Πk by choosing γ 6= 1. Lower-
ing γ results in increasingly dominant incorporation of information
specified in Πk. We then consider the objective:

min
u,k

||J∞,k + JDO,k||2 + JC,k (7.10)

s.t. Gkuk ≤ hk (7.11)

The inequalities Equation (7.11) are further discussed in Section
7.2.2.3.

stationary point: We aim for retrieval of the system equilibrium
incorporating both the filtered output residual d̂ and the predicted
output residual f̂y. The former relates to the system output in the past
whereas the latter relates to the system output in the future.

We estimate the residual d̂ using a Kalman filter following the
formulations given in [PR01; PR03]. The augmented system model
with integrating disturbance estimate and filter equations is then given
by:

[
x̂k+1|k
d̂k+1|k

]
=

[
A Bd

0 I

] [
x̂k|k−1

d̂k|k−1

]
+

[
B

0

]
uk+

L︷ ︸︸ ︷[
L1

L2

]
(yk − Cx̂k|k−1 − Cdd̂k|k−1) (7.12)

This is the one-step predictor of both estimated state x̂ and distur-
bance d̂. Notice that d̂ hereby is a lumped disturbance capturing any
miss-match between desired and effective input-output relation. We
may employ a dynamic ordinary Kalman filter in order to achieve
faster convergence, resulting in L being dynamic. Aiming for stabi-
lizing the system using the estimated disturbance we can utilize the
system model to solve for the stabilizing gain g∞ [PR01; PR03].

M︷ ︸︸ ︷[
A− I B

C 0

]
g∞︷ ︸︸ ︷[

gx,∞

gu,∞

]
=

[
Bd

0

]
(7.13)
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The lumped system matrix M for the considered system is non-
symmetric, therefore we derive the solution to Equation (7.13) on the
previous page using a least-squares approximation.

Using g∞ and the filtered disturbance d̂k|k we achieve offset free
control in the unconstrained case by retrieving the stabilizing couple
p∞.

p∞,k = g∞ ⊗ d̂k =

[
x∞

u∞

]

k

(7.14)

This introduces feedback from the frequency measurement. Notice
that the controller performance directly relies on performance of the
utilized Kalman filter and availability and quality of the frequency
measurement. In order to include forecasts we modify Equation (7.14)
to utilize the expected frequency residual.

p∞,k = g∞ ⊗ E(P(rk|Υk)) (7.15)

The time varying functional Υk takes the uncertain filtered residual
d̂, σd,k alongside uncertain residual prediction f̂y,k, Σy,k into account.

Υk = f (d̂k, σd,k, f̂y,k, Σy,k) (7.16)

Υ expresses our belief in the current relevance of both d̂k and f̂y,k.
The uncertain disturbance states d̂PL,k, ΣPL,k at plant level PL can be
mapped to the output space at VPP level. The error introduced by this
linear operation depends on the accuracy of the linearized model M.
Instead of a one-step prediction we use an N–step prediction allowing
the controller to utilize the information of entering fast disturbances
prior to their actual impact on the system frequency.

f̂y,k+N−1|k = Γdd̂PL,k (7.17)

σy,k+N−1|k = (ΓdΣPL,k)
TΓdΣPL,k (7.18)

One approach to the formulation of Υ is to infer the expected
residual r̂ by weighing both residuals taking uncertainty into account:

r̂ =
σ2

y,k+N−1
1/σ2

y,k+N−1 + 1/σ2
d,k

f̂y,k+N−1

+
σ2

d,k
1/σ2

y,k+N−1 + 1/σ2
d,k

d̂k (7.19)
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dynamic programming problem:

JDO,k =

T0︷ ︸︸ ︷
uk − u?

k−1 +

T1︷ ︸︸ ︷
W∆uγ∆(uk − u?

k−1) (7.20)

As stage cost term we formulate T0, requiring that the minimizer
u?

k remains close to u?
k−1. Choosing u?

k−1 as the last implemented
input sequence level allows for off-set free control even when hard
constraints on part of the portfolio are active. Choosing u?

k−1 as the
last solution introduces bias leading to over-compensation of the
disturbance rejection behavior of the controller. This can be beneficial
when the disturbance process exhibits considerable auto-correlation.
The cost-to-go term T1 introduces ramp-rate penalization adjusted by
W∆u.

input reference tracking and operational cost: For γ = 1
we consider a purely operational objective from the perspective of
the MPC layer, neglecting JC. For 0 ≤ γ < 1 we consider operational
modes informed by JC. Πk considers input references uEMS and opera-
tional cost scaled by the relative weights α and β, see Equation (7.21).
We hereby take both general operational cost and input reference
deviation costs into account.

Πk = α||
T2︷ ︸︸ ︷

uk − uEMS,k ||2W∆u
+

β( || c̃kτsuk︸ ︷︷ ︸
T3

||2 + || c̃∆,kτs(uk − uEMS,k)︸ ︷︷ ︸
T4

||2W∆u
) (7.21)

where: α + β = 1

T2 incorporates input reference tracking. T3 and T4 denote general
operational cost and input reference deviation costs respectively. c̃k
and c̃∆,k are hereby normalized unit production prices.

constraints: Hard input constraints and ramping constraints are
updated based on underlying system conditions and control require-
ments imposed by the EMS-layer.

Gkuk ≤ hk (7.22)

We optimize over deviations encompassing the positive and negative
domain. Therefore we require only the first optimal input solution
to satisfy the ramping constraints. Imposing these constraints for the
whole sequence uk+N−1|k results in numerical issues.

∆umin ≤ u?
k+1|k − u?

k|k ≤ ∆umax (7.23)
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7.2.2.4 MPC supervisory system

The regulator formulation outlined in Section 7.2.2.3 as main ob-
jective aims for frequency stabilization using continuous solution
spaces. Complex operational requirements such as minimum up-
time or down-time for parts of the portfolio are to be handled by
the EMS layer. The supervisory system constitutes a system layer exe-
cuted parallel to the MPC layer. The supervisory system dynamically
reformulates the MPC problem such that it enforces operational re-
quirements. Constraints in the MPC optimization problem are as a
result dynamic (see Section 7.2.2.3).

7.2.3 Energy Management System layer

For thoroughness we cover the EMS layer briefly below. It can be
formulated as a stochastic program with two stages, where first stage
decisions are:

• Market bidding

• Switching events

Switching events hereby may depict i.e. minimum power production
level of generators.

The second stage considers the stochastic processes which may
be clustered depending on the given correlation structure. We may
consider the variables:

• Generated power by conventional generators

• Curtailment of RES

• Storage charging/ discharging

This optimization problem then takes the general form of a two
stage stochastic problem—or stochastic unit commitment problem—
see [CCM10; Pan+16]:

min cTx + ∑
ω∈Ω

π(ω)q(ω)Ty(ω) (7.24)

s.t. Ax = b (7.25)

T(ω)x + W(ω)y(ω) = h(ω) ∀ω ∈ Ω (7.26)

x ≥ 0 (7.27)

y(ω) ≥ 0 ∀ω ∈ Ω (7.28)
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7.3 results

For an exemplifying simulation scenario we set up the components
listed below. See Table 7.2.

• Thermal generator 1

• Thermal generator 2

• Storage

• Main grid interaction (PCC)

• Wind Power Plant

– Disturbance 1: Wind speed realization

– Input 1: Wind Power Plant curtailment

We choose γ = 1/4 and consequently allow the MPC layer to con-
siderably deviate from imposed set points uEMS. We parameterize
the portfolio constitutional term with α, β = .2, .8. As sampling rate
we choose 2 seconds or 1/2 Hz. The simulation is arranged using
the python (version 3.4) programming language alongside associated
packages. The GUROBI (version 7.0) solver is used for the solution to
the quadratic programming problems.

We examine the MPC layer performance (see Figure ??) when re-
quired to follow input references uEMS from an EMS layer and observe:

• uems tracking

• Disturbance rejection

• Constraint satisfaction

The load D0 initializes at -0.0 p.u. ramping up to -0.6 p.u.. The
controlled inputs shown in the central graph adjust accordingly in
order to stabilize the controlled variable in the upper graph on its
reference value.

Until timestep 1500 the two thermal generators receive input ref-
erence values of 0.15 p.u. whereas the storage receives an input
reference of 0.35 p.u.. The tie line U3 supports frequency stabiliza-
tion even though its reference of 0.0 p.u. due to the tuning value γ

chosen such that the MPC layer retains degrees of freedom for its main
objective. At timestep 1000 the operational costs are adjusted and are
higher from there on for the first thermal generator U0 compared to
U1. This results in lowered utilization. From timestep 1500 on the EMS

adjusts input reference values. The storage U2 can follow its requested
reference until its charge level depletes. Consequently the MPC layer
requires other plants to ramp up in order to compensate for this loss
of positive power balance contribution. At timestep 2000 random
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Table 7.2: :
Simulation scenario parameterization.

Component Parameter Value

Rotational system H 6s

D 1.5

Load Pl = Niid(µl , σ2
l µl = −0.6 pu, σ2

l =

0.05 pu
Gen. Thermal 1 Y(s)/U(s) 1/(.08s2+1.08s+1)

(U0) umin, umax 0.0, 0.5

∆ulower, ∆uupper −0.005/s, 0.0006/s

R 3 Hz/p.u.

Gen. Thermal 2 Y(s)/U(s) 1/(.08s2+1.08s+1)

(U1) umin, umax 0.0, 0.5

∆ulower, ∆uupper −0.005/s, 0.005/s

R 3 Hz/p.u.

Storage Y(s)/U(s) 1/(6s+1)

(U2) umin, umax -0.25, 0.25

∆ulower, ∆uupper −0.01/s, 0.005/s

ηstat., ηch., ηdis. 5%/h, 92 %, 92 %

Tie line interaction Y(s)/U(s) 1/(0.6s+1)

(U3) umin, umax -1.0, 1.0

Wind Power Plant Y(s)/U(s) 1/(20s+1)

(U4, D1) umin, umax .0, 10% Pg,nom

Windspeed [SP16] 12.5− 13.5 m/s
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Figure 7.2: MPC controller performance: Tracking of reference on the con-
trolled variable, disturbance rejection and tracking of input refer-
ence values uEMS from an EMS layer. Inputs: Thermal Generator
1 (U0), Thermal Generator 2 (U1), Storage (U2), Tie line interaction
(U3), Wind Power Plant curtailment (U4). Disturbances: Load (D0),
Wind power plant production (D1).

noise on the disturbance D0 is activated. From timestep 3000 on the
EMS adjusts input reference values uEMS anticipating the ramping up
available wind power D1. The input reference adjustment scheduled by
the EMS however comes too early at timestep 2750, requiring the MPC

layer to utilize its given degrees of freedom to drive the system such
that frequency stabilizes. We can observe the satisfaction of imposed
ramping constraints on the thermal generator U0. After the ramping
up of the wind power plant D1, inputs convergence towards the given
input reference values. The storage U2 is request to charge with a
negative power contribution of -0.2 p.u.. A forecasting error hereby
yet again requires the MPC layer to deviate to some degree from its
given input reference. Around timestep 3300 the supervisory system
adjusts the constraints of the objective function such that thermal
generator U1 is shutdown.

As we observe, both tracking of the reference imposed on the con-
trolled variables, disturbance rejection and tracking of imposed refer-
ence values on the inputs in this scenario work as intended.

7.3.1 Conclusions

In this work we outline a MPC direct control strategy for the frequency
stabilization in Microgrids with high penetration of Renewable Energy
Sources. We prepare the MPC covering estimated disturbance rejection
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and short-term disturbance forecasts. The MPC incorporates long-
term probabilistic forecasts indirectly by tracking of informed input
sequences uEMS derived in an Energy Management System layer. We
formulate the objective function such that deviations from uEMS can
reflect operational costs.

For future improvements the number of controlled variables may
vary. Achievable sampling rates consequently can be higher when
the control problem is computationally lighter, allowing for improved
disturbance rejection when needed. Incorporation of indirect control
approaches can leverage additional system flexibility. The EMS layer
as driver of the system taking a long-term prediction horizon in
account needs to be further examined with focus on critical operational
conditions. Relating to this, the coupling of EMS and MPC in terms
of robustness and flexibility has to be studied further. The control
strategies will be extended to cover voltage angle control.
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Supporting power balance in Microgrids with Uncer-
tain Production using Electric Vehicles and Indirect
Control

Abstract — In Microgrids with uncertain production storages are valuable
assets to facilitate system stabilization. Consequently, EV are promising for
providing prosumer services. EV are assets driven by human behavior,
consequently they can rarely be directly controlled. However, indirect control
approaches are considered promising regarding their integration into system
controls. In this paper we consider a hierarchy of optimized system controls
including indirect control approaches in order to leverage flexibility potential
associated with EV.

Authors: Frederik Banis, Daniela Guericke, Henrik Madsen, Niels
Kjølstad Poulsen

Published in IFAC-PapersOnLine ([Ban+19]), submitted for review to
IJCAS journal. Presented at the CSGRES 2019 conference.

8.1 introduction

Small grid compartments referred to as microgrids (MGs) combined
with higher shares of renewable energy system (RES) require sufficient
operational flexibility when aiming for the participation in energy mar-
kets. Energy market participation can be achieved when considering
aggregation of distributed energy resources (DERs) by the Aggregator
entity ([Mor+14]). Failure to meet accepted market commitments lead
to the application of penalties; accordingly, avoiding such costs is
beneficial from the Aggregator perspective. This is one of several
motivations for the integration of additional flexibility.

Storage capacities acting as Prosumers offer degrees of freedom
and are consequently valuable assets in the operational scheme. We
hereby consider electric vehicles (EVs) as uncertain storage capaci-
ties. In order to leverage flexibility in conjunction with EVs, indirect
control (ICo) enables the MG controller to activate this flexibility by
means of economical incentives offered to the EV owners. Doing so is
advantageous in terms of applicability, due to that direct control (DCo)
requires bi–directional communication and reduces flexibility for the
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EV owner compared to ICo ([Mad+14]). ICo however is associated with
drawbacks due to that the response of the activated prosumer side
is both uncertain by means of dynamics and magnitude ([OH11]).
The introduction of appropriate models that enable the estimation
of the consumptive response behavior is therefore central to the ICo

approach.
Examples of alternative solution approaches are methods involving

dual decomposition approaches and game theory based methods.
Problem solutions differ not only regarding implementation, but also
regarding the degree of knowledge required to achieve a near–optimal
solution with respect to the considered objective. In decomposition
based approaches part of the optimization problem is solved locally.
As such, these methods share the property of allowing for honoring
privacy concerns with ICo. [Flo+16] outline such a decomposition
based approach aiming at load shaping. This is an alternative to
centralized approaches such as [Sor+11; CHD09]. An example for
game theory based approaches is [NX17]. This paper considers an
optimal control theory based approach. [SLL13; Jin+17] are examples
for multi–objective approaches in this context. [KR15] utilize a two–
stage model predictive control (MPC) approach combining two DR

schemes: event–based DR and price–based DR.
In contrast to the mentioned approaches we focus in this publication

on the utilization of EVs for the rejection of disturbances that may lead
to critical frequency deviations. We derive a control hierarchy for the
integration of EVs for the support of power balance in MG using ICo. A
temporal clustering approach of estimated price–sensitivity models
is used, enabling the ongoing improvement of model accuracy and
consideration of temporal variability of the system. Aforementioned
references formulating unit commitment problems can consequently
be used to provide the dispatch schedule for the discussed real–time
(RT) control layers.

The rest of the paper is organized as follows. Section 7.2 introduces
the considered control structure and indirect control approach. In
Section 8.3 we present numerical results. We close with Section 8.4
discussing the findings and future improvements.

8.2 methodology

Consider the structure of optimization routines and controllers as
depicted in Figure 8.1.

