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Abstract

The goal of this thesis is to develop an efficient framework for aerodynamic
and aeroelastic shape optimization. The framework includes coupled aerody-
namic and structural analysis, where a multidisciplinary formulation is used in
order to create optimized trade-offs between structural and aerodynamic perfor-
mance. A primary challenge with these problems is the computational expense
of solving the coupled problem on each design iteration. In order to help over-
come this expense, panel methods are used to calculate the aerodynamic loads
which are an efficient alternative to conventional CFD methods. Beam finite
element models are used in this thesis to capture structural deformations, but
extensions to 3D continuum finite elements are also discussed. All optimiza-
tion problems are solved using gradient-based methods, where gradients are
derived analytically and implemented using a discrete adjoint approach. The
methodology developed throughout this thesis has been applied to the design
of aircraft wings. Results demonstrate the applicability of the methods, and
the framework is used to explore the potential of unconventional aircraft wing
designs such as curved wall spars and drooped wings.

The specific details of the thesis are covered by four journal publications
which contain the following topics:

P1. The aerodynamic optimization framework is introduced which lays out
the main considerations for solving aerodynamic optimization problems
with panel methods, namely: choice of boundary conditions; drag cal-
culation methods; parameterization methods; regularization; and wake
modeling.

P2. The coupled panel-beam framework for aeroelastic optimization is intro-
duced. The publication includes a general panel-beam load-displacement
transfer scheme, parameterizations that define both the external wing
geometry and internal structural geometry, and investigations conducted
on the benefits of curved wall spars in wingbox design.

P3. A parameterization is presented for aerodynamic optimization of non-
planar wings. The method is able to improve upon reference designs
taken from the literature, and is used to investigate the potential per-
formance benefits of drooped wings compared to more traditional raised
wing designs with winglets.

P4. The coupled aeroelastic framework is extended to include a non-linear
co-rotating beam model. The results demonstrate the importance of cap-
turing non-linear deformations in aeroelastic optimization problems, and
presents aeroelastic comparisons of solid foam core wings with raised and
drooped geometry.

ii



Resumé (in Danish)

Malet med denne athandling er at udvikle et effektivt beregningsveerktgj til
aerodynamisk og aeroelastisk formoptimering. Beregningsveerktgjet inklud-
erer en koblet aerodynamisk og strukturel analyse kombineret i en multidis-
ciplineer formulering for at optimere strukturel og aerodynamisk ydeevne. En
umiddelbar udfordring ved disse problemer er de beregningsmaeessige omkost-
ning forbundet med at lgse det koblede problem i hver designiteration. For at
afhjeelpe dette benyttes panelmetoder til beregning af de aerodynamiske laster,
hvilket er et effektivt alternativt til konventionelle CFD metoder. Bjeelkeele-
mentmetoder benyttes til beregning af de strukturelle deformationer herudover
diskuteres mulige udvidelser i form af 3D kontinuum metoder ogsa. Alle opti-
meringsproblemer er lgst ved brug af gradientbaserede optimeringsalgoritmer,
hvor gradienterne er beregnet analytisk og implementeret ved brug af en diskret
adjoint formulering. Metoderne udviklet i dette arbejde er blevet anvendt til
design af flyvinger. Resultaterne demonstrerer metodernes anvendelighed og
beregningsvaerktgjet er anvendt til at undersgge potentialet ved ukonventionelle
vingedesigns sa som krumme vingespeer og nedad-buende vinger.

De konkrete detaljer er beskrevet i fire videnskabelige artikler der daekker
de fglgende emner:

P1. Det aerodynamiske optimeringsvaerktgj introduceres og beskriver de
grundleggende overvejelser for Igsning af aerodynamiske optimer-
ingsproblem ved brug af panel metoder, herunder: valg af rand-
betingelser, metoder til beregning af luftmodstand, parametriseringsme-
toder, regularisering og modellering af haekbglge.

P2. Det koblede panel-bjelke beregningsvaerktgj til aeroelastisk optimer-
ing introduceres. Artiklen inkluderer en generel panel-bjelke last- og
deformations-overfgrsels procedure, parametrisering af savel ydre vinge-
geometri som indre strukturelle geometri samt undersggelser af fordele
ved brug af krumme vingespaer i vingeboksen.

P3. En parameterisering for aerodynamisk optimering af ikke-plane vinger.
Metoden kan forbedre referencedesigns fra litteraturen og benyttes til
afdackning af potentielle ydelsesforbedringer for nedad-buende vinger i
forhold til mere traditionelle winglet designs.

P4. Det koblede aeroelastiske beregningsveerktgj udvides til at inkludere
en ikke-linezer med-roterende bjzelkemodel. Resultaterne understreger
vigtigheden af at medtage ikke-linezre deformationer i aeroelastiske op-
timeringsproblemer og sammenligninger det aeroelastiske respons for
vinger med skumkerne og hhv. opad- og nedadbuende vingespidser.

iii
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Part 1. Description of Methods, Results, and
Outcomes






Introduction

Aircraft wings are complex engineering structures that demand low-weight with
a strong aerodynamic performance. These two attributes are linked by the
fact that low-weight is usually associated with flexible structures where large
deformations can cause large changes in aerodynamic loading. Because of the
coupling between these two physics regimes it is important to consider both in
the design of aircraft wings, and the end design will usually require trade-offs
between structural and aerodynamic performance. It is not always obvious
how to create these trade-offs in a manner that leads to a well-performing
design overall. Numerical optimization can be a powerful method for the design
of any engineering system, but is particularly useful in such cases where the
design requires trade-offs between different physical attributes. This thesis
details the development of shape optimization methods which are applied to
the aerodynamic and aeroelastic design of aircraft wings. This chapter will
outline the specific goals of the thesis and provide a general overview of aircraft
design to familiarize the reader with some of the basic practical concepts.

1.1 Motivation & Goals

This Ph.D. thesis is part of a larger six-year project called the InnoTop Villum
Investigator Project. The goal of the InnoTop project is to create an interac-
tive software that produces optimized designs for multiscale and multiphysics
problems. The software will have the capability to design aerodynamic form,
structural members, and microstructure designs simultaneously. This Ph.D.
project will focus specifically on the development of aerodynamic and aeroe-
lastic optimization methods, and conduct investigations on the applicability of
the developed methods.

The primary goal of this Ph.D. project is to develop an efficient aerody-
namic and aeroelastic optimization framework for applications such as aircraft
wings, windturbines, and propeller blades. Requirements of the framework in-
clude: maintaining a low computational cost; allowing large geometric changes
to the design; and include the capability to interface with different structural
models. From a practical perspective, the project aims to apply the subse-
quent framework to explore the potential gains of non-traditional aircraft wing
designs.




4 CHAPTER 1. INTRODUCTION

1.2 A Reader’s Guide

This thesis is divided into two parts. The first part describes the methods
implemented throughout the Ph.D. project, the subsequent studies conducted,
and the resulting contributions. The second part includes the author’s relevant
publications to the methods described in Part 1. For clarity, the first part of
the thesis will refer to studies detailed in these publications, however notation
and definition of variables may vary between Parts 1 and 2.

The thesis is written to be somewhat self-contained whereby general intro-
ductions to concepts are included, but specific details may be excluded — in
which case, references will be provided for the reader to pursue further details.
However, it is recommended that the reader have some basic knowledge of the
following areas and are referred to the respective texts: numerical optimization
[1], potential flow theory [2] and finite element methods [3, 4].

Part 1 of this thesis is structured as follows. The remainder of this intro-
duction will give an overview of aircraft design. Chapter 2 will introduce the
numerical methods used throughout the Ph.D. project. Chapter 3 will present
methods specific to aerodynamic optimization, accompanied by relevant studies
and findings. Methods are extended to aeroelastic shape optimization studies
in Chapter 4. Chapter 5 concludes the thesis, highlights the important con-
tributions, and discusses recommendations for future work. Additionally, the
Appendices contain further information on methods and a number of smaller
unpublished studies which aid the discussions throughout Part 1.

1.3 An Overview of Aircraft Design

1.3.1 A Short History of the Modern Aircraft

It is of no doubt common knowledge to most readers that the first self-propelled
flight was conducted by the Wright brothers in 1903. This marked a historic day
in human history, but with the flight lasting only twelve seconds and spanning
a distance of 37 meters, their Wright Flyer (shown in Figure 1.1a) was far from
the modern aircraft in use today. However, both the Wright Flyer and modern
aircraft designs have the same principle components. In fact, it was Cayley [5]
who had outlined the principle components of modern aircraft roughly a century
before the Wright brothers took flight. More specifically, Cayley introduced
the concept of fixed-wing aircrafts with separate systems for lift, propulsion,
control, and payload. Today we know these systems as the wing, engine, tail,
and fuselage respectively, which can be seen for each aircraft in Figure 1.1.
Cayley also identified the four aerodynamic forces of flight: lift, drag, weight,
and thrust (which are detailed in the next subsection).

Aircraft designs rapidly improved throughout the 20th century aided by
significant developments in aerodynamic theory during the first half of the cen-
tury, large investments in new technologies during two world wars, and the
gains in computational power in the latter half of the century. A timeline of
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Figure 1.1: Aircraft of different periods: (a) Wright flyer 1903 [6], (b) Spitfire
1938 [7], (c) Boeing 707 1958 [8], and (d) Boeing 777X 2022 [9].

these developments is shown in Figure 1.2, along with some notable milestones
in aviation. A major early contribution of particular relevance is the develop-
ment of lift circulation theory and the Kutta-Joukowski theorem. The theory
relates the lift generated by two-dimensional bodies to a circulation defined as a
closed-loop integral of the velocity tangential to a path enclosing the body [10].
The theory laid the groundwork for Prandtl’s lifting line theory, the first 3D
method for modeling the aerodynamics of aircraft wings. In 1923, Munk [11]
developed a criteria for defining the aerodynamic efficiency of aircraft wings
and proved an optimal planar wing will have an elliptic circulation distribu-
tion along the span, which by the Kutta-Joukowski theorem corresponds to an
elliptic lift distribution. These findings inspired the elliptic planform designs
of World War II era planes such as the Spitfire (shown in 1.1b). World War
IT also saw the start of mass production of aircraft and after the war, many
of these production lines continued producing aircraft for civilian use, leading
to reduced manufacturing costs and increases in the number of operational
aircraft worldwide.

Comparing Boeing’s first passenger jet aircraft, the 707 which launched in
1958 (in Figure 1.1c), to their latest aircraft, the 777X scheduled for 2022 (in
Figure 1.1d), there has been an increase in efficiency from 45 passenger miles
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1903 First powered flight, Wright brothers
1904 Boundary layer theory, Prandtl

1906 Ciculation theory of lift

1907 Vortex wake modeling, Lanchester

1908 Theory of expansion and shockwaves, Prandlt

1909 First flight across the English Channel, Blériot

1914-1918 World War I

1918 Lifting line theory, Prandtl

1917 First pilotless aircraft flight (radio controlled)

1922 Thin airfoil theory, Munk

1927 First transatlantic flight, Lindbergh

1928 Prandtl-Glauert compressibility correction

1931 Theory of arbitrary airfoils, Theodorsen

1939-1945 World War IT

1939/1941 First turbojet engines, Ohain/Whittle

1947 Bell X1 breaks sound barrier, Yeager

1952 de Havilland Comet, first commercial passenger jet

1958 Boeing 707

1960s First computational fluid dynamics codes

1967 First 3D panel code, Hess & Smith

1968 First commerical supersonic transport aircraft
1973 Oil crisis

1976 Winglets, Whitcomb

1977 Aeroelastic mutildisciplinary optimization, Haftka
1979 Oil crisis

1986 First non-stop around the world flight
2005 A380 first flight, largest passenger aircraft
2022 Boeing 777X

Figure 1.2: Timeline of the advancements in aviation and modeling methods
since the first powered flight in 1903.

per gallon (p-mpg) to an expected 97 p-mpg [12, 13]. This gain in efficiency
is due to increases in passenger-to-aircraft weight ratios, engine efficiency, and
lift-to-drag ratios. The largest impact in improving aerodynamic performance
is undoubtedly from the advances in computational technology and computa-
tional methods for aircraft design. Computational fluid dynamics (CFD) codes
were first developed in the 1960s and have since become a pivotal part of aircraft
design. The main advantage of CFD is that it provides the ability to simulate a
number of cases in a short time frame and at a low cost compared to wind tun-
nel experiments. In the early days of computers, potential flow models played
the largest role in aircraft design [14]. Advancements in computational power
has made more advanced CFD models viable, where potential flow solvers are
now predominately only used at the preliminary design phase. Section 2.2.1
provides more detail on the differences between aerodynamic models.

