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Abstract

The goal of this thesis is to develop an efficient framework for aerodynamic
and aeroelastic shape optimization. The framework includes coupled aerody-
namic and structural analysis, where a multidisciplinary formulation is used in
order to create optimized trade-offs between structural and aerodynamic perfor-
mance. A primary challenge with these problems is the computational expense
of solving the coupled problem on each design iteration. In order to help over-
come this expense, panel methods are used to calculate the aerodynamic loads
which are an efficient alternative to conventional CFD methods. Beam finite
element models are used in this thesis to capture structural deformations, but
extensions to 3D continuum finite elements are also discussed. All optimiza-
tion problems are solved using gradient-based methods, where gradients are
derived analytically and implemented using a discrete adjoint approach. The
methodology developed throughout this thesis has been applied to the design
of aircraft wings. Results demonstrate the applicability of the methods, and
the framework is used to explore the potential of unconventional aircraft wing
designs such as curved wall spars and drooped wings.

The specific details of the thesis are covered by four journal publications
which contain the following topics:

P1. The aerodynamic optimization framework is introduced which lays out
the main considerations for solving aerodynamic optimization problems
with panel methods, namely: choice of boundary conditions; drag cal-
culation methods; parameterization methods; regularization; and wake
modeling.

P2. The coupled panel-beam framework for aeroelastic optimization is intro-
duced. The publication includes a general panel-beam load-displacement
transfer scheme, parameterizations that define both the external wing
geometry and internal structural geometry, and investigations conducted
on the benefits of curved wall spars in wingbox design.

P3. A parameterization is presented for aerodynamic optimization of non-
planar wings. The method is able to improve upon reference designs
taken from the literature, and is used to investigate the potential per-
formance benefits of drooped wings compared to more traditional raised
wing designs with winglets.

P4. The coupled aeroelastic framework is extended to include a non-linear
co-rotating beam model. The results demonstrate the importance of cap-
turing non-linear deformations in aeroelastic optimization problems, and
presents aeroelastic comparisons of solid foam core wings with raised and
drooped geometry.
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Resumé (in Danish)

Målet med denne afhandling er at udvikle et effektivt beregningsværktøj til
aerodynamisk og aeroelastisk formoptimering. Beregningsværktøjet inklud-
erer en koblet aerodynamisk og strukturel analyse kombineret i en multidis-
ciplinær formulering for at optimere strukturel og aerodynamisk ydeevne. En
umiddelbar udfordring ved disse problemer er de beregningsmæssige omkost-
ning forbundet med at løse det koblede problem i hver designiteration. For at
afhjælpe dette benyttes panelmetoder til beregning af de aerodynamiske laster,
hvilket er et effektivt alternativt til konventionelle CFD metoder. Bjælkeele-
mentmetoder benyttes til beregning af de strukturelle deformationer herudover
diskuteres mulige udvidelser i form af 3D kontinuum metoder ogs̊a. Alle opti-
meringsproblemer er løst ved brug af gradientbaserede optimeringsalgoritmer,
hvor gradienterne er beregnet analytisk og implementeret ved brug af en diskret
adjoint formulering. Metoderne udviklet i dette arbejde er blevet anvendt til
design af flyvinger. Resultaterne demonstrerer metodernes anvendelighed og
beregningsværktøjet er anvendt til at undersøge potentialet ved ukonventionelle
vingedesigns s̊a som krumme vingespær og nedad-buende vinger.

De konkrete detaljer er beskrevet i fire videnskabelige artikler der dækker
de følgende emner:

P1. Det aerodynamiske optimeringsværktøj introduceres og beskriver de
grundlæggende overvejelser for løsning af aerodynamiske optimer-
ingsproblem ved brug af panel metoder, herunder: valg af rand-
betingelser, metoder til beregning af luftmodstand, parametriseringsme-
toder, regularisering og modellering af hækbølge.

P2. Det koblede panel-bjælke beregningsværktøj til aeroelastisk optimer-
ing introduceres. Artiklen inkluderer en generel panel-bjælke last- og
deformations-overførsels procedure, parametrisering af s̊avel ydre vinge-
geometri som indre strukturelle geometri samt undersøgelser af fordele
ved brug af krumme vingespær i vingeboksen.

P3. En parameterisering for aerodynamisk optimering af ikke-plane vinger.
Metoden kan forbedre referencedesigns fra litteraturen og benyttes til
afdækning af potentielle ydelsesforbedringer for nedad-buende vinger i
forhold til mere traditionelle winglet designs.

P4. Det koblede aeroelastiske beregningsværktøj udvides til at inkludere
en ikke-lineær med-roterende bjælkemodel. Resultaterne understreger
vigtigheden af at medtage ikke-lineære deformationer i aeroelastiske op-
timeringsproblemer og sammenligninger det aeroelastiske respons for
vinger med skumkerne og hhv. opad- og nedadbuende vingespidser.
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1 Introduction

Aircraft wings are complex engineering structures that demand low-weight with
a strong aerodynamic performance. These two attributes are linked by the
fact that low-weight is usually associated with flexible structures where large
deformations can cause large changes in aerodynamic loading. Because of the
coupling between these two physics regimes it is important to consider both in
the design of aircraft wings, and the end design will usually require trade-offs
between structural and aerodynamic performance. It is not always obvious
how to create these trade-offs in a manner that leads to a well-performing
design overall. Numerical optimization can be a powerful method for the design
of any engineering system, but is particularly useful in such cases where the
design requires trade-offs between different physical attributes. This thesis
details the development of shape optimization methods which are applied to
the aerodynamic and aeroelastic design of aircraft wings. This chapter will
outline the specific goals of the thesis and provide a general overview of aircraft
design to familiarize the reader with some of the basic practical concepts.

1.1 Motivation & Goals

This Ph.D. thesis is part of a larger six-year project called the InnoTop Villum
Investigator Project. The goal of the InnoTop project is to create an interac-
tive software that produces optimized designs for multiscale and multiphysics
problems. The software will have the capability to design aerodynamic form,
structural members, and microstructure designs simultaneously. This Ph.D.
project will focus specifically on the development of aerodynamic and aeroe-
lastic optimization methods, and conduct investigations on the applicability of
the developed methods.

The primary goal of this Ph.D. project is to develop an efficient aerody-
namic and aeroelastic optimization framework for applications such as aircraft
wings, windturbines, and propeller blades. Requirements of the framework in-
clude: maintaining a low computational cost; allowing large geometric changes
to the design; and include the capability to interface with different structural
models. From a practical perspective, the project aims to apply the subse-
quent framework to explore the potential gains of non-traditional aircraft wing
designs.

3
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4 CHAPTER 1. INTRODUCTION

1.2 A Reader’s Guide

This thesis is divided into two parts. The first part describes the methods
implemented throughout the Ph.D. project, the subsequent studies conducted,
and the resulting contributions. The second part includes the author’s relevant
publications to the methods described in Part 1. For clarity, the first part of
the thesis will refer to studies detailed in these publications, however notation
and definition of variables may vary between Parts 1 and 2.

The thesis is written to be somewhat self-contained whereby general intro-
ductions to concepts are included, but specific details may be excluded – in
which case, references will be provided for the reader to pursue further details.
However, it is recommended that the reader have some basic knowledge of the
following areas and are referred to the respective texts: numerical optimization
[1], potential flow theory [2] and finite element methods [3, 4].

Part 1 of this thesis is structured as follows. The remainder of this intro-
duction will give an overview of aircraft design. Chapter 2 will introduce the
numerical methods used throughout the Ph.D. project. Chapter 3 will present
methods specific to aerodynamic optimization, accompanied by relevant studies
and findings. Methods are extended to aeroelastic shape optimization studies
in Chapter 4. Chapter 5 concludes the thesis, highlights the important con-
tributions, and discusses recommendations for future work. Additionally, the
Appendices contain further information on methods and a number of smaller
unpublished studies which aid the discussions throughout Part 1.

1.3 An Overview of Aircraft Design

1.3.1 A Short History of the Modern Aircraft

It is of no doubt common knowledge to most readers that the first self-propelled
flight was conducted by the Wright brothers in 1903. This marked a historic day
in human history, but with the flight lasting only twelve seconds and spanning
a distance of 37 meters, their Wright Flyer (shown in Figure 1.1a) was far from
the modern aircraft in use today. However, both the Wright Flyer and modern
aircraft designs have the same principle components. In fact, it was Cayley [5]
who had outlined the principle components of modern aircraft roughly a century
before the Wright brothers took flight. More specifically, Cayley introduced
the concept of fixed-wing aircrafts with separate systems for lift, propulsion,
control, and payload. Today we know these systems as the wing, engine, tail,
and fuselage respectively, which can be seen for each aircraft in Figure 1.1.
Cayley also identified the four aerodynamic forces of flight: lift, drag, weight,
and thrust (which are detailed in the next subsection).

Aircraft designs rapidly improved throughout the 20th century aided by
significant developments in aerodynamic theory during the first half of the cen-
tury, large investments in new technologies during two world wars, and the
gains in computational power in the latter half of the century. A timeline of
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(a) (c)

(b) (d)

Figure 1.1: Aircraft of different periods: (a) Wright flyer 1903 [6], (b) Spitfire
1938 [7], (c) Boeing 707 1958 [8], and (d) Boeing 777X 2022 [9].

these developments is shown in Figure 1.2, along with some notable milestones
in aviation. A major early contribution of particular relevance is the develop-
ment of lift circulation theory and the Kutta-Joukowski theorem. The theory
relates the lift generated by two-dimensional bodies to a circulation defined as a
closed-loop integral of the velocity tangential to a path enclosing the body [10].
The theory laid the groundwork for Prandtl’s lifting line theory, the first 3D
method for modeling the aerodynamics of aircraft wings. In 1923, Munk [11]
developed a criteria for defining the aerodynamic efficiency of aircraft wings
and proved an optimal planar wing will have an elliptic circulation distribu-
tion along the span, which by the Kutta-Joukowski theorem corresponds to an
elliptic lift distribution. These findings inspired the elliptic planform designs
of World War II era planes such as the Spitfire (shown in 1.1b). World War
II also saw the start of mass production of aircraft and after the war, many
of these production lines continued producing aircraft for civilian use, leading
to reduced manufacturing costs and increases in the number of operational
aircraft worldwide.

Comparing Boeing’s first passenger jet aircraft, the 707 which launched in
1958 (in Figure 1.1c), to their latest aircraft, the 777X scheduled for 2022 (in
Figure 1.1d), there has been an increase in efficiency from 45 passenger miles
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2005 A380 first flight, largest passenger aircraft
2022 Boeing 777X 

1903 First powered flight, Wright brothers
1904 Boundary layer theory, Prandtl

1906 Ciculation theory of lift
1907 Vortex wake modeling, Lanchester

1908 Theory of expansion and shockwaves, Prandlt
1909 First flight across the English Channel, Blėriot

1914-1918 World War I
1918 Lifting line theory, Prandtl

1917 First pilotless aircraft flight (radio controlled)
1922 Thin airfoil theory, Munk

1927 First transatlantic flight, Lindbergh
1928 Prandtl-Glauert compressibility correction

1931 Theory of arbitrary airfoils, Theodorsen 
1939-1945 World War II

1939/1941 First turbojet engines, Ohain/Whittle
1947 Bell X1 breaks sound barrier, Yeager

1952 de Havilland Comet, first commercial passenger jet
1958 Boeing 707

1960s First computational fluid dynamics codes
1967 First 3D panel code, Hess & Smith

1968 First commerical supersonic transport aircraft
1973 Oil crisis 

1976 Winglets, Whitcomb  
1977 Aeroelastic mutildisciplinary optimization, Haftka  

1979 Oil crisis 
1986 First non-stop around the world flight 

Figure 1.2: Timeline of the advancements in aviation and modeling methods
since the first powered flight in 1903.

per gallon (p-mpg) to an expected 97 p-mpg [12, 13]. This gain in efficiency
is due to increases in passenger-to-aircraft weight ratios, engine efficiency, and
lift-to-drag ratios. The largest impact in improving aerodynamic performance
is undoubtedly from the advances in computational technology and computa-
tional methods for aircraft design. Computational fluid dynamics (CFD) codes
were first developed in the 1960s and have since become a pivotal part of aircraft
design. The main advantage of CFD is that it provides the ability to simulate a
number of cases in a short time frame and at a low cost compared to wind tun-
nel experiments. In the early days of computers, potential flow models played
the largest role in aircraft design [14]. Advancements in computational power
has made more advanced CFD models viable, where potential flow solvers are
now predominately only used at the preliminary design phase. Section 2.2.1
provides more detail on the differences between aerodynamic models.

The 1970s saw two oil crises which forced the price of aviation fuel to dras-
tically inflate and inspired aircraft engineers to seek methods of improving
efficiency. Motivated by this, Whitcomb began experimenting with winglet de-
signs, where the wing geometry is curved upward towards the wingtip. Whit-
comb documented increases in lift-to-drag ratios of up to 9% [15], which is
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due to a reduction in the induced drag, a concept discussed later in this sec-
tion. It took almost three decades for winglets to become a common feature
on commercial airliners, and other than winglets, there are very few noticeable
differences in aerodynamic form between the commercial airliners of the 1950s,
like the Boeing 707, and the airliners of today. As stated previously, these
designs use a configuration that is based on Cayley’s interpretation of flying
machines from 1809. It is already a popular opinion that a large potential
for increased efficiency can be achieved by exploring unconventional aircraft
configurations and wing designs, such as a blended wing-body [16, 17, 18], lift-
ing fuselage [19, 20, 21], drooped wings [22, 23], and morphing wings [24, 25,
26]. Similar to the aerodynamic form, the internal structural designs of wings
have not changed much since the early days of flight where wings are usually
constructed from rib-spar configurations. This type of structural design is dis-
cussed later in this section, and was used in both the Wright flyer from 1903
and the modern aircrafts of today. However, it is worth noting that advance-
ments in material technology has had a large impact. For example, the ribs
and spars of the Wright flyer were made of wood, the 707 used aluminum, and
the 777X will use composite materials – where each development has offered a
greater strength-to-weight ratio.

The challenge of reducing fuel consumption is just as prominent today.
From a commercial perspective, reducing fuel consumption is directly related
to cost savings and profit. From an environmental perspective, the aviation
sector currently accounts for 2.5% of the world’s CO2 emissions [27], and has
been forecast to triple by 2045 due to increases in passenger air traffic. For
context, Denmark accounts for around 0.09% of the world’s CO2 emissions,
and if the aviation industry were a country they would be the fifth largest
contributer. Trends in air traffic have been steadily rising for decades with less
than half a billion passengers transported worldwide in 1975, to just over one
billion in 1990, and over 4 billion in 2019 [28]. If these trends were to continue
they would exceed 11 billion by 2039, but in light of the recent pandemic and
expected efforts to reduce air travel due to environmental concerns, a rise to 8
billion in 2039 is more likely [29]. Regardless, air traffic will continue to increase,
which will create a further need for reducing emissions and fuel consumption.
Improvements in aerodynamic performance and weight savings will be crucial
in achieving this goal.

1.3.2 Aircraft Terminology

Throughout this thesis and the accompanying publications, terminology may
be used which is unfamiliar to the reader. For completeness, terminology with
regard to aircraft design will be outlined here. Consider the typical aircraft
configuration shown in Figure 1.3a, with the main wing design features la-
beled. The wing is typically defined by either a leading and trailing edge or by
the quarter chord line and chord distribution, with cross sections defined by
airfoils. Figure 1.3b shows the section view, X-X, with typical airfoil geometry
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(a)

(b)

(c)

Chord length

Leading
edge Trailing

edge

Aerodynamic
center Chord line

Camber line
Section X-X

X

X

Fuselage

Wingspan

Wingtip
Quarter-chord line

Wing root

Trailing
edge

Leading edge

Freestream

Lift

Drag

Pitch

Planform area
Angle of
attack

Figure 1.3: Aircraft terminology: (a) planform view with wing geometry ter-
minology, (b) cross section X -X with airfoil terminology, (c) side view with
aerodynamic force terminology.

labeled. The aerodynamic center is defined as the point where the pitching mo-
ment does not change with angle of attack and is located approximately at the
quarter chord point. Because the aerodynamic center is fixed, it is convenient
for design purposes to assume the aerodynamic forces act through this point.
The aerodynamic forces acting the aircraft are shown in Figure 1.3c where lift
and drag are defined perpendicular and parallel to the freestream. Another
important parameter that is not labeled in Figure 1.3 is the aspect ratio, which
is defined as the ratio of the wingspan squared to the planform area.

A typical internal wing structure is shown in Figure 1.4. The wing’s struc-
ture has four main components: spars, ribs, skin, and stringers. Spars run
along the span of the wing and carry the majority of the load. Ribs are a series

Forward spar

Aft spar

Ribs

Stringers

Skin

Wingbox
cross section

Figure 1.4: A typical internal struc-
ture of a wing with the main com-
ponents labeled.

of parallel structures that maintain the
aerodynamic profile, protect the skin
against buckling, and are attached to the
spars. The skin gives the wing its aerody-
namic shape and is attached to stringers.
Stringers are additional stiffeners run-
ning spanwise along the wing between the
ribs and skin. Forward and aft spars to-
gether with their flanges or parts of the
ribs form a box-like structure known as
a wingbox (whose cross section is labeled
in Figure 1.4). Because the skin of the
Wright Flyer is made of a translucent
fabric, the wing’s rib-spar structure can
also be seen in Figure 1.1a.
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1.3.3 Induced Drag

There are three types of drag that affect aircraft: parasitic drag, lift-induced
drag, and wave drag. Wave drag is produced by the pressure variation caused
by shockwaves, where flow across the surface becomes locally supersonic, and
as such can only take effect in transonic speeds (Mach 0.7-1.3). Parasitic drag
accounts for viscous effects relating to the shape of the aircraft and skin friction
between the fluid and aircraft surface. Induced drag results from an induced
down-wash in the wake of the wing. Parasitic drag is proportional to the square
of the freestream velocity whereas induced drag is inversely proportional to
square of the freestream velocity. This means that the total drag (assuming
no wave drag) is usually dominated by the induced drag at low speeds and
parasitic drag at high speeds. The optimization problems presented in this will
seek to minimize induced drag as the focus is on aircraft in low-speed subsonic
flow where induced drag is dominant. But even for commercial aircraft, which
typically operate at Mach 0.7-0.75 during cruise, induced drag accounts for
40% of the total drag in cruise and up to 90% during climb and take-off [30].

Induced drag affects all 3D lifting bodies and is a side effect of lift generation.
There are many explanations on how lift is produced, and many factors that
contribute to lift. In the most general sense, lift is produced by turning an
incoming flow in one direction, resulting in a reaction force in the opposite
direction as according to Newton’s third law. The component of this reaction
force perpendicular to the incoming flow is called lift.

Figure 1.5 is used to explain how induced drag is formed and its relation
to lift. To create lift, there needs to be a pressure differential between the
upper and lower surfaces of the wing i.e. the lower surface pressure is increased
and the upper surface pressure is decreased (refer to Figure 1.5a). This means

(a)

(b)(c)

High pressure

Low pressure

Downwash

Induced drag
Effective Lift

Lift

Effective airflow

Freestream Induced angle of
attack

Downwash
Wingtip

vortic
es

Figure 1.5: Theory of induced drag: (a) pressure differences between the upper
and lower surface creates spanwise flow leading to formation of trailing vortices,
(b) vortices induce a downwash in the wake, and (c) downwash changes the
effective angle of attack leading to a loss in lift and creates induced drag.
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the lower surface pressure is higher than the pressure outboard of the wingtip,
creating a tendency for outward spanwise flow across the wing’s lower surface.
Conversely, the upper surface pressure is lower than the pressure outboard
of the wingtip, creating a tendency for inward spanwise flow on the upper
surface. When upper and lower surface flows meet at the trailing edge their
differences in spanwise flow causes vortices to form. These vortices are unstable
and combine to produce a wingtip vortex which induces a downwash in the wake
of the wing, as shown to Figure 1.5b. The downwash in the wake changes the
effective incoming angle of attack and the direction of the aerodynamic load,
resulting in a loss in lift and increase in drag as depicted in Figure 1.5c. This
additional drag is known as induced drag.

Three important design philosophies for reducing induced drag include:

1. Creating an elliptic spanwise circulation/lift distribution, which in turn
creates a constant downwash along the span and the minimum induced
drag for a planar wing with a specified wingspan.

2. Maximizing the wingspan (or aspect ratio) which reduces the downwash
in the wake for a specified lift. This technique is usually limited by
the fact that large wingspans will lead to increased weight (and bending
moments), where induced drag is inversely proportional the wingspan
squared, but the weight is proportional the wingspan cubed [31].

3. Creating a tailored wingtip geometry, such as winglets or raked wingtips,
which reduce spanwise flow leading to a reduction in vortex strength.
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2 Numerical Methods

This chapter introduces the numerical methods used in publications [P1-P4]. In
the broadest sense these methods are distinguished by 3 distinct areas: design
optimization, computational aerodynamics, and structural mechanics. Each
of the following sections will include general overviews of the methods imple-
mented with relevant references for further reading. Within the section design
optimization, readers are introduced to how the optimization problems are for-
mulated. The aerodynamic model used throughout this thesis is based on panel
methods which are detailed in the succeeding section. The structural analysis
used in [P2,P4] is based on beam finite element (FE) models which are described
in Section 2.3. The final section of this chapter is on multidisciplinary analysis
which discusses the methods used to solve coupled aeroelastic problems.

2.1 Design Optimization

2.1.1 Background

Design optimization applies numerical optimization techniques to the design
of engineering systems whose physics can be captured by a numerical model
(typically in the form of a discretized PDE). The goal is to find a design that
minimizes an objective function subject to constraints on the physics and/or
design. The design is defined by a parameterization method which is controlled

Initial design

Optimized designs

Increasing design freedom

Figure 2.1: Parameterization
methods for design optimiza-
tion: sizing (left), shape (mid-
dle), and topology (right) opti-
mization.

by a set of design variables. Typically,
methods of parameterizing designs for op-
timization problems are classified with re-
spect to three techniques: sizing optimiza-
tion, shape optimization, and topology opti-
mization. These methods are illustrated in
Figure 2.1. All techniques involve an ini-
tial design which is modified by perturbing
design variables. Sizing optimization scales
the design but does not allow any changes to
the initial shape. Shape optimization modi-
fies the external border of the design, allow-
ing changes in shape, but does not permit
changes to internal geometry such as the cre-
ation of holes. Topology optimization has full
design freedom, allowing both changes to the
external shape and creation of internal fea-
tures.

11
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In posing a design optimization problem it is important to choose an ap-
propriate parameterization technique for the specific goal of the study or the
available physics in the numerical model. Sizing optimization offers the least
design freedom but is usually the simplest to implement and is very efficient
in ground-structure type approaches [32, 33, 34, 35] where some geometry is
prescribed. On the other extreme, topology optimization offers the largest de-
sign space and is very versatile making the method applicable to a wide range
of problems in different disciplines including structural mechanics [36, 37, 38,
39], fluid dynamics [40, 41, 42], and various multi-physics applications [37, 43,
44, 45]. Shape optimization also offers a large design space but is limited to
applications where internal voids are not required. With respect to purely
aerodynamic optimization internal voids are usually of little interest and shape
optimization is the most commonly adopted method. For shape optimization
of airfoil geometries there are some key components to the shape which must
be maintained, for example a sharp trailing edge and blunt leading edge. Most
parameterizations for these types of problems will include restrictions to ensure
such features in geometry. The airfoil parameterization methods used in this
thesis are discussed in detail in Section 3.3.1, and further details on topology
optimization methods are provided in Appendix A.

2.1.2 The Design Problem

Once the parameterization and physics models are defined, the optimization
problem can be expressed in terms of design variables, d, and state variables,
s. The optimization problem is generally defined as

min
d ∈ RNd

: f(d, s)

subject to : R(d, s) = 0 state equations
gi(d, s) ≤ 0 for i = 1, ..., Ng inequality constraints
hi(d, s) = 0 for i = 1, ..., Nh equality constraints

¯
d ≤ di ≤ d̄ for i = 1, ..., Nd box constraints

(2.1)
where f denotes the objective function to be minimized, R is the residual of the
state equations, g and h are inequality and equality constraint functions. Each
of these functions may depend on some or all of the state variables and/or design
variables, which are constrained to be within the lower and upper bounds,

¯
d

and d̄. In this thesis a nested formulation is used where the state equations are
always converged, and as such are often not included in the problem definition.
The optimization problem is solved using gradient-based methods where the
design is updated iteratively by making small perturbations to d in a direction
dependent on the gradients of the objective and constraint functions. The
process of calculating these gradients is known as sensitivity analysis.
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2.1.3 Sensitivity Analysis

Gradients for optimization problems are usually calculated using one of four
methods: finite difference, complex step, direct or adjoint analysis. A finite
difference approximation is the easiest to implement but can be inaccurate
and does not scale well to problems with many design variables. The complex
step method can be used to improve the accuracy but also does not scale well.
Direct and adjoint methods are accurate to machine precision where direct
methods scale with the number of design variables and adjoint methods with
number of constraint/objective functions. It follows that an adjoint approach
is more efficient when the number of functions is less than the number of design
variables, i.e. Ng+Nh+1 < Nd. This is the case for each problem in this thesis
and as such a discrete adjoint approach is implemented. Gradients are derived
by first expressing the objective/constraint function in augmented Lagrangian
form as

f̃ = f + λTR (2.2)

where λ is a Lagrangian multiplier, and left- and right-hand sides are equal
because R = 0 (as implied from (2.1)). Differentiating (2.2) and applying the
chain rule yields

df̃

dd = ∂f

∂d + ∂f

∂s
ds
dd + λT

(
∂R
∂d + ∂R

∂s
ds
dd

)
(2.3)

where partial derivatives capture only explicit dependence (without resolving
the state equation) and total derivatives capture the implicit dependence also.
The aim now is to find a value of λ such that all total derivatives are eliminated.
This is achieved through solving the adjoint equation

∂R
∂s

T
λ = −∂f

∂s

T
(2.4)

which yields the final form

df̃

dd = ∂f

∂d + λT ∂R
∂d (2.5)

It is important to note that the methods discussed here are also applicable
to multidisciplinary design optimization (MDO) where the physics problem
contains multiple disciplines or subsystems (such as aerodynamic and structural
analysis). In the case of MDO problems, (2.4) and (2.5) are solved with respect
to the global multidisciplinary system which is expressed as an augmented
residual, R = {Ra(d, s),Rb(d, s), ...}T, with state variables, s = {sa, sb, ...}T,
where subscripts represent different subsystems. Readers are referred to [46]
for a detailed overview of sensitivity analysis for MDO problems.
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2.2 Panel Methods

Throughout this thesis, aerodynamic characteristics and loads are calculated
using a panel method. This section first outlines the motivation for using
panel methods, then introduces the numerical methods including the problem
formulation, boundary conditions, model discretization, and force calculations.

2.2.1 Why Panel Methods?

The Navier-Stokes equations provide the most general description of fluid flow,
but direct simulation of these equations for complete aircraft configurations
would be extremely expensive or even impossible with today’s computational
power. This requires some simplifications and assumptions about the flow.
When more assumptions are made about the flow, the fidelity of the aerody-
namic model will reduce but so will the required computational cost. In the
aircraft industry, flow of complete configurations is typically resolved by solv-
ing the Reynolds-averaged Navier-Stokes (RANS) equations, Euler equations,
or potential flow models [14]. Figure 2.2 ranks these models in terms of fidelity
and computational cost. The following gives descriptions of each model’s ca-
pabilities and examples from literature of their applications to aerodynamic
and/or aeroelastic optimization.

• RANS models achieve time averaged solutions, are applicable to turbulent
flows, capture viscous effects, and require a volume mesh of the entire fluid
domain [47, 48, 49].

• The Euler equations neglect viscosity, are applicable to compressible lam-
inar flow, and also require a volume mesh [50, 51, 52, 53].

• The full potential flow equation is applicable to inviscid compressible flow
and requires a volume mesh [54, 55]. However, potential flow models are
often linearized, where they are only applicable to incompressible flow,
and can be implemented as panel methods (3D surface mesh) [56, 57,
58], vortex lattice methods (2D surface mesh) [59, 60, 61], or lifting line
methods (1D mesh) [62, 63].

As discussed in the introduction, the main goal of this thesis is to create an
optimization framework that can produce optimized aerodynamic and struc-
tural designs in a relatively fast time frame (from a couple of hours up to a day).
This rules out many of the high fidelity methods as the physics models alone
come with a large computational cost which must be solved on each design iter-
ation of the optimization procedure. The potential flow models shown in Figure
2.2 are low- to mid-fidelity methods that differ mainly due to the model’s rep-
resentation and varying degrees of freedom in the mesh (as described above).
Another requirement is that the framework can be interfaced with different
structural models. By representing the actual surface of the wing, 3D pressure
distributions can be achieved and applied directly to 3D finite element models
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Figure 2.2: Common aerodynamic models ranked in terms of computational
cost and fidelity. Axes are representative and are not to scale.

such as continuum or shell elements. With a simplified representation such
as a lifting line or vortex lattice, pressure distributions are not immediately
available for application to 3D finite elements. A third requirement is to allow
large geometric changes to the design, which is of course possible with any of
the methods. However, with a volume mesh, elements can easily become dis-
torted as the geometry changes which may require regular remeshing during
the optimization procedure, and subsequently increase the computational cost.
Allowing large shape changes is much simpler with a surface mesh as elements
are not so easily distorted. Considering all of the above, panel methods offer
an excellent option to achieve all requirements of the framework. The panel
code used in this thesis is based on MIRAS [64], where the methods have been
extended to include different boundary conditions, far-field calculations, and
sensitivity analysis using a discrete adjoint approach.

2.2.2 Background

The panel method is a numerical approach to solving inviscid, irrotational and
fully subsonic or supersonic flow based on linearized potential flow theory. In
potential flow theory, the flow can be described at any point in a domain, p, by
a potential function, φ(x, y, z) where the velocity at p is given by the gradient
of the potential function, Up = ∇φp, and φ satisfies the Laplace equation

∇2φ = 0 (2.6)

Now consider the wing shown in Figure 2.3a with a surface, S. There are two
boundary conditions associated with this potential flow problem: the velocity
normal to the surface must be 0 (i.e. no penetration), and the disturbance of
the flow due to the wing must decay when p is far from S i.e. r →∞.

∇φp · np = 0 for p on S (2.7a)

lim
r→∞

(∇φp −U∞) = 0 (2.7b)
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Figure 2.3: Potential flow problem for a wing with surface, S, and wake, W in
(a) continuous and (b) discrete form.

(a) (b)

A A

Figure 2.4: Flow patterns for distributed constant-strength (a) sources and (b)
doublets.

The first condition, given in (2.7a), is known as the Neumann condition and
there are a number of elementary solutions to (2.6) that naturally satisfy the
second condition in (2.7b), of which the most relevant are sources and doublets.
The flow associated with constant-strength source and doublets distributed over
a surface, A, is depicted in Figure 2.4 where the distributed sources project
flow outward in all directions from the surface and the distributed doublets
circulate flow around the surface edges. The potential functions associated
with distributed constant-strength source and doublets are defined in [2] as

φσ = − σ

4π

∫
A

1
r
dA , φµ = µ

4π

∫
A

∂

∂n

(1
r

)
dA (2.8)

where σ is the source strength, µ is the doublet strength, n is the surface’s
normal vector, and r is the distance from the source/doublet. Referring back
to Figure 2.3a, sources and doublets are distributed over the surface, S, and
doublets only over the wake, W . The potential at point p can then be expressed
as the sum of influences from the surface, wake, and freestream as

φp = − 1
4π

∫
S

[
σ

1
r
− µ ∂

∂n

(1
r

)]
dS + 1

4π

∫
W

[
µ
∂

∂n

(1
r

)]
dW + φ∞,p (2.9)

where φ∞ is the freestream potential.
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An important property of the Laplace equation is the principle of super-
position, which states that if φσ, φµ, and φ∞ are all solutions to the Laplace
equation, then their sum, φσ + φµ + φ∞, is also a solution, which means (2.9)
satisfies (2.6). Equation (2.9) holds anywhere in the domain and can be used
to form expressions for the potential on S in order to satisfy (2.7a). These ex-
pressions in turn will form the governing equation for the panel method where
(2.7a) can be satisfied explicitly in terms of the velocity, or implicitly in terms
of the potential function. These two methods are known as Neumann and
Dirichlet boundary conditions (BC), respectively. Depending on the problem,
one BC may be advantageous over the other and as such it is important to
understand the differences between formulations.

2.2.3 Neumann Boundary Condition

The Neumann BC satisfies the non-penetration boundary condition explicitly
by combining (2.9) and (2.7a) to yield the following state equation for a point
on S[
− 1

4π

∫
S

[
σ∇
[1
r

]
−µ∇

[ ∂
∂n

(1
r

)]]
dS+ 1

4π

∫
W

µ∇
[ ∂
∂n

(1
r

)]
dW

]
·np = −U∞·np

(2.10)
The source strength, σ, is defined using the derivatives of the potential on

the external, φ, and internal, φI , surface of the wing

−σ = ∂φ

∂n
− ∂φI
∂n

(2.11)

The first derivative on the right hand side is equivalent to ∇φ · n, which is
equal to 0 by (2.7a). This means the source strength is equal to the derivative
of the internal potential. A zero internal perturbation formulation [65, 66] is
used where the internal potential is set to be equal to the freestream potential,
φI = φ∞, yielding

σ = U∞ · n (2.12)

The surface, S, and wake, W , are discretized into a number of panels as
shown in Figure 2.3b, where each panel on the wing has a constant-strength
source and doublet, and each panel in the wake has a constant-strength doublet.
The Neumann BC in (2.10), is expressed using a discrete set of collocation
points at the center of each panel, which yields the following set of algebraic
equations

Ra = ANµ+ (BN + I)σ = 0 (2.13)

where AN is the aerodynamic influence coefficient (AIC) for doublet distribu-
tions on both the wing and wake with a Neumann BC, and BN is the AIC for
source distributions along the wing with a Neumann BC. Figure 2.3b shows
the discretized form of the wing shown in Figure 2.3a, where the {i, j} entry
of AN and BN is the influence panel i has on panel j. AICs for the Neumann
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BC are derived using the methods outlined in [2]. Each panel will influence
every other point in the domain meaning that AN and BN are dense matrices.
Equation (2.13) defines the governing equation when a Neumann BC is used,
where the doublet strengths µ are the unknowns and source strengths σ are
calculated using (2.12).

2.2.4 Dirichlet Boundary Condition

The second option is to apply a Dirichlet BC which is an implicit formulation
of (2.7a). It has been shown that to satisfy (2.7a), it is required that ∂φ

∂n = 0
which means the internal potential must be constant [67]. The constant value
is arbitrary, however if one were to set φI equal to the freestream potential, as
done previously, then (2.9) for any point enclosed by the wing is simplified to

− 1
4π

∫
S

[
σ

1
r
− µ ∂

∂n

(1
r

)]
dS + 1

4π

∫
W

µ
∂

∂n

(1
r

)
dW = 0 (2.14)

The surface and wake are discretized into panels in the same manner as for
a Neumann BC, and (2.14) is enforced at collocation points just underneath
each panel center (inside the wing). This creates the governing equation for
the Dirichlet problem.

Ra = ADµ+ BDσ = 0 (2.15)

where AD is the AIC for doublet distributions on the wing and wake with a
Dirichlet BC, and BD is the AIC for source distributions on the wing with a
Dirichlet BC. These terms are defined for quadrilateral panels in [2]. Similar
to the Neumann problem, AD and BD are dense matrices, and (2.15) is solved
for µ, where σ is calculated using (2.12).

At this point it is important to emphasize the key differences between Neu-
mann and Dirichlet BCs. Firstly, the Neumann BC is expressed in terms of
velocity where AN and BN are formed from the dot product of the veloc-
ity influence coefficient in three dimensions and a normal vector, whereas the
Dirichlet BC is expressed in terms of the potential function, which is a scalar.
Secondly, the Dirichlet BC is formulated based on separated external and inter-
nal domains, whereas the Neumann BC makes no explicit assumptions about
the internal domain (however the source terms do).