At the highest level in the control hierarchy an optimization prob-
lem derives a dispatch schedule for the MG several hours ahead of
time. This optimization problem incorporates the largest share of in-
formation available to the MG controller. This optimization problem is
stated by the aggregator entity and is in literature commonly denoted
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as energy management system (EMS). The solution to this problem
can be used to offer bids in energy markets. When bids are accepted
the agreed quantities are binding and result in commitments of the
aggregator and its actor, the MG. Disability to fulfill the commitment
lead to application of penalties. Consequently, the solution uEMS is
treated as reference in subsequent layers in the control hierarchy.

Static problem

(Planning stage)

Real–Time problem

EMS

Bidding & long-term
economical perfor-
mance

RD

Co–optimization
of actors and pro-
sumers

DCf

Actors

IC0 ICEV

Prosumer activation

uEMS uRD

uRD uDC

Figure 8.1: Dataflow overview: The control decision uEMS by the EMS

is passed to the RT control routines: The redispatch (RD) co–
optimizes both directly and indirectly controllable units. The
control decision uRD is passed to the DCo routine. The ICo (ICEV)
layer for the EVs receives its input from the Direct Control routine.
The ICo layer for other units (IC0) is not scope of this paper.

RD of actors based on updated predictions is required during RT

operation if considerable uncertainty is to be accounted for. Further-
more, both directly and indirectly controllable unit (ICU) are to be
co–optimized such that ICU can be activated by both operational and
economical means.

Notice that the ICEV layer receives its control reference from the DCf

layer.
As DC control problem example we choose in this paper frequency

stabilization, this layer is sampled in the magnitude of a few seconds
— depending on the system dynamics and disturbance characteristics.
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Figure 8.2: Control hierarchy. We focus on the highlighted control routines.
The Redispatch problem derives economically optimal input
sequences taking the estimated price–sensitivity of the EVs for
the currently active cluster into account.

energy management system can be formulated as stochastic pro-
gramming (SP) and consequently treats uncertainty using a sce-
nario based approach. It derives optimal bids to various elec-
tricity markets and derives a dispatch schedule for the next 24

hours ahead of time. Uncertain production quantities, uncer-
tain consumption quantities and market prices are examples of
stochastic processes.

redisptach derives control decisions based on RT operational re-
quirements, considering economical measures and/or risk based
measures. Again it can be formulated as SP.

direct control we consider applicable for fast dynamics ([Mad+14]),
such as frequency stabilization. We formulate it as MPC problem.
See Section 8.2.2.

indirect control we consider for the activation of flexibility in
the MG using economical incentives. We formulate it as MPC

problem. See Section 8.2.3.

Optimal control decisions are passed from the RD layer to the DCo

layer. The RD layer co–optimizes directly controllable units (DCu)
and ICU. This way, system flexibility is accounted for and uncertainty
associated with the flexible units is incorporated. The DCo layer tracks
given input references considering both DCu and ICu with a chosen
precision. See Figure 8.2.
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8.2.1 System Identification

system identification (ID) techniques such as N4SID ([VD96; Vd93])
allow for online approximation of the underlying system. Several
aspects hereby apply:

• As for all data–driven model identification techniques, quality
of the obtained data relates to the quality of the identified model

• The gain of additional precision in the obtained model can be
connected to an economical cost. This marginal gain in model
accuracy can both be economically expensive and operationally
desirable ([Hei+18])

The estimated price sensitivity fc in the currently active cluster c is
hereby:

fc(pk) = b̃c +
N

∑
i=k

H̃c,i pk (8.1)

fc maps the price offer pk to the estimated uncertain response. b̃c

denotes the uncertain baseline interaction, H̃c denotes the uncertain
impulse response coefficients. Uncertainty is approximated by ag-
gregation and evaluation of model parameters in chosen temporal
clusters. See Figure 8.3 as example. We chose in this study daily meta
clusters with hourly granularity in consecutive clusters. Identified
system response models are then aggregated in these clusters, see
Figure 8.4. Aggregation in clusters allows for the approximation of
time–varying uncertainty.
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Clusters (0, 0-3)
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Figure 8.3: Parameter density example: Choice of confidence interval allows
for deriving uncertainty estimates for system operation.
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c Daily Hourly

Free

Forced

Figure 8.4: Assumed sensitivity function clusters (highlighted). The free
system trajectory is recorded for control and evaluation purposes.

8.2.2 Direct Control layer

We consider a classical quadratic regulation objective with input refer-
ence tracking term:

min
{uk+j}N−1

j=0

ΦDCf =
1
2

N−1

∑
j=0
||Ψ||2Wy

+ (1− β)||Υ||2Wu
(8.2)

s.t. x̂k+1|k = Ax̂k|k + Buk (8.3)

x̂k+1+j|k = Ax̂k+j|k + Buk+j + Gd̂k+j

j = 1, 2, . . . , N− 1 (8.4)

ŷk+j|k = Cx̂k+j|k j = 1, 2 . . . , N (8.5)

umin ≤ uk+j ≤ umax (8.6)

∆umin ≤ ∆uk+1 ≤ ∆umax (8.7)

Gkuk ≤ hk (8.8)

The minimizer u? is then denoted as Direct Frequency Control
(DCf) layer decision u?

DCf. Equation 8.8 hereby may include additional
system constraints required to obtain sufficient control precision. This
can be the case when the sampling rate of upper optimization routines
is comparably low. The output reference tracking term is given by

Ψ = ŷk+1+j|k − ȳk+1+j|k (8.9)

and the input reference tracking term denoted as

Υ = uk+j − ūk+j (8.10)

Using an extended state observer (ESO) and the MG internal fre-
quency measurement the unknown residual d is estimated yielding
the estimate d̂. We account for it using an input disturbance model as
outlined in [PR03] — the controller in this form is often in literature
referred to as adaptive disturbance rejection controller (ADRC).

This regulator takes input reference sequence ū from an upper opti-
mization layer into account. Here, this is the RD layer. Given sufficient
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degrees of freedom the regulator stabilizes system frequency whilst
minimizing the deviation from the reference uRD. Lack of freedom in
both absolute controllable production capacity and available up–ramp
or down–ramp results in system frequency deviations. We neglect
a dedicated regularization term acting in the objective when β = 1;
this is due to that we rely on the ESO as means to smooth the con-
trol actions. An alternative regulation formulation is formulated in
[Ban+18].

The optimal control decision u?
DCf for this layer includes hereby

conventional controllable units as well as the approximated dynamics
of the indirectly controllable EVs. The regulator establishes the trade–
off between precision in the controlled variable versus the precision in
the tracked input references. Consider the following control situation:

• Frequency deviation ∆ f 6= 0 (Controlled variable)

• Zero active power contribution reference for the IC units ūIC = 0

• Saturated directly controlled variables uIC = umax

The control decision ūIC is then utilized to counteract the distur-
bance acting on the controlled variable.

8.2.3 Indirect Control layer

We state the optimal ICo objective as

min
{pk+j}N−1

j=0

ΦIC =
1
2

N−1

∑
j=0
||Ψ||2Q + ||∆pk+j||2R (8.11)

s.t. x̂k+1|k = Ax̂k|k + Bpk (8.12)

x̂k+1+j|k = Ax̂k+j|k + Bpk+j

j = 1, 2, . . . , N− 1 (8.13)

ŷk+j|k = Cx̂k+j|k j = 1, 2 . . . , N (8.14)

pmin ≤ pk+j ≤ pmax (8.15)

See for example [JHR11]. An alternative formulation for this setting
can be found in [OH11]. Notice that the output reference tracking
term is given in Equation 8.9 and equals the formulation for the Direct
Control layer.

As for the DCo layer, we again use an ESO to estimate the lumped
disturbance. Due to that the underlying system is uncertain, effective
uncertainty compensation is hereby fundamental. Notice also that this
necessarily leads to situations with poor control performance when
the uncertainty is substantial. In these situations, control precision
relies on the directly controllable units.
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8.3 numerical results

We consider a microgrid with one fully controllable unit modeled as
first order linear time invariant system and a ramp–rate constraint of
∆uup = .005 pu/s.

0 5 10 15 20
Time of the day / h

100

200

300

400

500

600

700

Ch
ar

ge
 / 

kW
h

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

q

Figure 8.5: Assumed aggregated internal State of Charge of all simulated EVs

throughout a day considering 24 hours over 5 days. ∆q hereby
denotes the quantile range around median.

The load side includes 30 EVs with an assumed individual nom-
inal charge power of 3.6± 0.05 kW and individual charge capacity
of 24.2± 0.05 kWh. The nominal consumption is assumed 216 kW,
the EVs account for a fifth of the overall nominal grid power. The
active power interaction dynamic fP,n of EV n is assumed as first order
system with a time constant of τ = 180± .05 s. fP,n hereby maps the
individual EVs active power grid interaction reference to the actual unit
active power grid interaction response. The grid interaction reference
is given by a stochastic behavioral model denoted in Table 8.1.

Table 8.1: Behavioral clusters with nested time–depending behavior proba-
bilities. The driving Pdriving probability only applies to EVs after
application of Pavailable.

Cluster Start/End Pavailable Pdriving

Day 6-17 20% 90%

Evening 17-25 70% 50%

Night 0-6 90% 50%

In non–excited mode (price offer p = 0) the EVs expose the internal
charge pattern over 24 hours and 7 days as illustrated in Figure 8.5:
The highest overall State of Charge is in this example reached in the
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early morning hours whilst the lowest State of Charge is reached in
the afternoon. Time delays in the price–control path are neglected.

8.3.0.1 Consumer side price response

The price mapping function equation 8.16 depicts the aggregated
reduction in demand for a given price. This is a relationship chosen
by the price–sensitive EV controllers. We assume a linear relationship
with saturated bounds as load flexibility response in steady state,
following the approach outlined in [Hal+13]:

fc(p) = − r̄c − rc
p̄c − pc

(p− p) + r̄c (8.16)

The rebound effect hereby remains unaccounted for in this study.
Considering the identification pipeline of one single cluster (0, 0)

(corresponding to 12pm, day 0) and considering multiple clusters
(0, 0-23) (corresponding to 12pm, day 0 until 23pm, day 1). See
Figure 8.6 and Figure 8.7 respectively. As expected given Figure
8.5, the uncertainty is considerable when observing multiple clusters,
supporting the necessity to account for the time–varying behavior.
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Figure 8.6: Aggregated response when considering one cluster (here: cluster
0, 0).
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Figure 8.7: Aggregated response when considering multiple clusters, here
all hourly clusters of day 0.

8.3.0.2 Flexibility support

The described RT control hierarchy should support the power balance
of the grid in situations where increased need for system flexibility
is given. In Figure 8.8, the system frequency is stabilized following
an up–ramp of the demand side at timestep 200. At timestep 210,
ICo is activated in the DC+IC scenario. The directly controllable unit
saturates at the ramp–rate constraint in the DCo–only scenario. Using
ICo the required up–ramp is reduced.

In Figure 8.9 the time cluster c = 15 (see Figure 8.5) with only 5 EVs

is considered. The experiment depicted in Figure 8.8 is repeated with
this altered parameterization. The required up–ramp is comparably
reduced in the DC+IC scenario. Furthermore, also the variability in the
10 considered experimental timeseries is comparably reduced.

8.4 discussion and conclusion

We outlined a control hierarchy enabling for power balance and fre-
quency stability support using EV and ICo. ICo allows for honoring
privacy requirements by utilization of system identification techniques
used to derive the dynamic price–response relationship. The aggre-
gation of models in temporal clusters enables for the estimation of
time–associated uncertainty. Biased forgetting can be used to improve
model accuracy and to account for a time–varying underlying system.
Simulations show the potential of using EV as price–sensitive system
components to support power balancing and frequency stabilization.

Future improvements of the study may include the examination
of other price–sensitive flexibility sources, tuning of price–signals,
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Figure 8.8: Comparison of the controller performance without activated
ICo support (DC only) and with activated ICo support (DC+IC).
The disturbance step ∆Pd at timestep 200 is counteracted and
active power ∆Pu is reduced. Cluster 1, 30 EVs, 10 stochastic
experiments are repeated and illustrated using quantile range
steps of 10 steps each, the median is highlighted as dashed line.
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Figure 8.9: Comparison of the controller performance without activated ICo

support (DC only) and with activated ICo support (DC+IC) consid-
ering cluster 15 and 5 EVs: The uncertainty in the control situation
can be reduced when using DC+IC.10 stochastic experiments are
repeated and illustrated using quantile range steps of 10 steps
each, the median is highlighted as dashed line.
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modeling of rebound effects, alternative system identification methods
and support for reactive power control aspects in Microgrids.

This work has been supported by ENERGINET.DK under the project
microgrid positioning uGRIP (77731) and the Innovation Fund Den-
mark through the CITIES research center (no. 1035-0027B).
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Prosumer response estimation using SINDYc in con-
junction with Markov-Chain Monte-Carlo sampling

Abstract — Prosumer response activation is one key ingredient in a smart
energy system. Inclusion of prosumers into the system operation leverages
flexibility potentials. In order to coordinate prosumers during real–time
operation, a control scheme requires knowledge of the dynamics. In this study,
we combine the Sparse System Identification of Nonlinear Dynamics with
Control (SINDyc) algorithm with Bayesian inference using Markov-Chain
Monte-Carlo sampling. By using this combination, we obtain parsimonious
models alongside parameter uncertainty estimates. Such models characterize
the prosumer response and its uncertainty.

Authors: Frederik Banis, Henrik Madsen, Niels Kjølstad Poulsen,
Daniela Guericke

Submitted for review to the ENERGIES journal.

9.1 introduction

A prosumer is a unit within the power system that can act both as
consumer and producer. Examples are electric vehicles (EVs) with
vehicle to grid (V2G) functionality. Such cars can therefore extract and
feed–in power from and to the power system [Flo+16].

The activation of prosumers introduces flexibility in the operational
scheme which facilitates the integration of higher shares of renewable
energy system (RES), thereby contributing to a more sustainable grid
operation [Jin+17; NX17]. Furthermore, this may lead to reduced cost
of system operation [Sok+12].

System identification Sys-ID techniques are one central building
block for achieving long–term reliable real–time (RT) control, see e.g.
[Lju99; Nel01; Ngu17]. Identification algorithms such as sub–space
methods [Vd93] marked milestones in this area. The sparse system
identification of nonlinear dynamics with control (SINDyc) algorithm
[BPK16a] is a recent addition in this field, building on sparsity pro-
moting optimization techniques such as the least absolute shrinkage
and selection operator (LASSO).

system identification (Sys-ID) techniques enable high control per-
formance in long–time operation as well as data–driven control ap-
proaches, such as indirect control (ICo). The application of ICo is one

137
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approach to the integration of prosumer response (PR) mechanisms,
see [KR15; Cor+13; Hal+12; Hal+13; Mor+14].

The estimated response of prosumers to price–signals is a compo-
nent or the sole component of the ICo model. In the following, we refer
to the prosumer response as PR. An ICo scheme provides economical
incentives for a desired system response, such as a reduction of active
power consumption [Mor+14; De +18]. PR can in this way alleviate
system congestion by introducing additional degrees of freedom in
the operational scheme.

A response model derived using SINDyc is sparse in the model
coefficients. SINDyc consequently aims for an accurate model with a
low number of active terms selected from a candidate model structure.

The PR is potentially uncertain [MVA13; Bru+18]. It is therefore
beneficial to represent this uncertainty in order to be able to account
for it. SINDyc does not feature estimation of the uncertainty associated
with the derived model as–is. Inference techniques such as markov
chain monte carlo (MCMC) sampling however can utilize a SINDyc

model as part of the prior probability distribution.
Related approaches can be found in [Fri+13; Fue+19; Zen+12].

[Fri+13] employ a Gaussian process–based state space model and
a particle based MCMC (PMCMC) to perform Bayesian inference. They
utilize an approach that adjusts the candidate model in an adaptive
way, such that model complexity increases alongside available data.
[Fue+19] build on [BPK16b], however with focus on using a Bayesian
framework building on hierarchical Gaussian prior distributions for
the task of parameter inference. [Zen+12] combine stochastic collo-
cation method with MCMC. They report that this reduces the large
computational load characteristic for MCMC.