The 1970s saw two oil crises which forced the price of aviation fuel to dras-
tically inflate and inspired aircraft engineers to seek methods of improving
efficiency. Motivated by this, Whitcomb began experimenting with winglet de-
signs, where the wing geometry is curved upward towards the wingtip. Whit-
comb documented increases in lift-to-drag ratios of up to 9% [15], which is
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due to a reduction in the induced drag, a concept discussed later in this sec-
tion. It took almost three decades for winglets to become a common feature
on commercial airliners, and other than winglets, there are very few noticeable
differences in aerodynamic form between the commercial airliners of the 1950s,
like the Boeing 707, and the airliners of today. As stated previously, these
designs use a configuration that is based on Cayley’s interpretation of flying
machines from 1809. It is already a popular opinion that a large potential
for increased efficiency can be achieved by exploring unconventional aircraft
configurations and wing designs, such as a blended wing-body [16, 17, 18], lift-
ing fuselage [19, 20, 21], drooped wings [22, 23], and morphing wings [24, 25,
26]. Similar to the aerodynamic form, the internal structural designs of wings
have not changed much since the early days of flight where wings are usually
constructed from rib-spar configurations. This type of structural design is dis-
cussed later in this section, and was used in both the Wright flyer from 1903
and the modern aircrafts of today. However, it is worth noting that advance-
ments in material technology has had a large impact. For example, the ribs
and spars of the Wright flyer were made of wood, the 707 used aluminum, and
the 777X will use composite materials — where each development has offered a
greater strength-to-weight ratio.

The challenge of reducing fuel consumption is just as prominent today.
From a commercial perspective, reducing fuel consumption is directly related
to cost savings and profit. From an environmental perspective, the aviation
sector currently accounts for 2.5% of the world’s COz emissions [27], and has
been forecast to triple by 2045 due to increases in passenger air traffic. For
context, Denmark accounts for around 0.09% of the world’s CO, emissions,
and if the aviation industry were a country they would be the fifth largest
contributer. Trends in air traffic have been steadily rising for decades with less
than half a billion passengers transported worldwide in 1975, to just over one
billion in 1990, and over 4 billion in 2019 [28]. If these trends were to continue
they would exceed 11 billion by 2039, but in light of the recent pandemic and
expected efforts to reduce air travel due to environmental concerns, a rise to 8
billion in 2039 is more likely [29]. Regardless, air traffic will continue to increase,
which will create a further need for reducing emissions and fuel consumption.
Improvements in aerodynamic performance and weight savings will be crucial
in achieving this goal.

1.3.2 Aircraft Terminology

Throughout this thesis and the accompanying publications, terminology may
be used which is unfamiliar to the reader. For completeness, terminology with
regard to aircraft design will be outlined here. Consider the typical aircraft
configuration shown in Figure 1.3a, with the main wing design features la-
beled. The wing is typically defined by either a leading and trailing edge or by
the quarter chord line and chord distribution, with cross sections defined by
airfoils. Figure 1.3b shows the section view, X-X, with typical airfoil geometry




8 CHAPTER 1. INTRODUCTION

Section X-X
/\ Fuselage Aercc)éigggmic Camber line
; Chord line
i Leading Trailin,
‘Wing root g
® X5 Leading edge edge_— [ S— e

Quarter-chord line

2

Trailing

I

Chord length
(b)

/
Planform area Lift
Angle of x
attack
Drag

=
Freestream Pitch

(a) (c)

B

Wingspan

Figure 1.3: Aircraft terminology: (a) planform view with wing geometry ter-
minology, (b) cross section X-X with airfoil terminology, (c¢) side view with
aerodynamic force terminology.

labeled. The aerodynamic center is defined as the point where the pitching mo-
ment does not change with angle of attack and is located approximately at the
quarter chord point. Because the aerodynamic center is fixed, it is convenient
for design purposes to assume the aerodynamic forces act through this point.
The aerodynamic forces acting the aircraft are shown in Figure 1.3c where lift
and drag are defined perpendicular and parallel to the freestream. Another
important parameter that is not labeled in Figure 1.3 is the aspect ratio, which
is defined as the ratio of the wingspan squared to the planform area.

A typical internal wing structure is shown in Figure 1.4. The wing’s struc-
ture has four main components: spars, ribs, skin, and stringers. Spars run
along the span of the wing and carry the majority of the load. Ribs are a series
of parallel structures that maintain the
aerodynamic profile, protect the skin
against buckling, and are attached to the
spars. The skin gives the wing its aerody-
namic shape and is attached to stringers.
Stringers are additional stiffeners run-
ning spanwise along the wing between the
ribs and skin. Forward and aft spars to-
gether with their flanges or parts of the
ribs form a box-like structure known as
a wingbox (whose cross section is labeled
in Figure 1.4). Because the skin of the
Wright Flyer is made of a translucent
fabric, the wing’s rib-spar structure can
also be seen in Figure 1.1a.

Figure 1.4: A typical internal struc-
ture of a wing with the main com-
ponents labeled.
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1.3.3 Induced Drag

There are three types of drag that affect aircraft: parasitic drag, lift-induced
drag, and wave drag. Wave drag is produced by the pressure variation caused
by shockwaves, where flow across the surface becomes locally supersonic, and
as such can only take effect in transonic speeds (Mach 0.7-1.3). Parasitic drag
accounts for viscous effects relating to the shape of the aircraft and skin friction
between the fluid and aircraft surface. Induced drag results from an induced
down-wash in the wake of the wing. Parasitic drag is proportional to the square
of the freestream velocity whereas induced drag is inversely proportional to
square of the freestream velocity. This means that the total drag (assuming
no wave drag) is usually dominated by the induced drag at low speeds and
parasitic drag at high speeds. The optimization problems presented in this will
seek to minimize induced drag as the focus is on aircraft in low-speed subsonic
flow where induced drag is dominant. But even for commercial aircraft, which
typically operate at Mach 0.7-0.75 during cruise, induced drag accounts for
40% of the total drag in cruise and up to 90% during climb and take-off [30].

Induced drag affects all 3D lifting bodies and is a side effect of lift generation.
There are many explanations on how lift is produced, and many factors that
contribute to lift. In the most general sense, lift is produced by turning an
incoming flow in one direction, resulting in a reaction force in the opposite
direction as according to Newton’s third law. The component of this reaction
force perpendicular to the incoming flow is called lift.

Figure 1.5 is used to explain how induced drag is formed and its relation
to lift. To create lift, there needs to be a pressure differential between the
upper and lower surfaces of the wing i.e. the lower surface pressure is increased
and the upper surface pressure is decreased (refer to Figure 1.5a). This means

Liftnhldu(:ad drag

Effect; >
Effective airTTow
Downwash
> . A
Freestream Induced angle of
attack

() (b)

Figure 1.5: Theory of induced drag: (a) pressure differences between the upper
and lower surface creates spanwise flow leading to formation of trailing vortices,
(b) vortices induce a downwash in the wake, and (c) downwash changes the
effective angle of attack leading to a loss in lift and creates induced drag.
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the lower surface pressure is higher than the pressure outboard of the wingtip,
creating a tendency for outward spanwise flow across the wing’s lower surface.
Conversely, the upper surface pressure is lower than the pressure outboard
of the wingtip, creating a tendency for inward spanwise flow on the upper
surface. When upper and lower surface flows meet at the trailing edge their
differences in spanwise flow causes vortices to form. These vortices are unstable
and combine to produce a wingtip vortex which induces a downwash in the wake
of the wing, as shown to Figure 1.5b. The downwash in the wake changes the
effective incoming angle of attack and the direction of the aerodynamic load,
resulting in a loss in lift and increase in drag as depicted in Figure 1.5c. This
additional drag is known as induced drag.
Three important design philosophies for reducing induced drag include:

1. Creating an elliptic spanwise circulation/lift distribution, which in turn
creates a constant downwash along the span and the minimum induced
drag for a planar wing with a specified wingspan.

2. Maximizing the wingspan (or aspect ratio) which reduces the downwash
in the wake for a specified lift. This technique is usually limited by
the fact that large wingspans will lead to increased weight (and bending
moments), where induced drag is inversely proportional the wingspan
squared, but the weight is proportional the wingspan cubed [31].

3. Creating a tailored wingtip geometry, such as winglets or raked wingtips,
which reduce spanwise flow leading to a reduction in vortex strength.



Numerical Methods

This chapter introduces the numerical methods used in publications [P1-P4]. In
the broadest sense these methods are distinguished by 3 distinct areas: design
optimization, computational aerodynamics, and structural mechanics. Each
of the following sections will include general overviews of the methods imple-
mented with relevant references for further reading. Within the section design
optimization, readers are introduced to how the optimization problems are for-
mulated. The aerodynamic model used throughout this thesis is based on panel
methods which are detailed in the succeeding section. The structural analysis
used in [P2,P4] is based on beam finite element (FE) models which are described
in Section 2.3. The final section of this chapter is on multidisciplinary analysis
which discusses the methods used to solve coupled aeroelastic problems.

2.1 Design Optimization

2.1.1 Background

Design optimization applies numerical optimization techniques to the design
of engineering systems whose physics can be captured by a numerical model
(typically in the form of a discretized PDE). The goal is to find a design that
minimizes an objective function subject to constraints on the physics and/or
design. The design is defined by a parameterization method which is controlled
by a set of design variables. Typically,

methods of parameterizing designs for op- Initial design

timization problems are classified with re-
spect to three techniques: sizing optimiza-
tion, shape optimization, and topology opti-

mization. These methods are illustrated in

Figure 2.1. All techniques involve an ini-

tial design which is modified by perturbing . ‘ @
design variables. Sizing optimization scales
the design but does not allow any changes to
the initial shape. Shape optimization modi-
fies the external border of the design, allow-
ing changes in shape, but does not permit Figure 2.1: Parameterization
changes to internal geometry such as the cre- methods for design optimiza-
ation of holes. Topology optimization has full tion: sizing (left), shape (mid-
design freedom, allowing both changes to the dle), and topology (right) opti-
external shape and creation of internal fea- mization.

tures.

Optimized designs

e
Increasing design freedom

11
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In posing a design optimization problem it is important to choose an ap-
propriate parameterization technique for the specific goal of the study or the
available physics in the numerical model. Sizing optimization offers the least
design freedom but is usually the simplest to implement and is very efficient
in ground-structure type approaches [32, 33, 34, 35] where some geometry is
prescribed. On the other extreme, topology optimization offers the largest de-
sign space and is very versatile making the method applicable to a wide range
of problems in different disciplines including structural mechanics [36, 37, 38,
39], fluid dynamics [40, 41, 42], and various multi-physics applications [37, 43,
44, 45]. Shape optimization also offers a large design space but is limited to
applications where internal voids are not required. With respect to purely
aerodynamic optimization internal voids are usually of little interest and shape
optimization is the most commonly adopted method. For shape optimization
of airfoil geometries there are some key components to the shape which must
be maintained, for example a sharp trailing edge and blunt leading edge. Most
parameterizations for these types of problems will include restrictions to ensure
such features in geometry. The airfoil parameterization methods used in this
thesis are discussed in detail in Section 3.3.1, and further details on topology
optimization methods are provided in Appendix A.

