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Summary

Modern industrial plants rely heavily on automation to increase energy and economic
efficiency, however, human operators are tasked with the supervision of the plant and
have to intervene when abnormal situations occur. To determine whether and how
to mitigate an abnormal situation, control rooms provide a large number of sensor
and status information to the operators and alarms are intended to draw operators
attention to situations that require immediate action. In reality, however, the amount
of information provided to operators can actually reduce operators’ focus and distract
them from maintaining awareness of the situation. The most severe situations that
overload operators with information are alarm floods, in which a large number of
events is presented to the operator requiring immediate attention. As coping strategy
operators tend to resort to treating symptoms as quickly as possible to reduce the
number of alarms, when rationally analysing the whole set of occurring events and
treating underlying root causes would be more effective. Identifying these root causes
from the large amount of data available and providing operators with the context of
how occurring alarms can reduce the risk of overloading operators and ensure safe
and efficient plant operation.

This work contributes to an operator support approach based on a functional
representation of the process flow and operating goals in Multilevel Flow Modelling
(MFM). MFM is an established modelling methodology for operations and process
knowledge that has been applied for process design and diagnosis in a variety of in-
dustrial contexts. The qualitative diagnosis in MFM facilitates the identification of
all possible fault scenarios. Two major aspects are considered in this work: maintain-
ing correct causal analysis based on all occurring alarms from the plant and ensuring
that the MFM model used for diagnosis fits the current plant situation.

Toward the correct on-line analysis an improved causal reasoning system lever-
aging the connection of occurring alarms has been developed and shown to increase
efficiency and reasoning speed. Approaches to ranking the identified root cause candi-
dates have been defined to provide meaningful information to operators. By providing
a ranking of the root causes, operators’ focus can be directed toward distinguishing
the most likely root causes and determining an efficient mitigation strategy.

The configuration and operating goals of a plant are frequently changed in ac-
cordance with pre-defined operating procedures. To ensure that the correct model is
used for the causal reasoning, methods to link these operating procedures to MFM
have been investigated. In an industrial setting operators tend to adapt operating
procedures, based on their experience and out of execution efficiency and convenience.
To account for these adaptations, a structured representation of operating procedures
and method for validating the representation against operations logs have been pro-
posed.



i Summary

All proposed methods have been demonstrated on case studies with industrial rel-
evance for the chemical or petrochemical industry. Combining the qualitative mod-
elling and reasoning in MFM with the analysis of alarms and events from the control
system in real time facilitates the contextual situation assessment necessary to sup-
port operators. With ongoing research into machine-learning based alarm generation
and MFM based counter action planning, the proposed methods provide the core
functionality for establishing a comprehensive operator support system, which can
relieve operators from the repetitive task of filtering out relevant events and provide
assistance for efficient mitigation of abnormal situations.



Resumé

Moderne industrianlaeg er meget atheengige af automatisering for at gge energimaessig
og gkonomisk effektivitet, men menneskelige operatgrer har til opgave at fore tilsyn
med anlegget og gribe ind, nar der opstar unormale situationer. For at bestemme,
hvorvidt og hvordan man kan afbgde en unormal situation, giver kontrolrum et stort
antal sensor- og statusoplysninger til operatgrerne, og alarmer er beregnet til at hen-
lede operatgrernes opmeerksomhed pa situationer, der kreever gjeblikkelig handling.
I virkeligheden kan maengden af information, der gives til operatgrer, reducere oper-
atgrernes fokus og forhindre dem i at bevare et overblik over situationen. De mest
alvorlige situationer, der overbelaster operatgrer med information, kaldes for alarm-
byger. En alarmbyge opstar nar et stort antal meldinger praesenteres for operatgren,
der kraever gjeblikkelig opmaerksomhed. I de mest graverende situationer har oper-
atgrer en tendens til at ty til behandling af symptomer sa hurtigt som muligt for at
reducere antallet af alarmer, selvom det ville vaere mere effektivt at analysere helheden
af forekommende medlinger og behandler underliggende hovedarsager. At identificere
disse hovedarsager fra en stor maengde tilgaengelige data og at forsyne operatgrer med
konteksten af, hvordan forekommende alarmer haenger sammen, kan reducere risikoen
for overbelastning af operatgrer og sikre effektiv og sikker anlaegsdrift.

Dette arbejde bidrager med en tilgang til operatgrsupport baseret pa en funk-
tionel repraesentation af procesfunktioner og driftsmalene i Multilevel Flow Modelling
(MFM). MFM er en etableret modelleringsmetodik til repraesentation af drifts- og pro-
cesviden, der er anvendt til procesdesign og diagnose i en reekke industrielle omrader.
Den kvalitative diagnose i MFM letter identificeringen af alle mulige fejlscenarier i
en given situation. To vigtige aspekter overvejes i dette arbejde: opretholdelse af
korrekt arsagsanalyse baseret pa alle forekommende alarmer fra anlsegget og at sikre,
at MFM-modellen, der bruges til diagnose, passer til den aktuelle anlaegssituation.

Med henblik pa den rigtige onlineanalyse udvikles et forbedret system for arsagsi-
dentificering med udnyttelse af ssmmenhangen mellem forekommende alarmer. Sys-
temet gger effektiviteten og analysehastigheden. Der defineres metoder til rangord-
ning af de identificerede hovedarsagskandidater for at give meningsfulde oplysninger
til operatgrerne. Ved at rangordne hovedarsagerne kan operatgrernes fokus rettes
mod at skelne mellem de mest sandsynlige grundarsager og fastlaeggelse af effektive
modforholdsregler.

Konfiguration og driftsmal for et anleeg sendres ofte pa grund under afvikling
af foruddefinerede driftsprocedurer. For at sikre, at den korrekte model bruges til
arsagsanalyse, bliver metoder til at knytte disse driftsprocedurer til MFM undersggt.
I industrielle omgivelser har operatgrer en tendens til at tilpasse driftsprocedurer,
baseret pa deres erfaring for at gge effektivitet og komfort. For at redeggre for disse
tilpasninger bliver der foreslaet en struktureret repraesentation af driftsprocedurer og



iv Resumé

en metode til validering af repracsentationen mod data af anlaegsdrift.

Alle de foreslaede metoder bliver demonstreret i casestudier af relevans for kemisk
eller petrokemisk industri. Kombination af den kvalitative modellering og arsagsanal-
yse i MFM med analyse af alarmer og meldinger fra kontrolsystemet i realtid letter den
kontekstuelle situationsvurdering, der er ngdvendig for at stgtte operatgrer. Sammen
med igangveerende forskning i maskinleeringsbaseret alarmgenerering og MFM-baseret
planleegning af modforholdsregler udggr de foresldede metoder kernefunktionaliteten
til udvikling af et omfattende supportsystem for anlsegsoperatgrerne, der kan friggre
dem fra gentagne opgaver ved at filtrere relevante begivenheder og at yde hjelp til
effektiv afhjeelpning af unormale situationer.
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CHAPTER 1
Introduction

Human operators are tasked with the supervisory control of most production plants in
process industry. Control rooms are designed to provide operators with all essential
information and remote control over the plant to ensure safe and efficient operations.
However, established control room systems are prone to overload operators with unfil-
tered information, especially during severe abnormal situations. The work presented
here contributes to a novel approach for operator support that aims at providing the
operators with more context and less raw information. Within this framework meth-
ods for causal analysis, root cause ranking, considerations for operating procedures,
and adaptation of the causal analysis are presented. In the following sections the
background and motivation for the project are detailed, followed by the summary of
research objectives of this project, and an outline of the thesis structure.

1.1 Background

Control rooms provide the central interface for human operators to interact with
a processing plant. They allow operators to keep an overview of the entire plant
from a relatively safe location through remotely accessible sensor information and
actuators. Early control rooms hosted a large number of analogue gauges and dials
as well as arrays of alarm indicators, with the operators tasked with interpreting and
tracing the states of the plant. With an increase in digital and distributed control
systems, instrumentation and remote control of components have become cheaper and
easier to implement. Digital control solutions and advanced control methodologies
increase efficiency and reliability of systems, but for operators they also significantly
increase the amount of information available and the need for contextual analysis.
Modern control rooms typically provide the operators with a representation of the
plant structure or process flow attributed with sensor values or trends accompanied
by an overview of discrete events generated by the distributed control system, such
as alarms, automated adaptations, and self-diagnosis (Koffskey et al., 2013).
”[Alarms are] audible and/or visible means of indicating to the operator an equip-
ment malfunction, process deviation, or abnormal condition requiring a timely re-
sponse” (ISA, 2009). While alarms are the most important notification to the human
operators with respect to safe operation of the plant, plants are inherently connected
and a severe deviation is rarely contained within one component of the plant. Severe
upsets are instead prone to propagate through the system leading to more and more
alarms as connected components and sub-systems become affected by the deviation.
If more than 10 alarms occur in a 10 minute time frame, it is deemed to dramatically
impact the operators capability to take informed decisions and the situation is char-
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acterised as an alarm flood (EEMUA, 2013). Operators constantly monitor the plant
for deviations and abnormal events, analyse their observation and evaluate the overall
situation to identify the need for action. If an action is required the operators identify
a plan of action, execute the mitigation plan, and continue monitoring the success of
the mitigation strategy. The majority of the operators’ tasks lies in the assessment
of the current situation, which is made increasingly difficult by the vast amount of
information available in the control room. With a large amount of unfiltered infor-
mation, situations tend to evolve, where operators start losing the overview and the
ability to thoroughly analyse the situation. In these situations implemented actions
focus on the most notable or justifiable situation, treating the symptoms rather than
the actual cause of an abnormal situation. (Hollnagel, 2002)

To reduce the cognitive load on operators caused by a large number of irrelevant
alarms, regulators as well as industry associations have defined guidelines for alarm
system improvement and management (EEMUA, 2013; IEC, 2014; ISA, 2009). Alarm
management encompasses a wide range of methods and approaches to improve the
performance of alarm systems. The major part of established alarm management is
concerned with removing unnecessary alarms and thoroughly analyse the relevance
of alarms. While this kind of analysis can be incorporated in the design process, it
requires a lot of time and expert resources to reiterate this process on an established
plant (Soares et al., 2016). In addition to the removal or redesign of alarms, the
dynamics of the system can be incorporated in the alarm configuration to only activate
alarms in a relevant context (Beebe et al., 2013). However, alarm flood situations are
unlikely to be suppressed by any of these approaches. Even well configured alarms
will be triggered in a large number due to the connections throughout the plant.
Therefore more analysis incorporating past data, operator knowledge and process
design knowledge is being investigated. Many approaches propose analysing recorded
incidents and available data from a long period of time, assuming that important
situations have emerged before and could be recognised in the future. (Wang et al.,
2016a)

This work contributes to an operator support framework based on a functional
model of the plant’s operating goals and physical flows, specifically Multilevel Flow
Modelling (MFM). MFM has the potential to not only represent known fault situ-
ations but also diagnose generally possible scenarios. In current control rooms, the
majority of operators’ attention is focused on filtering information about the system
and identifying the causal context of all individual process alarms and indicators.
With an increase in independently presented events, human operators tend to lose
the overall perspective and start treating events in isolation, disregarding the con-
nection between these events. In these situations, operators will struggle to keep up
with the incoming events, instead of identifying and executing an effective mitigation
strategy. Providing a support system that identifies the common cause of occurring
events and presents them in a coherent context, frees up operators’ capacity to make
effective, informed decisions. This operator support system is not intended to replace
human operators, but to relieve the repetitive task of information processing and pro-
vide operators with a short list of likely situation analyses. The levels of autonomy
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(Parasuraman et al., 2000) for operator support are described in Figure 1.1(a) for the
current state of the industry and the goal of the presented framework. The system
can then provide a complete analysis of tentative consequence for a selected scenario,
support the operator’s decision, and guide mitigation strategies. The building blocks
of the proposed framework are shown in Figure 1.1(b): The knowledge acquisition
relies on validated models (Nielsen et al., 2018a) and an approach of assembling the
plant model from validated library elements (Lind, 2017), to get meaningful results
from such a diagnostic system. The prognostic planning to offer guidance on mitiga-
tion strategies is being developed further with the approaches outlined by e.g. Song
and Gofuku (2017). The focus of the present work is on the real-time inference and
aspects of the situation evaluation, combining the functional modelling and causal
reasoning in MFM to analyse occurring alarms and events in a processing plant.