In this paper we combine the SINDyc algorithm with parameter un-
certainty inference using MCMC using the probabilistic programming
language Stan [Car+17]. SINDyc models have been shown to perform
well when facing scarce availability of data [KKB18]. Compared with
MCMC, the algorithm is computationally light. Full Bayesian inference
using MCMC explores a large parameter space. It can therefore adjust
and augment a given SINDyc model given sufficient amounts of data.
The combination of sparse dynamical system models with MCMC can
yield models that generalize well and provide uncertainty estimates
with respect to its parameters.

This paper is organized as follows. In Section 9.2, we state the
considered prosumer flexibility estimation problem. In Section 9.3 we
outline the SINDyc algorithm as introduced by [BPK16a] and discuss
Bayesian inference including a SINDyc model as part of the prior. In
Section 9.4 we consider a simplified PR estimation example in order
to illustrate the described combination of SINDyc and MCMC. We close
the paper by concluding in Section 9.6.
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9.2 problem statement

In order to integrate prosumers into smart–grid operation, a system
operator requires knowledge of the price–response sensitivity and
associated dynamics (prosumer response (PR)). Provided accurate
representations of these characteristics, the system operator can design
excitation sequences in order to encourage or penalize the prosumer
grid interaction. We can formalize such excitation sequences as a
dynamic pricing scheme [RA10; De +18; Cor+13; Mor+14]. This
control approach is commonly referred to as indirect control (ICo). The
PR is hereby controlled via another domain, the dynamic pricing space.
By integrating the ICo into existing control hierarchy concepts we can
activate flexibility when needed. See [Mad+14] for examples. We
may consider a single dynamic price for all prosumers or individual
dynamic prices.

The PR is inherently uncertain due to the human behavior being a
main driver. Considering active power P of a prosumer exchanged
with the grid at node i, P is a functional of a higher order state x and
the price signal p:

Ṗi = fi(x, p) (9.1)

We aim to estimate fi.

9.3 methodology

Response characteristics are typically obtained by means of system
identification experiments, see for example [Jun+18]. One approach to
identifying the underlying dynamics is by formulating a model struc-
ture alongside corresponding coefficients and employ least–squares
minimization in this setting [Lju99; Nel01]. Addition of a regularizing
term can then lead to a sparse model. From here on we refer to the
prior distribution as prior.

9.3.1 A Sparse System Identification Algorithm (SINDyc)

[BPK16a] formulated the so–called sparse system identification of non-
linear dynamics with control (SINDyc) algorithm for the identification
of sparse nonlinear models.

We can describe the dynamical system as:

d
dt

x = f (x, p) (9.2)
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f is consequently governed by free– and forced dynamics and poten-
tially nonlinear. Reformulating leads to

ẋ = ΞΘT(x, p) (9.3)

ẋ is hereby approximated using the variation over system identifica-
tion (Sys-ID) data X. In the simplest form, a one–step shifted version of
the input–output observations X subtracted from the original version
yields the approximations of the dynamics. The related Dynamic
Mode Decomposition (DMD) algorithm [Sch10; Sch11] uses a simi-
lar approach, however for the identification of linear system models.
ΘT(x, p) denotes the model structure of terms including the state x,
the input p and potentially cross–terms of both x and p.

The choice of model structure is one important design choice [Nel01;
Lju99]. A simple assumption is to assume ΘT(x, p) to resemble the
power series up to a chosen degree. [Nel01] outlines drawbacks
of this model structure resulting from properties associated with
polynomials:

• Structure selection is computationally demanding, especially for
high dimensional problems

• Extrapolation capabilities of the power series are sub–optimal

• Polynomial models suffer heavily under the curse of dimension-
ality

Positive properties include [Nel01]:

• Capability to approximate a broad group of target problems

• Low sensitivity to noise

• Global explanatory capabilities

Referring to discussions on this type of model in [Nel01], we should
emphasize that we choose this model type for the purpose of demon-
strating the application of the SINDyc algorithm in conjunction with
markov chain monte carlo (MCMC). Other applications may require
another type of model. As recommended in [Nel01] and in order to
limit aforementioned drawbacks, we only consider polynomials up
to third order. We here use the model structure given in [BPK16a], a
power series including cross–terms. Ξ is obtained using the sequen-
tial thresholded least–squares algorithm proposed in [BPK16b]. As
outlined in [BPK16a], we have to choose the regularization weight
α in order to obtain a sparse model while retaining model accuracy.
We here perform a naive sweep over a set of candidate weights ᾱ

as suggested in [BPK16a] whilst evaluating the sparsity alongside a
model evaluation function. See Algorithm 2.
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Algorithmus 2 : Sparsity sweep using SINDyc.
Input : SINDyc_args, sparsity_threshold, ᾱ, evaluation_function
Output : Xi
Data : X

1 for α in ᾱ do
// Execute SINDyc on data

2 Xi = SINDyc(X, SINDyc_args)
// Evaluate model performance

3 if evaluation_function(Xi) = True then
4 nz = count_nonzero(m)
5 nval = count_values(m)

// Evaluate sparsity

6 if (nz/nval) < sparsity_threshold then
7 return Xi

8 else
9 continue

9.3.2 Probabilistic Model

We may generalize (9.3) to a probabilistic model. The probabilistic
model is then:

P(Ẋ|m) = P(Ξ̂|m)ΘT(X) + ε (9.4a)

m denotes the prior which includes the model coefficients Ξ? obtained
using SINDyc in Algorithm 2:

Ξ̂ ∼ N (Ξ̂?, σ2
Ξ) (9.4b)

ε̃ ∼ N (µε, σ2
ε ) (9.4c)

Following the Bayesian principle we can flexibly state the prior
based on available information. Parts of the prior may be undefined.
Such lack of information becomes part of the overall uncertainty in
the model. We include weakly informative priors for these parts as
recommended in [Gab+19].

9.3.3 Probabilistic Model Inference

The inference process of the probabilistic model (9.4) is formulated as
pseudo–code in Algorithm 3.

XI is a list in which we aggregate models inferred using Algorithm 2.
X̄ is a list of individual Sys-ID experiments. For each n –th experimental
data X in X̄ we call Algorithm 2 and obtain a corresponding candidate
model Ξ(n). select_mMCMC selects the MCMC candidate model m_MCMC
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based on the collection of candidate models XI. fit_MCMC_function
then performs MCMC on the model m_MCMC. m_MCMC is a model corre-
sponding to X̂i

?
in the model structure. Algorithm 3 returns Ξ̃, the

posterior probability density function (PDF) of the model coefficients.

Algorithmus 3 : Probabilistic model inference using a candi-
date structure and candidate model derived using SINDYc in
Algorithm 2.

Input : fit_MCMC_function, MCMC_args,
select_mMCMC_function, SINDyc_args,
sparsity_threshold, ᾱ, evaluation_function

Output : Ξ̃
Data : X̄
// Setup container XI for candidate models

1 XI = list()
2 for n, X in enumerate(X̄) do

// Identify sparse system models using Algorithm 2

3 Ξ(n) = Algorithm 1(X, SINDyc_args, sparsity_threshold, ᾱ,
evaluation_function)

// Collect candidate models

4 append(XI, Ξ(n))
// Select the MCMC model based on the collection of candidate

models XI

5 m_MCMC = select_mMCMC_function(XI)
// Fit MCMC model using XI

6 Ξ̃ = fit_MCMC_function(m_MCMC, XI)
7 return Ξ̃

9.3.4 Excitation Model

We use the software package Stan for performing MCMC [Car+17]. Stan
requires an ordinary differential equation (ODE) with modeled forcing
for the inference of the dynamics subject to forcing. We therefore
augment the system in (9.3) with a forcing model which approximates
the excitation signal. We restrict the excitation model to a third order
polynomial as recommended in [Nel01].

9.4 a simulation example

Consider a system of two prosumers. The first prosumer dynamics
are nonlinear; the second prosumer dynamics are linear. w is the noise
in the dynamics. The scalar p is the price–signal sent to the prosumers.
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We sample the system with Ts = 1s. We consider two clusters of data,
referred to as c0 and c1 in the following.

d
dt

x = αm

[
x2

0

x1

]
+ βp + w (9.5a)

We observe the system response through the measurements y subject
to white noise v as

y = x + v (9.5b)

We hereby draw the system dynamics from random distributions:

αm ∼ − logN (log

[
0.2

0.1

]
, 1e− 3) (9.5c)

β ∼ logN (log

[
0.07

0.2

]
, 1e− 2) (9.5d)

w ∼ N (0, .005) (9.5e)

v ∼ N (0, .005) (9.5f)

In cluster c0 and c1, we have the following number of observations:

nmeas,c0 = 50 (9.5g)

nmeas,c1 = 5 (9.5h)

While this is a simple model, it should suffice to outline the model-
ing approaches described in the following.

As for Sys-ID in general, the choice of excitation signal is funda-
mental for the quality of the system approximation [Nel01; Lju99].
The excitation signal should correspond to the magnitude and fre-
quency range in which we aim to use the model [Nel01]. Whether
the excitation signal is adequate to extract sufficient information is
to be checked in relation to the considered system and its operating
condition.

Here we choose a double–sinusoidal excitation signal applied on
top of an assumed constant controller signal u = 0.5. For a different
operating point we may design a different excitation signal such that
we collect sufficient information from the system. The constant signal
excites the balanced system throughout a burn–in period, such that
the system approaches a new equilibrium prior to the start of the
system identification period.

ei = sin( f ) (9.6a)

where

f ∼ lnN (−2, 0.05) (9.6b)
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9.4.1 SINDyc — Polynomial prediction model

We aim for a low order model as simplest candidate model with-
out drift term, such that the system remains in equilibrium when
undisturbed or unexcited. The chosen candidate model structure is

d
dt

yt = ξ1yt + ξ2 pt + ξ3y2
t + ξ4yt pt + ξ5 p2

t (9.7)

For the SINDyc algorithm, we choose a homogeneous range of
100 candidate regularization coefficients α within the sweep bounds
[5e− 4, 1e− 1]. See Algorithm 2.

Identifying models using Algorithm 2 for cluster 0, we obtain the
coefficient distributions illustrated in Figure 9.1. The uncertainty in the
dynamics α and β lead to uncertainty in the magnitudes of the model
coefficients. Model 0 is correctly associated with nonlinear dynamics
and the linear Model 1 is correctly associated with linear dynamics.
Examination of the sparsity of the identified model provides informa-
tion about the success of the identification. The convergence of the
algorithm is assured only when the identified model is sparse in the
coefficients.

0.2

0.1

0.0

0.1

M
od

el
 0

0.065

-0.22

Cluster 0

u0 u1 u2
0 u0u1 u2

1
Associated model term

0.10

0.05

0.00

0.05

M
od

el
 1

-0.11

0.065

Figure 9.1: Coefficient magnitudes for a low order SINDyc model based
on 50 system trajectories, sweep–bounds α set to [5e− 4, 1e− 1]
and number of model evaluations set to 50. u0 corresponds to
the state x, u1 corresponds to the system input u. The mean
coefficient magnitudes are depicted next to the violinplots for
each associated model term.

The model of the first PR approximates the true system for both the
identification data and when considering an out–of–sample experi-
ment. See Figure 9.2.
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Figure 9.2: System and fitted model response excited by the excitation signal
U. Identification experiment ID, out–of–sample experiment OOS.

We can visually examine the quality of the fit by comparing the
one–step prediction surfaces of both the true system and the deduced
model. See Figure 9.3.
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Figure 9.3: One–step prediction comparison of the test system (blue) and
fitted model (green).

9.4.2 Model Coefficient Distribution Inference using MCMC

We now aim to obtain a probabilistic dynamic system model of the
first prosumer based on the identified candidate depicted in Figure
9.1. The candidate model is Ξ?, ΘT,?(X), where:
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ΞT,?
c0 = [0.06,−0.202] (9.8a)

Θ?
c0(X) = [x, p] (9.8b)

Notice that u0 and u1 in Figure 9.1 correspond to the output y and
system input p respectively. We neglect all zero–terms in the candidate
model structure in (9.7) such that the inference through MCMC uses
only the candidate model as stated in (9.8).

We describe the observation z through the model output y with
normally distributed measurement error with variance σ2

y :

y ∼ N (z, σ2
y ) (9.9a)

For the prior for σ2
y we assume a log–normal distribution with mean

log(σ2
y0), the logarithm of the variance of the observations in the burn–

in period. Please notice that for the parameter values chosen here
the Gaussian prior model for σ2 is appropriate, but for some other
prior uncertainty ranges for σ2 it could be more appropriate to use the
natural conjugated prior, namely the inverse Gamma distribution. See
[MT10] for examples.

σ2
y ∼ ln(log(σ2

y0), 1) (9.9b)

The prior for the model coefficients Ξ we assume normally distributed
around Xi?c0, the coefficients inferred using the SINDyc algorithm:

Ξ̂ ∼ N (Ξ?
c0, σ2

Ξ) (9.9c)

Standard deviation σΞ we choose based on the distribution in Ξc0.
Notice that the latter is only proper when the sample size Ξc0 is
considered significant:

σ2
Ξ ∼ ln(log(σΞ), 1) (9.9d)

Lack of information in the formulation of this prior we may express
through statements of weakly informative priors [Gab+19].

Furthermore, we consider the following posterior predictive check
for evaluation of the accuracy of the inference:

ŷN,n = N (zN,n, σ2
y ) (9.10)

Stan [Car+17] solves the ODEs considered here using the Runge–
Kutta–45 method. For MCMC, we choose 1000 iterations per chain,
four chains, 500 burn–in or warm–up iterations, no thinning and a
seed of 101.
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Figure 9.4: Inferred coefficient uncertainties Ξ̂ through MCMC (via Stan
[Car+17]) given a candidate model derived using SINDyc for clus-
ter 0. Crosses mark the prior means based on the SINDyc model.
The maximum of the posterior distribution marked with black
dashed line. 95% confidence interval marked using dark grey
dashed lines, 99% confidence interval marked using light–grey
dashed lines.

As kernel density estimation bandwidth we use Scott’s rule as given
in [Sco15]. The approximated posterior distributions Ξ̂c0 are depicted
in Figure 9.4. The coefficient priors chosen by SINDyc are marked using
crosses. We can observe that the posterior distribution deviates from
these priors.

Improving the prior optimizes the sampling space for a new MCMC

sampling. This can lead to shorter computation time for future sam-
pling of the model.

Examining the posterior predictive check illustrated in Figure 9.5 re-
veals that the model approximates the observed output sub–optimally,
yet captures the general trend in the data.

By means of random draws from the posterior samples we can
obtain a probabilistic model. Here we draw 100 random samples from
the inferred coefficients depicted in Figure 9.4 and from the inferred
measurement variance. Out–of–sample co–simulation of this model
alongside the 5 samples of the true system is depicted in Figure 9.6.

9.4.3 Low Availability of System Identification Data

Cluster c1 contains 5 observations. We now repeat the model fitting
for this cluster and test the ability of the derived model to predict
future observations.

We obtain the sparse coefficient magnitudes illustrated in Figure 9.7.
As for cluster 0, the nonlinearity in the first PR is correctly identified.
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Figure 9.5: Posterior predictive check of the model output prediction ŷ
with 200 samples drawn from the posterior distribution. Plot
generated using ArviZ library [Kum+19].
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Figure 9.6: Out-of-sample simulation of 5 system realizations and the in-
ferred Stan model (cluster 0).
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Uncertainty in the coefficient magnitudes is comparably higher for
cluster 1.
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Figure 9.7: Coefficient magnitudes for a linear SINDyc model based on 5

system trajectories, sweep–bounds set to [5e− 4, 1e− 1] and
number of model evaluations set to 100. 95% confidence interval
(dark grey), 99% confidence interval (light grey).

