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Preface 

This PhD thesis is the culmination of three years of full-time study at the 

Department of Environmental Engineering, Technical University of Denmark 

(DTU Environment) during the period October 2016 to January 2021. The 

period also included temporary leave to contribute to an EU Interreg project 

and a paternity leave. The PhD project was supervised by Professor Peter 

Steen Mikkelsen along with co-supervisors Associate Professor Luca 

Vezzaro, Krüger A/S and DTU Environment, and Professor Henrik Madsen, 

DTU Compute. The PhD project was a part of the larger Water Smart Cities 

project funded by Innovation Fund Denmark under the Grand Solution 

scheme [grant number 5157-00009B]. 

The thesis is organized in two parts: the first part is a synopsis that provides 

context and summarizes the main findings of the PhD project; the second part 

consists of three papers listed below, which have either been published, 

submitted or are in preparation for peer-reviewed scientific journals. These 

will be referred to in the text by their paper number written with the Roman 

numerals I-III. 

I Pedersen, J. W., Larsen, L. H., Thirsing, C. & Vezzaro, L. (2020). 

Reconstruction of corrupted datasets from ammonium-ISE sensors at 

WRRFs through merging with daily composite samples. Water Research, 

185, 116227. DOI: 10.1016/j.watres.2020.116227.  

 

II Pedersen, J. W., Vezzaro, L., Vedel, H., Thirsing, C., Madsen, H. & 

Mikkelsen, P. S. (2021). Comparison of high-resolution numerical 

weather predictions and radar extrapolation forecasts from an urban 

drainage perspective. Submitted.  

 

III Pedersen, J. W., Courdent, V. A. T., Vezzaro, L., Feddersen, H., Vedel, 

H., Madsen, H. & Mikkelsen, P. S. (2021). Evaluation of time-lagged 

numerical weather prediction ensembles for urban runoff forecasting with 

ROC and PR analysis. Manuscript. 

 

In this online version of the thesis, Papers I-III are not included but can be 

obtained from electronic article databases e.g. via www.orbit.dtu.dk or on 

request from DTU Environment, Technical University of Denmark, 

Miljoevej, Building 113, 2800 Kgs. Lyngby, Denmark, info@env.dtu.dk.  
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The following peer-reviewed journal articles were also prepared during the 

PhD project but were not part of the thesis: 

 

Vezzaro, L., Pedersen, J. W., Larsen, L. H., Thirsing, C., Duus, L. B. & 

Mikkelsen, P. S. (2020). Evaluating the performance of a simple 

phenomenological model for online forecasting of ammonium 

concentrations at WWTP inlets. Water Science and Technology, 81(1), pp. 

109-120. DOI: 10.2166/wst.2020.085 

Pedersen, A. N., Pedersen, J. W., Vigueras-Rodriguez, A., Brink-Kjær, A., 

Borup, M. & Mikkelsen, P. S. (2021). The Bellinge data set: Open data and 

models for community-wide urban drainage systems research. Submitted. 

 

The following conference contributions were also produced during the PhD 

study: 

Vezzaro, L., Pedersen, J. W., Courdent, V. A. T., Löwe, R., & Mikkelsen, P. 

S. (2017). Towards a domain-based framework for use of rainfall forecasts 

in control of integrated urban wastewater systems. In Proceedings of 12th 

IWA Specialized Conference on Instrumentation, Control and Automation, 

11-14 June, Québec, Canada, pp. 149-157 (Full paper). 

Courdent, V. A. T., Pedersen, J. W., Munk-Nielsen, T., & Mikkelsen, P. S. 

(2017). Using a time-lagged method to enhance Numerical Weather Pre-

diction for urban drainage applications. In 14th IWA/IAHR International 

Conference on Urban Drainage, 10-15 September, Prague, Czech Republic, 

pp. 1639-1642 (Extended abstract). 

Pedersen, J. W., Courdent, V. A. T., Vezzaro, L., Vedel, H., Madsen, H., & 

Mikkelsen, P. S. (2017). Spatial bias and uncertainty in numerical weather 

predictions for urban runoff forecasts with long time horizons. In 14th 

IWA/IAHR International Conference on Urban Drainage, 10-15 Septem-

ber, Prague, Czech Republic, pp. 168-171 (Extended abstract). 

Pedersen, J. W., Courdent, V. A. T., Vezzaro, L., Madsen, H., & Mikkelsen, 

P. S. (2017). Urban runoff forecasting with ensemble weather predictions. 

In 15th Nordic Wastewater Conference, 10-12 October, Aarhus, Denmark, 

2 pp (Abstract). 

Pedersen, J. W., Vezzaro, L., Vedel, H., Madsen, H., & Mikkelsen, P. S. 

(2018). Performance of High-Resolution Numerical Weather Predictions 

with a Rapid Updating Cycle for Urban Runoff Forecasting. In 11th Inter-
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national Conference on Urban Drainage Modelling, 23-26 September, Pa-

lermo, Italy. pp. 438-441 (Extended abstract). 

Pedersen, J. W., Vezzaro, L., Madsen, H., & Mikkelsen, P. S. (2018). En-

semble forecasts of urban runoff from a deterministic Numerical Weather 

Prediction model by use of spatial neighborhood sampling. In Rainfall 

Monitoring, Modelling and Forecasting in Urban Environment. Urban-

Rain18: 11th International Workshop on Precipitation in Urban Areas, 5-7 

December, St. Moritz, Switzerland, pp. 89-91 (Extended abstract). 

Stentoft, P. A., Vezzaro, L., Courdent, V., Pedersen, J. W., Thomsen, H. A., 

Mikkelsen, P. S., Tisserand, B. & Amiel, C. (2019). Real Time Forecasting 

of Flows and Loads to WWTPs for Enhanced Hydraulic and Biological 

Capacity during Stormwater Events. In 10th edition of the NOVATECH 

conference, 2-4 July, Lyon, France, 4 pp (Extended abstract). 

Vezzaro, L., Pedersen, J. W., Larsen, L. H., Thirsing, C., Duus, L. B., 

Breinholt, A., & Mikkelsen, P. S. (2019). Evaluating the performance of a 

simple phenomenological model for online forecasting of ammonium con-

centrations. In 9th International Conference on Sewer Processes & Net-

works, 27-30 August, Aalborg, Denmark, 13 pp (Full paper). 

Vezzaro, L., Pedersen, J. W., Larsen, L. H., & Thirsing, C. (2020). Online 

forecasting of flows and ammonia load at WWTP inlet. In 14th annual Wa-

ter Research Conference: Danish Water Forum (DWF), Copenhagen, 

Denmark, pp. 37 (Abstract). 

Pedersen, A. N., Pedersen, J. W., Borup, M., Brink-Kjær, Christensen, L. E. 

& Mikkelsen, P.S. (2021). Use of signatures for systematic diagnostic 

comparison of time series from urban drainage models and data. Accepted 

for presentation at the 15th IWA/IAHR International Conference on Urban 

Drainage, September 2021, Melbourne, Australia (Abstract, postponed due 

to the Covid-19 pandemic). 

Pedersen, J. W., Vezzaro, L., Vedel, H., Madsen, H., Mikkelsen, P. S. 

(2021): Numerical weather predictions (NWP) as a new source of infor-

mation for improving the operation of urban drainage and wastewater sys-

tem. IWA WWC&E, 9-14 May 2021 (Abstract, postponed to September 

2022 due to the Covid-19 pandemic). 
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Summary 

Urban drainage and wastewater systems are responsible for protecting the 

environment against pollution and the public against diseases and flooding. 

These systems have traditionally been engineered as static solutions but the 

current wave of digitalization means that they are transitioning into actively 

managed assets. Real-time operations aim to accurately monitor the current 

state of the system, forecast its near future behavior, and based on this control 

actuators that allow for flexible performance. These efforts are often built on 

advanced algorithms that require high-quality input data to properly function. 

Since rainfall and ammonium concentrations in wastewater are some of the 

most important variables for general system performance, this thesis deals 

with obtaining good data on these two aspects. The main research objectives 

are about how to improve in-sewer measurements of ammonium with ammo-

nium ion-selective electrodes (A-ISE), and how to use numerical weather 

prediction (NWP) for forecasting rainfall and flow in sewers. 

Wastewater from households contain ammonium, which can have serious det-

rimental environmental effects if discharged into surface waters. It is there-

fore important that water resource recovery facilities (WRRFs) can accurately 

monitor, forecast, and ultimately remove it from the wastewater they receive. 

A-ISE technology has the advantage of measuring directly in the wastewater 

stream while being cheap to purchase and operate. However, it is also gener-

ally regarded as an unreliable data source prone to several types of errors. A 

one-year measurement campaign at a WRRF highlighted that the currently 

recommend approach to A-ISE sensor recalibration based on grab samples is 

inadequate. The result was a raw signal with erratic jumps and effects of 

drifting. A methodology to correct the errors in the signal was therefore de-

veloped based on integrating information from the A-ISE sensors and 24-h 

volume-proportional composite samples. The composite samples are availa-

ble at many WRRFs and the methodology can thus be used without additional 

operational costs. The corrected signal provided a much more reliable esti-

mate of ammonium concentrations, and could be used to estimate software 

sensors with more precise predictions. While there are still improvements to 

be made within use of A-ISE for monitoring ammonium in wastewater and to 

the developed methodology, the thesis has made major progress towards a 

measurement setup that can deliver reliable A-ISE data to wastewater manag-

ers. 
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NWP predicts rainfall through large-scale simulations of atmospheric physics 

and is the main alternative to radar extrapolation forecasts, which are more 

commonly used for urban drainage applications. However, the collective ex-

periences with NWP for urban drainage purposes are still rather few. The the-

sis therefore reviewed these experiences and extracted key lessons for how to 

use it well, and further investigated use cases for two different NWP prod-

ucts. Previous research into NWP use for urban drainage issues was grouped 

into four main topics: (1) generic rain and flow forecasting, (2) urban pluvial 

flood forecasting, (3) real-time control, and (4) post-processing. Based on 

this, advice were given on how to make sure that the scope and resolutions of 

a chosen NWP product, hydrological model, and decision algorithm are fit for 

the purpose they are intended to fulfil. 

In general, it is an issue that many published studies have been built on small 

samples of a few rain events, which often leads to inconclusive results. This 

thesis investigated NWP performance with a large forecast archive of more 

than 100 rain events, which quantified how forecast performance was de-

pendent on the type of weather event. Dynamic events with a high degree of 

evolution over time and events that consisted of small and scattered rain cells 

were difficult to predict. The NWP product could successfully be used to 

control a wet weather switch at a WRRF, which led to improved performance 

compared to a reactive control setup based on real-time rain gauge measure-

ments. 

An intuitive and easy-to-implement post-processing method based on time-

lagging was used to enhance a NWP ensemble product. The method was able 

to use information on forecast consistency from consecutive forecasts, and 

was used to make sewer flow predictions. Time-lagged forecasts were able to 

compete with a more well-known post-processing method based on spatial 

neighborhoods. 

NWP is becoming available as an open data source in many countries, and 

improvements in data resolutions and assimilation techniques are making it 

increasingly attractive for urban water purposes. With the review of how 

NWP has been used in the past and the strides made towards using these data 

for predictions and decision-making, the thesis aims to increase the uptake of 

NWP for real-time operations in urban drainage and wastewater systems. 
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Dansk sammenfatning 

Afløbs- og spildevandssystemer er ansvarlige for at beskytte miljøet mod for-

urening og befolkningen mod sygdomme samt oversvømmelser. Systemerne 

har traditionelt været konstrueret som statiske løsninger, men den igangvæ-

rende bølge af digitalisering i samfundet betyder, at systemerne er ved at ud-

vikle sig til at blive dynamiske aktiver. God realtidshåndtering af systemerne 

består af at kunne overvåge deres nuværende status, forudsige hvordan de 

opfører sig i den nærmeste fremtid og baseret på dette styre aktuatorer, der 

muliggør fleksibel ydeevne. Alt dette er ofte baseret på avancerede algorit-

mer, der kræver data af høj kvalitet for at fungere ordentligt. Da regnmæng-

der og ammoniumskoncentrationer i spildevand er nogle af de vigtigste vari-

abler at have styr på, vil denne afhandling handle om at skaffe gode data om 

disse to aspekter. Afhandlingens centrale forskningsspørgsmål omhandler, 

hvordan man kan forbedre målinger af ammonium med ion-selektive elektro-

der (A-ISE), og hvordan man kan bruge numeriske vejrprognoser (NVP) til at 

forudsige regn og vandmængder i kloakker. 