2.1.2 The Design Problem

Once the parameterization and physics models are defined, the optimization
problem can be expressed in terms of design variables, d, and state variables,
s. The optimization problem is generally defined as

min o f(d,s)
d € RNd
subject to : R(d,s) = state equations

0
d,s) <0 fori=1,..,N, inequality constraints
0 fore=1,....,Np equality constraints

<d;<d fori= 1,..., Ny box constraints

(2.1)
where f denotes the objective function to be minimized, R is the residual of the
state equations, g and h are inequality and equality constraint functions. Each
of these functions may depend on some or all of the state variables and /or design
variables, which are constrained to be within the lower and upper bounds, d
and d. In this thesis a nested formulation is used where the state equations are
always converged, and as such are often not included in the problem definition.
The optimization problem is solved using gradient-based methods where the
design is updated iteratively by making small perturbations to d in a direction
dependent on the gradients of the objective and constraint functions. The
process of calculating these gradients is known as sensitivity analysis.
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2.1.3 Sensitivity Analysis

Gradients for optimization problems are usually calculated using one of four
methods: finite difference, complex step, direct or adjoint analysis. A finite
difference approximation is the easiest to implement but can be inaccurate
and does not scale well to problems with many design variables. The complex
step method can be used to improve the accuracy but also does not scale well.
Direct and adjoint methods are accurate to machine precision where direct
methods scale with the number of design variables and adjoint methods with
number of constraint/objective functions. It follows that an adjoint approach
is more efficient when the number of functions is less than the number of design
variables, i.e. Ng+ Nj+1 < Ng. This is the case for each problem in this thesis
and as such a discrete adjoint approach is implemented. Gradients are derived
by first expressing the objective/constraint function in augmented Lagrangian
form as

f=f+A"R (2.2)

where A is a Lagrangian multiplier, and left- and right-hand sides are equal
because R = 0 (as implied from (2.1)). Differentiating (2.2) and applying the
chain rule yields

4 _0f 0t (R R ) o3

dd ~ od ' 9sdd od ' 9s dd

where partial derivatives capture only explicit dependence (without resolving
the state equation) and total derivatives capture the implicit dependence also.
The aim now is to find a value of A such that all total derivatives are eliminated.
This is achieved through solving the adjoint equation

ORT or"t
hinh N W €8 2.4
Os A Os (2:4)
which yields the final form
df 9of (rOR
dd " od " bd (2:5)

It is important to note that the methods discussed here are also applicable
to multidisciplinary design optimization (MDO) where the physics problem
contains multiple disciplines or subsystems (such as aerodynamic and structural
analysis). In the case of MDO problems, (2.4) and (2.5) are solved with respect
to the global multidisciplinary system which is expressed as an augmented
residual, R = {R,(d,s), Ry(d,s),...}T, with state variables, s = {s4,sp,...}T,
where subscripts represent different subsystems. Readers are referred to [46]
for a detailed overview of sensitivity analysis for MDO problems.
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2.2 Panel Methods

Throughout this thesis, aerodynamic characteristics and loads are calculated
using a panel method. This section first outlines the motivation for using
panel methods, then introduces the numerical methods including the problem
formulation, boundary conditions, model discretization, and force calculations.

2.2.1 Why Panel Methods?

The Navier-Stokes equations provide the most general description of fluid flow,
but direct simulation of these equations for complete aircraft configurations
would be extremely expensive or even impossible with today’s computational
power. This requires some simplifications and assumptions about the flow.
When more assumptions are made about the flow, the fidelity of the aerody-
namic model will reduce but so will the required computational cost. In the
aircraft industry, flow of complete configurations is typically resolved by solv-
ing the Reynolds-averaged Navier-Stokes (RANS) equations, Euler equations,
or potential flow models [14]. Figure 2.2 ranks these models in terms of fidelity
and computational cost. The following gives descriptions of each model’s ca-
pabilities and examples from literature of their applications to aerodynamic
and/or aeroelastic optimization.

¢ RANS models achieve time averaged solutions, are applicable to turbulent
flows, capture viscous effects, and require a volume mesh of the entire fluid
domain [47, 48, 49].

e The Euler equations neglect viscosity, are applicable to compressible lam-
inar flow, and also require a volume mesh [50, 51, 52, 53].

e The full potential flow equation is applicable to inviscid compressible flow
and requires a volume mesh [54, 55]. However, potential flow models are
often linearized, where they are only applicable to incompressible flow,
and can be implemented as panel methods (3D surface mesh) [56, 57,
58], vortex lattice methods (2D surface mesh) [59, 60, 61], or lifting line
methods (1D mesh) [62, 63].

As discussed in the introduction, the main goal of this thesis is to create an
optimization framework that can produce optimized aerodynamic and struc-
tural designs in a relatively fast time frame (from a couple of hours up to a day).
This rules out many of the high fidelity methods as the physics models alone
come with a large computational cost which must be solved on each design iter-
ation of the optimization procedure. The potential flow models shown in Figure
2.2 are low- to mid-fidelity methods that differ mainly due to the model’s rep-
resentation and varying degrees of freedom in the mesh (as described above).
Another requirement is that the framework can be interfaced with different
structural models. By representing the actual surface of the wing, 3D pressure
distributions can be achieved and applied directly to 3D finite element models
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Figure 2.2: Common aerodynamic models ranked in terms of computational
cost and fidelity. Axes are representative and are not to scale.

such as continuum or shell elements. With a simplified representation such
as a lifting line or vortex lattice, pressure distributions are not immediately
available for application to 3D finite elements. A third requirement is to allow
large geometric changes to the design, which is of course possible with any of
the methods. However, with a volume mesh, elements can easily become dis-
torted as the geometry changes which may require regular remeshing during
the optimization procedure, and subsequently increase the computational cost.
Allowing large shape changes is much simpler with a surface mesh as elements
are not so easily distorted. Considering all of the above, panel methods offer
an excellent option to achieve all requirements of the framework. The panel
code used in this thesis is based on MIRAS [64], where the methods have been
extended to include different boundary conditions, far-field calculations, and
sensitivity analysis using a discrete adjoint approach.

2.2.2 Background

The panel method is a numerical approach to solving inviscid, irrotational and
fully subsonic or supersonic flow based on linearized potential flow theory. In
potential flow theory, the flow can be described at any point in a domain, p, by
a potential function, ¢(x,y, z) where the velocity at p is given by the gradient
of the potential function, U, = V¢, and ¢ satisfies the Laplace equation

V=0 (2.6)

Now consider the wing shown in Figure 2.3a with a surface, S. There are two
boundary conditions associated with this potential flow problem: the velocity
normal to the surface must be 0 (i.e. no penetration), and the disturbance of
the flow due to the wing must decay when p is far from S i.e. r — co.

Vo, - n,=0 forponS (2.7a)

Jim (V6 ~Us) =0 (2.7)
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.,

¢ Ky w

Figure 2.3: Potential flow problem for a wing with surface, S, and wake, W in
(a) continuous and (b) discrete form.

(b)

Figure 2.4: Flow patterns for distributed constant-strength (a) sources and (b)
doublets.

The first condition, given in (2.7a), is known as the Neumann condition and
there are a number of elementary solutions to (2.6) that naturally satisfy the
second condition in (2.7b), of which the most relevant are sources and doublets.
The flow associated with constant-strength source and doublets distributed over
a surface, A, is depicted in Figure 2.4 where the distributed sources project
flow outward in all directions from the surface and the distributed doublets
circulate flow around the surface edges. The potential functions associated
with distributed constant-strength source and doublets are defined in [2] as

o 1 I a /1

97 = 47 ArdA ’ ¢’L747T/Aan(r)dA (2.8)
where o is the source strength, u is the doublet strength, n is the surface’s
normal vector, and r is the distance from the source/doublet. Referring back
to Figure 2.3a, sources and doublets are distributed over the surface, S, and
doublets only over the wake, W. The potential at point p can then be expressed
as the sum of influences from the surface, wake, and freestream as

v [ Ois e [ (o oes o

T Jg L r r i Jw r

where ¢ is the freestream potential.
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An important property of the Laplace equation is the principle of super-
position, which states that if ¢,, ¢,, and ¢ are all solutions to the Laplace
equation, then their sum, ¢, + ¢, + ¢, is also a solution, which means (2.9)
satisfies (2.6). Equation (2.9) holds anywhere in the domain and can be used
to form expressions for the potential on S in order to satisfy (2.7a). These ex-
pressions in turn will form the governing equation for the panel method where
(2.7a) can be satisfied explicitly in terms of the velocity, or implicitly in terms
of the potential function. These two methods are known as Neumann and
Dirichlet boundary conditions (BC), respectively. Depending on the problem,
one BC may be advantageous over the other and as such it is important to
understand the differences between formulations.

2.2.3 Neumann Boundary Condition

The Neumann BC satisfies the non-penetration boundary condition explicitly
by combining (2.9) and (2.7a) to yield the following state equation for a point
on S

1 1 0 /1 1 0 /1
[m /S {C’VM —W[an(rmdgwr /W W[an(r)]dW] My = ~Usomy
(2.10)
The source strength, o, is defined using the derivatives of the potential on
the external, ¢, and internal, ¢, surface of the wing
99 0¢1
o= T o (2.11)
The first derivative on the right hand side is equivalent to V¢ - n, which is
equal to 0 by (2.7a). This means the source strength is equal to the derivative
of the internal potential. A zero internal perturbation formulation [65, 66] is
used where the internal potential is set to be equal to the freestream potential,
@1 = ¢oo, yielding
c=Uy " n (2.12)

The surface, S, and wake, W, are discretized into a number of panels as
shown in Figure 2.3b, where each panel on the wing has a constant-strength
source and doublet, and each panel in the wake has a constant-strength doublet.
The Neumann BC in (2.10), is expressed using a discrete set of collocation
points at the center of each panel, which yields the following set of algebraic
equations

R.=Anp+(By+IDo=0 (2.13)

where Ay is the aerodynamic influence coefficient (AIC) for doublet distribu-
tions on both the wing and wake with a Neumann BC, and By is the AIC for
source distributions along the wing with a Neumann BC. Figure 2.3b shows
the discretized form of the wing shown in Figure 2.3a, where the {i,j} entry
of Ay and By is the influence panel 7 has on panel j. AICs for the Neumann
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BC are derived using the methods outlined in [2]. Each panel will influence
every other point in the domain meaning that Ay and By are dense matrices.
Equation (2.13) defines the governing equation when a Neumann BC is used,
where the doublet strengths g are the unknowns and source strengths o are
calculated using (2.12).

2.2.4 Dirichlet Boundary Condition

The second option is to apply a Dirichlet BC which is an implicit formulation
of (2.7a). It has been shown that to satisfy (2.7a), it is required that g—i =0
which means the internal potential must be constant [67]. The constant value
is arbitrary, however if one were to set ¢; equal to the freestream potential, as
done previously, then (2.9) for any point enclosed by the wing is simplified to

_i S[ai_Mafl(i)}dm;/wui(i)dwzo (2.14)

The surface and wake are discretized into panels in the same manner as for
a Neumann BC, and (2.14) is enforced at collocation points just underneath
each panel center (inside the wing). This creates the governing equation for
the Dirichlet problem.