Co–simulation and out–of–sample simulation is depicted in Figure
9.8.

We repeat the inference using Stan described in Section 9.4.2. The
approximated posterior distributions Ξ̂c1 are depicted in Figure 9.9.
The priors chosen by SINDyc are marked using crosses. Comparing
to cluster 0, we obtain a posterior distribution closer to the SINDyc

prior.
The posterior predictive check illustrated in Figure 9.10 indicates a

similar result as for cluster 0.
Out–of–sample co–simulation of this model alongside the 5 samples

of the true system indicates is depicted in Figure 9.11.

9.5 discussion

Activation of system flexibility through demand response (DR) and
prosumer response (PR) schemes such as indirect control (ICo) are
increasingly relevant in relation to power system operation. See
[Old+15] for an example. The combination of sparse system identifica-
tion algorithms such as the sparse system identification of nonlinear
dynamics with control (SINDyc) algorithm and markov chain monte
carlo (MCMC) enables the inference of model parameters alongside
parameter probability estimates. Bayesian approaches are compu-
tationally complex [Fri+13]. As shown in the related publications
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Figure 9.8: Cosimulation of one test system and one identified model using
this observation.
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Figure 9.9: Inferred coefficient uncertainties using MCMC (using Stan
[Car+17]) given a single candidate model derived using SINDyc

for cluster 1. Prior means based on the SINDyc model marked
with crosses. The maximum of the posterior distribution is
marked with a black dashed line. The 5% confidence interval is
marked using dark grey dashed lines, the 1% confidence interval
is marked using light–grey dashed lines.
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Figure 9.10: Posterior predictive check of the model output prediction ŷ
with 200 samples drawn from the posterior distribution. The
plot is generated using the ArviZ library [Kum+19].
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Figure 9.11: Cluster 1: Response modeling with limited data (5 observations)
versus revealing additional 45 observations.
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[Fri+13; Fue+19; Zen+12], Bayesian inference techniques may benefit
from sparsity promoting modeling approaches. The focus on a vi-
able candidate model and associated parameter spaces reduces the
problem size. Aside of this, parsimonious candidate model can be a
desirable goal in the modeling process [BPK16b].

Similarly as described in [Fue+19], SINDyc models provide informa-
tion on whether nonlinearities are present in the data when provided
with a reasonable library of candidate models. Automatized system
identification (Sys-ID) pipelines can benefit from such information.

For future improvements, we may replace the polynomial excitation
model described in Section 9.3.4 with an alternative candidate model
structure. The goal should be to achieve a high accuracy representation
of the excitation signal while maintaining a high performance of the
sampling process within the MCMC framework.

Furthermore, the pipeline should be evaluated on a broad range of
problems. This should entail the evaluation of required adjustments.
When aiming for automatized Sys-ID, robustness and associated issues
are to be investigated and potential solutions to be examined.

9.6 conclusions

In this paper, we have presented a combination of the sparse sys-
tem identification of nonlinear dynamics with control (SINDyc) algo-
rithm and markov chain monte carlo (MCMC) using the software pack-
age Stan, in context of prosumer response estimation. While SINDyc

identifies sparse and potentially nonlinear dynamic system models,
MCMC enables for the estimation of rich posterior distributions. MCMC

can use a sparse system model identified using SINDyc and benefit
from its sparsity property. Probabilistic dynamical system models
enable the application of stochastic model predictive controllers, a
core–ingredient when aiming to activate prosumer dynamics based
on informative grounds.

This work has been supported by Innovation Fund Denmark through
the CITIES research center (no. 1035-0027B) and by ENERGINET.DK
under the project microgrid positioning — uGRIP (77731).
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10 PA P E R E

Three–level Hierarchical Microgrid Control — Model
Development and Laboratory Implementation

Abstract — This paper presents a three–level hierarchical control approach
for microgrids in both grid–connected and islanded mode. The first level
optimizes microgrid operation in the long–run with the goal of minimizing
microgrid’s operating costs. The second level takes part in frequency control
in grid-connected microgrids or takes full control over frequency stability in
isolated microgrids. It utilizes a Model Predictive Controller and Kalman
Filter based on available frequency measurements in the microgrid. The third
level is the plant level, in which classical controllers are used for tracking
optimal set points received from upper two control layers. The developed
control scheme is applied to the Smart Grid Lab (SGLab) at the University of
Zagreb Faculty of Electrical Engineering and Computing. The findings from
this close-to-real-world application are also presented.

Authors: Mateo Beus, Frederik Banis, Hrvoje Pandžić, Niels Kjøl-
stad Poulsen

Submitted for consideration to the Power Systems Computation Con-
ference (PSCC) 2020 in Porto, Portugal. Given acceptance, it will be
published in the associated conference proceedings and the Journal of
Electric Power Systems Research (EPSR). Notice that this is the preprint
version.

10.1 introduction

The need to satisfy electricity consumption in a sustainable way has led
to an increased share of electricity produced from renewable energy
system (RES). The power system dominated by the RES generation leads
to a reduced use of conventional power plants that were essential to
secure the required flexibility by adapting their production levels. This
approach cannot be applied in case of power system with high share
of RES due to their intermittent nature. Therefore, it is essential to find
new sources of flexibility in power systems. As potential solutions to
ensure the necessary flexibility in power systems with high share of
RES are the use of demand response (DR) and generally the flexibility
available in the distribution network. So far, the distribution networks
were observed as a set of passive consumers able only to withdraw
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electricity from the transmission network. The increased share of
different types of DGs!s (DGs!s) caused a paradigm change in the
distribution network due to bi-directional power flows. In other words,
electricity can also be injected from the distribution to the transmission
network. Since DGs!s usually does not have sufficient installed capacity
to participate independently in the electricity market, it is essential to
establish a mechanism that will allow multiple distributed generation
(DG) units to participate in electricity markets. A possible way to
group a multiple DG units into one entity from the grid perspective is
to apply a concept of a microgrid (MG). Furthermore, application of
this concept reduces the impact of DGs on the distribution network and
thus allows integration of large quantities of DGs in the distribution
network [UOZ11]. Although a unique definition of MG does not
exist, it is generally accepted that a microgrid is an integrated energy
system consisting of interconnected loads and different types of DGs, which
as an integrated system connected to the grid through the point of common
coupling (PCC) can operate in parallel with the grid or in islanded mode
[LP04], [Hat+07]. A typical MG can consists of:

• energy storage, e.g. batteries;

• dispatchable DGs, e.g.small–scale hydro power plants, biogas
plants, diesel plants, combined heat and power plant (CHP);

• non-dispatchable RES, e.g. solar power plants, wind power
plants;

• dispatchable and non-dispatchable loads.

The main intention of this paper is to develop and validate in the
laboratory environment MG hierarchical control scheme that can serve
as a basis for further MG integration in electricity markets.

The proposed hierarchical control scheme consists of three levels.
The responsibility of the first level is to minimize MG operating cost.
The second level optimizes real–time (RT) control problems on an
aggregated level, while the third level is based on classical controllers
and serves only for tracking optimal set points received from the upper
two control levels. This control level will not be further analyzed in
this paper.

The layout of the paper is as follows. Review of the publica-
tions related to the optimization of MG operation is elaborated in
Section [[id:c7ed6838-de38-4ca3-9e16-129175e0564b]]. Hierarchical
control scheme is introduced in Section [[id:818f6bc6-a1bc-4873-99f3-
c5718a55eed4]], while the laboratory setup used to validate the pro-
posed control scheme and simulation results are presented in Section
[[id:109c9a14-bee8-44cb-9e5e-4046f2151802]]. The paper is concluded
in Section [[id:2663016d-6a4d-47d0-9155-80f8fc1d1bfe]].
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10.2 literature review

A considerable amount of literature can be found on optimization
problem formulation for MG energy management.

In [Che+13] and [Mar+13], the authors formulate mixed integer
nonlinear optimization problem (MINLP) used in the context of optimal
MG operating strategy. In both cases, MINLP optimization problems
are used as energy management system (EMS) control tools with the
main goal of performing optimal operation and scheduling of MGs.
In [ZYH10], a coordinated two-layer control approach is developed
for MG management. Both control layers are based on the receding
horizon concept. The main task of the lower control layer is to maintain
the power output from the RES constant during short periods. On
the other hand, the upper control layer is used to mitigate severe
fluctuations of the power output from convectional generators caused
by balancing the output of intermittent sources. In order to fulfill their
tasks, both control layers rely on the use of battery storage.

Numerous examples in the literature can be found where model
predictive control (MPC) is used as a control approach in power sys-
tem operation problems. In this context, MPC algorithm is usually
formed in a way that typical unit commitment or dynamic economic
dispatch problem is extended with the receding horizon approach.
In [PRG14] and [Par+14], the authors apply an MPC approach based
on mixed integer linear problem (MILP) to the problem of efficiently
optimizing MG operations while satisfying time-varying requests and
operation constraints. In [XI09], the authors use an MPC approach to
solve a multi-objective economic/environmental dispatch problem in
a power system with high share of RES. The conclusion is that the
MPC algorithm is able to minimize the generation costs by directly
dispatching the generator output from RES in order to compensate
temporal load variations over time horizon. Further, in [XZE09], the
authors apply an MPC algorithm to solve a dynamic economic dis-
patch problem with the main goal of minimizing the MG operating
costs. In addition, the difference in formulations between the optimal
control dynamic dispatch based on control theory and the dynamic
economic dispatch based on optimization theory is demonstrated. In
[Qi+11] and [QLC12], a supervisory control system based on an MPC

algorithm is developed for optimal management and operation of a
hybrid wind-solar power plant. The MPC algorithm calculates optimal
power set points for the solar and wind subsystems at each sampling
time while minimizing the cost function. These set points are then
sent to two local controllers responsible for tracking optimal set points
received from the supervisory control system.

Microgrids (MGs) are considered to be complex energy systems since
their control requirements involve different control approaches and
different time scales. For instance, voltage and frequency control tasks
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have the time scales of seconds, while MG unit commitment problems
have the time scale of hours. In that regard, it is reasonable to apply
hierarchical control approach to MG operation problems. In [BD12],
the authors review the hierarchical control strategies applied to MGs.
The hierarchical control structure introduced in this paper consists
of primary, secondary and tertiary control levels. The goal of the
primary control level is to stabilize the voltage and frequency, the
secondary control level is responsible for compensating voltage and
frequency variations caused by the primary control, while the third
level is responsible for power flow control through PCC and optimal
operation in grid-connected and islanded operating mode. In a similar
fashion, in [Van+13] the authors analyze a three-level hierarchical con-
trol structure that can be implemented in islanded MGs. In addition,
this paper provides an overview of the control strategies related to
the reserve provision by DG units, loads, and storage. In [Fen+17], the
authors provide a comprehensive comparison between hierarchical
control structures and distributed control structures for MGs. The main
advantage of hierarchical control compared to the distributed on is the
provision of optimal solution since it can integrate a centralized EMS.
This implies that in the case of hierarchical control, computational
complexity is higher due to the use of more advanced optimization al-
gorithms compared to the distributed control. The main disadvantage
of this is that hardware platform in the hierarchical approach requires
more powerful computers. Although the communication network is
important for both control approaches, the main advantage of the
distributed approach is that any single point failure in the commu-
nication of the control system would not have severe impact on the
normal system operation.

10.3 hierarchical control formulation

The hierarchical control approach designed in this paper consists of
three levels illustrated in Fig. 10.1. The first-level controller is responsi-
ble for the long-term behavior of the MG and it is not influenced by the
transient behavior of the fast dynamics. The second-level controller is
in charge of frequency stability provision in the MG, while the third
level controllers are responsible for tracking set points received from
the upper two control levels.

10.3.1 Upper Optimization Level – EMS

Here, we introduce the dynamic economic dispatch formulation used
in the first control level. Parameters and variables used in the formu-
lation are described in Table 10.1. The main goal of this control level



10.3 hierarchical control formulation 163

Figure 10.1: Proposed hierarchical control levels of a MG (Paper E).

is to minimize the total operating costs while satisfying the demand
and other technical constraints.

10.3.2 Cost Function

The goal is to optimize the following cost function:

min
T

∑
t=1

Ng

∑
g=1

c1 pg(t) + c2s(t) (10.1)

where the first term represents the cost associated with energy pro-
duction from DGs and the second term represents cost/profit from the
interaction with the utility grid. In addition, t is a time instant and T
is the length of the prediction horizon.

10.3.2.1 Operational Constraints

Balance between the production and the consumption must be satisfied
at each sampling instant t, so the following equality constraint is
defined:

Ng

∑
g=1

pg(t) + pRES ≥
Lc

∑
l=1

Dl(t) + BL(t) (10.2)

where the first term represents production level from the controllable
DGs at time instant t and the second term represents total production
level from non-controllable RES units in the MG for the entire prediction
horizon. The first term on the right-hand side of constraint (10.2)
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represents consumption level of non-critical controllable loads at time
instant t, while the second term represents consumption level of
critical non-controllable loads at time instant t.

In addition, each DG unit needs to satisfy the following technical
constraints:

Table 10.1: Parameters and variables in the upper optimization level (Paper
E).

Parameters Description

Ng Number of DG units

Nl Number of controllable loads

BL Total consumption level of non–
controllable loads [kW]

Pg MIN Minimum power level of a DG

unit [kW]
Pg MAX Maximum power level of a DG

unit [kW]
RUg MAX Ramp up limit of a DG unit

[kW/h]
RDg MAX Ramp down limit of a DG unit

[kW/h]
PRES Total power production from RES

[kW]
Ll Forecasted power level of a con-

trollable load [kW]
pg INIT Active power measurements of

DG units [kW]
c1 Production cost [EUR/kWh]

c2 Energy price [EUR/kWh]

Variables Description

Dl Controllable load consumption
level [kW]

pg Power level of a DG unit [kW]

s Power exchanged with the utility
grid [kW]
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pMIN
g,t ≤ pg,t ≤ pMAX

g,t (10.3)

pg,t+1 − pg,t ≤ RUMAX
g (10.4)

pg,t1 − pINIT
g ≤ RUMAX

g (10.5)

pg,t−1 − pg,t ≤ RDMAX
g (10.6)

pINIT
g − pg,t1 ≤ RDMAX

g (10.7)

with g=1,...,Ng. Terms (10.3)–(10.7) constrain production level, pg,t, by
minimum and maximum output limits, pMIN

g,t and pMAX
g,t , as well as

ramp up and ramp down rates, RUMAX
g and RDMAX

g , of the DG units.
Parameter pINIT

g represents the power output at t=0.
Since controllable loads have the possibility to provide DR, an addi-

tional constraint is introduced below to ensure that the total energy of
the consumer does not change over the operating horizon.

T

∑
t=1

Lc

∑
l=1

Dl,t =
T

∑
t=1

Lc

∑
l=1

Ll,t (10.8)

In (10.8), Ll,t represents forecasted load profiles for each load, while
Dl,t represents set points sent to local load controllers.

10.3.3 Lower Optimization Level – Frequency Controller

10.3.3.1 Controller model

The frequency control problem at the aggregated system level is com-
monly stated using the swing equation as means to describe the inertia
of the system [Kun94; Bev14]. In the linear approximation it can be
stated as:

d
dt

∆ ft = −
D

2H
∆ ft +

1
2H

∆Pm
t (10.9)

where ∆ f is the frequency deviation from the nominal frequency. H
is the inertia based supply time, D the load damping coefficient. ∆Pm

is the mechanical power balance within the considered grid.

∆Pm
t = P+

t − P−t (10.10)

The power injections P+
t and extractions P−t are nonlinear func-

tions. The overall system can be linearized around a chocen stationary
point and discretized using zero–order hold approach. The linearized
discrete time system models can then be stated as given in [KMJ04]:
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dxt|j
dt

= f0 + A(xt − xj) + B(ut − uj)+

G(dt − dj) + wt (10.11)

yt = Cxt + et (10.12)

where ut is the control input at time t and uj the corresponding input
at the point of linearization. Further, xt is the system state, d are system
disturbances, w is the process noise, e is the measurement noise, and
yt is the output. In the simplest form, yt equals the state of the swing
equation. Then, this is a multiple–inputs single–output (MISO) system.