Spildevand fra husholdninger indeholder ammonium, som kan medføre seriø-

se negative påvirkninger, hvis det udledes til vandmiljøet. Det er derfor vig-

tigt, at spildevandsrenseanlæg præcist kan overvåge, forudsige og i sidste en-

de fjerne ammonium fra det spildevand, de modtager. A-ISE sensorer har den 

fordel, at de kan nedsættes direkte i det rå spildevand, samtidigt med at de er 

billige at købe og anvende. Teknologien anses dog generelt også for at være 

upålidelig datakilde, som lider under flere forskellige typer af fejl. En måle-

kampagne på et års længde viste, at den nuværende anbefalede måde at gen-

kalibrere A-ISE sensorer på, som er baseret på håndholdte prøver, er util-

strækkelig. Resultatet af målekampagnen var rådata, der både drev og inde-

holdte uregelmæssige hop. I afhandlingen er der derfor udviklet en metode, 

som kan korrigere for disse fejl ved at integrere målinger fra A-ISE sensorer-

ne og volumen-proportionale døgnprøver. Metoden kan implementeres uden 

yderligere omkostninger, da døgnprøverne allerede udtages på mange rense-

anlæg. De korrigerede data gav et meget bedre estimat af ammoniumskoncen-

trationerne og kunne bruges til at forbedre præcisionen af en software-sensor. 

Selvom både den udviklede metode og de generelle vejledninger til brug af 

A-ISE teknologi stadigt kan forbedres, så har afhandlingen gjort store frem-

skridt i forhold til at udvikle et målesystem, som kan forsyne brugere med 

pålidelige A-ISE data til spildevandshåndtering. 
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NVP forudsiger regn gennem simuleringer af atmosfærefysik på stor skala, 

og de er det primære alternativ til radar-baserede ekstrapolationsprognoser, 

som er bredere anvendt i afløbsbranchen. Branchens erfaring med NVP er 

stadig lille og spredt. Afhandlingen forsøger derfor at skabe et samlet over-

blik over disse samt at destillere nogle vigtige læringspunkter for god brug af 

denne datatype. Den nuværende forskning i NVP for afløbsorienterede formål 

kan opdeles i fire emner: (1) generiske forudsigelser af regn og flow, (2) for-

udsigelser af regnbetingede oversvømmelser i byer, (3) realtidsstyring og (4) 

post-processering. Derudover har forskningen i denne afhandling også yderli-

gere undersøgt to forskellige formål for brug af NVP data. Baseret på dette 

udstikkes der retningslinjer for, hvordan man kombinerer NVP dataprodukter, 

hydrologiske modeller og beslutningsalgoritmer på en hensigtsmæssig måde. 

Det er et generelt problem, at meget udgivet forskning er baseret på små ana-

lyser med en håndfuld regnhændelser, hvilket ofte leder til vage og ufuld-

stændige konklusioner. For at modvirke dette er resultaterne i denne afhand-

ling baseret på store arkiver af historiske prognoser med mere end 100 reng-

hændelser. Dette har bl.a. muliggjort en kvantificering af, hvordan forskellige 

vejrtyper påvirker prognosernes nøjagtighed. Dynamiske hændelser, der ud-

vikler sig meget over tid, samt hændelser bestående af små og spredte byger 

var sværest at forudsige. Afhandlingen har også vist, at et NVP produkt suc-

cesfuldt kan anvendes til at styre, hvornår et renseanlæg skal skifte mellem 

tør- og regnvejrsoptimeret styring. 

En intuitiv metode til post-processering af NVP ensembledata, der er nem at 

implementere, er også blevet vurderet i afhandlingen. Metoden kunne udnytte 

information, om hvor konsistente efterfølgende prognoser er, og blev brugt til 

at forudsige afstrømning af vand i kloakker. Denne ”time-lag”-metode viste 

sig at være konkurrencedygtig sammenlignet med en mere velkendt post-

processeringsalgoritme baseret på rumlige naboområder. 

NVP er på vej til at blive en åben og gratis datakilde i mange lande, og ved-

varende forbedringer i dataopløsning og dataassimileringsmetoder gør dem 

mere og mere attraktive for vandbranchen. Med det givne overblik over tidli-

gere brug af NVP, de udstukne retningslinjer samt de præsenterede dataana-

lyser sigter afhandlingen mod at øge brugen af NVP for realtidshåndtering af 

både afløbs- og spildevandssystemer. 
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1 Introduction and background 

1.1 Traditional urban drainage and wastewater 

systems 
Urban drainage and wastewater systems are responsible for safely managing 

the stormwater runoff caused by rainfall over cities and the wastewater pro-

duced by households and industries. These functions are so important for so-

ciety that they have been named one of the greatest medical advances in hu-

man history together with clean water supply (Ferriman, 2007). Drainage sys-

tems are generally split into two types of systems: combined sewers where 

storm- and wastewater are conveyed in the same pipes, and separate sewers 

where the two never mix. Many cities are dominated by centralized drainage 

and wastewater solutions, where the combined water and the wastewater 

component of separate systems are transported to a water resources recovery 

facility (WRRF). Here, the water is safely treated before it is discharged into 

a recipient water body. 

Installation of centralized systems require massive infrastructure investments, 

and they are thus typically planned to have lifespans of many decades or even 

a century. The infrastructure present in many cities today is therefore old and 

have to deal with growing pressures that were not accounted for by their de-

signers (Neumann et al., 2015). Some of the most pertinent ones are large-

scale urbanization, changing rainfall patterns due to climate change, and 

more stringent regulations on operational costs and environmental impacts. 

 

1.2 The digital revolution is here 
At the same time, the ongoing revolution in information and communications 

technology in society at large is disrupting how the water sector functions. A 

plethora of new concepts and their relevance for the water sector have 

emerged in recent years such as digitalization, Smart Cities (Albino et al., 

2015), Water 4.0 (Sedlak, 2014), Internet of Things (Atzori et al., 2010), arti-

ficial intelligence and big data (Garrido-Baserba et al., 2020). All of these 

concepts point towards the same key trends:  

 Urban water systems are transforming from static installations into dy-

namic, responsive systems that react to changing needs and conditions 

in space and time (García et al., 2015; Kerkez et al., 2016).  
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 The physical systems are becoming cyber-physical with digital plat-

forms, sensor data, modeling techniques, and communications technol-

ogy playing an increasingly central role in planning and operations 

(Blumensaat et al., 2019; Eggimann et al., 2017; Kerkez et al., 2016). 

 They are expected to deal with an increasingly diverse set of societal 

needs through integration with other systems. Examples are extraction 

and recycling of valuable nutrients from wastewater, supplying cities 

with district heating, and for stormwater infrastructure to provide co-

benefits such as additional value to public health (Alves et al., 2018; 

Grant et al., 2012; van Loosdrecht and Brdjanovic, 2014). 

Digital platforms that integrate sensor data and advanced modeling tech-

niques can be used to create so-called “digital twins” of the physical systems 

(Autiosalo et al., 2019; Wright and Davidson, 2020). These will allow im-

proved system understanding especially for locations that are not directly 

monitored (Haimi et al., 2013), better performance assessment and reporting, 

as well as aid with long-term planning through simulations of potential future 

scenarios (Löwe et al., 2017; Rauch et al., 2017). For urban drainage systems, 

they may allow investigations of sewer condition analysis (Laakso et al., 

2018), groundwater infiltration (Karpf and Krebs, 2011), monitoring of com-

bined sewer overflows (Zhang et al., 2018), etc. For WRRFs, they may assist 

in analysis and modeling of wastewater inflow composition (Martin and 

Vanrolleghem, 2014), assessment of energy efficiency (Panepinto et al., 

2016), plant-wide control (Solon et al., 2017), etc. 

 

1.3 Real-time operations 
Real-time operations of urban water infrastructure consist of three main com-

ponents: (1) monitoring the present state of the system, (2) forecasting future 

states, and based on these (3) taking action, e.g. through issuing warnings or 

controlling system actuators for flexible functioning. 

Real-time monitoring of urban water infrastructure is becoming increasingly 

feasible with decreases in the cost of installation and maintenance of many 

types of online sensors. These trends are leading towards so-called “ubiqui-

tous sensing” where water infrastructure will be systematically monitored in 

many locations (Blumensaat et al., 2019; Hill et al., 2014). In addition to 

physical sensors, real-time models can also produce estimates of the current 

system state, which is known in the wastewater literature as “software” or 
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“soft” sensors (Haimi et al., 2013). The current increase in data gathering is 

so strong that a recent horizon scan survey concluded that one of the key fu-

ture priorities of water managers should be avoiding the risk of drowning in 

data (Blumensaat et al., 2019). Therrien et al. (2020) have therefore outlined 

the steps that have to be conducted successfully before raw data becomes use-

ful for system comprehension, modeling, and actions: (1) proper data collec-

tion, (2) pre-processing, (3) storage, and (4) mining for patterns.  

Forecasting is often done with real-time models of which there are many dif-

ferent kinds. There are several different “spectra” that characterize real-time 

models. They range from physically-based to data-driven in terms of the 

amount of physics they incorporate, and from white-box to black-box in 

terms of how directly interpretable their internal states and computations are. 

They also range from distributed to lumped in their spatial aggregation, and 

from deterministic to stochastic in whether they include random processes. 

Common for many forecasting models are that they require predicted values 

of their inputs and continual updating of initial conditions through data as-

similation (Hutton et al., 2014; Lund et al., 2019; Pedersen et al., 2016).  

Control of the systems can be “passive” based on static rules for actuator set-

tings, or “active” through real-time control (RTC) algorithms that adapt to 

changing conditions (García et al., 2015; Lund et al., 2018). RTC algorithms 

may be based solely on real-time observations (reactive) or also on forecasts 

(predictive), they can be manually operated or automatic, and their scope can 

range from single subcomponents (local) to system-wide management (glob-

al) (Lund et al., 2018). Finally, the often-used term model predictive control 

(MPC) describes setups that use models to simulate potential future system 

trajectories and choose the optimal course of action (García et al., 2015). 

 

1.4 The importance of high-quality input data 
While many advanced forecasting and control schemes have been developed 

in the scientific literature, the transition from academic desktops to real-life 

implementation has been less successful. Lund et al. (2018) reviewed the 

MPC literature for urban drainage applications and concluded that very few 

publications contain actual case implementations. Most studies simply use 

synthetic rainfall data or “perfect forecasts” using historical observations as 

the forecasted values. Only a single study had applied actual rainfall forecasts 

to evaluate their MPC algorithm (Löwe et al., 2016). The MPC literature has 
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thus almost exclusively focused on developing control algorithms without 

considering the rainfall inputs that are going to feed them (Lund et al., 2018).  

There is large need for working on good inputs for these algorithms in the 

form of high-quality sensor data and forecasts of boundary conditions 

(Kerkez et al., 2016). Otherwise it is an open question how many of our ad-

vanced algorithms that will be robust enough to leave their perfect or synthet-

ic inputs behind and face the uncertainties and errors that characterize real 

operational inputs. 

 

1.5 Ammonium monitoring and rainfall predictions 
This thesis investigates input data that relate to two central variables in urban 

drainage and wastewater management: ammonium (NH4
+) and rainfall. NH4

+ 

is one of the main pollutants in wastewater and mostly originates from urine. 

It may promote eutrophication if it is discharged to the environment, which in 

turn can cause oxygen depletion in water bodies. At high pH values ammoni-

um turns into ammonia (NH3), which is toxic to aquatic organisms. A large 

part of the operations at modern WRRFs are dedicated to removal and reuse 

of nitrogen-containing compounds including NH4
+. Knowledge of NH4

+ con-

centrations is especially important for operating the aeration in the biological 

step of WRRFs (Åmand and Carlsson, 2012; Rieger et al., 2014). In com-

bined sewer systems, rainfall is the source of the stormwater component and 

creates major variations in the hydraulic loading. In large quantities it causes 

issues such as bypass of untreated or partly treated wastewater, combined 

sewer overflow (CSO), and even flooding. In smaller quantities, rainfall in-

creases the hydraulic load at WRRFs and lowers their treatment performance. 

Good forecasts of rainfall may e.g. be used to control in-sewer storage tanks 

to manage the hydraulic loading in space and time (Löwe et al., 2016). 

The specific types of data that are examined in this thesis are ammonium ion-

selective electrodes (A-ISE) for monitoring of NH4
+, and numerical weather 

prediction (NWP) for rainfall and flow forecasting. Each data source have 

properties that are highly useful to urban water management. NWP simulates 

the physical processes of atmospheric motion. It is therefore able to produce 

rainfall forecasts with forecast horizons that exceed those of the more com-

monly used radar-based “nowcasts”, which are made with extrapolation of 

spatial weather radar data. A-ISE sensors are relatively cheap, can be placed 

directly in the raw wastewater, and produce data at fine temporal resolution. 
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However, A-ISE sensors have a reputation for being difficult to maintain and 

producing unreliable and drifting signals, while rainfall forecasts from NWP 

are regarded as highly uncertain and of poor spatiotemporal resolution. 