R,=App+Bpo=0 (2.15)

where A p is the AIC for doublet distributions on the wing and wake with a
Dirichlet BC, and Bp is the AIC for source distributions on the wing with a
Dirichlet BC. These terms are defined for quadrilateral panels in [2]. Similar
to the Neumann problem, Ap and Bp are dense matrices, and (2.15) is solved
for p, where o is calculated using (2.12).

At this point it is important to emphasize the key differences between Neu-
mann and Dirichlet BCs. Firstly, the Neumann BC is expressed in terms of
velocity where Ay and By are formed from the dot product of the veloc-
ity influence coefficient in three dimensions and a normal vector, whereas the
Dirichlet BC is expressed in terms of the potential function, which is a scalar.
Secondly, the Dirichlet BC is formulated based on separated external and inter-
nal domains, whereas the Neumann BC makes no explicit assumptions about
the internal domain (however the source terms do).

2.2.5 Wake Model

In previous discussions on the problem formulation the wake was included in
the model, but so far the discussion has been mainly on the wing itself. The
wake model is included in order to satisfy the Kutta condition and to calculate
induced drag. These principles will be discussed later in this section, whereas
the focus here is on the wake model itself. The simplest wake model is a vortex
sheet projected in the freestream direction from the trailing edge of the wing,
as shown in Figure 2.5a. This freestream model can be implemented using a
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(a) (b)

Figure 2.5: Two different wake models for panel methods: (a) a fixed freestream
wake, and (b) an iterative wake model.

single panel at each spanwise section of the wake. The low number of wake
panels makes the freestream model computationally efficient but may become
inaccurate for wing geometries that create a large variance in the structure of
the wake. To increase accuracy, multiple wake panels can be used to capture
the correct wake geometry, but this requires prior knowledge of the wake shape
in order to position panels appropriately. In optimization problems the wing
geometry is unpredictable during the optimization procedure and the wake
geometry is unknown. Iterative wake models can be used to capture complex
wake structures as shown in Figure 2.5b. However on each iteration the AIC’s
are recalculated to account for the influence from the new wake shape, and the
governing equations need to be resolved. This creates a large computational
cost for iterative methods and as such a freestream model will be used in each
case presented in this thesis. For more information on implementing iterative
wake models readers are referred to [64, 68, 69, 70].

2.2.6 Kutta Condition

As stated previously, the wake model allows the Kutta condition to be enforced
which is required to ensure the model remains physical. The Kutta condition
states that flow must leave the surface of the wing at the trailing edge (TE)
with a finite velocity. This can be enforced by ensuring there is no circulation
at the TE. From Figure 2.6b we see that this condition corresponds to

Hw — py + g =0 (2.16)

The Kutta condition must be applied to each TE section. This condition
can be enforced explicitly by adding (2.16) to our system of equations, (2.13)
or (2.15), and solving for gy, directly, or enforced implicitly by modifying the
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Figure 2.6: Wing and wake panels extending from trailing edge (TE). The
red circle in (a) marks the detail shown in (b) where doublet strengths and
directions are shown.

doublet influence coefficients of the TE panels as follows

Aiv=Auv+Aw (2.17)
Air =41 —Aiw '

2.2.7 Post-Processing

After solving (2.13) or (2.15), o and p distributions can be used to achieve
surface pressures on the wing and velocities anywhere in the domain. Because
the velocity at any point is defined as the gradient of the potential function,
numerical differentiation methods can be used to achieve the velocity over the
surface of the panel. The velocity over panel i is expressed in local coordinates
(I,m,n) as

96 06 91" (Ou ou " T

7 {81 ) am7 on ) ol ) 8m’ . +{ 00,ly Yoo,m oo,n}L ( )
The Bernoulli equation uses the panel velocities to calculate the pressure

coefficient, C'p, which is integrated over the wing to find the total force, F,

and moments, M, via the following

U2

Cpi=1- e

(2.19)
Np Np
F = Joo Z Cp’iS,-nZ- y M = [718%) ZCP,iSi(Ti X ’I’Ll) (220)
i=1 1=1
where ¢, is the dynamic pressure defined as ¢, = %pOOUgO, Np is the num-
ber of panels on the wing surface, and r; is a spatial vector from a reference

point, about which moments are calculated, to panel i’s collocation point. Mo-
ment calculations can be used to obtain pitching and bending moments, and



2.2. PANEL METHODS 21

projecting F' perpendicular and parallel to the freestream direction yields the
following expressions for lift and induced drag

1 1
LCp = T{_Uw,z ) O; Uoo,w}F 3 DCp = T{Um7w ; O? UOO7Z}F (221) 2
where it is assumed the y velocity of
the freestream is 0. The subscripts of U\ Wing

D¢, and L¢, indicate that the forces

are calculated via Cp-integration. Aero-

dynamic forces can also be calculated

through far-field calculations within a Tr-

efftz plane. The Trefftz plane is repre-

sented in Figure 2.7 where it is defined

perpendicular to the freestream and far

enough downstream that perturbations Sw
to the flow in the freestream direction Trefftz Plane

are negligible. Applying the conservation

of momentum yields expressions for lift,

L7p, induced drag, Drp, and root bend- Figure 2.7: Definition of the Trefftz
ing moment, M,, in terms of a 2D in- plane. Figure retrieved from [P1].
tegral along the intersection of the wake

and Trefftz plane [71, 72].

Ny

Lrp = pooUoo/ Addy ~ pocUse Zﬂisi cos(6;) (2.22)
Sw i=1
N
1 0 1 =
DTP = —5000 Lw Aé%dsw ~ _§po<> ;;Lisiui.ni (223)

Ny
M, = pOOUOO/ TwAPds ~ pooUse Zulsl|yl cos(0;) + z sin(6;)] (2.24)

Sw i=1

where s,, is the 2D curve representing the wake-Trefftz plane intersection, A¢
is the difference in potential over s,,, and r,, is the distance from the origin in
the Trefftz plane. In discrete form, s;, 6;, n;, and (y;, 2;) represent the length,
orientation, normal vector, and center point of wake panel ¢ in the Trefftz plane.

Finally, aerodynamic forces can be normalized to give lift and drag coef-
ficients, C, = qm% and Cp = qo.%, where L and D may represent lift or
drag via either integration method, and S represents the planform area of the
wing. In some cases, compressibility effects will be included by solving the
Prandtl-Glauret equation rather than the Laplace equation in (2.6). This can
be achieved by performing a simple coordinate transformation in a preprocess-
ing step, and applying a correction to physical quantities in post-processing to
invert the transformation. Further details are supplied in Appendix B.
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2.3 Beam Finite Element Analysis

Loads calculated in the panel method will be applied to a structural model
to capture deformations of the wing. Structural models considered in this
thesis are based on beam finite element (FE) analysis. Methods have also been
extended to 3D continuum elements, which is discussed in Appendix A, but is
not considered here. This section introduces beam theory and the application
to FE models.

2.3.1 Background

Beam models are applicable to slender struc-
tures whose length is relatively larger than
the cross section. The model is represented
with respect to a one dimensional reference
axis along the length of the beam, and two
dimensional cross sections at arbitrary points
along the axis. Figure 2.8 shows a typical
beam of length [ subject to an external load

q.

The beam is assumed to maintain conti-
nuity along the reference line and static equi- Figure 2.8: An arbitrary beam
librium is ensured through the principle of of length [ with its reference
virtual work which states that the total in- axis co-linear to the y-axis, and
ternal and external virtual work must be bal-  subject to an external load, q.

anced, i.e.
V= /{FT,MT} {gl} dl — /qT(Sudl =0 (2.25)
l l
internal external

The external load, q, is applied in the form of distributed forces and mo-
ments which cause the beam to deform through virtual displacements and rota-
tions du. External loads are balanced by the internal forces F = {F,., F,, F,}T,
composed of shear and axial forces, and moments M = {M,, M,,, M.}T, com-
posed of bending and torsional moments. These vectors act on the beam cross
section at a reference point as shown in Figure 2.9a. The internal forces and
moments are statically equivalent to the stresses in the cross section which are
defined by

Fm:/ OyedA, Fy:/ oyydA, FZ:/aysz
A A A (2.26)

M, :/ zoy,dA, M, :/(Uyzxfaymz)d/l, M, = —/ zoyydA
A A A

Figure 2.9b shows the generalized strains, v = {’yx,'yyxyZ}T, and curva-
tures, kK = {Kg, Ky, #.}T which also act on the cross section. These strains and
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Figure 2.9: Components of (a) forces and moments, and (b

and curvatures, for a given cross-section of a beam.

—~
~

generalized strains

Figure 2.10: Beam kinematics: (a) deformations in the z-y plane, (a) deforma-
tions in the y-z plane, and (c) deformations in the z-z plane

curvatures are defined by the beam kinematics shown in Figure 2.10. Beam
cross sections are assumed to remain in-plane and undergo rigid body displace-
ments, u = {uy,uy,u,}T, and rotations, ¢ = {¢., Py, ¢.}*. Assuming small
rotations, the contributions shown in Figure 2.10 can be summed and differen-
tiated to yield the generalized strains and curvatures

duy du,  du, 5 dp, dp, dp. "
- — 0, . k= . v 2.27
7 { dy i dy ~ dy 4 } " { dy ~ dy = dy (2:27)

The generalized strains and curvatures hold a linear relationship to the cross
sectional stresses via a constitutive model and can be related to the internal

forces and moments by
Fl %
{M} =K {K} (2.28)

where K, is the cross sectional constitutive matrix.

2.3.2 Constitutive Model

The constitutive model is derived using the stress relations in (2.26). Assuming
linear elasticity, isotropic materials, and that cross sections remain in-plane, the
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three stress states that exist in the beam cross section are

du dy dy
oyy = Eeyy :E( dyy —z d; +z d;)

dug dy
Oyz = GTyp = G( dy + @, + zdyy> = G(ye + Z"'@y) (2.29)

= E(vy — 2Ky + TK,)

du, dy
oy: = Gy = G( a Oz — md;) = G(7: + xky)

where €4, is the axial strain and 7 is shear strain. The constitutive matrix,
K., is defined by integrating these stresses over the cross section in accordance
with (2.26) and expressing in the form of (2.28)

F, GA 0 0 0 —GAs, 0 Ya
Fy, 0 EA 0 EAe, 0 —EAe, Yy
F | 0 0 GA 0 GAs, 0 Yz
M, 0 EAe, 0 E(IL., + Ae?) 0 —FI,., K
M, —GAs, 0  GAs, 0 G(K + A(s2 + $2)) 0 Ky
M, 0 —FEAe, 0 —FEI,, 0 E(l,. + Ae2)| | k.
KCv}'
(2.30)

where (e, e,) and (s, s,) are the elastic and shear centers of the cross section,
and by definition the area and second moments of area are

A:/ dA | Imz/ 22dA IZZ:/x2dA ; Imz/azsz (2.31)
A A A A

There is no explicit analytical function for the torsional constant, K, of
arbitrary cross sections. However, there are some explicit functions for K of
specific cross sections. Omne relevant case is that of closed thin-walled cross
sections with K defined in [73] as

4A

ds
s t

K= (2.32)

where the denominator is an integral around the circumference of the cross
section defined by the wall’s median line, with a wall thickness, t. A second
relevant case is that of a solid airfoil section which can be approximated as [74]

K ~0.15¢t3 ., (2.33)

where ¢ and ty,ax are the airfoil’s chord length and maximum thickness respec-
tively.

An important special case for K4 is when the cross section is doubly sym-
metric about - and z-axes. In such a case the elastic and shear center are
coincident to the origin (i.e. s, = s, = e, = e, = 0) and all off-diagonal terms
of K4 are 0.
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2.3.3 Problem Formulation

With the kinematics and constitutive relations defined, the beam can now be
discretized into one dimensional finite elements of length /., which represent the
reference axis. The displacements and rotations are achieved along the element
via Nu, where u. are the displacements and rotations at the element nodes,
and N contains interpolation functions. Similarly, the generalized strains and
curvatures can be achieved by Bu,, where B is the strain-displacement matrix
containing derivatives of the shape functions and off-diagonal terms to account
for rotation of the cross section (refer to (2.27)).

