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Abstract 10 

Information and communication technologies combined with in-situ sensors are increasingly being used in 11 

the management of urban drainage systems. The large amount of data collected in these systems can be 12 

used to train a data-driven soft sensor, which can supplement the physical sensor. Artificial Neural Networks 13 

have long been used for time series forecasting given their ability to recognize patterns in the data. Long 14 

Short-Term Memory (LSTM) neural networks are equipped with memory gates to help them learn time 15 

dependencies in a data series and have been proven to outperform other type of networks in predicting 16 

water levels in urban drainage systems.  When used for soft sensing, neural networks typically receive 17 

antecedent observations as input, as these are good predictors of the current value. However, the 18 

antecedent observation may be missing due to transmission errors or deemed anomalous due to errors that 19 

are not easily explained. This study quantifies and compares the predictive accuracy of LSTM networks in 20 

scenarios of limited or missing antecedent observations. We applied these scenarios to an 11-month 21 

observation series from a combined sewer overflow chamber in Copenhagen, Denmark. We observed that i) 22 

LSTM predictions generally displayed large variability across training runs, which may be reduced by 23 

improving the selection of hyperparameters (non-trainable parameters); ii) when the most recent 24 

observations were known, adding information on the past did not improve the prediction accuracy; iii) when 25 

gaps were introduced in the antecedent water depth observations, LSTM networks were capable of 26 

compensating for the missing information with the other available input features (time of the day and rainfall 27 

intensity); iv) LSTM networks trained without antecedent water depth observations yielded larger prediction 28 

errors, but still comparable with other scenarios and captured both dry and wet weather behaviors. 29 

Therefore, we concluded that LSTM neural network may be trained to act as soft sensors in urban drainage 30 

systems even when observations from the physical sensors are missing. 31 
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1. Introduction 35 

Urban drainage systems are a critical component of cities’ infrastructure. In recent times, advancements in 36 

analytics, sensing, transmission, computing and data management have opened new possibilities for 37 

information technology to aid the management of these urban drainage systems (Eggimann et al., 2017). 38 

One potential application is to train a model to predict the expected behavior of the system. If sufficiently 39 

accurate and reliable, the model can act as a soft sensor capable of validating or replacing the hard sensor, 40 

e.g. if the sensor is faulty or under maintenance. 41 

The water depth in combined sewers commonly follows a diurnal water pattern in dry weather and peaks in 42 

response to precipitation events. The response of the water depth to the observed rainfall is often non-linear, 43 

as it is affected by the state of the catchment and the drainage network. Control actuators (gates, pumps, 44 

weirs, etc…) can further contribute to the non-linearity. Deterministic hydrodynamic models have evolved to 45 

replicate in detail the physical processes governing these drainage systems. They are also termed white-box 46 

models, as they are solely formulated on the physical knowledge of the system and disregard any 47 

stochasticity (Breinholt et al., 2011). At the other end of the spectrum are black-box or purely data-driven 48 

models, which derive the relationships among system states exclusively from the available data without any 49 

domain knowledge. These data-driven models can potentially outperform deterministic models especially 50 

for online uses, given their ability to better capture the non-stationarity of urban drainage systems (Jonsdottir 51 

et al., 2007). 52 

Among the data-driven models for urban drainage systems, Artificial Neural Networks (ANN) were early on 53 

identified as promising for their ability to learn the complex, non-linear behavior (Loke et al., 1997). 54 

Applications of ANN in urban drainage have explored a wide range of topics, including solid transport 55 

modelling (Gong et al., 1996), estimation of sanitary flows (Djebbar and Kadota, 1998)  and real time control 56 

(Lobbrecht and Solomatine, 2002). Recently, focuses have shifted towards extreme events, and a number of 57 

studies have explored the use of ANN for flood forecasting (Savić et al., 2013; Bruen and Yang, 2006; Rjeily 58 

et al., 2017; Duncan et al., 2013) and overflow prevention (Sumer et al., 2007; Darsono and Labadie, 2007). 59 

For example, Mounce et al. (2014) trained an artificial neural network (ANN) capable of predicting the 60 

combined sewer overflow (CSO) depth 75 min ahead with less than 5% error. ANN predictions have also been 61 

proven useful in detecting anomalies such as blockages (Bailey et al., 2016), thus enabling proactive 62 

maintenance (Rosin et al., 2019). More recent studies have explored the benefits of forecasting flows in 63 

urban drainage using hybrid models, in which the ANN is coupled with a hydrodynamic model (She and You, 64 