2.2.5 Wake Model

In previous discussions on the problem formulation the wake was included in
the model, but so far the discussion has been mainly on the wing itself. The
wake model is included in order to satisfy the Kutta condition and to calculate
induced drag. These principles will be discussed later in this section, whereas
the focus here is on the wake model itself. The simplest wake model is a vortex
sheet projected in the freestream direction from the trailing edge of the wing,
as shown in Figure 2.5a. This freestream model can be implemented using a
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(a) (b)

Figure 2.5: Two different wake models for panel methods: (a) a fixed freestream
wake, and (b) an iterative wake model.

single panel at each spanwise section of the wake. The low number of wake
panels makes the freestream model computationally efficient but may become
inaccurate for wing geometries that create a large variance in the structure of
the wake. To increase accuracy, multiple wake panels can be used to capture
the correct wake geometry, but this requires prior knowledge of the wake shape
in order to position panels appropriately. In optimization problems the wing
geometry is unpredictable during the optimization procedure and the wake
geometry is unknown. Iterative wake models can be used to capture complex
wake structures as shown in Figure 2.5b. However on each iteration the AIC’s
are recalculated to account for the influence from the new wake shape, and the
governing equations need to be resolved. This creates a large computational
cost for iterative methods and as such a freestream model will be used in each
case presented in this thesis. For more information on implementing iterative
wake models readers are referred to [64, 68, 69, 70].

2.2.6 Kutta Condition

As stated previously, the wake model allows the Kutta condition to be enforced
which is required to ensure the model remains physical. The Kutta condition
states that flow must leave the surface of the wing at the trailing edge (TE)
with a finite velocity. This can be enforced by ensuring there is no circulation
at the TE. From Figure 2.6b we see that this condition corresponds to

µW − µU + µL = 0 (2.16)

The Kutta condition must be applied to each TE section. This condition
can be enforced explicitly by adding (2.16) to our system of equations, (2.13)
or (2.15), and solving for µW directly, or enforced implicitly by modifying the
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(a)
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Figure 2.6: Wing and wake panels extending from trailing edge (TE). The
red circle in (a) marks the detail shown in (b) where doublet strengths and
directions are shown.

doublet influence coefficients of the TE panels as follows

Ai,U = Ai,U +Ai,W

Ai,L = Ai,L −Ai,W
(2.17)

2.2.7 Post-Processing

After solving (2.13) or (2.15), σ and µ distributions can be used to achieve
surface pressures on the wing and velocities anywhere in the domain. Because
the velocity at any point is defined as the gradient of the potential function,
numerical differentiation methods can be used to achieve the velocity over the
surface of the panel. The velocity over panel i is expressed in local coordinates
(l,m,n) as

U i =
{
∂φ

∂l
,
∂φ

∂m
,
∂φ

∂n

}T

i

=
{
∂µ

∂l
,
∂µ

∂m
, 0
}T

i

+ {U∞,l, U∞,m, U∞,n}Ti (2.18)

The Bernoulli equation uses the panel velocities to calculate the pressure
coefficient, CP , which is integrated over the wing to find the total force, F ,
and moments, M , via the following

CP,i = 1− ‖U i‖2

U2
∞

(2.19)

F = q∞

NP∑
i=1

CP,iSini , M = q∞

NP∑
i=1

CP,iSi(ri × ni) (2.20)

where q∞ is the dynamic pressure defined as q∞ = 1
2ρ∞U

2
∞, NP is the num-

ber of panels on the wing surface, and ri is a spatial vector from a reference
point, about which moments are calculated, to panel i’s collocation point. Mo-
ment calculations can be used to obtain pitching and bending moments, and
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projecting F perpendicular and parallel to the freestream direction yields the
following expressions for lift and induced drag

LCP
= 1
U∞
{−U∞,z , 0 , U∞,x}F , DCP

= 1
U∞
{U∞,x , 0 , U∞,z}F (2.21)

�∞
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Figure 2.7: Definition of the Trefftz
plane. Figure retrieved from [P1].

where it is assumed the y velocity of
the freestream is 0. The subscripts of
DCP

and LCP
indicate that the forces

are calculated via CP -integration. Aero-
dynamic forces can also be calculated
through far-field calculations within a Tr-
efftz plane. The Trefftz plane is repre-
sented in Figure 2.7 where it is defined
perpendicular to the freestream and far
enough downstream that perturbations
to the flow in the freestream direction
are negligible. Applying the conservation
of momentum yields expressions for lift,
LTP , induced drag, DTP , and root bend-
ing moment, Mr, in terms of a 2D in-
tegral along the intersection of the wake
and Trefftz plane [71, 72].

LTP = ρ∞U∞

∫
sw

∆φdy ' ρ∞U∞
Nw∑
i=1

µisi cos(θi) (2.22)

DTP = −1
2ρ∞

∫
sw

∆φ∂φ
∂n

dsw ' −
1
2ρ∞

Nw∑
i=1

µisiui.ni (2.23)

Mr = ρ∞U∞

∫
sw

rw∆φds ' ρ∞U∞
Nw∑
i=1

µisi|yi cos(θi) + zi sin(θi)| (2.24)

where sw is the 2D curve representing the wake-Trefftz plane intersection, ∆φ
is the difference in potential over sw, and rw is the distance from the origin in
the Trefftz plane. In discrete form, si, θi, ni, and (yi, zi) represent the length,
orientation, normal vector, and center point of wake panel i in the Trefftz plane.

Finally, aerodynamic forces can be normalized to give lift and drag coef-
ficients, CL = L

q∞S and CD = D
q∞S , where L and D may represent lift or

drag via either integration method, and S represents the planform area of the
wing. In some cases, compressibility effects will be included by solving the
Prandtl-Glauret equation rather than the Laplace equation in (2.6). This can
be achieved by performing a simple coordinate transformation in a preprocess-
ing step, and applying a correction to physical quantities in post-processing to
invert the transformation. Further details are supplied in Appendix B.
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2.3 Beam Finite Element Analysis

Loads calculated in the panel method will be applied to a structural model
to capture deformations of the wing. Structural models considered in this
thesis are based on beam finite element (FE) analysis. Methods have also been
extended to 3D continuum elements, which is discussed in Appendix A, but is
not considered here. This section introduces beam theory and the application
to FE models.

2.3.1 Background

q
x

y

z

l

Figure 2.8: An arbitrary beam
of length l with its reference
axis co-linear to the y-axis, and
subject to an external load, q.

Beam models are applicable to slender struc-
tures whose length is relatively larger than
the cross section. The model is represented
with respect to a one dimensional reference
axis along the length of the beam, and two
dimensional cross sections at arbitrary points
along the axis. Figure 2.8 shows a typical
beam of length l subject to an external load
q.

The beam is assumed to maintain conti-
nuity along the reference line and static equi-
librium is ensured through the principle of
virtual work which states that the total in-
ternal and external virtual work must be bal-
anced, i.e.

V =
∫
l

{FT,MT}
{
δγ
δκ

}
dl︸ ︷︷ ︸

internal

−
∫
l

qTδudl︸ ︷︷ ︸
external

= 0 (2.25)

The external load, q, is applied in the form of distributed forces and mo-
ments which cause the beam to deform through virtual displacements and rota-
tions δu. External loads are balanced by the internal forces F = {Fx, Fy, Fz}T,
composed of shear and axial forces, and moments M = {Mx,My,Mz}T, com-
posed of bending and torsional moments. These vectors act on the beam cross
section at a reference point as shown in Figure 2.9a. The internal forces and
moments are statically equivalent to the stresses in the cross section which are
defined by

Fx =
∫
A

σyxdA, Fy =
∫
A

σyydA, Fz =
∫
A

σyzdA

Mx =
∫
A

zσyydA, My =
∫
A

(σyzx− σyxz)dA, Mz = −
∫
A

xσyydA

(2.26)

Figure 2.9b shows the generalized strains, γ = {γx, γy, γz}T, and curva-
tures, κ = {κx, κy, κz}T which also act on the cross section. These strains and
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Figure 2.9: Components of (a) forces and moments, and (b) generalized strains
and curvatures, for a given cross-section of a beam.
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Figure 2.10: Beam kinematics: (a) deformations in the x-y plane, (a) deforma-
tions in the y-z plane, and (c) deformations in the x-z plane

curvatures are defined by the beam kinematics shown in Figure 2.10. Beam
cross sections are assumed to remain in-plane and undergo rigid body displace-
ments, u = {ux, uy, uz}T, and rotations, ϕ = {ϕx, ϕy, ϕz}T. Assuming small
rotations, the contributions shown in Figure 2.10 can be summed and differen-
tiated to yield the generalized strains and curvatures

γ =
{
dux
dy

+ϕz ,
duy
dy

,
duz
dy
−ϕx

}T
, κ =

{
dϕx
dy

,
dϕy
dy

,
dϕz
dy

}T
(2.27)

The generalized strains and curvatures hold a linear relationship to the cross
sectional stresses via a constitutive model and can be related to the internal
forces and moments by {

F
M

}
= Kcs

{
γ
κ

}
(2.28)

where Kcs is the cross sectional constitutive matrix.

2.3.2 Constitutive Model

The constitutive model is derived using the stress relations in (2.26). Assuming
linear elasticity, isotropic materials, and that cross sections remain in-plane, the
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three stress states that exist in the beam cross section are

σyy = Eεyy = E

(
duy
dy
− z dϕx

dy
+ x

dϕz
dy

)
= E(γy − zκx + xκz)

σyx = Gτyx = G

(
dux
dy

+ ϕz + z
dϕy
dy

)
= G(γx + zκy)

σyz = Gτyz = G

(
duz
dy
− ϕx − x

dϕy
dy

)
= G(γz + xκy)

(2.29)

where εyy is the axial strain and τ is shear strain. The constitutive matrix,
Kcs, is defined by integrating these stresses over the cross section in accordance
with (2.26) and expressing in the form of (2.28)

Fx
Fy
Fz
Mx

My

Mz


=


GA 0 0 0 −GAsz 0
0 EA 0 EAez 0 −EAex
0 0 GA 0 GAsx 0
0 EAez 0 E(Ixx +Ae2

z) 0 −EIxz
−GAsz 0 GAsx 0 G(K +A(s2

x + s2
z)) 0

0 −EAex 0 −EIxz 0 E(Ixz +Ae2
x)


︸ ︷︷ ︸

Kcs



γx
γy
γz
κx
κy
κz


(2.30)

where (ex, ez) and (sx, sz) are the elastic and shear centers of the cross section,
and by definition the area and second moments of area are

A =
∫
A

dA , Ixx =
∫
A

z2dA , Izz =
∫
A

x2dA , Ixz =
∫
A

xzdA (2.31)

There is no explicit analytical function for the torsional constant, K, of
arbitrary cross sections. However, there are some explicit functions for K of
specific cross sections. One relevant case is that of closed thin-walled cross
sections with K defined in [73] as

K = 4A∮
s
ds
t

(2.32)

where the denominator is an integral around the circumference of the cross
section defined by the wall’s median line, with a wall thickness, t. A second
relevant case is that of a solid airfoil section which can be approximated as [74]

K ' 0.15ct3max (2.33)

where c and tmax are the airfoil’s chord length and maximum thickness respec-
tively.

An important special case for Kcs is when the cross section is doubly sym-
metric about x- and z-axes. In such a case the elastic and shear center are
coincident to the origin (i.e. sx = sz = ex = ez = 0) and all off-diagonal terms
of Kcs are 0.
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2.3.3 Problem Formulation

With the kinematics and constitutive relations defined, the beam can now be
discretized into one dimensional finite elements of length le, which represent the
reference axis. The displacements and rotations are achieved along the element
via Nue where ue are the displacements and rotations at the element nodes,
and N contains interpolation functions. Similarly, the generalized strains and
curvatures can be achieved by Bue, where B is the strain-displacement matrix
containing derivatives of the shape functions and off-diagonal terms to account
for rotation of the cross section (refer to (2.27)).

The problem is first derived in terms of a non-linear co-rotating formula-
tion which is then reduced to a linear form. The term co-rotating is used to
describe a system where the reference frame continuously rotates with the el-
ements which are locally subject to the constitutive relationship in (2.28). A
transformation matrix, T, is used to map local strains and internal forces to
the global coordinate system by{

γ
κ

}
= T(u)T

{
γl
κl

}
, fi,e(u) = T(u)TKcs

{
γl
κl

}
(2.34)

where fi,e is the element’s internal forces defined from (2.28), and the subscript
l represents a local quantity. Static equilibrium can be ensured by satisfying
the residual equation

Rb(u) = fi(u)− f = 0 (2.35)

where fi is the global internal force vector formed from assembling fi,e, and f
is the global external force vector formed by assembling

fe =
∫
le

NTqdle (2.36)

Note that the external virtual work is assumed to be independent of geometric
variation, i.e. f has no dependence on u. However, in aeroelastic problems
the load will change as the wing deforms. This will be accounted for in the
multidisciplinary analysis formulation (discussed in Section 2.4), and is not
considered as part of the FE formulation.

A Newton-Raphson scheme is used to satisfy (2.35) with updates in u cal-
culated by solving

K(u)∆u = −Rb(u) (2.37)

where K is the tangent stiffness matrix formed by assembling element stiffness
matrices, Ke. The derivation of the element stiffness is achieved by taking the
variation of the internal virtual work, defined in (2.25), which can be expressed
as combination of constitutive and geometric terms by

dVi =
∫
l

(
dFTδγ + dMTδκ︸ ︷︷ ︸

constitutive

+ FTd(δγ) + MTd(δκ)︸ ︷︷ ︸
geometric

)
dl = δuT

e Keue (2.38)
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Ke(u) =
∫
le

T(u)TBTKcsBT(u)︸ ︷︷ ︸
constitutive

dle + Kg(u)︸ ︷︷ ︸
geometric

(2.39)

where Kg is the geometric stiffness defined by the variation of the virtual strains
as implied in (2.38). The specific definition of Kg depends on the choice of
element and local deformation modes. In order to ensure consistency, Kg must
also account for the variation of the transformation matrix. Some methods
may choose to simplify the calculation by excluding these terms. However, this
can lead to slower convergence rates in the FE analysis and large errors in the
sensitivity analysis. For the formulation used in this thesis, the definition of
Kg can be found in [P4].

Alternatively, the problem can be linearized by neglecting the geometric
terms in (2.39), where T then represents the orientation in the undeformed
configuration, i.e. T is not dependent on u. It then follows that Ke is indepen-
dent of u, and with no geometric dependence, the governing equation becomes

Rb = Ku− f = 0 (2.40)

2.4 Multidisciplinary Analysis

Multidisciplinary analysis involves coupling multiple physics disciplines into a
single engineering system. The global system is defined by a combination of
residual vectors and state variables from each subsystem. The focus in this
thesis is coupling panel and FE methods where the global system is defined by

R(d, s) =
{

Ra(d, s)
Rb(d, s)

}
= 0 , s =

{
sa
sb

}
=
{
µ
u

}
(2.41)

where Ra is defined in (2.13) or (2.15) depending on the boundary condition,
and Rb is defined in (2.40) or (2.35) depending on whether linear or non-linear
analysis is implemented.

Two coupling methods are considered in this thesis: 1- and 2-way coupling.
For the 1-way coupling procedure each subsystem is solved once where the
aerodynamic loads calculated in the panel method are used to solve the FE
problem. When using this coupling method the finite element formulation
(Rb), holds a dependence on the panel method state variables, µ, through the
external force vector, f. As information is only transferred one way (panel to
FE) the panel method (Ra) has no dependence on the state variables of the FE
problem, u. When the problem is 2-way coupled, aerodynamic loads are still
applied to the FE problem, but the displacements are then used to deform the
panel geometry. The panel method (Ra) is then dependent on the FE state
variables u, through AIC’s A and B as well as source terms σ. This creates a
2-way dependence as each subsystem is dependent on the others state variables,
and a non-linear solver is required to satisfy the global system in (2.41).
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Two methods have been trialled for computing 2-way coupled solutions –
fixed-point iterations and a Newton method. The Newton method experiences
second order convergence which allows the method to converge in fewer it-
erations than the fixed-point iterations. However, fixed-point iterations only
require the calculation of AICs, and not their derivatives. The derivatives of
AICs are needed to form the Jacobian matrix on each iteration of the Newton
method, and this calculation dominates the analysis as the cost is roughly 8
times that of the AIC calculation [P1]. Because of this large computational
cost, fixed-point iterations are instead used to solve the 2-way coupled prob-
lems presented in this thesis. Appendix C contains algorithms for each method
and a comparison that demonstrates the differences in computational cost and
stability.
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3 Aerodynamic Shape Optimization

This chapter discusses the results of [P1] which introduces a framework that
uses panel methods for aerodynamic shape optimization of planar wings, and
[P3] which extends these methods to shape optimization of non-planar wing
configurations. The aerodynamic modeling is discussed in Section 2.2, whereas
this chapter focuses on the details specific to [P1] and [P3]. The first section de-
scribes the wing parameterization and discretization, and is followed by studies
that highlight some of the differences in calculation methods when using panel
methods for shape optimization problems. The third section will present op-
timization studies on planar wings and the final section explores the potential
benefits of non-planar wings.

3.1 Wing Parameterization and Discretization

The wing parameterization and discretization is shown in Figure 3.1. The
model represents a delta wing configuration where the effect of both wings
are considered but without a fuselage. The wing coordinates are achieved by
assembling airfoil sections on a quarter chord curve defined in 3D space by a set
of control points that are on the curve, and represent the airfoil quarter chord
points. The freestream wake geometry introduced in Section 2.2.5 is used with

y

x

z
Quarter chord curve

Panels

Airfoil sections

Wake Panels

Sym
metr

ic mirro
r image

Control/quarter chord points

Figure 3.1: Wing parameterization and panel discretization with symmetry
about the x-z plane.

28
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a single wake panel per spanwise section. One wing is defined where symmetry
is enforced by calculating the influence from a mirror image of the wing and
wake about the root.

Design variables are used to control the airfoil shape and control points
of the quarter chord curve. In order to ensure smoothly varying geometry
and avoid numerical artifacts, the design variables are filtered in the spanwise
direction. The filtering technique is shown in Figure 3.2 and is defined as

d̃ = Wd where Wi,j = 1∑NS

k=1 wi,k
wi,j and wi,j = max(0, R− ri,j) (3.1)

d̃i

diwi

wi+1
wi−1

ri,i+1ri,i−1

d

y

R

Figure 3.2: Representation of the
filtering method defined in (3.1).

where d̃ are filtered design variables and
W is a filter matrix containing weights
w, for neighboring sections’ design vari-
ables. There is an inverse-linear relation-
ship between an airfoil section’s weight
and the distance between sections, ri,j .
If ri,j is greater than a filter radius, R,
then there is no weight associated with
these sections.

Airfoil parameterization techniques
are discussed in Section 3.3.1, where Sec-
tion 3.2 uses constant NACA 0012 airfoils
throughout the span. Sections 3.2 and
3.3 only consider unswept planar wings
where the quarter chord curve is co-linear
with the y-axis.

3.2 A Discussion on Choice of Methods

This section discusses the applicability of different calculation methods within
the panel method when used for shape optimization problems. More specifi-
cally, choice of boundary conditions and drag calculation methods are compared
based on their computational cost and the resulting optimized designs.

3.2.1 Boundary Conditions

As discussed in Section 2.2, the 3D panel method can be solved with either
Neumann or Dircihlet boundary conditions (BC). This section investigates the
differences in BCs through solving shape optimization problems. Consider the
following drag minimization problem which is subject to a lift constraint and
defined with respect to twist variables at NS airfoil sections.

min
α ∈ RNs

: D(α)

subject to :
¯
L− L(α) ≤ 0

¯
α ≤ αi ≤ ᾱ for i = 1, ..., NS

(3.2)
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(a) (b)

Figure 3.3: Twist optimization results with different boundary conditions: (a)
twist distribution and (b) lift distribution along the half-span. Figure retrieved
from [P1].

Figure 3.3 shows the twist and lift distribution for optimized designs with a
rectangular planform of aspect ratio 6, where η represents the normalized span-
wise location. Both problems converge to designs with negligible differences in
sectional lift and twist distributions. The sectional lift distribution closely ap-
proximates the elliptic distribution which is the known optimal solution for a
planar wing. These results show that choice of BC is not crucial for analyzing
the aerodynamic performance or solving the optimization problem.

Even though this demonstrates that choice of BC does not effect the out-
come of the optimization problem, choice of BC is important for reducing
computational cost. A timing comparison between BCs is shown in Figure
3.4a, where for the same mesh size, a Dirichlet BC takes half the time of a
Neumann BC. The reason for this results from the formulation of the problem.
To understand why, it is first noted that as panel methods are dense systems
the majority of the computational time is spent assembling the system, i.e.
calculating AICs. The AICs for a Neumann BC require the calculation of the
influence on velocity in three dimensions, whereas the Dirichlet BC requires the
calculation of the influence on the potential which is a scalar. This becomes cru-
cial when the gradients are required, as the gradient calculation takes roughly
8 times longer than the physics problem, which in turn will now dominate the
computational time. The factor of 8 arises from the fact that gradients are
required for each influence coefficient between any two panels with respect to
8 nodes (4 per panel). Because AIC calculations for a Neumann BC comes at
twice the cost of a Dirichlet BC, calculating the derivative of AICs is also twice
as expensive.

Another major difference between the boundary conditions is the discretiza-
tion error. Figure 3.4b shows a mesh convergence study for a rectangular wing
of aspect ratio 4. Using a Dirichlet BC, the induced drag (calculated via CP
integration) converges faster than it does for a Neumann BC. This means that
accurate results can be achieved on coarser meshes with a Dirichlet BC leading
to further reductions in cost. The difference in numerical error arises from the
nature of the boundary conditions. A Dirichlet BC specifies that the internal
flow must be constant anywhere inside the wing, whereas a Neumann BC makes
no assumptions about the internal flow. Because the panel method enforces
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(a) (b)

Figure 3.4: Comparisons between different methods: (a) timing comparison
between Neumann and Dirichlet BCs and (b) mesh convergence study for a
rectangular wing of aspect ratio 4.

BCs at discrete points, there is some leaked flow from the external to inter-
nal regions, which contributes to discretization errors. By explicitly forcing a
constant velocity inside the wing, leaked flow is reduced [75].

3.2.2 Induced Drag Calculation

Section 2.2 introduced two ways of calculating the lift and induced drag –
through CP integration or Trefftz plane integration. When the wing geometry
is well defined both methods can produce similar results. However, it is known
that CP integration can be susceptible to numerical errors resulting from the
discretization [71, 76]. These numerical errors can become very large for non-
conventional wing geometries, leading to non-physical values of drag. This is
demonstrated through solving the following optimization problem where the
objective is to minimize drag subject to a minimum lift constraint with respect
to a sectional chord distribution and at a fixed angle of attack.

min
c ∈ RNS

: D(c)

subject to :
¯
L− L(c) ≤ 0

¯
c ≤ ci ≤ c̄ for i = 1, ..., NS

(3.3)

The optimization problem is solved twice, once where drag is calculated us-
ing CP integration and once with Trefftz plane integration. Converged designs
are compared to a rectangular wing with equal span and aspect ratio of 6. Each
design is shown in Figure 3.5 with sectional drag distributions calculated using
both methods.

The optimization problem in (3.3) has a known optimal solution – the el-
liptic wing. This design is achieved when drag is calculated via Trefftz plane
integration predicting a reduction in drag of 1.4% compared to the reference
wing. When using CP integration the design converges to an non-conventional
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(a) Initial design/reference (b) minDCP (c) minDT P

(d) Initial design/reference (e) minDCP (f) minDT P

Figure 3.5: Wing planforms and sectional drag distributions for reference de-
sign, optimized design with CP integration, and optimized design with Trefftz
plane integration. Figure retrieved from [P1].

wing shape that predicts a reduction of 2.4%. The CP optimized wing has been
able to create a larger reduction in drag by exploiting numerical errors in the
drag calculation. Resolving the problem using Trefftz plane integration shows
that the optimized wing actually creates an increase in drag of 0.5%. These
errors are most obvious at the wingtip as seen from the drag distributions in
Figures 3.5d-3.5f, where the drag should tend to zero at η = 1 (wingtip). The
large numerical errors in CP integration can also have large sensitivities that
will push the optimizer to more non-conventional designs. The results presented
here suggest that CP integration is unsuitable for optimization problems when
the parameterization allows a large change in geometry.

Numerical errors from CP integration have a large impact on the induced
drag because the error is of a similar order in magnitude to the induced drag.
Lift is usually much greater than the induced drag (and magnitude of numer-
ical errors) which means that reasonable results can still be predicted for lift.
However, it is still recommended to calculate both lift and drag from Trefftz
integration. This is because the optimizer may try to exploit the inviscid pres-
sure distributions by creating irregular airfoil geometries with unphysical CP
values. Section 3.3.1 discusses this point in more detail.

Figure 3.4b presented mesh convergence studies for different BCs with CP
and Trefftz plane integration methods, where the convergence has negligible
differences with choice in BC when drag is calculated in the Trefftz plane. The
Trefftz plane calculations converge much faster than the CP integrations as
they are not susceptible to discretization error. Because similar results can be
predicted on a coarser mesh the computational cost can also be reduced.
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3.3 Shape Optimization of Planar Wings

In the previous studies only one design variable per section was used with a
fixed airfoil profile throughout the span. In this section, airfoil parameteriza-
tion methods are used to allow changes in airfoil shape throughout wing. The
section is divided into two subsections where the first introduces airfoil pa-
rameterization methods which are compared based on their performance and
robustness for inviscid shape optimization problems. The second study explores
the effect of wingspan in induced drag minimization problems.

3.3.1 A Comparison of Airfoil Parameterization Methods

For the purpose of this study, two airfoil parameterization methods are in-
troduced and are represented in Figures 3.6a and 3.6b. The first is based on
the definition of NACA 4- and 5-digit airfoils which have a well defined air-
foil shape, and the second uses a B-spline representation which is a free-form
parameterization that can represent a large range of geometries.

NACA airfoils are defined using 4 parameters (refer to Figure 3.6a): chord
length c, maximum thickness t, maximum camber m, and position of maximum
camber p. The airfoil coordinates are achieved by summing a thickness and
camber distributions which are defined as polynomial equations based on these
4 parameters. For optimization problems these parameters are controlled by
design variables. The twist, α, is included as an additional variable, giving the
NACA parameterization a possible 5 design variables per airfoil section. For
more details on the NACA parameterization readers are referred to Appendix
D.

When a B-spline parameterization is used the airfoil is represented by a B-
spline curve whose control points are defined by design variables, refer to Figure
3.6b. Each control point can move vertically within specified bounds, and there
is a fixed relative spacing in the horizontal direction which scales with a single
design variable. If a control point is near a bound and the corresponding control
point at the same horizontal location is sufficiently far away, the bounds are
updated to allow more freedom to the control point. Updating the bounds in

c = 1
p

t
m

Camber line
(x̄, z̄m)

Chord line (x̄, 0)
α

U∞

x

z

α
x̄

z̄

Quarter chord point
(a)

Camber line

Bounds

Control points

U∞

x

z

Chord line
Quarter chord point

(b)

Figure 3.6: Airfoil parameterization methods: (a) NACA and (b) B-spline
parameterization. Figures are adapted from [P1].
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this way ensures that the B-spline cannot self-intersect. For more details on
the B-spline parameterization readers are referred to Appendix E.

Both parameterizations include the spanwise filtering discussed in Section
3.1, where each set of design variables are filtered separately, i.e. d in (3.1)
may represent any of the 5 NACA airfoil parameters or any corresponding set
of B-spline control points. To compare the different parameterization methods
consider the following optimization problem where the objective is to minimize
the induced drag with respect to constraints on lift, pitching moment, twist,
and maximum curvature.

min
d ∈ RNd

: D(d)

subject to :
¯
L− L(d) ≤ 0
Mp(d) = 0
αi − ᾱ ≤ 0 for i = 1, ..., NS
κ̂i − ¯̂κ = 0 for i = 1, ..., NS

¯
d ≤ di ≤ d̄ for i = 1, ..., Nd

(3.4)

Both the twist and maximum curvature constraints are enforced to ensure
that the flow remains physical as the aerodynamic model cannot predict flow
separation which can occur with high angles of attack or sharp geometries. The
maximum curvature of a NACA airfoil is approximated as κ = 0.9075 c

t2 , and
for a B-spline it is approximated using a p-norm function as described in [P1],
where curvature calculations are detailed in Appendix E.

The problem in (3.4) is solved with both NACA 5-digit and B-spline pa-
rameterizations, where design variables are defined as d = {c, t,p,α} for the
NACA airfoils, and d = {P1,P2, ...,PNS

} for B-spline airfoils. Results for
both cases are shown in Figure 3.7. Both airfoil parameterization methods
produce optimized designs with similar planforms, the same induced drag, and
negligible differences in lift distributions which closely approximate the optimal
elliptic distribution. The aspect ratio is higher for the NACA parameterization
due to differences in the airfoils. The NACA 5-digit airfoils have a larger cam-
ber than B-spline airfoils, which creates a flatter region towards the leading
edge on the lower surface of the airfoils, and corresponds to a larger pressure
in that region. This difference can be seen in airfoils and CP distributions
at each section (refer to Figures 3.7c-3.7e). The lower surface pressure in B-
spline designs leads to a lower Cl which is compensated for by a larger chord
length. This highlights an important fact about shape optimization problems
for minimizing induced drag: the minimum drag and corresponding optimum
lift distribution, can be achieved by a number of combinations of chord, twist,
and camber, which creates many possible solutions with the same performance.

B-spline results presented in this study have been able to produce realistic
designs. However, from experience, the B-spline parameterization has proven
not to be as robust for all cases of inviscid optimization problems. The ad-
ditional freedom provided by the B-spline parameterization can produce non-
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(a)

(b)

(c) (d)

(e) (f)

Figure 3.7: Optimized designs with different airfoil parameterization methods:
(a) Wing planforms with lower and upper surface CP (NACA 5 above, B-spline
below), (b) spanwise lift distributions, airfoil sections with CP distributions at
(c) η = 0.05, (d) η = 0.50, (e) η = 0.95, and (f) airfoil stacks (NACA 5 above,
B-spline below). Figure retrieved from [P1].

conventional geometries that take advantage of the inviscid nature of the prob-
lem. This issue can also get worse when the optimization problem is posed in
terms of quantities calculated via CP integration. The motivation of the B-
spline parameterization was to allow more design freedom to the optimizer, but
in doing so it has been able to exploit the assumptions of the physics model. In
order to prevent this, further geometry constraints are enforced on quantities
such as curvature, which has the effect of restricting the design space again.
As discussed, there are many solutions to the optimization problem that can
produce the same value of minimized induced drag, and this has been achieved
with the simpler NACA parameterization. Ultimately, incorporating free-form
parameterizations, such as those defined by splines, requires more regulariza-
tion, increases complexity, and has not demonstrated any advantage over the
NACA parameterization which always produces well defined airfoil geometries.

3.3.2 The Effect of Wingspan

The opening chapter of this thesis discussed design philosophies for reducing
induced drag (Section 1.3.3). The first method was to create an elliptic lift
distribution, which was achieved by the optimized designs in the previous ex-
amples. This section demonstrates the second method which is to increase the
wingspan. The optimization problem in (3.4) is solved again using a NACA 5-
digit parameterization and with small perturbations to the wingspan of 0.1 m,
where the original wingspan was 6 m. Optimized designs are shown in Figure
3.8 and are compared to the reference design from Figure 3.5a in Table 3.1.
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(a)

(b)

(c) (d)

Figure 3.8: Optimized designs with perturbations to the wingspan: (a) Wing
planforms with lower and upper surface CP (b = 6 m above, b = 6.1 m middle,
b = 5.9 m below), (b) spanwise lift distributions where η is normalized with
b = 6, airfoil sections with CP distributions at (c) η = 0.05, (d) η = 0.95.

Table 3.1: Drag of opti-
mized designs with perturbed
wingspans, normalized by the
drag of the reference wing.
Table retrieved from [P1].

Design D/Dref

Reference 1.000
minD, b = 6 m 0.985
minD, b = 6.1 m 0.953
minD, b = 5.9 m 1.019

Each of the optimization problems con-
verged to similar designs with negligible differ-
ences in planform, airfoil sections or pressure
distributions. The optimized design from the
previous example creates a reduction in drag of
1.5% compared to the reference wing, whereas
with a slightly larger wingspan, a reduction in
drag of 4.7% is produced. Conversely, if the
wingspan was slightly shorter, the optimized
design increases the drag by 1.9% compared to
the reference wing. This result shows that even
small reductions to the wingspan can cause a
large increase in induced drag. Additionally,
the results demonstrate just how effective increasing the wingspan is at re-
ducing induced drag. This is an important discussion point for optimization
problems that minimize induced drag, and is relevant to many of the discussions
on examples presented later in this thesis.

3.4 Shape Optimization of Non-Planar Wings

The previous section demonstrated that optimizing airfoil sections for minimum
induced drag grants very little performance gains compared with varying the
wingspan. This section explores the potential of optimizing non-planar wing
geometry rather than the airfoil sections. As such, all studies maintain constant
NACA 0012 airfoil profiles. Results are presented in two subsections, where the
first creates comparisons to designs from literature and explores the effect of
sweep and droop. The second investigates the differences between raised and



33

3.4. SHAPE OPTIMIZATION OF NON-PLANAR WINGS 37

drooped wing designs. The studies presented in this section relate to the third
design philosophy for induced drag reduction outlined in Section 1.3.3, which
is to specifically tailor the wingtip design.

3.4.1 The Effect of Sweep and Droop

In recent years there has been a growing interest in unconventional wing designs
such as drooped wings. These designs are usually bio-inspired with many citing
the drooped shape of a seagull wings in gliding flight. To demonstrate the
potential for optimizing non-planar wings, a comparison is created between
optimized designs and designs taken from literature. Consider the following
optimization problem to maximize the efficiency factor, e, where the aspect
ratio, ÆR, is prescribed as ÆR0 = 7.

min
d ∈ RNd

: −e(d,µ) = − C2
L(d,µ)

πÆR(d)CD(d,µ)
subject to : ÆR(d) = ÆR0

|x̂t(d)| ≤ ¯̂xt
|ẑt(d)| ≤ ¯̂zt

¯
d ≤ di ≤ d̄ for i = 1, ..., Nd

(3.5)

The terms x̂ and ẑ refer to the x and z coordinates of the quarter chord
curve at the control points, and the subscript t is associated with the values
at the wingtip. The coordinates x̂ and ẑ are included in the parameterization
where design variables define the change in parameters, i.e. δx̂, such that they
are monotonically increasing/decreasing, as described in [P3]. Three reference
designs are taken from literature – a traditional elliptic wing, a planar crescent
wing introduced in [77], and a hyper elliptic cambered span (HECS) wing
introduced in [78]. By solving (3.5) with specific design variables, appropriate
optimized designs can be created for comparisons to the reference designs. The
elliptic wing is comparable to d = δc, the crescent wing to d = {δc, δx̂} and,
HECS wing to d = {δc, δx̂, δẑ}. Reference and optimized designs are shown
in Figure 3.9.

The converged design in Figure 3.9d closely matches the elliptic wing in
Figure 3.9a. This is expected as the elliptic wing is the known optimal design
for a straight planar untwisted wing. An elliptic wing should have efficiency
factor, e = 1, and the model closely approximates this with e = 1.004 in
both wings in Figures 3.9a and 3.9d. When allowing changes in x̂, the design
converges to a wing which remains straight until η ' 0.75 then sweeps backward
creating raked wingtips. This design is quite different from the crescent wing
in Figure 3.9b, but has larger efficiency of 1.027 compared to 1.019. The
converged design with sweep and droop (Figure 3.9f) is also very different from
the reference design. The HECS wing has a gradual change in sweep and droop
starting from the wing’s root. The optimized design begins to sweep at η ' 0.55
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(a) Elliptic (b) Crescent (c) HECS

(d) d = δc (e) d = {δc, δx̂} (f) d = {δc, δx̂, δẑ}

η = 0 η = 0.55
η = 0.825

η = 0 η = 0.55
η = 0.825

η = 0
η = 0.75

η = 0 η = 0.75

Figure 3.9: Elevation and planform views for (a)-(c) reference wings and (d)-(f)
optimized designs. η locations represent when wings begin to sweep and droop.
Figure retrieved from [P3]

and droop at η ' 0.825. Because of the additional freedom to create different
c, x̂, and ẑ distributions the optimized design has increased the efficiency factor
from 1.178 to 1.291. In each case, optimized results have matched or improved
upon the performance of reference designs. Including sweep has allowed small
gains in efficiency of roughly 2% compared to the elliptic wing, whereas allowing
the wing to both sweep and droop has created large gains of almost 30%.

