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Abstract:  13 

This study presents a general model predictive control (MPC) algorithm for optimizing wastewater 14 

aeration in Water Resource Recovery Facilities (WRRF) under different management objectives. The 15 

flexibility of the MPC is demonstrated by controlling a WRRF under four management objectives, 16 

aiming at minimizing: (A) effluent concentrations,  (B) electricity consumption, (C) total operations 17 

costs (sum electricity costs and discharge effluent tax) or (D) global warming potential (direct and 18 

indirect nitrous oxide emissions, and indirect from electricity production) . The MPC is tested with data 19 

from the alternating WRRF in Nørre Snede (Denmark) and from the Danish electricity grid. Results 20 

showed how the four control objectives resulted in important differences in aeration patterns and in the 21 

concentration dynamics over a day. Controls B and C showed similarities when looking at total costs, 22 

while similarities in global warming potential for controls A and D suggest that improving effluent 23 

quality also reduced greenhouse gases emissions. The MPC flexibility in handling different objectives 24 

is shown by using a combined objective function, optimizing both cost and greenhouse emissions. This 25 

shows the trade-off between the two objectives, enabling the calculation of marginal costs and thus 26 

allowing WRRF operators to carefully evaluate prioritization of management objectives. The long-term 27 

MPC performance is evaluated over 51 days covering seasonal and inter-weekly variations. On a daily 28 



 

 

basis, control A was 9-30% cheaper on average compared to controls A, D and to the current rule-29 

based control. Similarly, control D resulted on average in 35-43% lower greenhouse gasses daily 30 

emission compared to the other controls. Difference between control performance increased for days 31 

with greater inter-diurnal variations in electricity price or greenhouse emissions from electricity 32 

production, i.e. when MPC has greater possibilities for exploiting input variations. The flexibility of the 33 

proposed MPC can easily accommodate for additional control objectives, allowing WRRF operators to 34 

quickly adapt the plant operation to new management objectives and to face new performance 35 

requirements. 36 

 37 

 38 

Keywords: Activated Sludge, N2O emissions, Nonlinear MPC, Economic MPC 39 

 40 

 41 

1. Introduction 42 

Automatic control strategies have been applied in Water Resource Recovery Facilities 43 

(WRRFs) for decades, mainly focusing on improving effluent quality, responding to 44 

variations in the inlet pollutant loads, and reducing chemical consumption and energy 45 

demand (Yuan et al., 2019). The latter control objective has recently gained 46 

increasing attention, as water supply and sanitation uses 2-3% of the world’s electrical 47 

energy, with ranges around 1-18% in specific urban areas (Olsson, 2015). 48 

Specifically, WRRFs are not negligible, using approximately 1% of a country’s total 49 

electricity consumption (Cao, 2011). This also implies a noticeable carbon footprint 50 

for urban water cycles: for example, this is estimated to be 372 kg-CO2/person/year in 51 

California, corresponding to 4% of total per capita emissions (Escriva-Bou et al. 52 

2018).  53 

The diffusion of smart grids, favoured by the diffusion of solar and wind electricity 54 

sources, have triggered several studies which investigated the possibility of moving 55 



 

 

WRRF peak consumption in time, thereby decreasing their carbon footprint. Lisk and 56 

Long  (2013) and Kirchem et al. (2018) concluded that both wastewater transport and 57 

treatment can provide substantial flexibility in electricity consumption. Further 58 

investigations of the WRRF electricity consumption have identified aeration as the 59 

most demanding step, accounting for about 50% of total consumption (Longo et al. 60 

2016). Aeration control is thus essential for the plant economy, carbon footprint and 61 

for reducing peak electricity consumption. 62 

Maximizing efficiency in aeration control is a task involving a trade-off of different 63 

objectives which might vary over time. Several studies have defined aeration 64 

efficiency in terms of energy usage, i.e. to minimize electricity consumption while 65 

satisfying effluent limits (Longo et al., 2020, Yuan et al., 2019). This definition 66 

assumes that lower electricity consumption would linearly lead to reductions in 67 

operational costs and/or in greenhouse gas (GHG) emissions related to the electricity 68 

production. Other studies considered effluent quality/cost by introducing weights on 69 

concentrations and electricity consumption (Yamanaka et al. 2006). However, the 70 

current development in electricity supply, going towards a higher penetration of 71 

renewable energy sources (Ren21, 2020), undermines this assumption of a direct 72 

correlation between electricity consumption and costs/emissions.  73 

Using Denmark as example, the hourly electricity prices varied between -112.18 74 

DKK/MWh and 385.59 DKK/MWh on the 2019/01/14 (Nordpool, 2020), while the 75 

related GHG emissions varied between 42 kg-CO2-eq/MWh and 162 kg-CO2-76 

eq/MWh (Energinet, 2020). This example shows how a minimal electricity 77 

consumption does not necessarily lead to minimal operational costs, since a low and 78 

constant electricity consumption would not exploit the negative price. If peak prices 79 

and emissions are distributed differently over the day, reducing GHG emissions 80 



 

 

related to electricity is also different from reducing operational costs or electricity 81 

consumption.  82 

An additional operational cost in Denmark is represented by the effluent tax, aiming 83 

at reducing N emissions from WRRFs, and set to 30 DKK/kg-N (Danish Ministry of 84 

Taxation, 2020). Minimizing aeration can therefore reduce N removal and thereby 85 

lead to an increase in total costs. Furthermore, controls varying oxygen conditions 86 

may promote direct GHG emissions as N2O, especially at low DO levels (Domingo 87 

Félez and Smets, 2019). This can considerably affect the carbon footprint of 88 

municipal WRRFs (Delre et al., 2019).  89 

WRRF operators need flexible control strategies capable of operating at the highest 90 

level of the control hierarchy, i.e. they should be able to quickly accommodate for 91 

different management objectives (effluent quality, operational costs, electricity 92 

consumption, GHG-emissions). Model Predictive Control (MPC) fulfils these 93 

demands thanks to the possibility of using objective functions considering multiple 94 

targets. MPC uses a model of the controlled system to evaluate the effect of different 95 

control actions based on an ad-hoc objective function, choosing the one ensuring the 96 

best outcome. For computational reasons, MPC typically employs simple models. An 97 

advantage of MPC is that the control becomes a direct optimization problem where 98 

the design of the objective function decides the effective control. Hence, changing the 99 

objective function leads to new optima and thereby new control actions. This becomes 100 

particularly advantageous when objectives have variable inputs (see e.g. Lund et al. 101 

2018). 102 

Several examples of MPC for WRRF aeration exists in literature, such as MPC based 103 

on process models (e.g. Holenda et al., 2008, Mulas et al., 2015), or black-box models 104 

using neural networks which learn from data (e.g. Foscolliano et al. 2016, Bernardelli 105 



 

 

et al. 2020). However, these examples do not consider varying electricity prices or 106 

GHG emissions, and therefore they will not adapt to smart grid systems, characterized 107 

by price variations or by varying tariffs (as in the example from Aymerich et al. 108 

2015).  109 

Varying prices can be known in advance due to the market mechanics, as in the case 110 

of the Nordpool market covering Northern Europe. If variable tariffs are present as in 111 

Spain (Aymerich et al. 2015) a price model of the tariffs can supply price variations 112 

ahead in time. If prices are uncertain but follow a certain pattern (e.g. diurnal) this can 113 

also be incorporated using a price model. Furthermore, GHG-emissions from 114 

electricity production can be forecasted using different techniques such as machine-115 

learning (Leerbeck et al. 2020a), creating new opportunities for MPC, which can 116 

consider these future variations in the control evaluation. This approach has been 117 

tested for integrated control of pumping from sewer system basins to WRRFs 118 

(Stentoft et al. 2020a). To the knowledge of the authors, two strategies for predictive 119 

control of aeration using electricity price data are found in literature (Stentoft et al. 120 