The problem is first derived in terms of a non-linear co-rotating formula-
tion which is then reduced to a linear form. The term co-rotating is used to
describe a system where the reference frame continuously rotates with the el-
ements which are locally subject to the constitutive relationship in (2.28). A
transformation matrix, T, is used to map local strains and internal forces to
the global coordinate system by

{=rwr {3 -tk {7 e

K K

where f; . is the element’s internal forces defined from (2.28), and the subscript
[ represents a local quantity. Static equilibrium can be ensured by satisfying
the residual equation

Ry(u) =fij(u) —f=0 (2.35)

where f; is the global internal force vector formed from assembling f; ., and f
is the global external force vector formed by assembling

f, = / NTqdl, (2.36)
le

Note that the external virtual work is assumed to be independent of geometric
variation, i.e. f has no dependence on u. However, in aeroelastic problems
the load will change as the wing deforms. This will be accounted for in the
multidisciplinary analysis formulation (discussed in Section 2.4), and is not
considered as part of the FE formulation.
A Newton-Raphson scheme is used to satisfy (2.35) with updates in u cal-
culated by solving
K(u)Au = —Ry(u) (2.37)

where K is the tangent stiffness matrix formed by assembling element stiffness
matrices, K.. The derivation of the element stiffness is achieved by taking the
variation of the internal virtual work, defined in (2.25), which can be expressed
as combination of constitutive and geometric terms by

dv; = / (dF" 6~y + dM ok +F d(6v) + MTd(dk) )dl = ulK.u, (2.38)
l

constitutive geometric




26 CHAPTER 2. NUMERICAL METHODS

Ke(u):/ T(w)"BTK BT (u)dl. + K,(u) (2.39)
le S——
constitutive geometric

where K is the geometric stiffness defined by the variation of the virtual strains
as implied in (2.38). The specific definition of K, depends on the choice of
element and local deformation modes. In order to ensure consistency, K, must
also account for the variation of the transformation matrix. Some methods
may choose to simplify the calculation by excluding these terms. However, this
can lead to slower convergence rates in the FE analysis and large errors in the
sensitivity analysis. For the formulation used in this thesis, the definition of
K, can be found in [P4].

Alternatively, the problem can be linearized by neglecting the geometric
terms in (2.39), where T then represents the orientation in the undeformed
configuration, i.e. T is not dependent on u. It then follows that K. is indepen-
dent of u, and with no geometric dependence, the governing equation becomes

R,=Ku—f=0 (2.40)

2.4 Multidisciplinary Analysis

Multidisciplinary analysis involves coupling multiple physics disciplines into a
single engineering system. The global system is defined by a combination of
residual vectors and state variables from each subsystem. The focus in this
thesis is coupling panel and FE methods where the global system is defined by

R(d,s) = {gzgi’:;} —0 , s- {Zb} _ {ﬁ} (2.41)
where R, is defined in (2.13) or (2.15) depending on the boundary condition,
and Ry is defined in (2.40) or (2.35) depending on whether linear or non-linear
analysis is implemented.

Two coupling methods are considered in this thesis: 1- and 2-way coupling.
For the 1-way coupling procedure each subsystem is solved once where the
aerodynamic loads calculated in the panel method are used to solve the FE
problem. When using this coupling method the finite element formulation
(Rp), holds a dependence on the panel method state variables, p, through the
external force vector, f. As information is only transferred one way (panel to
FE) the panel method (R,) has no dependence on the state variables of the FE
problem, u. When the problem is 2-way coupled, aerodynamic loads are still
applied to the FE problem, but the displacements are then used to deform the
panel geometry. The panel method (R,) is then dependent on the FE state
variables u, through AIC’s A and B as well as source terms o. This creates a
2-way dependence as each subsystem is dependent on the others state variables,
and a non-linear solver is required to satisfy the global system in (2.41).
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Two methods have been trialled for computing 2-way coupled solutions —
fixed-point iterations and a Newton method. The Newton method experiences
second order convergence which allows the method to converge in fewer it-
erations than the fixed-point iterations. However, fixed-point iterations only
require the calculation of AICs, and not their derivatives. The derivatives of
AICs are needed to form the Jacobian matrix on each iteration of the Newton
method, and this calculation dominates the analysis as the cost is roughly 8
times that of the AIC calculation [P1]. Because of this large computational
cost, fixed-point iterations are instead used to solve the 2-way coupled prob-
lems presented in this thesis. Appendix C contains algorithms for each method
and a comparison that demonstrates the differences in computational cost and
stability.




Aerodynamic Shape Optimization

This chapter discusses the results of [P1] which introduces a framework that
uses panel methods for aerodynamic shape optimization of planar wings, and
[P3] which extends these methods to shape optimization of non-planar wing
configurations. The aerodynamic modeling is discussed in Section 2.2, whereas
this chapter focuses on the details specific to [P1] and [P3]. The first section de-
scribes the wing parameterization and discretization, and is followed by studies
that highlight some of the differences in calculation methods when using panel
methods for shape optimization problems. The third section will present op-
timization studies on planar wings and the final section explores the potential
benefits of non-planar wings.

3.1 Wing Parameterization and Discretization

The wing parameterization and discretization is shown in Figure 3.1. The
model represents a delta wing configuration where the effect of both wings
are considered but without a fuselage. The wing coordinates are achieved by
assembling airfoil sections on a quarter chord curve defined in 3D space by a set
of control points that are on the curve, and represent the airfoil quarter chord
points. The freestream wake geometry introduced in Section 2.2.5 is used with

Control/quarter chord points Y

Figure 3.1: Wing parameterization and panel discretization with symmetry
about the z-z plane.

28
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a single wake panel per spanwise section. One wing is defined where symmetry
is enforced by calculating the influence from a mirror image of the wing and
wake about the root.

Design variables are used to control the airfoil shape and control points
of the quarter chord curve. In order to ensure smoothly varying geometry
and avoid numerical artifacts, the design variables are filtered in the spanwise
direction. The filtering technique is shown in Figure 3.2 and is defined as

d=WwWd where W, = w;; and w;; =max(0,R—r;;) (3.1)

Yo hsy wik
where d are filtered design variables and
W is a filter matrix containing weights
w, for neighboring sections’ design vari-
ables. There is an inverse-linear relation-
ship between an airfoil section’s weight
and the distance between sections, 7; ;.
If r; ; is greater than a filter radius, R,
then there is no weight associated with
these sections.

Airfoil parameterization techniques
are discussed in Section 3.3.1, where Sec-
tion 3.2 uses constant NACA 0012 airfoils
throughout the span. Sections 3.2 and
3.3 only consider unswept planar wings
where the quarter chord curve is co-linear
with the y-axis.

Figure 3.2: Representation of the
filtering method defined in (3.1).

3.2 A Discussion on Choice of Methods

This section discusses the applicability of different calculation methods within
the panel method when used for shape optimization problems. More specifi-
cally, choice of boundary conditions and drag calculation methods are compared
based on their computational cost and the resulting optimized designs.

3.2.1 Boundary Conditions

As discussed in Section 2.2, the 3D panel method can be solved with either
Neumann or Dircihlet boundary conditions (BC). This section investigates the
differences in BCs through solving shape optimization problems. Consider the
following drag minimization problem which is subject to a lift constraint and
defined with respect to twist variables at Ng airfoil sections.

min : D(a)
a € RNs
subject to : L — L(a) <0 (32)

a<ao; <a for i=1,..,Ng
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Figure 3.3: Twist optimization results with different boundary conditions: (a)
twist distribution and (b) lift distribution along the half-span. Figure retrieved
from [P1].

Figure 3.3 shows the twist and lift distribution for optimized designs with a
rectangular planform of aspect ratio 6, where 1 represents the normalized span-
wise location. Both problems converge to designs with negligible differences in
sectional lift and twist distributions. The sectional lift distribution closely ap-
proximates the elliptic distribution which is the known optimal solution for a
planar wing. These results show that choice of BC is not crucial for analyzing
the aerodynamic performance or solving the optimization problem.

Even though this demonstrates that choice of BC does not effect the out-
come of the optimization problem, choice of BC is important for reducing
computational cost. A timing comparison between BCs is shown in Figure
3.4a, where for the same mesh size, a Dirichlet BC takes half the time of a
Neumann BC. The reason for this results from the formulation of the problem.
To understand why, it is first noted that as panel methods are dense systems
the majority of the computational time is spent assembling the system, i.e.
calculating AICs. The AICs for a Neumann BC require the calculation of the
influence on velocity in three dimensions, whereas the Dirichlet BC requires the
calculation of the influence on the potential which is a scalar. This becomes cru-
cial when the gradients are required, as the gradient calculation takes roughly
8 times longer than the physics problem, which in turn will now dominate the
computational time. The factor of 8 arises from the fact that gradients are
required for each influence coefficient between any two panels with respect to
8 nodes (4 per panel). Because AIC calculations for a Neumann BC comes at
twice the cost of a Dirichlet BC, calculating the derivative of AICs is also twice
as expensive.

Another major difference between the boundary conditions is the discretiza-
tion error. Figure 3.4b shows a mesh convergence study for a rectangular wing
of aspect ratio 4. Using a Dirichlet BC, the induced drag (calculated via Cp
integration) converges faster than it does for a Neumann BC. This means that
accurate results can be achieved on coarser meshes with a Dirichlet BC leading
to further reductions in cost. The difference in numerical error arises from the
nature of the boundary conditions. A Dirichlet BC specifies that the internal
flow must be constant anywhere inside the wing, whereas a Neumann BC makes
no assumptions about the internal flow. Because the panel method enforces
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Figure 3.4: Comparisons between different methods: (a) timing comparison
between Neumann and Dirichlet BCs and (b) mesh convergence study for a
rectangular wing of aspect ratio 4.

BCs at discrete points, there is some leaked flow from the external to inter-
nal regions, which contributes to discretization errors. By explicitly forcing a
constant velocity inside the wing, leaked flow is reduced [75].

3.2.2 Induced Drag Calculation

Section 2.2 introduced two ways of calculating the lift and induced drag —
through Cp integration or Trefftz plane integration. When the wing geometry
is well defined both methods can produce similar results. However, it is known
that C'p integration can be susceptible to numerical errors resulting from the
discretization [71, 76]. These numerical errors can become very large for non-
conventional wing geometries, leading to non-physical values of drag. This is
demonstrated through solving the following optimization problem where the
objective is to minimize drag subject to a minimum lift constraint with respect
to a sectional chord distribution and at a fixed angle of attack.

min : D(c)
c € RVs
subject to : L — L(e) <0 (3.3)

The optimization problem is solved twice, once where drag is calculated us-
ing Cp integration and once with Trefftz plane integration. Converged designs
are compared to a rectangular wing with equal span and aspect ratio of 6. Each
design is shown in Figure 3.5 with sectional drag distributions calculated using
both methods.

The optimization problem in (3.3) has a known optimal solution — the el-
liptic wing. This design is achieved when drag is calculated via Trefftz plane
integration predicting a reduction in drag of 1.4% compared to the reference
wing. When using Cp integration the design converges to an non-conventional
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Figure 3.5: Wing planforms and sectional drag distributions for reference de-
sign, optimized design with C'p integration, and optimized design with Trefftz
plane integration. Figure retrieved from [P1].

wing shape that predicts a reduction of 2.4%. The Cp optimized wing has been
able to create a larger reduction in drag by exploiting numerical errors in the
drag calculation. Resolving the problem using Trefftz plane integration shows
that the optimized wing actually creates an increase in drag of 0.5%. These
errors are most obvious at the wingtip as seen from the drag distributions in
Figures 3.5d-3.5f, where the drag should tend to zero at n = 1 (wingtip). The
large numerical errors in C'p integration can also have large sensitivities that
will push the optimizer to more non-conventional designs. The results presented
here suggest that C'p integration is unsuitable for optimization problems when
the parameterization allows a large change in geometry.