3.4.2 A Comparison of Raised and Drooped Wings

The previous study demonstrated that a large aerodynamic benefit can be
achieved from drooped wings. But there is a common discussion point in the
literature on whether drooped wings can outperform traditional raised wing
designs such as those with winglets. Within the literature there is no general
consensus on whether this is true, with different studies presenting contradic-
tory results (refer to [P3] for literature review). In an effort to explore this,
consider the following optimization problem where the only design variables
are ẑ and the planform is a rectangular wing of aspect ratio 7.

min
d ∈ RNd

: −e(d,µ) = − C2
L(d,µ)

πÆR(d)CD(d,µ)
subject to : |ẑt(d)| ≤ ¯̂zt

¯
d ≤ di ≤ d̄ for i = 1, ..., Nd

(3.6)

Raised and drooped wings are considered by constraining designs for ẑ > 0
and ẑ < 0, respectively. The optimized designs are shown in Figure 3.10 and
are compared to a planar wing of the same aspect ratio. The optimized designs
for raised and drooped wings have similar trends in ẑ where one is roughly the
mirror image of the other. However, there are differences in efficiency factors
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(a) Planar wing, ẑ = 0

(b) Raised wing, ẑ > 0

(c) Drooped wing, ẑ < 0

η = 0.5η = 0.025

η = 0.85

η = 0.975

η = 0.5η = 0.025
η = 0.975

η = 0.5η = 0.025
η = 0.975

η = 0.85

η = 0.85

(d) Spanwise lift distribution

(e) Spanwise drag distribution

Figure 3.10: Comparison of planar, raised, and drooped wings with a rectan-
gular planform of aspect ratio 7. (a)-(c) show front views of the wings with
spanwise markers corresponding to markers in (d) and (e). Figures adapted
from [P3].

where the raised wing produces an efficiency of 1.14 compared to 1.22 for the
drooped wing, and 0.98 for the planar wing.

Figure 3.10 also shows the lift and drag distributions along the span of the
wing, which gives some insight into the differences in performance between
these designs. The raised wing design has induced a lift along the entire span
of the wing, but there is also a large peak in drag at the base of the winglet.
The drooped wing has a large reduction in drag towards the wingtip which also
corresponds with a reduction in lift. The increase in lift by the raised wing and
the reduction in drag from the drooped wing is what provides the increase in
efficiency in each respective design. From lift or drag distributions alone it is
not clear how these changes in lift and drag are produced, but Figure 3.11 can
provide more insight.

Figures 3.11a-3.11c plots the normalized velocity in the freestream direction,
Ū = U ·U∞

‖U∞‖2 , within a plane at the quarter chord point (refer to [P3] for more
on Ū definition). Comparing the raised and planar wings, there has been
an increase in the induced velocity in the freestream direction on the upper
surface when a winglet is created. This increase in velocity corresponds to a
lower pressure on the upper surface which generates more lift, as was seen in
Figure 3.10d. The drooped wing design has reduced the velocity on the upper
surface towards the wingtip, and increased the velocity on the lower surface.
This leads to a smaller pressure differential between upper and lower surfaces,
and hence a reduction in the lift.
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(d) UT P , ẑ = 0 (e) UT P , ẑ > 0 (f) UT P , ẑ < 0

η = 0.025

η = 0.5

η = 0.85

η = 0.975

η = 0.025

η = 0.5

η = 0.85

η = 0.975

η = 0.025

η = 0.5

η = 0.85

η = 0.975

(a) Ū , ẑ = 0 (b) Ū , ẑ > 0 (c) Ū , ẑ < 0

0.94 1 1.1 1.2 1.3

Figure 3.11: Induced velocities for planar, raised, and drooped wings. (a)-(c)
Normalized velocities in the freestream direction within a plane at the quarter
chord point, and (d)-(f) directions of induced velocities within the Trefftz plane.
Figures adapted from [P3].

Figures 3.11d-3.11f plots the direction of induced velocities within the Tr-
efftz plane, UTP , which gives a greater insight into the drag distributions.
Induced velocities above the wake for the planar and raised wings have a neg-
ative component for η < 1, i.e. a downwash. However, the induced velocities
above the wake for the drooped wing have a positive component in the region
0.85 < η < 1. In the same region, they are negative below the wake meaning
the potential jump over the wake must be close to zero, resulting in very low
drag within this region, as was seen in Figure 3.10e. Note that vectors in Fig-
ures 3.11d-3.11f represent the direction of the induced velocities only and their
length is not indicative of the velocity magnitude.

Results presented in this section would suggest that drooped wings are
more efficient than raised wings. However, the studies here have a restricted
design space as the only ẑ can vary. Results presented in [P3] demonstrate that
comparative studies on raised and drooped wings can have different outcomes
depending on how the design space is restricted. With a large enough design
space both raised and drooped wings should be able to converge to designs
with the same performance, when only inviscid analysis is considered. [P3] also
presents studies which include viscous approximations, where drooped wings
are not beneficial, and do not form during the optimization procedure as to do
so will increase the viscous drag.
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4 Aeroelastic Shape Optimization

This chapter extends methods discussed in the previous chapter on aerody-
namic shape optimization to account for structural deformations using beam
finite element (FE) models. The specific details will draw from studies discussed
in [P2] which applies a linear beam FE model to investigate the performance of
curved wall spars, and [P4] where a non-linear co-rotating beam formulation is
used to investigate the performance of non-planar wings subject to large defor-
mations. The chapter will only include details specific to [P2] and [P4], where
readers are referred to Section 2.3 for an overview of beam finite element meth-
ods, Section 2.4 for an overview on multidisciplinary analysis, and Chapter
3 for concepts of aerodynamic shape optimization using panel methods. The
following section describes the discretization of the panel-beam problem. The
second section introduces a generalized load-displacement transfer method for
coupled 3D panel-beam models. The third section includes investigations on
the performance gains of curved wall spars. The final section presents stud-
ies on aeroelastic shape optimization of solid foam core wings subject to large
deformations.

4.1 Panel-Beam Discretization

The discretization of the coupled panel-beam problem is shown in Figure 4.1.
The external wing geometry and panel discretization is defined in the same
manner as presented in Section 3.1, and is represented in planform in Figure
4.1a. Figure 4.1a also shows the beam finite element discretization where a
beam node is defined at each airfoil section, with elements inside the wing.
Each beam finite element has a local orientation notated by the coordinate
system (xb, yb, zb), where nodes are defined at a fraction of the chord length,
κc, refer to Figure 4.1b. Depending on the application, the beam node will
either be defined on the camber line (as shown in Figure 4.1) or on the chord
line.

4.2 Panel-Beam Load-Displacement Transfer

Once the discretization is defined the next step is to define the load-displacement
transfer. This section introduces a generalized load-displacement transfer method
for coupled panel-beam problems. There are two criteria that must be satisfied
in defining a load-displacement transfer method: consistency and conservative-
ness [79]. For consistency the total load calculated via the aerodynamic model
must be equal to the total load applied in the structural model. For a method
to be conservative the virtual work experienced in the structural model under

41
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Figure 4.1: Panel-beam discretization with wing parameterization shown in
blue and beam finite elements shown in green: (a) planforms detailing wing
geometry (top) and beam finite elements (below), (b) root airfoil, and (c) 3D
view. Figure adapted from [P2].

virtual displacements and rotations must be equal to the virtual work of the
aerodynamic model. The load displacement transfer scheme is depicted in Fig-
ure 4.2. The beam finite element model assumes that sections remain in-plane
and undergo rigid body displacements and rotations. As each beam node is
defined at an airfoil section, the displacement transfer can be defined by

δXa = δub + δϕb × r (4.1)

where δXa are displacements to the panel nodes, δub and δϕb are displace-
ments and rotations of the beam finite element node at the same spanwise
location, and r is a spatial vector from the finite element to the panel node.
The applied external load on a single finite element can be expressed as the sum
of integrated distributed loads across N panels at the same spanwise section.

fe =
N∑
i=1

∫ le

0

{
p
m

}
dl (4.2)

where the moments arise from transferring the pressure load p, from the panel
to the beam element, i.e. m = r × p. The virtual work of the beam finite
element from the loading of a single panel is then

δW b =
∫ le

0
{pT,mT}

{
δu
δϕ

}
dl =

∫ le

0

(
pTδu+ (r × p)Tδϕ

)
dl (4.3)



44

4.3. AN INVESTIGATION OF CURVED WALL SPARS 43
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Airfoil sections

Beam finite
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Panel i

le

l 6= le

(a)

Figure 4.2: A generalized load displacement transfer method for panel-beam
models. A single panel to beam finite element load transfer shown in (a) 3D
and (b) planform views. Figure adapted from [P2].

The virtual work by the panel method is expressed as

δW a =
∫
S

q∞CPn
TδXadS = q∞CPJln

T
∫ le

0
w(δu+ δϕ× r)dl (4.4)

where (4.1) has been used to expand the expression, and Jl is a linear mapping
that accounts for cases where the panel length is not equal to beam finite
element length (refer to Figure 4.2b). With some algebraic manipulation of
(4.3) and equating to (4.4) yields a consistent and conservative expression for
p as

p = q∞CPJlwn (4.5)

4.3 An Investigation of Curved Wall Spars

The first aeroelastic studies will investigate the potential benefits of curved
wall spars. The motivation for this comes from a study by Aage et al [80]
who conducted topology optimization studies on the common research model
(CRM) wing [81] with over 1 billion finite elements. The ultra-high resolution
of this study allowed design features to form that did not appear in previous
topology optimization studies of aircraft wings. One such feature was curved
wall spars that create an increased torsional stiffness at the cost of decreasing
bending stiffness. This design feature can easily be modeled with beam finite
elements, and is used here to create optimized trade-offs between torsional and
bending stiffness in aeroelastic design.

The beam is defined by a wingbox where the stiffness of the airfoil skin and
additional structures is neglected. Figure 4.3 shows the parameterization of
the beam cross section which is defined at each airfoil profile by 5 parameters:
the height and width of the wingbox (h and w); the spar and flange thicknesses
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Figure 4.3: Curved wall wing-
box parameterization with di-
mensions labeled. Figure re-
trieved from [P2].

(s and a); and the center offset of the curved
spar walls (e). The offset e is defined such
that it can tend from e = 0 where spar walls
are straight and at 90◦ to the flanges, to e =
h
2 where spar walls are semi-circular. The
intermediate values of e are defined to give
an elliptic curve.

This section is divided into two subsec-
tions. The first subsection investigates the
performance benefits of curved wall spars for
a fixed outer wing geometry, whereas the
second combines the beam and airfoil pa-
rameterizations to achieve designs that are
optimized for both external wing and inter-
nal structural geometries. Throughout this section a linear finite element model
is used where the analysis assumes thin-walled cross sections.

4.3.1 Wingbox Structural Optimization for the CRM Wing

As an initial study consider the CRM wing geometry with an internal structure
described by the wingbox parameterization in Figure 4.3 at each airfoil section.
The optimization problem is defined in (4.6) where the objective is to minimize
the sum of compliance over three loads cases with angles of attack, α∞ =
{0◦, 5◦, 10◦}. The design is subject to a constraint on volume and the physics
are 1-way coupled.

min
d ∈ RNd

: f =
∑
α∞

Cα∞(d,u)

subject to : V (d)− V̄ ≤ 0

¯
d ≤ di ≤ d̄ for i = 1, ..., Nd

(4.6)

The problem is first solved for straight wall spars where the design vari-
ables are defined by d = {w,h,a, s}. The optimized design is then taken as
the initial condition for a second optimization problem where only e can vary,
i.e. d = e. The change in stiffness properties between the optimized designs
with straight and curved spar walls is shown in Figure 4.4 for different up-
per bounds on volume fraction. Low volume fractions have experienced the
largest changes in stiffness properties, where the torsional stiffness has been
increased and bending stiffness reduced. The change in stiffness corresponds
to the curving of spar walls where sections with no change maintain straight
walls. For high volume fractions the wingbox dimensions are larger giving a
higher torsional stiffness and less incentive to curve the spar walls. Curved wall
spars predominantly form towards wingtip where torsional loads are dominant,
and bending loads tend to zero. A gain of over 10% in torsional stiffness was
achieved by implementing curved spars for low volume fractions, leading to
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(a) V̄ = 2.5% (b) V̄ = 5%

(c) V̄ = 7.5% (d) V̄ = 10%

(e) V̄ = 12.5% (f) V̄ = 15%

Figure 4.4: Relative difference in cross sectional stiffness properties for opti-
mized curved wall spars for different volume fractions, V̄ . Figure retrieved from
[P2].

reductions in compliance of up to 9%. This finding is then in keeping with
the prediction made in [80], that the curved wall spars reduce compliance by
producing optimized trade-offs between torsion and bending stiffness.

The previous example presented compliance minimization problems where
the goal is to produce stiff structures that experience small deflections under
a prescribed load. However, in an effort to reduce weight, wing structures are
commonly designed to experience large deformations. A more natural formu-
lation for the structural optimization of an aircraft wing is to minimize mass
subject to stress constraints, defined as

min
d ∈ RNd

: m(d)

subject to : σ̂i(d,u)
σ̄

− β ≤ 0 for i = 1, ..., Nσ

¯
d ≤ di ≤ d̄ for i = 1, ..., Nd

(4.7)

where σ̂ is the maximum von Mises stress which is approximated using a p-
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norm function as described in [P2]. Rather than a single constraint, stress
constraints are enforced on Nσ regions to improve the accuracy of the p-norm
approximation. The term β in (4.7) acts as a safety factor for the design
when β ≤ 1. The optimization problem is solved for different values of β with
both 1- and 2-way coupling. The external geometry is again defined as the
CRM wing, and two cases are considered where only straight wall spars are
allowed and where curved spar walls are able to form, i.e. d = {w,h, s,a}
and d = {w,h, s,a, e}. The maximum stress ratio in each section is plotted
in Figure 4.5 against the normalized span for each design problem.

With a high value of β, the stress constraint is active at each section along
the wing in each case. As β decreases, the stress constraint eventually becomes
inactive for sections near the root in 2-way coupled designs. To understand
why, it is first important to note that for this optimization problem it was
hardest to satisfy the stress constraint in the outer regions of the wing, towards
the wingtip. Stresses in this region are dominated by torsional stresses as the
bending stresses tend to zero at the wingtip. By stiffening the wing towards
the root, the deflections and loads are decreased so that the stress constraint
can be satisfied in the outer regions of the wing. However, because regions near

(a) β = 1, straight wall spars (b) β = 1, curved wall spars

(c) β = 0.8, straight wall spars (d) β = 0.8, curved wall spars

(e) β = 0.6, straight wall spars (f) β = 0.6, curved wall spars

Figure 4.5: Ratio of maximum stress to upper bound at spanwise sections of
designs optimized with 1- and 2-way coupling. Figure retrieved from [P2].
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Table 4.1: Relative difference in
mass between designs optimized
with 1- and 2-way coupling for
straight and curved wall spars.

β
Straight
∆m [%]

Curved
∆m [%]

1 21.8 21.7
0.8 148.7 40.4
0.6 130.0 79.8

the root have an increased stiffness, the
stress constraint becomes inactive at the
root. This is observed for larger β-values
in straight wall spar designs because the
additional torsional stiffness provided by
curved wall spars reduces the torsional
stresses at the wingtip.

Table 4.1 presents the relative change
in mass between 1- and 2-way coupled de-
signs, i.e. ∆m = m2−m1

m1
. Increasing the

stiffness has a direct relation to an in-
crease in mass, where 2-way coupled de-
signs have consistently larger mass. These results have shown that calculating
loads in the deformed configuration can have a large impact on the optimization
problem and the converged design. This highlights the importance of solving
the 2-way coupled aeroelastic problem.

4.3.2 Optimization of Deformable Flying Wing Configurations

The wingbox parameterization introduced in previous studies can also be com-
bined with the airfoil parameterization (introduced in Section 3.3.1), i.e. d =
{c, t,p,α,w,h, s,a, e}. This parameterization then allows for simultaneous
optimization of the external wing geometry and internal structure. Consider
the optimization problem below with an objective to minimize drag subject to
constraints on lift-weight equilibrium, stress and pitching moments.

min
d ∈ RNd

: D(d,µ,u)

subject to : L(d,µ,u) = W (d)
σ̂i(d,u)− σ̄ ≤ 0 for i = 1, ..., Nσ
Mp(d,µ,u) = 0

¯
d ≤ di ≤ d̄ for i = 1, ..., Nd

(4.8)

The weight is defined as the sum of weights from the beam, 5% of the wing
volume, and a payload. The total weight must be equal to the lift in cruise i.e.
α∞ = 0◦. The pitching moment should also be zero in cruise conditions, where
Mp is calculated about an axis that is parallel to the y axis and intersects the
midpoint of the quarter chord curve. The stress constraint is enforced in a high
load case representing take off, where α∞ = 10◦.

The optimization problem is solved for three sweep angles, Λ = {0◦, 15◦, 30◦},
with a NACA 5-digit airfoil parameterization, and where the physics models
are 2-way coupled. Planforms and deformations of optimized designs are shown
in Figure 4.6. Each design converges with a large aspect and taper ratio which
is expected as this will reduce the induced drag and deformations (and in turn
the stresses). Torsional loads increase with the sweep, leading to larger plan-
form areas for swept wings because a stiffer structure is required to balance the
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(b) Λ = 15◦(a) Λ = 0◦ (c) Λ = 30◦

α∞ = 0◦
α∞ = 10◦

α∞ = 0◦
α∞ = 10◦

α∞ = 0◦
α∞ = 10◦

Figure 4.6: Planform and elevation views with deflections for designs optimized
with different sweep angles, Λ. Beam axis is shown in green. Figure adapted
from [P2].

Figure 4.7: Airfoil and beam cross sections at root, mid-span, and wingtip (left
to right) for optimized designs with Λ = 0◦ (top), Λ = 15◦ (middle), Λ = 30◦
(bottom). Figure retrieved from [P2].

larger loads. The change in chord length when sweep is increased can also be
seen from the airfoil sections shown in Figure 4.7.

Figure 4.7 also shows the cross sections of the beam where spar walls remain
straight for the unswept wing. This is not surprising because the beam axis
is in-line with the pitching axis about which the total moment is specified to
be zero in the optimization problem. It then follows that the torsional loads
are low in this case and as such it is not beneficial to create curved wall spars.
When the sweep increases so does the torsional loads, and curved wall spars
become more pronounced. The position of the pitching axis in unswept wings
also leads to differences in airfoil shape compared to the swept wings. The
airfoil parameterization allows a reflex camber line to form in order to aid the
optimizer in satisfying the pitching moment constraint. However, reflex camber
is only needed for the unswept wing, where the pitching axis is in line with the
airfoils which makes it difficult to balance moments along the wing. When
wings are swept, the airfoils at the root are forward of the pitching axis and
the wingtip is aft. This gives the optimizer more control over balancing the
moments from lift created forward and aft of the pitching axis.
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Figure 4.8: Ratio of maximum stress
to upper bound at spanwise sections of
optimized designs with different sweep
angles. Figure retrieved from [P2].

Figure 4.8 shows the maximum
stress ratio per section plotted
against the normalized span. The
constraint is active for most of the
span in each case, but for the unswept
wing, the stresses tend to zero at
the wingtip. Bending stresses tend
to zero at the wingtip but torsional
stresses do not. The fact that the
unswept design has no stresses to-
wards the wingtip demonstrates that
the torsional loads have been re-
moved from the design through cre-
ating a reflex camber line.

4.4 Shape Optimization of Solid Foam Core Wings

This section will adopt a beam parameterization that is introduced in [P4],
where a solid isotropic cross section is assumed. This parameterization is ap-
plicable to solid foam core wings used for aerospace applications such as drones
or model aircraft. The parameterization is shown in Figure 4.9, and is based
on the definition of NACA 4-digit airfoils profiles. The cross sectional proper-
ties can be then calculated from the airfoil definitions, given in Appendix D,
equations (D1)-(D3).

Three centers are labeled in Figure 4.9: the elastic, shear, and beam cen-
ters. Elastic and shear centers are needed to calculate the constitutive stiffness
matrix defined in (2.30). For isotropic materials, the elastic center, (ex, ez),
is coincident to the geometric center of the airfoil, and is derived analytically
using the NACA 4-digit definitions, whereas the location of the shear center
can be approximated as (sx, sz) = (0.89ex, 1.45ez), as described in [P4]. The
beam center corresponds to the location of the finite element. Theoretically,

z̄

x̄

V∞

α

p

c = 1

t
m

Chord line

Camber line

Elastic center
Shear center

Beam center/quarter chord point

Figure 4.9: NACA 4-digit airfoil parame-
terization with structural centers labeled.
Figure retrieved from [P4].

the beam center can be defined
anywhere, but certain advan-
tages can be achieved by choos-
ing an appropriate location. For
example, if it is coincident to the
elastic or shear center, the ex-
pression for Kcs in (2.30) could
be simplified as the elastic or
shear center terms can be elim-
inated. For 2-way coupled aeroe-
lastic problems, it is advanta-
geous to specify the beam cen-
ter at the quarter chord point, as
shown in Figure 4.9. This is be-
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cause the quarter chord point is an approximate of the location of the aero-
dynamic center, which by definition, is the point where the pitching moment
does not change with angle of attack. This means that torsional loads are
roughly constant as the beam deforms, making the coupled problem easier to
converge because large changes in twist will only induce a small change to the
load. Refer to the discussion in Appendix C on convergence behavior for large
deformations.

The following subsections include studies based on the parameterization
above. The first will investigate the effects of including a non-linear deformation
model in the aeroelastic optimization of induced drag minimization problems.
The second subsections presents studies on aeroelastic optimization of non-
planar wings and compares the performance of flexible raised and drooped
wing designs.

4.4.1 Linear vs. Non-Linear Structural Analysis

This study will compare designs achieved with linear and non-linear defor-
mation models. Consider the optimization problem defined below, where the
objective is to minimize induced drag subject to constraints on lift-weight equi-
librium, and tip displacement, ut.

min
d ∈ RNd

: D(d,u,µ)

subject to : L(d,u,µ) = W (d)
ut(u) ≤ ūt

¯
d ≤ di ≤ d̄ for i = 1, ..., Nd

(4.9)

The problem is solved using both linear and non-linear beam finite element
models introduced in Section 2.3, with different upper bounds on tip displace-
ment. In light of the findings presented in Section 4.3, only 2-way coupled
analysis is considered for these problems. Converged designs are shown in
Figure 4.10 in undeformed and deformed configurations.

Each design converges to a tapered high aspect ratio wing, which is expected
as the taper stiffens the wing towards the root to reduce deflections, and a high
aspect ratio reduces weight and induced drag. The tip displacement constraint
is active in each case where a linear FE model was used, but when a non-linear
FE model is used the constraint is only active for low ūt values. To understand
why, it is important to revisit the differences in the FE models. Degrees of
freedom are defined to give transverse deflections in two directions, an axial
displacement, and rotations of the cross section about 3 axes. When a linear FE
model is used, the axial displacement is related purely to axial loads, and for a
beam in pure bending the displacement will only be in the transverse direction.
When the non-linear FE model is used, the constitutive relations are satisfied
within a locally for each element which are rotated as the beam deforms. This
means in pure bending, the non-linear FE model also captures rotations of
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(a) ūt = 0.05 b
2

(c) ūt = 0.2 b
2

(b) ūt = 0.1 b
2

(d) ūt = 0.3 b
2

Linear Non-linear Linear Non-linear

Linear Non-linearLinear Non-linear

η = 1 η = 1

η = 1 η = 1η = 1

η = 1 η = 1

η = 1
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Deformed Deformed Deformed Deformed

Undeformed Undeformed

Undeformed Undeformed Undeformed Undeformed

Figure 4.10: Converged designs using linear (left) and non-linear (right) beam
finite element models for different upper bounds on tip displacement, ūt. De-
tails show the deformations at the wingtip. Figure retrieved from [P4].

the beam, corresponding to an axial displacement at the wingtip, as shown in
details in Figure 4.10. This offset of the wingtip corresponds to a shortening
of the wingspan, which was shown in Section 3.3.2 to have a significant impact
on the achievable minimum induced drag.

Because the wingspan shortening effect cannot be captured by a linear FE
model, unphysical deformations are predicted where the curved length of the
wing has increased (refer to Figure 4.10d) and a good aerodynamic performance
is maintained for large deformations. However, the performance would be de-
graded for large deformations with a non-linear FE model and as such the tip
constraint is inactive. For example, the wing achieved with a linear FE model
in Figure 4.10d has an inviscid lift-to-drag ratio of 70.4 compared to 64.4 for
the non-linear design. This study demonstrates the importance of capturing
non-linear deformations for induced drag minimization problems, where it is
crucial to capture the change in effective wingspan when the wing deforms.

4.4.2 Aeroelastic Optimization of Non-Planar Wings

Studies presented here will solve a similar optimization problem to that defined
(4.9), only now an additional constraint is added on the root bending moment,
and non-planar geometry is allowed to form. The problem is defined as

min
d ∈ RNd

: D(d,u,µ)

subject to : L(d,u,µ) = W (d)
ut(u) ≤ ūt
Mr(d,u,µ) ≤ M̄r

¯
d ≤ di ≤ d̄ for i = 1, ..., Nd

(4.10)
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The optimization problem is solved for unswept wings with symmetric air-
foils where d = {δc, t,α, δẑ}. Optimized designs are shown in Figure 4.11 for
different upper bounds on Mr where M̄r is defined in terms of a scalar M0
which is equal to the bending moment produced by wings in Figure 4.10d.

Both raised and drooped wings form when there is a relaxed constraint
on Mr, but the wings are planar for M̄r = 0.85M0, where converged designs
are very similar for both cases. These wings have a larger taper ratio than the
planar wing in Figure 4.10d, allowing more lift to be created near the root rather
than near the wingtip, which reduces the bending moment. For other values of
M̄ , drooped designs have consistently achieved larger lift-to-drag ratios than
raised wings. For example, with M̄r = M0 the drooped wing has a lift-to-drag
ratio of 71.0 versus 68.9 for the raised wing. These differences in performance
are directly related to the deformed geometry. Similar to the non-linear wings
in Figure 4.10, the effective wingspan is reduced when a raised wing deforms.
However, the effective wingspan is increased when a drooped wing deforms,
refer to details in Figure 4.11. Because increasing the wingspan leads to large
reductions in induced drag (refer to Section 3.3.2), these differences in the
effective wingspan in the deformed configuration allows drooped wings to out
perform raised wings.

In [P3] is was found that drooped wings were not beneficial when viscous
effects were included. However, this finding was based on rigid undeformable
wings. It is not yet known whether the reductions in induced drag that occur
from increasing the effective wingspan in the deformed configuration is enough
to offset the larger viscous drag that occurs when wings are drooped.

(a) M̄r = M0

(c) M̄r = 0.9M0

(b) M̄r = 0.95M0

(d) M̄r = 0.85M0
ẑ ≥ 0 ẑ ≤ 0 ẑ ≥ 0 ẑ ≤ 0

ẑ ≥ 0 ẑ ≤ 0ẑ ≥ 0 ẑ ≤ 0

UndeformedUndeformed Undeformed Undeformed

Undeformed Undeformed Undeformed Undeformed

Deformed Deformed
DeformedDeformed

Deformed Deformed Deformed Deformed

η = 1η = 1 η = 1η = 1

η = 1η = 1η = 1η = 1

Figure 4.11: Converged designs with raised (left) and drooped (right) wings for
different upper bounds on bending moment, M̄r. Details show the deformations
at the wingtip. Figure retrieved from [P4].
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5 Conclusions

5.1 Summary of Outcomes and Contributions

A framework has been developed to solve aerodynamic and aeroelastic shape
optimization problems. Physics models are based on low- to mid-fidelity meth-
ods in order to keep computational cost low. Geometry is parameterized based
on local definitions to allow large geometric changes throughout the optimiza-
tion routine, where spanwise filtering is used to ensure smoothness and avoid
numerical artifacts. The methodology was applied to a number of studies whose
findings are summarized below:

1. Boundary Conditions
It is well documented that for panel methods, a Dirichlet boundary con-
dition (BC) reduces computational cost compared to a Neumann BC [2,
75]. Section 3.2.1 has compared BCs with respect to optimization prob-
lems, and has found that resulting designs are insensitive to choice of BC,
but there is a factor of 2 difference in the computational cost of gradients
(in favor of a Dirichlet BC) which accounts for 80-90% of the total cost.

2. Induced Drag Calculations
Section 3.2.2 compares designs achieved with different drag calculations
methods where numerical errors in surface pressure integration allowed
the optimizer to produce unphysical results that reduce the objective
function. These results were achieved with a constant-strength source-
doublet panel method, where Trefftz plane integration was found to be
necessary to ensure physical results throughout the optimization routine.

3. Regularization for Inviscid Problems
Free-form parameterizations, such as those described by B-splines, can
create geometries that exploit the assumption of inviscid flow. This re-
quires a large amount of regularization to ensure features such as a blunt
leading edge, sharp trailing edge etc. It is then recommended to define a
parameterization that implicitly satisfies these requirements such as the
NACA parameterization presented in Section 3.3.1.

4. Wing vs. Airfoil Parameterization
Parameterizing the wing geometry, such as the wingspan, sweep and non-
planar geometry, can achieve a much larger reduction in induced drag
compared to only parameterizing airfoil sections of planar wings. The
wingspan has proven particularly important for reducing the induced
drag, where the optimizer was not able to improve the performance of
planar wings with a reduced wingpan.

53
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5. Panel-Beam Coupling
A 3D panel-beam method was introduced for aeroelastic optimization
problems, and is demonstrated with linear and non-linear co-rotating
beam models. To the author’s knowledge, this is the first example of
these coupled methods being used for gradient-based optimization. A
generalized load-displacement transfer scheme is introduced which is ap-
plicable to any choice of panel or beam finite element regardless of order,
nodes per element etc.

6. Curved Wall Spars
The high resolution of topology optimization results presented in [80]
allowed the formation of curved wall spars, which the authors argue has
created trade-offs between torsional and bending stiffness. Section 4.3
investigated this theory and curved wall spars were shown to improve
performance for both compliance minimization and stress constrained
problems due to the ability to create these trade-offs.

7. 2-way Coupling for Panel-Beam Problems
Including 2-way coupling for aeroelastic problems, i.e. calculating loads
in the deformed configuration, has been shown to have a large effect on
optimized designs as there can be a large change in aerodynamic loading
when the wing deforms. This highlights the importance of solving the
coupled panel-beam physics in optimization problems, a fact that has
been previously demonstrated for other physics models, e.g. [60, 82, 83].

8. Non-linear Deformations
For pure bending, a linear finite element model will only capture trans-
verse deformations without the element rotations due to bending. These
rotations will correspond to a shortening of the wingspan which has a
large effect on the induced drag (refer to point 4). It is then important to
use non-linear deformation models when solving induced drag minimiza-
tion problems in order to capture the effect of a shortening wingspan.

5.2 Future Work

There are a number of ongoing projects that extend upon the methods pre-
sented in this thesis, of which brief descriptions are outlined below:

1. Deformable drooped wings with viscous effects
Section 4.4.2 demonstrated that deformable drooped wings can achieve
large inviscid lift-to-drag ratios due an increase in effective wingspan in
the deformed configuration. However, [P3] found that rigid drooped
wings were not beneficial when viscous effects were included. Future
work will investigate the performance of deformable drooped wings with
viscous approximations.
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2. Coupled Shape and Topology Optimization
A goal of this thesis was to develop methods that could interface with
different structural models. Appendix A presents a topology optimization
study with 1-way coupling and a fixed outer wing geometry. This work
will be extended to include simultaneous shape and topology optimization
of the wing surface and internal structure, as well as 2-way coupling.

3. High-Order Panels
Point 2 of Section 5.1 concludes that far-field calculations are needed to
avoid numerical errors in CP distributions. This conclusion is based on
a constant-strength source-doublet panel method. However, it is known
that errors in CP distributions can be reduced by implementing higher-
order methods. Future work will investigate whether high-order methods
reduce discretization error to such an extent that CP distributions can
be used to create viable optimized designs. A more detailed description
on this is provided in Appendix F.

4. Rotor Design
This thesis has focused on the application of methods to the design of
aircraft wings. Ongoing work will extend methods to other engineering
applications, such as wind turbine blades.

The methods presented in this thesis can also be extended to many other
applications that are currently not under consideration by the author and co-
workers, but may be of interest to the reader. These include:

5. Advanced Wake Models
Iterative wake models have been discussed in Section 2.2.5, but were
deemed too expensive for the current work where a fixed freestream wake
model was used instead. The current wake model is able to predict sim-
ilar results when designs are regularized as shown in [P1], but there are
limitations to the model such as assuming steady-state flow where a more
advanced wake model would be required for unsteady problems.

6. Advanced Cross Sectional Analysis
Throughout this thesis, cross sectional stiffness properties for beam mod-
els were calculated either through analytic expressions or approximations.
Extending methods to use cross sectional analysis tools such as BECAS
[84] or VABS [85, 86] will allow the user to calculate properties of arbi-
trary cross sections consisting of anisotropic materials.

7. Boundary Layer Coupling
Point 3 of Section 5.1 concludes that the B-spline parameterization offers
too much design freedom for inviscid problems which then requires more
regularization to stop the optimizer taking advantage of the inviscid flow.
By coupling boundary layer analysis, viscous effects can be accounted for
directly in the model and it is expected that additional design freedom
could be provided in the parameterization.
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Appendices

A Topology Optimization of Aircraft Wings

A method is presented here for solving topology optimization problems with
a 1-way coupled panel and 3D continuum finite element method. The panel
geometry is embedded within a 3D finite element mesh as shown in Figure
A1a. Loads are transferred from the panel to nodes of the elements cut by
the panel geometry. The load transfer scheme is shown in Figure A1b, where
panels are triangulated by joining diagonal nodes. A polygon, Pi, is defined
by the intersection of the triangulated panels and the element, where multiple
polygons may be defined for a single element. The load transfer, given in (A1),
is a function of the surface area of Pi, the panel’s CP value, and the normal
vector of Pi. The load is assumed to act at the center of Pi and is distributed
to the finite element nodes using the interpolation functions.

fe = N(Pi)Tq∞SiCP,ini (A1)

The topology optimization problem is parameterized using a Solid Isotropic
Material with Penalization (SIMP) method. The SIMP method is an interpo-
lation scheme used for topology optimization of elasticity problems where the
Young’s modulus of element e, is given by

Ee =
¯
E + (Ē −

¯
E)ρpe (A2)

where ρe is a the density of element e with bounds between 0 and 1, Ē is the
Young’s modulus of a solid element (ρe = 1),

¯
E is the Young’s modulus of

the void element (ρe = 0), and p is a penalization parameter used to penalize
intermediate ρ-values.

Panel mesh
Finite element mesh

Finite element

Triangulated panelP

(a) (b)

Figure A1: (a) discretization for the panel-continuum finite element problem,
and (b) load transfer scheme.
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The intersection of the panel and element can be use to determine which
elements are inside and outside the wing. Design variables are defined such
that external elements are void and internal elements are defined by ρe. The
skin is defined to be solid using the method presented in [87], where a wall
thickness is prescribed such that it is between 2 and 3 elements at any point
on the airfoil.

The optimization problem is defined in (A3), where the objective is to
minimize the sum of compliance over a range of angles of attack and the design
is subject to a volume constraint of 12%. This is the same problem formulation
used in Section 4.3 with the beam model and in topology optimization studies
in [80].

min
d ∈ RNd

: f =
∑
α∞

Cα∞(d,u)

subject to : V (d)− V̄ ≤ 0

¯
d ≤ de ≤ d̄ for e = 1, ..., Nd

(A3)

Results are shown in Figure A2 for a rectangular wing of aspect ratio 7
that is meshed with over 7 million finite elements inside the wing and solved
with angles of attack, α∞ = {0◦, 3◦, 5◦}. The design has multiple spar-like
structures spreading out from the quarter chord point near the root. There is
also a thickened skin towards the root, and multiple smaller truss-like struc-
tures towards the tip. Comparing to topology optimized designs in [80], both
designs consist of large plate-like structures and smaller truss-like structures.
A typical wingbox has not been created in the current design, and the curved
wall spars presented in [80] have not formed. This is likely due to the differ-
ences in discretization and wing geometry, where the current rectangular wing
is bending-dominated with low torsional loads because there is no sweep or
camber. However, the current results do demonstrate that optimized designs
are quite far from the rib-spar structures commonly used in aircraft today. The
current results act as a proof of concept and will be further explored in future
work.
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(a)

(b)

Internal structure

Skin

Spar-like structures

Truss structures

Truss structures

Figure A2: Topology optimization results for a rectangular wing: (a) top skin
cut away, (b) top skin and upper flange structures cut away. Skin is colored in
blue, and topology optimized structure in grey.
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B Compressibility Correction

With minor edits, the panel method presented in 2.2 can be modified to account
for compressibility effects, provided the flow is fully subsonic or supersonic.
This is done through solving the Prandtl-Glauert equation [88, 72] defined as

β2 ∂
2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = 0 (B1)

assuming the freestream is in the x-direction. The scalar, β, is known as the
Prandtl-Glauert factor and is defined as β =

√
|1−M2

∞| where M∞ is the
Mach number of the freestream. Note that if M∞ = 0, then β = 1, and
(B1) reduces to the Laplace equation given in (2.6). Göthert’s extension [89,
72], takes advantage of this through a simple transformation, φ(x, y, z,M∞)→
φ0(x0, y0, z0, 0), which corresponds to

{x0,y0, z0} = {x, βy, βz} , φ0 = β2φ (B2)

The transformed coordinates are then used to solve the incompressible flow
problem where φ0 satisfies the Laplace equation in (2.6). The solution to (B1),
φ, and physical properties in equations (2.19)-(2.23) are first calculated using
transformed coordinates, yielding quantities denoted below with the subscript
0, and are then corrected using the following reverse transformations which are
derived from (B2).

