Temperature and body size affect recruitment and survival of sandeel across the North Sea

Henriksen, Ole; Rindorf, Anna; Brooks, Mollie E.; Lindegren, Martin; van Deurs, Mikael

Published in:
ICES Journal of Marine Science

Link to article, DOI:
10.1093/icesjms/fsaa165

Publication date:
2021

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Title: Temperature and body size affect recruitment and survival of sandeel across the North Sea

Running title: Temperature affects North Sea sandeel

List of Authors: Ole Henriksen¹, Anna Rindorf¹, Mollie E. Brooks¹, Martin Lindegren¹, Mikael van Deurs¹

Institutional affiliations: ¹National Institute for Aquatic Resources, Technical University of Denmark, Kemitorvet, 2800 Kgs Lyngby, Denmark

Abstract: Climate effects on marine fish depend on life-stage, particularly when life-stages differ in habitat utilization. In the present study, we investigated life-stage dependent responses of lesser sandeel (*Ammodytes marinus*) to temperature at contrasting geographical scales. We related population density and individual growth to temperature and found different temperature responses between the first and the second year of life. During the first year of life, fish size was the single most important factor influencing sandeel abundances, indicating a positive relationship between growth and survival. In contrast, during the second year of life, autumn bottom temperature was negatively correlated with sandeel abundance, suggesting elevated mortality in warm years. Southerly areas, experiencing higher temperatures in general, were also the areas showing the strongest response to temperature. This study sheds light on how warming impacts population dynamics of one of the most important forage fishes in the North Sea and supports discussion of underlying mechanisms.

Keywords: Short-lived species, forage fish, climate change, recruitment, productivity, length, *Ammodytes*, ontogeny, warming, life history

Contact information:
ohen@aqua.dtu.dk
Introduction

Climate change and climate variation is affecting the distribution and productivity of a variety of marine organisms, including fish (Brander, 2007; Brierley and Kingsford, 2009; Hollowed et al., 2013). Reliable predictions of these changes provides the necessary foundation for understanding which adaptation strategies provide the most desirable future for both fish stocks and fisheries. However, studies have demonstrated that the observed responses to changes in temperature, depends on the life phase considered (e.g. Gillooly et al., 2002; Barbeaux and Hollowed, 2018) and the spatial resolution of the study (Tuya et al., 2011; Ciannelli et al., 2012). The same species may even show contrasting responses across life-stages due to differences in ecology (Pörtner and Peck, 2010; Petitgas et al., 2013). Such differences can lead to opposing predictions of stock development under climate change scenarios. Properly considering multiple life-stages at different scales, is therefore key to climate adaptation of fisheries management.

The lesser sandeel (also Raitt’s sandeel, Ammodytes marinus) is one of the most abundant forage fish species in the North Sea and is considered as an essential part of the mid-trophic level in the ecosystem (Furness, 2002). Behaviour, life history, and geographical distribution within the North Sea is thoroughly described in the scientific literature (e.g. (Macer, 1966; Winslade, 1974a, 1974b, 1974c; Wright and Bailey, 1996; van Deurs et al., 2010) and research has demonstrated the effect of temperature (e.g. linked to climate change) on productivity and survival of early life stages (i.e. indicated by the recruitment) (e.g. (Arnott and Ruxton, 2002; van Deurs et al., 2009; Lindegren et al., 2018). However, the effect of temperature later in life remains largely unresolved. Furthermore, studies that have reported temperature-recruitment correlations are mainly conducted at the regional scale (i.e. the central or western North Sea) using data with little or no spatial resolution.

The life cycle of lesser sandeel (hereafter just "sandeel") includes distinct phases. Sandeel hatch from eggs attached to sand grains and begin a short larval drift phase before developing active swimming and juvenile schooling behavior (Potter and Lough, 1987; Proctor et al., 1998). After metamorphoses at a length of c. 40-50 mm they settle into a patchwork of sandy habitats in the North Sea in early summer, joining the adult segment of the population (Christensen et al., 2007, 2008, 2009). After settling, they immediately adopt adult behavior that includes nocturnal burying and high site fidelity (Wright et al., 2000, 2019; Holland et al., 2005).
Maturation occurs around the ages of 1-3 (Boulcott et al., 2007). The annual cycle of settled juveniles and adults is divided into feeding and overwintering phases. During overwintering, the fish bury in the sand, surviving on energy reserves (van Deurs et al., 2011b). The overwintering extends from late summer, interrupted only by spawning in January (Gauld and Hutcheon, 1990). Juveniles may postpone burying for a couple of months to gain additional resource storage (Reeves, 1994; van Deurs et al., 2010, 2011a). During spring, they emerge again from the sand to forage during the day and bury in the sediment at night (Winslade, 1974c; Freeman et al., 2004).