Level of Acquisi- Analysis Decision Execu- Knowledge
Automation tion tion Acquisition
Triggered 5 +
execution P !
. . Real-time Situation
Single solution 4 )
Inference Evaluation
Selected 3 + + \
alternatives l
Complete set 2 o + Prognostic
No assistance 1 o o o HEonie
(a) Levels of autonomy for current (o) and envisioned (4)  (b) Elements of the envisioned
operator support operator support system

Figure 1.1: Levels and autonomy and elements of the envisioned operator support

1.2 Objectives

This thesis summarises the results of a research project funded by the Danish Hy-
drocarbon Research and Technology Center (DHRTC), which was conducted in a
PhD program. The project setting provided a close collaboration with partners from
petrochemical industry. The work was carried out at the Technical University of Den-
mark contributing expertise in utilising operations knowledge and MFM for operator
support across industry domains.

Expanding on previous research into MFM based operator support, the goal is to
adapt and apply the methodology to the scale of real industrial plants. The main
objectives of this PhD project are to:

e compare the state of the art and best practise in decision support and alarm
management with MFM based real-time applications, identifying the benefits
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and open issues toward the application of MFM as foundation for a compre-
hensive alarm management and decision support tool.

e develop a method deducing plausible failure paths by combining the MFM rea-
soning with all observed alarms.

o identify actual failure paths to reduce the amount of information needed to
enable situation assessment by human operators.

e link operating procedures and MFM inference for on-line adaptation of the
model used for analysis.

¢ demonstrate of the proposed methods in industrial settings.

1.3 Structure of the Thesis

This thesis summarises the different aspects of the contributions as a collection of
scientific articles, which were submitted to peer-reviewed journals and conferences
throughout the course of the PhD study. The articles are appended at the end of the
thesis and form the main reference for Chapters 3 to 7 of the body of this work.

After this introductory chapter, Chapter 2 gives an overview of the main contribu-
tions, briefly summarising the submitted articles and detailing additional unpublished
aspects disseminated in this thesis. A review of the state of the art in alarm manage-
ment and decision support, with a focus on knowledge representation and acquisition
is given in Chapter 3. Previous implementations and on-line applications of MFM
are described and briefly discussed in the context of the present research project.

Chapter 4 describes the inference system implemented to determine possible sce-
narios. A new approach to leveraging the connection between events in alarm flood
situations for efficient causal inference is presented and the improvements are demon-
strated in a case study.

The representation and analysis of MFM models and the inferred propagation
results is described in Chapter 5. The extraction of an equivalent Signed Directed
Graph (SDG) from an MFM model as well as the merit of different visualisations of
the inference results are discussed.

To evaluate the current situation, approaches for ranking the most likely root
cause scenarios are discussed in Chapter 6. The direct interpretation of the qualitative
inference results as a connected graph, as well as approaches to generate diagnostic
Bayesian Belief Network (BBN)s are summarised and compared in a case study.

Additionally, the consideration of operating procedures and modes is examined in
Chapter 7. The link of operating modes and MFM models is examined for the entire
system as well as redundant subsystems to facilitate adaptation of the underlying
model used for inference. Furthermore, the representation and tracking of operating
procedure execution is discussed and validated on an industrial study.

Chapter 8 concludes the thesis with an outline of the perspective and possibilities
for the overall framework and the evaluation of the findings of this work.



CHAPTER 2
Summary of Main Contributions

An overview of the envisioned MFM based operator support system is described in
Paper C, together with a summary of previous work based on MFM and a positioning
of current research within the operator support framework. Within this project, two
main aspects are investigated to support the operator support system: First, an effi-
cient causal inference to reason about causes and consequences of observed events or
alarms is developed to provide information about likely root causes. Second, meth-
ods to include changes to the plant configuration based on operating procedures are
proposed to adapt the model used for reasoning and diagnose the correct execution.

In Paper A the proposed efficient inference system is descried and a first approach
to ranking the resulting root causes is suggested. A method to compare the underlying
MFM model to qualitative SDG is described in Paper D, which allows the combination
and comparison of established methods for inference and analysis. The combination
of inference results for causal analysis is discussed in Paper E. In Paper F, additional
methods to identifying the most likely root cause from the model or inference results
based on BBN are examined.

In Paper G, an approach to explicitly model the succession of steps in an operating
procedure in MFM is investigated. In contrast, a more versatile methodology to
represent an operating procedures as automaton and validate the nominal execution
against plant logs is presented in Paper B. Additional considerations how to represent
the configuration of redundant systems in MFM have not been published before and
are described in Section 7.3 of this thesis for the first time.

Journal Articles

(A) D. Kirchhiibel, M. Lind, and O. Ravn (2019b). “Dynamic Reasoning in Func-
tional Models for Multiple Fault Diagnosis”. Computers and Chemical Engi-
neering. submitted in April 2019

Qualitative process models, like MFM, provide an efficient representation for
causal analysis. By simulating the propagation of faults in the system root
causes and eventual consequences can be identified. This article presents an
efficient approach to infer causes and consequences for multiple alarms based
on a qualitative model in an improved reasoning system for on-line analysis.
Root causes are identified by the dynamic reasoning about observed faults and
a ranking of most likely root causes is proposed. The efficiency of the inference
and ranking methods is finally demonstrated on an industry process.
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(B)

D. Kirchhiibel, M. Lind, and O. Ravn (2019a). “Combining Operations Docu-
mentation and Data to Diagnose Procedure Execution”. Computers and Chem-
ical Engineering. accepted in Nov 2019 pending revision

An industrial plant can be operated in a variety of configurations, due to chang-
ing production goals or operating procedures. To ensure a correct diagnosis from
a qualitative process model, the model needs to follow configuration changes in
the monitored plant. Standard Operating Procedures detail when and how the
plant configuration is to be changed and are established during plant design
to ensure consistent and safe operation. Tracking the correct execution of a
procedure is relevant to both, detecting errors during procedure execution and
adapting diagnostic models. In this contribution, methods are described to
represent documented procedures as automata and to validate the procedures
against log files of the control system. A fast approach of detecting proce-
dure executions and action sets associated with procedure steps is proposed
and demonstrated in an industrial case study.

Conference Papers

(C)

D. Kirchhiibel, M. Lind, and O. Ravn (2019¢). “Toward Comprehensive Deci-
sion Support Using Multilevel Flow Modeling”. In: 5th IFAC Conference on
Intelligent Control and Automation Sciences. Belfast, UK: IFAC-PapersOnLine

Automating control rooms by incorporating design and operation knowledge
about the systems can significantly improve operator efficacy. Intelligent sup-
port systems should reduce the amount of information and provide more context
to the operators. The operators’ focus should be shifted from information acqui-
sition to taking informed decisions about mitigation steps. This paper describes
and positions the ambition for an MFM based intelligent human machine in-
terface to support operator performance. A brief review of the development
of MFM and its application to provide operators with decision support and
situation awareness is given, focusing on implementations directly utilising the
knowledge represented in MFM. Finally, current research efforts are related to
the envisioned comprehensive operator support system.

C. C. Reinartz, D. Kirchhiibel, O. Ravn, and M. Lind (2019). “Generation of
Signed Directed Graphs Using Functional Models”. In: 5th IFAC Conference on
Intelligent Control and Automation Sciences. Belfast, UK: IFAC-PapersOnLine

While MFM has been designed for operator support and applied to industrial
processes in chemical, petroleum and nuclear industry, it has not been directly
related to other frameworks for plant-wide diagnosis. SDGs have been shown to
be a viable method for plant-wide diagnosis that can incorporate both quantita-
tive information about the process condition as well as qualitative information
about the system topology and the functions of its components. However, their
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range of application in industrial settings has been limited due to difficulties
regarding the interpretation of results and consistent graph generation. This
contribution addresses these issues by proposing an automated generation of
SDGs of industrial processes in the chemical, petroleum and nuclear industries
using MFM; a functional modelling method designed for operator support. The
approach is demonstrated through a case study conducted on the Tennessee
Eastman Process, showing that MFM can facilitate a consistent modelling pro-
cess for SDGs.

D. Kirchhiibel, X. Zhang, M. Lind, and O. Ravn (2017b). “Identifying causality
from alarm observations”. In: International Symposium on Future I16C for
Nuclear Power Plants (ISOFIC) 2017. Gyeongju, Korea, pp. 1-6

The application of MFM for root cause analysis based alarm grouping has been
demonstrated and can be extended to reason about the direction of causality
considering the entirety of the alarms present in the system for more compre-
hensive decision support. Combining the causal analysis from multiple alarms
increases the efficiency of analysing connected alarms and provides a more com-
plete diagnosis. This contribution presents the foundation for combining the
cause and consequence propagation of multiple observations from the system
based on an MFM model. The proposed logical reasoning matches actually
observed alarms to the propagation analysis in MFM to distinguish plausible
causes and consequences. This extended analysis results in causal paths from
likely root causes to tentative consequences, providing a tool to not only iden-
tify but also rank the criticality of a large number of concurrent alarms in the
system.

D. Kirchhiibel and T. M. Jgrgensen (2019). “Generating Diagnostic Bayesian
Networks from Qualitative Causal Models”. In: 24th IEEFE International Con-
ference on Emerging Technologies and Factory Automation ( ETFA ). IEEE,
pp. 1239-1242

Causal analysis based on qualitative models provides a comprehensive set of
potential root causes. To properly diagnose a situation and deduce corrective
actions, however, it is important to identify the most likely root cause. This
paper investigates the translation of qualitative causal models and the root
cause analysis into BBNs to utilise efficient tools for probability inference. The
diagnosis results of a fault scenario of the Tennessee Eastman Process highlight
the feasibility of the principle approach in order to leverage the potential of
BBN.
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(G) D. Kirchhiibel, M. Lind, and O. Ravn (Jan. 2017a). “Representing Operational
Modes for Situation Awareness”. In: 18th European Workshop on Advanced
Control and Diagnosis (ACD 2016). Vol. 783. 012055. Journal of Physics:
Conference Series. DOI: 10.1088/1742-6596/783/1/012055

Intelligent operator support tools for complex industrial systems require knowl-
edge about the overall system structure and behaviour. The desired behaviour
of a complex system, however, changes due to operating procedures that re-
quire more than one physical and functional configuration. While functional
modelling, like MFM, can reduce the complexity of plant-wide models for di-
agnosis, these changing configurations need to be considered in the model for a
correct diagnosis and situation assessment. In this paper a consistent represen-
tation of possible configurations is deduced from the analysis of an exemplary
start-up procedure by functional models. The proposed interpretation of the
modelling concepts simplifies the functional modelling of distinct modes.

Unpublished Work

o Industrial systems frequently incorporate redundancy, typically due to economic
or reliability concerns. Section 7.3 discusses the relation of MFM and redundant
components. An extension to the means-end description of process objectives
in MFM is suggested to incorporate the constraints of redundancy, similar to
the resilience represented by voting OR gates in a fault tree.



CHAPTER 3
State of the Art

As described in Chapter 1, operators’ tasks comprise data acquisition, situation anal-
ysis, decision making and counter-action planning. Alarm systems currently provide
the main interface for operators to acquire information about the system, so a well
maintained alarm system is essential for effective plant operation (Rothenberg, 2009).
Additional systems to support operators have been proposed to aid the decision pro-
cess by supporting the situation assessment, decision alternatives or mitigation strate-
gies for a diagnosed situation. In this chapter an overview of research for improved
operator support in general and more specifically different approaches based on the
functional modelling framework of MFM is provided.

3.1 Improved Operator Support

Alarm management has been the subject of many improvement efforts especially in
chemical and petrochemical industry. This reflects in the guidelines and standards
defined for process industries, such as EEMUA (2013), IEC (2014), and ISA (2009).
Hollifield and Habibi (2006) and Rothenberg (2009) have compiled overviews of the
current best-practice in industry. However, the overview of scientific endeavours in
the field of alarm systems published by Wang et al. (2016a) reveals that the issues
related to alarm management are mostly researched independent of each other and
rarely as a whole. In this section a categorisation of scientific work from the last years
in topics of alarm management and decision support is given. Subsequently the most
relevant methods for representing the required process knowledge are compared with
respect to their applicability and the ways of generating the knowledge.