2019) or a wavelet transformation (Ayazpour et al., 2019).  65 

Recurrent neural networks (RNN) have also gained popularity in urban hydrology since they display even 66 

higher potential for time series forecasting, given their capability to preserve a “memory” of the past in 67 

layman definition. Long short-term memory (LSTM) networks, a variant of RNN, have been proven to 68 

outperform traditional ANN in predicting both the flows (Sufi Karimi et al., 2019) and water levels in 69 
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combined sewers (Zhang et al., 2018). With the memory capability, LSTM is now widely used as either a 70 

forecasting or soft sensing tool by adjusting the prediction horizon and feeding as input the relevant rainfall 71 

data (forecasts or observations, respectively). In both cases, the latest available water quantity observations 72 

are commonly used as input features, as the prediction accuracy of ANNs decreases significantly in general 73 

when the antecedent observations are unknown to the network (Fernando et al., 2006). However, in the real 74 

operation of urban drainage systems, past observations might be missing for short or long periods of time 75 

when they are deemed anomalous or the signal from the sensor has not been received. These missing data 76 

gaps can pose a challenge to the system control that relies critically on the observed information, for example 77 

the activation of pumps when the water level reaches a threshold. It is unclear at this stage whether LSTM 78 

can be used effectively in the presence of the missing data gaps. 79 

In this study, we investigate the use of LSTM neural networks as a soft sensing tool for urban drainage systems 80 

in the scenarios of missing or limited antecedent observations. Particularly, we compare the prediction 81 

accuracy of different LSTM networks trained: i) without knowing the antecedent water depth, ii) with 82 

different gap durations in the antecedent water depth, and iii) with different periods of training data. We 83 

present and discuss results obtained from 11 months of real observations from a combined sewer overflow 84 

chamber in Copenhagen, Denmark. By optimizing the use of LSTM networks in scenarios with limited input 85 

data and assessing the accuracy, we develop a custom LSTM approach that is sufficiently robust to 86 

supplement missing observations and, therefore, further bridge the gap towards the field implementation of 87 

machine learning in the operation of urban drainage systems. 88 

2. Methodology 89 

2.1. Soft sensing with Artificial Neural Networks 90 

Soft sensors are mathematical models of a system designed to estimate relevant system variables (Graziani 91 

et al., 2007). Hardware sensors can have high installation and maintenance costs, especially in harsh 92 

environments like urban drainage networks. Soft sensors offer a low-cost alternative, thus enabling more 93 

comprehensive monitoring networks. Soft sensors can also work in parallel with hardware sensors and be 94 

used for validating the sensor observations. A model used for soft sensing carries the knowledge of the 95 

physical or statistical relationship among the system variables. Alternatively, this relationship can be inferred 96 

by an artificial intelligence model that is trained on past observations. 97 

Artificial Neural Networks (ANNs) are artificial intelligence methods developed based on how biological 98 

neural systems are believed to work (Schmidhuber, 2015). During the training step, the internal configuration 99 

of the ANN is shaped according to the recurrent patterns between inputs and outputs. A trained network can 100 

then be used to estimate or predict the output given only the input information. In an urban drainage system, 101 

a neural network can be trained on historical observations of a given hydraulic quantity (such as water levels 102 

or flows) and then used to predict the current value of this quantity based on recent observations. If an 103 



4 
 

observation becomes available, its validity can be evaluated by comparing with the ANN estimate (for 104 

example, for anomaly detection). Otherwise, the prediction itself can be used as a replacement of the 105 

observed value (hence termed as soft sensing). The process is repeated each time an observation is expected. 106 

After a predefined period, the network can be updated (re-trained) with the most recent data in order to 107 

intermittently adapt to the changing conditions of the system (Figure 1).  108 

 109 

Figure 1. Conceptual overview of soft sensing and anomaly detection, including model updating (re-training). 110 

An ANN is a collection of nodes, artificial neurons, and edges, equivalent to artificial synapses. Neurons and 111 

edges have weights, which constitute the trainable parameters of the network. Neurons are typically 112 

aggregated into layers, and the first and last layers interface with the user-defined input and output data. 113 

The intermediate layers are hidden from the user and hold the learning capability of the network. The signal 114 

travels from the input layer to the output layer and is distributed among the neurons proportionally to their 115 

weights. The input signal to each node is passed through an activation function to generate the output signal. 116 

When the signal finally arrives at the output layer, it is scored against a target value, for example the physical 117 

observation of the system corresponding to the predicted state. The calculated score or loss is then used 118 

iteratively to optimize the internal weights of the network. This process is the basic learning mechanism of 119 

the ANN. 120 

2.2. Long Short-Term Memory neural networks 121 

Different from traditional ANNs, Recurrent Neural Networks (RNNs) take the state of the hidden neuron at 122 

the previous time steps as an additional input for the next time step (Elman, 1990). This property makes the 123 