Sandeel productivity in the North Sea is possibly affected by temperature during multiple life-stages. Gonad investment is inhibited at high winter temperatures (Wright et al., 2017a, 2017b) while spawned demersal eggs develop faster (Régnier et al., 2018), resulting in fewer eggs, earlier hatching and smaller sizes of the hatching larvae. The pelagic larvae are assumed to drift passively with the prevailing current (Berntsen et al., 1994; Christensen et al., 2007, 2008) while the temperature of the surrounding water determines growth and survival (Gurkan et al., 2012, 2013). After settlement, temperature may influence growth conditions (Rindorf et al., 2016), which in turn determine the timing of the onset of overwintering. When overwintering has begun, bottom temperature determines the rate at which energy reserves are expended (van Deurs et al., 2011b).

In the present study, we examined which phases of the sandeel life cycle population dynamics are influenced by changes in temperature. We used statistical models to test a sequence of temperature hypotheses (Fig. 1 and Table 1) divided into recruits and young adults by age-structured abundance indices calculated for nine distinct subareas (Fig. 2A). Abundance indices were derived from a scientific sandeel survey, and while the International Council for the Exploration of the Seas (ICES) uses the survey for stock assessments, it is used here for the first time in a research context. Our main research questions were threefold: 1) how does temperature affect important phases of the life cycle of sandeel, 2) what is the importance of temperature compared to other factors, such as density dependence and body size, and 3) does the effect of temperature change on a spatial scale.
Materials and methods

Survey data

Denmark initiated a survey program in 2004 in order to estimate recruitment for the ICES sandeel stock assessments (ICES, 2010). The survey uses a modified scallop dredge to measure the abundance of sandeel in the seabed during nighttime in late November or early December. The survey covers most of the sandeel habitat in the North Sea and uses a fixed station design, even though the surveyed area has gradually expanded over time and therefore new stations have been added. At each fixed survey station, three 10 minute hauls are conducted in a way so that each haul intercepts the position about half way and with an angle to the other hauls (i.e. ideally the three hauls form a star). Samples are weighed and all fish are counted and measured (total length rounded down to the nearest half-centimeter). Ten sandeel from each half-centimeter length-class (or all if fewer than 10 are available) are weighed (in grams with two decimals), and aged based on the number of otolith winter-rings. In case of very large catches, a sub-sample is weighed and counted and total number of sandeel is estimated by scaling up to the weight of the total sample.

Abundance indices

Annual abundance indices were calculated for each of nine subareas and for age-0 and age-1, separately (Fig. 2A). Subareas were adopted directly from ICES (2016) and are constructed by combining patches of sandeel habitat (described in Jensen et al., 2011). Note that time-series length varies between subareas, as the surveyed area was expanded over years, but consistency of the area coverage have been relatively stable throughout the survey (Fig. 2B). A delta-lognormal model was applied to numbers at age by haul. To obtain age-structured haul data, smooth age length keys (ALKs) were estimated for all combinations of year and subarea, respectively (Berg and Kristensen, 2012), and numbers at age by haul were then calculated by combining the observed numbers at length by haul and the ALKs. Year-subarea combinations, where the ALK was based on less than 10 fish, were excluded from subsequent analyses. The delta-lognormal model is a combination of a binomial presence/absence model and a lognormal model for strictly positive numbers (Pennington, 1983; Berg et al., 2014) and included year and subarea as explanatory variables. The approach is similar to how ICES calculate the sandeel survey indices for the assessment models (see supplementary materials for more
The index for age-0 fish was regarded as a measure of the number of recruits (i.e. recruitment) and the age-1 index represented the abundance of young adults entering the second winter of their life.

Growth indices

Growth was analysed by using two indicators, length and condition factor, reflecting long-term and medium-term balance between feeding and metabolism, respectively. Length at age (cm) was calculated by year and subarea using the ALKs mentioned in the section above. Weight at age (g) was calculated based on a length-weight relationship (power function) fitted to the observed lengths and weights for each combination of age, year, and subarea. Condition factor at a given age was estimated as $C = W / L^b$, where W is the weight at age, L is the length at age, and b is 3.06 (adopted from van Deurs et al., 2013).

Temperature indices

Estimates of sea bottom temperature (SBT) and sea surface temperature (SST) for all years (2003-2018) were obtained from the North-West European Shelf – Ocean Physics Reanalysis from MetOffice issued under the European Commission (Copernicus website: http://marine.copernicus.eu/). The dataset offers daily temperature estimates across a grid consisting of longitudinal-latitudinal 7 km² cells. To achieve subarea-specific estimates of SBT and SST, temperature estimates were averaged across grid cells overlapping the geographical extent of the subareas (Figure 2A). Besides the spatial dimension of temperature, the temporal dimension were also considered by averaging across critical time windows, following recommendations from van de Pol et al. (2016). In total, ten different average temperatures (SBT or SST), covering eight different life phases, were calculated. The expectation was that one or more of the first five temperatures influence the abundance of age-0 sandeel, whereas, one or more of the remaining five temperatures influence the abundance of age-1 sandeel (Table 1 and Fig. 1).