3.1.1 Alarm Management

As described by Rothenberg (2009) most aspects of alarm management are related
to a thorough revision and scrutiny of the existing alarm system to ensure that all
alarms actually entail some operator reaction and yield meaningful information. Dif-
ferent approaches to this problem are categorised in Figure 3.1 with considerations for
offline analysis of the configured system, on-line grouping of alarms, and establishing
logic constraints for filtering irrelevant alarams. The established approach of alarm
rationalisation is mostly an offline process that is meant to reduce the amount of nui-
sance or irrelevant alarms by redesigning the alarms. One approach to this problem
is reflected in the work of Charbonnier et al. (2014) and Soares et al. (2016), who
present statistical analysis methods to identify groups or clusters of alarms that move
together as a means of identifying redundant and possibly superfluous alarms since
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they inform about the same failure state. Hu et al. (2017b) present a comprehensive
framework that allows the analysis of overall alarm system performance. The frame-
work provides intuitive visualisation and analysis of "worst-actor alarms” occurring
most frequently and typically without direct implications for operations. To facili-
tate alarm rationalisation Hu et al. (2017b) implemented means to reduce chattering
alarms by redesigning alarm limits and delays. Another branch of research concerned
with nuisance or chattering alarms is the analysis of oscillations in the system. Es-
tablished alarm redesign would introduce pre-processing of the process variables by
dead-bands or counters to reduce this kind of alarms (Rothenberg, 2009). The work
of Duan et al. (2014), Landman et al. (2014), and Yang et al. (2014) aim to identify
badly tuned controllers or faulty actuators that lead to propagating oscillations in
the system. These efforts can help improve the performance of the alarm system by
reducing chattering alarms and are thus considered as offline redesign approaches in
the context of alarm management.

’ Alarm Management l
]

I l
Alarm / Plant (re)designl ’Alarm groupingl ’Alarm ﬁlteringl
» Oscillation analysis — Root cause — Plant state
Duan et al. (2014) Dubois et al. (2010) Beebe et al. (2013)
Landman et al. (2014) Folmer et al. (2014) Soares et al. (2016)
Yang et al. (2014) Guo et al. (2010)
Larsson et al. (2006) | » Component state
» Alarm rationalization Wang et al. (2014) Dubois et al. (2010)
Charbonnier et al. (2014)
Soares et al. (2016) —» Topology -+ Probability
Hu et al. (2017) E;;grzte ilt" 5120(123 31 1) Tchamova and Dezert (2012)
Schleburg et al. (2013)

L— Logical combination
Simeu-Abazi et al. (2011)

Figure 3.1: Research approaches to Alarm Management

As pointed out by Beebe et al. (2013) rationalisation and improvement of alarms
does not alleviate the load on operators sufficiently in critical situations, e.g. when
many correct alarms are triggered due to the propagation of abnormal states through
the system. Enhanced alarm methods such as alarm suppression, i.e. filtering, and
eclipsing or grouping are proposed to reduce the effective number of alarms the op-
erator is confronted with in such situations of alarm floods (Rothenberg, 2009). For
these methods it is relevant to consider the current configuration, i.e. the plant state
or operation mode, to exclude floods of false alarms caused e.g. by equipment un-
der maintenance (Beebe et al., 2013). Soares et al. (2016) outline the application of
their clustering method to identify such operation modes, identifying changing clus-
ters caused by changes to the plant configuration. In contrast, Dubois et al. (2010)
propose to use an explicit state machine for each component to determine whether its
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alarms are meaningful in a given situation. And Tchamova and Dezert (2012) propose
a fusion of probabilities of different alarm states for a variable, while Simeu-Abazi
et al. (2011) suggest defining fault trees with logical and temporal combinations of
alarms that correspond to actual failures to only report those to the operator.

By filtering out false or irrelevant alarms, a part of the occurring alarm floods in a
processing plant is eliminated. In situations of incidents, however, many true alarms
can be triggered as symptoms of a fault propagating through interconnected parts
of the system. Dubois et al. (2010), Folmer et al. (2014), Guo et al. (2010), Larsson
et al. (2006), and Wang et al. (2014) apply root-cause analysis to hide a number of
alarms related to a common root-cause and only present the operator with that initial
failure. The root-cause analysis is based on a representation of process knowledge,
such as fault trees (Dubois et al., 2010), temporal constraints (Folmer et al., 2014;
Guo et al., 2010), multilevel flow models (Larsson et al., 2006) and Bayesian networks
(Wang et al., 2014). Alternatively, alarm grouping by topological neighbourhood or
processing unit has been proposed by Laberge et al. (2014) and Schleburg et al.
(2013) respectively. In a similar fashion Basu et al. (2013) suggest a severity measure
to highlight alarms with a large temporal or spatial extent as requiring the most
urgent response from the operator.

3.1.2 Decision Support

Apart from improving conventional alarm systems, research into providing better
support to operators has been published in the recent years. The research summarised
in Figure 3.2 suggests incorporating automated methods to ease the operators’ task
of diagnosing the current plant state. Ideally, these systems are integrated with the
operator interface for on-line support. However, many of the methods described
here have not yet been demonstrated in real-time environments. Azam et al. (2014)
propose to track the development of monitored process variables and determine when
they will tentatively raise an alarm. Using connectivity information, the propagation
of component faults to those process variables is interpreted to pinpoint components
that are likely to fail soon (Azam et al., 2014). Zhu et al. (2016) propose the use of
data based probability of critical alarms occurring in a sequence of alarms to predict
their likelihood. The MFM based propagation analysis presented by Zhang (2015) is
applicable to cause analysis as well as enabling the prediction of consequences based
on the causal relations between currently triggered alarms and other parts of the
plant.

While root-cause analysis can be used to hide all connected alarms, independent
of the alarm system root cause analysis can also provide an additional diagnostic tool
for the operator. Dubois et al. (2010) propose the use of fault-trees, and Natarajan
and Srinivasan (2014) propose local fault-detection agents per component that are
coordinated by a global analysis agent to generate a root-cause presentation for the
operator. Bayesian networks have been widely proposed to determine the likelihood of
different root cause scenarios (Cai et al., 2016; Hu et al., 2015; Nguyen et al., 2016).
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I Decision Support l
I

! ! l
|Alarm predictionl |Root cause identiﬁcationl lCounter-action planning
— Trend tracking — Bayesian networks — HAZOP
Azam et al. (2014) Hu et al. (2015) Hu et al. (2015)
Cai et al. (2016)
— Propagation analysis Nguyen et al. (2016) +— Ontology
Azam et al. (2014) Basu et al. (2013)
Zhang (2015) — Fault trees
Dubois et al. (2010) L Multilevel Flow Model
L+ Probability of sequences Inoue et al. (2015)
Zhu et al. (2016) — Multi-agent system

Natarajan and Srinivasan (2014)

Figure 3.2: Research approaches to decision support in control rooms.

Based on the identified faults, guidance on mitigation or counter-action strategies
can be provided to operators. Hu et al. (2015) base their approach on a Hazard
and Operability (HAZOP) study of the system which are part of the design and
verification of a plant and link failure symptoms to causes and actions for remedy.
The diagnosed root cause can then be associated to the identified counter-actions
from the HAZOP study. Basu et al. (2013) derive linked ontologies of alarm types
and control actions on the assumption that alarms representing a similar fault require
a similar remedy. Inoue et al. (2015) propose a method based on the adaptation of
generic functional models to compensate for a given fault scenario providing operators
with a step-by-step operating procedure.

3.1.3 Knowledge Representation

Performing advanced analysis of alarms and improving the performance of the oper-
ator interface require knowledge of the process. Figure 3.3 categorises the methods
proposed for alarm management and operator support with regards to the knowledge
representation. Process connectivity and causality between process variables and
events are most commonly used in those methods, but a variety of approaches have
been outlined to obtain the respective representation. Ontologies present an alter-
native representation. Ontologies are an established concept of artificial intelligence,
where groups of similar properties are established to describe the relations between
elements. For the analysis, ontologically defined agents (Natarajan and Srinivasan,
2014), as well as linked alarm and control action ontologies to characterise alarms
(Basu et al., 2013) are suggested.

Considering fault states directly, fault trees establish a hierarchy of component or
subsystem faults contributing to a fault in the system. These can be based on the
combinations of possibly critical component states (Dubois et al., 2010) or integrate
additional logic and timing constraints of the fault occurrences (Simeu-Abazi et al.,
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Figure 3.3: Summary of knowledge representation methods by source of knowledge.

2011). Bayesian Networks, or BBNs are widely used to determine the likelihood of
a number of causally connected events. The structure of a BBN can for instance be
derived from a hierarchy of component-wise BBNs (Cai et al., 2016), a combination
of process topology and probabilities derived from data (Abele et al., 2013), or from
the causal paths identified in a structured HAZOP study (Hu et al., 2015).

While SDG andMFM do not represent probability, they facilitate the represen-
tation of complex causality throughout the process. The causality in a SDG can be
derived from different correlation analyses in data(Duan et al., 2014; Yang et al.,
2014), temporal constraints based on the sequence of alarms (Guo et al., 2010), or
process topology (Yang et al., 2014). With application in both alarm management
(Larsson et al., 2006) as well as for decision support (Hu et al., 2015; Inoue et al.,
2015; Zhang, 2015) MFM provides a versatile knowledge representation framework.
Similar to SDG, MFM represents causality between system functions but provides an
abstract formalisation connecting different process perspectives. A complete MFM
model incorporates process topology and operation knowledge (Inoue et al., 2015).
However, models based on process topology (Heussen and Lind, 2012), physical pro-
cess principles, and the hierarchical combination of validated sub-models (Lind, 2017)
have been shown to be sufficient for diagnosis.

3.2 MFM based Operator Support

As outlined in the previous section there is a large variety of knowledge representa-
tions applied to both alarm management and decision support. Out of the described
representations MFM has been applied to the majority of aspects of operator support
for on-line alarm management (Larsson et al., 2006) as well as for decision support
such as fault scenario identification (Zhang, 2015) and counter-action planning (Inoue
et al., 2015). While multiple approaches, like the BBN based diagnosis presented by
Hu et al. (2015), are in fact based on MFM, this section focuses on approaches di-
rectly applying MFM for different aspects of operator support. The chronology of the
respective publications is illustrated in Figure 3.4 and is also described in paper C.
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Figure 3.4: Chronology of MFM implementations for operator support and situation
awareness.

Lind (1991) presented the fundamentals for using MFM in automatic operator
support with an object oriented framework and generic cause and consequence rea-
soning called ABSTRACTIONS. Fang and Lind (1995) applied ABSTRACTIONS
for a real-time application with an interface to a pilot process for causal diagnosis
based on an MFM model. An alternative approach based on MFM was proposed
by Sassen et al. (1991), who implemented a hierarchical search through goals and
sub-goals in the means-end hierarchy of MFM. The same concept was adapted by
Takizawa and Monta (1996) in tracing faults to a specific flow structure in the hierar-
chy and identifying the fault from inconsistencies between the fault propagation and
sensor observations. With the focus on decision support Gofuku and Tanaka (1997)
proposed to extend the functional model with operational knowledge, including alter-
native behaviours of sub-systems. By incorporating this operational knowledge into
the abstract representation of MFM they established a quantitative simulation based
on Hybrid Phenomena Theory to facilitate quantitative prognosis.

Larsson (1996) demonstrated the application of an MFM based expert system
implementation for alarm analysis and sensor validation. The system employed cause
analysis to distinguish primary alarms, close to the root cause, and consequential
alarms associated with the fault propagating from the root cause. This system was
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designed as an interactive console querying responses from the operator to evaluate
states of MFM functions. In extension of this work Dahlstrand (1998) considered
a fuzzy assignment of alarm states and propagated states to account for inconsis-
tent alarm configurations, making the system more robust against chattering alarms.
Based on the causal analysis of alarms Dahlstrand (2002) proposed to identify the
minimal set of root causes consistent with all observations in the system, which could
be determined by removing inconsistent edges in a dependency graph of all possible
states derived from the corresponding MFM model, similar to the on-line propaga-
tion established by Lind (1991). Even though the MFM modelling of functions and
goals had been well established, Petersen (2000) identified the need for a distinction
of different causal relations, defining direct and indirect influence as well as defin-
ing a comprehensive set of propagation rules based on the patterns in MFM syntax.
Larsson et al. (2004) expanded on the refinement of causal relations by introducing
a dynamic adjustment of causality based on a pairwise correlation between the vari-
ables corresponding to adjacent functions. As only the causal relation is adapted the
fundamental model is maintained and adapted to the current operating mode (Lars-
son et al., 2004). Ouyang et al. (2005) used MFM to successfully diagnose different
design accident scenarios of a nuclear reactor, validating the process representation
and propagation method. Most recently Wang and Yang (2016) proposed an expert
system implementation derived from an MFM model to determine minimal root cause
sets, similar to Dahlstrand (2002) with the addition of information about common
operator mistakes to verbalise the diagnosis. Zhang (2015) presented the most recent
set of propagation patterns for cause and consequence analysis to support operators
situation awareness in nuclear power plants.

Leveraging additional operational knowledge to extend MFM models (Gofuku and
Tanaka, 1997), Gofuku (2011) proposed a purely qualitative approach to generate nat-
ural language explanations for the diagnosis. Inoue et al. (2015) carried the concept
of MFM and operational knowledge further to automatically generate counter-action
procedures.