Numerical errors from Cp integration have a large impact on the induced
drag because the error is of a similar order in magnitude to the induced drag.
Lift is usually much greater than the induced drag (and magnitude of numer-
ical errors) which means that reasonable results can still be predicted for lift.
However, it is still recommended to calculate both lift and drag from Trefftz
integration. This is because the optimizer may try to exploit the inviscid pres-
sure distributions by creating irregular airfoil geometries with unphysical Cp
values. Section 3.3.1 discusses this point in more detail.

Figure 3.4b presented mesh convergence studies for different BCs with Cp
and Trefftz plane integration methods, where the convergence has negligible
differences with choice in BC when drag is calculated in the Trefftz plane. The
Trefftz plane calculations converge much faster than the Cp integrations as
they are not susceptible to discretization error. Because similar results can be
predicted on a coarser mesh the computational cost can also be reduced.
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3.3 Shape Optimization of Planar Wings

In the previous studies only one design variable per section was used with a
fixed airfoil profile throughout the span. In this section, airfoil parameteriza-
tion methods are used to allow changes in airfoil shape throughout wing. The
section is divided into two subsections where the first introduces airfoil pa-
rameterization methods which are compared based on their performance and
robustness for inviscid shape optimization problems. The second study explores
the effect of wingspan in induced drag minimization problems.

3.3.1 A Comparison of Airfoil Parameterization Methods

For the purpose of this study, two airfoil parameterization methods are in-
troduced and are represented in Figures 3.6a and 3.6b. The first is based on
the definition of NACA 4- and 5-digit airfoils which have a well defined air-
foil shape, and the second uses a B-spline representation which is a free-form
parameterization that can represent a large range of geometries.

NACA airfoils are defined using 4 parameters (refer to Figure 3.6a): chord
length ¢, maximum thickness ¢, maximum camber m, and position of maximum
camber p. The airfoil coordinates are achieved by summing a thickness and
camber distributions which are defined as polynomial equations based on these
4 parameters. For optimization problems these parameters are controlled by
design variables. The twist, «, is included as an additional variable, giving the
NACA parameterization a possible 5 design variables per airfoil section. For
more details on the NACA parameterization readers are referred to Appendix
D.

When a B-spline parameterization is used the airfoil is represented by a B-
spline curve whose control points are defined by design variables, refer to Figure
3.6b. Each control point can move vertically within specified bounds, and there
is a fixed relative spacing in the horizontal direction which scales with a single
design variable. If a control point is near a bound and the corresponding control
point at the same horizontal location is sufficiently far away, the bounds are
updated to allow more freedom to the control point. Updating the bounds in

Quarter chord point
G

c=1 | «@»

Camber line

z Control points )
Chord line (z,0)

— Quarter chord point Bounds —

(a) (b)

Figure 3.6: Airfoil parameterization methods: (a) NACA and (b) B-spline
parameterization. Figures are adapted from [P1].
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this way ensures that the B-spline cannot self-intersect. For more details on
the B-spline parameterization readers are referred to Appendix E.

Both parameterizations include the spanwise filtering discussed in Section
3.1, where each set of design variables are filtered separately, i.e. d in (3.1)
may represent any of the 5 NACA airfoil parameters or any corresponding set
of B-spline control points. To compare the different parameterization methods
consider the following optimization problem where the objective is to minimize
the induced drag with respect to constraints on lift, pitching moment, twist,
and maximum curvature.

min : D(d)
d € RNa
subject to : L — L(d) <0
a;, —a <0 for 1 =1,...,Ng
Ri—kh=0 for i =1,...,Ng
d<d;<d for i=1,...,Ny4

Both the twist and maximum curvature constraints are enforced to ensure
that the flow remains physical as the aerodynamic model cannot predict flow
separation which can occur with high angles of attack or sharp geometries. The
maximum curvature of a NACA airfoil is approximated as x = 0.9075;, and
for a B-spline it is approximated using a p-norm function as described in [P1],
where curvature calculations are detailed in Appendix E.

The problem in (3.4) is solved with both NACA 5-digit and B-spline pa-
rameterizations, where design variables are defined as d = {¢, ¢, p, a} for the
NACA airfoils, and d = {P;,Ps,...,Pn,} for B-spline airfoils. Results for
both cases are shown in Figure 3.7. Both airfoil parameterization methods
produce optimized designs with similar planforms, the same induced drag, and
negligible differences in lift distributions which closely approximate the optimal
elliptic distribution. The aspect ratio is higher for the NACA parameterization
due to differences in the airfoils. The NACA 5-digit airfoils have a larger cam-
ber than B-spline airfoils, which creates a flatter region towards the leading
edge on the lower surface of the airfoils, and corresponds to a larger pressure
in that region. This difference can be seen in airfoils and Cp distributions
at each section (refer to Figures 3.7¢-3.7¢). The lower surface pressure in B-
spline designs leads to a lower C}; which is compensated for by a larger chord
length. This highlights an important fact about shape optimization problems
for minimizing induced drag: the minimum drag and corresponding optimum
lift distribution, can be achieved by a number of combinations of chord, twist,
and camber, which creates many possible solutions with the same performance.

B-spline results presented in this study have been able to produce realistic
designs. However, from experience, the B-spline parameterization has proven
not to be as robust for all cases of inviscid optimization problems. The ad-
ditional freedom provided by the B-spline parameterization can produce non-
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Figure 3.7: Optimized designs with different airfoil parameterization methods:
(a) Wing planforms with lower and upper surface Cp (NACA 5 above, B-spline
below), (b) spanwise lift distributions, airfoil sections with Cp distributions at
(¢) n=0.05, (d) n =0.50, (¢) n = 0.95, and (f) airfoil stacks (NACA 5 above,
B-spline below). Figure retrieved from [P1].

conventional geometries that take advantage of the inviscid nature of the prob-
lem. This issue can also get worse when the optimization problem is posed in
terms of quantities calculated via Cp integration. The motivation of the B-
spline parameterization was to allow more design freedom to the optimizer, but
in doing so it has been able to exploit the assumptions of the physics model. In
order to prevent this, further geometry constraints are enforced on quantities
such as curvature, which has the effect of restricting the design space again.
As discussed, there are many solutions to the optimization problem that can
produce the same value of minimized induced drag, and this has been achieved
with the simpler NACA parameterization. Ultimately, incorporating free-form
parameterizations, such as those defined by splines, requires more regulariza-
tion, increases complexity, and has not demonstrated any advantage over the
NACA parameterization which always produces well defined airfoil geometries.

3.3.2 The Effect of Wingspan

The opening chapter of this thesis discussed design philosophies for reducing
induced drag (Section 1.3.3). The first method was to create an elliptic lift
distribution, which was achieved by the optimized designs in the previous ex-
amples. This section demonstrates the second method which is to increase the
wingspan. The optimization problem in (3.4) is solved again using a NACA 5-
digit parameterization and with small perturbations to the wingspan of 0.1 m,
where the original wingspan was 6 m. Optimized designs are shown in Figure
3.8 and are compared to the reference design from Figure 3.5a in Table 3.1.
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Figure 3.8: Optimized designs with perturbations to the wingspan: (a) Wing
planforms with lower and upper surface Cp (b = 6 m above, b = 6.1 m middle,
b = 5.9 m below), (b) spanwise lift distributions where 7 is normalized with
b = 6, airfoil sections with C'p distributions at (c¢) n = 0.05, (d) n = 0.95.

Each of the optimization problems con- Taple 3.1: Drag of opti-
verged to similar designs with negligible differ- 1jized designs with perturbed
ences in planform, airfoil sections or pressure wingspans, normalized by the
distributions. The optimized design from the drag of the reference wing.
previous example creates a reduction in drag of  Taple retrieved from [P1].
1.5% compared to the reference wing, whereas
with a slightly larger wingspan, a reduction in Design D /D,es
drag of 4.7% is produced. Conversely, if the Reference 1.000
wingspan was slightly shorter, the optimized minD, b=6m 0.985
design increases the drag by 1.9% compared to minD,b=6.1m 0.953
the reference wing. This result shows that even ~ min D, b=5.9m 1.019
small reductions to the wingspan can cause a
large increase in induced drag. Additionally,
the results demonstrate just how effective increasing the wingspan is at re-
ducing induced drag. This is an important discussion point for optimization
problems that minimize induced drag, and is relevant to many of the discussions
on examples presented later in this thesis.

3.4 Shape Optimization of Non-Planar Wings

The previous section demonstrated that optimizing airfoil sections for minimum
induced drag grants very little performance gains compared with varying the
wingspan. This section explores the potential of optimizing non-planar wing
geometry rather than the airfoil sections. As such, all studies maintain constant
NACA 0012 airfoil profiles. Results are presented in two subsections, where the
first creates comparisons to designs from literature and explores the effect of
sweep and droop. The second investigates the differences between raised and
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drooped wing designs. The studies presented in this section relate to the third
design philosophy for induced drag reduction outlined in Section 1.3.3, which
is to specifically tailor the wingtip design.

3.4.1 The Effect of Sweep and Droop

In recent years there has been a growing interest in unconventional wing designs
such as drooped wings. These designs are usually bio-inspired with many citing
the drooped shape of a seagull wings in gliding flight. To demonstrate the
potential for optimizing non-planar wings, a comparison is created between
optimized designs and designs taken from literature. Consider the following
optimization problem to maximize the efficiency factor, e, where the aspect
ratio, AR, is prescribed as ARy = 7.

Ci(d,p)

3 - —e(d — __ TL\>r

o T8, A1) = = R(d)Cp (d, o)

subject to  : AR(d) = MRy

z 3.5

#(d)| < & (8:9)
()] < 2
d<d;<d for i=1,..,Ng

The terms Z and Z refer to the x and z coordinates of the quarter chord
curve at the control points, and the subscript ¢ is associated with the values
at the wingtip. The coordinates & and Z are included in the parameterization
where design variables define the change in parameters, i.e. 0%, such that they
are monotonically increasing/decreasing, as described in [P3]. Three reference
designs are taken from literature — a traditional elliptic wing, a planar crescent
wing introduced in [77], and a hyper elliptic cambered span (HECS) wing
introduced in [78]. By solving (3.5) with specific design variables, appropriate
optimized designs can be created for comparisons to the reference designs. The
elliptic wing is comparable to d = de, the crescent wing to d = {de¢, &} and,
HECS wing to d = {dc,d&,52}. Reference and optimized designs are shown
in Figure 3.9.

The converged design in Figure 3.9d closely matches the elliptic wing in
Figure 3.9a. This is expected as the elliptic wing is the known optimal design
for a straight planar untwisted wing. An elliptic wing should have efficiency
factor, e = 1, and the model closely approximates this with e = 1.004 in
both wings in Figures 3.9a and 3.9d. When allowing changes in &, the design
converges to a wing which remains straight until  ~ 0.75 then sweeps backward
creating raked wingtips. This design is quite different from the crescent wing
in Figure 3.9b, but has larger efficiency of 1.027 compared to 1.019. The
converged design with sweep and droop (Figure 3.9f) is also very different from
the reference design. The HECS wing has a gradual change in sweep and droop
starting from the wing’s root. The optimized design begins to sweep at n ~ 0.55
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Figure 3.9: Elevation and planform views for (a)-(c) reference wings and (d)-(f)
optimized designs. 7 locations represent when wings begin to sweep and droop.
Figure retrieved from [P3]

and droop at 1 ~ 0.825. Because of the additional freedom to create different
¢, &, and Z distributions the optimized design has increased the efficiency factor
from 1.178 to 1.291. In each case, optimized results have matched or improved
upon the performance of reference designs. Including sweep has allowed small
gains in efficiency of roughly 2% compared to the elliptic wing, whereas allowing
the wing to both sweep and droop has created large gains of almost 30%.