2019a, Brok et al. 2019). However, these approaches face challenges with long 121 

optimization times (Stentoft et al. 2019a) or no direct handling of effluent limits (Brok 122 

et al. 2019). Varying GHG emissions in electricity mix have been investigated in the 123 

control of heat pumps for district heating systems (Leerbeck et al. 2020b), but not for 124 

WRRF aeration. In addition, the trade-off between operation costs and GHG-125 

emissions will become increasingly important in case a CO2 tax is introduced. 126 

However, to the authors knowledge this has not been investigated for WRRFs 127 

aeration control. 128 

This paper presents a general MPC setup using stochastic differential equations which 129 

allows WRRF operators to balance between different management of objectives 130 



 

 

without developing a new control strategy, i.e. by simply switching the objective 131 

function to optimize e.g. effluent, electricity consumption, aeration costs, and/or GHG 132 

emissions. The setup is tested on a small alternating  WRRF (i.e. a plant where 133 

intermittent aeration allows nitrification and denitrification to occur in the same tank - 134 

Isaacs and Thornberg, 1998) in Denmark (Nørre Snede). Four objectives 135 

(minimization of effluent N levels, electricity consumption, operational costs, GHG 136 

emissions) are tested. The MPC is evaluated by analysing the changes in the aeration 137 

set-points defined by the control and the impacts on the plant daily performance and 138 

over long term. Furthermore, a combined objective function is assessed, showing how 139 

an operator can quickly modify plant operations according to different management of 140 

objectives. 141 

 142 

2. Materials and Methods 143 

 144 

2.1 Data-driven Activated Sludge Model for nitrogen removal  145 

There are several data-driven models simulating nitrogen removal processes based on 146 

stochastic differential equations, including those developed in the 1990s (Carstensen 147 

et al. 1995) and recent developments (Stentoft et al. 2019b). Here, an adapted version 148 

of Stentoft et al. (2019b) is used. This new version introduces the state 𝑆𝜇 which 149 

models the concentration of ammonium in wastewater arriving at the biological 150 

treatment step. In addition the model introduces the algebraic equation, 𝑂, which 151 

describes the alternating aeration signal (eq. 5). The model is derived from the 152 

ASM1s process description and it is described by the following set of equations: 153 



 

 

 
𝑑𝑆𝑁𝐻 = 𝜅1(𝑆𝜇 + 𝑓 (𝑡) − 𝑆𝑁𝐻)𝑑𝑡 − 𝑟𝑁𝑖

𝑂1(𝑡)𝑆𝑁𝐻

𝑟𝑁𝑖𝐾𝑁𝐻 + 𝑆𝑁𝐻 + 𝑚𝑁𝐻
𝑑𝑡

+ 𝜎1𝑑𝜔1 

 

(1) 

 
𝑑𝑆𝑁𝑂 = 𝜅1(𝜇𝑖𝑛,𝑁𝑂 − 𝑆𝑁𝐻)𝑑𝑡 + 𝑟𝑁𝑖

𝑂2(𝑡)𝑆𝑁𝐻

𝑟𝑁𝑖𝐾𝑁𝐻 + 𝑆𝑁𝐻 + 𝑚𝑁𝐻
𝑑𝑡

−
𝑟𝐷𝑛𝑖(1 − 𝑂2(𝑡))𝑆𝑁𝑂

𝑟𝐷𝑛𝑖𝐾𝑁𝑂 + 𝑆𝑁𝑂 + 𝑚𝑁𝑂
𝑑𝑡 + 𝜎2𝑑𝜔2 

 

(2) 

  𝑑𝑆𝜇 = 𝜅2(𝜇𝑖𝑛,𝑁𝐻 − 𝑆𝜇)𝑑𝑡 +  𝜎3𝑑𝜔3 

 

(3) 

   

where parameters and state variables are listed in Table 1.  154 

 155 

<Table 1> 156 

 157 

The term f(t) provides an estimate of the diurnal variation in the incoming ammonium 158 

load at the biological treatment, inspired by the harmonic formulation suggested by 159 

Langergraber et al. (2008).  160 

 161 

 
𝑓 (𝑡) = Σ𝑖=1

2 𝑐𝑐2𝑖−1 sin (
𝑖𝜋𝑡

𝑝
) + 𝑐𝑐2𝑖cos (

𝑖𝜋𝑡

𝑝
) 

 

(4) 

 162 



 

 

where t is the input time [minutes], p is the period of the harmonic functions (1440 163 

minutes for a diurnal variation), and the parameters ccx  define the shape of the 164 

harmonic profiles.  165 

 166 

The terms O1(t) and O2(t) in eq. 1-2  represent a formulation of the alternating 167 

aeration signal with different delay for ammonium and nitrate.  Here the aeration is 168 

modelled as a sum of sigmoid-functions which allows for direct estimation of the 169 

delay D1, D2 in the system. This should here be seen as a late response from when 170 

aeration starts/stops (𝜏𝑜𝑛/𝜏𝑜𝑓𝑓) to the moment when there are observable changes in 171 

ammonium/nitrate concentrations, as also described in Stentoft et al. (2017):   172 

 173 

𝑂𝑗(𝑡, 𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓) = ∑
1

(1+𝑒𝛼1)𝜅3(1+𝑒𝛼2)−𝜅3

𝑛
𝑖=0  (5a) 174 

𝛼1 = −𝜅4(𝑡 − 𝜏𝑜𝑛,𝑖 − 𝐷𝑗) (5b) 175 

𝛼2 = 𝑡 − 𝜏𝑜𝑓𝑓,𝑖 − 𝐷𝑗  (5c) 176 

 177 

In an online setting, the switching times, 𝜏𝑜𝑛/𝜏𝑜𝑓𝑓, are determined from the control 178 

DO set-points simply by defining 𝜏𝑜𝑛 as the times when the DO set-point switches 179 

from zero to a value greater than zero and vice versa (for 𝜏𝑜𝑓𝑓). All the additional 180 

parameters (listed in Table 1) are estimated automatically, without the need for 181 

manual interventions, by minimizing a negative log likelihood function using a 182 

gradient-based optimizer with respect to the last 24 hours of data. The setup is more 183 

thoroughly described in Stentoft et al. (2019b). The modelling framework specified 184 

here (and in Stentoft et al. 2019b) is designed to run online with parameters being re-185 

estimated frequently (i.e. every 6-12 hours). This implies that changes in the 186 

biological processes or incoming water are captured when the parameters in the model 187 



 

 

are updated. If changes are expected more frequently, the parameter update frequency 188 

can be increased. The uncertainty of the model (i.e. the variance/covariance matrix) is 189 

estimated using the Extended Kalman Filter (EKF) to update the model states with 190 

observations and a numerical integration scheme. This is thoroughly described in 191 

Stentoft et al. 2019.  192 

 193 

2.2 Nonlinear Model Predictive Control of Activated Sludge Processes 194 

Model Predictive Control (MPC) finds the best control action(s) based on an 195 

optimization over future objectives with respect to some objective function, J(u) with 196 

inputs u, and m constraints bi on a constraint function l(u). Typically this is set up as a 197 

minimization problem, and it can generally be expressed as 198 

𝑚𝑖𝑛 𝐽(𝑢) (6a) 199 

𝑠. 𝑡. 𝑙𝑖(𝑢) ≤ 𝑏𝑖, 𝑖 = 1, … , 𝑚 (6b) 200 

If either the objective function, J(u), or the constraint function, li(u), is a nonlinear 201 

function, the problem becomes a nonlinear optimization problem. This is more 202 

difficult to handle compared to a linear or convex optimization, and thereby it allows 203 

for fewer optimization variables. However, it has the major advantage that it can 204 

embrace non-linear system dynamics. The challenge in nonlinear optimization is that 205 

the objective can have several local optima, requiring good initial parameter guesses 206 

or optimization algorithms that can efficiently explore the parameter space (Lund et 207 

al. 2018). This is further elaborated for this application in Section 2.4.  208 

In this MPC implementation, the goal is to find the best aeration strategy that 209 

minimizes different objectives with respect to constraints on the process and on the 210 

aeration signal itself. The aeration signal is here optimized with respect to when it 211 