3.3 Summary

Both alarm management and decision support are active research fields with a wide
variety of methods investigated to support the respective tasks. Among the discussed
methods, MFM stands out as having found the most versatile application across the
aspects of operator support to various degrees of maturity. With methods for alarm
design, alarm analysis, situation assessment and counter-action planning described in
literature, MFM is well suited for a comprehensive support system bridging all aspects
of operators’ tasks. While many contributions outline the principles toward this kind
of comprehensive system, independent of the methodology the challenge described by
Wang et al. (2016a) remains to create a framework that integrates different facets of
alarm management, data analysis and decision support.






CHAPTER 4
Reasoning System

The advantage of using qualitative rather than quantitative models for diagnosis is the
application of discrete states which significantly reduce the simulation space to run a
variety of scenarios. In a qualitative causal model the effects and causes of a deviation
can be identified by propagating it within the model. For operator support, causes
of observations available from the system can be analysed to determine common
root causes and present only this as the most relevant. Additionally, the model
can be applied to infer consequences of an identified cause or an intended action
on the system to evaluate the severity of a failure or the viability of a mitigation
strategy, respectively. A reasoning system is realised to provide the inference as well
as ensuring that the suggested scenarios are updated when observations change. An
updated reasoning approach for Multilevel Flow Model based operator support in a
real-time setting is described in this chapter. The outlined reasoning method and
case study are discussed in detail in Paper A.

Previous implementations of the MFM reasoning considered one evidence as the
trigger for analysis and used other evidences to prune the resulting cause or conse-
quence tree based on other evidence Zhang (2015) or compile a fault tree analysis
for a given evidence (Wang et al., 2016b). A new approach to propagation in causal
models is proposed that leverages the connection of the majority of occurring events
during alarm floods, with the intention of being applicable to on-line diagnosis. For
on-line application the method improves execution speed while maintaining the in-
ference up to date with the observations from the system. The reasoning system
is realized for dynamic inference to accommodate the model changing according to
the configuration of the system or to simulate the effects of deliberate changes for
counter-action planning.

4.1 Causal Inference

Multilevel flow models utilize the functional syntax to describe the system while
providing a causal representation of the system. Without the context provided by
MFM, causal relations are explicitly shown in a SDG. Each edge in the causal SDG
points from the cause to effect and is denoted with a positive or negative sign. A
positive sign indicates that an increase in the cause leads to a increase in the effect
while a negative edge indicates the inverse behaviour, i.e. an increase leads to a
decrease in the effect. The mapping between function-relation pairings in MFM to
Signed Directed Graphs is illustrated in Figure 4.1. The comprehensive definition of
cause-effect relations in MFM is found in (Zhang, 2015).



18 4 Reasoning System

—F
L1
F2
V1
L2
F3 b3 (b) MFM model of 3 tank process
3 F1 L1 F2 L2 : F3 13 {%
F4
v (¢) Signed directed graph (SDG) of 3 tank process with
(a) Simple 3 tank process positive (solid) and negative (dashed) propagation.

Figure 4.1: MFM and SDG representation of simple 3 tank process

To facilitate dynamic adaptation of the model, the reasoning system is established
as by dynamic propagation in the causal model. Qualitative states resembling the
alarm levels low-low / low and high / high-high are propagated along the causal
connections in the model. Both causes and consequences can be identified that way
by traversing opposite or with the direction of the causal relations respectively. The
propagation is constrained to a meaningful scope by the following limits:

1. Number of node occurrences in a path: The same node may occur with the same
state, considered special case forming a ”loop”. Inference of an opposing state
in the same path is deemed invalid.

2. Number of edge traversals in a path: Given above constraint, an edge can only
occur once in each traversed path.

3. Maximum path length is not restricted.

4.2 Inference Maintenance

Information from the plant is considered as evidence in the reasoning system, while
information generated by inference is referred to as assumptions. Both, an evidence
and an assumption, refer to a node, i.e. MFM function, and the qualitative state. For
clarity, inferred assumptions can be distinguished between cause direction and conse-
quence direction, concerning previous events and future events, respectively. Besides
the inference direction assumptions for causes and consequences are treated identi-
cally. Each new assumption is validated to comply with the scope of the analysis
by above constraints by the process outlined in Figure 4.2. If an assumption creates
a contradictory path it will be retraced. Since all inferred assumptions are causally
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linked to preceding assumptions, all assumptions that exclusively lead to a contra-
diction cannot be valid and the inference path will be traced back to an assumption
that supports other paths as well.

recurring
assump-

merge
conflict?

es
¥ no
no

= = 0

Figure 4.2: Validation process for assumptions

Any valid assumption is further evaluated with respect to already generated as-
sumptions to utilise the connections between during propagation already. As the
evidence from the plant may evolve over time a recursive devalidation scheme is put
in place to keep the inference results synchronised with the actual plant situation.
The remainder of this section details the procedures and constraints for merging and
devalidation.

421 Merging

Propagating causally connected evidence e; an es will lead to the inference of identical
assumptions a; and as. Given that a; and as were inferred by traversing the same
relation, further assumptions based on either a; or as will be identical as well. To
ensure that the inferences are complete and consistent the merging cannot create
contradictions, nor can it omit results that would be valid.

The merging procedure is based on the pre-existing assumption a; being fully
propagated when the merge with candidate as is evaluated. The causal tree origi-
nating from a, is described by the tree 7,, = {A1, J1} with the sets of assumptions
Ay and justifications Jy, where each justification j € J describes the preceding as-
sumption and traversed relation for the corresponding element in A;. A; contains the
disjoint sets of valid assumptions A, and contradicting assumptions A.. To preserve
consistency the inference path to as, P,, = {Az,Jo} cannot contradict or create a
loop with any part of 7,,. Effectively this is guaranteed by prohibiting that any of
the functions traversed in P,, occur in A,. In the same fashion, the completeness is
verified by ensuring that the functions F,. covered by contradictory assumptions in
A, actually occur in P,, or A,. If the merging candidate is found to be consistent
and complete by this validation the inference paths are linked by effectively replacing
ap with a; in the inference path P,, and thereby adding 7,, to the inferences from
€9.
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Figure 4.3: Exemplary merging situation. Evidence (green), assumptions (yellow) and
contradictions (red) are illustrated. Contradictions are labelled as negation (!) of the
assumption they contradict, and subsequently retraced. Retraced assumptions (*)
are not part of the valid result.

4.2.2 Devalidation

In the effort of maintaining only valid and relevant results the devalidation mechanism
outlined in Figure 4.4 is implemented. The previous assumptions or evidence support-
ing an inference are stored with the inferred assumption as justifications. Whenever
the justifications change, the validity of supporting assumptions or evidence is eval-
uated and no longer justified assumptions are accordingly devalidated. Through the
inference path the devalidation will propagate further until reaching an end point.
A devalidated assumption that does not justify any other inference is then removed
which ensures the reliable removal of irrelevant or invalid assumptions.
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Figure 4.4: Devalidation logic for result clean-up

4.3 (ase Study

To validate the advantage of the proposed method an emerging situation in the Ten-
nessee Eastman benchmark (Downs and Vogel, 1993) is analysed. The data is based
on the control strategy suggested by Ricker (1996) with the simulation data avail-
able at Ricker (2019). The situation is described by the alarm log in Figure 4.5(a).
To evaluate the reasoning performance identical implementations of the propagation
with and without the merging mechanism are compared with the result shown in Fig-
ure 4.5(b). While the propagation took slightly longer with 8% increase in execution
time for an individual fault due to the additional checks introduced by the merging
algorithm, execution time was reduced by up to 29% for subsequent evidence. The
number of assumption repetitions is consistently reduced by the merging algorithm.
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Figure 4.5: Scenario and performance results of the case study
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4.4 Summary

The presented method efficiently utilises the connection of events in emerging abnor-
mal situations like alarm floods. By combining propagation paths during the result
generation the execution time and size of the resulting graph are consistently re-
duced when the analysed events are connected. As recurring and connected paths
are directly related in the generated results this method also decreases the effort of
identifying common causal paths between occurring events as these emerge naturally
from the structure of the results.



CHAPTER 5
Analysing Models and Results

Using qualitative models for causal analysis and prognostic inference provides a com-
prehensive set of possible causes and consequences. MFM models are applied in sup-
port tools for design (Rossing et al., 2010; Us et al., 2011) and diagnosis of industrial
plants (Larsson et al., 2007; Zhang, 2015). By comparing the model to established
methodologies for propagation analysis like fault and event tree analysis the model
can be validated (Nielsen et al., 2018a).

This section describes graph interpretations of both MFM models and results.
First, the extraction of a SDG with equivalent causality from an MFM model is de-
scribed, according to paper D. Then the visualisations of the inference results for
comparison with fault and event trees, as well as a combined visualisation first pre-
sented in paper E are discussed.

5.1 Multilevel Flow Models as causal graphs

Causal process representations as SDG have been demonstrated as knowledge repre-
sentation for qualitative diagnosis (Peng et al., 2014; Wan et al., 2013). However,
generation of SDGs is not straightforward and the diagnosis is usually limited to pro-
cess variables with relations that can be described mathematically or identified from
data (Yang et al., 2012). MFM on the other hand facilitates structured modelling of
the process based on the process understanding.
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Figure 5.1: Representation of Signed Directed Graph (SDG) equivalents of basic
MFM relations. The arcs in the SDG represent positive (solid) and negative (dashed)
propagation.

The vertices of a signed directed graph typically correspond to process variables
such as actuated and measured variables. The arcs are directed from ’cause’ to ’effect’
with the sign denoting how deviations propagate. A positive state on a vertice results
in a positive state along a positive arc and a negative state along a negative arc. In
contrast the propagation in MFM is defined by the patterns of functions and relations
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connecting them, defined in a rule set (Zhang, 2015). Since the majority of model
patterns in MFM propagate in a linear way comparable to the signs of an SDG, it
is possible to generate a SDG from a given MFM model. Figure 5.1 illustrates a
mapping of the most common MFM patterns into the respective SDG.
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Figure 5.2: MFM model derived from plant topology and process understanding

To diagnose abnormal situations in the plant, the MFM model is linked to the
process by adding an attribute to those functions that correspond to process variables.
The explicit syntax of MFM contains a number of functions that do not correspond
to process variables, in the corresponding SDG only vertices in set I reflect process
variables. The MFM equivalent graph (V, E) can be reduced to a SDG of process
variables by the two steps shown in Figure 5.3(a), similar to the reduction scheme
presented by Kramer and Palowitch (1987). First, leaf nodes identified by in-degree
0" = 0 or out-degree 3~ = 0 are recursively removed, as they do not contain any
information regarding the causality between process variables. Second, intermediate
nodes are iteratively contracted by removing the node and replacing its connected
edges by all combinations of entering and leaving edges. The sign of each new edge
is determined as the product of the original edge sign. The resulting graph describes
the same causal relation between the monitored variables as the MFM model, but
omits any additional elements introduced by MFM.

Generating a signed directed graph from an MFM model enables the use of graph
theory for structural analysis of the causal model, as well as the direct application
of SDG approaches to diagnosis and a comparison of models and results between
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the methodologies. The case study in paper D illustrates the comparability using
an MFM model representing the reactor of the Tennessee Eastman Process. which is
shown in Section 5.1. The red edges in Figure 5.3(b) correspond to reaction dynamics
that are not modelled in MFM but had been considered by Ma and Li (2017). Apart
from the reaction aspect not yet regarded, the MFM model provides an accurate
equivalent to the differently derived SDG.

Step 1:
whilev; € V\I; 8 (v;) = 0vO ™' (v;) = 0
do
V+«V \ (5
end while
Step 2:
while v; € V \ I do
for et € B; et = (U v;) do
fore” € E; e~ = (v;v,) do
if v,, # v, then
e* = (U Vp)
E+ Fue*
end if
end for
end for
V<V \ [
end while

(a) Reduction algorithm used to obtain a graph
featuring only monitored nodes. V, I, and E are
defined as the sets of nodes, monitored nodes and  (b) Signed Directed Graph generated from
edges, respectively MFM model

Figure 5.3: Reduction algorithm for MFM derived SDG and reduced SDG for the
reactor of the Tennessee Eastman Process

5.2 Visualising inference results

To provide the MFM based reasoning as a tool for a variety of applications, a software
implementation with a range of output formats for the inference results has been
developed during this project. In previous work with MFM based diagnosis different
approaches to the analysis of inference results have been used, where the majority
of analyses interpret the results as a fault or event tree. A tree structure of possible
causes leading to a detected event or of possible consequences of said event is generated
from the inference (Wang et al., 2016b; Zhang, 2015). An alternative is to represent
the MFM model as a dependency graph with the causal connections between all
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possible states for each function. Based on the inference, the contradictory states and
causal relations in the dependency graph are removed (Dahlstrand, 2002), enabling
a comprehensive analysis of the combined plant state. The newly implemented user
interface provides three basic views: a connected graph view and a tree view for either
causes or consequences, and a combined graph of all inferences.