3.4.2 A Comparison of Raised and Drooped Wings

The previous study demonstrated that a large aerodynamic benefit can be
achieved from drooped wings. But there is a common discussion point in the
literature on whether drooped wings can outperform traditional raised wing
designs such as those with winglets. Within the literature there is no general
consensus on whether this is true, with different studies presenting contradic-
tory results (refer to [P3] for literature review). In an effort to explore this,
consider the following optimization problem where the only design variables
are z and the planform is a rectangular wing of aspect ratio 7.

Ci(d,p)
i : —e(d,p) = — LA
a Civ A = @) o (o)
subject to  : |3:(d)| < (3.6)
d<d;<d for i=1,..,Ng

Raised and drooped wings are considered by constraining designs for 2 > 0
and 2 < 0, respectively. The optimized designs are shown in Figure 3.10 and
are compared to a planar wing of the same aspect ratio. The optimized designs
for raised and drooped wings have similar trends in Z where one is roughly the
mirror image of the other. However, there are differences in efficiency factors
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Figure 3.10: Comparison of planar, raised, and drooped wings with a rectan-
gular planform of aspect ratio 7. (a)-(c) show front views of the wings with
spanwise markers corresponding to markers in (d) and (e). Figures adapted
from [P3].

where the raised wing produces an efficiency of 1.14 compared to 1.22 for the
drooped wing, and 0.98 for the planar wing.

Figure 3.10 also shows the lift and drag distributions along the span of the
wing, which gives some insight into the differences in performance between
these designs. The raised wing design has induced a lift along the entire span
of the wing, but there is also a large peak in drag at the base of the winglet.
The drooped wing has a large reduction in drag towards the wingtip which also
corresponds with a reduction in lift. The increase in lift by the raised wing and
the reduction in drag from the drooped wing is what provides the increase in
efficiency in each respective design. From lift or drag distributions alone it is
not clear how these changes in lift and drag are produced, but Figure 3.11 can
provide more insight.

Figures 3.11a-3.11c plots the normalized velocity in the freestream direction,
U= ﬁ7 within a plane at the quarter chord point (refer to [P3] for more

on U definition). Comparing the raised and planar wings, there has been
an increase in the induced velocity in the freestream direction on the upper
surface when a winglet is created. This increase in velocity corresponds to a
lower pressure on the upper surface which generates more lift, as was seen in
Figure 3.10d. The drooped wing design has reduced the velocity on the upper
surface towards the wingtip, and increased the velocity on the lower surface.
This leads to a smaller pressure differential between upper and lower surfaces,
and hence a reduction in the lift.
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Figure 3.11: Induced velocities for planar, raised, and drooped wings. (a)-(c)
Normalized velocities in the freestream direction within a plane at the quarter

chord point, and (d)-(f) directions of induced velocities within the Trefftz plane.
Figures adapted from [P3].

Figures 3.11d-3.11f plots the direction of induced velocities within the Tr-
efftz plane, Urp, which gives a greater insight into the drag distributions.
Induced velocities above the wake for the planar and raised wings have a neg-
ative component for n < 1, i.e. a downwash. However, the induced velocities
above the wake for the drooped wing have a positive component in the region
0.85 < n < 1. In the same region, they are negative below the wake meaning
the potential jump over the wake must be close to zero, resulting in very low
drag within this region, as was seen in Figure 3.10e. Note that vectors in Fig-
ures 3.11d-3.11f represent the direction of the induced velocities only and their
length is not indicative of the velocity magnitude.

Results presented in this section would suggest that drooped wings are
more efficient than raised wings. However, the studies here have a restricted
design space as the only 2 can vary. Results presented in [P3] demonstrate that
comparative studies on raised and drooped wings can have different outcomes
depending on how the design space is restricted. With a large enough design
space both raised and drooped wings should be able to converge to designs
with the same performance, when only inviscid analysis is considered. [P3] also
presents studies which include viscous approximations, where drooped wings

are not beneficial, and do not form during the optimization procedure as to do
so will increase the viscous drag.



Aeroelastic Shape Optimization

This chapter extends methods discussed in the previous chapter on aerody-
namic shape optimization to account for structural deformations using beam
finite element (FE) models. The specific details will draw from studies discussed
in [P2] which applies a linear beam FE model to investigate the performance of
curved wall spars, and [P4] where a non-linear co-rotating beam formulation is
used to investigate the performance of non-planar wings subject to large defor-
mations. The chapter will only include details specific to [P2] and [P4], where
readers are referred to Section 2.3 for an overview of beam finite element meth-
ods, Section 2.4 for an overview on multidisciplinary analysis, and Chapter
3 for concepts of aerodynamic shape optimization using panel methods. The
following section describes the discretization of the panel-beam problem. The
second section introduces a generalized load-displacement transfer method for
coupled 3D panel-beam models. The third section includes investigations on
the performance gains of curved wall spars. The final section presents stud-
ies on aeroelastic shape optimization of solid foam core wings subject to large
deformations.

4.1 Panel-Beam Discretization

The discretization of the coupled panel-beam problem is shown in Figure 4.1.
The external wing geometry and panel discretization is defined in the same
manner as presented in Section 3.1, and is represented in planform in Figure
4.1a. Figure 4.1a also shows the beam finite element discretization where a
beam node is defined at each airfoil section, with elements inside the wing.
Each beam finite element has a local orientation notated by the coordinate
system (Zp, Yp, 2p), where nodes are defined at a fraction of the chord length,
kc, refer to Figure 4.1b. Depending on the application, the beam node will
either be defined on the camber line (as shown in Figure 4.1) or on the chord
line.

4.2 Panel-Beam Load-Displacement Transfer

Once the discretization is defined the next step is to define the load-displacement
transfer. This section introduces a generalized load-displacement transfer method
for coupled panel-beam problems. There are two criteria that must be satisfied
in defining a load-displacement transfer method: consistency and conservative-
ness [79]. For consistency the total load calculated via the aerodynamic model
must be equal to the total load applied in the structural model. For a method
to be conservative the virtual work experienced in the structural model under

41
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Figure 4.1: Panel-beam discretization with wing parameterization shown in
blue and beam finite elements shown in green: (a) planforms detailing wing
geometry (top) and beam finite elements (below), (b) root airfoil, and (c) 3D
view. Figure adapted from [P2].

virtual displacements and rotations must be equal to the virtual work of the
aerodynamic model. The load displacement transfer scheme is depicted in Fig-
ure 4.2. The beam finite element model assumes that sections remain in-plane
and undergo rigid body displacements and rotations. As each beam node is
defined at an airfoil section, the displacement transfer can be defined by

0X o =0up+dp, X1 (4.1)

where 60X, are displacements to the panel nodes, du;, and d¢, are displace-
ments and rotations of the beam finite element node at the same spanwise
location, and r is a spatial vector from the finite element to the panel node.
The applied external load on a single finite element can be expressed as the sum
of integrated distributed loads across IV panels at the same spanwise section.

N

£, = Z /Ole {rfr’l} dl (4.2)

where the moments arise from transferring the pressure load p, from the panel
to the beam element, i.e. m = r x p. The virtual work of the beam finite
element from the loading of a single panel is then

le le
W, = /0 {pT,m"} {g:;} dl = /0 (pTou+ (r x p)Top)dl (4.3)



4.3. AN INVESTIGATION OF CURVED WALL SPARS 43

Airfoil sections

‘ Beam finite
/ / elements

p

Panel 4

(a)

Figure 4.2: A generalized load displacement transfer method for panel-beam
models. A single panel to beam finite element load transfer shown in (a) 3D
and (b) planform views. Figure adapted from [P2].

The virtual work by the panel method is expressed as
le
W, = | ¢uCpn'6X,dS = qo.CpJin™ / w(du+dp xr)dl  (4.4)
s 0

where (4.1) has been used to expand the expression, and J; is a linear mapping
that accounts for cases where the panel length is not equal to beam finite
element length (refer to Figure 4.2b). With some algebraic manipulation of
(4.3) and equating to (4.4) yields a consistent and conservative expression for

p as
P = ¢ CpJiwn (4.5)

4.3 An Investigation of Curved Wall Spars

The first aeroelastic studies will investigate the potential benefits of curved
wall spars. The motivation for this comes from a study by Aage et al [80]
who conducted topology optimization studies on the common research model
(CRM) wing [81] with over 1 billion finite elements. The ultra-high resolution
of this study allowed design features to form that did not appear in previous
topology optimization studies of aircraft wings. One such feature was curved
wall spars that create an increased torsional stiffness at the cost of decreasing
bending stiffness. This design feature can easily be modeled with beam finite
elements, and is used here to create optimized trade-offs between torsional and
bending stiffness in aeroelastic design.

The beam is defined by a wingbox where the stiffness of the airfoil skin and
additional structures is neglected. Figure 4.3 shows the parameterization of
the beam cross section which is defined at each airfoil profile by 5 parameters:
the height and width of the wingbox (h and w); the spar and flange thicknesses
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w
(s and a); and the center offset of the curved \ |

spar walls (e). The offset e is defined such
that it can tend from e = 0 where spar walls
are straight and at 90° to the flanges, to e =
% where spar walls are semi-circular. The
intermediate values of e are defined to give
an elliptic curve.

This section is divided into two subsec- ; — &
tions. The first subsection investigates the / W sn
performance benefits of curved wall spars for Figure 4.3: Curved wall wing-
a fixed outer wing geometry, whereas the box parameterization with di-
second combines the beam and airfoil pa- mensions labeled. Figure re-
rameterizations to achieve designs that are trieved from [P2].
optimized for both external wing and inter-
nal structural geometries. Throughout this section a linear finite element model
is used where the analysis assumes thin-walled cross sections.

4.3.1 Wingbox Structural Optimization for the CRM Wing

As an initial study consider the CRM wing geometry with an internal structure
described by the wingbox parameterization in Figure 4.3 at each airfoil section.
The optimization problem is defined in (4.6) where the objective is to minimize
the sum of compliance over three loads cases with angles of attack, ay =
{0°,5°,10°}. The design is subject to a constraint on volume and the physics
are 1-way coupled.

min cf = ZC%O (d,u)

d € RNd
subject to : V(d) -V <0

) (4.6)
d<d; <d for i=1,...,Ng

The problem is first solved for straight wall spars where the design vari-
ables are defined by d = {w, h,a, s}. The optimized design is then taken as
the initial condition for a second optimization problem where only e can vary,
i.e. d = e. The change in stiffness properties between the optimized designs
with straight and curved spar walls is shown in Figure 4.4 for different up-
per bounds on volume fraction. Low volume fractions have experienced the
largest changes in stiffness properties, where the torsional stiffness has been
increased and bending stiffness reduced. The change in stiffness corresponds
to the curving of spar walls where sections with no change maintain straight
walls. For high volume fractions the wingbox dimensions are larger giving a
higher torsional stiffness and less incentive to curve the spar walls. Curved wall
spars predominantly form towards wingtip where torsional loads are dominant,
and bending loads tend to zero. A gain of over 10% in torsional stiffness was
achieved by implementing curved spars for low volume fractions, leading to
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Figure 4.4: Relative difference in cross sectional stiffness properties for opti-
mized curved wall spars for different volume fractions, V. Figure retrieved from
[P2].

reductions in compliance of up to 9%. This finding is then in keeping with
the prediction made in [80], that the curved wall spars reduce compliance by
producing optimized trade-offs between torsion and bending stiffness.