The swing equation expresses the approximated inertia with respect
to a single center of gravity. The parameters of this model are both
uncertain and time-varying.

10.3.3.2 Model Predictive Controller

The quadratic controller objective is stated as:

min
u, k

J = J0 + J1 (10.13)

s.t. umin
k ≤ uk ≤ umax

k (10.14)

∆umin
k ≤ ∆uk ≤ ∆umax

k (10.15)

Gk uk ≤ hk (10.16)

with the objective terms given as:

J0 = ||Φx x̂k|k + Γuuk + Γdd̂k|k − ỹk||2Wz

J1 = β||uk||2W∆u
+ (1− β)||uk − ūk|k||2Wū

Φx are Markov parameters of the free system response and Γu, Γd
are Markov parameters of the forced system response with respect
to the control decisions and system disturbances respectively. These
Markov parameters implement the linear predictive model. For in-
corporation into the hierarchy of control and optimization routines,
the objective includes an input reference tracking term. Notice that Γd
not only entails disturbance related process knowledge, but always
knowledge upon the residual disturbance process. State of this resid-
ual process is estimated using a state observer as denoted in (10.19)
below. The tuning parameter β is used to switch input reference
tracking of the controller. The input reference ū given β = 0 is tracked
with a precision tuned using the penalization term Wū. Note that
both the system state and disturbance are estimates, denoted x̂ and d̂
respectively. d̂ here includes the lumped filtered disturbance estimate.
For asymptotic convergence in ∆ f , the integrated estimated output
error ε can be feedback in form of an output reference adjustment:
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ỹk|k = ŷk|k − ȳk (10.17)

εk+1|k = εk|k + ŷk|k − ȳk (10.18)

In this case, the frequency deviation reference is ỹ = 0 and ∆ f → ỹ.
The output reference ȳ in grid-connected mode (GCM) is to be chosen
in relation to the observed frequency. This includes the necessity to
decide how the controller should aim to stabilize the grid frequency.
For ȳ = 0, the controller does not follow given inputs references well
if the observed frequency deviates considerably from this reference.
Consequently, a frequency control goal is to be chosen that is both
feasible and desirable for the system. In islanded mode (IM), ȳ = 0 is
chosen, and consequently f → 50.

x̂ and d̂ are estimated using a state observer as stated below, using
formulations given in [PR03; PR01]:

[
x̂k+1|k
d̂k+1|k

]
=

[
A Bd

0 I

] [
x̂k|k−1

d̂k|k−1

]
+

[
B

0

]
uk+

[
Lx

Ld

]
(ym,k − Cx̂k|k−1 − Cdd̂k|k−1) (10.19)

Alternatively to (10.19), a dynamic Kalman filter can be utilized.
The uncertainty associated with d̂ can then be estimated and used to
further improve control performance. Consider [KMJ04] for examples.

10.4 implementation of hierarchical con-
trol for experimental microgrid

10.4.1 Laboratory Setup

The MG test site consists of the following units:

• Hydro power plant – total rated power of the plant is 11.8 kW
and power factor is 0.5. The plant represents a DG in the simula-
tion;

• Solar power plant – total installed capacity of the solar power
plant is 10 kW. The plant is connected to the AC part of the MG

using a three-phase inverter;

• Load bank of resistors – maximum power of 8 kW equally
distributed in three phases. The load is non-controllable and
represents critical load in the simulation;

• Bi-directional converter – rated power of 20 kW and it is used to
couple the AC and DC parts of the MG;
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Figure 10.2: Structure of the MG in the SGLab (Paper E).

• Two DC electronic loads – each has rated power of 2.4 kW and
the loads are fully controllable.

In Fig. 10.2 it is visible that all the components of the MG are inte-
grated into a supervisory control and data acquisition (SCADA) called
PROZA NET [kon]. Although this SCADA system supports different
types of communication protocols, i.e. international electrotechnical
commission (IEC) 104, IEC 61850, Modbus remote terminal unit (RTU)
and transmission control protocol (TCP)/internet protocol (IP), open
platform communication (OPC), in this setup only OPC unified archi-
tecture (UA) and Modbus TCP/IP communication protocols were used
to integrate the MG components. Further, a central component that
couples all three control levels is a flexible smart grid co-simulation
framework MOSAIK [SSS12], whose main goals are to coordinate
execution of all controllers and to control data exchange between
controllers.

EMS and Frequency controller are being directly connected through
MOSAIK, while the local plant level controllers are integrated into the
hierarchical control structure through SCADA that is connected with
MOSAIK using a gateway based on TCP client-server communication.
In that regard, MOSAIK represents a TCP client and SCADA is a TCP

server.
Working principle of the hierarchical control approach is illustrated

in Fig. 10.3. The entire operating procedure consists of six steps. Step
1 is conducted every 15 minutes. In this step, MOSAIK initializes
and executes the EMS algorithm in general algebraic modeling system
(GAMS). Results of the EMS are optimal active power set points for each
controllable unit for the next 15 minutes. In Step 2, MOSAIK sends
optimal active power set points to the Frequency controller. In Step
3, MOSAIK reads frequency and current active power measurements
of all MG components from SCADA and forwards those measurements
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to the frequency controller. In Step 4, MOSAIK calls the Frequency
controller to execute. In Step 5, if frequency measurement does not
deviate from the nominal frequency, Frequency controller will send
through SCADA optimal active power set points received from MOSAIK
in Step 2 to the local plant-level controllers. In case of frequency
deviations, Frequency controller will sent re-scheduled optimal active
power set points to the local plant-level controllers in order to stabilize
the frequency in the IM of operation or to provide primary reserve in
the GCM. In addition, Steps 3–6 are cyclically executed every 300 ms.

10.4.2 Simulation Results

In this section we present two deterministic simulation experiments
demonstrating the functionality of the proposed MG hierarchical con-
trol setup. In both experiments the MG operates in the GCM. The MG

topology shown in Fig. 10.2 is used.
During both experiments, the MG is operated with the same fore-

casted consumption profiles of the controllable loads. The controllable
loads in both experiments have the ability to provide, DR which is mod-
eled in a way that the total energy consumption does not change over
the operating horizon. Table 10.2 shows load profiles for controllable
loads.

The presented experiments differ in the choice of input reference
deviation penalization:

experiment 1 W̃∆u =




1 0 0

0 5 0

0 0 5




experiment 2 W̃∆u =




4 0 0

0 5 0

0 0 5




W̃∆u is hereby a single distinct element in the overall deviation
penalization matrix W∆u. Consequently, the hydro power plant is
given higher degrees of freedom in terms of deviations away from the
input reference than the two controllable loads. This is true for both
experiments, however in Experiment 1 deviations of the hydro power
plant are penalized less.

Both experiments are conducted with a 15-minute prediction hori-
zon and a time step of 1 minute, while the MG controller uses 20-
seconds prediction horizon. Since the MG in both experiments oper-
ates in the GCM, the main goal of EMS is to minimize power flows
to/from the utility grid, while the main purpose of Frequency con-
troller is to provide primary reserve. Hydro power plant, as the only
controllable DGs in both experiments, has ramp up/down limit 1.5
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Figure 10.3: Hierarchical control flowchart (Paper E).

kW/min, maximum power 11.5 kW and minimum production level 1

kW. Base load value in both experiments is set to 3 kW. The cost of
electricity generated by the hydro power is c1=0.25 EUR/kWh [IRE],
while the electricity price c2 is 0.31 EUR/kWh during the first seven
minutes and 0.21 EUR/kWh during the rest of the simulation time
[Eur]. During the first experiment, solar power plant production level
was 6.28 kW, while during the second experiment solar power plant
production level was 2.98 kW.

Simulation results of both experiments are shown in Figs. 10.4 and
10.5. Frequency controller in both cases follows the set points received
from the EMS. In Experiment 1, the lower reference penalization value
for the hydro power plant causes the hydro power plant references
generated by the Frequency controller to deviate more from the refer-
ences given by the EMS as compared to the second experiment. In Figs.
10.4 and 10.5 the dashed lines in the input space represent Frequency
controller references, while the solid lines represent the references
received from the EMS. U0 represents the hydro power plant reference,
U1 represents reference for the controllable load 1 and U2 for control-
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Table 10.2: Load profiles (Paper E).

Time L1[kW] L2[kW]

t1 0.4 1.1

t2 0.7 1.2

t3 0.8 0.8

t4 0.8 0.5

t5 0.6 1.1

t6 1.0 1.0

t7 0.9 0.7

t8 1.2 1.0

t9 1.2 1.0

t10 0.8 0.8

t11 1.5 0.6

t12 1.7 0.5

t13 1.2 0.5

t14 1.0 0.5

t15 0.4 1.3

lable load 2. Further, ym represents frequency measurements, while ŷ
represents frequency estimations. In the lower graph in Fig. 10.4, the
largest deviation occurred at time 16:10 when, instead of reducing the
output of the hydro power plant (blue line) the Frequency controller
actually increased the power (dashed red line). This is because the
negative frequency deviation at the same time (see the first graph
in Fig. 10.4 caused the Frequency regulator to increase the output
of the hydro power plant in order to increase the frequency (input
reference deviation penalization equal to 1). On the other hand, the
flexible loads (U1 and U2) strictly follow the given set points from the
EMS as they do not take part in frequency regulation (input reference
deviation penalization equal to 5). In Fig. 10.5, which shows the result
for Experiment 2, the hydro power plant output deviates much less
because its input reference deviation penalization is increased to 4,
while the loads behave the same way as in Experiment 1.

10.5 conclusions

The main idea of this paper was to present a three-level hierarchical
control approach that can be applied to MGs. The first control level
is based on dynamic economic dispatch algorithm and its main pur-
pose is to optimize MG operation in the long-run with the goal of
minimizing MG operating costs. The second control level optimizes
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Figure 10.4: Results of Experiment 1 (deviations of the hydro power plant are
penalized less compared to Experiment 2) (Paper E).
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Figure 10.5: Results of Experiment 2 (deviations of the hydro power plant are
penalized more compared to Experiment 1) (Paper E).
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the aggregated system frequency control problem. Using a model
predictive controls (MPCs) formulation and extended Kalman filter,
both the constraints and the unknown disturbances are accounted for
based on frequency measurement in the MG. The third level is the
plant level, in which classical controllers are used for tracking optimal
set points received from upper two control layers.

The functionality of this control approach has been tested on the
laboratory MG at the SGLab at the University of Zagreb Faculty of
Electrical Engineering and Computing. Experimental results have
shown the effectiveness of this control approach in the GCM.

Further research will be focused on the experimental validation of
the proposed approach in the IM. In that regard, additional compo-
nents will be included in the MG, such as battery storage or additional
photovoltaic capacity.
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Abstract—An aggregator acts as a middlemen between the
small customers and the system operator (SO) offering a mutually
beneficial agreement to trade electric power, where each market
player (system operator, aggregator and EV owner) has its
own economic incentives. The EV aggregator aims to maximize
its profit while trading energy and providing balancing power
in wholesale markets. This paper develops a stochastic and
dynamic mixed integer linear program (SD-MILP) for optimal
coordinated bidding of an EV aggregator to maximize its
profit from participating in competitive day-ahead and real-time
markets. Under uncertain day-ahead, real-time market prices
as well as fleet mobility, the proposed SD-MILP model finds
optimal EV charging/discharging plans at per device level. The
degradation costs of EV batteries are precisely modeled. To
reflect the continuous clearing nature of the real-time market,
rolling planning is applied which allows re-forecasting and re-
dispatching. The proposed SD-MILP is used to derive a bidding
curve of an aggregator managing 1000 EVs.

I. NOMENCLATURE

A. Indices
k index for storages, k = 1, . . . ,K;
t planning periods, t = 1, . . . , T ;
s scenarios, s = 1, . . . , S;
i index for possible bid prices i = 1, . . . , I;

B. Parameters
ωs Probabilities associated with the scenarios;
P k Max. storage rate of discharge, charge [kW];
P k Min. storage rate of discharge, charge [kW];
Ek Max. capacity of a storage [kWh];
γk Scalar to calculate max SoC;
γ
k

Scalar to calculate min SoC;
η
ch/dch
k Charge, discharge efficiency of a storage;
SoCB

k,t=0 Starting storage level [kWh];
SoCBend

k, End storage level [kWh];
λs,t Day-ahead market price scenarios [e/MWh];
λ
up/dn
s,t Real-time market price scenarios [e/MWh];
ρi Fixed bid price for day-ah. market [e/MWh];
ρ
up/dn
i Fixed bid price for real-time market

[e/MWh];
ct Aggregator’s offer to storage owner [e];
ccapk Capital cost of a storage [e];
µk The slope of the linear approximation of the

battery life as a function of the cycles;

As,k,t Availability matrix indicating whether EV is
available or not;

Dk Average hourly driving distance of an EV [km];
ηdrk driving efficiency of an EV;
Γ1,Γ2 Sufficiently big constant;

C. Variables

pDAch
s,k,t Charging dispatch level for k storage in

day-ahead market [kWh];
pDAdch
s,k,t Discharging dispatch level for k storage in

day-ahead market [kWh];
pBch
s,k,t Charging dispatch level for k storage in

real-time market [kWh];
pBdch
s,k,t Discharging dispatch level for k storage in

real-time market [kWh];
PDAch
s,t Energy as day-ahead buying position

[kWh];
PDAdch
s,t Energy as day-ahead selling position

[kWh];
PBch
s,t Down-regulating volume in real-time mar-

ket [kWh];
PBdch
s,t Up-regulating volume in real-time market

[kWh];
CPDAch

s,t Total cost of charging in day-ahead market
[e];

CPDAdch
s,t Total cost of discharging in day-ahead

market [e];
CPBch

s,t Total cost of charging in real-time market
[e];

CPBdch
s,t Total cost of discharging in real-time mar-

ket [e];
xDAch
i,t Charging bid volume in day-ahead market

[kWh];
xDAdch
i,t Discharging bid volume in day-ahead

[kWh];
xBch
i,t Charging bid volume in real-time market

[kWh];
xBdch
i,t Discharging bid volume in real-time mar-

ket [kWh];
SoCB

s,k,t Storage level at the end of time step t
[kWh];

α̂s,t,i binary variable;
α̂
up/dn
s,t,i binary variable;



II. INTRODUCTION

According to [1] worldwide EV penetration is assumed
to increase up to 20 million by 2020. Therefore, there is a
huge potential using EV batteries to assist the electric power
grid [2]. However, the single EV can not enter to electricity
market to trade their energy for the following two reasons:
1) the available trading power of individual EV is below the
required threshold to participate in electricity markets [3],
and 2) The participation of individual EVs will increase the
number of market actors which will increase the difficulty of
managing electricity markets. Therefore a new market entity,
an aggregator, will be required in order to enable smooth
cooperation between EV owners and SO.

The main target of the aggregator, as a market entity, is to
buy the electric power at the lowest possible cost to satisfy
driving needs of its fleet of EVs [2] and [4]. Meanwhile, the
economic incentive of the aggregator is to increase its revenue
by performing energy arbitrage [5], [6], [7] and [8]. With the
vehicle-to-grid (V2G) capability of EVs, the idea of using
EVs as a electric power source to provide balancing power
attracted many researchers in the field. Having a flexible power
source, EV aggregator can provide reserve power and increase
its profit. The possibilities of using EVs as a resource for
real-time balancing and system reserves by providing ancillary
services are studied in [9], [10], [11], [12] and [13].

