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Abstract  13 

Whilst the effects of antibiotics on microorganisms are widely studied, it remains 14 

less well-understood how antibiotics affect the physiology of the native 15 

producing organisms. Here, using a marine bacterium Photobacterium galatheae 16 

S2753 that produces the antibiotic holomycin, we generated a holomycin 17 

deficient strain by in-frame deletion of hlmE, the core gene responsible for 18 

holomycin production. Mass spectrometry analysis of cell extracts confirmed that 19 

ΔhlmE did not produce holomycin and that the mutant was devoid of 20 

antibacterial activity. Biofilm formation of ΔhlmE was significantly reduced 21 

compared to that of the wild-type S2753 and was restored in an hlmE 22 

complementary mutant. Consistently, exogenous holomycin, but not its 23 

dimethylated and less antibacterial derivative, S,S’-dimethyl holomycin, restored 24 

the biofilm formation of ΔhlmE. Furthermore, zinc starvation was found essential 25 

for both holomycin production and biofilm formation of S2753, although the 26 

molecular mechanism remains elusive. Collectively, these data suggest that 27 

holomycin promotes biofilm formation of S2753 via its ene-disulfide group. 28 

Lastly, the addition of holomycin in sub-inhibitory concentrations also enhanced 29 

the biofilm of four other Vibrionaceae strains. P. galatheae likely gains an 30 

ecological advantage from producing holomycin as both an antibiotic and a 31 

biofilm stimulator, which facilitates the nutrition acquisition and protects P. 32 

galatheae from environmental stresses. Studying the function of antibiotic 33 

compounds in the native producer will shed light on their role in nature and 34 

could potentially point to novel bioprospecting strategies.  35 

 36 
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Importance  37 

Despite the societal impact of antibiotics, their ecological functions remain 38 

elusive and have mostly been studied by exposing non-producing bacteria to 39 

sub-inhibitory concentrations. Here, we studied the effects of the antibiotic 40 

holomycin on its native producer, Photobacterium galatheae S2753, a 41 

Vibrionaceae bacterium. Holomycin provides a distinct advantage to S2753 both 42 

as an antibiotic and by enhancing biofilm formation in the producer. 43 

Vibrionaceae species successfully thrive in global marine ecosystems, where they 44 

play critical ecological roles as free-living, symbiotic, or pathogenic bacteria. 45 

Genome mining has demonstrated that many have the potential to produce 46 

several bioactive compounds, including P. galaltheae. To unravel the contribution 47 

of the microbial metabolites to the development of marine microbial ecosystems, 48 

better insight into the function of these compounds in the producing organisms 49 

is needed. Our finding provides a model to pursue this and highlights the 50 

ecological importance of antibiotics to the fitness of the producing organisms.  51 

  52 
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Introduction 53 

Many microbial secondary metabolites have antibiotic activity and are crucial for 54 

treating bacterial infections in modern society. The clinical doses of antibiotics 55 

deployed are often much higher than the concentrations found in the natural 56 

environments where the compounds can be difficult to detect (1, 2). This has 57 

raised the question of the natural roles of microbial antibiotics in Nature (2–9).  58 

In Nature, bacteria live in a multispecies community, whose composition and 59 

spatial structure change dynamically in response to external nutritional and 60 

physiochemical parameters, and also as a function of inter-species interactions 61 

often mediated by bioactive molecules (2, 9, 10). Biofilms are structures 62 

associated with surfaces and the dominant bacterial lifestyles in natural 63 

environments, as it is an efficient means of persistence (11). Several bioactive 64 

secondary metabolites affect bacterial biofilm formation. For example, 65 

sub-inhibitory concentrations of tobramycin, an aminoglycoside antibiotic, 66 

induced biofilm formation of Escherichia coli and Pseudomonas aeruginosa (2, 67 

12). Tobramycin activates an inner membrane phosphodiesterase Arr of P. 68 

aerugenosa PAO1, and promotes the biofilm formation likely by regulating the 69 

localized cytoplasmic c-di-GMP pools (12, 13). Both polyamine norspermine and 70 

glycine betaine, two compounds that may be produced by native marine 71 

organisms, enhance the cell density in Vibrio cholerae biofilms (14, 15). These 72 

studies have particularly emphasized the role of exogenous secondary 73 

metabolites in bacterial biofilm development; however, whether endogenous 74 

antibiotic compounds exert the same function is yet to be investigated.  75 
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We and others have reported that marine bacteria in the genera Phaeobacter, 76 

Ruegeria Pseudoalteromonas, and Vibrionaceae are potent producers of 77 

secondary metabolites with antibiotic activity (16–24) However, whether these 78 

compounds play other roles than being antibiotics in the microbial community is 79 

not known. Unraveling the possible roles of compounds with antibiotic activities 80 

in complex systems is challenging and we therefore chose to start our 81 

investigations in a controllable system, addressing if a compound with antibiotic 82 

activity plays any role on the physiology of the producing organism. 83 

Photobacterium galatheae S2753, an organism from the Vibrionaceae family was 84 

isolated from the surface of a green mussel (25). The bacterium produces 85 

holomycin (24), a dithiolopyrrolone (DTP) family natural product (26–29) that 86 

inhibits cell growth of tumor cells as well as a broad spectrum of organisms, e.g., 87 

yeast, Gram-negative and Gram-positive bacteria, including methicillin-resistant 88 

Staphylococcus aureus (MRSA) (23, 24, 28, 30). The holomycin biosynthetic 89 

pathway has been studied in Streptomyces clavuligerus (31) and Yersinia ruckeri 90 