The previous example presented compliance minimization problems where
the goal is to produce stiff structures that experience small deflections under
a prescribed load. However, in an effort to reduce weight, wing structures are
commonly designed to experience large deformations. A more natural formu-
lation for the structural optimization of an aircraft wing is to minimize mass
subject to stress constraints, defined as

min :m(d)
d € RNa
Ai dv .
subject to : M - <0 for i=1,..,N, (4.7)
o
d<d;<d for i=1,...,Ny4

where 6 is the maximum von Mises stress which is approximated using a p-
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norm function as described in [P2]. Rather than a single constraint, stress
constraints are enforced on N, regions to improve the accuracy of the p-norm
approximation. The term 8 in (4.7) acts as a safety factor for the design
when # < 1. The optimization problem is solved for different values of 5 with
both 1- and 2-way coupling. The external geometry is again defined as the
CRM wing, and two cases are considered where only straight wall spars are
allowed and where curved spar walls are able to form, i.e. d = {w,h,s,a}
and d = {w, h, s,a,e}. The maximum stress ratio in each section is plotted
in Figure 4.5 against the normalized span for each design problem.

With a high value of 3, the stress constraint is active at each section along
the wing in each case. As [ decreases, the stress constraint eventually becomes
inactive for sections near the root in 2-way coupled designs. To understand
why, it is first important to note that for this optimization problem it was
hardest to satisfy the stress constraint in the outer regions of the wing, towards
the wingtip. Stresses in this region are dominated by torsional stresses as the
bending stresses tend to zero at the wingtip. By stiffening the wing towards
the root, the deflections and loads are decreased so that the stress constraint
can be satisfied in the outer regions of the wing. However, because regions near

Sle &l
] 0.5+ o 1-way coupled e 0.5 o 1-way coupled
g = 2-way coupled g = 2-way coupled
0 0
0 0.5 1 0 0.5 1
Ul n
(a) B =1, straight wall spars (b) 8 =1, curved wall spars
SIS i onoce Sle
5 0.5 ;.,-“‘“" o 1-way coupled et 0.5 o 1-way coupled
g = 2-way coupled g = 2-way coupled
0 0
0 0.5 1 0 0.5 1
Ul n
(c) B8 = 0.8, straight wall spars (d) 8 = 0.8, curved wall spars
1
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= 2-way coupled g - = 2-way coupled
0
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n n
(e) B = 0.6, straight wall spars (f) B = 0.6, curved wall spars

Figure 4.5: Ratio of maximum stress to upper bound at spanwise sections of
designs optimized with 1- and 2-way coupling. Figure retrieved from [P2].
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the root have an increased stiffness, the Taphle 4.1: Relative difference in
stress constraint becomes inactive at the nags between designs optimized
root. This is observed for larger f-values with 1- and 2-way coupling for
in straight wall spar designs because the gtrajght and curved wall spars.

additional torsional stiffness provided by
curved wall spars reduces the torsional

Straight Curved

stresses at the wingtip. B A, %] Ay, (%]
Table 4.1 presents the relative change 1 21.8 21.7

in mass between 1- and 2-way coupled de- 0.8 148.7 40.4

signs, i.e. A, = mzm;Iml Increasing the 0.6 130.0 79.8

stiffness has a direct relation to an in-
crease in mass, where 2-way coupled de-
signs have consistently larger mass. These results have shown that calculating
loads in the deformed configuration can have a large impact on the optimization
problem and the converged design. This highlights the importance of solving
the 2-way coupled aeroelastic problem.

4.3.2 Optimization of Deformable Flying Wing Configurations

The wingbox parameterization introduced in previous studies can also be com-
bined with the airfoil parameterization (introduced in Section 3.3.1), i.e. d =
{¢,t,p,a,w, h,s,a,e}. This parameterization then allows for simultaneous
optimization of the external wing geometry and internal structure. Consider
the optimization problem below with an objective to minimize drag subject to
constraints on lift-weight equilibrium, stress and pitching moments.

min : D(d, g, u)
d € RNa
subject to : L(d, u,u) = W(d)
6i(d,u)—3<0  for i=1,...N, (4.8)
My(d,p,u) =0
d<d;<d for i=1,..., Ny

The weight is defined as the sum of weights from the beam, 5% of the wing
volume, and a payload. The total weight must be equal to the lift in cruise i.e.
Qoo = 0°. The pitching moment should also be zero in cruise conditions, where
M, is calculated about an axis that is parallel to the y axis and intersects the
midpoint of the quarter chord curve. The stress constraint is enforced in a high
load case representing take off, where ao, = 10°.

The optimization problem is solved for three sweep angles, A = {0°,15°,30°},
with a NACA 5-digit airfoil parameterization, and where the physics models
are 2-way coupled. Planforms and deformations of optimized designs are shown
in Figure 4.6. Each design converges with a large aspect and taper ratio which
is expected as this will reduce the induced drag and deformations (and in turn
the stresses). Torsional loads increase with the sweep, leading to larger plan-
form areas for swept wings because a stiffer structure is required to balance the
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Figure 4.6: Planform and elevation views with deflections for designs optimized
with different sweep angles, A. Beam axis is shown in green. Figure adapted
from [P2].

Figure 4.7: Airfoil and beam cross sections at root, mid-span, and wingtip (left
to right) for optimized designs with A = 0° (top), A = 15° (middle), A = 30°
(bottom). Figure retrieved from [P2].

larger loads. The change in chord length when sweep is increased can also be
seen from the airfoil sections shown in Figure 4.7.

Figure 4.7 also shows the cross sections of the beam where spar walls remain
straight for the unswept wing. This is not surprising because the beam axis
is in-line with the pitching axis about which the total moment is specified to
be zero in the optimization problem. It then follows that the torsional loads
are low in this case and as such it is not beneficial to create curved wall spars.
When the sweep increases so does the torsional loads, and curved wall spars
become more pronounced. The position of the pitching axis in unswept wings
also leads to differences in airfoil shape compared to the swept wings. The
airfoil parameterization allows a reflex camber line to form in order to aid the
optimizer in satisfying the pitching moment constraint. However, reflex camber
is only needed for the unswept wing, where the pitching axis is in line with the
airfoils which makes it difficult to balance moments along the wing. When
wings are swept, the airfoils at the root are forward of the pitching axis and
the wingtip is aft. This gives the optimizer more control over balancing the
moments from lift created forward and aft of the pitching axis.
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Figure 4.8 shows the maximum 1 S———
stress ratio per section plotted —~ R

. . &le o A=0° %,
against the normalized span. The 3 .|/ . a=15 %oy
constraint is active for most of the & L A=30° °
span in each case, but for the unswept 0 %oo
wing, the stresses tend to zero at 0 0.2 0.4 0.6 0.8 1
the wingtip. Bending stresses tend n

to zero at the wingtip but torsional ] )
stresses do not. The fact that the Figure 4.8: Ratio of maximum stress
to upper bound at spanwise sections of

optimized designs with different sweep
angles. Figure retrieved from [P2].

unswept design has no stresses to-
wards the wingtip demonstrates that
the torsional loads have been re-
moved from the design through cre-
ating a reflex camber line.

4.4 Shape Optimization of Solid Foam Core Wings

This section will adopt a beam parameterization that is introduced in [P4],
where a solid isotropic cross section is assumed. This parameterization is ap-
plicable to solid foam core wings used for aerospace applications such as drones
or model aircraft. The parameterization is shown in Figure 4.9, and is based
on the definition of NACA 4-digit airfoils profiles. The cross sectional proper-
ties can be then calculated from the airfoil definitions, given in Appendix D,
equations (D1)-(D3).

Three centers are labeled in Figure 4.9: the elastic, shear, and beam cen-
ters. Elastic and shear centers are needed to calculate the constitutive stiffness
matrix defined in (2.30). For isotropic materials, the elastic center, (eg,e,),
is coincident to the geometric center of the airfoil, and is derived analytically
using the NACA 4-digit definitions, whereas the location of the shear center
can be approximated as (sz,s,) = (0.89¢,, 1.45¢,), as described in [P4]. The
beam center corresponds to the location of the finite element. Theoretically,
the beam center can be defined

anywhere, but certain advan- c=1

tages can be achieved by choos- P . )

. . . Camber line
ing an appropriate location. For 5

example, if it is coincident to the & B S A —
elastic or shear center, the ex- N—Z T 1
pression for K., in (2.30) could @ Elastic (.e'n;;);(' e
be simplified as the elastic or E‘i Shear center
shear center terms can be elim- Beam center/quarter chord point

inated. For 2-way coupled aeroe-

lastic problems, it is advanta- Figure 4.9: NACA 4-digit airfoil parame-
geous to specify the beam cen- terization with structural centers labeled.
ter at the quarter chord point, as Figure retrieved from [P4].

shown in Figure 4.9. This is be-
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cause the quarter chord point is an approximate of the location of the aero-
dynamic center, which by definition, is the point where the pitching moment
does not change with angle of attack. This means that torsional loads are
roughly constant as the beam deforms, making the coupled problem easier to
converge because large changes in twist will only induce a small change to the
load. Refer to the discussion in Appendix C on convergence behavior for large
deformations.

The following subsections include studies based on the parameterization
above. The first will investigate the effects of including a non-linear deformation
model in the aeroelastic optimization of induced drag minimization problems.
The second subsections presents studies on aeroelastic optimization of non-
planar wings and compares the performance of flexible raised and drooped
wing designs.

4.4.1 Linear vs. Non-Linear Structural Analysis

This study will compare designs achieved with linear and non-linear defor-
mation models. Consider the optimization problem defined below, where the
objective is to minimize induced drag subject to constraints on lift-weight equi-
librium, and tip displacement, ;.

min : D(d,u, p)
d € RVNa
subject to : L(d,u, u) = W(d) (4.9)
ur(u) < ug
deZSJ for iZl,...,Nd

The problem is solved using both linear and non-linear beam finite element
models introduced in Section 2.3, with different upper bounds on tip displace-
ment. In light of the findings presented in Section 4.3, only 2-way coupled
analysis is considered for these problems. Converged designs are shown in
Figure 4.10 in undeformed and deformed configurations.

Each design converges to a tapered high aspect ratio wing, which is expected
as the taper stiffens the wing towards the root to reduce deflections, and a high
aspect ratio reduces weight and induced drag. The tip displacement constraint
is active in each case where a linear FE model was used, but when a non-linear
FE model is used the constraint is only active for low u; values. To understand
why, it is important to revisit the differences in the FE models. Degrees of
freedom are defined to give transverse deflections in two directions, an axial
displacement, and rotations of the cross section about 3 axes. When a linear FE
model is used, the axial displacement is related purely to axial loads, and for a
beam in pure bending the displacement will only be in the transverse direction.
When the non-linear FE model is used, the constitutive relations are satisfied
within a locally for each element which are rotated as the beam deforms. This
means in pure bending, the non-linear FE model also captures rotations of
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Figure 4.10: Converged designs using linear (left) and non-linear (right) beam
finite element models for different upper bounds on tip displacement, ;. De-
tails show the deformations at the wingtip. Figure retrieved from [P4].

the beam, corresponding to an axial displacement at the wingtip, as shown in
details in Figure 4.10. This offset of the wingtip corresponds to a shortening
of the wingspan, which was shown in Section 3.3.2 to have a significant impact
on the achievable minimum induced drag.

Because the wingspan shortening effect cannot be captured by a linear FE
model, unphysical deformations are predicted where the curved length of the
wing has increased (refer to Figure 4.10d) and a good aerodynamic performance
is maintained for large deformations. However, the performance would be de-
graded for large deformations with a non-linear FE model and as such the tip<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>