RNN particularly suitable to learn sequences of data, i.e. time series. However, RNN have a limited capability 124 

of learning long-term dependencies, i.e. when the prediction of the desired output depends on inputs at a 125 

much earlier time (Bengio et al., 1994). In Long Short-Term Memory (LSTM) networks, a variant of RNN, this 126 

problem is solved by supplementing the neurons with a memory cell. The memory cell can store the long-127 

term information, and is read and written via appropriate gates that open and close according to the current 128 
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state of the cell and neuron (Hochreiter and Schmidhuber, 1997). In theory, LSTM networks are capable of 129 

capturing the short-term delay between the rainfall and the water depth in an urban drainage network and 130 

infer the long-term properties of the catchment.  131 

The learning process of LSTM networks is controlled and optimized with hyperparameters, which are not 132 

derived by training, but need to be set before training. The number of layers and neurons fall within this 133 

category, together with the number of cycles through the full training dataset, called epochs, and the number 134 

of training examples being processed at the same time, called the batch size. The activation function can also 135 

be regarded as a hyperparameter, as well as the optimization algorithm and its associated loss function and 136 

learning rate. To prevent overfitting on the training data, and thus improve the model performance on 137 

unseen data, the LSTM can be equipped with a regularization mechanism. The most frequently used is 138 

dropout, which randomly selects some nodes and removes them along with their incoming and outgoing 139 

connections (Hinton et al., 2012). The probability that a node is disregarded in the training is called the 140 

dropout rate, and can also be regarded as a hyperparameter of the LSTM. 141 

2.3. Prediction accuracy 142 

Neural networks are trained to minimize the error, or loss, between the predicted and targeted values (which 143 

are typically observed values). The learning dataset is split in two subsets: a part of the data is used for 144 

calibrating the internal parameters (training); the remaining is used for quantifying the error or loss 145 

associated to the current sets of parameters (validation). This process is repeated at each learning cycle or 146 

epoch. Therefore, the validation loss quantifies the prediction accuracy of the ANN and drives the learning 147 

process until it converges to a narrow range or after a predefined number of epochs. Once the training is 148 

complete and the optimal set of internal parameters has been identified, the network can be applied to an 149 

independent testing dataset. 150 

The Mean Squared Error (MSE) is the default choice of loss function for training ANN on time series. It is 151 

calculated as the average of the squared differences between the predicted and observed values. The same 152 

metric could be used to evaluate the prediction accuracy on the testing dataset. For better interpretability 153 

of the results, we use instead the Root Mean Squared Error (RMSE) in this study, which has the same unit as 154 

the observed value. RMSE relates the prediction accuracy to the range of values observed in the system, 155 

while relative comparisons can also be made directly among different configurations and scenarios. 156 

3. Experimental setup 157 

3.1. Case study 158 

The key data in this study are water depth observations from a Combined Sewer Overflow (CSO) chamber in 159 

the city of Copenhagen, Denmark. The CSO is part of a large combined drainage network that serves the 160 

westernmost area of the city and discharges in the local treatment plant (Figure 2, left). A detailed description 161 

of the study area is given by Palmitessa et al., 2020. The CSO chamber is designed to discharge excess inflows 162 
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to a storage tunnel via a fixed weir set 0.99 m above the chamber invert (Figure 2, right). An ultrasonic sensor 163 

records the level of the water surface in the chamber at 1-min resolution, and sends the signal to the central 164 

control system of the utility company. The observations are used to detect the occurrence of overflow events 165 

and manage the operation of the downstream storage tunnel. The data used in this study was collected in 166 

December 2019, and the observations cover the first 11 months of 2019. For simplicity, the water level was 167 

converted to water depth by subtracting the bottom level.  168 

The water depth series has hundreds of data gaps likely caused by transmission errors, the vast majority of 169 

which has a duration shorter than 15 min. Only seven data gaps in the observation period last longer than 2 170 

hours. These could be due to the maintenance or recalibration of the sensor, but no detailed explanation 171 

was obtained from the data provider. The gaps do not hinder the training and testing of the ANN, but rather 172 

demonstrate the need for a soft sensor that works in conjunction with the hardware sensor.  173 

The study area is equipped with a dense network of rainfall intensity gauges. These are tipping bucket 174 

devices, i.e. small buckets that funnel the precipitation and tip when at max capacity. The volume of the 175 

bucket and the time interval between two consecutive tips are used to calculate the rainfall intensity in µm/s, 176 

also at 1-min resolution. A total of ten rainfall gauges are located within or nearby the study area (Figure 2, 177 

left). Observations from all 10 gauges were obtained for the period covered by the water depth sensor data. 178 