(32), respectively. As predicted by antiSMASH (33), P. galatheae S2753 harbors 91 

eleven potential biosynthetic gene clusters (BGCs) with one predicted to produce 92 

holomycin (17, 23, 34). The purpose of this study, using P. galatheae S2753 as a 93 

model organism, was to confirm experimentally the bioinformatically predicted 94 

holomycin BGC and to determine possible role(s) of the antibiotic holomycin in 95 

the physiology and ecology of the producer. Such studies could lead to new 96 

insight into the function and ecological role(s) of secondary metabolites with 97 

antibiotic activity and potential facilitate new bioprospecting strategies. 98 

 99 
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Results 100 

Analysis of the biosynthetic gene cluster of holomycin of P. galatheae S2753.  101 

AntiSMASH version 5.0 identified eleven BGCs in P. galatheae S2753, of which 102 

eight were on the large chromosome and three on the small one. Based on a 103 

previous prediction (17), BGC11 on the small chromosome potentially encodes 104 

the enzymes involved in the biosynthesis of holomycin. Sequence analysis and 105 

functional annotation showed that BGC11 contains ten genes, eight of which are 106 

homologous to those in the holomycin BGCs of Y. ruckeri and S. clavuligerus 107 

(Figure 1A). Therefore, the holomycin biosynthesis in P. galatheae likely follows 108 

the same paths as those in S. clavuligerus and Y. ruckeri (31, 32).  As a core 109 

protein, the NRPS HlmE contains a characteristic arrangement of cyclization (Cy), 110 

adenylation (A), and thiolation (T) domains (Figure 1A and Table 1). According to 111 

the proposed mechanism (31, 32), HlmE initiates the synthesis pathway by 112 

covalently loading an L-cysteine and forming a dipeptide bond with a second 113 

L-cysteine. An acyl-CoA dehydrogenase HlmB then oxidizes the thiol group to 114 

allow the cyclization of the aminopyrrolinone ring of holomycin. Subsequently, a 115 

thioesterase HlmC, a PPC-DC decarboxylase HlmF, and a FMN-dependent 116 

oxidoreductase HlmD work together to generate the second thiol group, remove 117 

one molecule of carbon dioxide, and then form a dihydroholothin molecule. At 118 

last, a N-acyltransferase HlmA adds an acetyl group to form a holomycin.  119 

Besides the eight conserved genes, BGC11 harbors a gene hlmX encoding a 120 

homolog to Hom9 of Y. ruckeri (Table 1) and a unique gene hlmY (Figure 1A), 121 

which encodes a putative metallophosphoesterase (Table 1). Both HlmX and 122 

Hom9 were predicted as putative ArsR/SmtB-family transcriptional regulators 123 
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with a C-terminal rhodanese-like domain.  124 

The other two holomycin producing bacteria, S. clavuligerus and Y. ruckeri, use 125 

different self-protection strategies during holomycin production. S. clavuligerus 126 

encodes a disulfide-forming dithiol oxidase HlmI to control the formation of the 127 

intramolecular disulfide bridge in holomycin (35), whileas Y. ruckeri deploys a 128 

RNA methyltransferase Hom12 to modify the potential holomycin antibiotic 129 

targets (32). However, a homolog of hlmI (35) or hom12 (32), was not found in 130 

S2753 BGC11 nor in other places on the genome. 131 

BGC11 is responsible for holomycin production in S2753.  132 

To experimentally test if BGC11 indeed is responsible for holomycin production, 133 

an in-frame scarless deletion mutant of the core gene hlmE was generated by 134 

using homologous recombination and SacB mediated counter-selection (see 135 

details in Material and Methods). Diagnostic PCRs were performed and 136 

confirmed that hlmE was deleted from S2753 (Figure 1B). WT S2753 and the 137 

ΔhlmE strains were then grown to stationary phase in different media, i.e., the 138 

marine enriched APY medium and a marine minimal medium supplemented 139 

with chitin, glucose or mannose. The produced secondary metabolites were 140 

extracted and analyzed by high-performance liquid chromatography coupled to 141 

diode array detection and high-resolution mass spectrometry 142 

(HPLC-DAD-HRMS). Whilst holomycin was detected in WT cultures, it was not 143 

produced by the ΔhlmE mutant (Figure 1C, D), demonstrating that hlmE and thus 144 

BGC11 are responsible for the biosynthesis of holomycin in P. galatheae S2753. 145 

Consistently, the extracted metabolites of ΔhlmE cultures failed to inhibit the 146 

growth of either the Gram-negative bacterium Vibrio anguillarum (Figure 1E) or 147 
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the Gram-positive Staphylococcus aureus (Figure 1F), both of which were 148 

inhibited by the extracts from the WT strain. The antimicrobial activity of the 149 

crude extracts was complemented by ectopically expressing an hlmE under its 150 

native promoter on the plasmid vector pBBR1-MCS2, but not by a vector control 151 

(Figure 1G).  152 

Biofilm formation is reduced in the ΔhlmE mutant.  153 

Deletion of hlmE did not affect the growth rate as the doubling time during 154 

exponential growth and the maximum yield were 0.71±0.04 h and 6.21±0.56 OD 155 

for WT, and 0.70±0.03 h and 6.21±0.34 OD for ΔhlmE mutant in marine media. 156 

Statistically, the growth of ΔhlmE was not significantly different from that of WT 157 

(p>0.05 by student’s t-test). Despite the similar growth dynamics, the ΔhlmE 158 

mutant formed less biofilm after a two-day incubation as compared to the WT 159 

(Figure 2). The biofilm formation was partially restored in the complemented 160 

strain ΔhlmE::pBBR1-MCS2-hlmE that was used in Figure 1G, whereas not 161 

restored in the control strain ΔhlmE::pBBR1-MCS2 with the empty vector (Figure 162 