 

 

should be switched “on”/”off” as the DO-setpoint is set simply as a function of 212 

ammonium concentration. Hence constraints on the aeration signal can be expressed 213 

using simple linear constraints that govern how long aeration equipment can be “on” 214 

and “off”: 215 

𝜏𝑜𝑛,𝑖 − 𝜏𝑜𝑓𝑓,𝑖 ≤ 𝜏𝑚𝑎𝑥,𝑜𝑛 (7a) 216 

𝜏𝑜𝑛,𝑖 − 𝜏𝑜𝑓𝑓,𝑖 ≥ 𝜏𝑚𝑖𝑛,𝑜𝑛 (7b) 217 

𝜏𝑜𝑓𝑓,𝑖 − 𝜏𝑜𝑛,𝑖+1 ≤ 𝜏𝑚𝑎𝑥,𝑜𝑓𝑓 (7c) 218 

𝜏𝑜𝑓𝑓,𝑖 − 𝜏𝑜𝑛,𝑖+1 ≥ 𝜏𝑚𝑖𝑛,𝑜𝑓𝑓 (7d) 219 

Where the difference, 𝜏𝑜𝑛,𝑖 − 𝜏𝑜𝑓𝑓,𝑖, represents the time interval when aeration is 220 

active (“on”), and 𝜏𝑜𝑓𝑓,𝑖 −  𝜏𝑜𝑛,𝑖+1 the period when aeration is off. These time 221 

differences have also a lower (𝜏𝑚𝑖𝑛,𝑜𝑛,  𝜏𝑚𝑖𝑛,𝑜𝑓𝑓) and an upper (𝜏𝑚𝑎𝑥,𝑜𝑛, 𝜏𝑚𝑎𝑥,𝑜𝑓𝑓) 222 

constraint, which are set by experienced process engineers to avoid detrimental effect 223 

on the biological communities in the plant. 224 

Biological tanks are assumed to be completely mixed reactors, i.e. effluent 225 

concentration limits for ammonium (𝐿𝑁𝐻) and total nitrogen (𝐿𝑁) can be added as 226 

constraints:  227 

𝐸24ℎ[𝑆𝑁𝐻] ≤ 𝐿𝑁𝐻  (8a) 228 

𝐸24ℎ[𝑆𝑁𝑂 + 𝑆𝑁𝐻] ≤ 𝐿𝑁  (8b) 229 

where 𝐸24ℎ[Sx] are the 24-hour average effluent concentrations, which according to 230 

the Danish legislation need to comply with effluent discharge limits. Additional 231 

constrains can be added to comply with local discharge regulations, targeting e.g. 232 

instantaneous discharge limits. 233 

 234 



 

 

2.3 Flexible control of management objectives 235 

To investigate the response of a WRRF controlled by the presented MPC, four 236 

different management objectives are investigated:  237 

 238 

 Objective A: Effluent total-N optimization, considering only the mean effluent 239 

concentration of ammonium and nitrate. 240 

 Objective B: Electricity consumption optimization, considering only aeration on-241 

time; 242 

  Objective C: Total operational costs optimization, considering electricity 243 

consumption and effluent taxes; 244 

 Objective D: Global Warming Potential (GWP) optimization, considering N2O 245 

direct emissions from nitrogen removal and indirect from N discharged in the 246 

effluent, as well as indirect greenhouse gas emissions (GHG) related to electricity 247 

production; 248 

 249 

The optimization of effluent total-N (A) minimizes the sum of ammonium and nitrate 250 

in the effluent over the 24-hour prediction horizon, in line with the Danish discharge 251 

regulation.  252 

 253 

 
𝐽(𝐴)(𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓) = ∫ (𝑆𝑁𝐻(𝑡) + 𝑆𝑁𝑂(𝑡))

24ℎ

𝑡=0

𝑑𝑡 

 

 

(9) 

 254 



 

 

The optimization of electricity consumption (B) assumes that aeration is the most 255 

energy-intensive step in a WRRF and does not consider variations in electricity 256 

prices. This scenario minimizes the objective function JB, which estimates the total 257 

time aeration is activated during the 24-hour prediction horizon: 258 

 
𝐽(𝐵)(𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓) = ∫ 𝐴𝑖𝑟𝑜𝑛(𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓, 𝑡)

24ℎ

𝑡=0

𝑑𝑡 

 

 

(10) 

where the term 𝐴𝑖𝑟𝑜𝑛(𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓, 𝑡) [-] is an indicator function tracking the aeration 259 

status (set to 1 if aeration is on at time t and 0 otherwise). 260 

The optimization of total operational costs (C) further extends objectives (A) and (B) 261 

for areas with varying electricity prices or a tax on effluent nutrients. This scenario 262 

minimizes the objective function JC similar to the one used by Stentoft et al. (2019a), 263 

which expresses the total cost in Danish Krone (DKK). This considers both the 264 

effluent discharge tax on total-N (TN [DKK/gN]) and the hourly electricity price (from 265 

the day-ahead market) at the t-th hour (Ept [DKK/MW]) multiplied with the constant 266 

Ec [MW] which is the electricity consumption of the aeration equipment.: 267 

 
𝐽(𝐶)(𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓) = ∫ (𝐸𝑝𝑡𝐴𝑖𝑟𝑜𝑛(𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓 , 𝑡)𝐸𝑐

24ℎ

𝑡=0

+ (𝑆𝑁𝐻(𝑡) + 𝑆𝑁𝑂(𝑡))𝑇𝑁)  𝑑𝑡 

 

 

(11) 

 268 

The optimization of global warming potential (D) minimizes the objective function JD 269 

which consider the total GHG emissions as CO2 equivalent [kg-CO2-eq]:  270 



 

 

 
𝐽(𝐷)(𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓) = ∫ (𝑅𝑁2𝑂 (𝑟𝑁𝐻(𝑡, 𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓)) 𝐶𝑁2𝑂,𝐶𝑂2

24ℎ

𝑡=0

+ (𝑆𝑁𝐻(𝑡) + 𝑆𝑁𝑂(𝑡))𝐸𝑓𝑓𝑁2𝑂𝐶𝑁2𝑂,𝐶𝑂2

+ 𝐺𝐻𝐺𝐸𝑙,𝑘𝐴𝑖𝑟𝑜𝑛(𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓 , 𝑡))  𝑑𝑡 

 

 

(12) 

where the term 𝑅𝑁2𝑂 is the effective rate at which N2O is created as a function of the  271 

ammonium removal rate 𝑟𝑁𝐻. This can be estimated as the term from (1): 272 

 
𝑟𝑁𝐻 = 𝑟𝑁𝑖

𝑂1(𝑡, 𝜃)𝑆𝑁𝐻

𝑟𝑁𝑖𝐾𝑁𝐻 + 𝑆𝑁𝐻 + 𝑚𝑁𝐻
𝑑𝑡 

 

 

(13) 

This objective function thus considers N2O production as a function of ammonia 273 

removal rate, modelled according to two correlations found in Blum et al. (2018). 274 

This model considers N2O emissions by nitrifying nitrification pathway, which is 275 

dominant in several plant configurations working with ammonia based aeration 276 

control when nitrification capacity is limited (e.g., winter time; Ahn et al., 2010, Porro 277 

et al., 2017, Bellandi et al., 2020). In addition, indirect N2O emissions due to nitrogen 278 

discharged in the effluent are estimated as a fraction of effluent total nitrogen (EffN2O) 279 

that is calculated based on IPCC guidelines (Bartram et al., 2019). Indirect GHG 280 

emissions from electricity production in the Danish market (𝐺𝐻𝐺𝐸𝑙,𝑘) are calculated 281 

based on data from Danish electricity network operator, presented in section 2.5 282 