CP = 1
β2CP,0 , L = 1

β3L0 , D = 1
β4D0

CL = 1
β2CL0 , CD = 1

β3CD0

(B3)
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C A Comparison of Coupling Methods

Solution methods for both fixed-point iterations and Newton methods are out-
lined in Algorithms 1 and 2, respectively. Both methods are initialized by
zeroing the solution on the first design iteration, and by using the solution to
the previous design iteration on each subsequent design step. Assuming that
the change in design is small between iterations, initializing in this manner
ensures s0 is close to the converged solution. The fixed-point iteration method
involves solving both systems in sequence, where loads calculated in the panel
method are applied to the FE problem. The panel method is then solved again
with geometry deformed by the displacements calculated in the FE problem.
The process continues back and forth until the norm of the change in state
variables, | ∆s |, is below a given tolerance, ε. In the Newton method neither
subproblem is solved, only the residual and Jacobian matrix (derivative of the
residual with respect to state variables) are calculated. The Jacobian matrix
is then used to calculate an update step in the state variables. Convergence is
usually determined when the residual is less than the tolerance, ε, however for
comparison purposes, here it is determined using the change state variables.

Figure C1 compares Newton and fixed-point iterations with respect to wall-
clock time, for the same external wing geometry but with different wingbox
geometries, where the cross sectional shape of the beam is scaled to vary the
mass. As discussed in Section 2.4 the Newton method has a slower convergence
with respect to wall-clock time because of the large expense associated with cal-
culating the Jacobian matrix. For light-weight beams the compliance increases
and the wing experiences large deformations. For these wings a small change
in loading can create a large change in the deformations (and vice-versa). This
makes the coupled problem difficult to converge and increases the wall-clock
time. For very compliant wings (low mass) the coupled problem may diverge.

Algorithm 1: Fixed-Point
Result: s
Initialize s0
i = 0
while | ∆s |> ε do

i← i+ 1
µ← SolvePanel(d,u)
u ← SolveFE(d,µ)
si ← {µ,u}T
∆s← si − si−1

end

Algorithm 2: Newton
Result: s
Initialize s0
i← i+ 1
while | ∆s |> ε do

i← i+ 1
R← CalcResidual(d,s)
∂R
∂s ← CalcJacobian(d,s)
∆s← ∂R

∂s
−1R

si ← si−1 + ∆s
end

Algorithm C: Methods for solving 2-way coupled problems based on (1) fixed-
point iterations and (2) Newton method.
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Figure C1: Coupled solution methods
with wings of different stiffness.

When reducing weight, the onset of
divergence happens sooner for fixed-
point iterations as they are less sta-
ble. Damping or relaxation methods
can be implemented to stabilize the
coupled problem and improve conver-
gence time of the fixed-point itera-
tions [90]. However, as convergence
time is reduced for stiff wings, relax-
ation may not be necessary when im-
plemented with stress or tip deflec-
tion constraints.
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D NACA Airfoil Parameterizations

There are several different NACA airfoil families of which most are described in
detail in [91]. Parameterization methods in this thesis are based on NACA 4-
and 5-digit airfoils which are summarized here. The parameterization is shown
in Figure D1 and is defined using the following parameters: chord length, c,
maximum thickness, t, maximum camber m, and position of maximum cam-
ber, p. NACA airfoil families consist of a set of airfoils formed from discrete
values of the airfoil parameters. In our parameterization, the design space is
smoothed such that the optimizer can select any value for these parameters
from a continuous design space.

The airfoils are defined by the sum of a thickness and camber distribution.
For NACA 4-digit profiles these distributions are defined (for a sharp TE) in
the local coordinate system (x̄, z̄) as

z̄t = 5tc
(

0.2969
√
x̄

c
− 0.1260 x̄

c
− 0.3516

( x̄
c

)2
+ 0.2843

( x̄
c

)3
− 0.1036

( x̄
c

)4
)

(D1)

z̄m =


mc
p2

(
2p x̄c −

(
x̄
c

)2)
, if 0 ≤ x̄

c ≤ p
mc

(1−p)2

(
1− 2p+ 2p x̄c −

(
x̄
c

)2)
, if p ≤ x̄

c ≤ 1
(D2)

x̄af = x̄∓ z̄t sin θ
z̄af = z̄m ± z̄t cos θ

(D3)

Thickness is traditionally defined perpendicular to the camber line where
θ is the angle between the chord line and a tangent to the camber line at x̄,
i.e. θ = tan−1(dz̄m/dx̄). However, using this definition, the derivatives dθ/dp
and dθ/dc are discontinuous at the point x̄

c = p which may cause issues in the
optimization. To avoid this we take the thickness to be perpendicular to the
chord line (θ = 0◦, see Figure D1).

NACA 5-digit airfoils use the same thickness distribution in (D1), but with
a different camber distribution that is defined to give either a non-reflexed or a

c = 1

p

t
m

Camber line (x̄, z̄m)

Chord line (x̄, 0)
α

U∞

x

z

α

x̄

z̄

Quarter chord point

Figure D1: NACA airfoil definition with labeled parameters. Figure adapted
from [P1].
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reflexed airfoil. This thesis considers only the reflexed camber line defined as

z̄m =


k1c
6

((
x̄
c − r

)3 − k2
k1

(1− r)3 x̄
c − r

3 x̄
c + r3

)
, if 0 ≤ x̄

c ≤ r
k1c
6

(
k2
k1

(
x̄
c − r

)3 − k2
k1

(1− r)3 x̄
c − r

3 x̄
c + r3

)
, if r ≤ x̄

c ≤ 1
(D4)

where camber line coefficients depend on a specified theoretical optimal lift co-
efficient, which is taken as 0.3 throughout. This gives the camber line properties
in Table D1, where either p or m needs to be prescribed.

Table D1: Camber line coefficients for reflexed NACA 5-digit profiles with a
theoretical optimal lift coefficient of 0.3.

p m r k1
k2
k1

0.10 0.0164 0.130 51.990 0.000764
0.15 0.0208 0.217 15.793 0.00677
0.20 0.0240 0.318 6.520 0.0303
0.25 0.0273 0.441 3.191 0.1355
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E B-Spline Airfoil Parameterization

The B-spline parameterization (shown in Figure E1) represents the airfoil co-
ordinates, X, using a B-spline of polynomial degree d and n+ 1 control points,
Pi, via

X(k) =
n∑
i=0

Ni,d(k)Pi (E1)

where the degree of the curve must satisfy 1 ≤ d ≤ n, and Ni,d(k) are the
basis functions which are defined recursively and in a non-decreasing sequence
of scalars (known as knots), ki, for i = 0, 1, ..., n+ d+ 1 [92]. The Cox-de Boor
recursion formula defines the basis functions.

Ni,0(k) =
{

1 if ki ≤ k < ki+1

0 otherwise
where 0 ≤ i ≤ n+ d (E2)

Ni,j(k) = k − ki
ki+j − ki

Ni,j−1(k) + ki+j+1 − k
ki+j+1 − ki+1

Ni+1,j−1(k)

where 1 ≤ j ≤ d ; 0 ≤ i ≤ n+ d− j
(E3)

In order to specify contact at the beginning of the spline (corresponding to the
trailing edge) the first d+ 1 knots are equal to 0. Likewise, in order to specify
contact at the end point (also corresponding to the trailing edge) the last d+ 1
knots are equal to 1. Note that this means the denominator of some terms in
(E3) may become zero, in which case those terms are set to zero. All other
knots are equally spaced.

If a specific airfoil is desired for the initial design, control points must be
specified that correctly map to the desired airfoil of coordinates. These control
points are found by solving a least squares problem defined as

min
P

2∑
j=1

∥∥∥∥∥
[ n∑
i=0

Ni,d(k)Pij

]
−Xj

∥∥∥∥∥
2

(E4)

Camber line

Bounds

Control points

U∞

x

z

Chord line
Quarter chord point

Figure E1: B-spline airfoil parameterization. Figure adapted from [P1].
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where the parameterization constraints in Figure 3.6b are satisfied.
For optimization problems, geometry constraints are enforced on parame-

ters such as the curvature. The curvature at any point on the B-spline can be
calculated as

κ = x′z′′ − z′x′′[
(x′)2 + (z′)2

] 3
2

(E5)

where x and z are the airfoil coordinates, i.e. X = {x, z}, and the primes
represent first and second derivatives of the coordinates. The derivative of a
B-spline can also be represented as a B-spline with one less control point and
a reduced order, i.e. the first derivative, Qi has an order d − 1 and n control
points, and the second derivative, Ri, has an order d − 2 and n − 1 control
points.

X ′ =
n−1∑
i=0

Ni,d−1(k)Qi

X ′′ =
n−2∑
i=0

Ni,d−2(k)Ri

(E6)

where
Qi = d

ki+d+1 − ki+1

(
Pi+1 −Pi

)
Ri = d− 1

ki+d − ki+1

(
Qi+1 −Qi

) (E7)
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F Higher Order Panel Methods

Section 3.2.2 has demonstrated that optimization algorithms can take advan-
tage of numerical errors in pressure distributions to reduce the objective func-
tion but create designs with a non-physical performance. This was overcome by
calculating induced drag through far-field calculations within a Trefftz plane.
However, there are a number of limitations in using Trefftz plane calculations,
such as the assumption of steady-state flow. By introducing high order pan-
els the accuracy of pressure distributions is increased through reducing the
numerical error [2]. An example of this is shown in Figure F1 where a 2D
panel method is used to achieve the CP distribution around a NACA 1412 air-
foil (shown in Figure F1a) using both constant-strength and linearly-varying
strength panels. There are noticeable differences in the CP distribution at
every x location. These differences reduce for most x locations as the panel
discretization increases, however some errors remain, mainly at the leading and
trailing edge. Here, the problem was solved with a coarse mesh of 50 panels
so that the error is clearly visible from the plot alone. The detail in Figure
F1b shows the trailing edge of the CP distribution, where for constant-strength
panels the the upper and lower surfaces intersect and do not fully converge at
x
c = 1. This is due to numerical errors in the solution and is not present in the
linear-strength panels which have a smooth distribution at the trailing edge.

High order panel methods have been implemented in the past [93, 94, 95,
70], but have not been applied to gradient-based optimization problems. The
important point here is whether implementing high order panel methods can
reduce numerical errors to such an extent where gradients from pressure distri-
butions can be used to create viable optimized designs. If so, the applicability
of panel methods to optimization problems will be extended as they are not
limited to the assumptions of the Trefftz plane calculations.

(a) (b)

Figure F1: Comparison of pressure distributions for constant- and linearly-
varying strength panels: (a) NACA 1412 airfoil, and (b) CP distributions.
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housboe Andreasen. “Aerodynamic Shape Optimization of Aircraft Wings Us-
ing Panel Methods”. In: AIAA Journal 58.9 (2020), pp. 3765–3776. doi:
https://doi.org/10.2514/1.J058979

https://doi.org/https://doi.org/10.2514/1.J058979


On Aerodynamic Shape Optimization of Aircraft Wings using
Panel Methods

Cian Conlan-Smith ∗, Néstor Ramos-García †, Ole Sigmund ‡ and Casper Schousboe Andreasen §

Technical University of Denmark, DK-2800 Lyngby, Denmark.

Panel methods are frequently applied to aerodynamic shape optimization problems due to

their fast turnaround time and ability to model arbitrary geometries. Despite being advan-

tageous for design optimization, we have found that panel methods can predict non-physical

results for unconventional geometries. This work presents robust methods to solve optimiza-

tion problems using panel methods that are not susceptible to numerical errors. Important

factors are highlighted with regard to choice in boundary conditions, induced drag calculation,

wakemodeling, and regularization. Two parameterizationmethods are introduced where wing

geometry is defined locally by airfoils at discrete span-wise positions and regularized by filter-

ing along the span. Such methods of defining the geometry locally, enlarge the design space

and allow the optimizer to converge to reliable designs. Results also suggest that: enforcing

a Dirichlet boundary condition rather than a Neumann formulation provides significant cost

savings in gradient calculations; far-field force calculations should be adopted for optimization

problems as numerical errors in surface pressure integration have a strong influence on the

gradients; and the additional design freedom of a B-spline parameterization can be disadvanta-

geous as the low-fidelity of the inviscid model cannot correctly capture aerodynamic properties

of irregular airfoil geometries.

Nomenclature

A = doublet aerodynamic influence coefficient

B = source aerodynamic influence coefficient

b = wingspan

c = chordlength

D = total drag

F = total force

∗PhD student, Department of Mechanical Engineering, Section of Solid Mechanics, cicosm@mek.dtu.dk. Member AIAA.
†Senior Researcher, Department of Wind Energy, Section of Fluid Mechanics.
‡Professor, Department of Mechanical Engineering, Section of Solid Mechanics.
§Associate Professor, Department of Mechanical Engineering, Section of Solid Mechanics.

P1P1



f = generic function

L = total Lift

M∞ = free-stream Mach number

Mr = root bending moment

Mp = pitching moment

m = maximum relative camber

n = normal vector

P = coordinates of control points

p = relative position of maximum camber

R = filter radius

S = wing planform area

t = maximum relative thickness

U = total velocity

X = coordinates

α = twist

β =
√

1 − M2∞, transformation factor

δ = design variables

η = 2y
b , normalized span location

κ = curvature

λ = Lagrange multiplier

µ = doublet strength

φ = potential function

ρ = density

σ = source strength

ÆR = b2

S , aspect ratio

CP = pressure coefficient

F = generic function in Lagrangian form

W = filter matrix

Subscripts

D = associated with Dirichlet boundary condition

N = associated with Neumann boundary condition

ref = associated with reference case
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TP = calculated via Trefftz plane integration

CP = calculated via CP integration

∞ = associated with free-stream

I. Introduction
Panel methods were developed in the 1960s and 70s within the aviation industry for evaluating the performance of

preliminary aircraft designs [1–3]. Based on potential flow theory these methods provide the velocity field and pressure

distribution around arbitrary geometries. As boundary element methods, panel methods only require a surface mesh of

the geometry, leading to a fast computational time when compared to computational fluid dynamics (CFD) based on

finite volume and finite element methods, which require a volume mesh of the entire fluid domain. This makes panel

methods attractive for aerodynamic optimization where a solution to the physics problem is required for each design

iteration. Additionally, as only a surface mesh is used, it is easier to avoid mesh distortion or remeshing, which is

common in shape optimization with CFD.

In the 1970s researchers began to investigate the design of airfoils through numerical optimization. In a series of

works by Hicks et al. [4–6] airfoils were parametrized using high order polynomials or Joukowski transformations.

Venkataraman [7] introduced the idea of using splines to parametrize the airfoil where two Bézier curves were used to

define upper and lower surfaces, and have since been used to define thickness and camber distributions [8, 9]. Basis

splines (B-splines) were later adopted for similar parameterization methods [10–12] as they are less susceptible to

bumps or fluctuations because the order of the curve is not defined by the number of points. Consequently, B-splines

have shown to achieve better off-design performance when compared to Bézier curves [13–15]. B-spline representations

have since become the most popular parametrization method for airfoil optimization [16–18]. However in recent times,

parameterizing using free-form deformation (FFD) techniques has also gained much popularity [19, 20].

The first automated design processes for 3D wings using panel methods involved solving inverse problems [21, 22]

where the wing geometry is achieved such that it produces a user specified pressure distribution. However, it can be

difficult to specify a target pressure distribution that creates the desired or optimal performance. By the end of the

1990s CFD methods had already started to be applied to more general 3D aerodynamic [23, 24] and multidisciplinary

optimization (MDO) problems [25]. The growing interest in optimization studies saw the need for fast calculations

of aerodynamic loads, where panel methods are effective. Choi et al. [26, 27] created a framework for multi-fidelity

optimization with the ability to solve the Euler equations and linearized potential flow problems via a panel method

(PanAir [28]). Similar gradient-free studies also implementing PanAir were conducted by Alonso et al. [29], and

Rahnarayan et al. [30] who implemented PanAir as the high-fidelity method and an area rule method as a low-fidelity

method. Kennedy and Martins demonstrated a parallel framework for aero-elastic MDO using a panel method (TriPan)
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and finite element (FE) solver [31, 32]. TriPan has been applied to a number of subsequent aero-structural optimization

problems such as the design of composite wings [33], wing-box topology optimization [34, 35], matrix-free optimization

[36], and unsteady problems [37, 38]. Goetzendorf-Grabowski and Mieloszyk [39, 40] present another coupled panel-FE

framework for MDO based on the open-source PANUKL code.

The aim of this work is to firstly highlight the main considerations and challenges in using panels methods in

optimization problems, and secondly to introduce novel parametrization methods for aerodynamic optimization problems

that allow large changes in geometry. Despite there being interest in panel methods for optimization problems the

literature lacks detailed comparisons and discussions of their application. Approached from an optimization perspective,

external Neumann and internal Dirichlet boundary conditions are compared in their performance with respect to

computational time, ability to predict solutions, and applicability to optimization problems. Challenges have been

found in applying these methods to optimization problems with regard to choice of wake model and force calculation,

especially when the parameterization methods allow large changes in the geometry. Traditionally, wing optimization

problems have been parameterized using global variables such as a taper ratio and predefined airfoils. Using such

global variables to define the geometry restricts the design space which can lead to sub-optimal designs. We introduce

free-form parameterization approaches where airfoil sections are defined locally and design variables are filtered along

the span for regularization and avoidance of numerical artifacts.

The current work uses a subsonic constant source-doublet panel method based on MIRAS [41]. An introduction

to the panel method is detailed in Section II covering the problem formulation, wake modeling and aerodynamic

force calculations. Section III describes the mesh discretization and two parameterization methods which are later

compared. The optimization approach is detailed in Section IV, including the formulation of the optimization problem,

regularization, and sensitivity analysis. The results section (Section V) discusses the choice of boundary condition,

wake model, and force calculation method with respect to their performance and applicability to optimization problems.

Optimization results are also presented for two parameterization methods and compared for their performance and

ability to predict realistic designs. Finally, the findings are concluded in Section VI. Additionally, the appendix includes

verification studies with comparisons to lifting-line theory, VSAERO panel code, and SU2 finite volume method.

II. Panel Method
In this work we implement a combined source and doublet panel method with a Prantl-Glauert compressibility

correction [42, 43]. We shortly repeat the basic theory here to provide a basis for later discussions and comparisons. A

typical panel method discretization is shown in Fig. 1 with collation points defined at the center of each panel. Both

Neumann and Dirichlet boundary conditions are considered and are based on a zero internal perturbation formulation
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[44, 45]. The governing equations are defined as

AN µ + (BN + I)σ = 0 (1a)

ADµ + BDσ = 0 (1b)

whereA andB are aerodynamic influence coefficients (AIC) for doublet and source distributions respectively. Subscripts

N and D represent AIC for Neumann and Dirichlet boundary conditions, i.e. the influence on the velocity or potential

function at a collocation point. Influence coefficients are derived using the methods outlined in [46], Section 10.4. It

is important to note that each panel will influence every other point in the domain, meaning that A and B are dense

matrices. For a zero internal perturbation formulation the source strengths, σ, are calculated using via

σi = U∞ · ni (2)

and equation (1) is used to solve for doublet strengths, µ.

Collocation points

U∞ = ∇φ∞

x

z

y

WakeWing

Panel i

ni

Fig. 1 Schematic of a wing and its wake discretized into quadrilateral panels.

As shown in Fig. 1 the wing’s wake is also meshed which is required to satisfy the Kutta condition and calculate

the induced drag. Two wake models are compared in this work, the first is a fixed wake consisting of a vortex sheet

projected in the free-stream direction. This model is computationally efficient because of a low number of panels and

governing equations are only solved once. However, the method may become inaccurate for wing geometries that create

a large variance in the structure of the wake. An alternative is a force-free wake model [41, 47, 48] which is an iterative

procedure that is able to capture complicated wake geometries, but requires (1) to be solved on each iteration leading to

a large computational expense.

Once the singularity distribution is known, the velocity at each panel’s collocation point can be calculated as the

5

P1P1



gradient of the potential function in local coordinates (l,m,n).

U i = (Ul,Um,Un)Ti =
(
∂φ

∂l
,
∂φ

∂m
,
∂φ

∂n

)T
i

(3)

The pressure coefficient, CP , is calculated via the Bernoulli equation (4), and can be integrated over the body surface to

find the total force, F, pitching moment, Mp , and root bending moment, Mr .

CP,i = 1 − ‖U i ‖2
‖U∞‖2

(4)

F =
1
2
ρ∞U∞2

∫
S

CPndS ' 1
2
ρ∞U∞2

NS∑
i=1

CP,iSini (5)

Mp =
1
2
ρ∞U∞2

∫
S

CP

{
z
x

}T{ nx
nz

}
dS ' 1

2
ρ∞U∞2

NS∑
i=1

CP,iSi
{
z
x

}T
i

{ nx
nz

}
i

(6)

Mr =
1
2
ρ∞U∞2


∫
S

CPy
{ nx
nz

}
dS

 ' 1
2
ρ∞U∞2


NS∑
i=1

CP,iSiyi
{ nx
nz

}
i

 (7)

where xi , yi , and zi are coordinates of panel i’s collocation point (with the origin at the root). Lift and induced drag

are defined by projecting F perpendicular and parallel to the free-stream direction, which in our case is always in the

x-direction

LCP = F · z (8)

DCP = F · x (9)

where DCP and LCP are the forces calculated via CP-integration. Alternatively, the forces can be calculated through

far-field calculations using a Trefftz plane integration method, LTP and DTP [43, 49]. This reduces lift and drag

calculations to a 2D integral over the intersection of the wake and the Trefftz plane, sw (refer to Fig. 2).

LTP = ρ∞V∞
∫
sw

∆φdy ' ρ∞V∞
Nw∑
i=1

µisi cos(θi) (10)

DTP = −1
2
ρ∞

∫
sw

∆φ
∂φ

∂n
dsw ' −1

2
ρ∞

Nw∑
i=1

µisiui .ni (11)

where ∆φ is the potential jump over sw , θi is the inclination of wake panel i in the Trefftz plane, n is normal to sw in the

Trefftz plane.

Induced drag is the only type of drag considered in this work. Aerodynamic loads can be normalized to find
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Trefftz		Plane	

Wing

��

�

�

�

�

Fig. 2 Schematic of the Trefftz plane integration method.

coefficients of lift and drag.

CL =
L

1/2ρ∞U∞2S
(12)

CD =
D

1/2ρ∞U∞2S
(13)

If the Prandtl-Glauert correction is used, the quantities in equations (4)-(13) are first calculated using coordinates

from Göthert’s transformation [43, 50], yielding quantities denoted with the subscript 0 below, and are then corrected

using the Prandtl-Glauert factor, β =
√

1 − M∞2.

CP =
1
β2 CP,0 , L =

1
β3 L0 , D =

1
β4 D0 , CL =

1
β2 CL0 , CD =

1
β3 CD0 (14)

III. Discretization and Parametrization
The wing geometry is discretized into quadrilateral panels where nodal points are typically defined to be equally-

spaced in the span-wise direction, and in a cosine distribution in the chord-wise direction creating a bias towards

leading and trailing edges. This bias allows more detail in the CP distributions making the Cp-integration less prone to

numerical error. The location of nodes in the x- and z-directions are given by airfoil geometries defined at Ns span-wise

locations each with Naf nodes. Airfoil sections are defined in one of two ways – using the definition of NACA airfoils,

and B-spline representations. Half the span is modeled, without a fuselage, and symmetry is enforced by modifying

influence coefficients to include an influence from the wing’s mirror image about the root. Unless otherwise stated a

mesh of 6000 (40 span-wise, 150 chord-wise) panels was used for a single wing.

When using quadrilateral panels it is not guaranteed that the four nodes will lie in the same plane, as it takes only

three points to define a plane. The panel is instead defined using an average plane as described in [51]. The end
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sections of the wing are also meshed creating an enclosed geometry. When implementing a panel method the problem

is ill-defined for an enclosed mesh that separates internal and external domains with doublet panels [52]. There are

multiple ways around this such as defining an additional source panel with some known potential in the internal domain,

or only specifying source panels (i.e. non-lifting panels) in certain locations. We have adopted the latter where the

wing’s end-caps consist of source only panels.

A. NACA parameterization

This parameterization is based on the polynomial equations for defining NACA 4- and 5-digit airfoils [53], where

4 parameters are used (refer to Fig. 3): chord length c, maximum thickness t, maximum camber m, and position of

maximum camber p. However, note that NACA 5-digit airfoils do not require both m and p to be defined, and the ideal

lift coefficient (first coefficient) is specified. The NACA 4- and 5-digit airfoil family consists of a set of airfoils formed

from discrete values of these parameters. Our parameterization differs in that the design space is smoothed such that

the optimizer can select any value for these parameters from a continuous design space. Additionally, thickness is

traditionally defined perpendicular to the camber line, however, using this definition, the derivatives are discontinuous

at the point of maximum camber which may cause issues in the optimization. To avoid this we take the thickness to

be perpendicular to the chord line (see Fig. 3). The twist, α, is included as an additional variable, giving the NACA

parameterization a possible 5 design variables per airfoil section. The wing coordinates, X , are achieved by rotating

airfoil coordinates, (x̄, z̄), through α and assembling airfoil sections with their quarter chord point on the y-axis.

c

p

t
m

Camber line (x̄, z̄m)

Chord line (x̄, 0)
α

U∞

x

z

α

x̄

z̄

Fig. 3 Design variables used in the NACA parameterization: c = chord length, t = maximum thickness, m =
maximum camber, p = position of maximum camber, and α = twist.

B. B-spline parameterization

Here the wing coordinates, X , are given by a series of airfoils represented as B-spline curves with control points P

(definitions of B-splines are presented in [54]). In our B-spline parameterization, represented in Fig. 4, the relative

spacings between control points in the x-direction are kept constant, where all control points scale in the x-direction

about the trailing edge, which is controlled by a single design variable per section. Control points are then free to move

vertically independent of one another as controlled by one design variable per control point. The spline is clamped so
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that it starts and ends at the first and last control point which are coincident. The wing is assembled from each airfoil

section with a common axis at the quarter chord point. Bounds are imposed on each degree of freedom in the z-direction

such that the spline does not self-intersect. If a control point approaches one of these bounds and the other control point

at the same x-coordinate is not nearby (i.e. the airfoil is not collapsing), then the bound is updated to enlarge the range.

When the bounds are defined or updated they are specified at a small distance from the camber line of the design on the

current iteration.

�
∞

�

�

Camber		line

Bounds

Control	points

Fig. 4 B-spline airfoil parametrization with control points (red circles), their degrees of freedom/bounds
(green), and camber line (dashed red) shown.

IV. Optimization approach

A. Physical considerations when optimizing lifting surfaces

Typically optimization problemswill be posed using absolute quantities, such as L and D, rather than non-dimensional

quantities, such as CL and CD , as they are generally more stable for the optimization problem. For example, consider a

minimum constraint on CL . The value of CL can be continually increased by shrinking the planform area (refer to (12))

where a minimum bound on S is required to prevent the problem being ill-posed. Oppositely, for a minimum constraint

on L there should exist an optimum design where the constraint is active and the area of the wing has not reduced to a

non-physical size. The most important constraint is the minimum bound on L, as induced drag is dependent on lift,

there will be no induced drag for L = 0 which is a trivial optimal solution.

B. Span-wise regularization

Regularization is necessary to prevent clustering of nodes and drastic variations in geometry which may be

non-physical, non-manufacturable, or cause numerical issues [55, 56]. Design variables are applied at a discrete set

of airfoil sections with a single panel between sections. A large variation in geometry between sections cannot be

accurately represented by a single panel and leads to non-physical results which the optimizer is able to exploit. Filtering

is used to control the variation between sections where the filter size can act as a feature control parameter.

Design variables are filtered based on the span-wise positions of neighboring sections. A filter radius, R, is defined
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such that a neighboring section, j, will have a weight proportional to its span-wise distance if the distance between

sections is less than R, and carry no weight if the distance is greater than R. This is similar to a density filter commonly

adopted in topology optimization [57]. Weights are stored within the filter matrix,W, the independent design variables

are contained within δ, and the filtered or physical design variables, δ̃, are defined as

δ̃ =Wδ (15)

where

Wi j =
1

Ns∑
k=1

wik

wi j where wi j = max[0, R − di j] (16)

For the NACA parameterization design variables are defined as δ = {c, t,m, p, α} where each airfoil parameter

is filtered along the span. For the B-spline parameterization the design variables are the coordinates of the B-spline

control points, δ = P. The coordinates of control points i (where i = 1, ..., n + 1 for each airfoil section, j) are filtered

along the span using the same method as the NACA parameterizations.

C. Airfoil regularization

As the flow is inviscid the method is unable to predict flow separation. The optimizer is able to exploit this deficiency

through creating sharp edges or bumped surfaces which reduce the objective function but lead to unrealistic pressure

distributions. To prevent this, a constraint on the maximum curvature is used. For the NACA parameterization the

maximum curvature is always at the leading edge of the airfoil. Curvature is related to radius by κ = 1/r, where the
leading edge radius for any NACA airfoil is approximated as

rLE = 1.1019t2c (17)

We wish to constrain the normalized maximum curvature, κ̂, that is the maximum curvature of the airfoil whose

coordinates are scaled between 0 and 1 in the x-direction, yielding

κ̂j =
1

1.1019tj2 (18)

For the B-spline parameterization curvature is first calculated at each node, i, on the spline.

κi =
x ′i z
′′
i − z′i x

′′
i[(x ′i )2 + (z′i )2] 3

2
(19)

The maximum curvature is then approximated by aggregating κ using a p-norm function and similar to the NACA
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parameterizations is normalized by cj to give κ̂j for airfoil section j

κ̂j = cj

[ Na f∑
i=1

κi
ζ

] 1
ζ

(20)

where ζ is taken to be equal to 10 throughout.

D. Sensitivity Analysis

The method of moving asymptotes (MMA) [58] is used as the optimizer which requires sensitivities to determine

how design variables should change between iterations of the optimization procedure. Here, an adjoint method is

used for calculating sensitivities. The objective or constraint function of interest, f , can be expressed in augmented

Lagrangian form as

F = f + λTR (21)

where λ is the Lagrange multiplier, and R is the residual to the state equation given in (1a) and (1b) for Neumann and

Dirichlet BCs respectively. Note that λ is arbitrary as R = 0, thus F = f for any λ. To conduct shape optimization

we require the sensitivities of F with respect to the nodal coordinates, X . Differentiating (21) with respect to nodal

coordinates and expanding using the chain rule yields

dF
dX
=
∂ f
∂X
+
∂ f
∂µ

dµ
dX
+ λT

[
∂R
∂X
+
∂R
∂µ

dµ
dX

]
(22)

Note the difference between partial, ∂/∂X and total, d/dX derivative operators, where partial derivatives capture only the

explicit dependence without resolving the state equation, whereas total derivatives capture implicit dependencies also.

Implicit dependencies are difficult to calculate and as such we seek a value of λ which causes all total derivatives to

vanish. Equation (22) can be re-expressed as

dF
dX
=
∂ f
∂X
+ λT

∂R
∂X
+

[
∂ f
∂µ
+ λT

∂R
∂µ

]
dµ
dX

(23)

By setting terms in the square brackets in (23) equal to zero and solving for λ the implicit derivatives are eliminated.

This corresponds to solving the adjoint problem.

λT = −∂ f
∂µ

[
∂R
∂µ

]−1
= −∂ f

∂µ
A−1 (24)

and thus it follows that
dF
dX
=
∂ f
∂X
+ λT

∂R
∂X

(25)
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Differentiating the state equation in (1a) or (1b) with respect to the nodal coordinates yields the residual derivatives

∂R
∂X
=
∂AN

∂X
µ +

∂BN

∂X
σ + BN

∂σ

∂X
+
∂σ

∂X
(26a)

∂R
∂X
=
∂AD

∂X
µ +

∂BD

∂X
σ + BD

∂σ

∂X
(26b)

where suffixes (a) and (b) are for Neumann and Dirichlet BCs respectively. Up to now sensitivities are calculated with

respect to Göthert’s transformed coordinates, X0. Using the chain rule sensitivities are transformed back to the real

coordinates, then subsequently to physical design variables, δ̃, and finally independent design variables, δ, as defined by

the parametrization method in Section III.

dF
dδ
=

dF
dX0

dX0
dX

dX

dδ̃

dδ̃
dδ
=

dF
dX0

[ I 0 0
0 1

β I 0
0 0 1

β I

]
dX

dδ̃
W (27)

where dF
dX0

is calculated using (25), dX
dδ̃

is the derivative of parameterization method defined in Section III, andW is

the filter matrix defined in (16).

V. Results
For the following optimization studies we define a reference wing with a rectangular planform, aspect ratio, ÆR = 6

(b = 6 m and c = 1 m) and constant NACA0012 airfoils throughout the span. The performance characteristics of this

wing are shown in Fig. 5. Optimized designs are compared to this wing’s performance at Mach 0.4 with an angle of

attack of 6◦, induced drag, Dref = 915.6 N and total lift, Lref = 34525.4 N. The properties of this wing also give the

bounds for constraint functions in all optimization problems.

(a) (b)

Fig. 5 Performance characteristics of the reference wing: (a) lift and induced drag coefficients for varying
angles of attack, α, and (b) normalized sectional lift area distribution along the half span for α = 6◦.

All optimization problems are defined as to minimize the induced drag. Another important concept for these

problems is the elliptic lift distribution. From lifting line theory it is known that for planar wings the least induced drag

is produced when there is an elliptic lift distribution along the span [43, 46]. Hence the optimal solution should have an

elliptic lift distribution which helps validate our optimized results. From Fig. 5b we see that the reference wing’s lift
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distribution has large differences to the elliptic distribution which indicate non-optimality.

A. Choice of methods

1. Boundary conditions

For the same mesh size the Dirichlet BC is approximately twice as computationally efficient as the Neumann BC

[46]. This is apparent in the formulation of the influence coefficients, AN , BN and AD , BD , where the Neumann BC

requires the calculation of a vector (velocity in each direction) and the Dirichlet BC only requires a scalar (potential).

As these are dense systems of equations, assembling the influence coefficient matrices is the most expensive part of the

panel method accounting for roughly 80% of the computational effort. When adjoint sensitivities are calculated (through

methods discussed in section IV.D) 90% of the computational effort is spent on calculating sensitivities. Solutions are

dependent on each point in the domain meaning that every panel in the mesh is dependent on the nodal coordinates of

every other panel. Assuming quadrilateral panels, each entry of the dense matrices A and B, will depend on 8 nodal

points, 4 per panel (trailing edge panels have more dependencies due to the Kutta condition). This is why the sensitivity

analysis dominates the computational time. Gradients are also calculated in half the time when using a Dirichlet BC

compared to the Neumann BC due to the nature of their formulation. This leads to a substantial reduction in the

computational effort required for the Dirichlet problem compared to the Neumann. Note that the influence between any

two panels and their corresponding dependence on nodal points is independent of any other influence between any two

panels. This means that assembly of the influence coefficients and their derivatives is easily implemented in parallel.

We also demonstrate the effect that the choice of boundary condition has on optimized designs. Consider a fixed

span wing with constant NACA0012 airfoils throughout the span. The objective is to minimize the induced drag

(calculated via Trefftz plane integration) subject to a lift constraint where each airfoil section has a twist variable. The

problem is defined in (28) and results are shown in Fig. 6.

min
α ∈ RNs

: DTP(α)

subject to : Lref − LTP(α) ≤ 0

¯
α ≤ αi ≤ ᾱ for i = 1, ..., NS

(28)

As shown in Fig. 6, Neumann and Dirichlet boundary conditions produce the same designs with a reduction in

induced drag of 1.4%. The design responses are a close match to the elliptic lift distribution shown in Fig. 6b. The

results of this study show that both formulations create similar optimized designs, irrespective of the choice of boundary

condition. Due to the computational benefits a Dirichlet BC is used for all subsequent studies. However, it is important

to note that Dirichlet BC is formulated from an internal and external domain and thus requires the geometry to have a

finite thickness. This means that only the Neumann BC is applicable in cases where the geometry is thin or represented
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(a) (b)

Fig. 6 Twist Optimization results: (a) twist and (b) lift distributions along the half-span of optimized designs.

by a sheet, e.g. sails, kites, etc.