2). The partial complementation may be due to the varied expression time and 163 

level of hlmE. 164 

Biofilm formation of P. galahtheae ΔhlmE is restored by exogenously applied 165 

holomycin but not by S, S’-dimethyl–red-holomycin. 166 

Since holomycin is secreted extracellularly, the effect of holomycin production on 167 

biofilm formation could be mediated by its role in inter-cellular interaction and 168 

addition of exogenous holomycin should, thus, restore biofilm formation of 169 

ΔhlmE mutant. To test this hypothesis, the production of endogenous holomycin 170 

was first determined as 3.59 ± 0.05 μM in the WT biofilm formation cultures. 171 
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Holomycin with final concentrations of 0, 0.9, 1.8, 3.6 and 7.2 μM were then 172 

added to the ΔhlmE cultures after 17 hours incubation at 25 oC, at the time when 173 

cells entered the exponential-stationary transition phase and were expected to 174 

produce holomycin . Holomycin supplied in concentrations higher than 1.8 μM 175 

restored the biofilm formation of ΔhlmE mutant to the same level of WT cultures 176 

(Figure 3, p>0.05 by student’s t-test). To further explore the functional group of 177 

holomycin in triggering biofilm formation, S, S’-dimethyl holomycin (Figure 3), a 178 

methylated, less antibacterial chemical analogue of holomycin (36), was also 179 

added to the ΔhlmE cultures after 17 hours incubation. Biofilm formation of 180 

ΔhlmE cultures was not restored by S,S’-dimethyl holomycin of concentrations 181 

even up to 7.2 μM (Figure 3), suggesting that the disulfide group seems essential 182 

for the role of holomycin in triggering biofilm formation or that the two methyl 183 

groups in S’S-dimethyl holomycin diminish the biological function of holomycin 184 

in triggering the biofilm formation of P. galatheae S2753. 185 

The zinc ion concentration in media negatively correlates to the holomycin 186 

production in P. galatheae S2753.  187 

The disulfide group of holomycin chelates zinc ions in reducing environments 188 

(37). To test if zinc was involved in holomycin production and biofilm formation, 189 

wild type P. galatheae was grown in mannose marine minimal medium with and 190 

without zinc addition. A calibration curve of holomycin was constructed and 191 

used for the quantitative analysis of holomycin production in cultures. The 192 

growth of P. galathea was not influenced by zinc in the tested concentration; 193 

however, the increasing zinc concentration gradually inhibited holomycin 194 

production in WT (Figure 4). Holomycin production in WT cultures was almost 195 
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abolished when zinc was added up to 2 mM in the wild type cultures. Meanwhile, 196 

biofilm formation of wild type P. galatheae was also gradually inhibited by 197 

increasing zinc concentration (Figure 4). To sum up, zinc negatively influenced 198 

biofilm formation and holomycin production in P. galatheae. 199 

Exogenous holomycin triggers biofilm formation of other marine isolates.   200 

To test whether holomycin at sub-inhibitory concentrations would affect the 201 

biofilm formation of other marine bacteria, sixteen isolates from six genera (i.e. 202 

Phaeobacter, Ruegeria, Vibrio, Photobacterium, Pseudoalteromonas and Cobetia) 203 

from the Galathea Collection (Table 2 and 3) were grown in marine broth. We 204 

first determined the minimal inhibition concentrations (MIC) of holomycin for 205 

these strains. Five strains were resistant to holomycin (MIC> 93 μM, Table 2) 206 

including S2754 and S2755 which were isolated from the same stone where the 207 

S2753-bearing mussel was located.  The MICs of other bacteria were in the 208 

range 2.9-93 μM (Table 2). Holomycin was then added at sub-inhibitory 209 

concentrations to the cultures at either 0 h or 17 h time point (Figure 5 and 6). 210 

Biofilm formation of three Vibrio strains and one Photobacterium strain was 211 

significantly enhanced by holomycin added after 17-h incubation (Figure 6), 212 

while the effect was not significant when added at 0 h time point (Figure 6). 213 

Biofilm formation of the other strains was not affected by holomycin at either 214 

time point (Figure 5). These data showed that holomycin produced by S2753 215 

could affect the biofilm formation of other marine bacterial species. 216 

Discussion  217 

Species of the Vibrionaceae family play important roles in the marine 218 

environment as symbiotic, pathogenic or free-living organisms and they also 219 
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harbor a large genetic potential for production of bioactive compounds (16, 17, 220 

24, 38–41). Genetic approaches are needed to explore these bioactive 221 

compounds and to link chemical compounds to their related biosynthetic 222 

pathways enabling understanding of the physiological and ecological roles of 223 

their secondary metabolites. In this study, using the mussel-associated bacterium 224 

P. galatheae S2753 as a holomycin-producing model organism, we developed a 225 

protocol (Material and Methods) to genetically manipulate S2753 and generated 226 

a holomycin deficient mutant strain, ΔhlmE. This confirmed that a gene likely 227 

part of a BGC (the BGC11) in S2753 is responsible for holomycin production.  228 

Exogenously supplied antibiotics in sub-lethal concentrations can affect 229 

microbial growth and metabolism by altering gene expression, nutrient 230 

utilization, and biofilm formation (42, 43). In these studies, antibiotics were 231 

added to the culture media and expected to be perceived by bacterial signal 232 

transduction pathways leading to changes in gene expression and subsequently 233 

altered phenotypes, such as biofilm formation. Consistently, we found that when 234 

applied at the late growth stage, holomycin induced biofilm formation of other 235 

holomycin non-producing bacteria (Figure 6). However, the stimulatory effect of 236 

holomycin on S2753 might differ from these since P. galatheae S2753 is a native 237 

producer of holomycin. Holomycin production is tightly coupled with biofilm 238 

formation in S2753. Several lines of evidence support this: 1) the ΔhlmE strain is 239 