 179 
Figure 2. Left: drainage network (blue lines) and location of rainfall gauges (red squares) and overflow chamber (yellow 180 

triangle). Right: schematics of overflow chamber with water depth stages (dry, wet and overflowing). 181 

Water depth observations fall within three stages as shown in Figure 2, right and Figure 3: dry weather, when 182 

the sole contribution to the flow in the system is due to the sewage, which follows the diurnal water 183 

consumption pattern; wet weather, when the catchment runoff mixes with the sewage flow but the water 184 

depth in the CSO chamber is below the crest level of the weir; and overflow, when the water depth exceeds 185 

the crest level. At each stage, the water depth has a different response to the precipitation. While the 186 
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threshold due to the crest level between the wet weather and overflow stages is known, the separation line 187 

between the dry and wet weather stages needs to be determined.  188 

 189 

Figure 3. Example of rainfall intensity (grey) and water depth (black) observations in dry and wet weather. 190 

If the water depth observations are plotted against the corresponding rainfall intensity, no clear pattern 191 

emerges (Figure 4, left). In fact, due to the delayed response to precipitation, there is no direct 192 

correspondence between the water depth stage at a given time and the rainfall measured at the same 193 

instance. In theory, the maximum water depth in dry weather could be estimated from prolonged dry periods 194 

for matured cities. However, processes such as infiltration and exfiltration, together with the weekly and 195 

seasonal changes in water consumption, affect the dry weather values, making it difficult to automatically 196 

classify the observed water depth. Therefore, it is beneficial to train a soft sensor capable of working across 197 

all stages, eliminating the need to classify the data points beforehand. Moreover, the establishment of the 198 

soft sensor can also track the trending changes in the city development. At the same time, it should be noted 199 

that the dataset is highly unbalanced, as seen from the cumulative distribution function (Figure 4, right). 200 

Within the observation period, 90% of data values fall within 6.5 and 22.5 cm, while only 0.06% of the water 201 

depths observations exceed the overflow threshold (corresponding to only 3 hours distributed among 6 202 

events occurring in the course of the 11 months). 203 
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 204 
Figure 4. Left: Water depth observations against corresponding rainfall intensity observations (average of available 205 

gauges). Right: Cumulative distribution function of water depth observations (only top 10% of sample). 206 

3.2. Input features selection 207 

In time series, antecedent observations carry information about the current value, which is especially true 208 

for water depth observations since mass conservation is one of the dominating processes. This is confirmed 209 

by the autocorrelation function of the water depth series (Figure 5), which shows the average correlation 210 

coefficient of two data points in the series as a function of the time lag between them. The autocorrelation 211 

is highest at the time lag of 0 min and decreases to about 0.5 at 180 min. In addition to the antecedent water 212 

depth, the associated minute of the day was used as input feature to enable the ANN to estimate the daily 213 

wastewater fluctuation in dry weather. For wet weather analysis, the cross-correlation function between the 214 

rainfall intensity and water depth was computed for all 10 available gauges and for the average series, with 215 

time lags ranging between 0 and 180 min (Figure 5). The function was higher at all time lags for the average 216 

rainfall intensity series compared to the individual ones and peaked at about 60 min time lag with a value of 217 

0.55. Therefore, the average rainfall intensity series was chosen as the third input feature. For comparison, 218 

the autocorrelation of the water depth was higher than the average rain cross-correlation at all lags. 219 

 220 



9 
 

Figure 5. Autocorrelation of water depth (dashed) and cross-correlation of water depth and rainfall intensity at individual 221 

gauges (solid) or with average series (dot-dashed). Hyperparameter selection 222 

3.3. Hyperparameter selection 223 

An optimal set of LSTM hyperparameters can significantly improve the accuracy of the prediction but is 224 

specific for the problem at hand. Therefore, the choice often relies on a combination of calibration and user 225 

judgment. The selection of the main network hyperparameters was based on a simple grid search. The grid 226 

included 1, 2 or 4 hidden layers, each having 4, 16 or 64 neurons. Regularization layers with dropout rate of 227 

25, 50 or 75% were attached to each input and hidden layer. Every combination of layers, neurons and 228 

dropout rate was tested with a batch size of 1024, 2048 or 4096. To account for the variability in the training 229 

outcome, each set of hyperparameters was tested 10 times, for a total of 810 runs. The median RMSE for the 230 

validation dataset was used to compare different combinations of hyperparameters and select the best 231 

performing one. 232 

All other hyperparameters were chosen among default values or based on the authors’ experience. For 233 

example, the network was trained with a max of 50 epochs and stopped earlier if the validation loss did not 234 

improve significantly for ten epochs. The Rectified Linear (ReL) max(0,x) was used as the activation function 235 

and the Adaptive Moment Estimation (Adam) with default learning rate (Kingma and Ba, 2015)  was selected 236 

as the optimizer to minimize the mean squared error. The model development was carried out using the 237 

deep learning library Keras (Chollet and others, 2015).  238 

3.4. Model implementation 239 

Each input feature was individually normalized to the interval [0.1, 0.9] and rearranged in a rolling window 240 

of length w. Therefore, the LSTM networks were trained to predict the water depth at any time t (target) 241 

given as input the water depth, average rainfall intensity and minute of the day between t-1 and t-w (Figure 242 