2. Force calculations

Section II introduced two ways of calculating forces on the wing – CP and Trefftz plane integration. Both methods

are appropriate for calculating the induced drag of standard or well defined wing geometries, however, results generated

from CP-integration have shown to be sensitive to the number of panels and the complexity of the wing geometry

[49, 59]. The discrepancy in CP-integration is due to cancellation errors which are of a similar magnitude to the

induced drag [43]. This makes CP-integration unreliable but it is still commonly adopted with an appropriate mesh

to produce accurate results. We have found that larger differences in these methods can occur when applied to

optimization problems. As an example consider the optimization problem to minimize induced drag at a fixed angle of

attack of 6◦, subject to a lift constraint where each section is defined by NACA0012 airfoils and has a chord length

design variable. Optimized designs are shown in Fig. 7 where forces are calculated usingCP and Trefftz plane integration.

min
c ∈ RNs

: D(c)

subject to : Lref − L(c) ≤ 0

¯
c ≤ ci ≤ c̄ for i = 1, ..., NS

(29)

Design DCP/Dref
DT P/Dref

Reference 1.004 1.000
min DCP 0.980 1.005
min DTP 0.998 0.986

Table 1 Drag for wings shown in Fig. 7 calculated via CP and Trefftz plane integration, and normalized by the
drag of the reference case (calculate via Trefftz plane integration).

When using CP-integration the design is pushed towards an unconventional geometry with a large chord at the tips.

Conversely, when using Trefftz plane integration the design converges to a near elliptic wing which is known to be
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(a) Initial design/reference (b) min DCP
(c) min DTP

(d) Initial design/reference (e) min DCP
(f) min DTP

Fig. 7 Wing planforms and normalized sectional drag area distributions for initial and optimized designs with
drag calculated from CP and Trefftz plane integration.

the optimal design for this problem. Results from Cp-integration tend to have numerical errors at the tip where the

loads increase drastically, whereas the loads from Trefftz plane integration tend to zero towards the tip (refer to Figs.

7d-7f). These unrealistic results can have large sensitivities that drive the optimizer to create unconventional designs

that exploit the numerical error in order to decrease the objective function (refer to Table 1). Lift calculations are not as

susceptible to these numerical errors as the magnitude of the error is generally much smaller than the lift. However, a

dependence on the inviscid pressure distribution can still produce undesirable results for optimization problems. As the

flow is inviscid, phenomena such as separation can not be predicted by the model, which can lead to non-physical CP

distributions and an over prediction of the surface pressure. The above study suggests that CP-integration is not suitable

for optimization where large variations in geometry is permitted. In using a Trefftz plane method there is less numerical

error and the optimization problem is more robust.

3. Wake model

Let us consider the optimization problem where the angle of attack is fixed at 6◦ and the only variables are the chord

length at each section. We seek to maximize the Oswald span efficiency factor, e (minimize negative e) subject to a

minimum bound on lift. According to lifting line theory, an optimal wing for this problem will have an efficiency factor

of 1 which is the upper bound for planar wings. Planforms of optimized wings for various filter radii are shown in Fig. 8.

min
c ∈ RNs

: −e = − CL(c)2
πCD(c)ÆR(c)

subject to : Lref − L(c) ≤ 0

¯
c ≤ ci ≤ c̄ for i = 1, ..., NS

(30)
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(a) R = 0 (b) R = b
12 (c) R = b

6

Fig. 8 Planform of optimization results for the problem defined in (30) with various filter radii.

With a small filter radius more detailed features (numerical artifacts) can be created in the optimized designs. This

allows the optimizer to create a fluctuating chord distribution along the span yielding wavy planform geometries (Fig.

8a and 8b). As a free-stream wake is used, the wake takes the same shape as the trailing edge of the wing projected

parallel to the free-stream. The wavy structure of the wake can then create a localized upwash, reducing the drag at

certain locations along the wing. The optimized designs (calculated using a free-stream wake model) in Fig. 8b and 8c

have span efficiency factors of 1.03 and 1.00 respectively. Post-analyzing the same designs using a force-free wake

model (introduced in Section II, method presented in [41]) the span efficiencies are 0.83 and 0.98 respectively i.e. there

is a large error of 24% for the wavy design (Fig. 8b) and 2% error for the elliptic design (Fig. 8c). The higher-fidelity

force-free wake model captures the actual geometry of the wavy design’s wake which levels out in the middle of the

wake, removing the wavy-structure and subsequent upwash (see Fig. 9a and 9c). For the optimized design in Fig. 8a the

force-free wake model does not converge as the wake self intersects and the calculations blow up. This study shows that

realistic designs can be created using the lower-fidelity free-stream wake model provided sufficient regularization is

used. The study also predicts that less regularization would be required with a force-free wake model but span-wise

filtering is still needed to ensure robustness. As mentioned previously, the force-free wake model comes with a larger

computational cost, therefore, only the free-stream wake model is used for optimization problems.

Filter radius, R e, Free-Stream Wake e, Force-Free Wake
0 1.18 -
b
12 1.03 0.83
b
6 1.00 0.98

Table 2 Span efficiency factors for wings optimized with different filter radii. Wings are optimized with a
free-stream wake model and post-analyzed designs with a force-free wake model.

B. Optimization of fixed-span wings

We will optimize the design for reducing drag under cruise conditions, where a desirable property is to have zero

pitching moment, and as such we have enforced a constraint that Mp = 0. From the previous discussions, we have seen

that chord and twist can be used to achieve optimized designs with a similar performance. The previous designs have

adopted large twist angles in order to satisfy the lift constraint. In practice large twist is generally avoided as it can

lead to stall at higher angles of attack. Instead, camber is used to produce the desired lift with small values of twist.
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(a) (b)

(c) (d)

Fig. 9 Wake geometry in the Trefftz plane with (a) free-stream wake models for designs in (a) Fig. 8b and (b)
Fig. 8c; and force-free wake models for designs in (c) Fig. 8b, and (d) Fig. 8c.

The following studies include maximum bounds on twist angles but allow cambered airfoils. The design is solved

with parametrization methods based on NACA 5 and B-splines airfoils. The NACA 5 parameterization is used rather

than a NACA 4 because it is capable of creating a reflex camber line. This allows the airfoil sections to produce both

positive and negative pitching moments without creating negative twist. The NACA 4 parameterization can only produce

negative pitching moments with a negative twist and thus cannot satisfy both lift and pitching moment constraints. The

design problem is defined in (31) which includes the aforementioned constraints and those discussed in Section IV .

min
δ ∈ RNδ

: DTP(δ)

subject to : Lref − LTP(δ) ≤ 0

Mp(δ) = 0

α − αmax ≤ 0 for i = 1, ..., NS

κ̂ − κ̂max = 0 for i = 1, ..., NS

¯
δ ≤ δi ≤ δ̄ for i = 1, ..., Nδ

(31)

Note that for the NACA 5 parametrization the constraint on twist, α is instead satisfied implicitly by the upper bound

on the design variables (last constraint in (31)).

We set the upper bound on twist to be equal to the angle of attack of the reference case. Results for NACA 5

and B-spline parameterizations are shown in Fig. 10 including half-span planforms with lower and upper surface CP ,

sectional lift area distributions, CP distributions at various η locations, and airfoil stacks. The NACA 5 design converges

to a wing of aspect ratio 9.4 and taper ratio of 0.59. The high aspect ratio is expected, as the most effective way to reduce

the induced drag is to increase ÆR. The B-spline parameterization has converged to a wing of aspect ratio 7.6 and taper

ratio of 0.54. The two designs have converged to similar planform geometries with an optimal elliptic lift distribution,

and both produce a 1.48% reduction in total induced drag compared to the reference wing. A reflex camberline has been
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used in both cases to satisfy the pitching moment constraint and the designs produce similar CP distributions. The

B-spline design tends to have thicker airfoils, especially towards the tip. As the flow is inviscid the airfoil thickness has

minimal effect on lift or drag but we suspect that thick airfoils would be avoided if viscous effects were considered.

(a)

(b)

(c) (d)

(e) (f)

Fig. 10 (a) planforms with lower and upper surface CP , for NACA 5 (top) and B-spline (below), (b) lift
distributions, CP distributions and airfoils at (c) η = 0.05, (d) η = 0.50, (e) η = 0.95, and (f) airfoil stacks with
NACA-5 (top) and B-spline (below).

By taking a closer look at the individual airfoil sections we gain greater insight into the differences between the

different parameterizations. Figure 11 shows the airfoil camber distributions for the NACA 5 and B-spline designs

near the root, mid-section, and tip. There is a larger camber in the NACA 5 profiles and a reflex camberline is present

throughout the wing. Less camber is used in B-spline profiles as there is greater freedom in the parameterization

allowing the optimizer to create a reflex camberline without increasing the maximum camber. These lower cambered

airfoils produce less lift. The reduction in lift (compared the the NACA 5 design) is compensated for by increasing the

chord length which in-turn yields a lower aspect ratio wing. Both designs also reduce the camber from root to tip which

helps achieve their elliptic lift distribution. The tip profiles of the B-spline design do not have a reflex camberline. Such

airfoil sections are not possible in the NACA 5 parameterization which demonstrates the greater freedom of the B-spline

parameterization.

The B-spline results presented here have shown to work well for this case. However, it took a large effort in order

to get this parameterization to work efficiently. Ultimately, the B-spline parameterization has a lot more freedom to

create unpredictable geometries, which can take advantage of the inviscid nature of the problem. This is because the

design space is enlarged to include many possible airfoil sections that can produce the optimal span loading, thus the

optimization problem is non-unique. Although it is not needed for the results presented here, we have found that these
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(a) (b)

Fig. 11 Camber distributions for airfoil sections at various η locations in the (a) NACA 5 and (b) B-spline
designs

issues can be overcome by imposing additional curvature constraints or more restrictive variable bounds. However, as

the motivation behind the B-spline parametrization was to enlarge the design space, it is somewhat counterproductive

for it to be restricted through additional geometry constraints.

The extra freedom allowed by the B-spline parameterization method has not offered any advantage in performance

over the NACA-5 parametrization. Additionally, the B-spline parameterization updates design variable bounds (as

described in section III) throughout the optimization procedure in order to create a large design space whilst ensuring

the spline does not self-intersect. Updating design variable bounds in this manner leads to slow convergence. Self-

intersection cannot occur in the NACA parameterization methods which allows for a large design space without the need

for bound updates and yields a faster convergence. Considering the increase in complexity of the problem and minimal

gains in the wing’s performance, the B-spline parameterization seems inappropriate for inviscid optimization problems

as there is too much design freedom for the modeled physics. Accounting for viscous effects through a coupled viscous

solver or finite volume methods may alleviate some of these issues experienced with the B-spline parameterization.

However, this is outside the scope of this work.

C. Optimization of variable-span wings

Up to now we have considered wings with fixed wingspans. When it comes to induced drag minimization, the

optimizer will always converge to the largest possible wingspan as this is the most effective way to reduce induced

drag. Table 3 shows optimization results for the same problem defined in (31) with a NACA-5 parametrization and

small perturbations to the span. The converged designs for each problem have negligible differences in their geometry,

however the small changes to the wingspan has a significant effect on their induced drag. Altering the cross sections in

the previous example made it possible to achieve a reduction in drag of 1.5% but as shown here if the span was 0.1 m

shorter, the optimized design will create a drag force 1.9% higher than the reference wing. It is obvious from these

results that the span has a large impact on the induced drag. This makes it difficult to improve or match the performance

of the reference case with a wing of smaller span.

Wings with large wingspans are not always possible as an increased span leads to larger moments and stresses. A
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Design D/Dref

Reference 1.000
min D, b = 6 m 0.985

min D, b = 6.1 m 0.953
min D, b = 5.9 m 1.019

Table 3 Drag of optimized designs with perturbed wingspans, each are normalized with the drag of reference
case.

structural model is not considered in this work but an important physical consideration is to impose an upper bound

on the wing’s root bending moment defined in (7). The optimization problem for the NACA-5 parametererization is

defined as
min

δ ∈ RNδ

: DTP(δ)

subject to : Lref − L(δ) ≤ 0

Mp(δ) = 0

MR(δ) − MR,max ≤ 0

α − αmax ≤ 0 for i = 1, ..., NS

κ̂ − κ̂max = 0 for i = 1, ..., NS

¯
δ ≤ δi ≤ δ̄ for i = 1, ..., Nδ

(32)

where δ contains an additional variable, b, controlling the wingspan. The maximum bound on root bending moment,

MR,max, is defined as the root bending moment for the reference case. Results are shown in Fig. 12 for maximum

bounds on span of 6 m, 7 m, and 8 m.

As expected, all designs have converged to the largest possible span. The design with bmax = 6 m converges close to

what we have seen previously without the bending moment constraint (Fig. 10). Designs with larger values of bmax have

a similar planform near the root but the chord is reduced significantly towards the tip, such that the portion of the wing

for y > 3 m has a minimal contribution to the root bending moment. The bending moment constraint is active for each

of the three designs but the constraint has a greater impact on the design for larger a span. This is also demonstrated by

studying the airfoil sections and corresponding CP distributions where the bmax = 6 m design is similar to the original

design and large differences arise when a larger wingspan is permitted. The small airfoil sections towards the tip will

in-turn lead to increased stresses and larger deformations towards the tip. This demonstrates the difficulty in producing

structurally practical designs without structural coupling. When the root bending moment constraint is applied, the

optimized design for a planar wing has a non-elliptic bell-shaped lifting distribution, as can be seen from Fig. 12b.

These lift distributions are similar to the optimal bending moment constrained designs presented in [43], Chapter 5.10.

The optimizer used a combination of increasing the outer taper and reducing twist towards the tip in order to create
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(a)

(b)

(c) (d)

(e) (f)

Fig. 12 (a) lower and upper surface CP planforms with bmax = 6 m (above), bmax = 7 m (center) and bmax = 8
m (below), (b) lift distributions, CP distributions and airfoils at (c) η = 0.05, (d) η = 0.50, (e) η = 0.95, and (f)
airfoil stacks with bmax = 6 m (above), bmax = 7 m (center) and bmax = 8 m (below).

these bell-shaped lift distributions.

Table 4 shows the total induced drag for designs optimized with and without the bending moment constraint. The

converged designs are heavily effected by enforcing the constraint on MR as the drag increases drastically. However,

the constrained designs are still able to provide better solutions by increasing the span. This shows the importance of

structural considerations in the shape optimization of the wing.

Design
D/Dref

no MR constraint

D/Dref

MR constrained
Reference 1.000 1.000

bmax = 6 m 0.985 0.985
bmax = 7 m 0.724 0.793
bmax = 8 m 0.555 0.783

Table 4 Induced drag normalized by the drag of the reference case for designs with different maximum bounds
on wingspan, with and without a constraint on root bending moment, MR.

VI. Conclusion
Approaches to aerodynamic shape optimization of aircraft wings using panel methods have been introduced and

compared by their ability to produce optimized designs. This work has found some important issues in the use

of panel methods for solving optimization problems. For example, an internal Dirichlet boundary condition (BC)
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has been shown to be beneficial over an external Neumann BC as it leads to substantial cost savings for sensitivity

analysis which dominates the computational effort. We have also found that calculating forces from Cp-integration is

susceptible to large numerical errors that the optimizer is able to exploit in order to decrease the objective function

through non-physical results. This finding suggests that Cp-integration is not suitable for induced drag calculations in

optimization problems when the parameterization can allow large changes in geometry. Additionally, two methods of

local parameterization are introduced, one based on the definitions of NACA 4- and 5-digit profiles, and the other using

a B-spline representation, where design variables are filtered along the span to regularize the geometry. We have shown

that span-wise regularization is required to prevent the optimizer from exploiting numerical weaknesses in the panel

method. Both parametrization methods have proven to work well and produce similar values of the objective function,

however a B-spline approach offers more design freedom than necessary for the available physics and hence requires

more regularization to ensure robustness. Based on our findings we also conclude that the major challenge in using

panel methods for aerodynamic optimization is to ensure that results remain physical and the optimizer is not taking

advantage of the inviscid nature of the model. On this note it is expected that less regularization would be required with

a model that can capture viscous effects. Finally we have demonstrated the difficulty in achieving structurally practical

designs through structural considerations in the aerodynamic shape optimization problem. Future work will seek to

extend the methods presented here to include a coupled structural model.

Appendix

A. Verification Studies

1. Lifting-line theory comparison

From lifting-line theory one can derive the following expression for the coefficient of induced drag for an elliptic

wing [42, 46]

CD =
C2
L

πÆR
(33)

where ÆR is the wing’s aspect ratio. Additionally, the coefficient of lift can be approximated as

CL = Clα

( ÆR
ÆR + 2

)
α (34)

where Clα is the slope of the 2D lift coefficient curve from thin airfoil theory, and is approximately equal to 2π [46].

Using these expressions we compare the results of our panel method to lifting line theory for an elliptic wing with

ÆR = 5 and comprising of symmetric airfoils.

Results from all analysis methods have a strong correlation with the lifting line theory for predicting lift at a given

angle of attack. When integrating the pressure distribution with a Dirichlet boundary condition (BC) or using a Trefftz
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(a) (b)

Fig. 13 Comparison between lifting-line (LL) theory and results of the panel method for an elliptic wing.
Results are compared for Neumann and Dirichlet boundary conditions with CP integration and a Trefftz plane
integration method.

plane method there is also a strong correlation in predicting the induced drag. However integrating the pressure

distribution with a Neumann BC the results begin to deviate from lifting line theory for high lift. Note that the Trefftz

plane integration method can be used with either BC with negligible differences between the two.

2. VSAERO comparison

We also compare our results with those achieved using VSAERO for three wing planforms. VSAERO calculates

subsonic aerodynamic characteristics via a low-order constant source-doublet panel method [51], similar to the method

implemented here. VSAERO results are achieved with a Dirichlet boundary condition and internal stagnation formulation.

The first case is an unswept rectangular wing with an aspect ratio, ÆR = 5.9. The second case is a swept wing with

ÆR = 5.6, no taper, and a sweep of 20◦. Cases 1 and 2 comprise of NACA0012 airfoils. The third case has a sweep of

45◦, taper ratio of 0.5, aspect ratio of 3, and NACA64A010 airfoils. Experimental and VSAERO results are taken from

[60]. Figure 14 compares these results to Neumann and Dirichlet boundary conditions.

Fig. 14a and 14b shows the local Cl distribution with normalized semi-span, η = 2y/b where b is the wingspan.

We see negligible differences in Cl between VSAERO, Neumann and Dirichlet results, and some minor deviations

compared to experimental results at the root and tip. The current work uses more panels than those presented in [60]

(VSAERO) allowing our results to capture more detail around the wing tip (η = 1). In Fig. 14c the current work also

matches VSAERO solutions but all numerical results diverge from the experimental as the viscous effects are excluded.

There are however only small differences in the local CP distributions as demonstrated in Fig. 14d.

3. SU2 comparison

Finally we compare the panel method to results generated using SU2 [61] which is used to solve the inviscid Euler

equations via a finite volume method. For this study we look at the ONERA M6 wing, which was designed in 1972 as a

test case for complex flow phenomena such as transonic shocks and separated flow. Fig. 15 shows CP distributions for

an angle of attack of 5◦ and Mach numbers of 0.4 and 0.8.
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(a) Half-span lift distribution for case 1 at α = 8◦ (b) Half-span lift distribution for case 2 at α = 8◦

(c) Lift vs. angle of attack for case 3 (d) CP distribution at y/b = 0.55 for case 3 at α = 8.23◦

Fig. 14 Comparison between experimental, VSAERO, Neumann and Dirichlet BC results for various wing
cases.

(a) (b)

Fig. 15 Comparison between CP distributions at η = 0.5 achieved from SU2 and panel method (current work)
for the ONERA M6 wing at (a) Mach 0.4 and (b) Mach 0.8 with an angle of attack of 5◦.

From Fig. 15 we see a good agreement between results when the flow is subsonic and a large deviation in results for

transonic flows. This deviation is due to a shockwave which forms on the upper surface that the panel method is unable

to predict. The inability to model shocks is one of the limitations of panel methods, however it is not an issue in this

work as we are only concerned with cases where the flow is fully subsonic.

The main advantage of panel methods is their fast computational time. Table 5 compares computational times for

our panel method and SU2 with single and multi-gird (3 levels) solvers using a single core. In each case the ONERA

M6 wing is meshed with typical mesh sizes of 6,000 panels and roughly 500,000 finite volume elements. For the SU2

simulations the flow was converged five orders of magnitude in the density residual. The superiority of panel methods

with respect to computational time can be clearly seen from these results.
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Panel (current) SU2 SU2 multi-grid (3 levels)
Iterations 1 265 112
Time (s) 28.6 1255.4 1037.1

Table 5 Timing comparison for current panel method and SU2.
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This work introduces an aeroelastic optimization framework with a coupled 3D panel

method and Timoshenko beam finite element model. The method allows for optimization

of both the exterior surface of the wing and interior structural properties. We investigate

the effects of curved wall spars on the aeroelastic performance of converged designs, which

have been shown to provide an improved performance due to the ability to create trade-offs

between bending and torsional stiffness. Studies also highlight the importance of calculating

aerodynamic loads in the deformed configuration and solving the coupled aeroelastic problem

to convergence.

Nomenclature

A = cross sectional area

A = doublet aerodynamic influence coefficient

a = flange thickness

B = source aerodynamic influence coefficient

b = wingspan

Cf = f
1
2 ρ∞V

2∞c
, normal load coefficient

Cm = m
1
2 ρ∞V

2∞c2 , moment coefficient

CP = pressure coefficient

c = chord length

c̄ =
∫ b

2
0 c2dy∫ b

2
0 cdy

, mean aerodynamic chord

D = drag

d = design variables

E = Young’s modulus

e = spar center offset

G = shear modulus
∗PhD student, Department of Mechanical Engineering, Section of Solid Mechanics, cicosm@mek.dtu.dk. Member AIAA.
†Associate Professor, Department of Mechanical Engineering, Section of Solid Mechanics.
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h = wingbox height

Ix = second moment of area about local x-axis

Iz = second moment of area about local z-axis

K = stiffness matrix

KT = torsional stiffness

L = lift

Mp = pitching moment

m = maximum relative camber

n = normal vector

P = applied load vector

p = relative position of maximum camber

S = wing planform area

s = spar thickness

s = state variables

t = maximum relative thickness

U = displacement vector

V = velocity

w = wingbox width

α = twist

η = 2y
b , normalized span location

Λ = sweep angle

µ = doublet strength

Φ = potential function

ψ = objective function

ρ = density

σ = source strength

σv = von Mises stress

θ = pitch angle

ÆR = b2

S , aspect ratio

Subscripts

a = associated with aerodynamic model

b = associated with beam model
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∞ = associated with freestream

I. Introduction
The application of multidisciplinary optimization (MDO) to the design of aircraft wings was first conducted in

1977 [1]. This study used gradient based optimization to demonstrate that such methods can be used to achieve designs

with optimized trade-offs between weight and drag. Since then there has been a huge growth in the development of

aeroelastic optimization methods and their application to a wide range of physics models with varying fidelity, from

coupled lifting line-beam models [2] to large scale finite volume and finite element models [3–6]. Increasing fidelity

of the models results in a large increase of computational expense which is of particular importance when applied to

optimization problems as the physics model needs to be solved for each iteration of the optimization routine. To allow

fast calculations of aerodynamic loads and structural deformations our focus is on low- to mid-range fidelity methods

such as those based on potential flow theory.

Following their earlier work, Haftka et al [7, 8] later coupled a beam finite element model and vortex lattice

method (VLM) with a profile drag correction obtained from experimental data. More recently, Jasa et al developed

OpenAeroStruct, an open source aeroelastic framework that also uses a VLM-beam model based on Euler beams of

tubular cross section [9]. The method was later adopted to model more practical wingbox configurations [10]. Dunning

et al [11] applied a similar doublet lattice method with a 3D continuum mesh to the topology optimization of NASA’s

common research model (CRM) wing [12]. A higher fidelity option for the aerodynamics model is a 3D panel method,

which has been used for MDO studies in the past. One such method was developed by Kennedy et al [13] which has

been applied to a number of different studies with structural coupling to both shell [14, 15] and 3D continuum elements

[16, 17]. Goetzendorf-Grabowski and Mieloszyk [18, 19] also implemented a coupled panel-shell framework for MDO.

The focus here is on MDO of aircraft wings, but it is important to note that the developed methods are also applicable

to the design of other aeroelastic structures such as wind turbine blades. However, MDO studies of wind turbines in

the literature commonly adopt models based on blade element momentum theory [20–23], usually coupled with beam

models. Some exceptions include: Sessarego et al [24] who coupled a lifting line with a force-free wake and multi-body

beam finite element method; and McWilliam et al [25, 26] who applied Lagrangian vortex dynamics to aero-structural

MDO.

In structural optimization (SO), Aage et al [27] presented studies on topology optimization of the CRM wing under

different loading conditions. The ultra-high resolution (1 billion finite elements) of this study allowed structural features

to emerge that were unable to develop in previous lower resolutions studies due to a restricted design space. One such

feature is curved wall spars which achieve an increased torsional stiffness at the cost of only slightly decreasing bending

stiffness.
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The objective of the current work is to develop a coupled framework for solving aeroelastic optimization problems

based on 3D panel methods and beam finite elements. These coupled models allow fast calculations of the physics

of deformable wings with medium fidelity, and to our knowledge, have not been applied to MDO studies in the past.

The coupled model expands upon a framework previously developed by the authors to conduct aerodynamic shape

optimization of aircraft wings using 3D panel methods [28]. A newly derived generalized load-displacement transfer

scheme is presented for coupled panel-beam methods. Design variables are used to control both the exterior shape of

the wing and structural design of the interior. In this way, the optimizer has complete control over the external surface

and internal domain of the wing, thus expanding the design space. A simple beam cross section parametrization is

introduced in order to explore the effect of curved wall spars on the performance of optimized designs. Although the

current parametrization is a simplification of the wing box structure we note that the method can be applied to a more

advanced parametrization using cross sectional analysis tools such as VABS [29, 30] or BECAS [31].

The next section of this article introduces the reader to the panel-beam discretization and how the design is

parametrized. Section III outlines the physics modeling, which include: the 3D panel method; beam finite element

model; the derivation of a generalized load-displacement transfer for coupled panel-beam models; and solution methods

for the coupled system. The results section presents studies that explore the effect of introducing curved wall spars

in the wingbox design with respect to SO for compliance minimization, SO and MDO for mass minimization with

stress constraints, and MDO for drag minimization with stress constraints. Additionally, these studies will highlight the

importance of calculating aerodynamic loads in the deformed configuration and the effect of sweep on optimized designs.

Finally the findings are concluded in Section V. Readers are referred to the appendices for a background discussion on

the cross sectional stiffness of curved wall spars, details on stress calculations, and a derivation of sensitivity analysis.

II. Discretization and parametrization

A. Discretization

Fig. 1 shows the discretization of the problem using panels and beam finite elements. The surface of the wing

is defined by a discrete set of airfoil sections which are assembled on a common axis corresponding to their quarter

chord point. This quarter-chord axis is defined by the sweep angle Λ from the y-z plane, and lies in the x-y plane (i.e.

no dihedral) for cases where the wing geometry is optimized. Airfoil sections are defined parallel to the x-z plane

with a uniform spacing in the span-wise direction (y-direction), refer to Fig. 1a. The wing surface is discretized by

quadrilateral panels which span the distance between airfoil sections. The root of the wing is at y = 0 in the global

coordinate system. Inside the wing, a single beam finite element also extends between any two neighboring airfoil

sections. Beam nodes are located on the camber line of each airfoil section at the same fraction, κ, of the chord length, c

(refer to Fig. 1b). A beam element joins the nodes on consecutive airfoil sections and the orientation of the element is
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defined by a local coordinate system (xb, yb, zb). In the aerodynamic model symmetry is enforced by accounting for the

influence from the mirror image of the wing about the x-z plane, and the freestream flow is defined by the pitch angle, θ,

measured from the z-y plane. For certain optimization problems a pitching moment constraint will be enforced about

the center of gravity, cg. Typically the location of cg is dependent on the entire aircraft and payload. In our examples cg

will be defined at the root airfoil midway downstream of the quarter chord axis, i.e. with the quarter chord axis starting

at the origin and ending at the tip airfoil at a point (xt, yt, 0), cg is defined to be at ( xt2 , 0, 0). This will correspond to

modeling a flying wing configuration with an appropriately distributed payload.

x

y

Λ

Airfoil sections

Panels

Quarter-chord axis
x

z zb

xb Camber line

Chord line

x

y
Panels

Beam finite elements

(b)

(c)(a)

yb

xb

V∞
θ

κc
cgxt

xt
2

Fig. 1 Model discretization with airfoil parametrization shown in blue and beam finite elements shown in
green: (a) planforms highlighting wing geometry and beam finite elements, (b) root airfoil section, and (c) 3D
view.

B. Airfoil parametrization

For cases where the airfoil geometry is optimized we adopt the design variable description and airfoil parametrization

introduced in [28]. Here, airfoils are defined based on a modified definition of the NACA 4 or NACA 5-digit airfoils.

This parametrization uses up to five design variables per section to define an airfoil, namely, chord length c, maximum

thickness t, maximum camber m, position of maximum camber p, and twist α (each labeled in Fig. 2). Airfoil design

variables are filtered in the span-wise direction (as described in [28]) in order to avoid numerical artifacts.

C. Beam parametrization

In the structural model we assume that the load is carried only by the wing box which is defined by 5 design variables

per section, as shown in Fig. 3. The wing box of height, h, and width, w, comprises of forward and aft spars of equal
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c

m

Camber line

Chord line

p

t

x

z

V∞

α

θ

Fig. 2 Parametrization for airfoil sections based on NACA airfoil definitions, with maximum of 5 design
variables: chord length c, maximum thickness t, maximum camber m, twist α.

thickness, s, and upper and lower flanges of equal thickness, a. We include a fifth variable, e, which defines the center

offset of the spar walls whose curved geometry is elliptic. The advantage of using ellipses (defined by major and minor

axes) rather than circular arcs (defined by a radius and angle) is that the curves are less susceptible to roundoff errors

when they approach a right-angled wingbox where the radius of a circular arc will grow to infinity and the angle tend to

zero. The dimension, w, is between the centroids of the elliptic sections which means the internal area of the wingbox is

kept roughly constant as the spar walls become increasingly more curved. This creates a fairer basis to compare straight

and curved wall spars. The quantities w, h, and e define the outer dimensions of the wingbox where thicknesses a and s

are inset from the external wingbox geometry. Beam cross sections are parametrized in this manner at each airfoil

section. The parametrization method is capable of tending from one extreme where spar walls are straight to the other

extreme where the spar walls are semi-circular.

xb

zb

s

a

w

h

e w − 8e
3π

Fig. 3 Parametrization for a beam cross section based on 5 design variables: width w, height h, flange thickness
a, spar thickness s, and spar center offset, e.

Upper bounds are placed on the design variables to ensure that the beam geometry is contained within the airfoil

geometry. As the airfoil geometry is also defined by design variables these upper bounds are defined as fractions of

the airfoil chord length and maximum thickness, e.g. w = w̄c, where w̄ is the design variable with bounds defined by
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0.01 ≤ w̄ ≤ 0.4. If the beam design variable is at the upper bound, the airfoil section geometry must be enlarged in

order to increase the size of the beam. By defining the wingbox geometry in this manner the optimizer will know, for

example, that c must increase in order to increase w, as there will be a gradient with respect to c. By defining w directly

and setting the upper bound on w, no sensitivity information about the external geometry with respect to the internal

geometry will be available to the optimizer.

The beam parameterization does not account for connections between the wingbox and the outer skin. At first this

may seem somewhat unrealistic, however, the parameterization is robust enough to allow a large variance in stiffness

properties whilst maintaining physical values. It should then be possible to reproduce the resulting stiffness properties

using more conventional rib-spar structures.

III. Physics modeling
This section presents physics model of the coupled 3D panel and beam finite element methods. Two coupling

methods are considered where aerodynamic loads can be calculated in either undeformed or deformed configurations.

For the undeformed case the loads are calculated via the panel method and applied to the beam, where both models

are solved only once. We will refer to this method as 1-way coupled. The second coupling method will be referred to

as 2-way coupled, where displacements from the finite element model are used to perturb the panel geometry in the

aerodynamic solver and the coupled problem is solved to convergence.

A. Aerodynamic model

The aerodynamic pressure loads are captured using constant source-doublet panels with a Prandtl-Glauert compress-

ibility correction as introduced in [28]. We implement a Dirichlet boundary condition with a zero internal perturbation

formulation defined by the governing equation

Ra(µ,U, d) = A(U, d)µ + B(U, d)σ(U, d) = 0 (1)

where A and B are the aerodynamic influence coefficients which depend on the design variables, d, and (for 2-way

coupling) the solution to the finite element problem, U. Equation (1) is used to solve for the doublet strengths, µ, with

the source strengths are defined as

σi = V∞ · ni (2)

where V∞ is the freestream velocity and ni is the outward pointing normal of panel i. Once the doublet strengths are

known the local velocity across a panel i, can be calculated as the gradient of the potential function, Φ, which simplifies

to

V i = ∇Φi =

(
dµ
dx̄
,

dµ
d ȳ
, 0

)T
i

+

(
V∞ · x̄,V∞ · ȳ, 0

)T
i

(3)
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where x̄ and ȳ are local panel coordinates whose axes are define by unit vectors x̄ and ȳ in the global reference frame.

Local velocity is then used to calculate the pressure coefficient via the Bernoulli equation

CP,i = 1 − || V i | |2
| | V∞ | |2

(4)

The total induced drag and lift are calculated using a far-field approximation via a Trefftz-plane integration as it has

been found to be more numerically stable for optimization problems compared with CP-integration [28]. Trefftz-plane

integration is calculated as [32]

D = −1
2
ρ∞

Nw∑
i=1

µilivi .ni (5)

L = ρ∞V∞
Nw∑
i=1

µi cos(φi)li (6)

where Nw is the number of wake panels, li and φi are the length and orientation of wake panel i in the Trefftz-plane.

Because panel methods assume inviscid and incompressible flow, the induced drag is the only type of drag captured by

this model. It is possible to couple these methods to viscous solvers [33] but this will require prior knowledge of the

boundary layer shape which is difficult to predict when airfoils are free to change during the optimization procedure.

As a result, only the induced drag is considered in this work. A fixed wake model is used whose shape is achieved by

projecting the trailing edge downstream in the free-stream direction.

B. Structural model

The internal structure of the wing is modeled using one-dimensional cubic beam finite elements. Element degrees

of freedom (DOF) and local loads are shown in Fig. 4.

Aerodynamic loads calculated in the panel method are transferred to beam nodes in form of a load vector, P, which

consists of local forces, F, and moments, M . These loads are dependent on both the design variables, d, and the solution

to the panel method, µ. Only aerodynamic loads are applied, where self-weight is not considered. We note that by

neglecting self-weight the loading will be slightly higher as the wing’s weight would impose a force counteracting

the lifting loads, thus potentially reducing the stresses. The global vector of nodal displacements and rotations, U, is

determined via the governing equation for the beam,

Rb(µ,U, d) = K(d)U − P(µ,U, d) = 0 (7)

It is noted that for 2-way coupling, P is also dependent on U as the aerodynamic loads are calculated in the deformed

configuration. The global stiffness matrix, K, is a function of d, and formed from assembling element stiffness matrices,
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ϕy
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Mz

Fz

Fx
Mx
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yb

zb

xb
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zb

Fig. 4 Abeamfinite elementwith local coordinate system, degrees of freedomand applied loads: displacements,
{ux, uy, uz}; rotations, {φx, φy, φz}; conjugate forces, {Fx, Fy, Fz}; and applied moments, {Mx, My, Mz}.

Ke via

Ke(d) =
∫ le

0
T(d)TBTKcs(d)BT(d)dl (8)

where T is a rotation matrix accounting for the orientation of the beam in the global coordinate system (refer to Fig. 1).

By evaluating the integral in (8) using gauss quadrature, one can account for a varying cross section along the element.