defective in both holomycin production and biofilm formation, while a genetically 240 

complemented strain of ΔhlmE restored holomycin production and partial 241 

biofilm formation (Figure 2). 2) Exogenously added holomycin also restored the 242 

biofilm formation of the ΔhlmE strain to the level of WT S2753 (Figure 3). 3) 243 
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When an external factor, such as high concentration of zinc was added, this led to 244 

a gradual reduction of holomycin production and a parallel reduction in biofilm 245 

formation (Figure 4). Holomycin, once produced, may stimulate the biofilm 246 

formation of S2753 either in a direct or indirect manner. Directly, holomycin may 247 

bind to and activate transcriptional regulator(s) to upregulate the expression of 248 

genes involved in biofilm formation. For example, the antibiotic, bacillomycin D, 249 

promotes biofilm formation of the native producing bacterium Bacillus velezensis 250 

by binding to a transcription activator, Btr (44). The complex upregulates the 251 

iron up-taking ABC transporter FeuABC and consequently increases intracellular 252 

iron concentration, which cues the biofilm formation of B. velezensis. Indirectly, 253 

holomycin may chelate metal ions (including zinc) inside the cell (37), which 254 

triggers global metabolic changes and various stress response pathways, and 255 

often leads to the stimulation of biofilm formation. This suggested mechanism is 256 

consistent with the most prevalent hypotheses that the biofilm stimulatory 257 

activity of antibiotics could be coupled to the mechanism of their toxic activity, 258 

which leads to generic stress responses or other physiological changes by 259 

non-lethal damage on the non-producing strains (45, 46). In line with this, the 260 

analog of holomycin, S, S’-dimethyl holomycin, which is not as antibacterial as 261 

holomycin, cannot form the dithiol bonds at e.g. the intracellular conditions and 262 

therefore chelate metal ions, and was unable to complement the biofilm 263 

formation of the ΔhlmE strain (Figure 3). 264 

Zinc influenced both holomycin production and in biofilm formation (Figure 4) 265 

as has been observed in other bacteria, as free zinc used at non bactericidal 266 

concentrations inhibits biofilm formation of several pathogenic bacteria, 267 
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including E.coli, S. aureus, Streptococcus suis, Actinobacillus pleuropneumoniae, 268 

Salmonella Typhymurium, and Heamophilus parasuis (74, 75). The influence of 269 

zinc on biofilm formation could be via its inhibitory effect on holomycin 270 

production. The reduced holomycin is believed to function as a zinc chelator 271 

(zincophore), to scavenge zinc from the zinc-depended enzymes (37), similar to 272 

the function of siderophores for iron scavenging. We found that the predicted 273 

transcriptional regulator HlmX contains potential zinc-binding sites (Table 1), 274 

which may accept free zinc ions and change its ability to bind DNA and 275 

reprogram gene expression. Therefore, a non-exclusive possibility for the 276 

inhibitory effect of zinc is that the availability of free zinc eliminates the need for 277 

holomycin production in P. galatheae and that the decreased holomycin 278 

production reduces biofilm formation. It is also possible that a zinc responsive 279 

transcriptional regulator binds to zinc ions and thereby downregulates the 280 

expression of synthases involved in holomycin production, thus influencing the 281 

holomycin production and biofilm formation. 282 

Antibiotics are proposed to act as weapons that provide competitive advantages 283 

to the native producers in environmental niches (47). This hypothesis, indeed, 284 

has been evidenced by the observations that the production of antibiotic 285 

secondary metabolites, including holomycin, was significantly induced by 286 

stressed conditions such as exposure to antibiotics or bacterial competitors in 287 

the culturing systems (48, 49). However, antibiotic secondary metabolites may 288 

play multifaceted roles in natural environments - at high concentration acting as 289 

antibiotics mediating antagonism between bacterial warfare, while at low 290 

concentration acting as signaling molecules involved in inter- or intracellular 291 
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processes (50, 51). Here and in the previous study, the production of holomycin 292 

in P. galatheae was influenced by access to nutrient sources such as chitin (52) 293 

and free-zinc ions (Figure 4), leading to the question of whether holomycin 294 

serves several roles in the native producer, P. galatheae. Chitin is the most 295 

abundant polysaccharide in marine environments and several species of the 296 

Vibrionaceae family (including P. galatheae) form biofilm in response to chitin 297 

(77). P. galatheae is able to catabolize chitin as a nutrition source and holomycin 298 

production increased significantly in chitin-supplemented media as compared to 299 

glucose media (78). Given the close coupling of holomycin production to biofilm 300 

formation as revealed in this article, it is possible that chitin induces holomycin 301 

production, and thereby biofilm formation, which facilitates the colonization of a 302 

nutrition source. P. galatheae S2753 was isolated from the surface of a green 303 

mussel (16, 25), which may impose a zinc starvation condition to S2753 as part 304 

of its nutritional immunity system (53).  305 

Altogether, we propose a preliminary model of the ecological role of holomycin in 306 