The EV interaction with the grid can be categorized as
unidirectional and bidirectional. The problem of bidding regu-
lation and spinning reserves for unidirectional EV interaction
is explored in [10]. However, the bidirectional mode offers
higher flexibility and profits. Bidirectional EV interaction with
the grid is modeled in [11] and [13]. However, using the
batteries as storage devices for grid purposes reduces their
lifetime [14] and [13]. Thus, EV owners must be compensated
for the lost utility of their batteries due to degradation when
providing services.

Taking into consideration the uncertain nature of market
conditions and fleet characteristics, stochastic approaches fit
better to the aggregators optimal bidding problem. In [9] and
[12] the authors develop the optimal bidding strategy of an EV
aggregator participating in day-ahead energy and regulation
markets using stochastic optimization.

This paper develops an optimal bidding strategy model
for an EV aggregator who participates in the day-ahead and
real-time markets considering the uncertain nature of market
conditions and fleet characteristics. Unlike previous formula-
tions [9], [12] and [13], this formulation accounts dynamically
clearing nature of the real-time market while deriving optimal
bids to day-ahead and real-time markets. In order to benefit
from the released information over time, the rolling planing is
employed to update the scenario tree of real-time prices within
the planning day. In addition the developed model enables the
aggregator to manage both stationary storages and EVs. The
main contributions of the paper are:

• The development of a stochastic and dynamic mixed-
integer linear program (SD-MILP) for an aggregator who
manages big number of stationary storages and EVs to
obtain the optimal coordinated bidding in two-settlement
markets.

• The derivation of optimal coordinated charge (discharge)
bids for day-ahead and real-time markets with moderate
computation time when applying scenario-reduction tech-
niques.

• The inclusion of uncertainty in both market prices as well
as EV mobility parameters.

The paper is structured as follows. Section III describes the
mathematical model formulation of an aggregator. Section
IV provides case-study results and Section V provides the
conclusion.

III. MATHEMATICAL PROBLEM FORMULATION

The mathematical formulation of an EV aggregator inter-
acting with day-ahead and real-time markets is stated below.

A. Stochastic optimal strategy of an EV Aggregator

The stochastic optimization problem stated in (1) aims at
the maximization of scenario-weighted expected profits from
day-ahead energy trading ΠDA

s,t and real-time power exchange
ΠB

s,t.

MaximizeΦ E[ΠTot] =
∑

s

ωs(

T∑

t=1

(ΠDA
s,t + ΠB

s,t)) (1)

where ΠDA
s,t and ΠB

s,t are expressed as in (2) and (3)
correspondingly.

ΠDA
s,t = λs,tPDAdch

s,t − CPDAdch
s,t − λs,tPDAch

s,t + CPDAch
s,t

(2)

ΠB
s,t = λups,tPBdch

s,t − CPBdch
s,t − λdns,tPBch

s,t + CPBch
s,t (3)

The different components in (2) and (3) break down as follows:

PDAdch/ch
s,t =

∑

k

p
DAdch/ch
s,k,t , PBdch/ch

s,t =
∑

k

p
Bdch/ch
s,k,t

(4)

CPDAdch
s,t =

∑

k

(ct
pDAdch
s,k,t

ηdchk

+
∣∣∣ µk

100

∣∣∣ c
cap
k

Ek

pDAdch
s,k,t ) (5)

CPDAch
s,t =

∑

k

(ctp
DAch
s,k,t η

dch
k +

∣∣∣ µk

100

∣∣∣ c
cap
k

Ek

pDAch
s,k,t ) (6)

CPBdch
s,t =

∑

k

(ct
pBdch
s,k,t

ηdchk

+
∣∣∣ µk

100

∣∣∣ c
cap
k

Ek

pBdch
s,k,t ) (7)

CPBch
s,t =

∑

k

(ctp
Bch
s,k,tη

dch
k +

∣∣∣ µk

100

∣∣∣ c
cap
k

Ek

pBch
s,k,t) (8)

It is obvious that the equations (2) and (3) express the
aggregator’s revenue minus cost while providing optimal
discharge/charge bids in day-ahead and real-time markets
respectively. The constraint (4) provides the aggregated
charge/discharge bids in both markets. The aggregator’s cost



in both markets while providing charging/discharging optimal
bids is set out in constraints (5)-(8), where the first term is the
aggregator’s payment to the EV owner and the second term is
the battery degradation cost.

To derive the step-function bidding curve for hour t of the
day-ahead market, we first fix the parameters ρ1, ρ2, ..., ρI at
I arbitrary prices. The unknown variables x1, x2, ..., xI of the
step function are derived as follows:

PDAch/DAdch
s,t =

i∑

l=0

x
DAch/DAdch
i−l,t if ρi ≤ λs,t ≤ ρi+1

(9)

Using binary variable α̂ch/dch
s,t,i and a large enough constant

Γ1, (9) can be reformulated as constraints (10)-(12):

ρi − Γ1(1− α̂ch/dch
s,t,i ) ≤ λs,t ≤ ρi+1 + Γ1(1− α̂ch/dch

s,t,i )

(10)
i∑

l=0

x
DAch/DAdch
i−l,t − Γ1(1− α̂ch/dch

s,t,i ) ≤ PDAch/DAdch
s,t

≤
i∑

l=0

x
DAch/DAdch
i−l,t + Γ1(1− α̂ch/dch

s,t,i ) (11)

I∑

i=1

α̂
ch/dch
s,t,i = 1 (12)

The up- and down-regulating bids to real-time market are
expressed in (13).

PBch/Bdch
s,t =

i∑

l=0

x
Bch/Bdch
i−l,t

if ρ
up/down
i ≤ λup/dns,t ≤ ρup/down

i+1 (13)

In the similar way, using binary variables α̂dn/up
s,t,i and a large

enough constant Γ2 (13) can be reformulated as:

ρ
dn/up
i − Γ2(1− α̂dn/up

s,t,i ) ≤ λdn/ups,t ≤ ρdn/upi+1

+ Γ2(1− α̂dn/up
s,t,i ) (14)

i∑

l=0

x
Bch/Bdch
i−l,t − Γ2(1− α̂dn/up

s,t,i ) ≤ PBch/Bdch
s,t

≤
i∑

l=0

x
Bch/Bdch
i−l,t + Γ2(1− α̂dn/up

s,t,i ) (15)

I∑

i=1

α̂
dn/up
s,t,i = 1 (16)

Constants Γ1 and Γ2 must be selected carefully to avoid
introducing extra bounds or ill-conditioning in the optimiza-
tion problem. The state of charge balance constraint can be
modeled as:

SoCB
s,k,t = SoCB

s,k,t−1 + [pchk,tη
ch
k −

pdchk,t

ηdchk

+ pBch
s,k,tη

ch
k

−
pBdch
s,k,t

ηdchk

]As,k,t −Dkη
dr
k (1−As,k,t) (17)

Constraint (17) states that for each hour the new content of
the storage is equal to its old content plus energy inflow minus
energy outflow. Please note that, the equation (17) allows to
model both stationary and mobile (EV) storages. For stationary
storages As,k,t availability matrix is always 1; hence the last
term which is energy spend on driving purposes vanishes.
For EVs the availability matrix is either 0 or 1 depending on
weather the EV is available or on the trip. The storage level
is bounded by its minimum and maximum levels (18).

γmin
k

Ek ≤ SoCB
s,k,t ≤ γkEk (18)

The constraints (19) prevents discharging/charging in the
periods of unavailability. Finally the constraint (20) states the
end SoC condition.

As,k,tP k ≤ pDAdch
s,k,t − pDAch

s,k,t + pBdch
s,k,t − pBch

s,k,t ≤ As,k,tP k

(19)

SoCB
s,k,T ≥ SoCBend

k (20)

The day-ahead market is cleared at noon the day before
delivery day while the real-time market is continuous, hourly
market. This means the EV aggregator has new price informa-
tion realized after the day-ahead market clearing and before the
real-time market closure. In order to benefit from the released
information over time, the scenario tree of real-time prices can
be updated within the planning day using the rolling planning.
Let Ω[t,T ] be the scenario tree predicted for hours t to T using
the historical prices up to hour t. In the rolling planning, Ω[t,T ]

is dynamically updated by real-time prices revealed until hour
t. The ideal case would be to update the Ω[t,T ] on the hourly
bases. However, the solution time to solve the stochastic model
dynamically increases exponentially. Thus, in order to keep
the model computationally tractable, Ω[t,T ] is updated every
few hours which is called ’iteration’. For each iteration, new
scenario tree is used which contains the updated forecasts for
real-time market prices.

The stochastic and dynamic optimal bidding strategy for
deriving the coordinated bidding curves in day-ahead and real-
time markets follows as:

MaximizeΦ

|Ω[t,T ]|∑

s=1

ωs(
T∑

t=1

(ΠDA
s,t + ΠB

s,t)) (21)

subject to :

(2), (3), (4), (5)− (8), (10)− (12), (14)− (16), (17)− (20)
(22)

IV. CASE STUDY

In order to study the applicability of the developed SD-
MILP optimal bidding strategy both charging and discharging
modes are studied. The developed approach is applied to derive
a bidding discharge/charge curve of an aggregator managing
a fleet of 1000 EVs.



A. data input

1) Market data acquisition: The historical price data, for
both day-ahead and real-time markets, are taken from the
Nordic electricity market website, from March 10, 2012 to
March 10, 2013 [15].

2) Market price scenario generation and reduction:
The modeling and forecasting of electricity prices are very
challenging due to its complex structure. Its stochastic
behavior is typically mean-reverting and spiky with high
volatility [16]. The existing dynamics between day-ahead
and real-time markets make the price forecasting even more
complicated. Substantial amount of work has been done on
modeling and forecasting of day-ahead market prices [17].
However, the existing references on real-time price modeling
and forecasting is very limited [18], [19] and [20]. This
section develops the Markov-based HW model for modeling
and predicting the day-ahead and real-time prices. The
proposed model has the following steps.

a) Step 1: Estimate the parameters of the HW model:
Reference [21] presents the HW model for a time series with
unique seasonal pattern. The HW model is applied to forecast
the electricity demand and imbalance cost in [22] and [23].
The standard HW model for a time series of prices {λt}Tt=1

is as follows [24]:

γt = α(λt/It−Ξ) + (1− α)(γt−1 + Tt−1) (23)
Tt = β(γt − γt−1) + (1− β)Tt−1 (24)
It = σ(λt/γt) + (1− σ)It−Ξ (25)
p̃t(h) = (γt + hTt)It−Ξ+h (26)

where γt is the exponential component, Tt is the trend and
It is the seasonal component with period Ξ. α, β, and σ
are smoothing parameters which belong to the interval (0,1].
p̃t(h) is the h-hour ahead forecast.

b) Step 2: Estimate the transition probability matrix of
Markov model for different states of real-time market prices:
The magnitude of day-ahead and real-time electricity prices
can be estimated using the HW technique. However, the real-
time market prices have discrete mode meaning that in addition
to price magnitudes, the price states need to be forecasted.
In each bidding interval t, the real-time market price may
have one of the following four states: (1) No up- or down-
regulating price exists, (2) Only down-regulating price exists,
(3) Only up-regulating price exists, and (4) Both up- and
down-regulating prices exist. The state of real-time market
prices can be modeled using a four-state Markov process.

The probabilities of the transition matrix for real-time
Markov model are estimated using historical real-time market
prices. Based on the real-time prices, for each bidding period

t, the binary pair (bupt , bdnt ) is defined as follows.

b
up(dn)
t =

{
1 if an up-(down-regulating) price exists
0 Otherwise

(27)
We define ot as the parameter which shows the state of the
real-time price at time t.

oReal−time
t =





1 if (bupt , bdnt ) = (0, 0)

2 if (bupt , bdnt ) = (0, 1)

3 if (bupt , bdnt ) = (1, 0)

4 if (bupt , bdnt ) = (1, 1)

t = 1, 2...T

(28)
Let Oij = {oReal−time

t : oReal−time
t = j, oReal−time

t−1 = i, t =
1, ..., T}, then element (i,j) of transition probability matrix prij
for i, j = 1, ..., 4 can be calculated as:

prij =
Card(Oij)∑4

n=1 Card(Oi,n)
i, j = 1, ...4 (29)

c) Step 3: The day-ahead and real-time price scenarios:
The prediction technique explained in step 1 is applied to
forecast the day-ahead market price magnitude. Then, using
the expected values and the variances of day-ahead market
prices and assuming normal distribution the day-ahead market
price scenarios are generated. However, both price magnitude
and direction have to be forecasted for real-time market.
To predict real-time market price magnitude the real-time
market hystorical prices are collected and processed. Then
the forecasting tool in step 1 is applied. The Markov model
provided in step 2 is employed to capture the price direction
for the real-time market. Again, the real-time market price
scenarios are generated using the predicted price magnitude,
direction and assuming normal distribution. For day-ahead and
real-time markets various price scenarios are generated for
each planning hour. The backward reduction algorithm is used
to reduce the number of price scenarios. This is done in a way
that the statistical information in prices is maintained in the
best possible way [25]. Using the forecasted prices, 1000 price
scenarios with equal probabilities are generated and they are
reduced to 10 price scenarios. These preserved price scenarios
will be used for calculating the optimal bidding curve of the
EV aggregator.

3) Availability simulation: A Monte Carlo simulation tool
is used to produce mobility scenarios for imitating the uncer-
tain driving behavior. Then, discrete cumulative distribution
functions (cdf) is employed, which is derived considering i)
the probability of travel on a specific day, ii) the probability
that a trip starts in a specific hour, and iii) the probability
that a trip covers a certain distance. It is assumed mutually
independent distributions [12]. Finally, 10 equally probable
mobility scenarios are produced and integrated with the 10
price scenarios prepared in Step 3.

4) General parameters: The EV driving patterns are ac-
cording to the reference [26]. The maximum battery capacity
is taken 50 KWh [26], while the battery level is bounded by its
minimum of 20 % and maximum of 100 % of the maximum



capacity [27]. Both the charging and discharging power rate is
taken 6 kW. Finally, the charging and discharging efficiency
is set to 90 % and 93 % respectively [28]. For every scenario
the target state of charge level is equal to the initial state of
charge level and is taken 60 % of the maximum capacity. The
capital cost for EV battery is set to 200 e/MWh and the
slope µk=-[0.0013] according to [13].

B. Simulations results

A three-level step function with ρ1=15e/MWh,
ρ2=50e/MWh, and ρ3 =75e/MWh is considered for
bidding curves. The proposed Markov-based HW model,
scenario backward reduction algorithm and the Monte Carlo
simulation tool to produce mobility patterns are coded in
Matlab. The SD-MILP is coded in GAMS platform and
solved using Cplex solver. All optimization problems are
solved with optimality gap of 0%. The whole simulation is
run on a computer with 2.66 GHz processor and 4 GB RAM.
The objective function values together with the computation
time for a fleet of 1000 EVs and all iterations are stated in
Table I. According to Table I the computation time is highest
for the first iteration. Moreover, the computation time for the
second iteration is lowest, then it is slightly increasing in the
third and the fourth iterations. Possible answer to this is the
application of rolling planning in the SD-MILP optimization
model. After the first iteration all variables for the day-ahead
market is fixed to their optimal values. In addition, for the
real-time market and for every iteration the information
related to previous hours is kept and the information related
to remaining hours is updated. The resulting optimization
problem becomes tighter, therefore the solver takes longer
time to solve.

TABLE I: Model solution report for a fleet of 1000 EVs, It: Itertaion

It. 1 It. 2 It. 3 It. 4
E[ΠTot](e) 200.35 168.8 167.35 130.24

Comp. time (second) 28.64 15.2 18.3 19

The optimal coordinated bids of the hydropower producer
in two markets is set out in Table II. The bid volumes to day-
ahead market remain the same for all iterations (the first and
the second columns in Table II). In contrast Table II shows
that real-time bid volumes (up/down regulation) are changing
when time evolves and new price information reveals over
time. According to Table II, the EV aggregator is actively
participating in day-ahead market offering discharging bids
and in real-time market providing down-regulation bids.