 

1.6 Research objectives 
The hypothesis of this thesis is that both low-cost in-sewer sensors targeting 

ammonium and NWP can be highly useful for real-time operations at urban 

water utilities. The thesis will evaluate the current maintenance protocols of 

A-ISE sensors and aim to develop modeling techniques that increase signal 

reliability without additional costs of operation. It will also review and assess 

the limited number of published NWP applications for urban drainage pur-

poses, provide its own assessment of a promising NWP product, and investi-

gate a technique for enhancing raw NWP output. 

The thesis will specifically address the following research questions: 

1. How can we recover and reconstruct a useful signal from A-ISE sen-

sors in wastewater applications when there are serious data quality is-

sues, and is it possible to do so without additional costs of operation? 

2. Which experiences does the urban drainage community have with 

NWP, which recommendations for best practices can be distilled from 

these, and where are future developments needed? 

3. How do rainfall forecasts from NWP perform at the small spatial 

scales of urban drainage and wastewater management, and how do they 

compare with standard, well-known radar nowcasts? 

4. How can a simple post-processing method such as time-lagging en-

hance the use of NWP ensembles? 

 

1.7 Thesis outline 
The first research question is examined in Section 2 of the thesis (“Real-time 

monitoring of NH4
+ with A-ISE sensors”) and is the subject of Paper I. The 

final three questions are explored in Section 3 of the thesis (“Real-time fore-

casts of rainfall with NWP”), while Paper II specifically deals with question 

3 and Paper III investigates question 4. Section 4 (“Discussion”) provides a 

discussion of key results from the thesis, while Section 5 (“Conclusions”) 

summarize the main findings of the PhD project. Finally, Section 6 (“Future 

research”) points towards necessary and promising avenues of research. 
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2 Real-time monitoring of NH4
+ with in-

sewer sensors 

2.1 A-ISE sensor use in wastewater management 
Ammonium ion-selective electrodes (A-ISE) are one of the main options for 

continuous real-time monitoring of NH4
+ concentrations in wastewater. They 

rely on ISE technology, which measures the electrical potential of a sub-

stance and relates it to the concentration of a target ion. ISEs contain a mem-

brane that ideally only allows the specific target ion to affect the measuring 

electrode, and thus only the activity of the target ion in the otherwise com-

plex mix of substances in wastewater is measured. 

The main advantages of A-ISE sensors are that they can be installed in-situ 

(situated directly in the wastewater stream), and that they are significantly 

cheaper to purchase and operate than alternative ex-situ “analyzers” (Kaelin 

et al., 2008; Winkler et al., 2004). However, A-ISE is by many viewed as a 

less reliable technology, as several sources of uncertainty affect their meas-

urements. Their membranes are never 100% exclusive to other ions that are 

similar to the target ion, and other ions can thus interfere with the measure-

ments. Interference on NH4
+ estimates in wastewater are mainly caused by K+ 

and Na+ (Cecconi et al., 2019; Winkler et al., 2004). ISE outputs are also 

known to drift over time with the degree of drifting depending on the specific 

sensor type and its usage (e.g. Papias et al., 2018). Their in-situ nature also 

means that the sensors are at high risk of clogging.  

These issues can at least be partially mitigated through periodical cleaning of 

the sensor head, along with recalibration of the relationship between meas-

ured electrical potential and NH4
+ concentrations against reference samples. 

However, improper or even over-zealous recalibration of a sensor might sig-

nificantly deteriorate the final signal output, and using reference samples that 

do not adequately represent the current mix of wastewater can lead to poor 

recalibration outcomes (Cecconi et al., 2019).  

The choice of standard operating procedure (SOP) for how an ISE sensor is 

maintained is clearly important. The data used in Paper I came from a meas-

urement campaign conducted by the largest wastewater company in Denmark, 

which consulted with the sensor manufacturer on how to best care for it. The 

sensor was regularly cleaned with a wet cloth and recalibrated against a grab 

sample taken next to the sensor in the wastewater stream. The location of the 
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ISE sensor was close to optimal at a WRRF: behind the primary clarifier 

where many of the harsh constituents of raw wastewater have been removed 

(Winkler et al., 2004). This setup was state of the art data collection in terms 

of what can be expected from everyday use at a WRRF. The outcome was a 

yearlong time series riddled with sudden jumps due to improper sensor recal-

ibrations, data that was difficult to use, and a utility company with serious 

distrust for this type of sensor. This highlights that collection of faulty data 

happens even under some of the best practical circumstances as wastewater is 

a harsh and difficult medium to sample from. 

 

2.2 Handling faulty sensor data 
There is a rich literature on fault detection and data quality control of water 

quality sensors (Leigh et al., 2019). These range from rule-based approaches, 

control charts, and mass balance models (e.g. Rieger et al., 2010; Thomann et 

al., 2002) to more advanced multivariate statistical approaches and principle 

component analysis (e.g. Alferes et al., 2013; Haimi et al., 2016). 

One thing is detecting errors in data, another is what to do with a dataset that 

contains errors. Some often used ways of handling faulty sensor data are: 

 Discard errors: A common approach is to simply discard faulty data 

points and only use the parts of a time series where data quality is con-

sidered reasonable. This avoids potential biases and wrong conclusions 

during data analysis and modelling, and abides by the philosophy that 

garbage inputs are going to lead to garbage outputs. It does, however, 

potentially leave holes in the dataset that might require filling and is 

also potentially a waste of resources.  

 Extract features: It is possible to extract valuable features/signals from 

an otherwise unreliable dataset and make decision based on these. An 

example is Schneider et al.'s (2019) investigation of whether the detec-

tion of a trough in pH measurements, and an inflection point (where 

the second-order derivate is zero) in dissolved oxygen and nitrite con-

centrations could be used for monitoring small-scale, unstaffed treat-

ment facilities. Here, it does not matter if a signal has an erroneous 

offset or has drifted as long as specific patterns of interest, e.g. a peak 

or a trough, can be detected. 

 Estimate and replace: Gap filling techniques and so-called software 

sensors are trained to estimate what the actual value of missing or er-

roneous data points are. Such techniques can e.g. be based on interpo-
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lation, historical data of the target variable, or through estimated rela-

tionships with other measured variables (De Mulder et al., 2018; Yang 

et al., 2020). 

 Quantify error and reconstruct: Others try to quantify the size of the 

error in a given data point and subtract it to obtain an estimate of the 

actual value. An example is fitting a simple linear function to a drifting 

signal and subtracting the magnitude of the drift from erroneous raw 

A-ISE data (Papias et al., 2018). 

 

2.3 Reconstruction of corrupted A-ISE datasets 
Paper I developed a methodology that falls into the last category of how to 

handle erroneous data, and also tested whether the reconstructed data im-

proved the training of a software sensor. Here, the reliability and usefulness 

of A-ISE data were increased by merging it with information from an addi-

tional data source. Volume-proportional composite samples were used as they 

are widely available at WRRFs. In Denmark they are required by law for re-

porting on treatment performance to the national regulators. 

A-ISE data has the benefit of a continuous and high temporal resolution out-

put (Paper I used two-minute frequency), but also has the downside of low 

accuracy. Composite samples have low temporal resolution (here 24-hour 

averages) but are deemed more accurate, hence their use for regulatory re-

porting. Figure 1 shows an overview of the steps that comprise the presented 

Figure 1: The sequence of steps involved in the developed correction methodology. Please 

note that the time scales of each column is different: a couple of hours (left), a 24-hour 

period (middle), two weeks (right) (Modified from Paper I). 
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methodology for merging the two datasets. First, all manual recalibration 

jumps are removed from the dataset (left column), and then the ISE data is 

sampled in a manner that emulates how the composite sample is constructed 

for the purpose of direct comparison (middle column). Finally, the ISE data is 

adjusted to fit the composite samples on the days that they were measured. 

See Paper I for a detailed description of the procedure. 

Figure 2 shows two examples of how the composite samples have been used 

to correct the raw ISE signal. The left side shows a period with many poor 

sensor recalibration events that had led to a very erratic A-ISE signal, where-

as the corrected signal did not contain these jumps. The corrected signal had 

dry weather concentrations in the range of 45-55 mg/L, which seems more 

physically realistic than the 30-80 mg/L variations seen in the raw data. The 

right side of Figure 2 shows a month where the raw signal slowly drifted 

away from the composite samples, while this effect had been removed by the 

correction methodology. 

 

Figure 2: Example of two periods where the flow of water at the WRRF inlet is presented 

in top row. The middle row shows the raw and adjusted ISE signals, while the bottom row 

indicates sensor maintenance actions (Paper I). 

 

One way to implement a software sensor is with a model trained to provide 

real-time estimates of a target variable given another measured variable as an 

input. Paper I examined the positive impacts that the data correction method 

had on training such a software sensor. Results showed that a software sensor 

trained on the reconstructed data had sharper parameter distributions and less 

uncertainty in the estimates of NH4
+. Training the software sensor required 

eight weeks of A-ISE data to yield good median estimates, while 16 weeks of 

data were required for good predictive bounds (see Paper I for details).  
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3 Real-time forecasts of rainfall with NWP 

3.1 Rainfall observations and radar nowcasting 

3.1.1 Rainfall observations 

Measurements of rainfall are typically performed at point locations with rain 

gauges and disdrometers, or through remote sensing with weather radars and 

satellites. For urban drainage applications, the most common data sources are 

rain gauges of various types as well as X- and C-band weather radars. While 

rainfall estimates from rain gauges certainly contain uncertainties (Ciach, 

2003), they are often considered a highly reliable source of data and are often 

used as “ground truth”. Their main disadvantage is that they are point esti-

mates of rainfall, and a dense network of gauges are required to adequate 

sample rainfall events with high variability (Peleg et al., 2018; Villarini et al., 

2008). Weather radars scan the atmosphere by emitting microwave pulses and 

recording the backscattered reflectivities caused by hydrometeors such as 

rainfall. The reflectivities can be processed and converted into gridded spatial 

data. Rainfall intensities are estimated from reflectivities through empirical 

equations such as the Marshall-Palmer relation. The spatial dimension of 

weather radars is a large strength but the calculated rainfall intensities are 

highly sensitive to the raindrop size distribution. Weather radar data is there-

fore often merged with rain gauge observations for improved rainfall esti-

mates (Goudenhoofdt and Delobbe, 2009; Ochoa-Rodriguez et al., 2019). De-

tailed reviews of weather radar use for urban drainage purposes can be found 

in Einfalt et al. (2004) and Thorndahl et al. (2017). 

This thesis used rainfall observations from a rain gauge network at an urban 

catchment in Copenhagen. The rain gauge data is used for evaluating forecast 

performance in Paper II and calibrating a hydrological model in Paper III. 

Observations from Danish Meteorological Institute’s (DMI) national C-band 

radar network is used for visual classification of rain events in Paper II. 

 

3.1.2 Radar nowcasting 

A common method for generating short-term forecasts of rainfall is through 

so-called “radar nowcasting”, which rely on extrapolation of the observed 

spatial data provided by weather radars. There are many variants to how this 

is done. Generally though, consecutive radar scans are compared to each oth-

er and a vector field, which shows the trends of rainfall movement, is calcu-
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lated e.g. through cross-correlation. Observations from the most recent radar 

scan are then advected along the vector field to provide estimates of future 

rainfall. More advanced nowcasting techniques account for factors such 

growth and decay of rain cells, and quantify uncertainties through stochastic 

perturbations (Bowler et al., 2006; Pulkkinen et al., 2019). Radar nowcasts 

are generally thought to provide skillful predictions at forecast horizons of 30 

minutes to two hours ahead (Thorndahl et al., 2017). The main alternative to 

radar nowcasts when it comes to forecasting rainfall is numerical weather 

prediction (NWP), which is the main topic of this chapter. 

Paper II of this thesis uses a simple radar nowcasting product as a bench-

mark for NWP-based rainfall forecasts. The radar nowcast is produced by 

DMI based on data from the national C-band radar network (see Paper II for 

details). 

 

3.2 Numerical weather predictions 

3.2.1 What are numerical weather predictions? 

NWP are large-scale, physics-based simulations of atmospheric processes 

that attempt to predict the future state of the weather. For these simulations, 

the atmosphere is discretized into a three-dimensional grid where variables 

such as air pressure, density, temperature and winds are computed for each 

grid box through fundamental physical principles such as the laws of thermo-

dynamics and the Navier-Stokes equations (Bauer et al., 2015).  