6). To quantify the relative contribution of each feature to the prediction accuracy, the following 243 

constellations of input features were tested for training the LSTM: A) All three input features; B) Rainfall 244 

intensity and time of the day, and C) Water depth and time of the day.  245 

The test was conducted with input windows of length 5, 30, 60, 90, 120, 150 and 180 min. The first 9 months 246 

of the dataset were used for learning, of which 80% for training and 20% for validation, and the last 2 months 247 

for testing. In the rainfall intensity series, values larger than 0 accounted for 9.1% of the training and 248 

validation dataset, and 12.4% of the testing dataset.  249 

In a second test, we fixed w to 120 min and tested learning periods p between 1 and 9 months, with 1 month 250 

increments. For direct comparability, the prediction accuracy was always tested on the last 2 months of the 251 

dataset and the p observations prior to that were used for learning. The test was conducted for input feature 252 

constellation A and B. 253 
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 254 

Figure 6. Left: Visualization of LSTM input features and target, with input window length (w), gap length (g) and learning 255 

period (p). Right: Definition of input feature constellations (A, B, C). 256 

Finally, we also tested intermediate scenarios in which only some of the antecedent water depth 257 

observations are known (Ag). We did so by artificially introducing gaps of length g in the input window. In this 258 

scenario, the LSTM input still included the rainfall intensity and minute of the day between t-1 and t-w, but 259 

only the water depths observations between t-g-1 and t-w. Gap lengths of 5, 30, 60, 90 and 120 min were 260 

tested, with the last case (A120) being equivalent to input feature constellation B. For this test, w was fixed at 261 

120 min and p was set to 9 months. For the ease of comparison across different settings and scenarios, the 262 

prediction accuracy was quantified as the RMSE of the LSTM prediction for the testing period, which was the 263 

same for all tests. To account for the variability in the LSTM prediction, each combination of w, p and g was 264 

tested 20 times and the results are presented as box plots of the combination-specific RMSE scores. 265 

3.5. Model update (re-learning) 266 

As new observations from the system become available, the model can be updated by learning from new 267 

information. If the model is not updated, predictions can still be made based on prior trained parameters 268 

(equivalent to the You-Only-Look-Once (YOLO) approach for image processing). On the other hand, an 269 

updated model can better respond to possible transient changes in the system behavior. In this case, the 270 

frequency of the update, or in other terms the interval between updates, should be optimized in relation to 271 

the temporal scale of the processes altering the response of the system to the rainfall (e.g. seasonal 272 

variabilities in soil saturation and infiltration-inflow).  273 

We also investigated an iterative approach to model update, in which the network was periodically updated 274 

with a learning period of fixed length. With this approach, the network is asked to re-learn the input-output 275 

relationship after each update interval. Therefore, the model was reset before each update and the most 276 

recent observations were used for learning. The test was repeated for learning periods of 3 and 5 months 277 

and update intervals of 4, 8, 12 and 24 weeks (Figure 7). Shorter update intervals were not tested with this 278 
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approach due to the longer computational time required. To compare the prediction accuracy associated 279 

with different update intervals, the testing predictions from all updates were combined in a single 6 months 280 

long period and the overall RMSE was computed. Similarly to the previous tests, the results are presented as 281 

box plots of 20 runs. 282 

 283 
Figure 7. Subdivision of dataset in learning and testing with no model update (top) and with iterative update (bottom). 284 

4. Results 285 

4.1. Hyperparameter calibration 286 

The grid search as described in Section 3 was performed independently for two configurations, with the 287 

window length of 120 min, learning period of 9 months, and input B and A60, respectively. Among all 81 288 

combinations of hyperparameters tested, the same combination returned the lowest median test RMSE with 289 

both configurations: 2 hidden layers, 64 neurons per layer, batch size of 2048 and 25% dropout rate. This 290 

combination of hyperparameters yielded a median validation RMSE of 4.2 and 3.4 cm respectively for the 291 

first and second configuration. Generally, combinations with 1 hidden layer, 4 neurons per layer and 75% 292 

dropout rate performed worst. Mixed results were, instead, obtained with each of the batch sizes tested. A 293 

deeper investigation of the interaction between hyperparameters and a wider/denser grid search would 294 

allow to further improve the prediction accuracy, but it is beyond the scope of this study. 295 