The day-ahead and real-time bidding curves for hours 2 and 3
are shown in Figures 1 and 2. According to the Figure 1 the
model offers to enter directly to real-time market providing up-
and down-regulating bids. However, Figure 2 shows that, for
the hour 3 the model yields an incentive to offer discharging
bid to day-ahead market and charging bid to real-time market.
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Fig. 1: The bidding curves for hour 2.
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Fig. 2: The bidding curves for hour 3.

V. CONCLUSION

The aggregators are required business entities, who enable
smooth cooperation of large fleets of EVs and the SO while
maximizing their own profit. This paper proposes a SD-
MILP for deriving optimal coordinated bidding in day-ahead
and real-time markets for a profit-maximizing EV aggregator.
The prices in these market places are modeled and predicted
using a proposed Markov-based HW model. The HW model
predicts the magnitude of day-ahead and real-time market
prices. The direction of real-time market prices are predicted
using Markov model. The scenario tree is also updated with
arrival of new information for real-time market prices. This has
been done by implementing the rolling planning in the SD-
MILP. The developed procedure is tested using a fleet of 1000
EVs. Results show that EVs can provide a new collection of
services to the power system. However, the degradation of the
batteries should be accounted precisely in order to motivate
the EVs’ participation in day-ahead and real-time markets.
The current paper can be extended by modeling also intra-
day market.
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TABLE II: The optimal coordinated bidding in day-ahead and real-time markets for four iterations of rolling planning
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Reactive Power Control in Microgrids using Target
Adjusted Model Predictive Control

Abstract — We examine target adjusted Optimal Controllers (OCs) and
target adjusted Model Predictive Controllers (MPCs) and compare them
to classical OC and MPC formulations for coordinated perturbed voltage
regulation in microgrids (MGs). The voltage regulation problem considered
hereby is a tracking problem of the perturbed voltage regulation problem.
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Niels Kjølstad Poulsen, Daniela Guericke

Technical report.

12.1 introduction

Voltage control is a fundamental control problem in power systems
[Kun94]. In contrast to frequency control or frequency stabilization,
voltage control is a control problem to be solved locally with respect
to the controlled variables. Nodal reactive power injections affect the
bus voltages, subsequent bus voltage levels hereby expose sensitivity
to control decisions at all nodes within relevant electrical distance.
Consequently, the system is potentially highly dynamic and nonlinear
[HP14].

We can approach reactive power control at different levels of ag-
gregation, sampling resolution and associated feasible problem size
[LD14].

Therefore, this problem is historically addressed by means of a
control hierarchy [Kun94; Bev14; Sch78]. Solutions to complex and
computationally demanding optimization problems are then used as
input to the computationally lighter control problems at lower levels
in the hierarchy. This results from the aspect that problem complexity
in the planning problem defining the operating point and operating
region of the system is considerably higher compared to real–time
control problems. Control problems are tailored to the requirements
at given level in the hierarchy [MC].

Alternatively, distributed control approaches enable for relative
improvements in terms of privacy, computational load and as con-
sequence, increased problem size that can be addressed [Mol+17;
Sch+16].

185
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At the highest level, an optimal power flow (OPF) problem is to
be solved in order to account for fundamental system requirements
[Fau+18] .

For the real–time (RT) control problem at aggregated system level,
optimal control (OC) and model predictive control (MPC) techniques
are commonly proposed [VC13]. In the case of MPC, this is due to its
well–known capability to account for system constraints within the
optimization step in combination with its large research base.

For retaining a light system model, linearization techniques are
proposed that provide approximations to the power flow equations
which can be used in MPC based strategies [MMD18]. Methods for
examination of the sensitivity within the system are available [Lek+18].

The control performance of MPC relies on a good model of the
system. For the aggregated voltage control problem, retrieval of
such model can be hard to accomplish. Extremum Seeking Control
techniques pose the problem such that convergence to stable system
operating points can be guaranteed even with little knowledge of the
underlying system, see [Joh+18] as example. Once sufficient data
of the system has been collected, sparse regression techniques can
be applied in order to retrieve parsimonious models that avoid over–
fitting, see [BPK16].

Adaptive control approaches allow for enhanced robustness with
respect to disturbance and model uncertainties [Ngu17]. Dong. et. al.
[Don18] discuss aspects of the setup of a control structure for load
frequency control (LFC) and voltage stabilization using adaptive distur-
bance rejection controller (ADRC) Control approaches. ADRC is claimed
to be robust with respect to disturbances and model uncertainties.
Other approaches to the RT control problem include adaptive learning
strategies. [VBV06] propose usage of such learning technique based
on available historical data in order to infer optimized decisions.

In this paper we compare alternative OC and MPC formulations
for the aggregated voltage control problem. These target adjusted
formulations have been previously proposed for the LFC problem
[Ban+19].

We compare these controller variations the integrated squared errors
(ISEs) of the mean voltage deviation magnitude. Furthermore we
examine their robustness towards a range of selected uncertainties.

The paper is organized as follows. In Section 12.2.1 the considered
operational objective is stated, it follows the description of used mod-
els in 12.2.2 and formulation of the state observer in Section 12.2.3.
Considered OC approaches are outlined in 12.2.4, MPC approaches in
12.2.6. Numerical results are presented in 12.3. Results are discussed
in 12.4 and the paper closes with the conclusions 12.5.
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12.2 methodology

We aim to design RT OCs and MPCs for the aggregated voltage con-
trol problem. This control layer should therefore track references
provided by a higher layer controller. Such layer typically solves the
alternating current optimal power flow (AC-OPF) problem. The RT layer
then provides modified control decisions provided to the lower level
controllers. It can be therefore denoted as coordinated RT control layer,
leveraging the overall system for the rejection of disturbances.

Consider the nomenclature stated in Table 12.1 and acronyms in
Table 12.2.

12.2.1 Operational Objective and Performance Metric

We can formulate the control objective as to

• maintain voltages close to their references

• maintain the average voltage excursion from the reference value
close to zero

The former objective is relevant as this aggregated control layer
should operate with respect to operating points provided by a higher
layer optimization routine. Such routine solves, for example, the
AC-OPF problem. The latter objective is relevant as we aim to achieve
power sharing while maintaining the first objective. This entails that
we aim to reject disturbances and compensate uncertainty. Further-
more, we may aim for higher accuracy at certain nodes in the grid. The
reduced degrees of freedom at such node are then to be compensated
by higher control effort at other nodes.

The mean integrated squared error (ISE) is chosen here as evaluation
metric for the stated objective. It can be formulated as:

ISE =
∫ j

k
(

y− ȳ
ny

)2 (12.1)

Notice that a higher optimization layer defines ȳ, the desired voltage
magnitude at all nodes within the control zone.

12.2.2 Models

We consider an aggregated dynamical multiple–input multiple–output
(MIMO) system where the inputs are reactive power injections and the
outputs are bus voltage levels. The system may be partly based on
first–principles, partly based on secondary–principles. First principles
entails knowledge of the system based on physical insights. Secondary
principles refer to data–driven modeling techniques, see for example
[Nel01; Lju99].
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Table 12.1: Nomenclature. </> denotes not specified units.

Symbol Description Unit

Variables

u? Optimal input sequence (Control variables) pu

ū Input reference trajectory pu

x System state /

x̂ One–step prediction of x /

x State target /

u Control target /

d̂ Disturbance estimate pu

d̂r Residual disturbance estimate pu

d̂r,e Sum of residual disturbance estimate and output resid-
ual εy

/

y Voltage deviation (Controlled variable) pu

ŷ One–step prediction of y pu

ym Grid voltage measurement pu

εy Integrated output error pu

εA, εB, εBd Multiplicative model–plant errors w.r.t. corresponding
model parameters

/

p System equilibrium /

w State error: Wiener process /

v Measurement error: White noise process pu

θ Model parameter vector /

σ, h Nonlinear model functions /

ω Standard Wiener process /

Ts Controller sampling time s

N Prediction horizon /

Lx, Ld Kalman gain w.r.t. states and w.r.t. disturbance /

A, B, Bd, G, E,
C, D

State Space System matrices /

Φx Free Markov parameters /

Γu Forced Markov parameters (controlled) /

Γd Forced Markov parameters (uncontrolled) /

G, h Objective inequality coefficients, bounds /

K Optimal Control feedback gain /

K∞ Lumped deduced disturbance gain /

Ku,∞ Disturbance gain to the system inputs (subset of K∞) pu

Kx,∞ Disturbance gain to the system states (subset of K∞) /

∆v Voltage deviation with respect to nominal voltage pu

Wz Output space precision penalization /

W∆u Rate of movement penalization /

Wū Input reference tracking penalization /

β Tuning term: Input reference tracking /
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Table 12.2: Acronyms

AC-OPF alternating current optimal power flow

ADRC adaptive disturbance rejection controller

DARE discrete time algebraic riccati equation

DER distributed energy resource

DLQR discrete time linear quadratic regulator

IRC impulse response coefficients

ISE integrated squared error

LFC load frequency control

MG microgrid

MIMO multiple–input multiple–output

MISO multiple–inputs single–output

MPC model predictive control

OC optimal control

OPF optimal power flow

PCC point of common coupling

RES renewable energy system

RT real–time

SDE stochastic differential equation

Sys-ID system identification
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The plant models are typically nonlinear and can be stated as
stochastic differential equations (SDEs) such as formulated for example
in [KMJ04]:

dxt = f (xt, ut, t, θ)dt + σ(ut, t, θ)dωt (12.2a)

yk = h(xk, uk, tk, θ) + vk (12.2b)

where t is the time variable; tk are sampling instants; xt is a vector
of system states with the main state being the voltage deviations from
the nominal voltage levels ∆v; ut is a vector of input variables (reactive
power injections); yk is the single output variable and equals the main
state ∆v; θ is a vector of parameters; f , σ and h are nonlinear functions;
ωt is a standard Wiener process and vk is a white noise process with
vk ∈ N (0, S(uk, tk, θ)). See [KMJ04] for further clarifications and
details of this formulation.

Using the notation and formulation given in [MMD18], the reactive
power flow in a line (l, m) modeled as symmetrical π –model is given
by

qlm = −(blm + bsh,lm/2)v2
l + blmvlvm cos(θl − θm)−

glmvlvm sin(θl − θm) (12.3)

The set of model spaces consists of the buses i ∈ B and the lines
(l, m) ∈ L. Real and reactive power injections and extractions are
denoted pi and qi respectively, voltages and phasor angles vi and θi
respectively. We may assume that the angle reference for the MG is set
at PCC and is therefore θref = θPCC = 0◦. See [MMD18] further details
upon notation.

The linearized system model may then be represented in relation to
a point of linearization as stated below.

dxt|j
dt

= f0 + A(xt − xj) + B(ut − uj)+

G(dt − dj) + wt (12.4a)

yt = Cxt + et (12.4b)

x is the system state; u the controlled system input, d the uncon-
trolled system input (disturbance). w and e are process and measure-
ment noise respectively. This is a multiple–inputs single–output (MISO)
system if more than one unit in the MG are considered.

12.2.3 State Estimation

The residual d̂ can be estimated using an augmented Kalman filter
following the formulations given in [PR01; PR03]. The augmented
system model with integrating input disturbance is
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Aa =

[
A Bd

0 I

]
(12.5a)

Ba =

[
B

0

]
(12.5b)

xa =

[
x

d

]
(12.5c)

Using the augmented system equations stated in equation (12.5) on
the facing page, the dynamic filter equations consist of the prediction
step

x̂a,k|k−1 = Aa x̂a,k−1|k−1 + Bauk−1 (12.6a)

Pk|k−1 = AaPk−1|k−2AT
a + Qk|k (12.6b)

and following update step

Kk+1|k = Pk|k−1CT(CPk|k−1CT + Rk|k−1)
−1 (12.6c)

Pk+1|k = (I − Kk+1|kC)Pk|k−1 (12.6d)

x̂k+1|k = x̂a,k|k−1+

Kk+1|k(ym,k|k − Cx̂a,k|k−1 − Cdd̂r,k|k−1) (12.6e)

See for example [Joh05; KMJ04].
ym,k is the vector of measured nodal voltage level deviations from

the point of linearization. This is the one–step predictor of both
estimated state x̂ and disturbance residual d̂.

12.2.4 Target Adjusted Stationary DLQR

The classical stationary discrete time linear quadratic regulator (DLQR)
control law can be stated as

u?
k = −Kx̂k|k (12.7)

By offsetting with the target p we can derive the target adjusted
stationary DLQR as

u?
k = uk|k − K(x̂k|k − xk|k) (12.8)

The controller gain K for both formulations we find as solution
to the discrete time algebraic riccati equation (DARE) [Van81; Lau78],
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where p = {x , u} is a system equilibrium. We model it as linear
relationship to the estimated disturbance residual d̂r:

p
k|k = K∞d̂r,k|k (12.9)

K∞ hereby is a gain from a unit disturbance to one corresponding
system equilibrium point. When d̂r is based on future information,
the controller is enabled to act proactively. Equation 12.9 recovers a
system equilibrium corresponding to d̂r.

We can only approximate the inverse of M for the considered system.
In consequence, we obtain K∞ by using a least–squares approximation:

M︷ ︸︸ ︷[
A− I B

C 0

]
K∞︷ ︸︸ ︷[

Kx,∞

Ku,∞

]
=

[
Bd

0

]
(12.10)

This approach is outlined in [MR93; PR03] and related methods
have been applied e.g. in [Huu+10]. Notice that the system of equa-
tions stated in Equation 12.10 has to be solved once for each model
formulation in order to recover the corresponding gain K∞. Bd here
denotes the modeled residual disturbance dynamics. These dynamics
are unknown and have to be approximated. Mismatch of Bd related to
the plant dynamics degrade the controller performance. This loss of
performance is then to be compensated for by application of appropri-
ate robustness and adaptive control strategies which are not subject of
this paper.

See [Ban+19] for a corresponding formulation in the context of LFC.
For the stationary DLQR denoted in Equation 12.7, feedback of the

estimated output residual εy can lead to offset free control:

u?
k = −Kx̂k|k − εy,k|k (12.11)

εy,k+1|k = εy,k|k−1 + ŷk+1|k − ȳk (12.12)

ȳ is hereby the output reference (reference nodal voltage deviations)
and ŷ is the estimated one–step output prediction (estimated one–step
nodal voltage deviations). In the simplest case, ȳ resembles a vector of
zeroes, given that the controller shall drive nodal voltage deviations
towards their values at point of linearization of the underlying system.
The feedback of the output residual as outlined above is a simple
compensation for the stationary output tracking offset. It can reduce
closed–loop stability and increase sensitivity to model–plant errors.
For the chosen exemplary system model described in Section 12.3,
this is the case. Consequently, Equation 12.11 remains unused for the
stationary DLQR. For the target adjusted stationary DLQR, no further
adjustments are included and offset free control is achieved.
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12.2.5 Classical MPC

The classical quadratic input–output reference tracking objective can
be stated as such:

min
u, k

J0 = ||Φx x̂k|k + Γuuk + Γdd̂k|k − y
k
||2Wz

+ β||uk||2W∆u

+ (1− β)||uk − ūk|k||2Wū
(12.13)

Φx, Γu and Γd are impulse response coefficients (IRC) of the lin-
earized system model. Φx are IRC with respect to the states, Γu are
IRC with respect to the inputs and Γd are IRC with respect to the
disturbances.

If no output residual error feedback is used, y = ȳ. For reduced
offset for the predictive controller stated in 12.13, Equation 12.12 in the
simplest implementation is used over the whole prediction horizon. If
the reference ȳ changes throughout the prediction horizon, a dynamic
variation of ȳ can be used within 12.12.

β denotes a tuning term used to switch the controller from regula-
tory action without input reference tracking to regulatory action with
input reference tracking.

OP0 OP1

AC–OPF

SQP

ūQūP

SystemK f

d̂P

K f

d̂Q

u?
P u?