(Energinet, 2020). 283 

 284 

To illustrate how the MPC can combine different management objectives, a combined 285 

objective function  𝐽(𝐶,𝐷)(𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓) is used, where a weight α [-]  is used to prioritize 286 

among the different objectives:   287 



 

 

 𝐽(𝐶,𝐷)(𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓) = 𝛼𝐽(𝐷)(𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓) + (1 − 𝛼)𝐽(𝐶)(𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓) 

 

(14) 

= 𝛼𝑖𝐽(𝐴)(𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓) + 𝛼𝑖𝑖𝐽(𝐵)(𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓)

+ 𝛼𝑖𝑖𝑖𝐽(𝐶)(𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓) + 𝛼𝑖𝑣𝐽(𝐶)(𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓) 

 

Where α ranges between 0, giving full priority to costs minimization, and 1, giving 288 

full priority to minimizing GHG emissions. 289 

 290 

2.4 Simplifications for implementation in an online setup 291 

All the considered objective functions are non-linear. Since the number of switching 292 

times (i.e. the controlled variables which govern when aeration is switched on and 293 

off) increase with the length of horizon, the optimization can become difficult for long 294 

horizons (i.e. the period ahead in time which the MPC strategy optimizes). Hence, 295 

simplifications are needed to speed up the calculation time and to reduce the number 296 

of parameters to be estimated, thereby enabling the application of the proposed MPC 297 

in an online setup.  298 

 299 

Here a prediction horizon of 24 hours is considered as the legislation requirements 300 

consider 24 hour average effluent concentrations. The calculations of the constrains 301 

on the 24 hour effluent concentrations (eq. 8a,b) are implemented by adding two state 302 

variables to those listed in eq. 1-3: average ammonium, 𝑆𝜇,24ℎ,𝑁𝐻, and average total-303 

N,  𝑆𝜇,24ℎ,𝑁. 304 

𝑆𝜇,24ℎ,𝑁𝐻 =
∫ 𝑆𝑁𝐻

24ℎ
𝑡=0 𝑑𝑡

24ℎ
 (15a) 305 

𝑆𝜇,24ℎ,𝑁 = 𝑆𝜇,24ℎ,𝑁𝐻 +
∫ 𝑆𝑁𝑂

24ℎ

𝑡=0
𝑑𝑡

24ℎ
 (15b) 306 



 

 

These new states can be seen as mean concentration over time as the integral sums the 307 

concentrations over the 24 hr horizon.  308 

In case of very low discharge limits or extraordinarily high incoming nutrient loads, 309 

the MPC might fail to satisfy the constraints on the effluent 24h average concentration 310 

(eq. 8a,b). Nevertheless, the optimizer should still be capable of providing an 311 

acceptable solution with respect to eq. 8, disregarding the objective function J. From a 312 

MPC point of view, this implies that eq. 8 should be implemented as soft constraints 313 

i.e., as an expression added directly in the objective function. Hence two additional 314 

terms are added to the functions  JA-D.  315 

 
𝑃𝑁𝐻 =

𝑧𝑒𝑆𝜇,24ℎ,𝑁𝐻

1 + 𝑒−100(𝑆𝜇,24ℎ,𝑁𝐻−𝐿𝑁𝐻)
 

𝑃𝑁 =
𝑧𝑒𝑆𝜇,24ℎ,𝑁

1 + 𝑒−100(𝑆𝜇,24ℎ,𝑁−𝐿𝑁)
 

 

 

(16a) 

 

(16b) 

Where the constant z is a sufficiently large number which secures that the penalties 316 

𝑃𝑁𝐻 and 𝑃𝑁 are prioritized over other terms in the objective function when the means 317 

𝑆𝜇,24ℎ,𝑁𝐻 and 𝑆𝜇,24ℎ,𝑁 are larger than the limits LNH and LN respectively.   318 

 319 

The number of parameters to optimize is reduced by parameterizing the vectors of 320 

switching times, 𝜏𝑜𝑛 /𝜏𝑜𝑓𝑓. Here the parameterization of 𝜏𝑜𝑛,𝑖 /𝜏𝑜𝑓𝑓,𝑖 also includes the 321 

constraints on the aeration equipment (eq. 7) and new input vectors, 𝑘𝑜𝑛 /𝑘𝑜𝑓𝑓 which 322 

consist of real numbers (and fewer control variables as compared to optimizing 323 

directly on the switching times, 𝜏𝑜𝑛 /𝜏𝑜𝑓𝑓).   324 

 325 



 

 

 𝜏𝑜𝑛,𝑖(𝑘𝑜𝑛, 𝜏𝑚𝑎𝑥,𝑜𝑛, 𝜏𝑚𝑖𝑛,𝑜𝑛, 𝜏𝑜𝑛,𝑖−1)

= 𝜏𝑜𝑛,𝑖−1 + 𝜏𝑚𝑖𝑛,𝑜𝑛 +
𝜏𝑚𝑎𝑥,𝑜𝑛 − 𝜏𝑚𝑖𝑛,𝑜𝑛

1 + 𝑒𝑆𝑝(𝑘𝑜𝑛)
  

𝜏𝑜𝑓𝑓,𝑖(𝑘𝑜𝑓𝑓 , 𝜏𝑚𝑎𝑥,𝑜𝑓𝑓 , 𝜏𝑚𝑖𝑛,𝑜𝑓𝑓, 𝜏𝑜𝑓𝑓,𝑖−1)

= 𝜏𝑜𝑓𝑓,𝑖−1 + 𝜏𝑚𝑖𝑛,𝑜𝑓𝑓 +
𝜏𝑚𝑎𝑥,𝑜𝑓𝑓 − 𝜏𝑚𝑖𝑛,𝑜𝑓𝑓

1 + 𝑒𝑆𝑝(𝑘𝑜𝑓𝑓)
  

 

(17a) 

 

 

(17b) 

 326 

The function 𝑠𝑝(. . ) is a periodic spline function with coefficients described by the 327 

input vectors 𝑘𝑜𝑛 and 𝑘𝑜𝑓𝑓. This implementation allows choosing how many splines 328 

and thus how many parameters, 𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓, are needed for the optimization. 329 

Generally, a greater number of parameters allows for a more detailed optimization of 330 

the controlled process, but results in a greater number of local minima, thus becoming 331 

more difficult to optimize. Here a total of 12 parameters are found to be sufficient 332 

considering the dynamics and inputs. 333 

 334 

The relatively low number of optimization variables, combined with the fast 335 

evaluation of the objective function, allows for the use of global optimization 336 

algorithms to minimize the objective function. In this study, the Shuffled Complex 337 

Evolution (SCE) algorithm (Duan et al., 1993) is used. SCE is run with a maximum of 338 

5000 function evaluations, taking approximately 60 seconds to run on a normal PC 339 

(CPU is an Intel Core i7-6600 with 2.60 GHz), and, generally, ensuring convergence 340 

to the global optimum. This is considered sufficient, as decisions should, not be made 341 

more often than every 20 minutes. The model and optimization algorithm are 342 

implemented in R and C++, using the TMB package for R (Kristensen et al. 2016). 343 



 

 

This package compiles the model written in C++ and supplies the objective function as 344 

an R-object for easy use with various optimization algorithms. 345 

 346 

2.5 Case study 347 

The presented MPC setup is tested by using data from the Nørre Snede WRRF 348 

(Denmark). This is a small plant with a biological treatment volume of 3500m3 and an 349 

average daily inlet volume of 1.350m3 (in dry weather), yielding a hydraulic retention 350 

time of 2.6 days. The biological reactor is bottom aerated. Air diffusers are operated 351 

with alternating control, which implies that water is aerated in cycles to shift between 352 

aerobic and anoxic conditions (referred to as “on” and “off” control or intermittent 353 

aeration). Intermittent aeration at Nørre Snede WRRF is currently controlled using an 354 

advanced Rule-Based Control (RBC) strategy, which switches aeration on and off as a 355 

function of online ammonium and nitrate measurements taken every 5 minutes (Isaacs 356 

and Thornberg, 1998). Additionally, DO set-point is controlled as a function of the 357 

latest ammonia measurement every 2 minutes, following a cascade control structure 358 