The improved inference system described in Chapter 4 reduces the majority of
redundant inferences. The structure of these inference results can be directly viewed
as a connected graph, where overlapping propagation paths appear as one since they
are merged. A direct causal path between two observations can be readily identified
from one propagation direction, as either the cause or consequence paths will overlap.

While the merging increases the reasoning efficiency, it requires the traversal and
analysis of the results to derive the equivalent of a conventional fault or event tree
that explicitly considers the propagation paths by which a specific event affects the
system (Crowl and Louvar, 2011). To derive a complete tree structure from the
merged inference results, each merged node is replaced by a copy of the original
node. Copying the node recursively copies the entire inference tree derived from that
node, yielding multiple versions of the identical inference steps. The developed user
interface provides two ways of viewing the inference results as cause or consequence
trees: A collapsible tree view to facilitate the investigation of the inference path,
similar to a directory tree on a computer, and a graph output of the expanded tree
for visualisation and comparison to fault trees.

tra2:low tra9:high
L tra6:low tralO:high
bal2:leak bal3:normal
tra7:high L bar_bal3:breach
trab5:low sto2:high
t sou2:low L tra8:high
tral0O:low L sou3:high

bal3:normal

L bar_bal3:breach

sto3:1low
L tra9:low
L sto2:1low
L tra8:low
| (b) Combined graph with
sou3:low contraction. Edges labelled
(a) Tree views of cause analysis. with respective length.

Figure 5.4: Tree views of causes and combined inference for the watermill example.
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To further support the analysis of causes and consequences together a combination
of both inference directions is considered, similar to a dependency graph (Dahlstrand,
2002). As described in paper E this combination enables the interpretation of causal
direction from the paths in the resulting directed graph, while only representing the
relations and states relevant to the current situation. In addition to the combination of
cause and consequence inference outlined in paper E the developed software contracts
propagation paths that do not contain any evidence or branching points to make
the graph more readable. To produce the combined graph, the inferred results are
projected into a graph with distinct vertices for pairs of MFM function and inferred
state, e.g. "sto2:high” and ”sto2:low” are distinct vertices, whereas two assumptions
corresponding to "sto2:high” are reflected by one vertex only. All edges are initialized
to length 1. The contraction is applied iteratively to any vertex in the combined graph
that has in-degree 7 = 1 and out-degree &~ = 1, i.e. only one propagation path
through these assumptions is possible. By contracting a vertex, the previous and
following vertex are directly connected by a new edge maintaining the direction and
with the combined length of the entering and leaving edge of the contracted vertex.
The combined graph facilitates the analysis of relations between multiple alarms and
inferred root causes and final consequences, while maintaining a readable size by
contracting intermediate propagation paths.

bal2 bal2

o
o B ) [

o B B

= LB | O

(a) Cause graph (including dashed relation) and high  normal  low  breach evident fail
cause tree (including dashed nodes) (b) Consequence graph

h I
=N

Figure 5.5: Graph representations of cause and consequence inference for watermill
scenario.

Figures 5.4 and 5.5 provide examples of the different result formats for a fault
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scenario of the watermill described by Lind (2011), the model and inference of this
scenario are described in detail in Paper E. Two faults are observed: "tra9:high”
corresponding to a high flow of water onto the water wheel and "tra2:low” representing
a low intake of wheat for grinding. Figure 5.5(a) shows the close correspondence of
the merged result graph and an expanded fault tree: replacing the dashed relation
to the merged inference ”bal3:normal” by the copy shown with dashed frame yields
an expanded tree. The common root cause is found to be loss of water at the water
wheel, e.g. by the water spilling over rather than moving down with the buckets of
the wheel. There is no overlap in the inferred consequences for the two observations,
so the consequence graph is in fact an event tree.

5.3 Summary

To facilitate the further analysis of MFM models and the causal inference results,
both can be represented as graphs. The conversion of an MFM model to a SDG re-
flecting the same causality has been shown to provide the means to efficiently define
a consistent model without the need for qualitative information. The graph represen-
tation of the model enables the comparison with related publications using SDG as a
knowledge representation and further supports application of graph theory, such as
structural analysis of connectivity.

Representing the inference results as a fault or event tree supports the analysis
usually performed for risk assessment (Crowl and Louvar, 2011; Hu et al., 2015). The
combined graph provides an overview of the causal paths and potentially emerging
situations, allowing the analysis of meaningful connections between occurring alarms.



CHAPTER 6
Cause Ranking

Too much information overloads operators, reduces their capacities for thorough sit-
uation assessment, and leads to inefficient reactions and mistakes (Hollnagel, 2002).
Root cause analysis can support operators to make sense of a large number of alarms
and events by identifying the origin of the abnormal situation. A qualitative rea-
soning system can generate an exhaustive set of possible scenarios to explain given
observations from the physical system. While it is desirable to consider all possi-
ble scenarios to ensure a thorough situation analysis, filtering is required to support
operators in their decision process rather than adding on to the large amount of infor-
mation provided. To focus the operators attention on the most likely scenarios, this
chapter outlines a number of approaches to ranking the root causes proposed from
the qualitative reasoning system.

Previous work using causal models for root cause analysis suggested to rank root
causes based on e.g. the timing of analysed events (Larsson et al., 2006), Bayesian
Network analysis (Hu et al., 2015), and the comparison of inferred consequences with
sensor trends (Maurya et al., 2007) or relative sensor deviations (Arroyo Esquivel,
2017). Based on the qualitative reasoning implemented forMFM some ranking ap-
proaches are investigated. The proposed improvements to the qualitative reasoning
inMFM produce a connected result graph that combines the inferences of all observed
events. First, the direct analysis of the result graph outlined in Paper A is described.
Afterwards concepts for transforming either the causal model or the reasoning results
into a BBN for probabilistic analysis are summarized. The generation of BBN was
initially presented in Paper F. All presented approaches to root cause ranking are
demonstrated on a fault scenario of the Tennessee Eastman Process.

6.1 Distance based Ranking

While the fault propagation in causal models is performed in a deterministic manner
to reveal all potential causes and consequences, the propagation path can highlight
more likely causes. The underlying assumption is that each propagation step intro-
duces uncertainty in terms of the magnitude and likelihood of the influence. A cause
candidate is thus less relevant the longer the propagation path from any observation
is. With multiple possible causes for a fault, only one has to be present for the fault
to occur. However, a possible root cause that explains multiple observations is more
relevant as it is in line with the base assumption of few root causes being responsible
for a large number of observed upsets in the plant.

The distance based approach attributes a weight w, € [0;1) to the edges in the
result graph. An initial value is attributed to all observed state and degrades along



30 6 Cause Ranking

1.64

Figure 6.1: Visualisation of distance based ranking of identified causes ci,co, c3 for
observations ej, e with uniform edge weight w, = 0.95. Assumption labelled with
weights related to ey (below) and weights related to e; (above). Root cause weight
(left) determined as sum of evidence related weights.

the propagation path toward a root cause by being multiplied on each edge traversed.
Where the paths of multiple observations join the resulting node weight is determined
as the sum of the weights from incident paths. Normalizing by the number of present
observations, the weight of a root cause can serve as a global measure for importance.
Within a given scenario the sum of weights propagated by the algorithm shown in
Algorithm 1 allows the distinction of the most relevant causes based on the length
of propagation paths between observations and root cause candidates, as shown in
Figure 6.1

In addition to the structure of causal connections, MFM also provides a syntax
reflecting the design and operations intentions. The syntax can be leverage in the
weighting algorithm by varying w,. depending on the MFM relation associated with
the propagation. Relations within one flow structure generally reflect physical inter-
actions between process functions of one perspective. In contrast, the relations along
the means-end dimension and control perspectives typically reflect intended and de-
signed behaviour that provide the necessary functions to achieve the plant objectives.
By attributing a lower value to the propagations along flow relations the meaning of
the MFM syntax can be incorporated into the root cause analysis.
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Algorithm 1 Weighing causes

R+ o
wy < 0Va € A(G)
for (a € A(G),0 (a) =0) do
Wy — 1
M+ @
N « {a}
while N # @ do
B+ {be A(G),bny € E(G)} \ M
N+ N — ni
for (b€ B) do
Wp < Wp + We * Wy,
M+ M+Db
N+ N+b
end for
if 9% (ny) = 0 then
R+ R—I—n1
end if
end while
end for

6.2 Bayesian Networks for Cause Ranking

Bayesian Networks or BBNs are graph models of the dependency between states
or observations and the probability related to these dependencies. The Bayesian
Network consists of the graph structure, reflected by the causal structure in a fault
diagnosis context and the conditional probabilities for all relations in the structure.
The conditional probabilities are provided as conditional probability tables (CPT)
mapping all considered states of the parent nodes onto the states of the affected
node. Based on the a priori probabilities of root events assigned during design and the
conditional probabilities, the joint probability distribution for the entire system can
be determined. Observations from the system are taken in to give certainty on specific
states and the joint probability will be recalculated given the certain observations.
The order of probability of root events is then determined by the descending order
of probability or a combined measure of a cost function and likelihood. BBN have
been proposed as the basis for fault diagnosis based on either fault tree analysis
(Milford, 2006) or HAZOP studies (Hu et al., 2015). Other analysis on BBN can give
information about the most relevant observation to obtain in order to distinguish
closely ranking scenarios by the value of information metric. (Pearl, 1988)

MFM models provide a causal structure for the system, which can be condensed to
a representation of causality between process variables described in Section 5.1. The
structure of a BBN could be directly derived from such a causal model. However, BBN
are constrained to non-cyclic graphs while industrial plants typically contain control
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loops and process re-circulations with corresponding cycles in a causal representation.
This section describes two fundamental approaches to transforming causal models
derived from MFM into diagnostic BBN: A heuristic approach to removing cycles
from causal models and the conversion of cause reasoning results into a BBN.

6.2.1 Direct Mapping of Causal Models

In the framework of alarm analysis each variable in the causal graph can be in one
of three states: high or low alarm, or normal. A BBN can be created from trinary
nodes having these three states and corresponding CPT for the relations in the causal
model. Table 6.1 shows the CPTs for node v; causing v; with sign s;; on the causal
edge. The resolution of cycles in the causal strcuture is based on these assumtpions:

e Reciprocal influence between adjacent variables has a dominant direction, de-
fined by the process control and design during normal operations.

o Faulty sensors, defective controller implementations or broken actuators can
cause a fault in a control loop which will can be reflected as fault in the set
point of the actuated variable as symptom for a fault in the control loop.

Accordingly the recipe for resolving cycles in the causal model during BBN gen-
eration consists of the following steps:

1. Maintain only the dominant influence in reciprocal relations.

2. Break control loops by removing the influence from controlled to actuated vari-
able.

3. Generate BBN from remaining graph with CPT based on the edge sign and the
corresponding mapping from Table 6.1.

This approach, outlined in Paper F, considers the fault propagation as a logical
rather than a probabilistic process due to assigned conditional probabilities. The root
cause ranking is thus a balancing between the described propagation paths favouring
the least contradictory path for the given observations.

Table 6.1: CPT for node v; based on parent v;

8 =1 A 8ji =1 .
v, v, high normal  low v, v, | high normal  low
high 0 0 1 high 1 0 0
normal 0 1 0 normal 0 1 0
low 1 0 0 low 0 0 1
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6.2.2 Mapping of Reasoning Results

As the assumptions for the direct mapping remove some of the causal relations and
with that also remove propagation paths, the connection between occurring events
could be hidden from the diagnostic BBN through the suggested direct mapping.
Instead it seems more meaningful to analyse cycles based on a given observation. To
analyse if the cause tree for a given observation results in causal loops, the graph
needs to be traversed, which is equivalent to the fault propagation performed by
the MFM reasoning system. Consequently, the graph structure resulting from the
merging reasoning approach provides a meaningful basis for generating a BBN by
removing encountered cycles. During the propagation encountered cycles are marked
as causal loops which can be removed during BBN generation. The resulting BBN
is composed of binary nodes representing either a high or low faults of variables with
the states fault occurred and normal.

The possible causing faults for each node are connected with an OR gate, reflecting
that a fault occurred in either of the parents can lead to the node assuming fault
occurred. To incorporate a notion of probability the degrading weight of edges similar
to Section 6.1 can be applied to the propagation paths between considered variables.
This means, that the edge weights w,. considered for the respective MFM relations
are multiplied when contracting edges to produce the signed directed graph. The
resulting weight is then assigned as probability of the fault propagating by using the
nosiy-OR gate (Antonucci, 2011), which allows for the affected node to remain normal
even though a parent assumed fault occurred.