Effects of temperature, population size and growth
Linear mixed models (LMM) were used to test if spatio-temporal variation in water temperature was significantly related to variation in the abundance of age-0 and age-1 sandeel. The time-series of abundance indices obtained from the survey constituted the dependent variables and time-series of temperature constituted the independent variables. The ten different temperatures were tested one at a time in separate models. Abundance of age-0 (i.e. recruitment) and age-1 (i.e. young adults) were also treated in separate models with slightly different model formulations to match the hypotheses stated in table 1.

There are three ways in which the abundance of sandeel in any given year may impact abundance in the subsequent year. Firstly, a large proportion of the age-1 sandeel caught in the survey (in November/December) contributes to the spawning stock biomass on the 1st of January. In most years, age-1 sandeel constitute the bulk of the spawning stock biomass (ICES, 2016), hence, the abundance of age-1 sandeel may therefore have a positive effect on the abundance of age-0 sandeel in the following year. Secondly, previous studies have indicated that sandeel recruitment is negatively correlated to the number of age-1 sandeel in the stock, presumably due to cannibalistic behaviour and resource competition (van Deurs et al., 2009; Eiggaard and van Deurs et al., 2014). Hence, the age-1 index was not only used as the dependent variable in the age-1 models, but was also used as an independent variable in the age-0 models as an indicator of the size of the local spawning stock proxy (with a one year lag) and as a measure of local density dependence (with zero year lag). Lastly, abundance of age-1 fish is highly dependent on the recruitment in the preceding year (Rindorf et al., 2019). Hence, the age-1 model included the age-0 index (with a one year lag) to account for year-class strength.

Both the age-0 models and the age-1 models included length-at-age to account for the potential effect of growth on for example survival. Moreover, condition factor at age was included in models to differentiate between growth conditions experienced in the previous year and growth conditions experienced in the current year.

The LMM model formulations can be summarized as follows for age-0 and age-1, respectively:

\[
\ln \hat{I}_{0,i,y} \sim b + cT_{p,i,y} + d \ln I_{1,i,y-1} + f \ln I_{1,i,y-1} + gL_{0,i,y} + hC_{0,i,y} + \hat{\epsilon}_i + \hat{\omega}_{y,m}
\]

\[
\ln \hat{I}_{1,i,y} \sim j + kT_{p,i,y} + n \ln I_{0,i,y-1} + oL_{1,i,y} + rC_{1,i,y} + \hat{\epsilon}_i + \hat{\omega}_{y,m}
\]
where b, c, d, f, g, h, j, k, n, o and r are parameters to be estimated, $I_{a,i,y}$ is the logarithm-transformed (ln) abundance index for a given age (a), subarea (i), and year (y), $T_{p,i,y}$ is the average temperature during a given life phase (p), subarea, and year, $L_{a,i,y}$ and $C_{a,i,y}$ are the average length and condition factor at a given age, subarea, and year. Random effects of subarea, $\varepsilon_{i} \sim N(0, \sigma_{\varepsilon}^{2})$, and year on the intercept were included in both models. However, since the year effect was assumed not be constant across all nine subareas, the random year effect, $\omega_{y,m} \sim N(0, \sigma_{\omega}^{2})$, was modelled as an interaction term with management area (m) (see management areas in Fig. 2A). Since five different temperature hypotheses were tested for each age-group, each of the models described above were fitted five times, each time using a different temperature (see Table 1 and Fig. 1). Note that two-way interactions (e.g. $T_{1}; T_{2}$, also see Fig. S9 and S10 for correlation between T's) between periods of temperature for each age-group were included in initial models, but were always reduced out in model selection.

Model selection was performed by comparing all models using AICc (Hurvich and Tsai, 1989, 1995). If competing models obtained similar scores, i.e. ΔAICc < 2 (Burnham and Anderson, 1998), then the simplest model with only significant predictors ($p < 0.05$, Wald Z-statistics) was chosen as the final model. However, even if temperature was not part of the simplest model, it was re-introduced to the final model to obtain information about the slope estimate (i.e. age-0, Table S2). Moreover, in order to investigate the effect of having shorter periods over long designated periods (i.e. assigned by life phase) of temperature, models that included monthly averages of both SBT and SST were investigated (Fig. S8). To investigate if local differences in the response to temperature existed between subareas, the final model was re-fitted to data from each subarea one by one (leaving out the random effect of subarea).

All models were fitted in R using glmmTMB (Brooks et al., 2017). AICc, marginal and conditional coefficients R^{2}_{m} and R^{2}_{c} (Nakagawa and Schielzeth, 2013; Nakagawa et al., 2017) and one-step-ahead prediction residuals (Thygesen et al., 2017) were calculated and used as model diagnostics.