Q

Figure 12.1: Minimal exemplary aggregated operational control scheme con-
sisting of an upper layer with a precise system model — here
represented in form of an AC–OPF — and lower layer main-
taining system stability and achievemnt towards RT control
objectives. Voltage controls OP1 receive control input references
ūQ and pass the modified solution u?

Q to the system controls.

12.2.6 Target Adjusted MPC

The target adjusted approach discussed in Section 12.2.4 can be applied
in the MPC framework using

min
u, k

J1 ||Φx(x̂k|k − xk|k) + Γu(uk − uk|k)− ȳk||2Wz

+ β||uk − u?
k−1||2W∆u

+ (1− β)||uk − ūk|k||2Wū
(12.14)
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Again β is used to switch the controller from regulatory behavior
without input reference tracking to regulatory behavior with input
reference tracking. A similar regulator implementation in the LFC
context can be found in [Ban+19].

We can achieve offset free control for the target adjusted MPC Equa-
tion 12.14 via adjustment of the control target p:

p
ε
= K∞d̂ε,k|k (12.15)

where

d̂ε,k|k = d̂k|k + εy,k|k (12.16)

p
ε

is hereby the adjusted control target. Alternatively, the objective
12.14 can be augmented with the output residual error as stated in
12.12.

12.2.7 Constraints

Hard input constraints and ramp–rate constraints for both MPCs can
be stated as

umin,k ≤ uk ≤ umax,k (12.17)

∆umin,k ≤ ∆uk ≤ ∆umax,k (12.18)

Gk uk ≤ hk (12.19)

12.3 numerical results

Consider the test system presented in Figure 12.2.

±
PCC

±DC–Link G Generator

e1

e2

e0

Figure 12.2: Considered test–network. Actors PCC and Generator, distur-
bance DC–link. The edge e2 is identified as critical edge within
the network in terms of controller stability.

It consists of two actors {G, PCC} and one disturbance {DC–link}.
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The edge e2 is identified as critical edge within the network in
terms of controller stability. Linearized dynamics of the actors and
disturbance are considered as

G =
s + 17.01

s2 + 10.7s + 3.135
(12.20a)

PCC =
1

6s + 1
(12.20b)

DC–link =
1

6s + 1
(12.20c)

Actors and disturbance connect to the grid via nodes ni. Edges ej
connect these nodes. Node and edge groups expose the group–specific
linearized dynamics given by

ni =
1

s + 1
(12.21a)

ej =
1

τej + 1
| τeJ = 2s (12.21b)

The system consisting of actors, disturbance, nodes and edges is
discretized using zero–order hold approximation with sampling rate
of 2 seconds.

This test–system should provide qualitative insights for a three
node test system, quantitative results depend on the specific system
parameterization.

For the disturbance, two disturbance sequences are used as input
throughout this paper, a sequence d0 with noise and a sequence d1

without noise, see Figure 12.3 below. Noise in d0 remains hereby con-
stant throughout all simulations. For proactive action and predictions
of the controllers, the disturbance sequence reveals N steps ahead of
time.
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Figure 12.3: Disturbance trajectory used in the following simulations.

A prediction horizon of N = 10 is used. The static gain K is
obtained by solution to DARE parameterized with Rc = 0.05. All
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units are initialized as resting at the point of linearization without
initial excitation. The state observer is initialized with augmented
state associated uncertainty P = 1

1e−5 and DARE parameterized with
Ro = 0.05. The DARE is solved using the algorithm outlined in [Van81]
and implemented in [JOP+01].

Diagonal elements wz = 1.0, wū = 0.1, w∆u = 0.05 are chosen for
the penalization matrices Wz, Wū, W∆u. The input disturbance model
dynamics are chosen as τdist = 1.0.

The controllers listed in Table 12.3 are considered throughout this
section. The optimal controllers OC1, OC2 are considered with and with-
out proactive action. All listed MPCs are considered with and without
the inclusion of predictive action. Perfect knowledge is assumed in
both cases for the disturbance predictions. All MPCs are considered
without active constraints.

Table 12.3: Examined control laws and objective functions.

Controller la-
bel

Control law equation / objective function Error compen-
sation

OC0 Classical stationary DLQR 12.7 -

OC1 Target adjusted DLQR 12.8 -

OC2 Target adjusted DLQR 12.8 12.11

MPC0 Classical MPC 12.13 12.12

MPC1 Target adjusted MPC 12.14 12.15

MPC2 Target adjusted MPC 12.14 12.12

12.3.1 Comparison of Optimal Controllers

We compare three OCs, two of which without and with proactive
action:

• OC0: Classical implementation, no output residual feedback

• OC1: Target adjusted implementation (non–proactive / proactive),
no output residual feedback

• OC2: Target adjusted implementation (non–proactive / proactive),
output residual feedback via control target

In Figure 12.4, the summed nodal ISE is depicted over the simulation
samples. Accumulated summed nodal ISE at the end of the simulation
period is depicted with bar charts at the bottom. Notice that we
consider here the summed ISE over all three nodes, as described in
Section 12.2.1. OC0 achieves the worst ISE. OC1 performs notably better.
The best ISE in this simulation is achieved by OC2. Proactive capabilities
does not improve the performance.
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Figure 12.4: OC comparison: ISE of aggregated outputs and aggregated
system controls.

12.3.2 Comparison of Model Predictive Controllers

Three MPCs are compared:

• MPC0: Classical implementation, output residual feedback via
output control goal adjustment

• MPC1: Target adjusted MPC, output residual feedback via control
target

• MPC2: Target adjusted MPC, output residual feedback via output
control goal adjustment

In Figure 12.5, the experiment illustrated in Figure 12.4 of the
previous Section 12.3.1 is repeated with the listed MPCs. Again, the
summed nodal ISE is shown, as well as the accumulated ISE at the end
of the simulation period.
MPC0 performs best both without and with predictions.

12.3.3 Parametric System Model Mismatch

We examine the Model–Plant dynamics mismatch, errors εA, εB and
εBd are hereby factors applied to the model. That is, the first two
errors render the model slower than the actual plant, owing to that
the opposite examination leads to instability.
OC0 and OC1 expose offset when facing parametric model mismatch,

see Figure 12.6. Sensitivity to mismatch in both free system dynamics
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Figure 12.5: MPC comparison: ISE of aggregated outputs and aggregated
system controls. For longer simulation durations, MPC0 (pred.)

outperforms its non–predictive counterpart MPC0.

A and forced system dynamics B is more pronounced for the clas-
sical stationary DLQR OC0. Only two distinct convergence points are
observed for mismatch in the lumped disturbance dynamics Bd for
these controllers. OC2 is robust regarding the examined mismatches in
terms of offset. Response characteristics however degrade strongest
for mismatch in Bd for this controller.

The classical MPC MPC0 exposes minor offset for all simulations
depicted in Figure 12.3.3. MPC1 converges towards zero–offset with
slightly damped response characteristics with increasing mismatch
in A. This controller drives the summed voltage excursions to zero
robustly in all experiments. MPC2 exhibits performance degradation
for both mismatches εA and εB. Steady state sensitivity regarding
mismatch in the lumped disturbance dynamics Bd remains small for
MPC0 and MPC1. Controller responses become faster when model–
internal dynamics Bd,m are faster than plant–internal dynamics Bd,p.
For errors εBd , sensitivity is the least for MPC2 in comparison to the
two other controllers.

The considered multiplicative errors εA, εB and εBd are only one
class of model–plant mismatch, the parametric mismatch. Given that
an uncertainty measure is estimated alongside the derived model, this
measure can be used to narrow εA, εB and εBd down to probabilistic
intervals. This knowledge enables informed decisions regarding which
controller to choose given the current operating regime.
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Figure 12.6: Comparison of the performance of the considered OCs for mul-
tiplicative parametric mismatches of the free system response
coefficients A (εA), forced system response coefficients B (εB)
and lumped filter disturbance response coefficients Bd (εBd ).
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Figure 12.7: Comparison of the performance of the considered MPCs for mul-
tiplicative parametric mismatches of the free system response
coefficients A (εA), forced system response coefficients B (εB)
and lumped filter disturbance response coefficients Bd (εBd ).
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12.3.4 Robustness

In Figure 12.8 and Figure 12.9, the numerator dynamics parameter τe2

of the critical edge e2 is altered from the nominal value of τe2 = 2s,
see Equation 12.21b, to values of {1.5, 1.07, 0.630.2}s. This leads to
instability of OC2 and MPC1 for τe2 = 0.2s and τe2 = 0.63s, that is,
when τe2 is faster than the real edge. MPC2 exposes offset. The other
controllers remain stable for the chosen range of numerator dynamics
τe2.
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Figure 12.8: Instability issues with controller OC2.
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Figure 12.9: Instability issues with controller MPC1.

12.4 discussion

The control decisions of both OCs and MPCs depend on the quality
of the available model. The compared controllers expose different
properties, such as robustness and control performance evaluated in
terms of ISE.

Different means of incorporating output residual feedback do exist.
However, this implementation does reduce robustness towards critical
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dynamics. An improvement to this issue is to establish the mapping
from output space to disturbance space.

The target adjusted OC formulations OC1 and OC2 perform better on
the chosen problem in terms of ISE and stationary offset resulting from
balanced parametric model–plant mismatch. OC2 performs best in
this comparison. However, performance of these controllers degrades
stronger, including instability issues, when the critical edge in the
chosen model exposes faster dynamics than in the initially chosen set
of system parameterizations. Proactive action with the target adjusted
controllers does not offer a benefit in terms of ISE. The target adjusted
MPC formulation MPC2 performs worse in terms of ISE compared to
the classical implementation MPC1, while exposing non–ideal response
characteristics. Performance of MPC2 furthermore degrades stronger
when facing balanced parametric model–plant mismatch.

12.5 conclusions

We examine three optimal controllers (OCs) and three model predictive
controllers (MPCs) when applied to a voltage level control problem.
Two controllers of each category are stated as target adjusted con-
trollers, which are then compared to the classical implementations for
the chosen control problem. The latter is given as aggregated system
model with interleaved dynamics.

The examined system model is chosen arbitrarily and partly based
on system identification (Sys-ID) experiments. For real applications and
more useful results, we should examine system models approximated
at multiple operating and linearization points for the examined system.
The considered target adjusted OCs and MPCs do offer alternative
solution approaches to the control problem. While the target adjusted
OCs enables for the inclusion of proactive action, this does not offer a
performance benefit in the considered scenario. One target adjusted
OC formulation outperforms the classical implementation in terms of
ISE. The target adjusted MPCs perform worse than the classical MPCs

implementation.. The MPCs facilitate integration into existing control
hierarchy concepts by enabling input reference tracking. They can
consequently be readily applied in test facilities.
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Part III

A P P E N D I X

This appendix contains an overview over software and
tools used throughout this Ph.D. and furthermore, an
overview over the uGRIP project.
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12.6 the ugrip project

From the first annual uGRIP project status report (The uGRIP team):
"This project aims to develop a full-scale microgrid that consists of

distributed generators, both renewable and controllable, storage units
and flexible loads at FER-UNIZG laboratory. A structure of the local,
distribution–level market will be defined and demonstrated within
the project. The complex interactions among the microgrid, distribu-
tion network, transmission network, wholesale electricity market and
local distribution market will be investigated and viable operation
mechanism will be proposed." [ERA15].

Table 12.4: Project partners within the uGRIP project.

Participating
organizations

Name of organizations Country

Lead partner University of Zagreb Faculty of Electrical Engi-
neering and Computing – FER-UNIZG

Croatia

Project
partner

Technical University of Denmark - DTU Denmark

Project
partner

Institute for Information Technology - OFFIS Germany

Associate
partner

KONCAR Power Plant and Electric Traction
Engineering Inc. – KONCAR-KET

Croatia

Associate
partner

Croatian Power Utility – HEP Inc. Croatia

"The growing share of intermittent and partly predictable renewable
energy system (RES) requires a more flexible operation of the power
system. Flexibility is a key to maximize the utilization of RES, while
minimizing the negative impact of their associated variability and
uncertainty." [ERA15]

In addition to this disruptive trend, we can observe other devel-
opments leading to increasing requirements on electricity grids. An
example is the electrification of the mobility sector. These trends add
up to a need for adapting how we distribute and transform electric
energy. See for example [Mei+13; Eur12].

In this regard:
"An effective way of increasing system flexibility is the integration

of price-responsive microgrids." [ERA15]
and:
"A [. . . ] microgrid may perform arbitrage, provide flexibility thus

increasing the utilization of RES, take part in corrective actions, provide
voltage support, and defer investments in power lines and (distributed)
generation." [ERA15]

The research goals of the uGrip project are:
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Figure 12.10: Software and tools used throughout this Ph.D.
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• Assessment of microgrid business cases for different
countries, e. g. Croatia, based on their grid codes and
incentive policies

• Development of a robust framework that optimizes
the scheduling process of a microgrid while actively
participating in electricity markets

• Development and definition of standardized commu-
nication protocols used between microgrid elements

• Development of a microgrid at the FER-UNZIG labo-
ratory

• Design and development of a local market to manage
the microgrid at the FER-UNZIG laboratory

• Developing and executing simulation scenarios in-
tegrating the available hardware components (mi-
crogrid elements) and software models with the co-
simulation framework MOSAIK

Source: Presentation of the uGRIP project at the ERA-NET
Smart Energy Systems Meeting, Fraunhofer IFF, Magde-
burg (Germany). September 2018.

12.7 fer-unizg laboratory

The microgrid (MG) test system considered within the uGRIP project
consists of an alternating current (AC)–side and a direct current (DC)–
side. Within the AC–side, the following components have been avail-
able throughout the case studies:

point of common coupling The laboratory AC–side can be oper-
ated in islanded modes (IMs) or grid-connected modes (GCMs)
mode. For the latter, the MG internal frequency is synchronized
to the main grid’s frequency.

hydraulic power plant This is a small–scale Pelton turbine, driven
by hydraulic pressure established by a pump. This unit acts as
prime–mover within the system. See also [BP18] and Table 12.5.

Within the DC–side, the following components have been available:

controllable loads enable simulating consumers at the DC–side.

controllable accumulators enable simulating both consumption
and production at the DC–side.

solar panels at the building roof.
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Throughout experiments, focus has been the hydraulic power plant
as main MG actor. By means of Sys-ID, we derived models used in MPCs.
In context of the project, project partners at FER–UNIZG derived an
MPC for the hydraulic power plant [BP18], whereas DTU focused on
aggregated system model predictive control (MPC).

An important consideration for case studies was the combination of
software products: interfacing and orchestration of supervisory control
and data acquisition (SCADA), NEPLAN, Python, general algebraic
modeling system (GAMS) and other libraries was required. The co–
simulation library MOSAIK [SSS12] has been used as to this end.
Throughout the project, project partner OFFIS developed interfaces
for the listed software products.

Table 12.5: Laboratory hydro power plant: Specifications (with curtesy of
FER–UNIZG Smart Grids laboratory).

Turbine type Pelton

Number of units 1

Sn 20 kVA

Un 380 V

Rated power factor 0.5

Rated speed 1000 RPM

Synchronous reactance 0.8 p.u.

Transient reactance 0.093 p.u.

Subtransient reactance 0.093 p.u.

Negative sequence reactance 0.13 p.u.

Zero sequence reactance 0.04 p.u.

Penstock length 3 m

Penstock diameter 0.15 m

Co-simulation
An MG consists of subsystems. Sub–systems require inputs and pro-
vide outputs at heterogeneous sampling rates, using potentially incom-
patible communication standards. Consequently, a challenge in such
coupled system’s simulation is to establish a level of integration that
enables the testing of operational scenarios. A co–simulation setup,
therefore, established missing links in–between subsystem enabling
for simulation of the coupled and integrated system.

https://www.fer.unizg.hr/zvne/research/research_labs/sglab/equipment/hydro_power_plant
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