The propagation results are based on a specific fault for a variable and all nodes
in the resulting BBN refer to a variable and state. In contrast to the direct mapping
with trinary nodes covering the mutually exclusive states of a variable, a binary
BBN generated from a fault tree does not express the relation between mutually
exclusive states of the same variable. For instance, both a low and high fault on
a specific variable could occur in the BBN and their likelihood would be computed
independently since no relation describes that their joint probability is constrained
since they describe the same variable. Lampis (2010, p. 96 f) describes the use of
a n-ary parent node that links the probabilities of the possible states of a variable.
In the BBN generated from propagation results this can be applied to the identified
root causes by adding a trinary parent node with the states low, normal, and high.
Table 6.2 shows corresponding CPT for the node corresponding to high or low fault,
respectively.

Table 6.2: CPT for binary fault node with trinary parent node

trinary | , . trinary | ..
low high  normal low high high  normal low
fault occurred 0 1 1 fault occurred 1 1 0
normal 1 1 0 normal 0 1 1
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6.3 (ase study

The Tennessee Eastman Process (TEP)(Downs and Vogel, 1993) serves as a case study
for the proposed ranking approaches. The MFM model of the thermal behaviour,
excluding reaction dynamics, is shown in Figure 6.2 together with the derived SDG
model. The diagnosis is applied to disturbance scenario IDV12 with a high coolant
temperature in the condenser. During the emerging situation the most notable alarm
activations are F9 high and F5 low, determined by a 2% band around the steady state
value using the simulation data available from Ricker (2019).

(b) SDG generated from the MFM
(a) MFM model of the TEP. Mass (blue), pres-  model with positive (solid) and negative
sure (green), heat (yellow), and control flows (dashed) influences. Nodes are coloured
(white) highlighted. according to MFM perspectives.

Figure 6.2: Causal models of the Tennessee Eastman Process

The distance based ranking is performed in real-time on the emerging situation
with the alarm occurrences shown in Figure 6.3(a) with the top ranked root cause and
the actual root cause evolving as shown in Figure 6.3(b). The BBN based root cause
ranking is only performed on the two final alarms with the results shown in Figure 6.4.
The direct mapping (A) is achieved by removing minor reciprocal influences (red)
and control relations (yellow) in Figure 6.2(b). Methods Bl and B2 resemble the
generation of results without and with merging respectively. And the trinary parent
nodes are introduced in method C.
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No. | Pos. Weight | Top Cause Top
T Weight
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1 15 0.377 | Low reactor 0.735
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. 3 8 0.599 | High reactor 0.735
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ow 4 1 1262 |
5 T high High condenser
5 1 2119 coolant temp.
(a) Alarm log of condenser (b) Root cause rank of actual cause and top ranked
coolant fault root cause after each update step.

Figure 6.3: Scenario and results of distance based ranking
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Figure 6.4: Ranking results of the BBN approaches
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6.4 Summary

This chapter presents different approaches to ranking root causes based on the causal
models. On the one hand, the concept of incorporating ranking into the propagation
by degrading the value of a root cause with increasing distance from observations has
been integrated with the reasoning system. In the case study this ranking approach
showed good results and is flexible to incorporate more of the knowledge implicit to an
MFM model. On the other hand, the conversion to BBNs facilitates the inclusion of
experience values for fault probabilities and allows to leverage the established methods
and frameworks for BBN. While the distance based method is tightly integrated with
the MFM framework and reasoning system, BBNs provide a wide range of methods
for varied applications. A specific application may require the use of one or the other
method.



CHAPTER /
Operating Modes and Procedures

Industrial plants can be operated in a wide range of configurations. These config-
urations can reflect different production goals, maintenance, start-up, shutdown, or
emergency operations. Tracking these configurations and distinguishing them from
fault situations is important for a diagnostic system. In the proposed support system,
the dynamic reasoning is in place to facilitate the efficient on-line propagation. Since
the reasoning is evaluated on an MFM model at runtime, the model can easily be
adapted to match the current state of the plant.

Plant configurations related to operating modes have been investigated in the
context of MFM and linked to the hierarchical structure of the modelling framework
with a close connection to operating procedures (Lind et al., 2012). The relation of
operating procedures and MFM models is investigated further in Paper G. The work
proposes the implicit representation of the constraints for each mode as well as a con-
sistent modelling method for successive modes in an operating procedure at the plant
wide level. In plants with redundant sub-systems, the modes of these sub-systems
can change individually without affecting the plant wide operation. Consequently, a
concept for modelling the overall plant with the contributions of multiple redundant
sub-systems is needed.

As operating procedures are part of the plant design and documentation, this
knowledge is available to incorporate with the support system. In Paper B a rep-
resentation of operating procedures as automata is suggested. Experience from in-
dustrial plants shows, however, that design and implementation can differ a lot. In
practice, executed operating procedures deviate from the documentation, e.g. due
to inconvenient operations, better ergonomics, or operators experience. To correctly
distinguish actual errors in the procedure execution from these adaptations of the
procedure, a data analysis based validation of operating procedures is proposed.

This chapter first describes the relation of operating modes and the functional
hierarchy in MFM. Then, the approach to functional modelling of modes and proce-
dures presented in Paper G is summarized. The unpublished discussion on modelling
redundant sub-systems and components is presented. After that, the representation
and validation of operating procedures according to Paper B is outlined. Finally,
the suggested modelling and model adaptation approach is applied to an industrial
case study. The procedure validation and execution tracking is demonstrated on the
industrial case study.
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/.1 Functional aspects of Operating Modes

Configuration changes of a plant can be associated to different levels of abstraction in
the context of functional modelling. Lind et al. (2012) first established the hierarchi-
cal interpretation of operating modes according to the modelling hierarchy of MFM
and their importance to situation assessment. The interpretations are based on the
mapping between means serving the fulfilment of defined ends. Table 7.1 summarizes
the mode distinctions as outlined by Zhang (2015).

On the one hand a mode can be defined by an unchanged purpose, i.e. objective or
function, where only the supporting elements are adapted, this will frequently be the
case for switches between redundant systems, that could imply different functional
implementations with the same objective or identical physical components supporting
the same function in the overall system. On the other hand a mode can be defined by
changed purposes. Especially during operating procedures like start-up or shutdown
the overarching purpose will change throughout the procedures steps, where the same
physical components have to be brought to the state of being capable of realizing the
respective function during full operation.

Table 7.1: Mode types based on means-end relations in MFM

objective A mode is objective A mode is
T determined by the set 4 determined by the
function of functions achieving function objective that a given
a given objective. set of functions is
Multiple related to. A given
combinations of set of functions could
functions could achieve a number of
achieve the same different objectives.
objective.
function A mode is determined function A mode is determined
T by the set of physical 4 by the function that
structure components that structure a given set of physical
realizes a given components realizes.
function. Different The same set of
component sets could components could
realize that same realize different
function. functions.




7.2 Objective Related Modes in MFM 39

/.2 Objective Related Modes in MFM

In the context of operating procedures modes can be interpreted as stages with the
purpose of establishing a required plant state. The initial study by Lind et al. (2012)
showed that if the function or objectives of the plant change each mode requires
a different MFM model to be represented correctly. However, consistent functions
between modes are not easily identified in an approach that requires an independent
model for each mode, and ideally the intention of each mode would be incorporated
to explicitly show the mode boundaries by modelling elements. The study presented
in Paper G investigated the operating modes during start-up of a thermo-electric
power plant. The study revealed that the boundaries of each mode in the considered
procedure can be explicitly represented by control objectives in MFM. An approach
based on meta-models derived from a common reference model is proposed to facilitate
consistency between models of the same plant in different modes. This section outlines
the study and the proposed approach to representing operating modes in MFM.

7.2.1 Interpreting Control Function

Four different control functions are defined in MFM. While maintain and suppress
are static in the way that they preserve an existing state, the functions of produce
and destroy have a defined end state that can be related to operating goals of a given
mode. If the end state of one of the latter controllers is reached the control function
should logically progress from produce to maintain, and from destroy to suppress.
The control functions and the possible sequences are shown in Figure 7.1.

Intention action symbol
produce [—pT'pI—p] )
maintain [pT'pI—p] @
destroy [pT—pIp] &
suppress  [-pT—plp] &)
(a) MFM control functions and their action (b) Implicit (solid) and delib-
interpretation defined by Lind (2005): state erate (dashed) transitions, for

p or its absence —p transformed (7') into new
state instead of (I) the natural system be-
haviour.

controlled storage

Figure 7.1: MFM control function definitions and sequences

Based on above definitions of control functions only the end state of produce and
destroy type control implementations could serve as a boundary descriptor in MFM
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models. Additional boundary conditions can be established based on the implicit
meaning of the represented control objective. Producing, i.e. increasing, a storage
level for instance implies that there is an intended inflow into that storage, that could
be attributed with thresholds according to the operation specifications. The MFM
model could be analysed to explicitly reason about these constraints as shown in
Figure 7.2. The actual operating procedure can then be described by the transitions
between modes that follow the violation of any of the given constraints illustrated in
Figure 7.2.

&

tra_in bal_sto1 tra_out

Mode 1
ofs1
tra_sto1  sto1 :_.4 ;luc:-u‘;}?{1 -._1
mis1 1/
‘-"' ‘.snu‘1 | sin \'.
| (o a2 X)) |
YXF = 2F — Faon N tal stol a2
dV/dt = Tyor > 0
(a) Intended behaviour of a (b) Possible mode transition events with a single produced
storage with produce control storage

function

Figure 7.2: Interpretation of controlled function and resulting transition constraints

7.2.2 Modelling Multiple Modes

Gofuku et al. (2006) and Inoue et al. (2015) use additional operating information on
component behaviour and alternate functions of components in the system in addi-
tion to an MFM model to derive operating procedures. These alternate functions
reflect the available structure to function relations, i.e. the possible modes of oper-
ation for each structural component. In the simplest scenario such behaviours are
the binary states of a valve which is either open with the intention of transporting
mass, or closed with the intention to prevent mass flow, i.e. functioning as a barrier.
Other components might be entirely offline, removing entire flow structures and their
contribution from the system.

Based on that distinction the enable and disable control relations are considered
to identify whether a valve acts as a transport or barrier, corresponding to an enabled
or disable relation on the specific function. The same logic can be applied to entire
structures and the disablement is also propagated along the means-end dimension, e.g.
a disabled structure that would provide the means for an energy transport would be
interpreted as disabling the corresponding energy transport. Effectively the disabled
transport is replaced with a barrier function to maintain a valid model. By way of
disablement a reference model containing all possible flow paths and actuation points
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can be adapted for a specific mode. The adapted reference model can be seen as
a technical meta-model the content of which corresponds to the directly developed
model for a given mode. Each mode can then be described by a set of control functions
and relations that is adapted with respect to the reference model.
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(a) Flow sheet for filling of a generic power plant (b) MFM model of filling mode

Figure 7.3: Example of an operating mode for a generic power plant

One stage of the start-up procedure of a fictional thermo-electric power plant
is selected to illustrate how the proposed approach works. Figure 7.3(a) shows the
flow path during the early stage of power plant start-up when the boiler is being
filled with water. The boundary of this mode is represented by the produce control
function related to mfs:stol representing the water level in the boiler drum. The
direct MFM model of that mode is shown in Figure 7.3(b). The complete reference
model of the generic power plant in Figure 7.4 contains all possible flow paths and
implemented control loops and is adapted according to the control functions and
relations representing a specific mode.

Based on the set of control functions in ¢fs? - ¢fs4 and the corresponding control
relations describing the fill mode, the reference model is adapted, removing inactive
parts from the model for reasoning. The only resulting active flow path is in the
mass flow mfI from the inlet soul through the boiler to the vent valve tra5. Both
the boiler mass flow mfs2 and the energy flow efs? do not have any active flow
paths by being completely disabled or not having any open inlet, respectively. In
effect the direct model is identical with the active parts of the meta-model. The
main difference between the meta-model and the direct model is the retained energy
flow efs! which is not relevant to the operating mode. However, since no source
is connected in the energy flow and the majority of transports is disabled their is
effectively no propagation in the energy flow. This reflects that the filling is done
once the water level in the boiler is nominal.
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Figure 7.4: Meta-model of the fill mode. Red parts are inactive for reasoning, barrier
functions replace inactive transports.
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/.3 Modelling Redundant Components

MFM specifically represents the causality between functions fulfilled by the system.
A change to one function may affect the availability or capacity of other functions, e.g.
by the realizing component undergoing a maintenance procedure and thereby limiting
the possible load on the system. This section discusses alternatives of how to incor-
porate these adaptation into an MFM model and proposes a method of consistently
representing the functional contribution of redundant systems.