Results

Abundance indices
In all nine subareas, abundance indices fluctuated by a factor of c. 10 (i.e. the actual abundance index and not the logarithm-transformed) between years (Fig. 2). Year-to-year dynamics differed notably between subareas, except for age-0 abundance in 2009 and 2016, which was above average in all subareas. The quality (i.e. ability of the survey to follow cohorts) of the survey showed high internal consistency (i.e. the logarithm-transformed age-1 index in the current year as a function of the logarithm-transformed age-0 index in the preceding year) varying between 15% and 65% explained variance (>40% in five out of nine subareas) (see supplementary material, Fig. S1).

Effects of temperature, population size and growth

After model reduction, the final model for age-0 abundance included the positive effect of fish length as the only significant predictor (p < 0.004, Wald Z-statistics) (see supplementary material, Table S1, Fig. S2, Fig. S3 for more details about model selection and model fits). The variance explained by fixed effects and combined fixed and random effects was 8% and 72%, respectively (Table 2). The relationship between age-0 abundance and fish length were positive in eight subareas and significant (p < 0.05) in four out of nine subareas (see supplementary material, Fig. S4). No significant correlation between abundance and any of the tested temperature indices was seen in any subarea (see supplementary material, Fig. S5). Considering temperature over shorter periods of monthly averages did not change the overall conclusions (Fig. S8). Two-way interactions between periods of temperature was also considered, but were always reduced out in the model.

After model reduction, the final model of age-1 abundance retained recruitment in the preceding year (i.e. I_0) (p < 0.001) and bottom temperature in late summer and autumn (i.e. T_s), the first part of the overwintering period (p < 0.003) (see supplementary material, Table S1, Fig. S3, and Fig. S6 for more details about model selection and model fits). The effect of temperature was negative and the effect of recruitment in the preceding year was positive (Fig. 3). The fixed effects explained 44% of the variance and the combined fixed and random effects explained 84% (Table 2). An additional analysis that looked at the effect of monthly temperatures, supported the finding that T_s represented the time period during which temperature exerts the strongest effect (Fig. S8).
Geographical differences in the effect of temperature

Fitting the final best model formulation to each subarea, showed that the abundance of age-1 sandeel was positively related to recruitment in the preceding year (i.e. positive slope coefficients) in all nine subareas (significant slopes in five subareas) and negatively affected by temperature (T_8) in eight out of nine subareas (significantly negative slope in four subareas) (Table 3, Fig. 4A, and Fig. 4B). A highly significant negative relationship ($p < 0.001$, explained variance = 87%) (Fig. 4D) was apparent when the subarea-specific slopes of the temperature effects (from subareas with at least seven years of survey data, see Fig. 2B) were related to the average temperature of the respective subareas (averaged across all years). Geographically, the North Sea could roughly be divided into a northerly offshore cold area consisting of subareas exposed to average temperatures < 10.5 °C and a southerly and coastal area, consisting of subareas exposed to average temperatures >10.5 °C (Fig. 4C). The estimated slope coefficients were in general more negative (i.e. stronger temperature effect) in the warmer area (Fig. 4A). Since none of the temperatures (T_1 to T_5) contributed significantly to the age-0 model, the results obtained from fitting a model that included temperature (Fig. S3) to each subarea, is only presented in the supplementary material (see supplementary material, Table S2).
Table 1. Detailed summary of the different temperature hypotheses.