NWP models require enormous computing power, which is reflected by na-

tional and international weather services having some of the largest super-

computer infrastructure in the world. However, NWP simulations are still 

limited by the available computing capabilities, despite the fact that comput-

ers have developed tremendously over the past decades. Various aspects of a 

NWP setup therefore trade-off against each other. Some of the most im-

portant aspects are spatial extent of the covered area, spatial resolution of 

grid boxes, size of integration time steps, forecast horizon, frequency with 

which new forecasts are made, and the number of members in ensemble pre-

diction systems (EPS). Meteorological modelers balance these trade-offs dif-

ferently depending on the purpose of a given forecasting system, which re-

sults in a range of different NWP products.  
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3.2.2 Different types of NWP 

In terms of spatial extent, this gives rise to two types of models: global NWP 

models that simulate weather conditions for the entire planet at coarse spatial 

and temporal resolutions, and local area models (LAM) that only simulate 

regional conditions but do so in high resolutions. LAMs require initial and 

boundary conditions from global NWP models, and LAMs are therefore also 

referred to as being “nested” within a global model.  

In terms of forecast horizon, various NWP models are designed to have high 

forecast skill for a targeted time window. Generally, forecasting setups are 

differentiated by the forecasting horizon as follows: 

 Nowcasting: 0 – 6 h 

 Short-range forecasting: 6 – 48 h 

 Medium-range forecasting: 2 – 15 days 

 Long-range/seasonal forecasting: > 15 days 

 

Global NWP models often run once or a few times per day at operational 

weather services (seasonal forecasts may only be run once a month), while 

LAM NWP products where new forecasts are made frequently (often down to 

once an hour) are denoted “rapid updating cycles”, “rapid refresh”, etc.  

Later in this thesis, Section 3.4 is going to review how NWP has been used in 

the urban drainage literature. To provide an idea of how some important 

properties vary between operational NWP setups, Table 1 shows a summary 

of these properties for the NWP products that have been used in the reviewed 

studies. The table shows that operational NWP setups range from global 

coarse-resolution models (70x100 km2 grid boxes, 3-hour time steps, 10-day 

horizon, once per day updating) to very high-resolution LAMs (1x1 km2 grid 

boxes, 10-minute time steps, 6-hour horizons, once per hour updating). For 

the studies that have used NWP ensembles, the number of ensemble members 

range from 10 to 26. 

Table 1: Selected properties for NWP products used in urban drainage case studies.  

Property Minimum Median Maximum 

Spatial resolution 1x1 km2 3.3x3.3 km2 70x100 km2 

Temporal resolution 10 min 1 h 3 h 

Forecast horizon 6 h 31.5 h 10 days 

Forecast frequency 1 h 6 h 24 h 

Ensemble members 10 22 26 
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3.2.3 How NWP models conceptualize the world 

The spatial and temporal resolutions of NWP models are central to how the 

physical processes of the atmosphere are conceptualized. Important physical 

processes that exist at scales smaller than a NWP model’s grid discretization 

are accounted for by conceptual equations that act as source or sink terms in 

each grid box. This conceptualization is called “parameterization” in the me-

teorological modelling community. NWP models therefore either explicitly 

simulate or parameterize different atmospheric processes depending on a 

NWP model’s resolutions. An important process such as deep convection, 

which frequently cause small-scale, high-intensity cloudburst events that 

might lead to urban pluvial flooding, exist on scales of 500 m to 10 km. 

Scales and resolutions do not just constrain what a NWP model is able to re-

solve and simulate, they also have a large influence on how observations of 

rainfall appear. The variability of measured rainfall rates within a single rain 

event can be large even at small spatial scales, and it can have a large impact 

on urban hydrological modeling (see Cristiano et al. (2017) for a review). As 

an example of small-scale variations, Peleg et al. (2018) studied how average 

measured rainfall intensities within a 1x1 km C-band weather radar grid box 

can vary at any given point on the ground. They found that an extreme event 

with a measured grid box average of 150 mm/h could be observed as any-

where between 130 and 195 mm/h at point-scale (which is what a rain gauge 

on the ground would measure).  

Figure 3 shows examples of what rainfall fields from a NWP model (3.3x3.3 

km) look like compared to observed fields from DMI’s national C-band 

weather radar network (500x500 m). These are the data products used in Pa-

per II. The top row of Figure 3 shows a stratiform rain event with the center 

of a cyclonic low-pressure system at the top of the images, as well as several 

small showers in the southern half of Denmark. The bottom row shows a 

small convective rain event with intense rainfall near Copenhagen. The ex-

amples highlight that the NWP predicts the general weather patterns well , as 

both the center of the low-pressure system the showers are present in the top 

row example, and the convective cell is predicted near Copenhagen in the 

bottom row. However, the exact location of smaller rain cells are predicted 

less well. Small cells also gets smoothed by both the coarser spatial resolu-

tion of the NWP compared to the radar observations, and the fact that a NWP 

model requires approximately five adjacent grid boxes to resolve these phe-

nomena (Golding, 2009). A small rainfall cell that in reality takes up the 
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space of single grid box will therefore appear to take up a larger spatial ex-

tent in the NWP output. 

The land-ocean discretization in the NWP model is also visible in Figure 3. 

The background map of Denmark for the radar observations is made with 

vector graphics that can show the coastline of Denmark in very high resolu-

tion (gray areas are land mass, white represent ocean). The background map 

for the NWP field is constructed from binary 0-1 values of how the weather 

model “sees” the shape of Denmark’s land mass in its roughly 3x3 km grid. It 

is in this resolution processes that describe ocean-air or land-air interactions 

(such as evapotranspiration) can be represented in NWP models. 

 

Figure 3: Example of a stratiform rainfall event with many adjacent, small showers (top 

row) and a small convective rainfall event (bottom row). The observed rainfall field for 10-

minute average precipitation intensities from C-band weather radars (left) and the forecast-

ed NWP field (right) over Denmark. The shown NWP and radar data products are the ones 

used in Paper II.  
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3.2.4 Ensemble forecasts 

Despite the large progress that has been made within the field of NWP over 

the past decades, the atmosphere remains a highly unpredictable and chaotic 

system. Even small deviations in the initial conditions of a NWP model can 

lead to large differences in the forecasted values as the forecast horizon 

grows. This highlights that a single, deterministic forecast cannot describe the 

large uncertainties related to NWP. Ensemble prediction systems (EPS) have 

therefore been developed to address this and have become the meteorological 

standard for quantifying uncertainty in NWP. An EPS is essentially built 

from multiple Monte Carlo simulations of a NWP model where the initial 

conditions and/or model components are perturbed. The schemes that obtain 

ensembles by perturbation to the model are differentiated as (Du et al., 2018): 

 “Multi-physics”: Different parameterization schemes are used for se-

lected processes within the same core NWP model. This accounts for 

uncertainty related to the choice of process conceptualization. 

 “Stochastic physics”: Stochastic perturbations are made to one or more 

components of a single NWP model. The perturbations can e.g. be 

made to parameter values, model states, and as random additive or 

multiplicative noise in specific equations. 

 “Multi-model”: Predictions from multiple different NWP models are 

collected into an ensemble. This approach accounts for both the choice 

of parameterization schemes like the multi-physics setups, and for un-

certainty related to the choice of resolutions and the numerical integra-

tion schemes (if these are different between the various models that 

comprise the multi-model ensemble). 

 

Figure 4 shows an example of an ensemble rainfall forecast over Denmark, 

which comes from a 25-member LAM EPS based on the DMI-HIRLAM-S05 

model at approximately 5x5 km2 resolution (Feddersen, 2009). This is the 

NWP product used in Paper III, and the ensemble is constructed as a mix of 

perturbations to initial conditions, multi-physics and stochastic physics. The 

figure shows a forecast issued on August 31, 2015, that predicted rainfall in-

tensities 14 hours ahead. Most ensemble members agreed that a rainfall sys-

tem would pass over western Denmark, but there were large variation in total 

rainfall depth and which regions of the country that would be most affected. 

It is important to keep in mind that ensemble forecasts are developed such 

that the various members have diverged from each other in a way that shows 

good spread within a specific time window. The NWP ensemble shown in 
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Figure 4 is designed for short-range purposes, and its members are supposed 

to diverge from each other quickly. On the other hand, members of an EPS 

from a global medium-range NWP model, which targets >2-day forecast ho-

rizons, will not necessarily have diverged from each other in an adequate 

manner at horizons shorter than two days. The ensemble spread will therefore 

likely underestimate forecast uncertainty within the first two days. 

 

Figure 4: An example of a rainfall forecast from the DMI-HIRLAM-S05 25-member en-

semble forecast for a rain event over Denmark. The snapshot shown in the figure is of pre-

dicted values 14 hours ahead given as accumulated mm over a one-hour time step. This 

data product is used in Paper III (modified from Courdent (2017)). 
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3.3 Forecast evaluation 
Paper II and III evaluate forecasts with a range of metrics that are designed 

to highlight different performance aspects. The metrics apply to either deter-

ministic point forecasts or ensemble forecasts, and some metrics are designed 

for categorical predictions. To understand the results presented in this thesis 

document, the most relevant metrics are those that pertain to categorical pre-

dictions.  

Categorical metrics in their simplest form are binary yes/no evaluations of 

whether a forecast and an observation agree at a specific time. In Paper II 

these metrics were used to evaluate if a forecast could correctly predict when 

the observed rainfall had exceeded pre-specified thresholds of interest. In 

Paper III they were used to assess two flow thresholds: a low threshold sig-

nifying that stormwater was present in a combined sewer system, and a high 

threshold signifying CSO occurrence. 

Table 2 shows a contingency table, which form the basis of many categorical 

evaluation metrics. If an observation or a forecasted value exceeds a thresh-

old then they are counted as being “positive”, and if the threshold is not ex-

ceeded they are considered “negative”. There are four possible outcomes to a 

binary prediction. A true positive (TP) where both the observation and fore-

cast exceed the threshold; a true negative (TN) where both do no exceed the 

threshold; a false positive (FP) where the forecast exceeds, but the observa-

tion does not; and a false negative (FN) where the forecast does not exceed, 

but the observation does. A contingency table is constructed by evaluating all 

issued forecasts and sorting them into one of these four outcomes. Perfor-

mance metrics can then be constructed by counting the number of forecast 

outcomes in each category. 

Table 2: A contingency table where a forecast outcome is sorted into one of four possible 

status indicators depending on whether it was a correct prediction (green fields), or a 

wrong prediction (red fields).  

 Observation Positive Observation Negative 

Forecast Positive ∑ True Positives (TP) ∑ False Positive (FP) 

Forecast Negative ∑ False Negative (FN) ∑ True Negative (TN) 
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The True Positives Rate (TPR) is a metric that describes the fraction of posi-

tive observations that were correctly predicted.  

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The False Positives Rate (FPR) describes the fraction of the negative obser-

vations that were wrongly predicted as positive. 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

The Positive Predictive Value (PPV) describes the fraction of positive fore-

casts that turned out to come true as positive observations. 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

While TPR measures how reliable a forecast is at detecting the cases of inter-

est, e.g. the percentage of CSO events that were correctly predicted up front. 

FPR and PPV are different ways of describing how prone a forecast is to 

making false alarms. Perfect TPR and PPV scores have values of one and the 

worst possible score is zero, while the opposite is true for FPR scores.  

The three scores are interesting in their own right but can also be combined 

for graphical forecast assessments of probabilistic and ensemble forecasts. 

Relative operating characteristics (ROC) diagrams are constructed by plotting 

FPR and TPR on the first and second axes, while a Precision-Recall (PR) di-

agram is made by plotting TPR and PPV on the axes (Davis and Goadrich, 

2006). An ensemble forecast will be evaluated as a curve in the two dia-

grams, which is constructed by plotting a series of points and drawing a line 

through them. The points are estimated by constructing as many contingency 

tables as there are members in the ensemble. The first contingency table is 

calculated by counting the outcomes of defining a forecast as positive if just a 

single member in the ensemble predicts a “positive” value. For the second 

table two ensemble members have to agree before a forecast is counted as 

positive, the third table requires three ensemble members to agree before it is 

positive, and so on. 

Figure 5 shows a fictive example of how the performance of two competing 

forecast systems, F1 and F2, appear differently in the two diagrams. Good 

performance means that the ROC curve is pushed into the top left corner, 

while good performance means a PR curve pushed into the top right corner.  
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ROC analysis is commonly used in hydrometeorological assessments, but PR 

analysis is not. Paper III argues that this is a mistake as PR diagrams are 

more relevant for imbalanced datasets, which is often the case in urban drain-

age oriented performance evaluation. Here, an imbalanced dataset is under-

stood as a dataset with few positive and many negative observations, which is 

the case for rare events such as flooding and CSO. 