7.3.1 Aggregation of Redundancies

Connecting the physical components with their function in MFM requires to identify
the sensors and physical quantities that correspond to the function in the overall
system and can serve as indicators for fault situations. In systems with redundancy
multiple components realize the same set of functions and their contributions can
be combined to determine the state of the functions. Typically the functional repre-
sentation of a component consists of a number of causally connected functions with
different mass and energy perspectives.
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On the one hand relevant system functions can be realized by a varying set of re-
dundant components, reflected by the function to structure perspective of modes. For
each functional flow perspective the set of contributing physical quantities can thus
be determined and aggregated to reflect the correct qualitative state of the functions
as reflected in Figure 7.5(a). The function can be accurately represented in MFM
for a single unit, since the purpose of redundancy does not contribute to the pro-
cess functions but rather supports aspects of reliability and economic considerations
(Crowl and Louvar, 2011). However, the causality between functions of the same
component does not necessarily correspond to the causality of aggregated physical
quantities. For example the temperature and pressure are closely coupled in a closed
vessel but making any inference from an aggregated representation, e.g. averaged
temperature measurement and average pressure, will likely inhibit the detection of
individual faults and thereby prevent an accurate qualitative diagnosis.

On the other hand redundant systems are not necessarily identical and combi-
nations of different functional implementations can achieve the same purpose. In-
terpreting redundancy in this objective to function perspective the functions realized
by each of the redundant component contribute to a common objective as shown
in Figure 7.5(b). In this approach flow functions and physical quantities directly
correspond as each physical component is related to an individual functional repre-
sentation and the MFM model will yield valid inferences about individual deviations.
Determining the contribution and effects of faults on the overall system is then a
matter of qualifying the resilience of the objective fulfilment to loss of supporting
functions. This approach should be favoured as it eases the modelling and mapping
of physical components and makes it possible to consider a variety of functionally
different implementations fulfilling the same objectives.

Function | Function 1 | | Function 2 | | Function 3 |
| Component 1 | | Component 2 | | Component 3 | | Component 1 | | Component 2 | | Component 3
(a) Function to structure redundancy (b) Objective to function redundancy

Figure 7.5: Potential interpretations of redundancy in MFM

7.3.2 States of Objectives

The relation of fulfilling functions and objectives has an important role in MFM mod-
els and provides more flexibility to model a wide variety of systems. Assuming that



44 7 Operating Modes and Procedures

all redundant components contribute equally, the resilience of the objective to a fault
can be described by how many of the redundant implementations are unavailable,
i.e. failed or in a different mode. This approach fundamentally resembles the voting
OR gate established in reliability analysis and risk assessment where fault trees can
incorporate redundancy considerations by specifying how many faults in a redundant
design will affect the respective top event (Haasl et al., 1981). The voting OR gate is
commonly attributed with a fraction k/N interpreted as the number of simultaneous
faults k£ out of NV redundant components, where k& > N will cause the fault to propa-
gate further through the system. In MFM this consideration can be done from both
perspectives of either goals or threats. The perspective of threats effectively resem-
bles the consideration in fault trees whereas the goal perspective defines a threshold
above which operational performance is affected without posing a safety risk to the
plant. Accordingly different fractions will be meaningful for either of the perspectives.
Redundant units that are not in the correct operational mode to support the common
objective have to interpreted as not contributing to the goal and not preventing the
threat, i.e. deduce 1/N from the objective achievement and add 1/N to the risk of
the threat.

7.4 Operating Procedures and Data

As shown in the previous section, modes can be stages in an operating procedure
and the constraints of each of these stages can be explicitly represented in an MFM
model, as long as they refer to considered elements such as mass or energy levels and
flows. The knowledge about each stage’s constraints serves as a mechanism to adapt
the model, but requires an additional representation of the possible transitions once
any of the constraints are violated. In addition to constraints on physical variables
operating procedures frequently use time constraints to trigger the progression from
one stage to the next, i.e. the execution of a procedure step. In the context of alarm
management, sequence alignment and sequence identification have been proposed for
alarm flood recognition and diagnosis (Guo et al., 2017). Apart from alarms, control
systems log operations data about state changes, and automatic as well as manual
commands to the plant, which can be analysed to track operating procedures.

This section presents the method to represent and validate the constraints as-
sociated with the execution of the operating procedure introduced in Paper B. An
automaton representation of documented operating procedures is suggested. An ef-
ficient method of validating the procedure representation against operations data is
described. The validation of the procedure representation is then demonstrated with
data from the industrial plant.

7.4.1 Representing Operating Procedures

The steps of an operating procedure can be considered as transitions between states
of the plant. The whole procedure can be represented as a finite state machine or
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Figure 7.6: Example of an operating procedure represented in an automaton and an
event log excerpt

automaton where the modes are reflected as states and procedure steps are marked by
transitions. Each transition T' = {c, A} is characterised by set A of actions performed
on the plant as well as the constraint ¢ to be met before it is executed. Any specific
operating procedure taking the plant from one operation point O; to another O; is
reflected as a valid trace in the automaton (Lunze, 2004). During procedure execu-
tion intermediate states si,..., s, will be traversed, where each transition T, g, is
typically characterised by monitoring a single variable or a specified timespan before
proceeding. The initiating constraint of the procedure, Ty, ,, is related to the previ-
ously discussed constraints of mode O; and is likely a composed state described by a
number of interleaved process values and states. Figure 7.6(a) illustrates an example
of an automaton for e.g. a maintenance procedure that takes the system from mode
01 back to the same mode. An automaton can be established directly based on the
operations manual or similar documentation of the plant.

7.4.2 ldentifying Procedure executions

To determine the normal execution pattern of an operating procedure the event logs
from the plant can be used to establish a reference. Identifying the sequence and
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Figure 7.7: 1-out-of-N mapping of the alarm log with identified transition occurrences

timing of the normal execution could be done by aligning the event sequences of
all occurrences of the procedure in the logs, for instance by the method proposed
by Lai and Chen (2017). As pointed out by Guo et al. (2017) complete sequence
alignment is computationally expensive, instead they suggest a simple matching of
events in a given time window as a coarse indicator for sequence similarity. In line
with this approach, the action set of each transition are assumed to appear in a
narrow time window in the event log, which allows to create a shorter transition
log. The transition log is composed from the occurrences of complete action sets
within a defined time window. This is facilitated by a l-out-of-N mapping of the
event log based on the actions relevant to the procedure. Sometimes the recorded
executions consistently omit a small subset of the documented actions for a step,
e.g. due to operator habits, or undocumented procedure changes. To account for
these situations, the largest number of actions within the time window for a given
transition is accepted as representing the complete procedure step. Figures 7.6(b)
and 7.7 illustrate the translation from an event log through the 1-out-of-N mapping.
The transition log corresponds to the marked boxes for each action set with the first
time stamp first of any associated event.

The actual procedure executions are considered to be delimited by the first and
last transition in the procedure. If one of the delimiting transitions consists of only
an individual action, the sliding window approach is adapted again to rely on the
first or last pair of transitions, respectively. By way of ensuring a set larger than one
action the procedure delimiters are more likely to be distinguished from unrelated
isolated events. With the procedure candidates determined as the windows between
corresponding start and end delimiters, it is then possible to analyse the implemented
execution of the procedure from the transition log.

The sequence of transitions inside each execution candidate window represents
a trace in the automaton. If there are no discrepancies between the implemented
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Figure 7.8: Blockdiagram of procedure identification and validation approach

and documented procedure the majority of detected traces should be valid in the
automaton derived from the plant documentation. Otherwise the automaton and
tentatively the corresponding documentation have to be revised to match the iden-
tified trace. The timing statistics across all execution candidates following the same
trace can then serve as reference for the normal execution of that procedure. If the
procedure execution relies more on process variables than timing, the corresponding
variable thresholds could be considered instead. As the transition log is comparably
short and focused on the unit under investigation in contrast to the entire event log
the analysis of timing and averages can be done efficiently. The procedure execution
analysis outlined here is reflected in Figure 7.8
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/.5 Industrial Case Study

A sea water fine-filter system with four parallel units is investigated with regards to
its operational procedures and mode changes. As it is a redundant system where
the individual units can undergo maintenance independently the representation of
redundancy becomes very relevant. All four units are designed identically with a
capacity of up to 33 % of the total flow capacity, i.e. at least three out of the four
units need to be operational at all times. A flow sheet of one of the units is shown in
Figure 7.9. The filters share the supply upstream of CV1 and the outlet downstream
of CV4, as well as the water or air supply through FCV11 or CV17, respectively.
The filters accumulate particles in the filter bed during operation which need to be
back-washed once the differential pressure becomes too high, to prevent damage to

the filter bed.

Ccv8

cv1

JAN @

Hﬁ*{ﬁ > V14

cv17
Blower >

Figure 7.9: Flow sheet of the studied filter unit

The operations manual describes back-washing procedures for either water only,
or air scouring followed by back-washing with water. The procedure detailed in the
operations manual is described by the automaton in Figure 7.10 and the corresponding
action sets in Table 7.2. Per documentation, air-scouring will only be executed in rare
cases when the filter is severely clogged while normal back-washing has to be done at
least every 24 hours.

A severe plant upset that eventually leads to a safety system trip can be traced
back to this filtration system as one root cause. One situation in the filtration system
can arise from one filter unit getting stuck in the back-washing sequence and not
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Step Action set

s 3:0ff

al 1:0ff, 4:0ff, 6:On, 8:0On

al 3:0n, 6:0ff, 14:0f1t, 5:0n,
17A:On, 17B:0Oft

Scouring

a2 17A:0ff, 17B:On
ab 8:0ff, 7:On, 11:On
< | = b 1:0ff, 4:01f, 14:0ft, 3:On,

5:0n, 7:0n, 11:On
0 flow 12" cl 3:0ft, 11:0ff
@ cl @ o\t cl 5:0ff, 7:0ff
c2 1:On, 5:0n, 14:On, 3:0On
Figure 7.10: Automaton of the filter unit. c3 3:O0ff
Edges are labelled with the condition or ¢4 5:0ff, 4:0n, 3:0On

time in minutes (”) before the transition
occurs and the transition name.

returning to normal operation. Over a long period of time the other filters will
capture increasingly more solids to the point that eventually all three remaining
units would cross the threshold corresponding to a "high DP” alarm. The system is
designed to shift the load to the less clogged filters once the high differential pressure
limit is reached, until the newly back-washed unit is available again. In the long run,
however, the capacity of the clogged filters is not enough to maintain downstream
operation and an emergency shutdown is triggerd.

7.5.1 Modelling the Operating Modes

The first step to analysing the operational modes of the filter unit is to understand
the objectives of each mode. Normal operation and back-washing are the two main
operating modes the filter can be in. During normal operation the filter achieves the
target of providing filtered water to the downstream operation. The threat to the
filter operation is the filter clogging, which functionally corresponds to a high level
of captured solids, however, there is no measurable quantity directly representing the
clogging. The threshold for clogging and the critical property is instead linked to
the differential pressure across the filter. The implemented control system is set to
reduce the flow to on increasing differential pressure. Eventually the combination of
demanded flow and the captured solids will lead the differential pressure to surpass
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the set threshold and thus cross the boundary for normal operation. Figure 7.11(a)
represents the direct model for normal filter operation.

During backwashing the target is to remove the accumulated solids from the filter
medium. As shown in Figure 7.11(b) the differential pressure does not serve as an
indicator in this mode. As the mode is characterised by a destroy control function
its boundary is reached once the captured solids are removed from the filter bed.
However, there is no physical indicator to determine the progress of back-washing
which is also reflected by the operational procedure in Figure 7.10 being defined with
time constraints rather than a threshold on a process variable.

Provide filtered water sco  Too high DP

Water

Wat cvs cv3 Filter cvr
L [ Clean filter medium
A ()-GO —(X)
CV3 (tra) CV7 (tra) 9

Pressure

v,

PDT Filter clogged o

release (tra)
Captured solids,(sto) —

To filter Captured solids \release

Solids

Captured solids (sto)

tofilter Captured solids release

%)

(a) Filter unit during operation (b) Filter unit during back-washing with water
Figure 7.11: MFM models of filter unit in different operating modes

While the explicit boundary modelling in MFM is in principle feasible for this
system, the missing link to the physical system in case of the back-washing makes it
impractical. This suggests a higher merit of focusing on the automaton representa-
tion for mode transitions and maintaining independent models for modes with severe
changes in system objectives like the ones treated here. Additionally, the configu-
ration of the control functions is not compatible to establish a common reference
model, since the control purpose related to the captured solids varies depending on
the available physical indicators. The change from normal operation to back-washing
changes the objective of that specific filer unit. In contrast, the operating procedure
investigated in paper G works toward the same objective of establishing production,
successively providing the necessary functions toward that objective. From these two
investigations, it appears that procedures governed by changes of function toward the
same objective are well suited for the meta-model approach whereas a change to the
objective of a system favours a distinct MFM model per mode.