(larger ammonia concentrations results in higher DO set-points – cf. Isaacs and 359 

Thornberg, 1998). The main scope for this control is simultaneous carbon and nutrient 360 

removal, as phosphorus is removed using chemical precipitation. However, carbon is 361 

not monitored at Nørre Snede WRRF, as WRRF designed for nitrogen removal 362 

demand large SRTs which sustain effective carbon removal. The plant is further 363 

described in Stentoft et al. (2019b).  364 

Volatile suspended solids are assumed to be 3g-VSS/L, typical for activated sludge 365 

systems (Tchobanoglous et al. 2004). The different constants related to the objectives 366 

listed in section 2.3 are summarized for Nørre Snede WRRF in Table 1. 367 

 368 



 

 

<Table 2> 369 

 370 

Hourly electricity prices (𝐸𝑝𝑡) for the Denmark West market were retrieved from the 371 

public online databases of the European power exchange Nord Pool (Nordpool, 372 

2020). Similarly, 5-minute GHG emissions from electricity production (𝐺𝐻𝐺𝐸𝑙,𝑘)  373 

were retrieved from public databases of the Danish electricity grid operator 374 

(Energinet, 2020).  375 

 376 

Figure 1 shows daily prices and GHG emissions for 51 days in the period from 377 

2019/01/14 to 2020/02/18, highlighting both inter- and intra-daily variations. The first 378 

day (2019/01/14) is chosen as an example to illustrate the MPC response to daily 379 

variation. The subsequent 51 days are chosen at an 8-day interval in order to obtain a 380 

dataset that is equally distributed among different weekdays and covers all year 381 

seasons.  382 

 383 

<Figure 1>  384 

 385 

 386 

2.6 MPC Evaluation 387 

The performance and verification of the presented MPC is investigated by looking at 388 

different aspects using the MPC model described in section 2.1 and the specifications 389 

of constraints and control in section 2.2-2.4. 390 

 391 

WRRF daily performance under different management objectives  392 



 

 

To qualitatively verify the MPC implementation and to compare the effects on the 393 

WRRF performance of the four management objectives listed in section 2.3, a first 394 

analysis is performed on aggregated daily values, followed by a comparison of the 395 

plant outlet over the 24-hr period covering the example day (2019/01/14). The plant 396 

performance is evaluated using different performance indicators, reflecting the 397 

different management objectives, and compared against the existing control (RBC): 398 

 Effluent quality, expressed by NH4, NO3 and total-N effluent concentrations, 399 

to evaluate performance in nutrient removal; 400 

 Operational costs, calculated as total costs, electricity costs and effluent 401 

taxation costs, to evaluate financial performance; 402 

 Efficiency indicators, expressed by relative aeration on-time, average 403 

electricity consumption and average electricity GWP emissions. This is to 404 

evaluate the control prioritizes with respect to the inputs 405 

 GWP indicators, expressed as total GHG emissions, N2O-emissions and 406 

indirect GHG emissions, from electricity consumption, to evaluate climate 407 

performance. 408 

The MPC evaluation uses the model parameters listed in Table 1, and the electricity 409 

prices and GHG emissions highlighted in Figure 1.  410 

The MPC response to dynamics in electricity costs and GHG emissions is investigated 411 

by looking at the cumulative functions of total costs and GHG emissions over the 412 

optimization horizon. 413 

 414 

MPC response to varying effluent limits  415 

To verify the correct implementation of soft constrains and to evaluate the MPC 416 

response to different discharge limits, 30 different optimizations are run for each 417 



 

 

management objective by increasing the limit LNH in steps of 0.05 from 0.5 to 2 418 

mgN/L.  419 

 420 

Multiple objectives and marginal costs 421 

To verify eq. 14, The function and trade-off are evaluated by using a sequence of 422 

values for 𝛼, ranging from 0 to 1. Furthermore, this objective function makes it 423 

possible to investigate the marginal costs of preferring GWP compared to total costs.  424 

 425 

Long term performance evaluation  426 

The proposed MPC is used to control WRRF operation over the 51 days shown in 427 

Figure 1: given four different objectives, this yields to 204 optimizations in total. 428 

Potential correlations between intra-diurnal differences in costs, 𝑖𝑑𝑐𝑜𝑠𝑡, and GHG 429 

emissions, 𝑖𝑑𝐺𝐻𝐺 , in the optimized objective function values are investigated using 430 

these 204 optimizations.  431 

 432 

 𝑖𝑑𝑐𝑜𝑠𝑡 = 𝐽(𝐵) − 𝐽(𝐶) 

𝑖𝑑𝐺𝑊𝑃 = 𝐽(𝐴) −  𝐽(𝐷) 

 

(18a) 

(18b) 

 433 

3. RESULTS AND DISCUSSION 434 

 435 

3.1 Model implementation 436 

The estimated model parameters from Nørre Snede WRRF for the example day are 437 

listed in Table 1 with a description. An example of model fit with a 3 hour prediction 438 

is shown in Figure 2.  439 



 

 

 440 

<Figure 2> 441 

 442 

Figure 2 shows how the model captures the dynamics of the alternating control as the 443 

concentrations increase/decrease as expected when aeration is turned on/off. In 444 

addition, the uncertainty of the model seems reasonable as it increases with the 445 

prediction horizon, which during the estimation period is only until next available 446 

observation. This model is used in the following as basis for the predictive control.  447 

 448 

 449 

3.2 WRRF daily performance under different management objectives  450 

Figure 3 shows the optimal control obtained in the four management objectives for 451 

the example day (Figure 1). 452 

 453 

<Figure 3> 454 

<Table 3> 455 

 456 

The dynamics seen in Figure 3 and the WRRF performance indicators for the whole 457 

day (Table 3) highlight some interesting findings. 458 

 459 

Effluent quality 460 

The differences in the concentration values and dynamics under the different 461 

optimization objectives are clearly shown. All objectives comply with the soft 462 

constraints in (eq. 16). The greatest difference is noted when using function 𝐽(𝐶) 463 

(Figure 3a), which has longer aeration phases and short non-aerated intervals in the 464 



 

 

early morning and minimizes aeration in the afternoon. This is a direct response to the 465 

negative electricity prices between 00:00 and 05:00 (Figure 1a), which are exploited 466 

by the MPC. The effluent concentrations under objective A and D show similar 467 

patterns, but ammonium concentrations are slightly higher in objective D, meaning 468 

that less aeration is used. This is the consequence of the minimization of carbon 469 

footprint derived from energy used for aeration. The ammonium concentrations are 470 

generally increased for objective B, where electricity is minimized. Here ammonium 471 

is kept as high as possible within constraints (1.5 mg-N/l).  472 

 473 

Operational costs  474 

The average price of consumed electricity (i.e. the price when electricity is used) is 475 

approximately 30% lower for objective C compared to the others (Table 3; 174.2 vs 476 

247.5, 245.7, 248.0 and 259.8 DKK/MWh), while smaller differences are observed 477 

among the other objectives. The electricity cost for RBC is slightly higher, due to a 478 

long non-aerated phase during the negative price period. The lowest electricity cost is 479 

(C), even though it uses more electricity compared to both (B) and the RBC. The 480 

difference in electricity costs of (A), (B), (D) and the RBC are characterized by their 481 

differences in relative amount of aeration.  482 

The low average electricity price is also the reason why objective C leads to 13.9% 483 

lower total costs (Table 3; 247.7 DKK vs 279.4 DKK), even though it requires 6.2% 484 

more aeration compared to objective B (39.5%  vs 33.3% aeration time). It should 485 

also be noted that optimizing costs and electricity consumption are, respectively, 486 