 

 

Figure 5: Illustration of ROC (left) and PR (right) diagrams. A perfect curve is pushed into 

the top left corner of the ROC diagram and the top right corner of the PR diagram. The 

curves correspond to two fictive forecast systems (F1 and F2) and show how their perfor-

mance appear differently between the two diagrams. The dotted line depicts how a random 

prediction would perform (modified from Paper III). 

 

3.4 NWP applications in urban drainage 

management 
While rainfall forecasting based on NWP as a technology has been around for 

decades, the use of it for urban drainage and wastewater purposes is rather 

new. The first publications in the scientific literature started showing up in 

the early 2010’s, and the collective literature on the subject is still sparse. 

This thesis has reviewed all ISI journal publications that employ NWP as an 

input for an urban drainage purpose, be it forecasting of in-sewer variables 

such as flow and water level, control of important actuators, warnings of ur-



20 

ban flood inundation, etc. The total literature amounts to 20 publications, 

which can be categorized into four main topics:  

1. Generic rain and flow forecasting 

2. Urban pluvial flood forecasting 

3. Real-time control 

4. Post-processing  

A summary of the state of the art is given below for each category as well as 

an explanation of how the results of Paper II and III fit into the various cat-

egories. 

 

3.4.1 Generic rain and flow forecasting 

A handful of urban drainage-related studies have investigated the use of NWP 

for predicting various variables in sewer systems, such as flows and water 

levels, and compared it against radar nowcasts as benchmarks. The scope and 

results of these are reviewed in this section. 

Most of the published literature actually test forecast products that merge ra-

dar nowcasts with NWP, rather than evaluating the usefulness of NWP by 

itself. The first publications in the literature were two connected studies that 

examined the same forecast product where the STEPS algorithm (Bowler et 

al., 2006) was used to merge a deterministic NWP with a radar nowcast 

(Liguori et al., 2012; Schellart et al., 2014). The merged product was used to 

force a detailed hydrodynamic model for generating flow predictions in a 

small urban catchment. Liguori et al. (2012) found it difficult to produce flow 

predictions of high quality in general, while Schellart et al. (2014) concluded 

that the inclusion of the NWP improved the predictions for lead times longer 

than 1 hour and 45 minutes compared to the raw radar nowcast. In general, 

the NWP showed poor forecast accuracy at the small urban scales (Liguori et 

al., 2012), and the authors conclude that outputs with higher spatial resolution 

would be needed to forecast phenomena such as CSO and pluvial flooding 

(Schellart et al., 2014). Both studies struggle with obtaining strong conclu-

sions as they relied on examining just three and five events, respectively. An-

other study also tested a product with merged radar nowcasts and NWP, 

where the forecasts consisted of radar nowcasts for the first 0-2 hours, a mix 

of radar and NWP for 2-4, and only NWP beyond 4 hours (Jasper-Tönnies et 

al., 2018). This was done after first seeing that the radar-only ensembles per-
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formed best for the first two hours of forecast horizon, while an NWP ensem-

ble product were better beyond two hours for convective rainfall events. This 

merged ensemble product clearly outperformed the TPR scores of a reference 

consisting of a deterministic NWP. Yoon (2019) tested another technique for 

merging five different rainfall forecasts, three radar nowcasts and two high-

resolution NWPs, into a single rainfall field over Seoul. The products were 

combined in a multiple linear regression where the weights were estimated 

based on the errors of the previous forecasts for each product. However, the 

merged product did not provide a clear improvement over the best individual 

forecasts for neither rainfall estimates nor sewer water levels after having 

been routed through a hydrodynamic model. The conclusiveness was also 

here hampered by an evaluation based on mere three rainfall events.  

Urban runoff forecasts driven by pure NWP outputs have also been used for 

predicting rainfall depths at small urban scales and the inlet flow at a WRRF 

(Thorndahl et al., 2013). An evaluation of six rain events showed that radar-

based forecast mostly outperformed their NWP-based equivalents for forecast 

horizons up to two hours. They also saw that the NWP performance actually 

improved for lead times of 6-12 hours compared to shorter forecast of 1-2 

hours, which was likely because NWP models in general struggle with ob-

taining good initial conditions. Despite being a small study, their results were 

promising for WWTP inlet forecasting up to 24 hours ahead. Another study 

has shown that NWP products can have considerable skill even at small 

scales if the traditional flow forecasting problem is reframed from a question 

of predicting the exact amount of m3/s to simply distinguishing between so-

called “high” and “low” flow domains (Courdent et al., 2018). 

In the context of the studies mentioned above, Paper II addressed several of 

the highlighted gaps and shortcomings. The results of Paper II were based on 

an archive of forecasts and observations containing more than 100 rain 

events, and its findings was thus much stronger than the less conclusive stud-

ies. Rainfall forecasts from a deterministic NWP were benchmarked against a 

standard radar nowcasting methodology. The examined NWP product is also 

of special interest to the urban drainage community as it assimilates radar 

observations during a warm-up phase for improved initial conditions, thus 

mitigating some of the issues related to very short-horizon predictions that 

e.g. Thorndahl et al. (2013) observed. 

The forecasts were evaluated against ground observations from rain gauges at 

an urban catchment in Copenhagen, Denmark. This showed that both NWP 
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and radar nowcasts had poor correlations with observed 10-minute rainfall 

intensities, and suggests that even state of the art rainfall forecasts are diffi-

cult to use directly at the scale of small urban catchments. The poor to medi-

ocre performance from using NWP as direct input to hydrodynamic models 

(Liguori et al., 2012; Schellart et al., 2014; Yoon, 2019) can likely be ex-

plained by this. 

Paper II also followed up on Courdent et al.’s (2018) finding that NWP can 

provide valuable skill in terms of discriminating between discrete flow do-

mains (e.g. high vs low) rather than exact rainfall intensities. The local water 

utility companies in Copenhagen were asked to help delineate the rainfall 

domains that are most relevant for their operations, which resulted in four 

categories: (1) insignificant amounts of rain, (2) small rain events that likely 

do not cause issues, (3) medium-sized events that lead to bypass of 

wastewater at the WRRF, and (4) large events that can lead to CSO and sur-

face flooding. Both NWP and radar nowcasts generally were good at predict-

ing the cases without any rainfall, suggesting that they are well suited for de-

termining if rainfall is going to occur or not.  

Some of the studies mentioned above speculate about how the type of weath-

er phenomenon that a rain event is a part of affects the predictive perfor-

mance of NWP and radar nowcasts (Liguori et al., 2012; Thorndahl et al., 

2013). Paper II’s large forecast archive allowed for a quantitative analysis of 

this based on a visual classification of 116 rain events in terms of four prop-

erties: 

1. Evolution: How dynamically an event develops over time. Convective 

thunderstorms that arise and disappear quickly exemplifies high evolu-

tion. 

2. Spread: The degree to which an event consists of small and scattered 

rain cells. In Denmark, small westerly showers are a common example 

of high spread, while a large, uniform frontal system has low spread. 

3. Rotation: The amount of rotation in the incoming weather system. An 

example of high rotation are when the center of a low-pressure system 

moves directly across the case area. 

4. Speed: The horizontal speed of the rain event. Large-scale frontal sys-

tems often do not move at very high speed, while smaller cells can be 

both fast-paced and slow dependent on the general weather conditions. 
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The results showed that a high degree of evolution and spread in a rain event 

had a negative impact on predictive performance of both NWP and radar 

nowcast (see Figure 6). Especially the radar nowcasts were severely impacted 

by this, as their simple advective extrapolation approach could not simulate 

these phenomena. The NWP with its simulation of atmospheric physics was 

better suited for these types of events. Rotation and speed of the weather sys-

tems did not have a clear effect on forecast performance. In general, the NWP 

was able to retain much of its skill throughout the 10-hour forecast horizon, 

while the performance of radar nowcasts rapidly declined as the horizon in-

creased. The fact that the NWP can retain its performance for longer horizons 

makes it attractive for urban drainage problems that require long lead times 

such as control of storage volumes in sewer systems. 

 

Figure 6: Average forecast performance over 116 events in terms of True Positives Rate 

(top row) and Positive Predictive Value (bottom row) for a rainfall threshold of 0 mm/h. 

Performance is shown as a function of the forecast horizon (x-axis) for two selected prop-

erties of the observed rainfall event (columns) based on a low-medium-high definition for 

each property (colors) (Modified from Paper II). 
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3.4.2 Urban pluvial flood forecasting 

There are two examples of published NWP-based pluvial flood forecasting 

systems in full operation, and they have taken different approaches on how to 

use information from NWP. Brendel et al. (2020) created a forecast setup that 

simply uses NWP rainfall fields directly as input to a hydrodynamic SWMM 

model. They tested their system on two events: a non-flood inducing event, 

which was correctly predicted as non-problematic, and a flood event, which 

the forecasts partially captured but which the local authorities likely would 

not have deemed severe enough to issue an official, public warning. René et 

al. (2018) attempted to use rainfall outputs from a global, deterministic NWP 

model with coarse spatial resolutions of 50x50 km2 for a small urban case 

study (area of 0.45 km2). They did not use the forecasted rainfall directly. 

Instead, their flood forecasts were based on 2D overland flow simulations 

using historical rainfall observations from previous floods as input. The 

measurement series from the historical events were scaled so their total rain-

fall depth equaled the depth of the incoming rain event predicted by the NWP 

model. René et al. (2018) tested their system on three flood events where it 

correctly issued warnings 12 hours ahead. However, some of their results 

suggested that false alarms might be an issue for their system, but it is hard to 

judge whether this is true without operational tests over a longer time period.  

In lack of observational data, Yoon (2019) and Thorndahl et al. (2016) per-

formed simulation studies where rainfall observations were used to force de-

tailed 1D-2D flood models for one and two extreme rainfall events, respec-

tively. The outputs of the flood simulations were used as pseudo-

observations, which flood forecasts could be compared to. Rainfall forecasts 

from a deterministic NWP (Thorndahl et al., 2016) and a merged radar now-

cast-NWP product (Yoon, 2019) were then used as inputs to the flood mod-

els. For Thorndahl et al. (2016) the results were significant underestimation 

of both rainfall intensities and flood extent, which the authors blame on the 

coarse spatiotemporal resolutions of the forecasts. The merged product also 

led to underestimation of flood extent, but less so than the raw NWP (Yoon, 

2019). Other studies have tested NWP ensemble products with spatial resolu-

tions less than 3 km, and thus in the higher-resolution end of the collective 

literature, as input to flood models (Jasper-Tönnies et al., 2018; Olsson et al., 

2017). Jasper-Tönnies et al. (2018) found that the use of a NWP ensemble 

improved the number of correct flood warnings compared to a deterministic 

NWP over a three months period. However, direct use of a NWP ensemble in 
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a conceptual hydrological model was not able to trigger a warning for a se-

vere flood event in Malmö, Sweden (Olsson et al., 2017). 

As explained above several studies have obtained poor to mediocre results 

through direct use of NWP in floods models, i.e. using the predicted rainfall 

intensities at the exact location of the catchment as input to the models 

(Brendel et al., 2020; Olsson et al., 2017; Thorndahl et al., 2016). This is not 

necessarily because the NWP products were unable to predict that intense 

rainfall was imminent, but due to the spatial uncertainty of the exact location 

of where the rain cells are going to hit. By including forecasted rainfall val-

ues from the immediate surroundings of their catchments, some authors have 

found small improvements to their otherwise failing forecasts (Thorndahl et 

al., 2016), while others obtained greater benefits (Jasper-Tönnies et al., 2018; 

Olsson et al., 2017). Olsson et al. (2017) even went so far as to make the spa-

tial uncertainty a key component in their proposed decision framework, as 

they saw that several of their NWP ensemble members were able to predict 

intense rainfall but misplaced it in different directions. Consequently, they 

developed a visualization tool for improved flood risk assessment in a three-

dimensional plot by showing median, minimum and maximum predicted ac-

cumulated rainfall depths as a function of distance from the urban catchment 

and the forecast horizon. 

Yang et al. (2016) produced urban flood inundation warnings without a flood 

model by simply forecasting whether total rainfall depth would exceed prede-

fined critical thresholds. Their system was tested on seven events, which 

showed that using the NWP forecasts for triggering warnings resulted in me-

diocre performance.  