S2753 by incorporating the synergistic effects of chitin and zinc. When P. 307 

galatheae S2753 attaches to its eukaryotic hosts, both the host chitin and the zinc 308 

starvation condition (54) induce the production of holomycin, biofilm formation 309 

and consequently enhanced colonization of the host and nutrition. In turn, the 310 

biofilm structure protects S2753 from marine environmental changes and 311 

stresses and potentially enriches zinc ions in the vicinity of S2753 cells to 312 

facilitate zinc uptake by using holomycin or other means. In addition, holomycin 313 

has antibacterial activity, and when applied in the early growth stage, 314 

anti-biofilm activity to other marine strains (Table 2). Therefore, the coupling 315 
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between holomycin production and biofilm formation confers a clear advantage 316 

to the ecological survival of S2753.   317 

 318 

Materials and Methods  319 

Bioinformatics analyses.  320 

The genome sequences used in this study were extracted from NCBI using the 321 

access numbers and uploaded to the MaGe Genoscope for holomycin BGC 322 

syntenies analysis and gene annotation (55, 56). Genomes were submitted to 323 

antiSMASH version 5.0 (33) for the prediction of gene clusters involved in the 324 

production of holomycin. Protein domain prediction was done in InterPro 325 

domains and Conserved Domain Search Service (CD Search) (57). The DNA 326 

sequencing data was analyzed using BioEdit. The sequence alignment was done 327 

in ClustalX.  328 

Microorganisms and growth conditions.  329 

Escherichia coli strains PIR1 (Invitrogen cat. C101010, Denmark) and TOP10 330 

(Invitrogen cat. 404010, Denmark) were used for cloning. WM3064 of E. coli (58) 331 

was used as the donor strain in bacterial conjugations and grown in the presence 332 

of 300 μM 2,6-diaminopimelic acid (DAP). Ten μg/mL of kanamycin (Kan) or 333 

chloramphenicol (Cm) was used in the E. coli liquid cultures and 30 μg/mL of 334 

both antibiotics were used in E. coli agar cultures (59). Cultures of wild type and 335 

mutant strains of P. galatheae S2753 (16, 25) were grown in marine minimal 336 

medium (52) supplemented with sole carbon sources (0.2% mannose, 0.2% 337 

colloidal chitin or 0.2% glucose), marine broth 2216, marine agar 2216, modified 338 

enriched growth medium (APY, (56)) containing per liter: 5 g of Peptone, 3 g of 339 
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yeast extract and EMS artificial seawater. The pH was adjusted to 7.0; 12 g of agar 340 

was added per liter of APY to prepare the agar plates. Generally, colonies 341 

appeared 15 hours after plating. In the P. galatheae cultures, kanamycin was 342 

added at 200 μg/mL to agar plates and 150 μg/mL to liquid cultures; 343 

chloramphenicol was used at 30 μg/mL. Zinc ions was added to the media to the 344 

working concentration from a 1 M zinc chloride stock solution (pH 6.5) in water. 345 

Sixteen marine bacteria were selected to investigate the influence of holomycin 346 

in their biofilm, of which eight strains, i.e. Vibrio spp. (16) S0703, S1396, S1399, 347 

S2757, S3027, S3030, Pseudoalteromonas ruthenica S2756 (16) and Cobitia sp. 348 

S3029 (16), were isolated from mussel surfaces. Both Pseudoalteromonas 349 

piscicida S2755 (16) and Photobacterium sp. S2754 (16) were sampled from a 350 

stone located in the same place of S2753. Bacteria S2541 and S2545 were also 351 

included because they belong to the genus Photobacterium (16). Additionally, 352 

Ruegeria sp. S2684 (16), Vibrio coralliilyticus S2052 (16), Phaeobacter piscinae 353 

S26 (69) as well as Pseudoalteromonas galatheae S4498 (16) were selected as 354 

they were studied in several previous or ongoing projects. These selected marine 355 

strains were cultured on marine agar (MA) plates or in marine broth (MB). All 356 

marine cultures were inoculated at 25 oC and all E. coli strains at 37 oC. The 357 

strains used in this study with genotype description are listed in Table 3. 358 

DNA manipulation and plasmid construction.  359 

The restriction enzymes and the quick ligase for DNA modification were 360 

purchased from New England Biolabs (NEB, Bionordika, Denmark). DNA 361 

polymerase (Takara Biomedical Technology Europe (France) and Q5 362 

High-Fidelity Polymerase (NEB) was used for PCR amplification, except for 363 
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colony PCRs, which were performed using TEMPase (Ampliqon, VWR, Denmark). 364 

All PCR products and plasmids were purified using GFXTM PCR DNA and Gel Band 365 

Purification Kit (GE Healthcare 28-9034-70, GE) and Monarch® Plasmid 366 

Miniprep Kit, respectively. All plasmids and primers were designed in the ApE- A 367 

plasmid Editor (v2.0) (A program designed by M. Wayne Davis. Integrated DNA 368 

Technologies (IDT, Belgium) synthesized all the primers in this study. All 369 

plasmids and primers used in the study are listed in Table 4 and 5. 370 

The suicide plasmid pDM4-del-hlmE was constructed by the restriction cloning 371 

method. An approximately 1.0 kb upstream and downstream region flanking of 372 

hlmE were amplified using primer pairs DhlmE-P1/2, DhlmE-P3/4, Table 5). 373 

Amplified DNA fragments were ligated into the pJET1.2/blunt cloning vector 374 

with the CloneJET PCR Cloning Kit (Thermo Scientific-K1231, Denmark); 375 

subsequently, they were sub-cloned into the suicide vector pDM4 (60) by using 376 

the XbaI and XhoI digestion sites to form pDM4-del-hlmE. Gene hlmE, as well as 377 

its native promoter region,  was amplified by primer pair Phlm-hlmE/ 378 

hlmE-6xHis (Table 5) and cloned into the expression vector pBBR1-MCS2 via 379 

KpnI and XbaI to generate the complementation plasmid pBBR1-MCS2-hlmE. 380 

Correct plasmid assembly was confirmed by PCR (Table 5), restriction digestion, 381 

and sequencing (Macrogen Europe, Netherlands).  382 

Bacterial conjugation.  383 

The electroporation of E. coli WM3064 and the conjugation experiments were 384 

performed as described previously with some modification of the culture 385 

condition (58, 59, 61). WM3064 cells carrying each plasmid were grown at 37 °C 386 

in LB-DAP medium with antibiotics until an optical density (OD600nm) of 0.4-0.6. 387 
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As a donor, 1 mL of WM3064 culture was harvested by centrifugation (6000 g for 388 