4.2. Input window length  296 

Separate LSTM networks were trained with different input window lengths and different constellations of 297 

input features. When input A was used, the median RMSE in the testing dataset increased with the input 298 

length (Figure 8), from 0.8 cm with w of 5 min to 3.2 cm with w of 180 min. Therefore, when the most recent 299 

water depth was known, adding past information did not improve the prediction accuracy. Conversely, when 300 

the antecedent water depth was an unknown to the network (B), the RMSE decreased with the input window 301 

length, and the median test RMSE reached a minimum of 5.1 cm for w of 120 min.  302 

Moreover, with input C, the prediction accuracy was largely the same as with A. This suggests that when the 303 

water depth was predicted using all three features as input (A), the LSTM relied heavily on the antecedent 304 

water depth observation and the rainfall data was mostly disregarded. This result is consistent with the 305 
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correlation analysis shown in Figure 5, where the correlation coefficient was always higher for the antecedent 306 

water depth, and at its highest at a lag of 1 min. Therefore, the LSTM learned to assign a high weight to the 307 

most recent water depth and a lower weight to all other inputs. For comparison, the persistence with lag = 1 308 

min returned a RMSE of 0.2 cm in the testing dataset. In other words, the simple prediction based on the 309 

water depth observation from a minute before was on average a better predictor of the current state than 310 

any of the tested LSTM configurations. In the following, we shall term the approach with such simple 311 

prediction as persistence modelling. 312 

It should be noted that the results displayed a large variability among the 20 runs for each configuration. This 313 

could be due to the effects of the regularization mechanism, the limited number of epochs used for learning, 314 

the randomness of the initial state of the network and the choice of default learning rate in the optimization 315 

algorithm. Three instances across all tests conducted in this study even resulted in negative predictions of 316 

water depth, and were discarded from the reported results. The issue needs further investigation. 317 

 318 
Figure 8. Root Mean Square Error (RMSE) of 20 LSTM predictions in testing dataset with p = 9 months and different input 319 

window lengths. Networks trained on all features (A), only rainfall intensity and time of the day (B), or water depth and 320 

time of the day (C). For reference, testing RMSE of persistence with lag 1 min is also plotted. Results presented are 321 

quartiles (box) and mean (cross). The whiskers extend to the minimum and maximum value or 1.5 times the inter quantile 322 

range. All values outside the whiskers range are marked as outliers (circles). 323 

4.3. Learning period 324 

To assess how the learning period affects the prediction accuracy, we trained separate LSTM networks with 325 

p ranging from 1 to 9 months. The tests were conducted with both inputs A and B and with a fixed window 326 

length of 120 min. The prediction accuracy generally decreased with increasing p (Figure 9), as the networks 327 

were trained on more data. For both configurations, the gain in accuracy was significant when extending the 328 

learning period from 1 to 5 months, and marginal for periods longer than 5 months. For example, the median 329 



13 
 

RMSE in the test dataset decreased from 4.9 cm with a learning period of 1 month to 2 cm with p equal to 5 330 

months, which was about the same value calculated with the longest learning period. When the antecedent 331 

water depth was unknown (B), the prediction error was consistently higher, but followed the same trend as 332 

the LSTM trained on all features (A). This result implied that the memory of the state of the system was kept 333 

generally within the last 5-month data. 334 

 335 
Figure 9. Root Mean Square Error (RMSE) of 20 LSTM predictions in testing dataset with w = 120 min and different 336 

learning periods. Networks trained on all features (A), or only rainfall intensity and time of the day (B). Results presented 337 

are quartiles (box) and mean (cross). The whiskers extend to the minimum and maximum value or 1.5 times the inter 338 

quantile range. All values outside the whiskers range are marked as outliers (circles).   339 

4.4. Gap length 340 

We also tested LSTM networks with w = 120 min and gaps of length g in the antecedent water depth 341 

observations (Ag), and we observed that the prediction accuracy decreased as g increased (Figure 10). These 342 

represented intermediate scenarios to those investigated above: the case of g=0 min corresponded to 343 

including all antecedent water depth observations in the input window (A); the case of g=120 min 344 

corresponded to removing the water depth from the input features (B). The median RMSE in the test dataset 345 

for gaps of 5, 30, 60 and 90 min fell between the two.  346 

The accuracy of the LSTM predictions was compared to the RMSE of a persistence model with lag equal to g. 347 