<table>
<thead>
<tr>
<th>Age-group</th>
<th>Temperature abbreviation</th>
<th>Expected effect direction</th>
<th>Temperature and life phase</th>
<th>Reported effects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T_1</td>
<td>Negative</td>
<td>SBT experienced by parents prior to spawning</td>
<td>Warming inhibit gonad development in adults. Ovarian development delayed.</td>
<td>(Gauld and Hutcheon, 1990; Wright et al., 2017a, 2017b)</td>
</tr>
<tr>
<td>0</td>
<td>T_2</td>
<td>Positive/Negative</td>
<td>SBT during egg incubation and hatching</td>
<td>Egg development rate increases with warming. Indirect effects of temperature causing mismatch between larvae and zooplankton.</td>
<td>(Régnier et al., 2018, 2019; Langham 1971)</td>
</tr>
<tr>
<td>0</td>
<td>T_3</td>
<td>Positive</td>
<td>SST during the larval drifting phase</td>
<td>Larval growth rates are higher in warm waters.</td>
<td>(Christensen et al., 2008)</td>
</tr>
<tr>
<td>0</td>
<td>T_4</td>
<td>Positive/Negative</td>
<td>SST during the post-settlement foraging</td>
<td>Higher temperatures increase metabolism and digestion rate and therefore growth potential, but only if sufficient amount of food is available. Otherwise, higher temperature will lead to diminished growth and potentially reduced survival.</td>
<td>(van Deurs et al., 2014, 2015)</td>
</tr>
<tr>
<td>0</td>
<td>T_5</td>
<td>Negative</td>
<td>SBT during the first months of juvenile overwintering until the sandeel survey takes place</td>
<td>Warming have a negative impact on overwintering.</td>
<td>(van Deurs et al., 2011b; MacDonald et al., 2018)</td>
</tr>
<tr>
<td>1</td>
<td>T_6</td>
<td>Negative</td>
<td>SBT during the full overwintering period</td>
<td>Warming have a negative impact on overwintering.</td>
<td>(van Deurs et al., 2011b; MacDonald et al., 2018)</td>
</tr>
<tr>
<td>1</td>
<td>T_{6a}</td>
<td>Negative</td>
<td>SBT during the first half of the overwintering period</td>
<td>Warming have a negative impact on overwintering.</td>
<td>(van Deurs et al., 2011b; MacDonald et al., 2018)</td>
</tr>
<tr>
<td></td>
<td>T_{ib}</td>
<td>Negative</td>
<td>SBT during the second half of the overwintering period</td>
<td>Warming have a negative impact on overwintering. (van Deurs et al., 2011b; MacDonald et al., 2018)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T_7</td>
<td>Positive/Negative</td>
<td>SST during the annual foraging window starting in spring</td>
<td>Higher temperatures increase metabolism and digestion rate and therefore growth potential, but only if sufficient amount of food is available. Otherwise, higher temperature will lead to diminished growth and potentially reduced survival. (Winslade, 1974b; van Deurs et al., 2014, 2015)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T_8</td>
<td>Negative</td>
<td>SBT during the first months of the adult overwintering period until the sandeel survey takes place</td>
<td>Warming have a negative impact on overwintering. (van Deurs et al., 2011b; MacDonald et al., 2018)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Summary statistics from the final mixed effects models for age-0 and age-1 after model selection. The dependent variables were logarithm-transformed (ln) abundance indices for age-0 (I_0) and age-1 (I_1). The best age-0 model included only fish length (L). The best age-1 model included temperature during the early overwintering period (T_s) and recruitment in the preceding year ($\ln I_{0,y-1}$). Numbers in parentheses are SE for estimates of fixed effect coefficients and SD for random effects. Also, the variance explained for fixed effects (R^2_m), combined fixed and random effects (R^2_c), and the p-values (*$p < 0.05$, **$p < 0.01$, ***$p < 0.001$, Wald Z-statistics) are presented.

<table>
<thead>
<tr>
<th>Model</th>
<th>Final model</th>
<th>R^2_m / R^2_c</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age-0</td>
<td>$\ln I_{0,i,y} \sim gL_{0,i,y} + \hat{\xi}i + \hat{\omega}{y,m}$</td>
<td>0.08/0.72</td>
<td>101</td>
</tr>
<tr>
<td>Age-1</td>
<td>$\ln I_{0,i,y} \sim kT_{s,i,y} + n \ln I_{0,i,y-1} + \hat{\xi}i + \hat{\omega}{y,m}$</td>
<td>0.44/0.84</td>
<td>81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>p-value</th>
<th>StdDev</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age-0</td>
<td>Length effect (g)</td>
<td>0.398 (0.140)</td>
<td>0.004**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Random effect of subarea ($\hat{\xi}_i$)</td>
<td>0.988</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Random effect of year:management area ($\hat{\omega}_{y,m}$)</td>
<td>0.857</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Residual error</td>
<td>0.853</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age-1</td>
<td>Temperature effect (k)</td>
<td>-0.417 (0.144)</td>
<td>0.003**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recruitment effect (g)</td>
<td>0.463 (0.086)</td>
<td><0.001***</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Summary statistics from mixed effects models fitted to data from each of the nine subareas (n designates the length of the survey time-series of each subarea). Fixed effects were based on the final best age-1 model, which included temperature (T₈) and recruitment of age-0 fish in the preceding year (lnI₀,y₋₁). The variance explained for fixed effects (R²_m), combined fixed and random effects of year (R²_c), slope coefficients, and p-values (*p < 0.05, **p < 0.01, ***p < 0.001, Wald Z-statistics) are presented. Numbers in parentheses are SE for estimated fixed effect slopes.