 

3.4.3 Real-time control 

One of the main prospects of using NWP for urban hydrology purposes is for 

predictive RTC of drainage and wastewater systems. Despite this, the litera-

ture contains few case studies with RTC based on NWP and their results have 

been mixed.  

Gaborit et al. (2013) investigated various RTC setups for the outlet gate of a 

stormwater pond receiving water from a small urban catchment. The aim of 

the study was to navigate a trade-off between increased settling of particulate 

matter in the pond while simultaneously avoiding overflows that could cause 

downstream flooding. The NWP was here used to predict if incoming rainfall 



26 

would exceed the available capacity in the pond and if so, the excess volume 

would preemptively be discharged from the pond. However, the study 

showed little to no gain by using NWP compared to the reactive measure-

ment-based setup. They suggest that their lack of good results were due to a 

poor choice of case study, and a follow-up study by the same authors there-

fore artificially modified the case to better investigate the effects of NWP-

based control (Gaborit et al., 2016). They tested three different NWP prod-

ucts, but this study also showed virtually no benefit from using any kind of 

NWP. 

Courdent et al. (2015) provided a simulated “proof-of-concept” case study 

with control of storage basins in an urban catchment based on the same LAM 

NWP EPS that is used in Paper III. The NWP product was used as an input 

to the MPC algorithm “DORA“ (Vezzaro and Grum, 2014), which is de-

signed to minimize the risk of combined sewer overflows based on the rela-

tive costs of emissions from each overflow location in a catchment. The NWP 

outputs were used to predict which of three operational modes, each with dif-

ferent MPC objectives, that would be expected in the near future. It is worth 

noting that they only simulated a single CSO event, which nonetheless 

showed that the NWP-based MPC successfully diverted CSO occurrence 

from three expensive, upstream locations to a cheaper, downstream location. 

Their analysis showed that this was achieved due to the NWP’s long forecast 

horizons, which provided lead times long enough to pre-actively empty more 

stored water.  

A couple of papers have investigated the use of NWP data for control of inte-

grated urban drainage-wastewater systems (Courdent et al., 2017; Stentoft et 

al., 2020). The main idea is that WRRFs can benefit from optimal use of the 

storage capacity in the upstream sewer systems by temporarily retaining wa-

ter in storage basins. The wastewater can then be released later when the 

WRRF is ready for it. Since WRRFs are vast consumers of electricity there 

are potential gains in energy savings for the facilities. In regions with large 

fluctuations in renewable energy production, such as the wind power-heavy 

Danish energy market, WRRFs can exploit dynamic energy prices and in-

crease a region’s demand-side flexibility (Brok et al., 2020; Stentoft et al., 

2020). It is, however, important that water stored in the sewer system does 

not limit the capacity to convey stormwater during rain events, and thus cre-

ate a risk of surface flooding or CSO. Rainfall predictions are therefore nec-

essary to ensure that any stored water can be removed before an incoming 

rain event arrives. Some energy markets rely on price prediction for the fol-
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lowing day (e.g. NordPool, www.nordpoolgroup.com), and the required rain-

fall forecast horizons are therefore in the order of 1-2 days, which is suitable 

for short-range NWP. 

Courdent et al. (2017) provide a simple methodology for determining whether 

predictive control based on NWP ensembles is suitable for a given case. The 

method uses the Relative Economic Value (REV), which depends on specify-

ing the ratio between potential benefits from energy savings in relation to the 

potential costs of negative impacts from a missed forecast, e.g. CSO and 

flooding. The framework can then be used to determine the optimal decision-

rules, such as how many ensemble members that need to agree that no rainfall 

is incoming before a switch to an energy optimization scheme is made. 

Stentoft et al. (2020) developed a MPC algorithm that optimized both elec-

tricity consumption and effluent quality of a WRRF. This was done by using 

the storage basin immediately upstream of the facility to control the inflow to 

the treatment processes. A rainfall forecast from a NWP determined whether 

the overall system control should switch between the developed MPC and a 

rule-based control during dry and wet weather, respectively. As the only real-

life case study in the literature, they showed results from a full-scale test over 

seven days. However, it seems that no rainfall occurred during their seven 

days of full-scale operation, which makes it difficult to assess how the uncer-

tainty in the rainfall forecasts will affect the performance of the algorithm 

over longer periods of time. 

Paper II expands on the limited number of examples with NWP-based pre-

dictive control in the literature. Here, a NWP product was used to control a 

wet weather switch at a WRRF in Copenhagen. The WRRF treats wastewater 

during dry weather but also receives stormwater from a combined sewer sys-

tem when it rains. The facility is able to increase its hydraulic capacity during 

wet weather through the technique of aerated tank settling, which protects 

against sludge escape from the secondary settlers by pumping some of the 

sludge into the aeration tanks (Sharma et al., 2013). The setup requires time 

to transition into a fully operational wet weather mode, which for this study 

was assumed to be around one hour. The examined NWP product was there-

fore used to trigger the switch from dry to wet weather mode if more than 1 

mm of rain was predicted within a forecast horizon of 1.5 hours. 

As shown in Figure 7, Paper II was able to show a clear benefit to using 

NWP-based rainfall forecasts compared to a reactive decision setup based 

only on rain gauge measurements (labelled “No forecast” in the figure). 
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Many more of the simulated events were in the acceptable categories of 

“good” and “early”, with the NWP-based scenario adequately predicting al-

most as many events as the “Perfect forecast”-scenario. However, the two-

year analysis also showed that the NWP produced a large amount of false 

alarm switches. Whereas several of the other NWP-studies in the urban 

drainage literature have shown that radar nowcasts outperform NWP at hori-

zons of 1-2 hours (Jasper-Tönnies et al., 2018; Thorndahl et al., 2013), Paper 

II found that a NWP product with improved initial conditions could compete 

with radar nowcasts in this kind of RTC setup (see Figure 7). 

 

Figure 7: The status of how the wet weather switch performed for all rain events within a 

two-year period at the Damhusaaen WRRF. The dashed, red line indicates the total number 

of observed events (good + early + late + miss), while the predicted false alarm events are 

on top of these (Paper II). 

 

3.4.4 Post-processing 

NWP models often exhibit some degree of bias (as also seen in Paper II). 

NWP ensembles are also often underdispersive in the sense that they underes-

timate uncertainty and too many rainfall observations fall outside of the en-

semble spread (Buizza et al., 2005), and ensembles scenario do not corre-

spond to probabilities directly. These issues have motivated the development 

of so-called “post-processing” techniques, which aim at enhancing or correct-

ing the raw NWP output. 

Within the urban drainage literature, two types of post-processing techniques 

have been applied to NWP-based rainfall forecasts before further use: (1) sta-

tistical methods which rely on estimating a statistical model for correcting the 
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forecast, and (2) in-expensive methods that expand the ensemble size to in-

clude more potential scenarios of future rainfall. 

Two related papers have investigated statistical approaches where the first 

paper developed the post-processing method, while the second tested it in an 

operational setting (René et al., 2013, 2018). The method was able to produce 

probabilistic forecasts from a single deterministic NWP output, and did so by 

estimating conditional probability distributions from a comparison of previ-

ous forecasted values with their corresponding observations from a historical 

data archive (René et al., 2013). The distribution were estimated by fitting a 

bivariate Gaussian distribution, and was tested by René et al. (2018) for plu-

vial flood forecasting as described in Section 3.2.2. They found that the post-

processing method improved TPR scores but led to a large increase in FPR. It 

is not clear that the method provided much value, as the raw and corrected 

forecasts produced almost identical warning decisions. 

No other studies in the urban drainage literature have tested statistical post-

processing methods, despite the fact that the meteorological literature con-

tains numerous approaches such as regression-based methods (Messner et al., 

2014), ensemble model outputs statistics (Scheuerer, 2014), and Bayesian 

model averaging (Raftery et al., 2005). This might be due to the issue that 

fitting statistical models requires a historical archive of forecasts and obser-

vations, which rarely has been available in the past. If any changes to an op-

erational NWP model are made that affect how it predicts rainfall, then a new 

archive of forecasts will have to be produced by re-running historical events. 

Such changes can happen frequently as weather services continually tune 

their NWP setups for improvements (Vannitsem et al., 2020). The fact that 

extreme flood-inducing precipitation rarely occurs at any given location 

makes it even more difficult to properly estimate a statistical model for such 

events. It might therefore be more feasible to employ statistical post-

processing for frequent everyday types of rainfall events where many obser-

vations and forecasts are available within relatively short time windows. This 

could for instance improve the RTC setups that rely on simple dry vs wet 

weather forecasts as mentioned in Section 3.2.3. 

The remaining urban drainage studies that have used post-processing have all 

been neighborhood methods, which attempt to address issues of spatial uncer-

tainty in the rainfall forecasts. The general approach of neighborhood meth-

ods starts by defining a large area surrounding the catchment (i.e. its “neigh-

borhood”). Precipitation that is forecasted outside of the catchment but within 
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the neighborhood area is considered as a potential rainfall scenario that might 

occur over the catchment in case there is spatial misplacement of a rain event. 

The method originated in the meteorological literature with Theis et al. 

(2005) as a way of generating an ensemble forecast from a deterministic 

NWP, while others since have used the method to create large super-

ensembles from raw NWP ensemble products (Ben Bouallègue et al., 2013; 

Schwartz et al., 2010). An additional advantage of this method is that it is 

straightforward and computationally cheap to implement, and does not re-

quire a large historical forecast archive as some of the statistical methods. 

The urban drainage literature has used the neighborhood method to expand 

the number of ensemble members and thereby also the number of scenarios 

that can trigger a decision (Courdent et al., 2017, 2018). Others have used it 

for flow and CSO predictions (Courdent et al., 2018) as well as flood warn-

ings (Jasper-Tönnies et al., 2018; Olsson et al., 2017) by evaluating whether 

high-intensity rainfall is predicted within a neighborhood. The size of the 

neighborhood is an engineering parameter to be tuned for the individual use 

case with the mentioned studies using maximum neighborhood sizes of 12.5-

50 km. 

An alternative inexpensive method is so-called lagged or time-lagged ensem-

bles, which uses previous forecasts together with the newest one in an en-

semble (Paper III). The justification for this is that the newest, most recently 

issued forecast is not necessarily better than the previous ones. This some-

times happen with NWP models due to poor initial conditions and spin-up 

effects caused by instabilities in the numerical model in the beginning of the 

forecast horizon. Like with neighborhood approaches, time-lagging is intui-

tive, originates from the meteorological community, and is computationally 

cheap and straightforward to implement. It also does not require a large fore-

cast archive for implementation. Time-lagged forecast have been used in the 

meteorological community for creating ensembles from a series of single, 

deterministic NWP runs (Mittermaier, 2007) and for developing super-

ensembles from a series of NWP ensemble runs (Ben Bouallègue et al., 

2013). 

Paper III distinguished between two ways of employing time-lagged ensem-

bles. The first approach, “consistent signal”, required multiple time-lags to 

show exceedance of a threshold before an action was made. This approach is 

visualized in Figure 8 for an observed CSO event. For this event, the consec-

utive forecasts are quite consistent in predicting that CSO will occur, which 

should provide a forecaster with reassurance of what will happen in the near 
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future. On the other hand, disagreement between consecutive NWP forecasts 

would highlight that there is large uncertainty about an incoming event 

(Pappenberger et al., 2011). The second approach, “cumulative super-

ensemble”, aggregated the ensemble members of the individual forecasts into 

a common, larger ensemble with 50 to 125 members, which gave more sce-

narios of what might happen in the future. 

 

Figure 8: Example of the information on forecast consistency that time-lagged NWP en-

sembles can provide to an end-user. Each row highlights the number of ensemble members 

that predict CSO occurrence in each of the five most recent forecasts, with the oldest fore-

cast in the top row and the newest in the bottom row. The numbers in each row indicate the 

number of ensemble members in each forecast that predict CSO occurrence at a given point 

in time. The red bar in the “Obs” row show the hours where CSO was actually observed 

(Paper III). 

 

The two methods were used to predict exceedance of two flow thresholds in a 

combined sewer catchment: 4000 m3/h signifying the difference between dry 

and wet weather, and 9500 m3/h signifying CSO occurrence. ROC and PR 

analysis showed that the cumulative super-ensemble performed best for both 

thresholds, while the consistent signal approach failed to improve on the raw, 

original ensemble. 

