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Abstract. Tungsten fiber-reinforced tungsten composites are considered as plasma-facing 
material in future fusion reactors. Such composites are obtained by chemical vapor deposition 
of tungsten on potassium-doped, drawn tungsten wires. In model composites containing single 
fibers, particular texture types develop due to the cylindrical geometry of the deposition 
process. The vapor-deposited tungsten layers form a cyclic <100> ring fiber texture with one of 
the <100> directions pointing radially along the growth direction. The procedure for revealing 
this non-standard texture type from orientation data obtained by electron backscatter diffraction 
is presented. Identification of cyclic textures requires carefully chosen acquisition regions as 
well as a suitable coordinate system for their analysis. It is demonstrated that quite erroneous 
conclusions about the texture of the layer would be drawn if this is not accounted for properly. 

1.  Introduction 
Tungsten is considered for plasma-facing components in future fusion reactors as armor material for 
the first wall and the divertor. In particular, tungsten fiber-reinforced tungsten composites have 
achieved certain interest due to their pseudo-ductile behavior [1]. Such composites can be obtained by 
chemical vapor deposition of tungsten on drawn tungsten wires [2]. The microstructure of a model 
composite containing a single potassium-doped tungsten fiber is investigated by means of electron 
backscatter diffraction [3]. Focus is on revealing the particular texture caused by deposition geometry. 

2.  Materials and techniques 

2.1.  Material 
A tungsten fiber-reinforced tungsten composite is produced by chemical vapor deposition of tungsten 
on a single tungsten fiber: A drawn tungsten wire doped with 60 ppm potassium and having a diameter 
of 150 µm provided by OSRAM GmbH is coated in a two-step process by reactive magnetron 
sputtering with a 1 µm thin interlayer of erbia. A thick layer of pure tungsten (referred to as matrix) is 
chemically vapor-deposited on this interlayer to a total diameter of 1.5±0.1 mm (for details see [3]). 
Figure 1 sketches the geometry of the cylindrical specimen. A cross section is cut perpendicular to the 
cylinder axis, i.e. the wire axis, and prepared for electron backscatter diffraction by mechanical 
grinding (on SiC-paper of grit size 2000 and 4000) and polishing (with diamond suspension with grain 
size 3 µm). In a final step, electro-polishing is applied using an aqueous solution containing 3 wt.% 
NaOH at room temperature with an applied voltage of 12 V and a current of approximately 2 A. 

mailto:pawo@dtu.dk
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Figure 1. Sketch of the geometry of a cylindrical 
single tungsten fiber-reinforced tungsten composite 
(left) and its cross section (right). Upon a drawn, 
potassium-doped tungsten wire (shown in dark 
orange) coated with a thin erbia layer (not shown), 
tungsten is chemically vapor-deposited (light 
orange). Additional to the Cartesian coordinate 
system (black), a cylindrical coordinate system is 
introduced (blue). The radial direction r points in a 
transversal xy-plane outwards from the wire center, 
the azimuthal direction φ along the perimeter. 

2.2.  Microstructural investigation 
Orientation data were gathered by electron backscatter diffraction on freshly prepared cross sections 
using a Bruker NOVA NanoSEM 600 equipped with a Bruker e-Flash HD EBSD detector applying a 
voltage of 20 kV. A large overview map 2000x1725 µm2 of the entire cross section is recorded at low 
magnification with a step size of 5 µm. Without any filtering or removal of non-indexed points, the 
gathered electron backscatter diffraction data are analyzed using the MTEX toolbox Version 5.5.0 [4] 
and evaluated further by own purposely developed routines. 

3.  Results 

3.1.  Conventional analysis 
Figure 2 presents the obtained orientation maps colored according to the crystallographic direction 
along the three different directions of a Cartesian coordinate system: the z-direction is normal to the 
mapped surface, the x- and y-direction correspond to the horizontal and vertical direction in the map, 
respectively. The cylindrical specimen can be recognized by the indexed points surrounded by a white, 
non-indexed region in the rectangular map. A clearly discernible central region of non-indexed points 
with diameter of 150 µm marks the locations of the drawn wire and the erbia interlayer. Due to defects 
formed by the large plastic deformation during wire drawing, orientations within the wire cannot be 
resolved with the chosen acquisition conditions for obtaining a large overview map. The successfully 
acquired orientations belong overwhelmingly to the chemically vapor-deposited tungsten matrix. 