<table>
<thead>
<tr>
<th>Subarea</th>
<th>n</th>
<th>R²_m/R²_c</th>
<th>Fixed effects</th>
<th>StdDev estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slope(T₈)</td>
<td>p(T₈)</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>0.45/0.63</td>
<td>-0.729 (0.370)</td>
<td>0.049*</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0.27/0.51</td>
<td>-0.623 (0.651)</td>
<td>0.339</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0.54/0.56</td>
<td>-0.336 (0.339)</td>
<td>0.322</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>0.18/0.33</td>
<td>-0.379 (0.998)</td>
<td>0.704</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>0.64/0.70</td>
<td>-0.456 (0.265)</td>
<td>0.086</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>0.51/0.59</td>
<td>-0.801 (0.343)</td>
<td>0.019*</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>0.38/0.59</td>
<td>-0.966 (0.428)</td>
<td>0.024*</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>0.73/0.80</td>
<td>-0.801 (0.308)</td>
<td>0.009**</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>0.94/0.95</td>
<td>0.332 (0.584)</td>
<td>0.569</td>
</tr>
</tbody>
</table>

304
Discussion

The influence of temperature on sandeel abundance differed between the first year of life and second year of life. During the first year of life, no relationship with temperature was found for any of the five temperatures tested. In contrast, during the second year of life, the change in abundance of age-1 was significantly related to bottom temperature at the beginning of the overwintering period \((T_b)\), and southerly areas experiencing higher average temperatures responded more strongly to variation in temperature than northern areas with lower average temperatures.

In line with the findings here for age-0 sandeel, previous studies that have used either recruitment numbers from stock assessment models or indices of recruitment (i.e. larvae abundance) have failed to establish robust direct relationships with temperature (Lynam et al., 2013; Carroll et al., 2017; Eerkes-Medrano et al., 2017). In contrast, studies using recruitment per spawner biomass, based on output from stock assessment models, have found negative relationships with temperature (Arnott and Ruxton, 2002; Lindegren et al., 2018). This inconsistency could potentially be attributed to the inclusion of spawning stock biomass when calculating recruitment per spawner, which emphasizes a relatively distinct underlying stock-recruitment relationship. Assuming such a relationship, as in a Ricker model, has been debated on several occasions in relation to short-lived species (Vert-Pre et al., 2013; Szuwalski et al., 2015). Hence, in the present study we chose not to force the model by making assumptions regarding the stock-recruitment relationship. The above mentioned inconsistency, could, however, also be attributed to differences in time-series lengths, the data sources, the spatial resolution of the data, or the model approaches.

A significant positive effect of fish length on abundance of age-0 sandeel was found. Different mortality pathways have been proposed for first-feeding larvae (Wright and Bailey, 1996; Henriksen et al., 2018), the larval drift phase (Gurkan et al., 2012, 2013), and overwintering of post-settled juveniles (van Deurs et al., 2011b; MacDonald et al., 2018). The size of age-0 was measured only in winter, which makes it difficult to favour any particular mechanism, but theory about early life and recruitment in fish provide insights to the processes that might be involved. For example, findings could potentially be supported by the classical “Stage-Duration” hypothesis (Anderson, 1988), implying that “bigger is better” and fast growth improves survival early in life (Miller et al., 1988). Bigger is also better for avoiding starvation...
of settled juveniles, since mass-specific metabolism during overwintering decrease with increasing size (van Deurs et al., 2011b). Thus, important factors affecting survival of sandeel during the first year of life are likely to be associated with changes in food condition and predation mortality (Eliasen et al., 2011; MacDonald et al., 2018, 2019). A potential close relationship with Calanus copepods has been investigated on several occasions (van Deurs et al., 2009, 2014, 2015), where in particular “match-mismatch” (Cushing, 1990) relationships between the production of Calanus eggs and larval hatching have been highlighted (van Deurs et al., 2009; Régnier et al., 2017). The physical oceanography that dictates the conditions for growth and survival during the larval development (Henriksen et al., 2018), including successful retention near suitable habitats (Gurkan et al., 2013), seem to be a key driver for these interlinked relationships. Although, no direct effect of temperature was found, recent evidence suggests that temperature can have an indirect pathway influencing the timing of sandeel hatching. Temperature affects the physiological rates in adult sandeel, with warming delaying ovarian development (Wright et al., 2017a) and bringing about earlier hatching of eggs due to faster development rates (Régnier et al., 2018). In addition, the indirect impact of elevated temperatures on food availability has been linked to increasing probabilities of trophic mismatch with available prey (Régnier et al., 2019). However, correlation approaches, such as in the present study, are not expected to provide strong evidence for the underlying mechanisms or to map out complicated causation chains. On that note, while results presented here only were designed to detect and identify which sandeel life phases might be sensitive to future impacts of climate change, the analyses do not account for non-linear responses to temperature. Although, such responses have been highlighted for several marine fish (Ciannelli et al., 2004, 2012; Katara et al., 2011; Arula et al., 2016), including sandeel (van der Kooij et al., 2008; Lynam et al., 2013; Lindegren et al., 2018; Régnier et al., 2019). The decision to use linear models was based on the length of the time-series, which are considerably shorter than in the before-mentioned studies (i.e. degrees of freedom would decrease rapidly if additional parameters to model curvatures or smoother-functions were to be included in the models). An alternative non-biological explanation for the strong relationship with length could be the existence of length-dependent catchability in the survey. For example, if catchability increases with size, more fish of a given age-group will be caught in years where they grow faster. However, size-dependent catchability of the sandeel dredge was investigated in 2013 and found not to be a problem (Johnsen and Harbitz, 2013). Regarding the potential relationship between temperature and fish length, such a relationship was only found to be significant in one out of nine subareas (Fig. S7). Nonetheless before making firm conclusions, we recommend that
future work should be more comprehensive using model approaches that fits multiple drivers of non-linear relationships (Guisan et al., 2002; Venables and Dichmont, 2004; Boyd and Brown, 2015), but also advanced spatial modelling (Blangiardo et al., 2013) should be considered.