19.5% and 9.2% cheaper than the current RBC (which uses 324.2 DKK). This is 487 

because of a combination of lower electricity prices (for C), and a better balance 488 



 

 

between taxes and electricity consumption achieved by approaching to discharge 489 

limits (for B and C). 490 

 491 

GWP  492 

The average GWP from electricity consumption  for (D) is similar to the other 493 

strategies indicating that this factor does not necessarily affect the optimal control 494 

actions (Table 3; 112.6, 114.0, 102.7, 113.1 and 115.6 kg-CO2-eq/MWh for A-D and 495 

RBC respectively) . However, N2O emissions are 3-4 times larger in , B, C and the 496 

RBC compared to A and D (Table 3; 69.2, 282.4, 227.9, 64.7 and 219.6 kg-CO2-eq 497 

for A-D and RBC respectively). This corresponds to a reduction in GWP of 50.3%, 498 

42.8% and 42.4% lower in Objective D compared to B, C and the RBC, respectively. 499 

This indicates that optimizing for low effluent nitrogen concentration is closer to 500 

minimizing GHG emissions and hence plants operated with this management 501 

objective might already have lower GWP than plants focusing on other objectives. 502 

Comparing Objective C against B results in a 13.1% lower GWP, suggesting that 503 

Objective C, despite higher electricity consumption, is better in terms of both costs 504 

and GWP compared to minimization of electricity consumption. This difference is 505 

explained by the difference in N2O emissions, which is investigated further in the next 506 

section. Finally, it should be noted that Objective D, optimizing GWP, costs 30.9 % 507 

more compared to Objective C, indicating that a trade-off between operational costs 508 

and GWP needs to be made by WRRF operators. This picture may change if a CO2 509 

tax on WRRF GHG-emissions is imposed. 510 

 511 

3.3 Objective function dynamics  512 



 

 

Figure 4 shows the dynamics of the different strategies in terms of cumulated 513 

electricity costs and N2O emissions over the simulated example day.  514 

 515 

<Figure 4> 516 

 517 

Figure 4 illustrates how the MPC in C exploits better the negative prices, as after the 518 

first 8 hours the cumulative cost is still negative. Furthermore the slope on the 519 

cumulative curve is less steep compared those of Objectives A and D, resulting in an 520 

overall cost reduction. Because of the heavy aeration in the first 10 hours (where 521 

electricity prices where low), Objective C also manages to keep ammonium 522 

concentrations and therefore it keeps removal rates, sufficiently low to avoid large 523 

N2O emissions during this period. However, Objective D manages to achieve low 524 

N2O emission over the entire horizon by balancing ammonium concentration at a 525 

sufficiently low level which keeps the ammonium removal rates (eq. 13) low.  526 

 527 

3.4 MPC response to varying effluent limits   528 

The total costs and global warming potential that is found when optimizing the same 529 

scenario as in Figure 3 is investigated. Here the effluent ammonium limits is changed, 530 

and the result is shown in Figure 5. 531 

 532 

<Figure 5> 533 

 534 

At low effluent requirements (i.e. ammonium <0.8 mgN/L) MPC perform similarly 535 

for all objectives. This is because the main MPC goal becomes to satisfy effluent limit 536 

in all cases. When the effluent limit is increased, it becomes possible for the MPC to 537 



 

 

prioritize aeration in different periods and hence different outcomes between 538 

objectives are observed. This verifies the effect of the soft-constraint, which 539 

dominates the MPC decisions when discharge requirements are not satisfied.  540 

The total operational costs are reduced in all cases until A and D stabilize around 1.25 541 

mg-N/L. This suggests that the effluent requirements are not important for A and D, 542 

which already tend to minimize effluent nitrogen emissions. In the case of B and C, 543 

total costs are further reduced, and it is likely that for C the cost would decrease 544 

further, albeit little, if the limit was increased more than 2 mg-N/L. Surprisingly, the 545 

cost of Objective B starts to increase at some point, and thereby the difference 546 

between Objective C and B increases above approximately 1.5 mg-N/L. This is 547 

because the contribution of the effluent tax to the total costs overcomes the additional 548 

savings in electricity consumption.  549 

For GWP, Objective A and D stabilize above 1.25 mg-N/L, suggesting that, as for 550 

total costs, effluent requirements become unimportant for MPC. Objective B and C 551 

increase GWP until roughly 1.4 mg-N/L, after which they decrease slowly. The initial 552 

increase is caused by the higher N2O-emissions as consequence of the lower aeration, 553 

which results in higher ammonium removal rates (aeration time is reduced, and thus 554 

ammonia oxidation rates increase due to ammonia accumulation). The later decrease 555 

in GWP is caused by the fact that the frequency and duration of aeration is so low that 556 

the effective aeration time and thus total emissions are reduced, even though the 557 

emission rate is high during aeration. 558 

This highlights that with the management objectives from B or C, lower discharge 559 

limits do not necessarily lead to better performance in terms of GWP. Furthermore it 560 

highlights that indirect N2O emissions related to total-N in the effluent are 561 

comparably much lower than direct emissions from the WRRF. 562 



 

 

 563 

3.5 Multiple objectives and Marginal Costs 564 

Figure 6 compares the operational costs and GWP for the optimization performed by 565 

using the combined objective function (eq. 18), showing the trade-off between the two 566 

management objectives.   567 

 568 

<Figure 6> 569 

 570 

For example, a reduction of GWP by 125 kg-CO2-eq (42%) results in an increase in 571 

costs of about 50 DKK (20%), corresponding to a marginal cost of 0.4 DKK/kg-CO2-572 

eq. This is obtained with a weight α around 0.65 (i.e. MPC puts a 65% weight on 573 

GWP and 35% on costs). Figure 6 shows how the trade-off does not follow a linear 574 

trend, highlighting how optimization of GWP and total costs require different control 575 

actions. Therefore, the marginal cost depends on the chosen weight, and the definition 576 

of α thus requires a careful analysis. For instance, high prioritization of GWP (𝛼 >0.8) 577 

does not lead to important reduction of GWP, but it increases costs from roughly 300 578 

to 335 DKK. Arguably WRRF managers should define a weight that balances GHG 579 

emission (especially N2O emission rates) while still leaving the MPC flexibility to 580 

exploit the opportunities offered by low electricity prices. In addition, it is noted that 581 

𝛼 values ranging from 0.2 to 0.75 will lead to a control strategy which in this case 582 

performs better than the current RBC on both total costs and GWP. 583 

 584 

3.6 Long term performance  585 



 

 

Figure 7 shows a summary of the results for the four optimization objectives 586 

performed over the 51 days shown in Figure 1 in terms of operational costs and GWP 587 

indicators. 588 

 589 

<Figure 7> 590 

<Figure 8> 591 

 592 

Clearly, better performance is obtained for indicators specifically targeted by the 593 

optimization objective. Objective B and C, focusing on reduction of operational costs 594 

and electricity, show average costs that are not significantly different (using a 95% 595 

confidence level), with only a 3.4% difference (it is though noted that the difference is 596 

significantly larger than zero). However, when looking at single days (Figure 8a), 597 

differences appear between the two objectives for days with high inter-diurnal 598 

variations, while the difference is relatively small for most of the simulated days. It is 599 

difficult to conclude whether the relationship is linear or exponential, but it can be 600 

observed that the variance also increases with increasing inter-diurnal variations. This 601 

trend is interesting when considering that future electricity prices might show even 602 

greater inter-diurnal variations due to increasing amounts of renewables (REN21, 603 