The orientation maps in figure 2 also highlight high angle boundaries which together with the 
orientation coloring reveal that in the vicinity of the wire a large number of small grains prevail which 
are not even resolved properly. In slightly larger distances from the wire, large grains are observed 
which stretch radially from the vicinity of the wire to the outer surface. These matrix grains grow 
radially and their wedge-like shape is a signature of the deposition process. The orientation map in 
figure 2c highlighting the crystallographic directions along the z-direction show dominantly colors 
from red over yellow to green, i.e. along the line [100]-[110], whereas bluish colors (blue, cyan or 
magenta) are rarely observed. This indicates the presence of preferred orientations. Further details 
about the texture are revealed from the corresponding pole figures in figure 3, displaying the 
crystallographic poles as a function of the spatial directions. The pole figures are derived based on the 
orientation distribution function calculated from all individual orientations in the map using a de la 
Valle Poussin kernel [4] with a half width of 10°. 

Figure 3a presents the pole figures for the 100, 110 and 111 poles in stereographic projection onto 
the xy-plane. A maximum pole density of 2.6 compared to a random distribution of orientations is 
observed in the 100 pole figure where also an increased pole density along the outer perimeter is 
noticed. Judging solely from this 100 pole figure, the existence of a weak <100> fiber texture along 
the cylinder axis would be concluded. Further support for an ideal <100> fiber texture is gained from 
the very weak ring at 45° in the 110 pole figure, but the apparent ring in the 111 pole figure at about 
36° contradicts the idea entirely, as such a ring is expected at 54° for an ideal <100> fiber texture.  
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(a)  (b)  (c)  
Figure 2. Orientation maps of the cross section of a single tungsten fiber-reinforced tungsten 
composite with erbia interlayer. The colors reflect the crystallographic directions along different 
sample directions according to the inset: (a) along x-, (b) along y- and (c) along z-direction, i.e. along 
the wire axis. High angle boundaries with disorientation angles above 15° are indicated in black. 

 
These observations are confirmed by the inverse pole figure in figure 3b along the z-axis which 

indeed shows a slight preference of [100] directions, but all directions along the symmetry line [100]-
[110] are much more frequent than expected for an ideal <100> fiber texture along the z-direction. 

(a)  (b)  
Figure 3. (a) 100, 110, and 111 pole figures and (b) inverse pole figure for z-direction obtained on a 
single tungsten fiber-reinforced tungsten composite with erbia interlayer. The data include all acquired 
orientations from the cross section shown in figure 2 and correspond overwhelmingly to locations in 
the matrix. All densities are given in multiples of random distribution according to the scale bar. 

3.2.  Improved analysis 
In view of this evidence, the texture of the matrix cannot be a <100> fiber texture with a fiber axis 
along the wire and a more appropriate description of the texture is required. Revisiting the orientation 
maps in figure 2 exposes a hint: in figure 2a showing the crystallographic direction along the x-
direction, the color red is dominating along a horizontal stripe in the center of the cross section 
revealing that horizontally aligned grains extend along one of their <100> directions. A similar 
observation can be made from figure 2b showing the crystallographic direction along the y-direction; 
here the red color of vertically aligned grains indicates that these also extend along one of their <100> 
directions, which in their case points along the y-direction, i.e. vertically instead of horizontally. 
Considering the cylindrical symmetry of the specimen, it seems plausible to conclude that all grains 
actually extend along one of their <100> directions radially outwards.  