Clear stock-recruitment relationships were not detected. In general, very weak spawner-recruit relationships are a common feature for short-lived species, where recruitment dynamics appear to be driven mainly by environmental variation when the spawning biomass is above some critical lower threshold (Cury et al., 2014; Somarakis et al., 2019). Despite these notions, it seems unrealistic to assume no relationship at all (Hilborn et al., 2017). In models presented here, we therefore used age-1 abundances in the previous year as a proxy for the size of the local spawning stock. This proxy is obviously not capturing the full spawning stock biomass, as it neglects older individuals and weight-at-age. However, since ICES relies only on the abundance of age-0 and age-1 from the dredge survey, it was decided to do the same in the present study. In addition, the linear models used may have prevented us from detecting the presence of any strong density dependent relationship (i.e. Ricker type relationships). An alternative explanation for the absence of a stock-recruitment relationship, may involve the relative fine spatial scale of the study. The different subareas may simply have been too small, as indicated by recent studies, revealing that mixing during the larval phase may take place across distances of up to 200 km (Wright et al., 2019) and that only a very weak genetic population structure exists across the North Sea (Jiménez-Mena et al., 2019). Hence, if the exchange of larvae between subareas were substantial enough, detection of local stock-recruitment relationships would be improbable.

Density-dependent recruitment regulation exerted by the abundance of age-1 sandeel was not detected in the present study. This contradicts previous studies using outputs from assessment models (van Deurs et al., 2009; Lindegreen et al., 2018). However, a more recent study, based on commercial catch rates (as an indicator of abundance) and a spatial resolution similar to the present study (Rindorf et al., 2019), confirms the lack of significant density-dependent recruitment regulation from the previous cohort. These inconsistencies between studies remains unresolved.

Higher bottom temperature during the beginning of the overwintering period, significantly decreased abundance of age-1 sandeel across the North Sea. This study was not designed to
test the underlying mechanisms behind this relationship. Thus, knowledge from the previous work presented here aid in inferring possible causal relationships. Energy budget modelling has suggested that starvation and/or predation, not temperature, are the two main factors driving survival of older sandeel (MacDonald et al., 2018) and no direct effect of temperature on survival of age-1 overwintering sandeel has been confirmed (MacDonald et al., 2019). The experimental studies to date, have not investigated the lethal effects of temperature accounting for food limitation and predation. Nevertheless, these studies did find that temperature had a negative effect on individual mass change during overwintering (Wright et al., 2017a, 2017b), which supports notions about increased energetic cost of overwintering (van Deurs et al., 2011b). Sandeel is entirely dependent on the storage of energy reserves for both survival and gonad development (Boulcott and Wright, 2008) and warming imposes an extra cost in order to maintain standard metabolic rate during the overwintering period. As a result, mature individuals reduce investments in gonads rather than compromising the energy for survival at higher temperatures (Wright et al., 2017a, 2017b). Maturation is possible already during the first year, but is highly dependent on growth rate, which varies across the North Sea (Bergstad et al., 2001; Boulcott et al., 2007). Southerly areas seem to have populations that mature earlier with nearly 100% already matured at age-1, whereas in northern areas proportion mature are 58-79% (Boulcott et al., 2007). Hence, the increased energetic costs associated with early maturation in southern areas may increase the sensitivity of these populations to elevated temperatures. Moreover, recent evidence on temperature delaying oocyte development in females (Wright et al., 2017a), as well as speeding up development of demersal eggs (Régnier et al., 2018), could have detrimental impacts through the mismatch between key life history events (e.g. spawning and hatching) and food availability (Régnier et al., 2017, 2019). These mechanisms could also be related to the relationship observed for age-0 sandeel here, where lower sandeel abundance is associated with smaller body size. Furthermore, if high water temperatures in autumn and winter force the sandeel to shorten the duration of the overwintering period for reasons related to bioenergetics (van Deurs et al., 2010, 2011b), this may increase predation and fisheries mortality and reduce abundances of sandeel. As a consequence of ocean warming, several marine species interacting with sandeel (via predation or competition), have either increased in abundance or expanded their distributions in the North Sea (Attrill et al., 2007; ter Hofstede et al., 2010; Petigas et al., 2012; Cormon et al., 2016). The predation pressure on sandeel, especially from other fish species, is already expected to be high (Heath et al., 2009), where the removal by predatory fish alone greatly exceeds that of fisheries, seabirds, and marine mammals combined (Engelhard et al., 2014). Assuming that
food intake may increase with temperature if food processing time is not a limiting factor (Reilly et al., 2014), then predation from so-called “aggregative responses” can have great impact on local sandeel biomasses (Temming et al., 2004, 2007), where southern areas might be more vulnerable to such pressures. Fisheries may also act in synergy with these effects, where few exploited populations comprise fish over 4 years old (Bergstad et al., 2002; Rindorf et al., 2016), and as a consequence, most individuals are unlikely to reproduce many times during life. If temperature causes sandeels to mature early, then the impacts on the physiological development of age-1 sandeel, which still need to invest substantial energy in growth during the feeding season (van Deurs et al., 2013), can be driving the trade-offs of allocating energy to gonad development and somatic maintenance (Wright et al., 2017a). Since the majority of exploited spawning stock biomasses in the North Sea are composed mainly of age-1 individuals (ICES, 2016) these processes can potentially cause large proportions of a population to skip spawning, and thus, exploited populations may be more vulnerable to warming.