The constitutive model for a cross section of the beam is based on an axial model, thin-walled torsional model, and

Timoshenko model in bending. Only doubly symmetric cross sections and isotropic materials are considered in this

work and as such the constitutive stiffness matrix, Kcs , is a diagonal matrix with the following non-zero entries

Kcs,11 = GA , Kcs,22 = E A , Kcs,33 = GA , Kcs,44 = EIx , Kcs,55 = GKT , Kcs,66 = EIz (9)

From the dimensions shown in Fig. 3 analytical expressions for area and second moments of area can be derived

using the principles of superposition and the parallel axis theorem. These are standard methods which are well

documented [34] and as final expressions are long they are not presented here. Note that the shear correction factors in

(9) have been neglected as they are not readily available for all curved wall spar geometries. However, as these values

are typically higher for curved cross sections, we suspect that including shear factors would increase the incentive for

the optimizer to create curved wall spars. If the reader is interested in achieving shear correction factors for a given

wingbox with curved wall spars we recommend using VABS [29, 30] or BECAS [31] cross-sectional analysis tools.
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The matrix B in (8) is the strain displacement matrix defined such that the strains and curvatures can be achieved by

{
ε
κ

}
= BUe = [N′ + SN]Ue (10)

where N are the shape functions, whose derivatives are denoted by the prime, and S is used to account for rotations of

the cross section in calculating the strains due to bending [35], i.e. εx = dux

dl + ϕz and εz =
duz
dl − ϕx (refer to DOF in

Fig. 4).

C. Load-displacement transfer

The beam finite element model assumes sections remain planar and undergo rigid body displacements and rotations.

Since nodes of an airfoil section on the panel mesh lie in-plane with a single node on the beam mesh, the perturbations

of a single aerodynamic node, δXa, is described using displacements and rotations of the beam node at the same

span-wise location. Assuming small rotations the displacement transfer can be defined as

δXa = δub − r × δϕb = δub + δϕb × r (11)

where δub and δϕb are displacements and rotations at the beam node, and r is a spatial vector from the beam node to

the aerodynamic node.

Aerodynamic forces are transferred to the beam in form of distributed loads f and m. The total load acting on an

element is achieved integrating distributed loads from along the element and summing the contribution from each of the

N panels at the same span-wise section.

Pe =

{
F

M

}
=

N∑
i=1

∫ le

0

{
f
m

}
dl (12)

To ensure consistency it is required that the total force calculated in the aerodynamic model matches the applied load

in the beam model. To ensure conservativeness the virtual work performed by the structural load undergoing virtual

displacements and rotations must be equal to the virtual work of the panel method [36]. Using this requirement we can

derive a consistent and conservative load-displacement transfer method. The virtual work of a beam element loaded by

a single panel (as shown in Fig. 5) is defined as

δWb =

∫ le

0

{
f
m

}T{
δu

δϕ

}
dl =

∫ le

0

(
fTδu + (r × f)Tδϕ)

dl (13)

where the applied moments arise from translating the force from the panel to the beam element meaning that m = r × f,
with r being a spatial vector from the beam element to the panel. Manipulating the second term in the integrand by
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(r × f)Tδϕ = δϕT(r × f) = (δϕ × r)Tf = fT(δϕ × r), yields

δWb =

∫ le

0
fT(δu + δϕ × r)dl (14)

The virtual work of the aerodynamic model by a single panel is

δWa =

∫
S

q∞CPn
TδXadS (15)

The panel method assumes that CP is constant over the panel and each panel is flat meaning that n is also constant over

the panel. Additionally, we assume perturbations in the chord-wise direction of the panel are constant. Using equation

(11) and representing dS as wdl we find that

δWa = q∞CP JlnT
∫ le

0
w(δu + δϕ × r)dl (16)

where Jl is a linear mapping introduced to account for cases where the length of the panel is not equal to the element

length, le (refer to Fig. 5). By equating equations (14) and (16), the distributed load, f from a single panel can be

defined as

f = q∞CP Jlwn (17)

The applied load can now be calculated by inserting (17) and m = r × f into (12).

D. 2-way coupled solution method

The coupled problem can be solved using fixed point iterations in which the panel method is solved in the undeformed

configuration and calculated loads are used to solve the beam problem. The displacements from the beam problem are

then passed back to the panel method and loads are calculated in the deformed configuration. This process continues

until the change in state variables, s = {µ U}T, between iterations is less than the tolerance ε .

Alternatively a Newton method is used where the residual R = {Ra Rb}T is calculated on each iteration and a

solution step, δs, is calculated using the Jacobian ∂R
∂s , as

δs = ∂R
∂s
−1
R (18)

where

∂R
∂s =


∂Ra

∂µ
∂Ra

∂U

∂Rb

∂µ
∂Rb

∂U


=


A

[
∂A
∂Uµ +

∂B
∂Uσ + B

∂σ
∂U

]

− ∂P∂µ
[
K − ∂P

∂U

]


(19)
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(b)

(a)

w

w
r

r

Airfoil sections

Beam finite
elements

Panel i

le

l , le

Fig. 5 Schematic of load displacement transfer scheme from a single panel in (a) 3D and (b) planform views.

The solution is terminated once the residual norm is less than the tolerance ε .

Fixed point iterations generally take more iterations to converge as it is a first order convergence scheme and the

Newton method is second order. However, a fixed point iteration method does not require the user to calculate the

Jacobian matrix, which for the panel method can take up to 8 times the computational cost of the forward problem

[28]. This means fixed point iterations generally converge to a solution faster than the Newton method with respect to

wall-clock time. However, the Newton method is more robust for compliant wings where deformations are large [9].

Generally, we use fixed point iterations due to the reduced computational cost, and a value of ε = 10−3 was used for

optimization problems as it was found to be a good trade-off between accuracy and computational time.

IV. Results
The results section is divided into two subsections. The first subsection, (A), contains studies where the internal

structure of the CRM wing is optimized for compliance minimization and stress-constrained mass minimization. The

goal of these studies is to provide the reader with insight into the beam parametrization, coupling procedure, and

problem formulation. Subsection (B) details multidisciplinary shape optimization studies where both the external wing

geometry and the internal beam structure is parameterized by design variables. Each problem is solved for a freestream

velocity of Mach 0.4 using 4000 panels and 40 beam finite elements. All optimization problems are solved using

the method of moving asymptotes [37] where gradients are calculated using adjoint sensitivity analyses. Readers are

referred to appendix C for derivations of gradients.
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A. Structural optimization of the CRM wing

As a first study we investigate a fixed skin CRM wing optimization with design variables, d = {w, h, a, s, e}. The
objective is to minimize compliance subject to a volume constraint, as defined in (20), where compliance is summed

for multi-load cases with each case weighted equally, and the volume fraction is defined as the volume of the beam

divided by the total volume of the wing. This is a similar formulation to the topology optimization study presented in

[27] where curved wall spars appeared. Here, the problem is solved using only 1-way coupling (i.e. in the undeformed

configuration). Studies are presented with pitch angles, θ = {0◦, 5◦, 10◦}. The beam nodes are positioned at the 40% of

the chord length in each section, as shown in Fig. 6a. The primary loading of the beam in each case is given in Figs. 6b

and 6c, where coefficients are calculated using the mean aerodynamic chord.

min
d ∈ RNd

: ψ =
∑
θ

Cθ (U, d)

subject to : V(d) − V̄ ≤ 0

¯
d ≤ di ≤ d̄ for i = 1, ..., Nd

(20)

y

x

z
y

(a)

(b)

(c)

Fig. 6 Undeformed CRM wing geometry and primary beam loading at different pitch angles: (a) plan and
elevation of the CRM wing with beam axis shown in green, (b) normal load coefficient, (c) torsional load
coefficient.

The optimization problem is solved where the spar walls are straight, i.e. e = 0 in Fig. 3, and where curved wall

spars are allowed to form, i.e. e is a design variable, in order to investigate possible gains. The relative difference in the

objective function between optimized designs with fixed straight wall spars and when curved wall spars are allowed

to form is shown in Fig. 7, where ∆C = ψe=0−ψe

ψe=0
, . The results show a reduction in compliance with the curved wall
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Fig. 7 Reduction in compliance when curved wall spars are allowed for different volume fractions.

spars for a range of volume fractions, V̄ . The reduction in compliance is due to an increased torsional stiffness of the

curved wall spars. However, this increase in torsional stiffness corresponds to a reduction in bending stiffness (refer to

appendix A for an example study). As the volume fraction of the structure increases the optimizer is less likely to use

curved wall spars and the performance of the two designs are similar. This is because the thicker-walled box sections

already provide adequate torsional stiffness, as can be seen in the definition of KT (appendix A, equation (26)). On

the other hand when tight restrictions are placed on the available material the use of curved wall spars become more

advantageous, with reductions in compliance of up to 10%.

Fig. 8 Span-wise variation in curvature of the spar walls for the θ = {0◦, 5◦, 10◦} case with different volume
fractions. Spar walls are straight for e

h = 0 and semi-circular for e
h = 0.5.

Fig. 8 plots the ratio of e to h along the span of the wing for different volume fractions in the multi-load case. The

ratio of e to h describes how curved the spar walls are, where e
h = 0 corresponds to straight wall spars and e

h = 0.5

to semi-circular spar walls. Curved wall spars form mainly around the tip and root of the wing, and are less likely to

appear for higher volume fractions as previously discussed. Cross sections of wing and beam at the root, mid-section,

and tip for a selection of volume fractions are shown in Fig. 9. From these sections it is clear to see the straight and

curved wall spar designs tend to converge for higher volume fractions. For low volume fractions the beam is wider in

the mid-sections of the wing than the root or tip. This increases the torsional stiffness away from the root where is it not

possible to increase the height due to the restrictions of the airfoil section. In this case the torsional stiffness peaks
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around the Yehudi break, whereas for larger volume fractions the largest torsional stiffness is at the root, corresponding

to the largest airfoil section. Differences in the performance of these structures may not be intuitively obvious from the

cross sections alone. A more informative way to compare the differences in design is to look at the distribution along

the wing of the sectional stiffness properties as shown in Fig. 10. Here the sectional stiffness is normalized with wing’s

planform area S, span b, and mean aerodynamic chord c̄. These distributions show that by introducing curved wall spars

the optimizer can sacrifice bending stiffness for an increase in torsional stiffness. This is most evident for low volume

fractions as designs converge for when the volume fraction increases.

(a) V = 2.5%

(b) V = 7.5%

(c) V = 15%

Fig. 9 Airfoil and beam sections for θ = {0◦, 5◦, 10◦} case with different volume fractions. Root, mid, and tip
sections from left to right with straight wall spar designs are shown on top, curved wall spars designs are shown
below.

Comparing to the topology optimized designs presented in [27], the spars have a higher curvature in our case.

However, it is important to note that the airfoil skin thickness is included in topology optimized designs which will

increase the torsional stiffness. As discussed earlier, one may argue the current beam parametrization is non-physical as

the connection between the wingbox and airfoil skin is not considered. However, the simplified model is adequate for

demonstrating the differences in performance of curved wall spar structures. Additionally, the parametrization allows

stiffness distributions to be optimized in a manner that is robust and produces physical values. It can then be possible to

realize these stiffness distributions using more traditional rib-spar structures post-optimization.

When dimensions of the wingbox are free to change, as in the previous example, it can be difficult to demonstrate

the trade-offs between straight and curved wall spars as the wingbox dimensions have a large impact on the stiffness

properties of the beam (refer to appendix A). It is more clearly demonstrated by fixing the wingbox dimensions and

solving (20) again with only one design variable per section to control the shape of the spars, i.e. d = e. All other

wingbox dimensions are defined by the optimized design with straight wall spars in the previous problem. Fig. 11

shows the difference in sectional bending and torsional stiffness along the wing for the multi-load case, θ = {0◦, 5◦, 10◦}.
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(a) V̄ = 2.5%, bending stiffness (b) V̄ = 2.5%, torsional stiffness

(c) V̄ = 7.5%, bending stiffness (d) V̄ = 7.5%, torsional stiffness

(e) V̄ = 15%, bending stiffness (f) V̄ = 15%, torsional stiffness

Fig. 10 Stiffness properties of converged designs for primary loading in multi-load case, θ = {0◦, 5◦, 10◦}.
Solved for different volume fractions, V̄ , with both straight and curved wall spars.

For these designs the optimizer can curve the spar walls leading to increases in torsional stiffness at the cost of reducing

bending stiffness. This clearly shows the freedom of the parametrization to create optimized trade-offs between torsional

and bending stiffness. As the spars become thicker, creating curved wall spars becomes less advantageous, and for a

volume fraction, V ≥ 15%, the spar walls remain straight. Curved wall spars mainly form towards the tip of the wing

and in some cases at the root. This makes sense as at the tip of the wing the bending strain tends to zero but the torsional

strain does not. For low volume fractions allowing curved wall spars can lead to an increase in torsional stiffness of over

10%.

Compliance minimization is the standard problem formulation for structural optimization problems. However, it

is not uncommon that aircraft wings are designed to experience large deformations, and by minimizing compliance

the deflections are minimized. A more natural formulation for structural optimization of an aircraft wing would be to
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(a) V̄ = 2.5% (b) V̄ = 5%

(c) V̄ = 7.5% (d) V̄ = 10%

(e) V̄ = 12.5% (f) V̄ = 15%

Fig. 11 Difference in sectional stiffness between curved and straight wall spars for different bounds on volume
fraction, V̄ , and only one design variable, e.

minimize mass subject to stress constraints, defined as

min
d ∈ RNd

: m(d)

subject to :
σ̂i(U, d)

σ̄
− β ≤ 0 for i = 1, ..., Nr

¯
d ≤ di ≤ d̄ for i = 1, ..., Nd

(21)

where σ̂i is the maximum stress in region i, σ̄ is the yield/ultimate stress, and β is a fixed scalar which introduces a

safety factor. A p-norm function is used to approximate the maximum stress and aggregate the stresses into Nr regional

constraints by

max(σv) ' σ̂ = cIσpn = cI

(∑
i

σ
p
v,i

) 1
p

(22)

where cI is a scaling parameter used to ensure the p-norm correctly approximates the maximum von Mises stress and is
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defined as [38]

cI = ζ
max(σv)I−1
σpn,I−1

+ (1 − ζ)cI−1 (23)

where I is the design iteration number and ζ is taken to be 0.5 throughout. The von Mises stress, σv is calculated at

the gauss points, at 16 locations on the cross section as described in appendix B. Stress constraints are enforced on

Nr regions, to improve the performance of the p-norm approximation. These regions are defined based on span-wise

location where the beam is divided into Nr equal segments. Typically, Nr = 20 was used with 40 finite elements and 4

gauss points along the element, leading to a total of 128 stress calculations per region.

Here, the problem is solved using both 1- and 2-way coupling methods. The CRM wing is again taken as the fixed

outer geometry. For β = 1, curved wall spars achieve a reduction in mass of 13-14% for both 1- and 2-way coupled

problems. The reasoning for this is the same as previously discussed for the compliance minimization problem: the

curved wall spar parametrization is better able to create optimized trade-offs between torsional stiffness and bending

stiffness. The maximum stress ratio in each section along the wing is shown in Fig. 12 for different values of β. The

changes in mass when going from 1-way coupling to 2-way coupling (∆m = m2−m1
m1

) is shown in Table 1 and the stiffness

distributions for straight wall spar designs are shown in Fig. 13.

(a) β = 1, straight wall spars (b) β = 1, curved wall spars

(c) β = 0.8, straight wall spars (d) β = 0.8, curved wall spars

(e) β = 0.6, straight wall spars (f) β = 0.6, curved wall spars

Fig. 12 Maximum stress ratio at sections along the beam for optimized designs with 1- and 2-way coupling.
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spar walls β ∆m [%]
straight 1 21.8
straight 0.8 148.7
straight 0.6 130.0
curved 1 21.7
curved 0.8 40.4
curved 0.6 79.8

Table 1 Difference in mass, ∆m between 1-way coupled to 2-way coupled designs, for both straight and curved
wall spars.

(a) β = 1, bending stiffness (b) β = 1, torsional stiffness

(c) β = 0.8, bending stiffness (d) β = 0.8, torsional stiffness

(e) β = 0.6, bending stiffness (f) β = 0.6, torsional stiffness

Fig. 13 Stiffness properties for straight wall spar designs in primary loading with different β values.

For β = 1 the maximum stress distribution is constant along the length of the wing regardless of coupling method or

spar definition. When a stricter constraint is enforced on the stresses the 1-way coupled designs appear to have similar

stress distributions along the wing. However, for 2-way coupled designs the stresses are reduced towards the root due to

an increased stiffness in that region (refer to Fig. 13). By increasing the stiffness at the root, the deflections along the

wing are reduced. The increased stiffness means that the stress constraint is not active at the root, but by reducing the

deflections, the loading is reduced and the stress constraint can be satisfied in the outer regions of wing. The onset of

this occurs for higher β values with straight wall spars, as the curved wall spars allow a larger torsional stiffness which

19

P2P2



can be used to reduce stresses in the outer portions of the wing. This allows the design to satisfy the stress constraint

without as much material placed at the root to restrict deformations. The additional stiffness does however result in

more mass to be added at the root of the wing leading to large differences in the objective function between 1- and

2-way coupled designs, as shown in Table 1. When stress constraints are relaxed, i.e. β = 1, there is still a difference

of 21% in the objective function between 1- and 2-way coupled designs. This study demonstrates the importance of

solving these problems in the deformed configuration, i.e. using a 2-way coupled method. This finding aligns with

previous studies in the literature, where different physics models were used [11, 39, 40].

B. Multidisciplinary shape optimization

Finally, we consider the case where the external geometry is defined by design variables using the NACA 5-digit

airfoil parametrization, and the beam sections are also allowed to vary, i.e. d = {c, t, p, α, w, h, a, s, e}. Consider the
optimization problem defined in (24) with the objective of minimizing drag in cruise conditions (θ = 0◦).

min
d ∈ RNd

: D(µ,U, d)

subject to : L(µ,U, d) = WT (d)

σ̂i(µ,U, d) − σ̄ ≤ 0 for i = 1, ..., Nr

Mp(µ,U, d) = 0

¯
d ≤ di ≤ d̄ for i = 1, ..., Nd

(24)

In order to satisfy equilibrium in cruise, the total lift must be equal to the aircraft weight. This is enforced by a

constraint, where the weight is defined as the sum of the wingbox structure, Wb, a payload, Wp, and 5% of the wing

volume to account for skin thickness, ribs and additional stiffeners, Wv .

WT (d) = Wb(d) +Wv(d) +Wp (25)

The optimization problem is also subject to stress constraints at an additional load case with a pitch angle, θ = 10◦,

simulating a high lift condition. As only the lift-induced drag is considered, the optimizer will seek to reduce lift in

order to reduce the drag. This in-turn will require the weight to be reduced due to the first constraint on lift-weight

equilibrium. The weight is bounded by the stress constraint because if the weight continues to reduce, the beam will

experience large strains leading to large stresses. The final constraint is on the pitching moment in cruise which must be

equal to zero. The pitching moment is calculated about a point mid-way downstream of quarter chord axis (refer to Fig.

1). We note that the pitching moment constraint can be neglected and the problem will still converge to reasonable

designs. However, the pitching moment is directly related to the airfoil camber and without this additional consideration
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the optimizer could use twist, camber or any combination of two to produce the desired lift for a minimum drag. This

creates many possible solutions to the optimization problem, thus the pitching moment constraint offers a means to

include an additional practical consideration whilst making the optimization problem better posed.

Sweep is used in aircraft wings to delay the formation of shock waves in transonic flow, a phenomena which cannot

be predicted by the panel method. It is also used to ensure stability which is of particular importance in flying wing

configurations. Here, optimization problems are solved for fixed sweep angles Λ = {0◦, 15◦, 30◦} where converged
designs are shown in Fig. 14. The loading for converged designs are shown in Fig. 15, with geometry and performance

details tabulated in Table 2.

(b) Λ = 15◦(a) Λ = 0◦ (c) Λ = 30◦

θ = 0◦
θ = 10◦

θ = 0◦
θ = 10◦

θ = 0◦
θ = 10◦

Fig. 14 Planform and deflections for converged designs with different sweep angles, Λ. Beam axis shown in
green.

(a) θ = 0◦ (b) θ = 10◦

(c) θ = 0◦ (d) θ = 10◦

Fig. 15 Primary beam loading for converged designs in cruise and high load cases: (a)-(b) normal load
coefficient, (c)-(d) torsional load coefficient.

All designs produce high lift to drag ratios between 55 and 60 which is expected as induced drag is the only type of
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Λ ÆR Ut

b [%] L
D

0◦ 14.5 6.72 59.1
15◦ 12.1 6.45 57.6
30◦ 9.9 5.96 55.8

Table 2 Aspect ratio, tip deflection and lift to drag ratio for converged designs with different sweep angles, Λ.

drag considered. The lift to drag ratio steadily decreases with increasing sweep. Each design converges to large aspect

ratio wings which is expected as the most effective way to minimize induced drag is to increase aspect ratio. Designs

also have large taper ratios which is motivated by the structural model in order to reduce deformations. This also leads

to a large chord length at the root, particularly in swept wings where the loading is high. The stiffer structures that arise

in larger swept wings create reductions in the tip displacement, Ut . The airfoil sections at the root, mid-section, and tip

for each design are shown in Fig. 16.

Fig. 16 Cross sections at root, mid-span, and tip (left to right) for Λ = 0◦ (top), Λ = 15◦ (middle), Λ = 30◦
(bottom).

The airfoil parametrization allows a reflex camber line to form in order to aid the fulfillment of the pitching

moment constraint. However, only the unswept wing used a reflex camber-line. The swept wings experience higher

torsional loads leading to larger twist deformations and the pitching moment constraint to be satisfied in the deformed

configuration.

The maximum stress ratio per section is plotted in Fig. 17 for each of the optimized designs. When there is no

sweep, the point where the pitching moment is calculated is near-coincident to the beam axis, meaning the pitching

moment constraint pushes the torsional loads to near zero (refer to 15). Without torsional loads the optimized design

does not converge with curved wall spars as to do so will reduce bending stiffness (Fig. 16). Also, the bending stresses

tend to zero towards the tip of the wing, so with low torsional stresses the maximum von Mises stress will also tend to

zero towards at the tip as seen in Fig. 17. Stress distributions for the swept wing cases are similar, as are their cross

sections (Fig. 16) and loading (Fig. 15). However the loading increases with increasing sweep which requires more

stiffness and a larger wingbox. As stated previously, the stiffness distributions give more of an insight into the properties
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of the beam, these are shown in Fig. 18. Compared to the CRM wing results in Section IV.A, the curved wall spars of

these design are more moderate because torsional loads are lower. There is also a larger difference between the flange

and spar thicknesses of these designs because bending loads are more dominant. But this difference in wall thickness

also means torsional stiffness can be reduced for large-curved spar walls (refer to appendix A).

Fig. 17 Maximum stress-ratio in the beam cross-section plotted along the wing for different sweep angles.

(a) (b)

Fig. 18 Bending and torsional stiffness distributions for optimized designs with different sweep angles.

As a comparison we consider the case where Λ = 15◦ and the problem is solved using 1-way coupling. Planform

and airfoil sections for the optimized design is shown in Fig. 19. When 1-way coupling is used the design has similar

planform to that of 2-way coupled design. However, there are more differences in the cross sections. The twist is

reduced towards the tip in order to satisfy the pitching moment constraint in the undeformed configuration. Due to

reductions in twist and the 1-way coupling, the torsional loads are lower in this case leading to less-curved spar walls

and a shorter width in the wing box (w in Fig. 3). This also provides a reduction in mass, which leads to a lower lift

through the equilibrium constraints, and a lower lift-induced drag. From lifting line theory, we know the induced drag is

proportional to the square of lift, so the drag will reduce at a faster rate than the lift. This allows the 1-way coupled

design to increase the lift to drag ratio to 61.3.

V. Conclusion
The current work introduces a framework for solving aeroelastic optimization problems based on coupled 3D panel

and beam finite element methods, with a generalized load-displacement transfer scheme. The framework has proven to

work effectively in producing optimized designs with mid-fidelity physics models. Straight and curved wall spars are
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(a) (b)

Fig. 19 Optimized design for 1-way coupling with Λ = 15◦: (a) Planform with beam axis shown in green, (b)
cross sections at root (top), mid-span (middle), and tip (bottom).

compared based on their performance in compliance minimization and stress-constrained problems. In both cases, the

curved wall spars have proven to achieve better designs as they offer more design freedom to create trade-offs between

torsional and bending stiffness. This confirms the predictions presented in [27] where curved wall spars first appeared.

Comparisons are presented between 1- and 2-way coupling methods where it is shown that the change in loading for

deformed configurations can have a significant effect on the optimized design and its performance. This highlights

the importance of calculating loads in the deformed configuration and solving the aeroelastic problem to convergence.

The current beam parametrization method represents a simplified wingbox that is used to demonstrate the capabilities

of the MDO framework and arrive at the conclusions previously stated. However, the methods presented here can

easily be extended to a more advanced cross-sectional parametrization and analysis for sectional stiffness properties.

Alternatively, the current parametrization method is robust enough to allow a large variance in stiffness properties along

the wing whilst remaining physical. These span-wise stiffness distributions can be realized post-optimization using

more common aerospace structures such as spar and rib configurations.
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Appendices

A. Effect of curved spar walls
Consider a single beam cross section parameterized as described in Section II.C. Fig. 20 plots the relative difference

in stiffness properties, ∆, when spar walls become increasingly more curved. The spar walls are straight for e/h = 0 and

semi-circular for e/h = 0.5. The torsional stiffness for thin walled sections is defined as

KT =
4A2

s∮
ds

t(xb,zb )
(26)

where s is the perimeter of the wingbox defined by the wall’s centerline, As is the area enclose by s, and t is the wall

thickness.

(a) a
s = 1 (b) a

s = 10

Fig. 20 Effect on torsional and bending stiffness by curving the sparwalls for two different spar-flange thickness
ratios.

Increasing the curvature of the spar walls can lead to increased torsional stiffness but reductions in bending stiffness.

For a constant wall thickness the torsional stiffness is proportional to the square of the cross-sectional area over the

perimeter. This is why cylinders represents the optimal design for purely torsional loads, and why we see an increase in

torsional stiffness for curved wall spars. However, these relationships can also vary with the differences in thickness

between spars and flanges, where it is less advantageous for common thick-flange, thin-webbed beam structures. This is

due to the beam parametrization method as when the spar walls curve some material is also removed from the flanges.

If the flanges are thicker than the spars, then by equation (26), the thickness of the flange can have a larger contribution

to the torsional stiffness. In this way, large-curved spar walls will remove more material from the flange leading to

reductions in torsional stiffness.
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B. Stress analysis
Four stress states exist the beam: longitudinal stress; torsional stress; and shear stress in the two transverse directions.

These stresses are defined for a thin-walled Timoshenko beam as follows

σL = E(εy + κz xb − κx zb) (27)

τT =
GKT

2At(xb, zb) κy (28)

τFx =
GAQz(xb, zb)

Iz t(xb, zb) εx (29)

τFz =
GAQx(xb, zb)

Ixt(xb, zb) εz (30)

where xb and zb are local coordinates on the cross section at the point of stress evaluation, t is the local thickness, and Q

is the first moment of area.

In the assumptions of thin-walled cross sections the shear direction is defined by the shear flow, and the total shear,

τx and τz , is the sum of the individual contributions, τT , τFx , and τFz [34]. The shear flow diagrams for our cross

section are shown in Figs. 21a-21c. The maximum von Mises stress can occur at a possible 16 locations in a given cross

section (shown in Fig. 21d). The exact location will depend on the loading conditions of the beam. Von Mises stress is

calculated at each of these 16 locations in the cross sections via

σv =

√
σy

2 + 3(τx2 + τz2) (31)

C. Sensitivity analysis
All sensitivities are calculated via a discrete adjoint method. Consider the objective/constraint function f expressed

in augmented Lagrangian form as

F = f (µ,U, d) + λTaRa(µ,U, d) + λTbRb(µ,U, d) (32)

where λa and λb are Lagrangian multipliers for aerodynamic and beam models respectively. The total derivative of F
with respect to d is derived to be

dF
dd =

∂ f
∂d + λ

T
a

[
∂A
∂d µ +

∂B
∂dσ + B

∂σ

∂d

]
+ λTb

[
∂K
∂d U − ∂P

∂d

]
(33)
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(a) Shear flow for shear force, Fx (b) Shear flow for shear force, Fz

(c) Shear flow for torsion, T (d) Stress evaluation points

Fx

xb

zb

Fz
xb

zb

T
xb

zb

w

xb

zb

w − 8e
3π

Fig. 21 Methods for stress evaluation.

where the operator ∂
∂d captures only explicit dependence on d, and λa and λb are calculated through solving the

following adjoint equations

λTaA−λTb
∂P
∂µ
= −∂ f

∂µ

λTa

[
∂A
∂Uµ +

∂B
∂Uσ + B

∂σ

∂U

]
+ λTb

[
K − ∂P

∂U

]
= − ∂ f

∂U

(34)

or
∂R
∂s

T
λ = −∂ f

∂s (35)

with λ = {λa λb}T.
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Aerodynamic shape optimization of non-planar wings
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Aircraft wings are commonly designed with non-planar geometry, such as winglets, in

order to improve aerodynamic efficiency. This work presents a method for generating non-

planar wing designs through gradient-based optimization, which is then used to investigate

the performance characteristics of non-planar wings. The non-planar parameterization is

defined to give a large design space that allows the formation of highly non-planar features

and permits large changes to the geometry. Aerodynamic characteristics are captured using

an inviscid 3D panel method with approximations for viscous drag. The methodology is

demonstrated by optimizing reference wings from literature and comparing aerodynamic

performance. Investigations are also performed on the differences between raised and drooped

wings, and how these designs can improve on the performance of planar wings. Results suggest

that the converged designs and their performance is highly dependent on how the geometry

is restricted. If a large design space is provided, both raised and drooped wings are able to

produce designs with similar performance when only inviscid analysis is considered. When

accounting for viscous effects, results suggest that drooped wings are not beneficial for drag

reduction.

Nomenclature

A = doublet aerodynamic influence coefficient matrix

a = x-coordinate of quarter chord curve

B = source aerodynamic influence coefficient matrix

b = wingspan

Cd = d
1
2 ρ∞V

2∞c
, sectional drag coefficient

CD = D
1
2 ρ∞V

2∞S
, drag coefficient

CDi = Di
1
2 ρ∞V

2∞S
, induced drag coefficient

Cl = l
1
2 ρ∞V

2∞c
, sectional lift coefficient

CL = L
1
2 ρ∞V

2∞S
, lift coefficient
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CP = pressure coefficient

c = chord length

d = sectional drag

D = drag

Di = induced/inviscid drag

Dv = viscous drag

e = efficiency factor

L = lift

n = normal vector

q = z-coordinate of quarter chord curve

S = wing planform area

V = velocity

x = design variables

α = angle of attack

αi = induced angle of attack

η = 2y
b , normalized span location

µ = doublet strength

ρ = density

σ = source strength

ÆR = b2

S , aspect ratio

Subscripts

t = associated with wingtip

∞ = associated with freestream

I. Introduction
Studies on optimal designs for aircraft wings date back to at least the 1920s whereMunk [1] derived that an elliptically

loaded planar wing is required to achieve a minimum induced drag. This has since become common knowledge where

an elliptic planform wing is the optimal design for planar, untwisted, unswept wings. When considering non-planar

and swept wings there is no definitive optimal design, however certain non-planar wings have been shown to improve

efficiencies beyond that of the elliptic wing. The most notable early study in this area comes from Cone [2] who derived

a mathematical basis for achieving an optimal span loading for non-planar wings in order to minimize induced drag.

Recent years have seen a growing interest in bio-inspired wing design, in order to achieve designs that are believed
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to be close to optimal. The motivation is that birds have naturally evolved over the course of millions years to develop

highly efficient wings. Van Dam [3], inspired by the caudal fins of fish, studied the performance of crescent shaped

wings and found that the aerodynamic efficiency of an elliptic wing can be improved by introducing a backward curved

sweep. Lazos [4] compared different bio-inspired wing configurations to the elliptic wing to demonstrate the possible

gains in efficiency. The most noteworthy configuration is a hyper elliptic cambered span (HECS) drooped wing, which

was inspired by the shape of seagull wings in high-speed gliding flight, and produced a large lift-to-drag ratio over a

wide range of CL values. The concept of a drooped wing is represented in Fig. 1, where spanwise camber of the wing is

downward (or drooped) compared to more traditional wings which may be raised to create features such as a winglet.

Lazos and Visser [5] later compared different HECS wing designs with conventional wing configurations (such as a

tapered wing with winglet) which also demonstrated large gains in lift-to-drag ratios.

(a)

(b)

Fig. 1 Concept for (a) raised and (b) drooped wings.

Nguyen et al. [6] conducted parameter studies on the aeroelastic performance of aircraft wing concepts, where the

authors present large reductions in drag when drooped wings are utilized. The drooped wing designs here are again

motivated by seagull wings in gliding flight. Khosravi and Zingg [7] conducted aeroelastic optimization studies of

drooped wings which produce efficiency gains of up to 5% compared to optimized planar wings.

There are also some conflicting studies that did not predict increased performance for drooped wings. Ranjan et al.

[8] performed drag minimization studies on both raised and drooped HECS wings with tapered unswept planforms. The

optimization procedure was based on Cone’s method of optimal span loading which predicted the same performance for

raised and drooped HECS wings. Solving the RANS equations post-optimization showed that raised wings outperformed

drooped, but both improved on the elliptic wing. Liersh et al [9], and Pomeroy and Visser [10] both present studies

on spanwise cambered elliptic wings and found that reductions in drag was achieved with raised wings, but not with
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drooped wings. However, the wings were drooped to a much lesser extent than those in previously mentioned studies,

with inclinations of up to 15 degs and 30 degs respectively, versus almost 90 degs.

The literature has mixed conclusions on whether drooped wings offer a more efficient alternative to more conventional

raised winglet designs. However, there are few examples in literature where these comparisons are based on designs

achieved through numerical optimization procedures. Of those examples that have treated this as an optimization

problem, most have done so with a relatively restricted design space.

The current work applies gradient-based optimization routines to design non-planar wings whose geometry is

defined on a spanwise sectional basis, thus creating a large design space. Subsequently the method is used to investigate

the potential gains for optimizing non-planar wings compared to planar and non-planar designs presented in literature,

the differences in performance of raised and drooped wings, and explanations behind these differences. The authors

have previously developed a framework for aerodynamic and aeroelastic shape optimization based on panel methods

[11, 12], which has been extended to include non-planar wing parameterizations and viscous drag approximations in the

current work. The following section will discuss the non-planar parametrization and discretization of the model. Panel

methods are summarized in Section III, including lift and drag calculation methods. The results section is subdivided

into 3 subsections detailing a comparison of optimized designs to those in the literature, an investigation on raised vs.

drooped wings, and a study accounting for viscous effects. Finally, the findings are concluded in Section V.

II. Discretization & parameterization
The design parameterization and panel discretization of the wing is shown in Fig. 2. A series of airfoil sections

are assembled on a discrete quarter chord curve that is defined by control points on the curve with x-coordinates, a,

and z-coordinates, q. The airfoil sections are defined within a plane that is normal to the quarter chord curve from the

perspective of the x-axis. Within this plane, airfoils have a twist angle, θ, measured from the x-axis. The control points

on the quarter chord curve are defined with a half cosine distribution in the y-direction, quadrilateral panels are defined

between each set of neighboring airfoil sections, and all problems are solved with a mesh size of 40x100, i.e. 41 airfoil

sections are defined.

The sectional parameters c, a, q and θ, shown in Fig. 2, can be controlled using design variables, x. Design

variables are used to define θ explicitly at each section, but all other design variables define the change in the parameter,

e.g. δq, where qj+1 = qj + δqj+1. By defining the design variables in this manner it is easy to enforce that parameters are

monotonically increasing/decreasing along the span, avoiding fluctuating geometries and requiring less regularization.

To ensure smooth designs and avoid numerical artefacts the design variables are filtered with neighboring sections

in the spanwise direction as described in [11]. Previous work has demonstrated that when an inviscid model is used only

small improvements can be gained by optimizing airfoil sections along the wing [11]. In the current work, the focus is on

investigating the potential gains of non-planar geometry, and as such all examples will use constant NACA0012 airfoil
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Quarter chord curvePanels

z

y qj

x

y

aj−1

Airfoil sections cj+1

δaj

δqj+1 qj+1

z

xθ1

Root airfoil

Control point j

Fig. 2 Parametrization of the wing geometry with elevation (top), planform (middle), and root airfoil (below).
A quarter-chord curve is defined by parameters a and q, where airfoils are assembled normal to the curve from
the perspective of the x-axis.

profiles throughout the span. However, all methods can easily be extended to allow varying cross sections [11, 12].

III. Panel Methods
The aerodynamic characteristics are captured using a 3D panel method introduced in previous works [11–13]. A

Dirichlet boundary condition is implemented using constant source-doublet panels for the wing, and constant doublet

panels in the wake. The governing equation for the panel method is defined as

A(x, µ)µ + B(x)σ(x) = 0 (1)

where µ and σ are doublet and source strengths, and A and B are aerodynamic influence coefficients (AIC) for doublet

and source distributions respectively. Derivations of AIC’s are provided in [14], and using a zero-internal perturbation

formulation yields σk = V∞ · nk , where nk is the normal vector of panel k. The doublet strength µ, can then be solved

for using (1).