2020) and/or implementation of varying CO2-dependent taxes/tariffs. 604 

Compared to the other objectives, optimizing total costs is significantly cheaper 605 

compared to A, D and the baseline RBC, with 29.6%, 19.2% and 9.2% lower costs, 606 

respectively. Surprisingly, Objective A, C and D obtain the three lowest minimum 607 

costs (leaving out B), as indicated by the bottom of the whiskers in Figure 7(a). These 608 

values are all found in a day with 12 hours of negative prices (2019/12/16) when A 609 



 

 

and D, which prioritize to higher aeration, “earns” money during half of the day while 610 

still reducing the effluent tax.  611 

 612 

The GWP is reduced when directly targeted by the objective function (Objective D) 613 

or when minimizing N in the effluent (Objective A). D has a mean GWP 42.5%, 614 

40.9% and 34.9% lower than B, C and RBC, respectively. When compared to 615 

Objective A, the mean is not significantly lower (13.9%) due to the relatively large 616 

variances (but, the difference is significantly larger than zero). As for total costs, 617 

significant differences between Objective A and D appear when looking at individual 618 

days (Figure 8b), with greater divergences in days with greater inter-diurnal variations 619 

in GHG emissions from electricity production. However, the trend has a larger 620 

variance compared to the one observed for costs, due to the contribution of N2O 621 

emissions, which are independent from the electricity source. In both cases, part of the 622 

variation can also be explained by the fact that the distribution of highs and lows 623 

within the electricity- price/GHG series are important for the actual potential for 624 

exploitation. Hence some days are simply easier to distribute aeration in “smart” ways 625 

than others. 626 

The minimum GWP obtained in Objective C is relatively lower compared to those 627 

obtained for B and RBC. This is because the low price periods which are exploited by 628 

A have the added benefit that ammonium removal rates become smaller, hence less 629 

N2O is created (as also observed for the example day in Figure 4b). Furthermore, low 630 

price periods typically correspond to lower indirect GHG emissions, thanks to the 631 

Danish electricity mix. The high extreme value obtained for Objective A (the whisker 632 

in Figure 7b) is caused by a day with very high electricity GHG-emissions 633 

(2019/05/21, ranging from 259 – 439 kg-CO2-eq/MWh).  634 



 

 

 635 

3.7 Future Outlook 636 

The proposed management objectives can be expanded to enhance the plant 637 

performance both in terms of total operational costs and GWP. For example, total 638 

costs can be further reduced by including other electricity markets in the objective 639 

function. While in this study only the “day-ahead market” is considered, the balancing 640 

market (demand-response) seems to be particularly interesting for wastewater 641 

treatment (Brok et al., 2019). This expansion would require a stochastic MPC strategy 642 

where both upregulation (use less electricity on a short notice) and downregulation 643 

(use more electricity on a short notice) are built into the objective function. Variable 644 

tariffs which are present in some areas in order to promote peak shaping should also 645 

be investigated (Aymerich et al. 2015). Thus, it is noted that the generality of the cost 646 

function allows for adding this when creating the future price input. The Danish 647 

legislation also taxes phosphorus and organic carbon emissions, creating the 648 

possibility for further extension of the objective function. Including these substances 649 

would require an additional model using stochastic differential equations (Lindstrøm 650 

et al., 2019) which, ideally, should also include predictive control of chemical dosing.  651 

Currently the DO setpoint when aeration is “on” is not considered in the MPC. 652 

Instead it is set by the plant (in this case as a function of ammonia concentrations). 653 

However, to refine the strategy, the specific DO setpoints (and not just the switching 654 

times) would be beneficial to include directly in the optimization. 655 

 656 

The calculation of N2O is based on empirical findings on laboratory scale partial 657 

nitritation Anammox reactor, where emissions were driven by nitrifying nitrification 658 

pathway (Blum et al., 2018a). We note, however, that heterotrophic and nitrifying 659 



 

 

denitrification pathways may also contribute to the overall emissions (Chen et al., 660 

2019) and should be considered for more reliable optimization. There is relatively 661 

extensive literature on different statistical models relating different operational 662 

parameters and nitrous oxide emissions, which could be applied for the objective 663 

function (Vasilaki et al., 2018, Bellandi et al., 2020). Furthermore, these correlations 664 

could be re-calibrated with soluble N2O online data (where available). Additionally, 665 

several studies have suggested different ratios and more detailed models, accounting 666 

for all pathways contributing to N2O emissions from activated sludge processes 667 

(Domingo Félez and Smets, 2016). This shows how the prediction of N2O emissions 668 

is affected by a large level of uncertainty, which can be overcome by including N2O 669 

as a state in the system of coupled stochastic differential equations. This new state 670 

should ideally be calibrated with online N2O measurements to accommodate changes 671 

in plant due to seasonality (i.e., temperature), solid retention time, dissolved oxygen, 672 

pH or other crucial parameters (Blum et al., 2018b; Daelman et al., 2015; Massara et 673 

al., 2017; Noda et al., 2004). In addition, objective functions that also consider the 674 

hydraulic capacity of plants, including secondary clarifiers and return sludge, could be 675 

designed. This would be particularly useful for handling increased inlet flow during 676 

wet-weather events.  677 

Finally, it is necessary to further validate the MPC framework, as the simple model 678 

used for optimizing and evaluating control performance does not include all the 679 

biological processes relevant in a WRRF. Further studies are thus suggested for (i) 680 

evaluating the MPC using detailed biological models (Henze et al., 2000) both for the 681 

tested configuration (alternating plant) and in benchmark setup (Jeppsson et al., 682 

2007); and (ii) full scale testing of the long-term performance of the proposed control 683 

strategy. 684 



 

 

   4. Conclusion 685 

A flexible model predictive control (MPC) framework for optimizing aeration in 686 

WRRF was presented, allowing WRRF operators to optimize plant controls according 687 

to different management objectives over a 24 hour prediction horizon. The framework 688 

was tested with data from the Danish electricity grid and the Nørre Snede WRRF. 689 

Four different objective functions were investigated and evaluated with an objective 690 

analysis using different data inputs. The four objectives minimize total operational 691 

costs, electricity consumption, global warming potential (GWP), and effluent total-N.  692 

The study revealed how the four controls resulted in quite different in terms of the 693 

resulting aeration patterns, and hence dynamics of ammonium/nitrate concentrations 694 

in the biology tanks and in the effluent.  695 

Controls optimizing total costs and electricity consumption both prioritized to aerate 696 

less. Controls focusing on effluent quality and GWP both resulted in lower effluent 697 

concentrations, showing how a management objective optimizing effluent quality can 698 

also be optimizing GWP.  699 

The trade-off between costs and GWP was evaluated using a combined objective 700 

function. This analysis revealed that the marginal costs of an example day when 701 

prioritizing GWP over costs was ~0.4 DKK/kg-CO2-eq.  702 

MPC performance was investigated over 51 days, showing how the control 703 

optimizing costs was 19.2%, 29.6% and 9.2% cheaper compared to controls 704 

optimizing for GWP, effluent N-concentrations, or the currently implemented rule 705 

based control strategy (RBC). Similarly, the control optimizing GWP resulted in 706 

40.9%, 42.5%, 13.9% and 34.9% lower emissions than the other controls optimizing 707 

for costs, electricity consumption, effluent quality, and RBC respectively.  708 



 

 

Comparison between objectives revealed a correlation between inter-diurnal 709 

difference in prices/GHG-emissions and the potential savings, where larger difference 710 

generally led to larger savings. This indicates that the current potentials might 711 

increase in a future energy objective with more fluctuating energy sources. Finally, it 712 

is concluded that as the different objectives led to contrasting dynamics and 713 

performance, it is important to actively consider the choice of objective.  714 

Overall, this study demonstrates the flexibility of the chosen MPC framework, which 715 

can easily accommodate for additional terms in the objective functions, allowing 716 

WRRF operators to quickly adapt the plant operation to new management objectives 717 

and to face new performance requirements. 718 
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TABLES AND FIGURES 

 

Figure 1 Electricity prices for the Denmark West market (Nordpool, 2020) and (b) GHG emissions from electricity production 

(Energinet, 2020) for the Nordic electricity market, for the 51 days in the period from 2019/01/14 to 2020/02/18. The example 

day (2019/01/14) is highlighted.  