1 min). Cells were washed twice with LB medium and resuspended in 50 μL LB 389 

medium with DAP. It was then mixed with 500 μL of P. galatheae culture with 390 

OD600 between 0.4 and 0.5. The donor-recipient cell suspension was 391 

concentrated by centrifugation (6000 g for 1 min), resuspended with 20 μL APY 392 

medium with 300 μM DAP, mixed briefly by pipetting three times. All mixture 393 

was spotted onto a 0.22 μm pore size mixed cellulose esters (MCE) membrane 394 

(MF-Millipore-GSWP02500, Merck, Germany) placed on a MA 2216 plate with 395 

300 μM DAP. The plate was incubated for 3-4 h at 37 °C or for 3-15 h at 25 °C. The 396 

conjugations were suspended in 1 mL of APY medium and incubated for 20 min 397 

at 25 °C. Each of 100 μL conjugations was plated onto antibiotics-containing APY 398 

plates. The plates were incubated at 25 °C for 16-24 hours. Following conjugation, 399 

single colonies were grown in 2 ml APY medium supplied with chloramphenicol 400 

at 25 °C with shaking overnight. Resulting antibiotics resistant strains were 401 

screened by PCR to determine the transconjugants.  402 

Confirmation of the transconjugants and first cross event.  403 

Genomic DNA for PCR analyses was isolated using a NucleoSpin® Tissue Kit 404 

according to the protocol (Macherey-Nagel, Fisher Scientific, Denmark). PCR 405 

primers are listed in Table 5. Primer pairs Cm-Fw/Rv, Km-Fw-Rv, Pc0/Pc4, 406 

Pc1/Pc2 were designed to amplify the replication region for detecting the 407 

plasmids in donor strains and transconjugants. The PCR reaction was: 94 °C for 408 

30 sec followed by 30 cycles of 94 °C for 10 sec, 58 °C for 5sec, and 72 °C for 30 409 

sec; and 72 °C for an additional 10 min. Routine DNA manipulations were carried 410 

out following standard methods as described above.  411 
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Construction of the hlmE in-frame deletion mutants in S2753.  412 

The suicide plasmid for knocking out hlmE gene was constructed by restriction 413 

cloning and was transferred into S2753 by intergeneric conjugation described in 414 

the supplementary information. The PCR verified mutants, in which the suicide 415 

plasmid had integrated into the anticipated place in the S2753 genome, were 416 

grown at 25 °C in APY medium with shaking to an OD600nm of 0.5. The cells 417 

were then diluted and spread on a half-APY medium (500 mL/L APY medium, 418 

500 mL/L distilled H2O, 15 g Agar, pH 7.0) supplied with 10% (w/v, Confinal) 419 

sucrose (autoclaved at 100°C for 1 hr or filtered) and incubated at 16 °C for 48 420 

hrs. All primers used in this study are listed in Table 3. 421 

Purification of the deletion mutants.  422 

P. galatheae S2753 swarms on agar plate when cultured below 42°C 423 

(unpublished data). Therefore, several purification steps following the second 424 

crossover event are required to get a genetically homogenous clone. Cells from 425 

the edge of a swarming colony were inoculated in 1 ml APY medium without 426 

antibiotics with shaking at 25 °C for eight hours. The cells were then diluted and 427 

transferred onto a new half-APY-10% sucrose medium plate and incubated 428 

under 16-18 °C for 48 hours. Single colonies on the new plate were transferred 429 

onto APY-agar and APY-agar containing 30μg/mL chloramphenicol plates. 430 

Colonies sensitive to chloramphenicol were collected and confirmed by PCR and 431 

DNA sequencing using the same protocol of verifying mutants with the first 432 

crossover. If the PCR result showed a mosaic genetic feature of the selected 433 

colonies, the purification step was repeated once or more. 434 
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Extraction of liquid cultures for chemical analysis.  435 

Chemical extraction was prepared as described by Giubergia et al. (52). Cultures 436 

were incubated at 25°C for 48 hours with shaking and then transferred to 50 mL 437 

falcon tubes. An equal volume of ethyl acetate was added into the culture and 438 

mixed by inversion. The mixture was incubated for 10 minutes with occasional 439 

inversion until a clear division of layers was present. The organic phase (top 440 

layer) was transferred to a glass tube. These tubes were placed in a 35°C heating 441 

block and evaporated with nitrogen for until dry. Extracts were resuspended in 442 

methanol (1/20 volume of the initial culture) and stored at -20°C. 443 

UHPLC-HRMS profiling of holomycin from the wild type and mutant strains.  444 

Chemical analysis was performed as described by Giubergia et al. (52). Ultra 445 

high-performance liquid chromatography–high-resolution mass spectrometry 446 

(UHPLC-HRMS) was performed on an Agilent Infinity 1290 UHPLC system 447 

(Agilent Technologies, Santa Clara, CA) equipped with a diode array detector. The 448 

separation was obtained on an Agilent Poroshell 120 phenyl-hexyl column (2.1 449 

by 150 mm; particle size, 1.9 μm) with a linear gradient consisting of water and 450 

acetonitrile, both buffered with 20 mM formic acid, starting at 10% acetonitrile 451 

and increasing to 100% in 10 min, at which point the concentration was held for 452 

2 min, returned to 10% acetonitrile in 0.1 min and left for 3 min (0.35 ml/min, 453 

60 °C). An injection volume of 1 μl was used. MS detection was performed in the 454 

positive detection mode on an Agilent 6545 quadrupole time of flight (QTOF) MS 455 

equipped with an Agilent dual-jet-stream electrospray ion source with a drying 456 

gas temperature of 250 °C, a gas flow of 8 liters/min, a sheath gas temperature of 457 