The neural networks outperformed the persistence model, but only for gaps longer than 30 min. For example, 348 

the median RMSE in the test dataset was 3.75 cm for a gap of 60 min when the water depth was predicted 349 

with a LSTM trained on all input features, and 5.2 cm when the observation from 1 hour before was used as 350 

prediction. This finding suggests that the LSTM was capable of translating the information in the rainfall and 351 

the time of the day into water depths to compensate for the limited knowledge on the antecedent water 352 

levels. The assumption was verified by repeating the test without the rainfall intensity input (input C). In this 353 

case, the prediction accuracy was similar or worse than the persistence model for all gap lengths. 354 
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The scenarios of partial knowledge of the past observations were simulated by applying the same gap across both the 355 

training and testing datasets, under the assumption that LSTM performs best in a scenario if trained under the same 356 

setting. To validate this assumption, we trained LSTM networks on a dataset without gaps, and tested them on a dataset 357 

with artificially introduced gaps. Indeed, we observed a significant increase in the prediction error compared to networks 358 

trained on a dataset with gaps in the antecedent water depth. 359 

  360 

Figure 10. Root Mean Square Error (RMSE) of 20 LSTM predictions in testing dataset with w = 120 min, p = 9 months and 361 

gaps of different length g in the antecedent water depth. Networks trained on all features (Ag) or water depth and time 362 

of the day only (C). For reference, persistence with lag = g is also plotted. Results presented are quartiles (box) and mean 363 

(cross). The whiskers extend to the minimum and maximum value or 1.5 times the inter quantile range. All values outside 364 

the whiskers range are marked as outliers (circles). 365 

4.5. Update interval 366 

The iterative update approach was tested in the scenario of input B and w = 120. For direct comparability, 367 

the prediction accuracy was calculated as RMSE on the same combined testing period (6 months long). For 368 

all update intervals tested, the updated LSTMs performed similarly to the non-updated networks (Figure 11). 369 

Marginal improvements were observed for update intervals of 8 and 12 weeks compared to 4 and 24 weeks. 370 

However, the networks updated with a learning period of 5 months did not perform consistently better than 371 

the updates with 3 months of learning data, as observed in Figure 9. 372 
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 373 
Figure 11. Root Mean Square Error (RMSE) of 20 LSTM predictions in combined testing dataset with w = 120 min, input 374 

B and learning periods of 3 or 5 months with different update intervals. Results presented are quartiles (box) and mean 375 

(cross). The whiskers extend to the minimum and maximum value or 1.5 times the inter quantile range. All values outside 376 

the whiskers range are marked as outliers (circles).   377 

5. Discussion 378 

The prediction accuracy was presented as RMSE for the entire testing dataset, which allowed the direct 379 

comparison of different configurations and scenarios with a single score. To analyze the prediction accuracy 380 

in relation to the water depth domains (dry, wet and overflowing), we selected three input configurations 381 

(A, A60 and B with w = 120 min, p = 9 months) and calculated the testing RMSE for ranges of observed water 382 

depth (Figure 12). It should be noted that the lower range captured all dry weather observations and the 383 

upper range all overflow events in the testing dataset. The analysis showed a clear tendency of the RMSE 384 

increasing with the water depth for all three configurations. With input B, the median RMSE increased from 385 

2.14 cm in the 0-20 cm range to 50 cm in the 100-120 cm. For comparison, the median RMSE for all values of 386 

water depth was 5.11 cm. These values are higher than the errors calculated for input A and A60, but within 387 

the same order of magnitude. 388 

The obtained results show a clear state dependency of the error. This is further exacerbated by scoring the 389 

predictions with the RMSE, which squares the errors and therefore penalizes high values. However, as seen 390 

in Figure 4, the dry weather observations far outnumber the wet weather values, especially those within the 391 

overflowing domain. Consequently, the overall RMSE (0-120 cm) is very close to the score calculated on the 392 

dry weather range (0-20 cm). Also, the neural network will tend to learn with higher accuracy the dry weather 393 

behavior than the rarer, extreme wet events. In case of even slight delays between the observed and 394 

predicted water depths, the RMSE returns high errors even if the magnitude of peak values corresponds well. 395 

Therefore, other scoring rules should be investigated in the future to better assess the prediction accuracy 396 
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for wet weather. Wet weather predictions will always, however, be more uncertain than dry weather 397 

predictions due to the large uncertainties in rainfall data and complex surface runoff processes. Figure 12 398 

shows, however, that the LSTM network performs much better than the persistence model in ordinary wet 399 

weather conditions, while the relative difference is rather small during CSO events. The latter can be 400 

explained by the fact that the water levels are rather stable once they supersede the CSO crest level.  401 