In order to exploit the observation that the grains exhibit a particular direction of extension along 
which one of their <100> directions is aligned, but that this direction is different from grain to grain, a 
special procedure for analyzing the texture is adapted. In view of the geometry of the specimen and the 
deposition process, a cylindrical coordinate system is introduced as shown in figure 1 where the radial 
r-direction points radially outwards from the wire center and the azimuthal φ-direction along the 
corresponding perimeter (the z-axis still coincides with the wire axis). In such a cylindrical coordinate 
system, the coordinate axes r and φ point in different directions at each position in a transversal plane. 
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For calculating pole figures and inverse pole figures with respect to these new coordinate axes, 
their local dependence must be taken into account. Such an evaluation is presently not implemented in 
any standard tool for evaluating orientation data. An appropriate procedure has been developed and 
implemented in MATLAB. The idea is basically to use standard evaluation tools for creating 
orientation maps, pole figures and inverse pole figures – not on the original orientations, but after a 
straightforward modification of the orientations in the map: Realizing that the cylindrical coordinate 
system is rotated by the azimuthal angle φ with respect to the Cartesian system at any position in the 
map, the Euler angle φ2 of each orientation is adjusted accordingly. The resulting orientation maps, 
pole figures and inverse pole figures are on display on figures 4 and 5. 

 

Figure 4. Orientation map of the cross section of 
a single tungsten fiber-reinforced tungsten 
composite with erbia interlayer (same data as in 
figure 2). The colors reflect the crystallographic 
directions along the radial direction of a 
cylindrical coordinate system according to the 
inset. High angle boundaries with disorientation 
angles above 15° are indicated in black. 

 
In the orientation map in figure 4 colored according to the crystallographic direction along the 

radial direction, a dominating red color appears exposing an overwhelming dominance of <100> 
directions pointing radially outwards. The character of the texture is further confirmed by the pole 
figures in figure 5a. In the 100 pole figure, a strong alignment of crystallographic <100> directions 
with the radial direction is seen (with a maximum 100 pole density of 10.5), the ring in the plane 
comprising the azimuthal and axial direction is a direct consequence of this strong alignment and the 
angle of 90° between <100> directions. In a similar way, <110> directions form either an angle of 45° 
or 90° degrees with <100> explaining neatly the observed rings in the 110 pole figure. Finally, the 
angle of 54° between <111> and <100> directions rationalizes the position of the rings in the 111 pole 
figure. All rings in the pole figures are rather smoothly populated and no systematic variation is 
observed along them indicating the presence of an ideal <100> fiber texture along the radial direction. 

(a)  (b)  
Figure 5. (a) 100, 110, and 111 pole figures with respect to cylindrical coordinates and (b) inverse 
pole figure along the radial r-direction obtained on a single tungsten fiber-reinforced tungsten 
composite with erbia interlayer. The data include all acquired orientations from the cross section 
shown in figure 2 and correspond overwhelmingly to locations in the matrix. The densities are given 
in multiples of random distribution according to the scale bar. 

 
In consequence, the texture is a strong, ideal <100> fiber texture along the radial direction in the 

cylindrical coordinate system and not a weak <100> fiber texture along the axial direction as may have 
been concluded from investigating the texture in a Cartesian coordinate system. In view of these 
findings, the texture in the sample system must be described differently: At first, there is a preferred 
alignment of <100> directions in the transversal plane with free rotation around that aligned direction. 
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Such textures are classified as ring fiber textures [5] (alternatively, the term planar texture is used [6]). 
Additionally to one of the <100> directions occurring in the transversal plane (and free rotations 
around it), this specific direction aligns with the radial direction causing a different preferred 
orientation at any spatial position. Textures featuring a certain crystallographic direction aligned with 
the radial direction are termed cyclic textures [5,7] (or cylindrical textures [8] or circular textures [9]) 
and usually discussed in connection with cylindrical objects (wires or tubes). In consequence, the 
texture of the deposited layer must be classified as cyclic <100> ring fiber texture.  

4.  Discussion 
A cyclic <100> ring fiber texture is concluded for the deposited layer with <100> directions aligned in 
the transversal plane perpendicular to the wire axis and the particular feature from cylindrical 
symmetry, that these <100> directions point radially. The possibility of cyclic ring fiber textures has 
been discussed theoretically [5], but to the knowledge of the authors never been reported before.  