300°C, and a flow rate of 12 liters/min. The capillary voltage was set to 4000 V 458 
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and nozzle voltage to 500 V. Mass spectra were recorded at 10, 20, and 40 eV as 459 

centroid data for m/z 75 to 1700 in MS mode and m/z 30 to 1700 in MS/MS 460 

mode, with an acquisition rate of 10 spectra/s. Lock mass solution in 70:30 461 

methanol-water was infused into the second sprayer using an extra LC pump at a 462 

flow rate of 15 μl/min and a 1:100 splitter. The solution contained 1 μM 463 

tributylamine (Sigma-Aldrich) and 10 μM hexakis (2,2,3,3-tetrafluoropropoxy) 464 

phosphazene (Apollo Scientific Ltd., Cheshire, United Kingdom) as lock masses. 465 

The [M + H]+ ions (m/z 186.2216 and 922.0098, respectively) of both 466 

compounds were used. The secondary metabolite profile was analyzed in Agilent 467 

Qualitative Analysis B.07.00. Five series of calibration solutions of pure 468 

holomycin (H458490, Toronto Research Chemicals, Canada) was used to create 469 

the HPLC standard calibration curve of holomycin. Peak area of holomycin in the 470 

biofilm samples and zinc cultures was recorded and used to calculate the 471 

holomycin concentration in cultures.  472 

Well-diffusion inhibition assay.  473 

This experiment was performed with a modified protocol from Wietz et al. (24). 474 

Vibrio anguillarum 90-11-287 and Staphylococcus aureus 8325 were cultured at 475 

25 °C for 24 h in MB and LB media, respectively. To test the susceptibility of the 476 

two pathogenic strains toward the extracts from P. galatheae S2753 cultures, the 477 

strains were homogeneously added into warm (44.5 °C) IO agar (3% Instant 478 

ocean, 0.3% Bacto casamino acids (BD-223050, Denmark) supplemented with 479 

0.4% glucose, 1% Agar) (for V. anguillarum) or IO agar with 1% peptone (for 480 

Staphylococcus aureus 8325). The plates were solidified and dried in a flow bench. 481 

Wells with 6 mm diameter were punched with home-made tips and 45 μL of 482 
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culture extract was added to each well. The agar plates containing the V. 483 

anguillarum 90-11-287 and S. aureus 8325 cultures were incubated at 25 and 484 

37 °C for 48 and 24 h, respectively. The inhibition assay was then evaluated by 485 

analyzing the formation of clearing zones around the well. 486 

Growth experiments.  487 

Precultures of P. galatheae WT and mutant were prepared by inoculating a single 488 

colony into the proper liquid medium. After 24 hours of incubation at 25 °C, the 489 

preculture was diluted to OD600nm of 0.01 in 30 mL medium in a 250 mL flask 490 

and incubated at 25°C with 160 rpm shaking. The value of OD600nm was 491 

measured in a 1-mL cuvette every 0.5 to 6 h for 72 h using a Novaspec III 492 

Spectrophotometer (Amersham Biosciences) and plotted using Origin, version 493 

2019 (OriginLab Corporation, Northampton, MA, USA). After the final OD600 494 

measurement, culture diluted to 10-6 and 10-7 was plated on marine agar and 495 

incubated overnight for colony counting 496 

Biofilm formation.  497 

A modified protocol based on the work of (62–64) was used. Precultures were 498 

diluted to OD600nm of 0.01 in 1 mL MB. Border wells were filled with 100 μL 499 

MilliQ water to prevent desiccation. The 96-well microtiter plate was incubated 500 

in a humidity chamber with a wet paper towel in the bottom for 48 hrs at 25°C. 501 

In the complementation experiments, growth kinetics were tracked and 502 

holomycin or S,S-dimethyl-holomycin synthesized by method in Yannick et al (65) 503 

were added to the cultures at the exponential-stationary transition phase (17 h). 504 

In the biofilm assay of selected Galatheae Collection strains, holomycin were 505 

 on A
pril 12, 2021 at T

E
C

H
 K

N
O

W
LE

D
G

E
 C

T
R

 O
F

 D
E

N
M

A
R

K
http://aem

.asm
.org/

D
ow

nloaded from
 

http://aem.asm.org/


23 
 

added to cultures in a two-fold dilution from 93 uM to 1.5 uM, either at the initial 506 

inoculation time or after 17-hour incubation. After incubation, OD600nm was 507 

measured in a SpectraMax® i3 (Molecular Devices). Culture media and 508 

non-adhering bacteria were removed and the wells were washed with 150 μL 509 

MilliQ water and dried for 15 minutes in a flow bench. Each well was added 125 510 

μL of 1% crystal violet and staining proceeded for 15 minutes. After removing 511 

the crystal violet, wells were washed three times with 200 μL MilliQ water and 512 

dried for another 15 min. An amount of 200 μL 96% ethanol was added to each 513 

well and incubated for 30 minutes to dissolve the staining color. Thereafter, 100 514 