The effect of temperature was strongest in the southern half of the North Sea. The North Sea can, in terms of temperature, be divided into a northerly cold region and a southerly/coastal warmer region (see Fig 5). The latter are shallow and also largely devoid of thermoclines (Luyten et al., 2003). These features make the area particularly susceptible to ocean warming, and as a result, the North Sea demersal fish assemblages are responding by moving to deeper waters (Dulvy et al., 2008), while sandeel cannot respond accordingly. The distinct life history characteristics of burying behaviour and strong site fidelity increases the vulnerability of sandeel to climate change. Hence, the current warming of the North Sea is expected to impact sandeel populations also in the coming decade, possibly threatening the viability of stable sandeel populations in southern areas. In contrast, the north-eastern sandeel habitats are situated in deeper waters (Rindorf et al., 2016), where thermoclines offer colder bottom temperatures throughout the year, making these areas possibly more resilient to future warming oceans.

Investigating the effect of temperature on different life phases and spatial scales is crucial to determine the likely impact of climate change on the dynamics of marine fish stocks. The insights from the present study made it possible to unravel spatial differences in how temperature influences recruitment and young adults. Furthermore, the local scale of the study enabled us to infer local differences of sandeel in the vulnerability to future warming events in
the North Sea ecosystem. The study emphasizes the need for further investigations as the direct
link between temperature and overwintering mortality has yet to be verified experimentally
and interaction with other drivers such as climate-induced spatial-temporal shifts in the
distribution of predatory species remain elusive.

Data availability:
The data underlying this article will be shared on reasonable request to the corresponding
author.

Acknowledgements:
The project was funded by the European Fisheries and Maritime Fund and Ministry of
Environment and Food in Denmark (33113-B-16-080). We also want to thank the many people
that have contributed over time to uphold the Danish sandeel survey and the laboratory personal
that have counted, measured, and aged the fish.

References
life-history stages influence the Gulf of Riga spring spawning herring (Clupea harengus
frequency suggest a more gelatinous future for the North Sea. Limnology and
methods for estimating relative abundance from survey data in relation to assessment
Bergstad, O., Høines, S., and Jørgensen, T. 2002. Growth of sandeel, Ammodytes marinus,
in the northern North Sea and Norwegian coastal waters. Fisheries Research, 56: 9–23.

Christensen, A., Jensen, H., Mosegaard, H., St. John, M., and Schrum, C. 2008. Sandeel (*Ammodytes marinus*) larval transport patterns in the North Sea from an individual-
based hydrodynamic egg and larval model. Canadian Journal of Fisheries and Aquatic Sciences, 65: 1498–1511.

Freeman, S., MacKinson, S., and Flatt, R. 2004. Diel patterns in the habitat utilisation of

Hollowed, A. B., Barange, M., Beamish, R. J., Brander, K., Cochrane, K., Drinkwater, K.,

Jensen, H., Rindorf, A., Wright, P. J., and Mosegaard, H. 2011. Inferring the location and scale of mixing between habitat areas of lesser sandeel through information from the fishery. ICES Journal of Marine Science, 68: 43–51.

Régnier, T., Gibb, F. M., and Wright, P. J. 2018. Temperature effects on egg development and larval condition in the lesser sandeel, Ammodytes marinus. Journal of Sea Research,
134: 34–41.

van Deurs, M., Christensen, A., Frisk, C., and Mosegaard, H. 2010. Overwintering strategy of sandeel ecotypes from an energy/predation trade-off perspective. Marine Ecology Progress Series, 416: 201–214.

van Deurs, M., Christensen, A., and Rindorf, A. 2013. Patchy zooplankton grazing and high energy conversion efficiency: Ecological implications of sandeel behavior and strategy. Marine Ecology Progress Series, 487: 123–133.