Cyclic fiber textures and cyclic ring fiber textures might be more widespread than commonly 
reported, because it might be difficult to resolve spatial correlations between preferred orientations as 
in the present case. To illustrate the danger of underestimating the impact of spatial correlations for 
obtaining a proper texture description, different regions of the original map are analyzed separately. 
Four different subsets of orientations are obtained from four smaller quadratic or rectangular regions 
(each comprising about half the number of indexed points) as illustrated in the top row of figure 6.  

The corresponding 100 pole figures in the bottom row of figure 6 show rather different pole 
distributions: From the 100 pole figure of the entire map (figure 6a), a <100> fiber texture along the z-
axis would be concluded naively. For the square region in figure 6b, 100 poles are observed under 45° 
with respect to x- and y-direction implying preferred orientations belonging to a {100}<011> texture 
component (a cube orientation rotated by 45° around z); for the rotated square region (figure 6c), 100 
poles along both x- and y-direction are dominating implying the presence of an ideal {100}<001> cube 
component; for the horizontal rectangle, 100 poles appear along the x-direction and an additional ring 
in the yz-plane (in figure 6d) implying a <100> fiber texture along the x-axis. Just the opposite is true 
for the vertical rectangle; the 100 pole figure in figure 6e indicates a <100> fiber texture along the y-
direction. Hence, depending on the choice of the region from which orientations are acquired, rather 
different texture types are concluded based on the 100 pole figures as summarized in table 1: in some 
cases, fiber textures with different fiber axes (<100> fiber texture along x-, y-, or z-direction), in other 
cases, textures with orthorhombic symmetry (cube or rotated cube).  

 
            (a)             (b)            (c)           (d)          (e) 

 
Figure 6. Schematic drawing of different acquisition regions on the cross section of a single tungsten 
fiber-reinforced tungsten composite with erbia interlayer (top row) and corresponding 100 pole figures 
(bottom row) for (a) data acquired for the entire cross section corresponding to figure 2, (b) to (e) 
different square and rectangular regions with about half of the number of indexed points. 
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The cyclic nature of the texture can be substantiated further by the measures of texture strength in 

table 1: When using a Cartesian coordinate system, independent of the chosen region rather weak 
textures are indicated by 100 pole densities of maximal 3.3, texture indices [10] less than 2 and texture 
entropies [11] above -0.4. Using an appropriate cylindrical coordinate system with spatially different 
coordinate axes for the description of the orientations confirms the strong preference of certain 
directions and orientations seen in the pole figures and inverse pole figure in figure 4. The maximal 
100 pole density of 10.5 verifies that a much better texture description is achieved by realizing the 
presence of a cyclic texture. The existence of a strong cyclic ring fiber texture is further substantiated 
by the high texture index above 5 and the large negative value -1.16 of the texture entropy.  

5.  Conclusion 
A tungsten fiber-reinforced tungsten composite has been investigated by electron backscatter 
diffraction. The chemically vapor-deposited tungsten matrix shows a peculiar texture identified as 
cyclic <100> ring fiber texture. The required thorough texture analysis is detailed and the effect of 
inappropriate choices for the acquisition regions outlined. This clearly demonstrates how important an 
adequate characterization becomes and how strongly results can be affected by spatial correlations, if 
sample symmetry is not respected. When using an inappropriate coordinate system, completely 
erroneous textures might be concluded. On the other hand, when utilizing an appropriate coordinate 
system even more complicated texture types can be identified as the cyclic <100> ring fiber texture. 
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Table 1. Quantitative texture analysis for different regions on the cross section (cf. figure 6) 

Region Max. 100 
pole density 

Texture 
index 

Texture 
entropy 

Texture type (as concluded from 
100 pole figure) 

Full map (Cartesian coord.) 2.6 1.55 -0.28 <100> fiber texture along z 
Full map (cylindrical coord.) 10.5 5.09 -1.16 Cyclic <100> ring fiber texture 
Central square 2.7 1.62 -0.29 {100}<011> z-rotated cube texture 
Rotated square 2.4 1.51 -0.26 {100}<001> cube texture) 
Horizontal rectangle 3.3 1.92 -0.39 <100> fiber texture along x 
Vertical rectangle 3.2 1.84 -0.38 <100> fiber texture along y 
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