Once the doublet distribution is known, µ can be differentiated numerically over the surface of the wing to yield

the velocity, V k , at panel k’s center. Given the surface velocities, the coefficient of pressure can be calculated via the

Bernoulli equation.

CP,k = 1 − || V k | |2
V2∞

(2)

Lift and drag could be calculated from CP distributions, however, surface pressure integration is prone to numerical
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errors which can create non-physical results for unconventional wing designs. As the optimizer is likely to exploit these

numerical weaknesses, a Trefftz integration method is used which has proven to be less susceptible to numerical errors

[11, 15]. Using Trefftz plane integration, the lift and induced drag can be calculated as

Di = −1
2
ρ∞

Ns∑
j=1

µj sjv j .n j (3)

L = ρ∞V∞
Ns∑
j=1

µi cos(βj)sj (4)

where sj , βj , and n j are the length, orientation, and normal vector of the wake panel in the Trefftz plane at section j,

and Ns is the number of panels in the spanwise direction. The wake geometry is described by projecting the trailing

edge downstream in the freestream direction, and extends 30 semispans downstream. Velocities in the Trefftz plane, v j ,

are calculated using the circulation around the wake panel edge, Γk as defined in [16]

v j =
1

2π

Ns∑
k=1

KkΓk
x̂ × rjk
‖rjk ‖2

(5)

where x̂ is the normal vector of the Trefftz plane, rjk is a spatial vector between the wake panel edge and the calculation

point j, and Kk is a kernel which desingularizes the vortex core and is defined using the definition in [17] as

K =
‖rjk ‖2(

r2ζ
c + ‖rjk ‖2ζ

) 1
ζ

(6)

where rc is the viscous core radius which we define as 20% of the chord length, and ζ is taken to be 2 which represents

a Lamb–Oseen vortex model.

The total drag is then computed as the sum of induced and viscous drag, i.e. D = Di + Dv , where viscous drag can

be calculated as

Dv =
1
2
ρ∞V2

∞
Ns∑
j=1

cj sjCd, j (7)

where sj is the length of the wing section j, and Cd, j the local drag coefficient. Cd is calculated from 2D airfoil data

(generated via XFoil [18]) by interpolating with respect to the local effective angle of attack, αe f , and Reynolds number.

It is important to note that as Cd is calculated using 2D airfoil data, spanwise flow is not considered in the viscous drag

calculation.

Airfoils are defined in the center of each wing section within in a plane normal to the quarter chord line as shown in

Fig. 3a. The Reynolds number is calculated using the freestream velocity within the airfoil plane and the chord length at

each wing section. A method is introduced for calculating the effective angle of attack for non-planar wings. Other than
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z

y

ψ̂j

θ̂

V̂∞

α cos(ψ̂)v j · n j
αi

Airfoil plane j

αe f

x̂

(a) y-z plane

(b) Airfoil plane j

ẑ

(yk+1 , qk+1)(yk , qk)

Fig. 3 Schematic indicating angles for effective angle of attack calculation: (a) definition of airfoil plane, and
(b) airfoil section with relevant angles.

non-planar geometry, the method also accounts for twist, freestream angle of attack, and induced angle of attack.

The effective angle of attack is measured within the airfoil plane shown in Fig. 3, where a reference system, (x̂, ẑ), is
defined within the plane such that x̂ is parallel with the global x-axis. The freestream velocity within the plane is then

V̂∞ = {V∞,x , V∞,z cos(ψ̂) − V∞,y sin(ψ̂)}T (8)

where ψ̂ is the inclination of the wing section as represented in Fig. 3a. sin and cos terms can be calculated from the

control points on the quarter chord curve as

sin(ψ̂j) = qk+1 − qk√
((yk+1 − yk)2 + (qk+1 − qk)2)

, cos(ψ̂j) = yk+1 − yk√
((yk+1 − yk)2 + (qk+1 − qk)2)

(9)

The effective angle of attack can be calculated as the sum of angles shown in Fig. 3b

αe f = α̂ + θ̂ − αi (10)

where α̂ is angle of attack within the plane which can be calculated from V̂ , θ̂ is the twist of the wing section, and αi is

the induced angle of attack. The induced angle of attack is calculated using the downwash velocity in the Trefftz plane,

v j

{αi}j = tan−1
(
v j .n j

‖V̂∞‖

)
' v j .n j

‖V̂∞‖
(11)

where αi is in-plane with the airfoil section. Note that θ̂ is associated with the wing section, as opposed to θ, in Fig. 2,

which represent values at the control points.
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IV. Results
In this section, optimization procedures will be used to maximize the aerodynamic performance of the wing. One

important parameter for comparing the performance of aircraft wings is the span efficiency factor defined as

e =
C2
L

πÆRCDi

(12)

where ÆR is the wing’s aspect ratio, and only the induced drag is considered. The parameter, e, compares the efficiency

of a wing to that of an elliptic wing which has a value e = 1. The efficiency is constant for a given wing irrespective of

angle of attack or freestream velocity (for incompressible inviscid flow). An alternative parameter for characterizing

performance is the lift-to-drag ratio, L/D, where typically the viscous drag is also included. Unlike e, L/D varies with

angle of attack and freestream velocity. When viscous drag is not included, L/D is unrealistically high for low angles of

attack and singular for zero lift as there will be no induced drag. If viscous drag is included, L/D will be small for low

and high angles of attack, and have an optimum α where L/D is at a maximum.

Optimization studies are solved using the gradient-based method of moving asymptotes [19], where the initial design

is a rectangular untwisted planar wing with all constraints satisfied. All sensitivity analysis is conducted using a discrete

adjoint approach where gradient derivations can be found in [11].

A. A Comparison with Reference Designs

Consider the optimization problem defined in (13), where the objective is to maximize the efficiency factor, e, with

a fixed aspect ratio, ÆR, and constraints on a and q values at the wingtip (notated by subscript t).

min
x ∈ RNx

: −e(x, µ)

subject to : ÆR(x) = ÆR0

|at (x)| ≤ āt

|qt (x)| ≤ q̄t

¯
x ≤ xj ≤ x̄ for j = 1, ..., Nx

(13)

Optimized designs are compared to three reference cases from the literature where each wing has the same aspect ratio,

ÆR0 = 7. The three reference wings are shown in Fig. 4a-c. The first case is has a standard elliptic planform which is

the known optimal design for planar, unswept, untwisted wings. The second is a planar crescent wing introduced in

[3], which was motivated by caudal fins of fish and has an elliptic chord and sweep distribution. The final reference

case is a non-planar wing with a hyper-elliptic cambered span (HECS). The HECS wing was introduced in [4] and

was motivated by the shape of seagull wings in gliding flight. By allowing specific design variables we can create
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appropriate comparisons to these reference wings. An elliptic wing will correspond to solving (13) with only chord

length defined by design variables, i.e. x = δc. Likewise the crescent and HECS wings can be compared to designs

achieved with x = {δc, δa} and x = {δc, δa, δq}, respectively. Optimized designs are shown in Fig. 4d-f, and the

efficiency of reference and optimized designs are shown in Table 1.

(a) Elliptic (b) Crescent (c) HECS

(d) x = δc (e) x = {δc, δa} (f) x = {δc, δa, δq}

η = 0 η = 0.55
η = 0.825

η = 0 η = 0.55
η = 0.825

η = 0
η = 0.75

η = 0 η = 0.75

Fig. 4 Elevation and planform views for reference designs, (a)-(c), and optimized designs, (d)-(f). Markers are
included at η locations when wings begin to sweep and droop (η = 0 for reference wings).

Reference eref Optimized eopt
Elliptic 1.004 x = δc 1.004
Crescent 1.019 x = {δc, δa} 1.027
HECS 1.178 x = {δc, δa, δq} 1.291

Table 1 Comparison of efficiency factors for reference wings and optimized designs defined by design variables,
x. All designs have an aspect ratio of 7.

An elliptic wing is known that to have an efficiency, e = 1, which is closely predicted by the model with only a 0.4%

error. The optimized design for x = δc converges to the same elliptic wing and hence the same performance is achieved.

As this is the known optimal design, this case helps to validate the optimization procedure.

The crescent wing predicts an increase in efficiency of 1.5% over the elliptic wing. When the crescent wing was

first introduced in [3] an increase in efficiency of 8% was predicted. The difference in e is likely due to differences in

discretization or drag calculation methods. For example e-factors in Table 1 are achieved with Trefftz plane method, but

calculating lift and drag directly from pressure integration yields values of e = 1.085, giving a 8.5% increase. Van Dam

later conducted experimental investigations into crescent wings and found increases in efficiency of between 2 and 4%

[20]. As previously stated, the Trefftz method is used because it less susceptible to numerical error such as discretization

errors. Smith [15] demonstrates that e-factors from CP integration are very the dependent on the mesh, whereas Trefftz
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plane calculations are not. When setting x = {δc, δa}, the optimizer converges to a very different planform than that of

the crescent wing, and with increase in e of 2.3%. Rather than gradually sweeping the wing, the optimized design is

straight until η ' 0.75 before drastically sweeping to create raked wing tips.

The HECS wing produces an increase of 17.4% in efficiency compared to the elliptic wing, whereas the optimized

design for x = {δc, δa, δq} produces 28.7% increase. The optimized design is similar to the HECS wing in that it has

produced swept drooped wings. However, the location in which the wings start to sweep and droop are further outboard

than the HECS wing, which has a gradual change in sweep and droop from η = 0. The optimized wing starts to sweep

around η ' 0.55, maintains a constant chord until this point, and droops around η ' 0.825. Both constraints on at and

qt are active for this case, which indicates that larger e-factors can be achieved if the constraints were relaxed.

We further investigate the location of sweep and droop by taking a closer look at the different HECS wing designs.

The geometry of HECS wings are defined by the equation for a hyper ellipse. Using the wing parametrization in Fig. 2,

equivalent HECS wing geometries can be achieved through defining hyper elliptic distributions of c, a, and q as

(
c

cmax

)p
+

(
y

0.5b

)p
= 1 (14a)

(
at − a

at

)p
+

(
y

0.5b

)p
= 1 (14b)

(
qt − q

qt

)p
+

(
y

0.5b

)p
= 1 (14c)

where for a hyper elliptic distribution p > 2, and p = 2 corresponds to an elliptic distribution. The reference HECS

wing used p = 2.5, but with a slightly different definition where leading and trailing edges were defined rather than c

and a distributions, refer to [4] for definition. Each equation is defined with the same p-value where qt and at values are

defined to be equal to that of the HECS reference wing, and qt is negative for drooped wings. The aspect ratio is kept

constant which corresponds to the following definition for maximum chord length (at the root)

cmax =
b
ÆR

F
(
p+2
p

)
F

(
p+1
p

)2 (15)

where the operator F (�) represents the gamma function, which is defined for positive real numbers as

F (u) =
∫ ∞

0
exp(−t)tu−1dt where u ∈ R , u > 0 (16)

Fig. 5 shows the change in e-factors for HECS wings produced with different values for p, where the reference

HECS is equivalent to the definition in (14) with p = 2.5.
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(a)

(b) p = 2.5 (c) p = 6

(d) p = 10 (e) Optimized Design

Fig. 5 (a) Variation in efficiency, e, with respect to the exponent, p, used in the HECS wing definition given in
(14). e-factors also shown for reference and optimized designs shown in Figs 4c and 4f respectively. (b-d) Wing
geometries for different values of p, and (e) Optimized wing geometry

By increasing the value of p the wing remains approximately planar for a larger portion of the inboard span and the

spanwise location where the wing begins to droop is pushed further outboard creating a larger curvature in the cambered

span. From Fig. 5a, this HECS parameterization has an optimum p-value where e is maximum at approximately p = 6.

Referring to Figs. 5c and 5e, the design with p = 6 has a similar spanwise camber to that of the optimized design.

However, the optimized design has predicted a greater efficiency due to the freedom to deviate from a hyper elliptic

distribution, and create different sweep and chord distributions.

B. Raised vs. Drooped Wings

The optimized results shown in Fig. 4 demonstrate that large increases in efficiency can be seen achieved when

q-values are allowed to change. But the previous study only permitted drooped wings to form in order to create a

comparison with the reference HECS wing. The following studies aim to address the question of whether negative

q-values (drooped wings) can achieve a higher efficiency than positive q-values (raised wings), and how the resulting

designs achieve gains in efficiency compared to planar wings.

Consider the optimization problem in (17), with the objective to maximize e, and an upper constraint on the wingtip

value of q. Here, only one design variable per section is included, x = δq, where a = 0, and c = b/ÆR0 to give a

rectangular planform with an aspect ratio equal to that of previous studies.

min
x ∈ RNx

: −e(x, µ)

subject to : |qt (x)| ≤ q̄t

¯
x ≤ xj ≤ x̄ for j = 1, ..., Nx

(17)

Optimization results are shown in Fig. 6 for q > 0 and q < 0, and are compared to a planar wing of equal planform.

Spanwise lift and drag distributions, as well as Cp distributions at specific cross sections are shown in Fig. 7 for an
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angle of attack of 3.5 deg, and efficiency factors for each design are given in Table 2.

(a) Planar, q = 0

(b) Rasied, q > 0

(c) Drooped, q < 0

η = 0.5η = 0.025 η = 0.85 η = 0.975

η = 0.5

η = 0.025

η = 0.85

η = 0.975

η = 0.025 η = 0.5 η = 0.85
η = 0.975

Fig. 6 Front views for (a) planar rectangular wing, (b) optimized design for q > 0, and (c) optimized design for
q < 0. Specific sections are labeled in each case, which corresponds to the loading shown in Fig. 7.

(a) Lift distribution

(b) Drag distribution

(c) Cp at η = 0.025 (d) Cp at η = 0.5

(e) Cp at η = 0.85 (f) Cp at η = 0.975
Fig. 7 Loading of wings shown in Fig. 6. (a) and (b) show spanwise lift and drag distributions respectively,
where cross sectional Cp distributions at the labeled η locations is shown in (c)-(f).

Both raised and drooped wings converge to the maximumwingtip bound on q. They also have a similar q-distribution

where one is roughly the negative of the other. Both wings remain planar until η ' 0.85. However, there is a large

difference in the efficiency factors, where compared to the rectangular planar wing, the drooped wing achieves a 24%

increase, and the raised wing only a 16% increase.
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Wing e
Planar, q = 0 0.980
Raised, q > 0 1.138
Drooped, q < 0 1.219

Table 2 Efficiency factors for the rectangular planform wings shown in Fig. 6

The spanwise lift and drag distributions in Fig. 7a-b provide a greater insight into these differences in efficiency

between the three wing designs. When the wings are raised there is an induced lift along the span of the wing, but

also an increase in drag towards the tip. This increase in lift improves the efficiency but is hindered by the increase in

drag. The opposite occurs for the drooped wings where the lift is reduced, and there is a large reduction in drag towards

the tip. A similar trend to the lift distributions can be seen in the accompanying CP distributions in Fig. 7c-f where

the pressure difference has increased throughout the span for raised wings, and reduced towards the tip for drooped

wings. The gains in efficiency from raised and drooped wings are due to achieving an increased lift and reduced drag

respectively, but based on Fig. 7 alone it is not clear why this behavior is seen.

Using Cone’s method of optimal spanwise loading [2] there should be no difference in efficiency between optimal

raised and drooped wings for this optimization problem. The gain in performance of drooped wings is usually described

as a result shifting the wingtip vortex core further outboard away from the wing [5]. However, this phenomena cannot

be predicted by the current wake model, nor can it be predicted by the potential flow based models used in many of

the studies presented in the literature that experienced an improved performance for drooped wings, e.g. [6, 8, 9, 21].

Liersch et al [9] offer an alternative explanation where the difference is due to effects of induced velocities parallel to

the freestream, which can be demonstrated with the current model.

From the Cp distributions shown Fig. 7c-f it is clear that the velocity across the upper surface has increased for

raised wings, and at some sections, reduced for drooped wing. There is also a clear pressure difference between upper

and lower surfaces in each case along the entire span of wing. Therefore, we know there is a circulation in the sections

towards the wingtips which will induce a velocity. By raising or drooping the wing these induced velocities will behave

differently. To demonstrate this, we define a scalar V̄ as the velocity normalized by the freestream and projected in the

freestream direction i.e.

V̄ =
V

‖V∞‖ ·
V∞
‖V∞‖ =

1
‖V∞‖2

V · V∞ (18)

Fig. 8 shows V̄ within a cut plane at the quarter point, x
c = 0.25, for planar, raised and drooped wings. The raised

wing has significantly increased the velocity in the freestream direction along the entire upper surface. This corresponds

with an increase in lift seen in Fig. 7a which peaks when the wing begins to cant upwards, also corresponding to the

largest velocity in Fig. 8. For the drooped wing, the inboard velocities are very similar to the planar wing. Towards the
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tip the induced velocities are reduced (compared to the planar wing) on the upper surface and are larger on the lower

surface. As the difference between upper and lower surfaces reduces so too does the pressure difference, and both lift

and drag is significantly reduced.

V̄

Fig. 8 Normalized velocity projected in the freestream direction, V̄ = 1
‖V∞ ‖2 V · V∞, for planar (top), raised

(middle), and drooped (bottom) rectangular wings. Cut plane defined at quarter chord point.

The induced drag is directly related to the induced downwash in the wake. Off-stream velocity vectors in the

Trefftz plane are shown in Fig. 9 for the planar, raised, and drooped wings. As expected the planar wing has a distinct

circulation around the tip of the wake. When the wing is raised, the flow above the wake in region 0.5 < η < 1 has a

larger vertical component than is seen for the planar wing. This corresponds to a larger downwash which gives the

increase in drag in Fig. 7b. For both the planar and raised wings, there is a downwash everywhere in the flow for η < 1,

i.e. the vertical component of velocity is negative. When the wing is drooped, there is a positive vertical component to

the velocity above the wake in the region 0.85 < η < 1. In the same region, the velocity below the wake is negative,

meaning the potential jump (or downwash) over the wake should be close to 0, thus producing very little drag. This is

also clearly seen in this region in Fig. 7b. Note that the vectors in Fig. 9 indicate the velocity direction only, and the

vector magnitudes do not represent the magnitude of velocity.
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(a) Planar, q = 0

(b) Raised, q > 0

(c) Drooped, q < 0

η = 0.025 η = 0.5 η = 0.85 η = 0.975

η = 0.025 η = 0.5 η = 0.85 η = 0.975

η = 0.025 η = 0.5 η = 0.85 η = 0.975

Fig. 9 Velocity vectors in the Trefftz plane for (a) planar, (b) raised, and (c) drooped wings. Vectors are used
to indicate direction only, where vector magnitudes are not representative of velocity magnitudes.

From Table 2 one would assume that drooped wings are superior to raised wings as they can create a larger gain in

efficiency. However, the optimization study in (17) has a restricted design space as only q was allowed to change and the

chord distribution was fixed. In most practical designs the wing will taper towards the tip, which in the case for raised

wings would alleviate some the increased drag experienced towards the tip in Fig. 7b. The optimization problem in

(13) is solved again for both raised and drooped wings with x = {δc, δa, δq} and different values of q̄t , where q0 is the

original value of q̄t from previous studies. Optimized designs are shown in Fig. 10 with lift and drag distributions
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shown in Fig. 11 and efficiency factors are given in Table 3.

(a) q > 0 , q̄t = q0 (b) q > 0 , q̄t = 1
2 q0 (c) q > 0 , q̄t = 1

4 q0

(d) q < 0 , q̄t = q0 (e) q < 0 , q̄t = 1
2 q0 (f) q < 0 , q̄t = 1

4 q0

Fig. 10 Elevation and plan views of optimized designs for raised (q > 0) and drooped (q < 0) wings with
different bounds on qt .

(a) q > 0 (b) q < 0

(c) q > 0 (d) q < 0

Fig. 11 Lift and drag distributions for designs shown in Fig. 10, where lift and drag coefficients represented
with a circumflex are calculated using the mean aerodynamic chord.

As shown in Table 3, drooped and raised wings achieve efficiency factors with negligible differences for a given

bound on qt . This study has increased the design space such that the maximum efficiency can be achieved irrespective

of whether the wings are raised or drooped. The raised wings in this case are able to match the performance of the

drooped wings by reducing the peak in drag towards the tip by tapering the wing, compare Figs 11c and 7b. Drooped
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q̄t q > 0 q < 0
q0 1.290 1.291
1
2 q0 1.152 1.157
1
4 q0 1.074 1.078

Table 3 Efficiency factors for the designs shown in Fig. 10.

designs have created sweep which has the effect of increasing lift towards the tip [22] (Fig. 11a), but this also eliminates

the low drag region seen in Fig. 7b. The optimizer has then created a trade-off between increasing lift and decreasing

drag in order to maximize e.

Each drooped wing in Fig. 10 has a similar planform, but with small differences in c and a distributions where

lower bounds on qt have a shorter chord length at the tip, and larger bounds on qt have a more gradual change in a.

When the wings are raised with a large bound on qt the design converges to a similar planform to that of the drooped

wings but with a larger sweep towards the tip. As the constraint on qt is restricted one would expect the converged

designs to tend towards the equivalent design for a planar wing, shown in Fig. 4e. The drooped wing in Fig. 10f does

have a similar planform, but the raised wing designs tend towards the elliptic wing. This suggests that large sweep can

have negative effects for raised wingtips. To demonstrate this, analysis was conducted on the designs in Fig. 10 where

they are solved upside-down, and efficiency factors are presented in Table 4.

q̄t Opt. q > 0 Opt. q < 0
q0 1.267 1.267
1
2 q0 1.118 1.109
1
4 q0 1.051 1.039

Table 4 Efficiency factors for the designs shown in Fig. 10, when upside-down.

All wings see a reduction in e when solved upside-down. As stated previously, e should be constant irrespective of

angle of attack, but they have changed when the sign on α has changed. This is due to differences in induced velocities

when the wing is raised or drooped as discussed previously. For large values of qt there is no difference in e between

designs optimized for raised or drooped wings. For low qt the designs with large-raked wingtips perform worse when

the wing is raised relative to the freestream (i.e. design optimized for drooped wings). To further demonstrate the effect

of sweep on optimized designs, the problem in (17) is solved with no sweep, i.e. x = {c, q}, where q̄t = 1
4 q0, and result

are shown in Fig. 12. Both raised and drooped wings satisfy the maximum bound of qt , and produce efficiency factors

of 1.074 and 1.055 respectively. Compared to the designs where sweep was included (Fig. 10) the raised wing converges

to the same design, with the same efficiency, but the efficiency of the drooped wing has decreased significantly.

In the introduction it was discussed how the literature has contradicting results on whether raised or drooped wings
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(a) (b)

Fig. 12 Elevation and plan views of unswept optimized designs for (a) raised and (b) drooped wings.

can outperform one another. Tables 2–4 give similar contradictions which arise based on how the design space is

restricted. Allowing a large design space achieves designs with negligible differences in e between raised or drooped

wings with the same geometry restrictions. Results also presented here suggest not only that including sweep is crucial

for improving performance in drooped but it can also reduce performance in raised wings. However, up to now the

design space has also been somewhat restricted as twist has not yet been considered as a design variable, which grants

more freedom to vary the span loading.

The literature also contains an important point of discussion on how the aspect ratio is defined when comparing the

efficiency of planar and non-planar wings. In the previous examples ÆR is defined using the projected wingspan and

planform area, as this is the standard definition. However, in using this definition it is not surprising that a non-planar

wing can produce a large improvement in efficiency since the lifting surface has been increased without cost to the

optimization problem. An alternative approach is to define these parameters using the unfolded wing geometry based on

the curved length of the wing. When comparing planar and non-planar wings this difference in the geometry definition

produces very different results and has been discussed in detail in [9, 23]. When solving the optimization problem with

the aspect ratio defined from the unfolded wing geometry the designs converge to the same planar wings in Fig. 4d or 4e

depending on whether a is included as a design variable. In general, we note that if the curved geometry is constrained,

the design will always converge to a planar wing with the maximum allowable wingspan. However, in aircraft design

there is usually a constraint on the wingspan due to structural or practical reasons. With this constraint satisfied, the

wing’s performance can be improved by creating non-planar geometry.

C. Optimization with Inviscid & Viscous Drag

Creating non-planar geometry may increase e, but the surface area will also increase which will increase the viscous

drag. Referring back to the designs presented in Section IV.A, their performance can also be compared with respect

to drag coefficients and lift-to-drag ratio, as shown in Fig. 13, where the optimized design refers to the case with

x = {δc, δa, δq}, shown in Fig. 4f, and all problems are solved with a freestream velocity of Mach 0.4. Fig. 13a plots

both inviscid and viscous drag, where the design is optimized with respect to only inviscid drag. The optimized design

produces the least inviscid drag for all values of CL , but produces more viscous drag at low CL values where the viscous

drag is dominant. This is evident also in Fig. 13b where the lift-to-drag ratio is lower for low CL values, where the

optimized wing produced a CL value of ∼ 0.3. However, each wing produces a similar maximum L/D with the optimized
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design at 32.84 compared to 32.48 and 32.55 with HECS wings p = 2.5 and p = 6 respectively.

(a) (b)

Fig. 13 Comparison between different wings: (a) drag coefficient for a range of lift coefficients for inviscid
drag alone and inviscid plus viscous drag, (b) lift-to-drag ratio for viscous solutions.

Consider the optimization problem given in (19), to maximize L/D at a specified CL , fixed aspect ratio, the same

geometry constraint on at , and q̄t = 1
2 q0. The problem is solved for both raised and drooped wings, with multiple

specified values of CL . In each case, the problem is also solved where only induced drag is consider and where induced

and viscous drag is considered. Each problem includes all design variables, i.e. x = {δc, δa, δq, θ}. Note also that by
specifying the CL and ÆR the lift is also specified and maximizing L/D is equivalent to minimizing D. Results are shown

in Figs 14 and 15 for drooped and raised wings respectively with L/D values shown in Table 5.

min
x ∈ RNx

: − L
D
(x, µ)

subject to : ÆR(x) = ÆR0

CL(x, µ) = CL0

|at (x)| ≤ āt

|qt (x)| ≤ q̄t

¯
x ≤ xj ≤ x̄ for j = 1, ..., Nx

(19)

For purely inviscid analysis, each of the raised and drooped wings converged to similar raked wingtip designs where

constraints on at and qt are active. In previous problems, the raised wing designs with the same bound on qt converged

to wings which were almost elliptic (refer to 10b). This difference is likely due to the inclusion of twist as a design

variable which offers more design freedom to tailor the spanwise load distribution.

Considering cases with only inviscid analysis, there are negligible differences in converged designs with different

CL-values – for both raised and drooped wings. When viscous drag is considered and CL0 = 0.2, the constraint on q is
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(a) D = Di , CL0 = 0.2 (b) D = Di , CL0 = 0.4 (c) D = Di , CL0 = 0.6

(d) D = Di + Dv , CL0 = 0.2 (e) D = Di + Dv , CL0 = 0.4 (f) D = Di + Dv , CL0 = 0.6

Fig. 14 Elevation and planform views for converged raised wing designs with (a)-(c) inviscid analysis and (d)-(f)
viscous analysis, for different specified values of CL .

(a) D = Di , CL0 = 0.2 (b) D = Di , CL0 = 0.4 (c) D = Di , CL0 = 0.6

(d) D = Di + Dv , CL0 = 0.2 (e) D = Di + Dv , CL0 = 0.4 (f) D = Di + Dv , CL0 = 0.6

Fig. 15 Elevation and planform views for converged drooped wing designs with (a)-(c) inviscid analysis and
(d)-(f) viscous analysis, for different specified values of CL .

D CL0

L/D
q > 0

L/D
q < 0

Di

Di+Dv

q > 0

Di

Di+Dv

q < 0
Di 0.2 124.1 123.6 1.0 1.0
Di 0.4 62.9 62.1 1.0 1.0
Di 0.6 42.5 42.1 1.0 1.0

Di + Dv 0.2 29.7 29.6 0.256 0.257
Di + Dv 0.4 35.1 33.7 0.521 0.555
Di + Dv 0.6 31.5 29.6 0.685 0.648

Table 5 Lift-to-drag ratios for wings optimized at different CL values with and without viscous effects, and
ratio of induced drag to total drag.
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not active in either case. The low CL value means that the induced drag is low as it will tend to 0 for CL = 0. Because

the viscous drag does not tend to zero, it is dominant in these designs where CL is low, refer to Table 5 columns 5 and 6.

Because the viscous drag is dominant, it is not beneficial to increase q as to do so will increase Dv .

When CL0 is increased the induced drag increases much faster than the viscous drag. This makes it beneficial for

raised wing designs to create large winglets as to do so will increase the lift. Designs for q < 0 do not create drooped

wings when viscosity is considered for any value of CL0 . When a larger CL is specified, there is a large change in a

towards the wingtip where designs converge to wings similar to the optimized swept planar wing in Fig. 4e. Increasing

a in this manner improves the inviscid efficiency, as demonstrated previously. The fact that drooped wings did not form

suggests that the reduction in induced drag as a results of drooping the wing is less than the increase in viscous drag that

will also be created.

For each inviscid case, raised and drooped wings produced similar lift-to-drag ratios. This is in keeping with results

presented in the previous section where the same e-factors could be achieved regardless of whether wings are raised or

drooped. When viscous effects are considered, similar designs are produced for CL0 = 0.2, with similar lift-to-drag

ratios. When CL0 is increased, the raised wings outperform designs with q < 0.

Fig. 16 shows the lift and drag relationships for designs optimized with viscous effects for CL0 = {0.2, 0.6}.
Optimizing with larger CL values has produced designs with a larger maximum lift-to-drag ratio. The lift-to-drag ratio

is highest for raised wing designs with CL0 = 0.6, at 34.9, compared to 33.7 with q < 0 and 33.1 for both designs with

CL0 = 0.2.

(a) (b)

Fig. 16 Lift and drag properties for converged designs with viscous calculations in Figs 14 and 15: (a) drag
coefficient and (b) lift-to-drag ratio, for a range of lift coefficients.

It is also important to note that when minimizing the sum of induced and viscous drag, the optimizer may choose to

minimize one over the other. This can cause the optimizer to converge to local minima with irregular geometry and

equal or worse performance. In order to avoid this bias, it is important to start with a reasonable initial design. As stated
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previously, each optimization problem presented in this work starts with an initial design of a rectangular wing with no

twist and all constraints satisfied. However, similar results have also been achieved with other common planar wing

designs such as tapered or elliptic wings. Multiple solutions and local minima for these types of optimization problems

with a large design space have also been discussed in the past [24].

V. Conclusions
An optimization procedure is introduced for non-planar wings where design variables are defined locally in order to

enlarge the design space. By increasing the design space, the optimizer is able to create large changes to the geometry in

order to achieve optimized designs. This is the main advantage of the method which has been able to create designs

that predict improved performance over reference wings from literature. The aerodynamic improvements of drooped

wings is commonly explained by the effect of shifting the wingtip vortex core further outboard. Results presented here

have shown that the benefits of drooped wings can be captured with fixed wake models. It has been demonstrated that

the predicted improvements in aerodynamic performance for both raised and drooped wings was due to the effects of

induced velocities parallel to freestream, which behave differently depending on whether the wing is raised or drooped.

This work also applies the optimization framework to explore the question of which is more efficient, raised or drooped

wings? Some studies presented in the literature show raised wings outperforming drooped wings, and other studies

present the opposite. It has been shown that optimization studies can also yield conflicting results depending on how the

optimization problem is posed. Ultimately, with a large enough design space, raised and drooped wings should be able

to converge to designs with equal performance when only inviscid analysis is considered. When viscous approximations

were included, drooped wings have not shown to be beneficial.
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to large deformations
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This work presents studies on aeroelastic shape optimization of aircraft wings subject to

large deformations with the objective of minimizing induced drag. The physics are captured

using a coupled 3D panel method and a nonlinear co-rotating beam finite element model.

The wing is defined by a series of airfoils that are parameterized based on the definition of

NACA 4-digit airfoils. The method assumes a solid cross section of isotropic material which

is representative of foam core wings. Analytic expressions are derived for most of the cross

sectional stiffness properties, while approximations are introduced for the location of the shear

center and the torsional stiffness. Optimized designs achieved using linear and nonlinear

deformation models are compared and features discussed. Results highlight the importance

of capturing nonlinear beam models to accurately capture changes in wingspan due to large

deformations, as even small differences in the wingspan can have a large effect on the induced

drag. Non-planar wings with raised and drooped wingtips are also optimized, where drooped

wings have achieved larger lift-to-drag ratios due to the increase in effective wingspan in the

deformed configuration.

Nomenclature

A = aerodynamic influence coefficient matrix

B = strain displacement matrix

b = wingspan

CP = pressure coefficient

c = chord length

d = design variables

D = drag

f = applied load

K = global (tangent) stiffness matrix

∗PhD student, Department of Mechanical Engineering, Section of Solid Mechanics, cicosm@mek.dtu.dk. Member AIAA.
†Associate Professor, Department of Mechanical Engineering, Section of Solid Mechanics.
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Kcs = constitutive stiffness matrix

L = lift

m = conjugate moments

m = maximum camber

n = conjugate forces

N = shape functions

n̂ = normal vector

p = position of maximum camber

q∞ = 1
2 ρ∞V2∞, dynamic pressure

R = residual vector

S = skew matrix operator

t = maximum thickness

T = rotation matrix

V = velocity

W = weight

x = finite element nodal coordinates

α = twist

η = 2y
b , normalized span location

µ = doublet strength

ρ = density

σ = source strength

θ = finite element nodal rotations

ÆR = b2

S , aspect ratio

Subscripts

e = associated with finite element

t = associated with wingtip

0 = associated with undeformed configuration

∞ = associated with freestream

I. Introduction
Lift induced drag accounts for roughly 40% of aircraft drag during cruise and up to 90% during climb and takeoff

[1]. The most effective way to reduce in the induced drag is to increase the wingspan, but this can have the adverse effect
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of increasing bending moments and stresses which impose limits on the wingspan. Non-planar wing configurations have

shown to improve the efficiency of aircraft wings without increasing the wingspan and subsequent bending moments.

Some examples of non-planar wing geometries may include winglets, C-wings, or more unconventional designs such as

spanwise cambered or drooped wings. Many challenges are associated with non-conventional wing designs such as

drooped wings, such as complicated manufacturing techniques and complex loading conditions which can lead to large

deformations. When wings experience large deformations there can also be large change in aerodynamic loading which

can lead to a degraded performance.

There are multiple models for capturing large deformations via nonlinear beam finite element methods. One such

method is a co-rotating formulation [2, 3] where deflection is defined as a combination of rigid body rotations and

deformations with respect to a local reference frame, in which the normal linear constitutive models are satisfied. An

alternative method is a multi-body formulation, where the structure is divided into a number of bodies whose local

deformations are usually captured via a linear model. This method is adopted in the HAWC2 code [4] which is frequently

used for the analysis of wind turbine blades. Hodges [5] developed a mixed formulation method that was used to

demonstrate the importance of capturing nonlinear large deformations in predicting dynamic aeroelastic behavior of

aircrafts [6].

Beam models are commonly been used for aeroelastic optimization studies. Jasa et al [7] developed an open source

aeroelastic framework based on a coupled vortex lattice method (VLM) and Euler beam models. Jansen et al [8]

previously applied a similar model to optimize non-planar lifting surfaces where reductions in drag of up to 26% were

achieved with optimized designs containing winglets, C-wings, or raked wingtips depending on the problem formulation.

Xie et al [9] also used a VLM coupled with a geometrically nonlinear beam finite element model, to conduct aeroelastic

optimization studies subject to large deformations and flutter constraints.

3D panel methods have also been used in the past for aeroelastic optimization studies. In these cases, the panel

method is usually coupled with shell finite element models. For example, Kennedy et al [10] applied these methods

to the design composite wings, Burdette et al [11] to morphing wings that adapt to changing operating conditions

throughout a specified mission, and Mieloszyk et al [12] to dynamic stability constrained problems. Another noteworthy

contribution comes from James et al [13] who presents a topology optimization study with a coupled panel method and

3D continuum elements.

Higher fidelity aerodynamic models have also been used for aeroelastic optimization studies. Usually the Euler

equations are solved, and are coupled to shell finite element models. These include the following notable examples.

Khosravi and Zingg [14] who conducted aeroelastic optimization studies of drooped wings and found optimized designs

with non-planar geometry could increase aircraft range by 2.6% compared to optimized planar designs. Kenway et al

[15, 16] conducted aeroelastic shape optimization studies of the CRM wing [17], where a full aircraft configuration was

included in the model. Maute et al [18] conducted topology optimization studies on predefined rib and spar structures.
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At this point it is worth noting that apart from [9] each of the aforementioned aeroelastic optimization studies used

linear deformation models. However, there are some examples where panel methods have been coupled with nonlinear

finite element models without optimization. For example, Gori et al [19] used a co-rotating shell finite element model

with an unsteady panel method to model the flapping wings of a micro air vehicle.