Time-lags and neighborhoods address different sources of uncertainty in 

NWP models. As mentioned above, time-lags account for uncertainty in ini-

tial conditions and spin-up issues, while neighborhoods address spatial uncer-

tainty. Paper III therefore compared the cumulative super-ensemble to the 

“maximum threat” neighborhood method (Courdent et al., 2018), which uses 

the highest intensities predicted within a specified neighborhood for each en-

semble member. The two methods performed similarly for the 4000 m3/h 

threshold (Figure 9a,b) but the cumulative super-ensemble covered more of 

the ROC and PR space, which means that an end-user has more points to op-

erate from. For CSO predictions (Figure 9c,d), it is seen that the two curves 

cross each other in PR space, which suggests that the best method depends on 

the end user’s risk tolerance. If detecting many events (at the cost of more 

false alarms) is preferable, then the time-lagged method is preferable to the 

neighborhood method. The opposite is true if false alarm actions are expen-
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sive, and it is acceptable to have a somewhat lower detection rate to avoid 

these. 

 

Figure 9: Comparison of the cumulative super-ensemble approach based on time-lagged 

forecasts and the maximum-threat neighborhood method. ROC (a+c) and PR (b+d) dia-

grams illustrate skill for flow thresholds of 4000 m3/h (a+b) and a 9500 m3/h (c+d)  (Paper 

III). 
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4 Discussion 

4.1 A-ISE sensors for monitoring in wastewater 

4.1.1 How to operate A-ISE sensors 

The raw A-ISE data collected for Paper I had serious flaws in terms of errat-

ic recalibration jumps and drifting values. As we considered the setup to be 

state of the art in terms of what is practically achievable, there are serious 

concerns regarding the applicability of A-ISE sensors for wastewater moni-

toring. The WRRF operators that were in charge of managing the sensor dur-

ing the study had little faith in the technology after seeing the raw data. It is 

clear that SOPs for A-ISE maintenance have to be updated as the currently 

recommended grab sample adjustments are inadequate for sensor recalibra-

tion. Cecconi et al. (2019) solved the issue with ex-situ recalibrations, i.e. 

grabbing a bucket of wastewater from the raw stream, putting the sensor in, 

waiting for it to adjust to the new medium, and taking a laboratory sample for 

comparison purposes. While this significantly improved their sensor readings, 

the operators we worked with consider the “bucket method” laborious and 

inefficient.  

Paper I tested the usefulness of an A-ISE sensor at probably the most favor-

able practical conditions: behind the primary clarifiers. It is not clear how 

useful these sensors are in less optimal locations and for setups where high-

quality reference samples for recalibration/merging are not available. Sewers 

and WRRF inlets may be too harsh an environment leading to issues with de-

bris and fat coating (Winkler et al., 2004), while WRRF effluent and recipient 

surface waters may contain too low concentrations for ideal use (Papias et al., 

2018; Winkler et al., 2004). It is also likely to be more difficult to establish 

high-quality reference samples outside of the WRRF, such as sewers and re-

cipients. 

Integrating the 24-h volume-proportional composite samples into the data 

setup solved many of the negative aspects with operating A-ISE sensors at 

the considered location. It did so without any additional operational costs as 

it exploited existing infrastructure. The new methodology thus provides a ma-

jor boost to A-ISE use in wastewater monitoring. 

 



34 

4.1.2 Uncertainties in the data 

While Paper I showed that merging the raw A-ISE data with 24-h volume-

proportional composite samples provided a much improved quality of data, 

the methodology cannot account for all types of errors. Successful implemen-

tation at a WRRF requires a certain minimum standard of the raw data. In 

Paper I, the composite samples were regarded as a reliable source of refer-

ence data, which was motivated by the fact that they are used for regulatory 

compliance assessment. However, any type of sampling will be subject to 

uncertainty arising from the specific sampling technique, equipment failure, 

and laboratory analysis (Ort et al., 2010). While some of these uncertainties 

may be accounted for in a more advanced data merging algorithm, it will be 

highly important that the samples undergo rigorous quality control since they 

have a large influence on the final signal output.  

Even though the developed methodology was able to remove some errors 

(jumps and drifting), the underlying raw A-ISE signal also have to provide 

meaningful raw estimates of NH4
+ variability over the course of a day. The 

sensor will e.g. have to be protected against debris leading to major clogging 

issues. The sensor head will also still have to be cleaned regularly, e.g. once a 

week (Cecconi et al., 2020). The merging algorithm replaced the manual sen-

sor recalibrations through what essential amounts to a so-called “one-point” 

calibration. Here, only the offset parameters in the relationship between elec-

trical potential and NH4
+ concentrations are updated. It is not clear to which 

degree the slope parameter is affected by sensor wear. Ohmura et al. (2019) 

showed that the slope parameter of ISE sensors for pH measurements did not 

change significantly over time, but it is an open question whether their results 

transfer to outside of their controlled settings and to A-ISE sensors. Field ex-

periments suggest that the sensors may need to undergo a more comprehen-

sive recalibration of both parameters about every three months (Cecconi et 

al., 2020). 

 

4.1.3 Perspectives for A-ISE use 

The reconstructed ISE data can be used for improved performance assess-

ment, legal reporting to authorities, and modeling efforts such as influent 

generation (Langeveld et al., 2017; Martin and Vanrolleghem, 2014). It is 

also well-suited for training NH4
+ software sensors and forecasting models 

(Newhart et al., 2020; Vezzaro et al., 2020). Finally, it can be used for feed-

forward control allowing e.g. aeration processes to be determined by up-
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stream NH4
+ estimates rather than delayed information from effluent concen-

trations (Kaelin et al., 2008; Stentoft et al., 2019). 

 

4.1.4 Expanding the methodology to other variables 

The idea of merging various types of sensor data products with different ap-

pealing aspects should be highly transferable to other use cases. The Danish 

wastewater regulations require that composite samples are analyzed for other 

variables than NH4
+ such as suspended solids, biological oxygen demand, 

nitrate, and phosphate. Low-cost online sensors of some of these variables 

could also be merged with the available composite samples. Nitrate would be 

a low hanging fruit since ISE sensors are available for it as well, often even 

combined with ammonium estimates in the AN-ISE sensor type.  

Data merging setups are something that water utilities could, and perhaps 

should, plan for when they design their monitoring strategies. Other fields 

already do this with an example from urban hydrology being merging of rain 

gauge and weather radar data. The presented methodology improves the reli-

ability of a low-cost sensor placed in the same location as a high-quality ref-

erence data source. However, it could also be possible to improve low-cost 

signals with reference data from another location by constructing a mathe-

matical model that can describe how the dynamics of the two locations relate 

to each other. This may be promising for sensing in distributed sewer net-

works where many low-cost sensors can provide distributed (noisy) data of 

variables such as water level, flow, and various water quality parameters. 

This could be then updated with information from a few accurate sensors in 

key locations. 

 

4.2 The future of NWP-based rainfall forecasting 

4.2.1 An open future 

In the past years, there has been a wave of opening of data products from na-

tional meteorological institutes that are now available free of charge. Many 

countries now provide free access to NWP products on multiple spatiotem-

poral scales and resolutions. These include but are not limited to the UK, 

France, the Netherlands, Germany, Sweden, Norway, Finland, USA, and 

Canada. It is also possible to obtain local observations and predictions from 

international centers such as EUMETNET and ECMWF. From 2019 onwards, 
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DMI has also started to gradually release various observations and forecast 

products covering Denmark.  

 

4.2.2 Next-generation NWP models: high-resolution, convection-

permitting, and improved DA 

Deep convection is an atmospheric process that happen at a small spatial 

scales (< 10km) and have previously been parameterized in NWP models. 

However, the new generation of NWP models, that are approaching 1 km 

spatial resolution, are better able to reproduce deep convection processes, and 

have become known as “convection-permitting” models. Clark et al. (2016) 

gives an assessment of what the new generation of convective-permitting 

models will do for the quality of NWP-based rainfall forecasting. For the near 

future, simple increases in computing power will continually improve NWP 

outputs by allowing more sophisticated and demanding DA schemes. Ensem-

ble sizes can be increased for better uncertainty quantification, and forecasts 

can have longer horizons and larger covered domains. Increasing resolutions 

will allow more and more small-scale phenomena to be properly resolved 

with deep convection being an important one. These gradual developments 

have been termed “the quiet revolution” of NWP (Bauer et al., 2015), and it 

will continue to evolve in the coming years. 

Convection is of special interest to urban hydrology as it can lead to high-

intensity rainfall events that cause pluvial floods in cities. It is therefore ex-

cellent news that these types of events will appear ever more realistically in 

new NWP models. However, fully resolving all types of convective events in 

operational forecast products does not seem possible in the near future as that 

might require grid resolutions finer than 100 m (Bryan et al., 2003; Clark et 

al., 2016). While convective events now look more realistic in the NWP out-

put, there will still be large spatial uncertainty associated with these events 

and ensemble sizes will remain too small to fully sample the range of possi-

ble outcomes. Post-processing methods such as neighborhoods and time-lags 

will therefore continue to be valuable, and will require continued application-

oriented refinement (Clark et al., 2016). 

RTC schemes for small urban catchments as well as those that do not have 

any significant storage facilities for retaining water require good rainfall pre-

dictions with short horizons. NWP products have struggled with good per-

formance on such short horizons and radar-based nowcasts have therefore 

been preferred in the past. The NWP community will need to address the 
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poor initial conditions mainly caused by lack of and insufficient assimilation 

of observations (Bauer et al., 2015). Several national weather services are 

developing various DA techniques that assimilate weather radar data into 

high-resolution NWP models (e.g. Ballard et al., 2016; Korsholm et al., 

2015). Paper II used one of these NWPs with assimilation of observed radar 

reflectivities through latent heat nudging, which is one of the more commonly 

used methods (Gustafsson et al., 2018). Ongoing research will continue to 

investigate more sophisticated methods such as 4D-Var and adapting the 

EnKF for convective-scale NWP (Sun et al., 2014). These efforts will be crit-

ical for many urban applications. 

 

4.2.3 Merging radar nowcasts and NWP 

There is a large, ongoing research effort towards integrating radar nowcasts 

and short-range NWP into one, single, “seamless” forecast. The rationale for 

this is that radar nowcasts perform well on very short horizons between 30 

minutes to 2 hours depending on the weather type, while NWP is better for 

longer horizons. 

Some of the urban drainage studies that employ merged radar nowcast-NWP 

products have used rather simple merging techniques that rely on a weighted 

average of the rainfall fields (Jasper-Tönnies et al., 2018; Yoon, 2019). That 

might be a reasonable approach for large-scale, stratiform rainfall systems 

where radar nowcasts and NWP tend to largely agree. However, for convec-

tive events, which both of these studies focus on, averaging two fields with 

spatial disagreement of where rain cells are located can make it seem like 

there are twice as many rain cells in the merged forecast. Other studies 

(Liguori et al., 2012; Schellart et al., 2014) have used the somewhat more 

sophisticated STEPS algorithm (Bowler et al., 2006), which decomposes the 

two original forecasts into various spatial scales and accounts for various 

sources of uncertainty.   

Other merging techniques that do not contain the potential pitfalls of simple 

averaging do exist in the meteorological literature. An example is an EnKF-

based solution where a stochastic nowcasting technique starts off from a ra-

dar nowcast, which is gradually updated and smoothly transitions into look-

ing like the NWP at longer horizons (Nerini et al., 2019). 
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4.3 Matching scales and resolutions of project 

aims, data, and models 
One of the keys to successful implementation of a NWP-based forecasting or 

control system is proper recognition and alignment of the scales and resolu-

tions of the project purpose, employed NWP product, hydrological model, 

and the decision framework. Of the surveyed urban drainage studies, those 

that fail to align these components are usually also those that struggle with 

obtaining good results. In this section, some common issues seen in the litera-

ture will be addressed. 

 

4.3.1 Time scales of use cases and NWP forecast horizons 

As mentioned earlier, NWP products are often designed with a given purpose 

in mind and to be most effective within a specific time window (nowcasting, 

short-range, medium-range, seasonal). It is therefore essential for successful 

use of NWP that urban drainage researchers and professionals employ the 

right kind of NWP product for the right purpose. Figure 10 compares the rel-

evant time scales of urban storm- and wastewater management issues with the 

forecast horizons of selected rainfall forecasting products that are provided 

for Denmark by DMI.  

Figure 10: An overview of the forecast horizons of selected rainfall forecasting products 

that DMI provides for Denmark (blue), and the relevant time scales for a range of different 

aspects and objectives of urban storm- and wastewater management. 
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While there is little risk of someone using a short-range NWP product for a 

drainage purpose that exist on longer scales, since these obviously are insuf-

ficient, the literature does show examples of the opposite. As Figure 10 high-

lights, the use of a global, medium-range NWP, such as ECMWF’s, with the 

goal of accurate in-sewer flow predictions or inundation depths a few hours 

ahead is equally out of proportion.   