 402 
Figure 12. Breakdown of the testing RMSE in water depth ranges, for 20 LSTM networks with w = 120 min, p = 9 months 403 

and inputs A, B, and A60 (A with g = 60 min). Results presented are quartiles (box) and mean (cross). The whiskers extend 404 

to the minimum and maximum value or 1.5 times the inter quantile range. All values outside the whiskers range are 405 

marked as outliers (circles).   406 

To better visualize the scores reported above, we plot a selected period of LSTM predictions for the same 407 

three input configurations (A, A60 and B with w = 120 min, p = 9 months) in Figure 13. The four-day long period 408 

roughly included two days of dry weather and two days of wet weather, as seen from the rainfall intensity 409 

series (Figure 13, top panels). The LSTM network appeared capable of capturing both the dry and wet 410 

weather behaviors for all three configurations. A similar variability of the prediction accuracy is seen for all 411 

cases, and in one instance with input configuration B the prediction is a horizontal line, i.e. invariant. This 412 

signals a possible failure in the training of the network.  413 

The variability of the results across all 20 runs of the same LSTM configuration is better seen from the 414 

prediction residuals, which are given by the difference between the observed and predicted values. In theory, 415 

a threshold could be set on the residuals for the automatic detection of anomalous observations. However, 416 

such threshold needs to consider both the state dependency of the error and the sudden increase of the 417 

residual in correspondence to a delayed prediction. For comparison with the results shown above, the error 418 

is also presented as RMSE over the selected four-day long period (median RMSE = 3.28 cm for input B) or 419 

respectively for the two dry or wet days. As a matter of fact, the selected period can be considered as 420 
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representative of the average conditions of the CSO chamber, both in terms of dry weather baseline and wet 421 

weather intensity. 422 

 423 
Figure 13.  20 LSTM predictions for selected 4 days of testing dataset with w = 120 min, p = 9 months and inputs A, B, 424 

and A60 (A with g = 60 min). From top to bottom: rainfall intensity observations; LSTM predictions (median shown in thick 425 

blue line) and corresponding observations (dashed); difference between observed and predicted values (median shown 426 

in thick red line); Root Mean Square Error calculated for dry, wet or all days in the selected period. 427 
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6. Conclusions  428 

We tested the accuracy of LSTM predictions of water depths in a combined sewer overflow chamber in 429 

scenarios of limited information on the past observations of the system. Among a range of tested 430 

hyperparameter configurations, one with 2 hidden layers, 64 neurons per layer, a batch size of 2048 and a 431 

25% dropout rate yielded the lowest error in terms of RMSE. Multiple training runs on the same data showed 432 

variability in terms of testing RMSE, with some runs failing, which illustrates that LSTM training is not a 433 

straightforward task. 434 

When antecedent observations of water depth were known to the neural networks, we observed a decrease 435 

in prediction accuracy as less recent information was added as input. This shows that the LSTM network 436 

generally recognized the high correlation between the current observation and the most recent ones and 437 

assigned low weights to all other inputs. For comparison, using the most recent observation as prediction 438 

when available (persistence) yielded a lower error than any of the LSTM networks tested. 439 

If gaps of different durations were introduced in the antecedent water depth observations, the LSTM network 440 

learned to compensate for the missing information with the other available input features. We observed a 441 

crossover point at a gap of 60 min for our system when the LSTM network outperformed the persistence 442 

model with a lag of same length. In other words, using the prediction from the LSTM network with 1h gap in 443 

the antecedent water depth was on average better than assuming the value to be the same as the 444 

observations from 1h before. With this approach, however, a different LSTM network is needed for different 445 

gap lengths and the corresponding computational overhead may or may not be justified depending on the 446 

application. 447 

When the antecedent water depth was removed from the input features, we observed a further decrease in 448 

prediction accuracy. However, the prediction accuracy in this last scenario was qualitatively comparable to 449 

the other two, and hence might be sufficient in many soft sensing applications. The results also suggest a 450 

state dependency of the error, implying that LSTM is worse at predicting wet weather values compared to 451 

dry weather. This may be a consequence of the dataset unbalance, as the number of observations in dry 452 

weather far outnumber the wet weather, but can also be due to the fact that the processes governing wet 453 

weather discharges are related to uncertain input data, such as rainfall data, and complex runoff processes 454 

which are not identified by the network. The LSTM network generally outperformed the 60 min persistence 455 

model for non-overflowing wet weather conditions. 456 

Future research could investigate other scores for quantifying the prediction accuracy, as RMSE tends to 457 

penalize wet weather errors and gives disproportionate large penalties on delayed predictions. Also, a better 458 

calibration of the hyperparameters and adding one that includes the learning rate of the optimizer could help 459 

reducing the variability of the results, thus attributing them more generality. Finally, the proposed approach 460 

to model update (re-learning) did not show significant improvements compared to a non-update model, so 461 

other approaches could be investigated.  462 
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