μL of the ethanol-crystal violet mixture in each well was transferred to a new 515 

microtiter plate. The crystal violet intensity was measured at OD590nm in a 516 

SpectraMax® i3. Data were analyzed in Microsoft Excel. One way ANOVA test and 517 

the statistical plot graphs were analyzed in Origin, version 2019 (OriginLab 518 

Corporation, Northampton, MA, USA).  519 

 520 

Acknowledgements 521 

The research in this study has received funding from the European Union's 522 

Horizon 2020 research and innovation programme under the Marie 523 

Sklodowska-Curie grant agreement no. 713683 (COFUNDfellowsDTU) for SDZ. 524 

Funding from the Danish National Research Foundation for the Center for 525 

Microbial Secondary Metabolites (DNRF137) is acknowledged (LG, LLL and TOL) 526 

as is funding from the Independent Research Fund Denmark (project 527 

7017-00003B) (SDZ, TI). This is Galatheae publication number Px (x added if 528 

 on A
pril 12, 2021 at T

E
C

H
 K

N
O

W
LE

D
G

E
 C

T
R

 O
F

 D
E

N
M

A
R

K
http://aem

.asm
.org/

D
ow

nloaded from
 

http://aem.asm.org/


24 
 

accepted). 529 

We thank Jan Martinussen, Mogens Kilstrup, Roberto Kolter, Yong E. Zhang and 530 

Demeng Tan for helpful discussions. We thank Haitao Chen and Tao Song for 531 

providing strain WM3064 and vector pBBR1-MCS2.  532 

  533 

 on A
pril 12, 2021 at T

E
C

H
 K

N
O

W
LE

D
G

E
 C

T
R

 O
F

 D
E

N
M

A
R

K
http://aem

.asm
.org/

D
ow

nloaded from
 

http://aem.asm.org/


25 
 

TABLE AND FIGURE LEGENDS 534 

TABLE 1 Proposed function of open reading frames (ORFs) in BGC11 of 535 

Photobacterium galatheae S2753. Identity scores between ORFs in BGC11 and those 536 

in the reported holomycin biosynthetic gene clusters were compared at the amino acid 537 

level.  538 

TABLE 2 Minimal inhibitory concentration (MIC) of holomycin against selected 539 

marine bacteria. 540 

TABLE 3 Strains used in this study. 541 

TABLE 4. Plasmids used in this study. 542 

TABLE 5 Primers used in this study. 543 

FIGURE 1. (A) Comparison of biosynthetic gene clusters of holomycin. The genes 544 

are marked with the respective numbers or letters. Genes coding for proteins with 545 

same function are highlighted in same color. Gene assigned to NRPS are marked with 546 

domains: PCP, peptidyl carrier protein; A, adenylation domain; Cy, cyclization 547 

domain. Sequentially homologous genes are linked with dot lines. (B). Diagram of the 548 

wild type hlmE gene region and a scarless in-frame deletion of hlmE gene in S2753. 549 

Left: A schematic illustration for the primers used, their annealing sites and predicted 550 

PCR products in S2753 wild type (WT) and ΔhlmE strains, respectively. Right: 551 

Diagnostic PCRs of the hlmE gene region in WT and ΔhlmE strains. (C, D). In-frame 552 

deletion of the core gene hlmE completely abolished the holomycin production of 553 

ΔhlmE strain. Base peak and extracted ion chromatograms (m/z = 214.9943) of 554 
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culture extracts are shown in grey and black, respectively. UV-VIS data at 390 ± 10 555 

nm also showing termination of holomycin production in the deletion strain. Red 556 

asterisk symbol ‘*’ indicates the peak of holomycin in the detection. (E, F). 557 

Antimicrobial activity of culture extracts against the Gram-negative bacterium Vibrio 558 

anguillarum 90-11-287 and the Gram-positive bacterium Staphylococcus aureus 8325. 559 

Crude extracts of the WT cultures and culture media (blank) were used as the positive 560 

and negative control, respectively. (G) Antimicrobial activity of culture extracts of 561 

ΔhlmE::pBBR1-MCS2-hlmE (ΔhlmE::hlmE) and ΔhlmE::pBBR1-MCS2 (ΔhlmE::NC) 562 

against the Gram-negative bacterium Vibrio anguillarum 90-11-287. Crude extracts of 563 

the WT and cultures and ΔhlmE were used as the positive and negative control, 564 

respectively. 565 

FIGURE 2. Boxplot of the biofilm produced by Photobacterium galatheae S2753 566 

wildtype (WT), ΔhlmE, ΔhlmE::pBBR1-MCS2 (ΔhlmE::NC) and 567 

ΔhlmE::pBBR1-MCS2-hlmE (ΔhlmE::hlmE) strains. Underneath each bar is the 568 

crystal violet staining of the biofilm. At least eight biological replicates were 569 

performed for each strain. Error bars represent the standard division.  570 

FIGURE 3. Biofilm formation of wild type S2753 and ΔhlmE strains in the presence 571 

of exogenously applied holomycin (1) or S,S’-dimethyl holomycin  (2). At least 572 

eight biological replicates were performed for each condition. Error bars represent the 573 

standard division. For all panels, two-way analysis of variance (ANOVA) was used 574 

for statistical analysis. ***, P < 0.001. 575 

FIGURE 4. Holomycin production (black columns) and biofilm formation (white 576 
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columns) of wild type Photobacterium galatheae S2753 in the presence of increasing 577 

zinc in the marine minimal medium with mannose. Three and nine biological 578 

replicates were performed in detecting holomycin production and biofilm formation, 579 

respectively. Error bars represent the standard division.  580 

FIGURE 5. Overview of the relative biofilm formation of selected marine bacteria by 581 

sub-inhibitory concentration of holomycin. The relative biofilm formation was 582 

calculated by divided by the OD590/OD600 value of cultures without added 583 

holomycin. Error bars represent the standard division of three biological replicates. 584 

FIGURE 6. Biofilm formation of four Galatheae collection bacteria when 585 

sub-inhibitory holomycin were added to the cultures at the initial inoculation time (0 h) 586 

or after 17-h incubation at 25 oC (17 h). Crystal violet staining were used to access the 587 

biofilm formation in the 2-day incubation cultures. Error bars represent the standard 588 

division. A. Vibrio sp. S1396. B. Vibrio sp. S1399. C. Vibrio coralliilyticus S2052. D. 589 

Photobacterium sp. S2541. Three biological replicates were performed. Error bars 590 

represent the standard division. 591 
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