 

4.3.2 Spatial scales of urban catchments and skillful NWP outputs 

The predictability of rainfall systems and thus the performance of NWP-

based rainfall forecasting is highly scale-dependent (as seen in Paper II for 

the low performance of high-spread events). In general, larger precipitation 

systems tend to be more organized, have longer lifetimes, and are more pre-

dictable (Sun et al., 2014). Meteorological modelers have recognized that 

evaluating NWP rainfall at point locations can make the forecasts appear 

poor, while they actually contain large value and skill from a larger spatial 

perspective. This has encouraged a move towards spatially aware evaluation 

metrics such as the Fractions Skill Score, where skill is calculated at multiple 

scales (Ebert, 2009; Roberts and Lean, 2008), and neighborhood post-

processing methods as described earlier. It is often the case that urban catch-

ments have a size that fits within one or a few NWP grid boxes and through 

the wide lens of regional or global NWP forecast domains, these catchments 

are more or less points in space. Urban drainage users of NWP estimates 

must therefore take care before simply using the predicted values in the grid 

box(es) that their catchments fit within. Robust warning and control schemes 

will have to be aware of the spatial uncertainty in their rainfall inputs 

(Courdent et al., 2017, 2018; Jasper-Tönnies et al., 2018; Olsson et al., 2017). 

 

4.3.3 The choice of hydrological models 

Total runoff in urban areas is characterized by a high degree of surface runoff 

and very fast response times due to the many impervious surfaces and piped 

flow paths. Detailed 1D and 1D-2D hydrodynamic models are often used to 

simulate flows through the system and the urban drainage community have 

come to expect high-resolution rainfall products to force these models. Gen-

eral advice on rainfall data in the literature is to have spatial grid resolutions 

less than 1 km2 and temporal resolutions less than 5 minutes (Ochoa-

Rodriguez et al., 2015; Schilling, 1991).  
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Some studies use detailed, computationally expensive runoff models, which 

consequently only allow for simulation of a single to a few rainfall scenarios 

(Brendel et al., 2020; Liguori et al., 2012; Schellart et al., 2014; Thorndahl et 

al., 2016). These approaches rely on receiving highly accurate rainfall fore-

casts. Given the kilometer-scale spatial resolutions, the hourly temporal reso-

lutions, and the large uncertainties related to most NWP data, such accuracy 

does not exist in practice. The direct applications of NWP in detailed pluvial 

flood models cannot be justified given that convective events are some of the 

most difficult to predict.  

Other ways of using the information from NWP are clearly preferable, but 

using some sort of runoff model may still be valuable. It lets a forecaster ac-

count for catchment specifics that might be important for runoff production 

such as land use, soil moisture, system actuators, antecedent conditions in the 

drainage network, etc. In general, it makes intuitive sense that detailed rain-

fall products should feed detailed hydrological and hydrodynamic models in 

order to handle problems that require detailed information. Conversely, 

coarse and uncertain rainfall products should feed simplified runoff models 

for simplified decision-problems. Figure 11 visualizes this idea. 

 

Figure 11: Consecutive layers/elements in a chain of forecasting models for urban runoff 

predictions (rows). Rainfall data, hydrological surface model and hydrodynamic sewer 

models of high detail intuitively fit together (left column), as do their coarse and simplified 

equivalents (right column). 

 

Based on the literature and the results of this thesis, the following three ap-

proaches are ways to handle at least some of the mismatch issues of NWP-

based forecasting and warning systems for small urban catchments: 
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1. For high-impact weather it is possible to only simulate one or a few 

worst-case scenarios and make decisions based on that. This could be 

the worst-case member in an ensemble or a high percentile such as the 

95th in a probabilistic forecast (Jasper-Tönnies et al., 2018; René et 

al., 2018). It could also be a time series from the grid box within a 

neighborhood where the most severe rainfall intensities are predicted 

(Courdent et al., 2017, 2018; Olsson et al., 2017; Thorndahl et al., 

2016). These attempts can keep a detailed hydrodynamic model as part 

of the forecasting setup, and take the approach of issuing a warning if 

the worst possible scenario exceeds a threshold, with the downside that 

they cannot provide probabilistic forecasts. 

2. Others abandon the idea of a computationally expensive runoff model, 

and instead choose to use simple, conceptual models, which in turn can 

provide hundreds or thousands of simulations in real-time (Courdent et 

al., 2018; Paper III). A related approach would be to use NWP as in-

put to fast surrogate models (also called emulators or meta-models) 

that have been trained to emulate the behavior of detailed runoff mod-

els at greatly reduced simulation times. Several surrogate models have 

been developed in recent years for e.g. flow (Lund et al., 2019; 

Thrysøe et al., 2019) and flood forecasting (Bermúdez et al., 2018). 

Machine learning models could be another option for computationally 

low-cost real-time predictions (Berkhahn et al., 2019).  

3. Finally, it is possible to produce warnings and make decisions without 

simulating any runoff processes in real-time, and instead base actions 

on exceedance of predefined rainfall thresholds (Gaborit et al., 2013, 

2016; Jasper-Tönnies et al., 2018; Yang et al., 2016, Paper II). With 

this approach runoff simulations can either not be used at all, or be 

made as offline, desktop exercises (e.g. with a detailed hydrodynamic 

model) that examine various potential flooding scenarios. These sce-

narios can then inform the choice of rainfall thresholds for a given 

warning or decision problem. 
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5 Conclusions  

The advanced monitoring and modeling concepts, that are transforming urban 

drainage and wastewater systems from static solutions into actively managed 

assets, require high-quality input data. This thesis has made major strides to-

wards operational use of two data sources that have highly desirable proper-

ties, but generally have been considered too unreliable and uncertain in the 

past: A-ISE sensors for monitoring NH4
+, and NWP for rainfall forecasting. 

The thesis showed that current standard operating procedures for how to 

maintain and operate A-ISE sensors at WRRFs need to be revisited. Recali-

brating the sensors based on standard grab sample adjustments often led to an 

erratic and unreliable signal. A methodology was developed to improve the 

reliability of the A-ISE sensors by merging their signals with 24-h volume-

proportional composite samples. These samples are widely available at 

WRRFs due to regulatory requirements, and implementation of the developed 

setup does thus not incur additional costs on operations. The merged dataset 

had much better data quality both for offline desktop studies and online esti-

mates of NH4
+. The reconstructed data was also more useful for training a 

software sensor. Since the use of composite samples is easy to implement and 

provides strong performance improvements, it should be pursued and further 

developed by water utilities. 

A review of current NWP applications highlighted some key issues that must 

be taken into account by urban water practitioners. NWP products are 

designed with specific time scales in mind and should be used for urban 

drainage purposes that exist on similar scales. NWP skill is highly dependent 

on spatial scale and they are not expected to provide accurate prediction 

directly above a small urban catchment. This needs to be accounted for in 

how they are used. An often seen issue in the literature is use of hydrological 

models that are not suited for the NWP estimates that deliver their inputs.  

Only a handful of urban water publications showcase real operational use of 

NWP while most studies so far have been desktop analyses. Many published 

studies do not possess much power in their analyses as they are based on 

evaluations of only a handful of rain events. This thesis based its results on 

large archives of historical forecasts, evaluated more than 100 rain events, 

and thus provide much more robust assessments. With this dataset it was 

possible to quantitatively evaluate the predictive performance of NWP 

rainfall estimates as a function of the weather type. Rain events with a lot of 
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dynamic evolution and those consisting of small and scattered rain cells were 

the most difficult to predict for both NWP and radar nowcasts. A NWP 

product with improved initial conditions through assimilation of weather 

radar observations was able to compete with the more commonly used radar 

nowcasts. The NWP product had good skill in terms of operating a wet 

weather switch at a WRRF and was a vast improvement over a reactive 

control setup based solely on real-time observations of rainfall. While rainfall 

forecasts based on radar nowcasting drastically worsened with increasing 

forecast horizons, NWP was able to retain much of its skill for longer 

horizons. 

NWP outputs are uncertain and post-processing methods can help describe 

and correct for this. The thesis investigated an intuitive post-processing 

method based on time-lagging of forecasts, which can account for some of 

the uncertainty related to specifying initial conditions. This method was able 

to highlight forecast consistency for the incoming weather situation and 

performed comparably to another post-processing method based on 

neighborhoods, which can account spatial uncertainty. 

Overall, the thesis increased the reliability of A-ISE signals to the point 

where they may be used in real-time operations behind the primary clarifiers 

of WRRFs. It also assessed the potential of rainfall forecasts from NWP at 

small urban scales, and highlighted ways to properly employ them. More 

research and more real life experiences are still needed for improving the 

usefulness of A-ISE sensors and NWP, but the thesis showed that both 

technologies can have an important role to play in the increasingly digital 

operations of urban drainage and wastewater management.  
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6 Future research 

6.1 Monitoring wastewater with A-ISE 
The data merging technique for A-ISE sensors and composite samples should 

be further developed. Future tests will show which frequency of composite 

samples that are required for adequate data quality, and how that may vary 

between locations. The technique should be tested for other variables, such as 

nitrate, where outputs from low-cost sensors may be improved. The technique 

itself could be expanded to account for uncertainties during the merging pro-

cess, e.g. through data assimilation techniques based on Kalman filters. This 

might also provide valuable uncertainty estimates on the measured values.  

Further research should investigate which locations A-ISE sensors are suita-

ble for with and without the merging technique. Within a WRRF, it would be 

interesting to test the technique for sensor locations before the primary clari-

fier and at the WWTP effluent where composites also often are available.  

Obtaining raw potentiometric data from A-ISE sensors would allow for test-

ing the assumption of relatively stationary slope parameters and the effect of 

interfering ions, which may be different for separate vs combined sewers. 

 

6.2 Use of NWP for urban drainage purposes 
Examination of the current literature has shown that there is a large need for 

further research and real case implementations before NWP-based warning 

and control schemes will be common within urban water management. The 

following points represent necessary and promising research avenues: 

 Large-sample studies: Much of the literature consist of studies that 

examine a handful of rainfall events and thus do not possess statistical 

power. Several studies are inconclusive and finish with statements that 

call for further research on their hypotheses. There is a need for large-

sample studies that examine NWP applications over longer periods, 

such as Paper II and III of this thesis. When analyses of forecasting 

setups are restricted to rain events only, they are missing the compo-

nent of whether their systems produce significant amounts of false 

alarms in dry periods. Large samples are difficult to obtain for flood 

events in individual catchments, and more flood-oriented studies 

should rely on multi-catchment analyses for more robust findings. 
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 Real-life case implementations: Many studies, including those in this 

thesis, are post-hoc desktop investigations of how NWP-based deci-

sions would have performed had the systems existed in the past. There 

is a need for more reports on actual forecasting systems and the prob-

lems and potential solutions they encounter to assist others in real-life 

implementations. This is especially true for RTC applications as the 

collective literature contains just one 7-day test at a real case (Stentoft 

et al., 2020) and five simulation studies: two simulation studies that 

mostly fail to get any benefit from NWP (Gaborit et al., 2013, 2016), a 

methodological study (Courdent et al., 2017), a small “proof-of-

concept” paper (Courdent et al., 2015), and Paper II’s WRRF-oriented 

wet weather switching problem. Some promising avenues are control 

of large storage volumes such as urban tunnel systems that have been 

constructed in several cities (Palmitessa et al., 2018, 2021) and fore-

cast-based optimization of energy use. 

 Proportionality and construction of the forecast chain: As dis-

cussed above, several studies go awry in how they combine NWP 

products with hydrological and hydrodynamic models for various pur-

poses. The discussion of this thesis suggests proportionality between 

the levels of detail in each component of the forecasting chain as an in-

tuitive start, but there is a need for investigating which combinations 

of NWP products, post-processing methods, runoff models, and control 

algorithms that provide useful results for which purposes. 

 Post-processing: Post-processing of raw deterministic and ensemble 

NWP outputs are essential for many purposes. National weather ser-

vices have many users of their products and are therefore often not in-

terested in tailoring post-processing schemes for individual end users. 

The urban drainage field will therefore need to take ownership of the 

developments of post-processing methods that are relevant for it. Sim-

ple, intuitive post-processing methods, such as neighborhoods and 

time-lagging, should continue to be refined. Statistical post-processing 

is becoming increasingly attractive due to the recent surge of open 

forecast data that allow for archiving and merging of multiple forecast 

products. This will also create opportunities for developing methods 

that turn pseudo-probabilistic ensemble products into actual probabilis-

tic forecasts for improved decision-making. Much more research is 

needed for this as precipitation is one of the more difficult variables to 

predict and post-process (Vannitsem et al., 2020).  
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