 



 

Figure 2 Model fitted to ammonium and nitrate data from Nørre Snede WRRF for the example day (2019/01/14), including a 

prediction 2 hours ahead from 20:00 (“now”). The estimated parameters related to this fit are shown in Table 1. The grey areas 

highlight the uncertainty of the model predictions. Note that uncertainty increases as prediction horizon increases. This is to 

emphasize that the “known” observations are further back, and hence it is more difficult to predict accurately.  

 

 

 

 



 

Figure 3. Ammonium and nitrate concentration and aeration controls obtained with different control scenarios 24 hours ahead 

(example day - starting from 2019/01/14 00:00): (a) optimization of total operational costs, (b) optimization of electricity 

consumption, (c), optimization of global warming potential, (d) optimization of effluent total-N, and (e) current rule-based 

control. Aeration phases are shown by the different background colors: on (blue) and off (grey). 

 



 

Figure 4 (a) Cumulative electricity costs  and (b) N2O emissions from process for the four control scenarios over the example 

day.   

 

 

Figure 5 Effect of different constraints on effluent NH4 concentration on (a) total costs and (b) GWP for different control 

scenarios on the example day. The black line shows the limit used for the results shown in Figure 2 and 3. 

 



 

Figure 6 Trade-off between total costs and global warming potential using a combined objective function (eq. 18) for the 

different values of 𝛼 (α=0 corresponds to cost prioritization only,  α=1 corresponds to GWP prioritization only). 

 

 

Figure 7 Boxplots showing (a) total costs and (b) global warming potential obtained for the 51 simulated days (shown in Figure 

1) by using the four control scenarios (A-D) and the current rule-based control (RBC). The boxplots show max/min (whiskers), 

+/- 2 standard deviations (coloured space) and the mean (horizontal black lines). 

 



 

Figure 8 (a) Difference in total daily cost between Objective A and B as a function of inter-diurnal price variations (max – min) 

(b) Difference in GWP between objectives C and D as a function of inter-diurnal variations in GHG emission from electricity 

production (min-max). Results are shown for the 51 simulated days, while the example day is marked in red.   

  



Table 1 List of parameters and state variables of the data-driven Activated Sludge Model for nitrogen removal. The last column 
shows the estimate obtained using 24 hours of ammonium and nitrate measurements from Nørre Snede WRRF on the example 
day (2019/01/14). 

Parameter Description Unit Estimate for 
example day 

𝜅1 Rate for incoming WW [] 0.27 

𝜅2 Rate for change in incoming NH4 [] 0.62 

𝑟𝑁𝑖 Nitrification rate mgNL-1min-1 0.05 

𝑟𝐷𝑛𝑖 Denitrification rate mgNL-1min-1 0.11 

𝑚𝑁𝐻 minimum observable NH4 conc. mgNL-1 0.14 

𝑚𝑁𝑂 minimum observable NO3 conc. mgNL-1 0.92 

𝐾𝑁𝐻 Monod inspired affinity coefficient for NH4. min 1.81 

𝐾𝑁𝑂 Monod inspired affinity coefficient for NO3. min 1.97 

𝜇𝑖𝑛,𝑁𝐻 Mean incoming NH4 conc. mgNL-1 67.9 

𝜇𝑖𝑛,𝑁𝑂 Mean incoming NO3 conc. mgNL-1 0.01 (fixed) 

𝜎1 Model noise parameter related to 𝑆𝑁𝐻 mgNL-1 0.02 
𝜎2 Model noise parameter related to 𝑆𝑁𝑂 mgNL-1 0.04 

𝜎3 Model noise parameter related to 𝑆𝜇  mgNL-1 0.06 

Aeration term, Oj  (eq. 5) 

𝜅3 Rate for skewness in the oxygen signal [] 3.00 

𝜅4 Rate for increase in oxygen after start [] 0.19 

𝐷𝑗  The "delay" of observations min 1.89 

𝜏𝑜𝑛,𝑖 The switch aeration “on” times  min Input 
𝜏𝑜𝑓𝑓,𝑖  The switch aeration “off” times min Input 

State variables, 𝑆𝑥 
𝑆𝑁𝐻  Ammonium concentration in tank mgNL-1 variable 
𝑆𝑁𝑂 Nitrate concentration in tank mgNL-1 variable 
𝑆𝜇  Inlet flux of incoming ammonium mgNL-1 variable 

 

  



Table 2 Parameter of the objective functions used in the optimization of the Nørre Snede WRRF. 

Parameter Description Value 

𝐸𝑐 Equipment consumption [MW] 0.1 

𝑇𝑁 Effluent tax [DKK/kg-N] 30.0 

𝐿𝑁𝐻 Ammonium limit [mg-N/L/24h] 1.5 

𝐿𝑁 Total-N limit [mg-N/L/24h] 2.9 

𝜏𝑚𝑖𝑛,𝑜𝑛 Min duration of aeration phase [min] 10 

𝜏𝑚𝑎𝑥,𝑜𝑛 Max duration of aeration phase [min] 80 

𝜏𝑚𝑖𝑛,𝑜𝑓𝑓 Min duration of no-aeration phase [min] 30 

𝜏𝑚𝑎𝑥,𝑜𝑓𝑓 Max duration of no-aeration phase [min] 80 

𝐶𝑁2𝑂,𝐶𝑂2 N2O GWP-contribution [kg-CO2-eq/kg-N2O] 298 

𝐸𝑓𝑓𝑁2𝑂 N2O produced due to effluent N  0.005 

𝑟𝑁2𝑂,𝑙𝑜𝑤 N2O emission  𝑟𝑁𝐻<5mg TAN/(g-VSS*h) [] 0.01 

𝑟𝑁2𝑂,ℎ𝑖𝑔ℎ N2O emission 𝑟𝑁𝐻>5mg TAN/(g-VSS*h) [] 0.09 

Z Large number for the soft constraints 10000 

VSS Volatile suspended solids [g/L] 3 

 

Table 3. Performance indicators from application of the four different management objectives (A-D) and the current control 
(RBC) on the example day (Figure 1). The indicator targeting the goal of the objective functions is highlighted in bold and a 
frame. In addition the lowest value for each performance indicator is highlighted in bold. Effluent concentrations are estimated as 
average over 24 hours. Average electricity price/GWP are the obtained values over the 24 hours with variable inputs. N2O 
emissions cover both the direct and indirect N2O.   

Performance indicator A B C D RBC* 

Effluent NH4 [mgN/L] 1.33 1.36 0.69 0.52 1.25 

Effluent NO3 [mgN/L] 1.41 1.36 1.35 1.39 1.30 

Effluent total-N [mgN/L] 2.74 2.72 2.04 1.91 2.55 

Total Cost [DKK] 247.7 279.4 324.2 377.2 307.7 

Electricity cost [DKK] 165.2 197.8 263.0 319.7 231.2 

Effluent tax [DKK] 82.4 81.6 61.2 57.5 76.5 

Relative Aeration [% “on”-time] 39.5 33.3 44.6 53.7 37.1 

Average price of consumed 
electricity [DKK/MWh] 

174.2 247.5 245.7 248.0 259.8 

Average GWP of consumed 
electricity [kg-CO2-eq/MWh] 

102.7 114.0 113.1 112.6 115.6 

GWP, N2O contribution[kg-CO2-eq] 227.9 282.4 64.7 69.2 219.6 

GWP from electricity production 
[kg-CO2-eq] 

96.8 91.1 121.0 145.2 102.9 

GWP, total [kg-CO2-eq] 324.6 373.5 185.7 214.4 322.5 

 