The authors have previously developed frameworks for aerodynamic and aeroelastic shape optimization of aircraft

wings using a coupled panel method and linear beam finite element model [20–22]. The current work expands on this

framework to solve coupled aeroelastic problems subject to large deformations. The finite element model is based on a

nonlinear co-rotating beam formulation where elements are locally subject to a generalized Timoshenko constitutive

model. Cross sectional stiffness properties are calculated using analytical expressions where possible, which have been

derived for the current work, and approximations for properties that cannot be derived analytically. The optimization

procedure is applied to the design of both planar and non-planar wings with solid foam cores. The remaining sections of

this article are structured as follows. The next section outlines a parameterization for non-planar aircraft wings and

the panel-beam discretization. Physics models are discussed in Section III, which includes: the panel method with

load calculations, co-rotating beam formulation, beam constitutive model, and the panel-beam coupling procedure.

The results section includes comparisons between designs achieved with linear and nonlinear deformation models, and

aeroelastic optimization studies for non-planar wings. Finally, the article is concluded in Section V. Three appendices

are also included which give information on achieving 3D rotation matrices for the finite element problem, derivations

and calculations for cross sectional properties, and equations used to calculate sensitivities.

II. Parameterization Methods
The panel-beam parameterization is shown in Fig. 1, where the external surface of the wing is meshed with

quadrilateral panels, and beam finite elements are defined inside in the wing. The first beam node (at the root) lies at the

origin, and every other node is defined at a point (0, ŷ, ẑ). Airfoil sections are defined at each node with their quarter
chord point coincident to the node. Each airfoil lies within a plane that bisects the angle between finite elements from

the perspective of the x-axis.

The airfoil sections are parameterized using the method shown in Fig. 2, which was first introduced in [20]. The

parameterization uses the definition of NACA 4-digit profiles [23] which are based on 4 parameters: chord c, maximum

thickness t, maximum camber m, and position of maximum camber p. The twist, α, is included as a fifth parameter and

is defined from the x-axis, within the same plane as the airfoil.

The structure of the wing is modeled as a solid isotropic cross section which represents a solid foam-core. Cross

sectional stiffness properties and centers (labeled in Fig. 2) are achieved using the definitions of NACA 4-digit profiles,

as will be discussed in Section III.C.

Design variables, d, are used control the parameters shown in Figs 1 and 2, i.e. c, t,m, p, α, ẑ. For the parameters,
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Beam Finite Elements

Panelsz

y
ẑi−1

x

y

Airfoil sections

ci

δ ẑi ẑi

Node i

Panels
Fig. 1 Elevation (top) and planform (below) views of the panel-beam discretization and parameterization with
important parameters are labeled.

z̃

x̃

V∞

α

p

c = 1

t
m

Chord line

Camber line

Elastic center
Shear center

Beam center/quarter chord point

Fig. 2 Airfoil parameterization with variables and structural centers labeled. The airfoil is defined in a local
coordinate system (x̃, z̃) with its origin at the leading edge, and the x̃-axis co-linear with the chord line.

c and ẑ, the design variables control the change in these parameters rather than the explicit value, i.e. δ ẑ rather than

ẑ, where ẑi = ẑi−1 + δ ẑi . This acts as a form of regularization where the parameters are defined such that they are

monotonically increasing/decreasing along the span of the wing, thus avoiding fluctuating geometry. Design variables

control the values of all other parameters explicitly, and all variables are filtered along the span in order to ensure a

smooth variance between cross sections and avoid numerical artifacts [20].

III. Physics Models
This section describes the physics models used in this work and has been divided into four subsections. The first

subsection gives a brief introduction to the panel method and includes references to previous work for further details.

Subsection III.B describes the finite element implementation for a co-rotating beam model, which can also be reduced

to a linear form. Details on the constitutive model are given in Subsection III.C, including descriptions of methods

for calculating cross sectional properties. Finally, the load-displacement transfer and solution method for solving the

coupled problem are described in Subsection III.D.
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A. Panel Method

The aerodynamic performance of the wing is captured using a constant-strength source-doublet panel method as

described in [20, 24]. The governing equation for the panel method is defined as

Aµ(u, d)µ + Aσ(u, d)σ(u, d) = 0 (1)

where µ is a vector of doublet strengths, σ is a vector of source strengths, and Aµ and Aσ are doublet and source

aerodynamic influence coefficients (AIC) respectively. Source strengths are defined as σi = V∞ · n̂i , were n̂i is the

normal vector of panel i, and the doublet strengths are calculated by solving (1). Note that AICs and source strengths

are dependent on the design variables, d, and the structural deformations, u.

Once µ is known, the potential function is numerically differentiated over the panel surfaces to find the surface

velocities. Given the surface velocities, the coefficient of pressure is calculated via the Bernoulli equation.

CP,i = 1 − || V i | |2
| | V∞ | |2

(2)

A Trefftz plane integration method is used to calculate aerodynamic forces as it has proven to be less susceptible

discretization errors, compared with surface pressure integration [20, 25]. Using Trefftz plane integration, the lift, drag,

and root bending moment are calculated using the following definitions given in [26]

D = −1
2
ρ∞

Nw∑
i=1

µilivi .n̂i (3)

L = ρ∞V∞
Nw∑
i=1

µi cos(θi)li (4)

Mr = ρ∞V∞
Nw∑
i=1

µisi |yi cos(θi) + zi sin(θi)| (5)

where li , θi , n̂i , and (yi, zi) are the length, orientation, normal vector, and center point of the wake panel i in the Trefftz

plane. It is important to note that the induced drag is the only type of drag considered in this work.

B. Co-Rotating Beam Formulation

The structural deformations of the wing are captured using a co-rotating formulation with one dimensional beam

finite elements. The co-rotating beam theory used in this work is described in detail in [2, 27, 28] and the finite element

implementation is only summarized here. Fig. 3 shows a beam element in undeformed and deformed configurations.

The local orientation at a distance ζ along a beam element of length le is described in 3D space by the rotation matrix,

T = {tζ1, t
ζ
2, t

ζ
3 }.

6

P4P4



tζ=0
1

tζ=0
2

tζ=0
3 tζ=le1

tζ=le2

tζ=le3

tζ1

tζ2

tζ3

tζ3

tζ1

tζ2

tζ=0
3

tζ=0
1

tζ=0
2

tζ=le3

tζ=le1

tζ=le2

(a)

(b)
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θ3
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θ5
θ6

θ4

Fig. 3 Local element description with rotational degrees of freedom shown in red. (a) undeformed element,
(b) deformed element.

The local orientation, T, is calculated via the procedure outlined in Appendix A using the local rotations, θζ , which

is found by interpolating θ = {θ1, θ2, θ3, θ4, θ5, θ6}T i.e. θζ = N(ζ)θ, where N contains the interpolation functions.

Local generalized strains, ε, and curvatures, κ, are calculated as

ε = TTBx − TT
0Bx0 (6a)

κ = TTBθ (6b)

where the subscript 0 describes the undeformed configuration, B contains the derivative of the interpolation functions,

and x is the coordinates of the finite element nodes in the deformed configuration, i.e. x = x0 + ∆x. Note also that ∆x

and θ can be combined to form the displacement vector, u = [∆x, θ]. The internal force vector is calculated as

pe(d, u) =
∫ le

0
B̄TT̄TKcs(d)ε̄dl (7)

where ε̄ contains the local strains and curvatures calculated from (6), and Kcs is the constitutive stiffness matrix, which

will be discussed in Section III.C. The matrices B̄ and T̄ in (7) are defined as

B̄ = B +
[
0 N1S(Bx) 0 N2S(Bx) · · ·
0 0 0 0 · · ·

]T
(8)
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T̄ =
[
T 0
0 T

]
(9)

where the operation S(a) produces a skew matrix defined as

S(a) =
©«

0 −a3 a2

a3 0 −a1

−a2 a1 0

ª®®¬
(10)

It also important to note that although it is not indicated in the above, x and T are dependent on both the design variables

and the displacements. It then follows that B̄ and T̄ also hold a dependance on d and u.

Finally, the element tangent stiffness matrix, Ke, is calculated as

Ke(d, u) =
∫ le

0
B̄TT̄TKcs(d)T̄B̄dl +Kg(d, u) (11)

where Kg is the element geometric stiffness matrix defined as

Kg =

∫ le

0



0 −S(n)B1N1 0 −S(n)B1N2 · · ·
0 −S(m)B1N1 0 −S(m)B1N2 · · ·
0 −S(n)B2N1 0 −S(n)B2N2 · · ·
...

...
...

...


+



0 0 0 · · ·
S(n)B1N1 S(Bx)S(n)N1N1 S(n)B2N1 · · ·

0 0 0 · · ·
S(n)B1N2 S(Bx)S(n)N1N2 S(n)B2N2 · · ·

...
...

...


dl (12)

and n andm are calculated by solving the constitutive relation
{n
m

}
= T̄Kcs ε̄. It is important to note that this definition

of Kg gives a consistent tangent stiffness matrix. Some methods may make assumptions when deriving the geometric

stiffness matrix, such as small strain or neglecting the geometric dependence of T, which will make Kg inconsistent and

can lead to large errors in the sensitivity analysis.

The residual form of the nonlinear beam problem is expressed as

R(d, u, µ) = p(d, u) − f(d, u, µ) = 0 (13)

where f is the external applied load, and p is the global internal force vector formed from the assembling pe vectors

calculated via (7). A Newton scheme is used to solve the nonlinear problem, via an incremental load method where the

degrees of freedom are updated via

∆u = K−1R (14)

where K is the global tangent stiffness matrix formed by assembling element stiffness matrices calculated via (11).

In certain cases, a conventional linear beam finite element model will be used for comparison purposes. When a
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linear model is used, the element descriptions remain the same, but the geometric terms in (11) are neglected and the

system is solved by

K(d)u = f(d, u, µ) (15)

where K now has no dependence on u. Because the linear model neglects geometric terms it is usually applicable in

cases where deformations are small.

C. Constitutive Stiffness Matrix

The constitutive stiffness matrix is defined below, based on a generalized Timoshenko model [29] where isotropic

materials are assumed.

Kcs =

[
K11 K12

KT
12 K22

]
(16a)

K11 =


GA 0 0
0 E A 0
0 0 GA


(16b)

K12 =


0 −GAsz 0

E Aez 0 −E Aex
0 GAsx 0


(16c)

K22 =


E(Ixx + Ae2

z) 0 −E(Ixz + Aexez)
0 G(J + As2

z + As2
x) 0

−E(Ixz + Aexez) 0 E(Izz + Ae2
x)


(16d)

where (ex, ez) and (sx, sz) describe the locations of the elastic and shear centers relative to the beam center.

Cross sectional properties can be calculated through integrating over cross section numerically (e.g. using tools such

as VABS [30] or BECAS [31]), or analytical expressions can be derived by integrating over the cross section. To avoid

the need to discretize the cross sections and additional computational cost in numerical integration, we opt for using an

analytical approach where cross sectional properties are derived in Appendix B. However, analytical expressions for the

torsional stiffness of airfoils and the location of the shear center are not readily available. It is known that the torsional

stiffness of NACA 4-digit profiles are nearly independent of airfoil thickness or camber, and are approximated as [32]

J = kt t3c4 (17)

where kt is a torsion coefficient that is assumed to be constant for all airfoils. Using the cross sectional analysis tool,

BECAS [31], it was found that kt ' 0.15, which is in agreement with results presented in [32].

A similar method is introduced for approximating the location of the shear center labeled in Fig. 2. The shear center’s
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chordwise location is approximated as s̃x ' 0.89ẽx and s̃z ' 1.45ẽz , where (ẽx, ẽz) are calculated from analytical

expressions and tildes represent that terms are defined in the local coordinate system with the origin at the leading edge

(refer to Fig. 2). This approximation for the shear center of the airfoils has shown to be accurate to within a distance of

2% of the chord length in the x̃ direction and 0.7% of the chord length in the z̃ direction (refer to Table 3 in Appendix B).

In this work the beam center has been defined at the quarter chord point as shown in Fig. 2. Theoretically it could

be defined anywhere in the cross section and it may be tempting to place the beam center coincident to the elastic or

shear center such that (ex, ez) or (sx, sz) is equal to (0, 0), and (16) can simplified. However, the quarter chord point is

approximately equal to the aerodynamic center which by definition is the point where the pithing moment is constant

with changes in angle of attack. This means that as the beam deforms, there is little change in the torsional loads making

it easier to converge the coupled problem.

D. Solution Procedure and Load-Displacement Transfer

Beam and panel methods are coupled using fixed-point iterations where loads calculated in the panel method are

applied to the beam model, then deformations calculated in the beam model are used to deform the panel geometry, and

loads are recalculated in the deformed configuration. This process continues until the change in solutions between

update steps is less than a tolerance, ε , which is set as ε = 10−3 when solving optimization problems. An Aitken

relaxation scheme is implemented based on methods outlined in [33]. This coupling scheme has proven to reduce the

computational cost compared to Newton methods for these types of aeroelastic problems due of cost associated with

calculating the Jacobian matrix [7, 21]. For more details on solution procedures for aeroelastic problems readers are

referred to [34].

The authors adopt the generalized load-displacement transfer scheme derived in [21] for coupled panel-beam

problems. The airfoil sections are defined in the t1-t3 plane at the beam nodes (refer to Fig. 3) and undergo rigid body

translations and rotations due to the deflection of the beam, i.e.

Xi j = ∆xi + ri j × θi (18)

where Xi j is the panel-mesh nodal coordinates for panel node j at airfoil section i, ∆xi and θi the beam displacements

and rotations at beam node/airfoil section i, and ri j is a spatial vector from beam node i to panel node j. The total

force applied on a beam element is the sum of the contributions from pressure loads on the panels at the same spanwise

location,

fe =
N∑
k=1

∫ le

0

{
n
m

}
dl (19)

where n are the conjugate forces acting on the panel, andm are the moments associated with translating these forces

from the panel to the beam axis, i.e. m = r × n. Note that these conjugate forces and moments are not the same as those
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used in (12). Using the principles of consistency and conservativeness the conjugate forces are derived as

n = q∞CP Jlwn̂ (20)

where q∞ is the dynamic pressure, w the panel width, n̂ is the panel’s normal vector, and Jl is a mapping function to

account for differences in panel length and beam element length (refer to [21]).

IV. Results
The results section is divided into two subsections. The first subsection presents comparisons between designs

achieved with linear and nonlinear beam finite element models and the second presents studies on aeroelastic optimization

of non-planar wings. Each optimization problem is solved using the method of moving asymptotes [35] where gradients

are calculated analytically using the adjoint formulation given in Appendix C.

A. Aeroelastic Shape Optimization with Nonlinear Deformations

The first study seeks to optimize a deformable wing using a linear or nonlinear finite element (FE) models. Consider

the following optimization problem where the objective is to minimize drag with respect to a constraint on lift-weight

equilibrium, where the weight, W , is defined as the combined weight of the wing and a payload.

min
d ∈ RNd

: D(d, u, µ)

subject to : L(d, u, µ) = W(d)

¯
d ≤ di ≤ d̄ for i = 1, ..., Nd

(21)

Because it is induced drag that is to be minimized, the optimizer will seek to reduce lift in order to reduce drag. The

lift-weight equilibrium constraint is not only a physical consideration, it also gives a minimum bound to the lift which

prevents the optimizer from creating zero lift as this would give zero drag. The problem is solved for a fixed span

planar wing using only symmetric airfoils where chord, thickness, and twist can vary at each spanwise section, i.e.

d = {δc, t, α}. Optimized designs from both FE models are shown in Fig. 4.

With a linear FE model the design converges to a rectangular wing with a very large deflection. Deformations like

this are certainly unphysical as they violate the assumption made by the linear FE model (small deflections) and the

design would likely fail under the large stresses produced. But for the purpose of this discussion, we will consider

these results as they are. When the deformations are this large, the coupled problem is prone to divergence as a small

change in the displacements can cause a large change in the loading [7, 21]. Because the optimizer wants to create

a very compliant wing, the minimum allowable chord length was increased in order to achieve a converged solution.

The design converges with this minimum chord length and a maximum twist at each airfoil section, which gives the
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(a)

(b)

Undeformed

Undeformed

Deformed

Deformed

η = 1

η = 1

Fig. 4 Optimized results with (a) linear and (b) nonlinear finite element models. η markers are included at the
wingtip.

rectangular planform and large displacements.

When the nonlinear FE model is used the optimizer converges to a tapered wing with moderate deflections. This

design is closer to what one would naturally expect from this optimization problem, where chord and thickness is

reduced towards the tip to reduce weight and increased towards the root to reduce deflections. The differences in these

designs are related to the degrees of freedom (DOF) of the model. With a linear FE model, DOFs are defined to allow

transverse deflections due to bending, but there is no coupling between axial and bending deformations. This means

displacements in the spanwise direction are only affected by axial loading, and in pure bending the deformations will

only be in the transverse direction. With respect to a wing model, this means the wingtip is displaced vertically where

the wingspan does not change, but the curve length of the wing has increased which is clearly unphysical (refer to Fig.

4a). This is not the case in the co-rotating formulation because the constitutive relations are satisfied in a local reference

frame that updates as the beam deforms. This allows the nonlinear FE model to capture the apparent shortening of the

wingspan due to bending, which means there will be a large loss in lift as the beam deforms. It should also be noted that

the weight is calculated in the undeformed configuration, meaning the artificial increase in the curved length of the

linear wing is not considered in the weight calculation.

It is easier to demonstrate the shortening effect of the wingspan when there is more control over the deflection. A
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similar optimization problem is defined where an additional constraint on the tip deflection of the wing, ut , is introduced.

min
d ∈ RNd

: D(d, u, µ)

subject to : L(d, u, µ) = W(d)

ut (u) ≤ ūt

¯
d ≤ di ≤ d̄ for i = 1, ..., Nd

(22)

Results are shown in Fig. 5 for both linear and nonlinear FE models with varying values of ūt . Lift-to-drag ratios

and tip displacements are presented in Table 1. Each design converges to a tapered wing, and in general, the nonlinear

designs have a slightly larger aspect ratio which is likely due to the increased stiffness that comes from the geometric

terms. In each case with a linear FE model the tip displacement constraint is active. For the nonlinear FE model the tip

displacement constraint is only active when a strict constraint is imposed. In these cases both wings converge to designs

that predict similar lift-to-drag ratios, as shown in Table 1. When the constraints are relaxed and a linear FE model is

used, the optimizer tends to stiffen the inboard portion of the wing towards the root and increase the compliance towards

the tip to create unrealistic large deformations (e.g. Fig. 5d). These unrealistic deformations allow the linear wings to

achieve large increases in L
D for a relaxed ūt constraint, whereas the nonlinear wings do not see much change when the

constraint is relaxed. Because the tip constraint is inactive with a nonlinear FE model when ūt set to 0.2 b
2 or 0.3 b

2 , the

optimizer converges to the same design shown in Fig. 4b. Note also that the model predicts large L
D values for each

design because only the induced drag is considered.

ūt 2
b

L
D

ut
ūt

Linear Nonlinear Linear Nonlinear
0.05 63.8 63.7 1.00 1.00
0.1 65.0 64.1 1.00 1.00
0.2 67.5 64.4 1.00 0.71
0.3 70.4 64.4 1.00 0.47

Table 1 Lift-to-drag ratios and tip deflection for the converged designs shown in Fig. 5

For designs with a nonlinear FE model and a relaxed tip constraint, large deflections lead to a loss in aerodynamic

performance and the optimizer has created trade-offs between reducing the weight and reducing deflections. With a

linear FE model the wing can still maintain a good aerodynamic performance for large deformations. As discussed

previously, this is due to the ability of the nonlinear FE model to capture the effect of a shortening wingspan as the wing

deforms. The details in Figs 5 shows the deflections at the wingtip where this effect is clearly visible. For induced drag

minimization problems small changes to the wingspan can have a large impact on performance [20]. Because the linear

FE model is unable to capture the shortening wingspan due to large deflections, the model predicts high lift-to-drag
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(a) ūt = 0.05 b
2

(c) ūt = 0.2 b
2

(b) ūt = 0.1 b
2

(d) ūt = 0.3 b
2

Linear Nonlinear Linear Nonlinear

Linear NonlinearLinear Nonlinear

η = 1 η = 1

η = 1 η = 1η = 1

η = 1 η = 1

η = 1

Undeformed Undeformed

Deformed DeformedDeformedDeformed

Deformed Deformed Deformed Deformed

Undeformed Undeformed

Undeformed Undeformed Undeformed Undeformed

Fig. 5 Shape optimization results for linear (left) and nonlinear (right) finite element models with different tip
displacement constraints. Each figure shows an elevation view with undeformed and deformed wings above, a
planform view below, and markers at η = 1. Details magnify the deflection at the wingtip.

ratios at large deformations.

B. Aeroelastic Shape Optimization of Non-Planar Wings

Given the findings of previous studies, the remaining problems will only be solved using the nonlinear FE model.

These studies will explore the differences in performance for flexible non-planar unswept wings where the out-of-plane

geometry is controlled by ẑ which is defined in the undeformed configuration, refer to Fig. 1. Consider the following

optimization problem to minimize drag subject to lift-weight equilibrium and root bending moment constraints. The

problem is solved for both raised ( ẑ > 0) and drooped ( ẑ < 0) wings. By enforcing a constraint on the root bending

moment, raised and drooped wings are more comparable to one another as increases in aerodynamic performance

may also lead to an increased bending moment. To make the non-planar designs comparable to previous examples the

maximum bound on Mr is defined in terms of a scalar M0 which is equal to the root bending moment produced by

the design in Fig. 4b. The final constraint is a geometry constraint imposed on the value of ẑ at the wingtip, where

¯̂zt = 0.1 b
2 .

min
d ∈ RNd

: D(d, u, µ)

subject to : L(d, u, µ) = W(d)

Mr (d, u, µ) ≤ M̄r

| ẑt (d)| ≤ ¯̂zt

¯
d ≤ di ≤ d̄ for i = 1, ..., Nd

(23)
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Converged designs are shown in Fig. 6 for upper bounds on root bendingmoment, M̄r = {M0 , 0.95M0 , 0.9M0 , 0.85M0},
and their lift-to-drag ratios are presented in Table 2. In each case the designs converge to similar planform geometries

irrespective of whether the wings are raised or drooped. The constraint on ẑt is active when the bending moment

constraint is relaxed, and is inactive for a drooped wing with M̄r = 0.9M0 and both cases with M̄r = 0.85M0. In fact,

when M̄r = 0.85M0 (Fig. 6d) neither raised or drooped wings form and both problems converge to a similar planar

wing. Because of the strict bending moment constant in this case, the design has converged to a straight tapered wing

with a high aspect and taper ratio. Comparing this design to the wing in Fig. 4b, we can see a higher aspect ratio and

much smaller chord length at the tip which helps to reduce the bending moment. For the other designs there is a larger

chord length in the outer regions towards the wingtip when the geometry goes out-of-plane, and the aspect ratio reduces

as the constraint is relaxed.

M̄r

M0

L
D

Raised Drooped
1.0 68.9 71.0
0.95 66.7 68.6
0.9 62.4 63.5
0.85 56.8 56.8

Table 2 Lift-to-drag ratios for the raised and drooped wings shown in Fig. 6.

(a) M̄r = M0

(c) M̄r = 0.9M0

(b) M̄r = 0.95M0

(d) M̄r = 0.85M0
ẑ ≥ 0 ẑ ≤ 0 ẑ ≥ 0 ẑ ≤ 0

ẑ ≥ 0 ẑ ≤ 0ẑ ≥ 0 ẑ ≤ 0

UndeformedUndeformed Undeformed Undeformed

Undeformed Undeformed Undeformed Undeformed

Deformed Deform
ed

Deform
edDeformed

Deformed Deform
ed Deformed Deform

ed

η = 1η = 1 η = 1η = 1

η = 1η = 1η = 1η = 1

Fig. 6 Shape optimization results for raised (left) and drooped (right) wings with different bending moment
constraints. Each figure shows an elevation view with undeformed and deformed wings above, a planform view
below, and markers at η = 1. Details magnify the deflection at the wingtip.
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Previous work has demonstrated that for a rigid wing both drooped and raised designs should be capable of achieving

the same performance [22]. Now that the deformations are included in the model, the drooped wings consistently out

perform raised wings, as shown in Table 2. When the bending moment constraint is gradually tightened, the lift-to-drag

ratios are reduced and performance of raised and drooped wings start to converge. This is not surprising as both converge

to a similar planar wing for M̄r = 0.85. The additional benefit of drooped wings is due to the way the wings deform.

Because the wingtips are drooped there is an effective increase in the wingspan as the wing deforms, e.g. refer to detail

in Fig. 6a. But with raised wing designs the effective wingspan is shortened as wing deforms, which is also seen in

details in Fig. 6a. The induced drag is inversely proportional the wingspan squared, and as such increasing the effective

wingspan leads to large reductions in drag. For a constant lift, a larger wingspan will also allow the chord length to be

reduced which is why the planforms of the drooped wings have slightly higher aspect ratios in Fig. 6. Comparing the

details of each wing in Fig. 6, it is easy to see that the effective wingspan is reduced for stricter constraint on Mr , as a

shorter wingspan will reduce the root bending moment. By reducing ẑ the effective wingspan is also reduced for cases

where M̄r is equal to 0.9M0 and 0.85M0.

Fig. 7 plots lift and root bending moment distributions for raised and drooped wings in terms of the product of

local lift/root moment coefficients and the chord length, i.e. Clc = l
q∞ and Cmr c = mr

q∞b . Figs 7a and 7b show lift

and root moment distributions for each of the raised wing designs. When the bending moment constraint becomes

more restrictive the lift distribution tends close to a inverse-linear distribution for the tapered wing design in Fig. 6d,

which is what would be expected from a triangular planform wing. This would correspond to a parabolic root moment

distribution, and as shown in Fig. 7b the distributions become close to parabolic. When the bending moment constraint

is relaxed, less of the total lift is produced towards the root and more is produced towards the tip (as seen in Fig 7a).

This in turn will lead to a larger contribution to the bending moment being produced in the outer regions of the wing (as

seen in Fig 7b).

Although distributions in Figs 7a and 7b are only shown for raised wings, the drooped wing designs vary in a similar

way when M̄r is varied. Figs 7c and 7d compare distributions for raised and drooped wings with M̄r = 0.85M0 and

M̄r = M0. Here, the x-axis plots η̂ which represents the y locations in the deformed configuration normalized with

the undeformed wingspan. This gives values that are not equal to 1 at the wingtip. For M̄r = M0 similar trends are

seen between raised and drooped wings, where the maximum lift and bending moment is larger for the raised wing

because the effective wingspan is shorter, whereas negligible differences are seen when M̄r = 0.85M0 since both cases

converged to similar designs without planar geometry.

The optimization studies presented here have minimized the induced drag where viscous effects are neglected. It is

important to note that previous studies in the literature have demonstrated that drooped wings are not as efficient as

raised when viscous effects are included, e.g. [22, 36]. However, these conclusions were based only on aerodynamic

modeling where deformations were not accounted for. It is still yet to be investigated whether the advantage the drooped

16

P4P4



(a) Lift distributions, ẑ > 0 (b) Root moment distributions, ẑ > 0

(c) Lift distributions, ẑ > 0 & ẑ < 0 (d) Root moment distributions, ẑ > 0 & ẑ < 0

Fig. 7 Lift and bending root moment distributions for converged designs shown in Fig. 6. η values in (a) and
(b) represent undeformed configurations, whereas in (c) and (d) η̂ represents deformed configurations.

wings achieve from increasing the effective wingspan is enough to make drooped wings beneficial when viscous effects

are included.

V. Conclusions
A nonlinear co-rotating beam formulation has been applied to aeroelastic shape optimization of aircraft wings

with solid isotropic cross sections. Cross sectional properties are calculated using derived analytic expressions or

approximations, where a new approximation method is introduced to find the shear center of the airfoil. The method

allows the stiffness matrix to be calculated for airfoil sections without the need for numerical integration methods over

the cross section. Comparisons have been presented on optimized designs achieved using linear and nonlinear finite

element models. Results have found that capturing nonlinear deformations can be crucial for induced drag minimization

problems as the model is capable of predicting the change in wingspan as the wing deforms. Because linear models

are unable to capture this effect, the wingspan remains constant leading to inaccurate predictions of aerodynamic

performance and unphysical deformations for compliant wings. Flexible raised and drooped wings have been compared

based on their aerodynamic performance where it was found that drooped wings will achieve larger lift-to-drag ratios.

This is directly due to differences in geometry, where for a drooped wing the effective wingspan is increased as the wing

deforms, whereas the effective wingspan of the raised wing is decreased as the wing deforms.
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Appendices

A. Local orientation in 3D space
The local orientation of the beam can be expressed in 3 forms: a rotation matrix which is used throughout the finite

element analysis, Euler angles which describes the degrees of freedom in the finite element analysis, and quaternions

which are represented as a scalar q̄ and vector q. Quaternions are introduced because rotations in the first two forms

are non-additive in 3D space [3, 27]. The following procedure is adopted to calculate the current orientation, T, from

an initial configuration, T0, having undergone the Euler rotations θ. For more details on the theory of this procedure

readers are referred to [27], Chapter 16.

1) Convert initial configuration, T0, to a quaternion representation, q̄0, q0.

If max(Tr(T0),T0,11,T0,22,T0,33) = Tr(T0) then

q̄0 =
1
2
√

1 + Tr(T0) (24a)

q0,i =
T0,k j − T0, jk

4q̄
for i = 1, 2, 3 (24b)

with i, j, k as the cyclic combination of 1,2,3.

If max(Tr(T0),T0,11,T0,22,T0,33) , Tr(T0) but instead = T0,ii

q0,i =

√
1
2

T0,ii +
1
4
(1 − Tr(T0)) (25a)

q̄0 =
T0,k j − T0, jk

4qi
(25b)

q0,l =
T0,li − T0,il

4qi
for l = j, k (25c)

where the opertation Tr(T0) represents the trace of T0.

2) Convert the Euler rotations θ to a quaternion representation, q̄r, qr .

q̄r = c1c2c3 + s1s2s3 (26a)

qr,1 = s1c2c3 − c1s2s3 (26b)

qr,2 = c1s2c3 + s1c2s3 (26c)

qr,3 = c1c2s3 − s1s2c3 (26d)
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where ci = cos
( θi

2
)
and si = sin

( θi
2
)
.

3) Calculate the quaternion representation of the current orientation as the quaternion sum of the initial orientation

and the rotation

q̄ = q̄0q̄r − q0 · qr (27a)

q = q̄0qr + q̄r q0 − q0 × qr (27b)

4) Convert back to the rotation matrix representation

T = (q̄2 − qTq)I + 2(qqT) + 2q̄S(q) (28)

where I is the identity matrix and S(q) is a skew matrix defined in (10).

B. Cross sectional properties
This work assumes a solid isotropic cross section whose geometry is defined by the airfoil parameterization

represented in Fig. 2. The parameterization is based on the equations for NACA 4-digit airfoils which define thickness

and camber distributions as [23]

z̃t = 5tc
(
0.2969

√
x̃
c
− 0.1260

x̃
c
− 0.3516

( x̃
c

)2
+ 0.2843

( x̃
c

)3
− 0.1036

( x̃
c

)4
)

(29)

z̃m =




mc
p2

(
2p

x̃
c
− ( x̃

c
)2

)
, if 0 ≤ x̃

c
≤ p

mc
(1 − p)2

(
1 − 2p + 2p

x̃
c
− ( x̃

c
)2

)
, if p ≤ x̃

c
≤ 1

(30)

NACA 4-digit airfoils define the thickness as normal to the camber line. The current parameterization modifies this

definition such that thickness is measured normal to the chord line which ensures the derivatives are continuous [20].

The upper and lower surface of the airfoil are then be defined as

z̃u = z̃m + z̃t (31a)

z̃l = z̃m − z̃t (31b)

where the origin is at the leading edge, and subscripts u and l represent upper and lower surfaces, respectively. Now that

there are analytic expressions for the airfoil, the following cross sectional properties can be derived through evaluating

the integrals provided in [37]
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A =
∫ c

0
(z̃u − z̃l)dx̃ =

40853
60000

tc2 (32)

ẽx =
1
A

∫ c

0
x̃(z̃u − z̃l)dx̃ =

17072
40853

c (33)

ẽz =
1

2A

∫ c

0
(z̃2

u − z̃2
l )dx̃ =

30000cm
40853(p − 1)2

[ − 0.904838096p
3
2 + 1.80967619p

5
2 − 0.03946666699p6

+ 0.209266666968018p5 − 0.563566667023105p4 − 0.18559999995126p3

+ 0.209999999949106p2 − 1.58539999956691p + 1.0499285706036
]

(34)

Ĩxx =
1
3

∫ c

0
(z̃3

u − z̃3
l )dx̃ =

c
4
3

(p − 1)4
[ − 2.056450216p

3
2 m2t + 8.22580086p

5
2 m2t − 9.62418701p

7
2 m2t

− t(−0.1176566644t2 − 1.310524784m2 + 4.066219048m2p + 0.4706266577pt2

− 0.7059399865t2p2 − 2.79677229p
9
2 m2 − 3.716828571p2m2 + 1.413257143m2p3

+ 0.098666667m2p8 − 0.11765666t2p4 + 0.470626658t2p3 + 0.27081072p4m2

− 3.22688095p5m2 + 2.46037382p6m2 − 0.713157141p7m2)]

(35)

Ĩxz =
1
2

∫ c

0
x̃(z̃2

u − z̃2
l )dx̃ = − 0.0123333335

c4tm
(p − 1)2

[
12.22754164p

5
2 − 24.45508329p

7
2 + p7

− 4.8907335151639p6 + 11.698069340392p5 + 2.05945943106902p4

− 3.40540535911413p3 + 20.856370370699p − 15.0902185805057
]

(36)

Ĩzz =
∫ c

0
x̃2(z̃u − z̃l)dx̃ =

32743
210000

c4t (37)

Properties notated with a tilde are defined with respect to the airfoil’s leading edge, but cross sectional properties in

(16) are defined with respect to the beam center and therefore properties in equations (33)-(37) need to be corrected e.g.

using the parallel axis theorem.

Cross sectional properties that cannot be calculated analytically include the location of the shear center and the

torsional stiffness. The torsional stiffness is calculated using a technique in [32] where J about the quarter chord point is

approximated as J ' 0.15t3c. A similar approximation was formed for the location of the shear center in terms of the

elastic center, by stating that

(s̃x, s̃z) ' (kx ẽx, kz ẽz) (38)
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where kx and kz are coefficients that are constant for all airfoils defined by the parameterization above. BECAS [31]

was used to evaluate kx and kz for a selection of airfoils with different values of m, t, and p. Based on average values,

kx and kz were found to be 0.89 and 1.45, respectively. Table 3 compares the difference in these approximations to the

values calculated via BECAS. The approximation of the shear center was shown to be accurate to within 2% and 0.7%

of the chord length for x̃ and z̃ locations, receptively. The torsional stiffness approximation had a maximum relative

error of 6%.

NACA 4-digit 0006 0012 0018 2506 2512 2518 4506 4512 4518
∆sx [% c] -0.647 -0.426 -0.511 0.074 -0.208 -0.399 1.82 0.411 -0.115
∆sz [% c] 0 0 0 0.026 0.010 -0.013 0.073 0.0235 -0.146
∆J [%] 0.691 -0.347 -4.01 5.93 -0.464 -4.13 5.65 -0.801 -3.69

Table 3 Comparison of cross sectional properties calculated via BECAS and the approximations presented in
the current work. Difference in shear centers is presented as percentage difference in chord length, and torsional
stiffness as relative difference.

C. Sensitivity analysis
Gradients are calculated using a discrete adjoint method, where the total derivative of an objective/constraint

function Ψ can be calculated as

dΨ
dd =

∂Ψ

∂d + λ
T
a

[
∂Aµ
∂d µ +

∂Aσ
∂d σ + Aσ

∂σ

∂d

]
+ λTb

[
∂p
∂d −

∂f
∂d

]
(39)

where partial derivatives capture only the explicit dependence without solving the governing equations. The terms λa

and λb are Langragian multipliers whose length is equal to that of µ and u respectively, and are calculated through

solving the following adjoint problem


Aµ

[
∂Aµ
∂u µ +

∂Aσ
∂u σ + Aσ

∂σ

∂u

]

− ∂f
∂µ

[
K − ∂f

∂u

]


T 
λa

λb


= −



∂Ψ

∂µ
∂Ψ

∂u


(40)
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