7.5.2 Modelling redundancy

During operation each filter unit is represented by Figure 7.11(a). All four filter units
share the common target of providing filtered water to the downstream process and
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the documentation defines that 3 out of 4 units need to be available to maintain
operation. In the MFM context this means that the target will be achieved as long
as 3/4 of the means-end related functions maintain the objective in a normal state.
For the threat of a clogged filter reflected in high differential pressure the operation
can tolerate one filter being back-washed and another one reaching the threshold by
shifting the load between the units. This means that also 3/4 threat activations are
necessary before the threat actually affects the overal plant. In the described scenario
this analysis could have enabled the early identification of the filtration system as a
bottleneck for the operability of the plant when one unit was stuck in back-washing
while the others started getting simultaneous "high DP” alarms.

7.5.3 \Validating the Operating Procedures
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Figure 7.12: Results of procedure identification and validation from event logs

The proposed method of event log analysis was applied for the back-washing
procedures documented for the system. The log file for the entire year 2017 for the
first of the four units was analysed. Within all execution candidates identified from
the first and last transitions the traces were grouped as shown in Figure 7.12(a). The
two most frequent traces represent first the back-washing with air scouring and second
the back-washing with water only. The validated automaton in Figure 7.12(b) was
established as the baseline for diagnosing the correct execution of the procedure. The
sequence alignment on a random sample of 50 out of 950 occurrences of back-washing
with air scouring additionally revealed controller set point changes in addition to
the valve switches considered in the action sets. No other events are consistently
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related to the procedure execution, which underlines the proposed methods adequacy
to establish a meaningful baseline.

As the operations manual specifies that a high differential pressure in a filter unit
initiates the back-washing, the configured "High DP” alarms should be considered
as an indicator for the start of the back-washing procedure. If there were a reliable
relation between the alarm and the procedure start they should occur at nearly the
same frequency during any given period of significant length. However, the results in
Table 7.3 show that this relation does not hold due to the interlock of the filter units
allowing only one filter to be back-washed at a time.

Event Alarm Procedure Start
Frequency | 1733 1009

Table 7.3: Occurrences of "High DP” alarm and back-washing procedures during 2017

/7.6 Summary

This chapter discusses the representation of operational modes and operating proce-
dures in the context of MFM. Methods for mode representation, relating redundant
components to MFM, and representing and tracking operating procedure executions
for model adaptation and diagnosis are proposed. The methods are applied in an
industrial case study of a water filtration system with four redundant units.

The case study highlights some difficulties of covering all aspects of mode tran-
sitions directly within MFM which supports the proposed method of an additional
automaton representation of operating procedures and mode transitions. The states
in the automaton can be linked to the respective models for each mode while the
transition conditions can be more comprehensively described in the automaton.

The case study further revealed that the representation of multiple modes by
adapting a reference model is best applied to modes with a consistent objective.
Modelling modes with changing objectives, however, the same approach does not
present any benefit in terms of modelling or application and independent models
should be favoured. To represent redundant systems, a function-object perspective is
identified to be the most versatile representation. The means-end relation can then
be attributed comparable to a voting OR gate to represent the design limits of the
redundant system.



CHAPTER 8
Conclusion

This project established and improved analysis and modelling methods for the sit-
uation analysis in industrial plants based on on-line events, i.e. alarms and control
system signals. A new inference method for causes and consequences in qualitative
functional Multilevel Flow Models has been proposed, which leverages the connection
of occurring events to improve computational efficiency. Various approaches to vi-
sualisation, interpretation and root cause ranking based on the inferred results have
been suggested and compared. Additionally, the implications of changes in the plant
have been investigated. Considerations for the adaptation of the qualitative model to
accommodate and track changes in the plant due to operating procedures have been
discussed. All suggested methods have been demonstrated in case studies with rele-
vance in chemical and petrochemical industry. In the following sections the project
is summarized in relation to the research objectives and a perspective on continued
research and application based on the findings is given.

8.1 Summary of the Project

The review of established alarm management and decision support approaches sum-
marised at the beginning of this thesis outlined the different knowledge representa-
tions applied across the proposed approaches in the domain. MFM has been identified
as the knowledge representation with the most varied applications, highlighting its
applicability for the proposed advanced operator support system.

To facilitate the real-time application of MFM an improved inference method has
been developed, that utilises the connection of occurring events and reduces repeated
computation of identical inference paths by merging those paths. The reasoning
system is implemented to cover both the causal inference and the updating of the
results, including the removal of no longer present observations and associated in-
ferences. Performing the reasoning on-line facilities the dynamic adaptation of the
model depending on the state of the plant. A research tool to produce and visualise
the results from the reasoning system has been implemented, which provides a suite
of representations of the results. In addition to traditionally considered fault tree
inspired representations a number of connected graph visualisations are presented
and discussed. A case study on the Tennessee Eastman process showed significant
improvements over previous implementations of the reasoning system in a developing
situation with connected alarm events.

In the effort to support operators in analysing occurring situations, the compre-
hensive list of causal scenarios generated from the qualitative reasoning has to be
condensed to a manageable list of meaningful situation assessments. This thesis sum-



54 8 Conclusion

marised two fundamental approaches to ranking potential root causes and providing
the most likely root causes. The first ranking approach calculates a relevance score
based on the sum of explained process events weighted to increase the score of closely
related causes over causes with a longer causal propagation path. The other proposal
is to transfer the qualitative model and inference results into probabilistic BBNs
opening the potential to incorporate prior knowledge on fault probabilities in the
diagnosis and determine other metrics developed for BBN. Both methods have been
demonstrated to favour the actual root cause in a developing abnormal situation of
the Tennessee Eastman process.

As operating procedures dictate changes to the plant operation they are also rel-
evant to a diagnostic system, that needs to be capable of following these changes as
well as being able to diagnose errors in the procedure execution in addition to the pro-
cess diagnosis. The relation of functional MFM models and operating procedures has
been discussed and a method for consistently modelling successive procedure steps
has been proposed. With the consideration of operating procedures executed on re-
dundant subsystems, e.g. for maintenance, the representation of each sub system at
a function level is proposed. The approach has been suggested to incorporate the
failure resilience of the redundancy within the means-end structure of MFM. Finally,
an automaton representation of documented operating procedures has been proposed.
To identify and incorporate discrepancies between documented and implemented op-
erating procedures introduced by operator convenience or experienced efficiency, a
data based analysis of the procedure execution has been presented. An industrial
case study showed the viability of the redundancy modelling. The case study demon-
strated the high efficiency of the proposed data analysis to establish a valid reference
for normal executions of an operating procedure. These methods provide the means
for tracking the plant state throughout operational procedures as well as the correct
execution of the procedure itself.

8.2 Perspectives for Functional Modelling based Operators
Support

Within the operator support system outlined in Chapter 1, this project contributed
with the real-time inference, the situation evaluation based on the resulting causal
analysis, and considerations for incorporating operating procedures and modes. The
proposed methods depend on the availability of valid MFM models representing the
relevant knowledge. The recent work in continuation of Nielsen et al. (2018b), (2018)
provides means of validating MFM models against simulation data or operator ex-
perience, ensuring the quality of the model. Lind (2017) outlined the principles of
providing modelling libraries based on validated sub-system models. These principles
are currently applied in the domain of petrochemical industry. In this project alarms
were assumed to be reliable indicators for faults in the plant. However, the difficul-
ties of proper alarm design and management highlight the need for more elaborate
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fault detection. Hallgrimsson et al. (2019) presented a machine learning approach to
dynamic fault detection. A quantitative approaches like this can improve the identi-
fication of fault states at a sub-system level and feed into the qualitative analysis at
a plant wide perspective as presented in this work.

In extension to the root cause analysis presented in this work, the operator support
system should provide the operators with guidance on mitigation strategies. Ongo-
ing work at DTU investigates the use of MFM models for counter-action planning.
The reasoning system could be further elaborated to combine the inference of plant
observations with possible counter-actions to get a qualitative forecast of a strategy’s
viability, which was not in the scope of this work. The work summarized in this
thesis comprises methods to apply MFM modelling and reasoning to analyse alarms
and operations data occurring in a control room on-line. The methods provide core
functionality required to develop an advanced operator support system.
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Abstract:

Human operators are in charge of the supervisory control of most industrial plants.
To provide meaningful support to the operators and avoid information overload root
cause analysis of alarm situations has been proposed. Causal graphs are used to
represent the cause and effect relations between parts of the system. Thus, the ways
faults, indicated by alarms, propagate through the plant can be analyzed. We present
an efficient approach to infer causes and consequences for multiple alarms based on
a causal graph. Root causes are identified by the dynamic reasoning about observed
faults and a ranking of most likely root causes is proposed. The efficiency of the
inference and ranking methods is finally demonstrated on an industry process.

A.1 Introduction

Industrial processing plants incorporate many interacting control loops and concur-
rent processes affecting the productivity and safety of the system. Any modern plant
relies on automatic control practices for individual components and processes. In con-
trast, plant-wide control often faces many uncertainties arising from the environment
and interconnected processes. Thus, human operators supervise the vast majority of
plants in the energy, petrochemical and chemical industries. To analyze an abnormal
situation, operators rely on alarm systems. These systems identify a deviation of
the process from the nominal operation parameters and respond by generating an
alarm signal about the specific deviation, recording the alarm signal, and informing
the operator about the raised alarm. To help the operators focus on the pertinent
deviations, rigorous alarm management is recommended for these industries, because
of the large risks associated with failures not being detected or not being reacted
upon EEMUA, 2013.

Alarm management has been developed in order to reduce the amount of irrele-
vant alarms. Alarm management procedures scrutinize the necessity and importance
of the most frequent alarms. Consequently, where possible, redundant alarms are

D. Kirchhiibel et al. (2019b). “Dynamic Reasoning in Functional Models for Multiple Fault
Diagnosis”. Computers and Chemical Engineering. submitted in April 2019.
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combined or removed. A well-maintained alarm system can avoid operator overload
during normal operation, since it is not affected by the most common alarm system
challenges: nuisance alarms caused by fluctuations in the process, standing alarms e.g.
due to parts of the plant being off-line, and ambiguous alarms which are not imme-
diately actionable by the operator (Rothenberg, 2009; Soares et al., 2016). However,
emergencies frequently generate cascades of true alarms throughout the plant that
overwhelm the operator with so called alarm floods. To cope with such situations, the
relationship between occurring alarms needs to be examined and compiled into con-
cise information to aid the operator in identifying the most relevant and immediate
threats. To ensure the safe operation of an industrial plant advanced alarm analysis
is necessary in addition to alarm management. (Beebe et al., 2013)

To help operators to quickly identify the relevant information during alarm floods,
advanced alarm analysis methods have been proposed. Historical data analysis has
been established as being a useful tool to predict certain critical situations, for exam-
ple by analyzing a sequence of alarms during an alarm flood,e.g. presented by Zhu
et al. (2016). However, a critical situation must be well documented and recorded to
provide sufficient data for the analysis and to subsequently recognize an equivalent
situation. The plant layout is a valuable source of information regarding the connec-
tions between different process units and the alarms linked to them. However, the
direction and nature of causality between deviations in connected process units is only
implicitly represented in the plant documentation (Schleburg et al., 2013). Causal-
ity allows a more accurate analysis of situations with many linked alarms (Rodrigo
et al., 2016). For an automated support system the causality needs to be represented
in a machine readable format that can efficiently be analyzed Signed directed graphs
(SDG) is an intuitive and machine readable representation of causality and can be
based on measures of correlation and causality as well as process documentation and
operator knowledge (Yang et al., 2014). Multilevel Flow Modeling (MFM) has been
proposed as a versatile process representation to analyze the causality of propagating
deviations in a plant (Lind, 2013), connecting the physical plant and operator tasks
in the analysis. SDG as well as MFM provide the means of diagnosing an abnormal
situation (Dong et al., 2010; Hu et al., 2017b; Wang et al., 2014). The causal diag-
nosis of a situation can help the operators focus their attention on the actual causes
of the situation rather than symptoms.

Performing advanced analyses of alarms and improving the performance of the
operator interface require knowledge of the process. Connectivity of system parts
and causality of influence between process variables are important in the context of
alarm management and decision support. Figure A.1 outlines methods proposed for
efficient knowledge representation. Ontologies of processes usually represent a classi-
fication of components that can be interconnected (Natarajan and Srinivasan, 2014;
Schleburg et al., 2013), but other approaches like linked ontologies for alarms and
control actions have also been proposed (Basu et al., 2013). Fault trees and Bayesian
networks (BN) are graphs representing causes and consequences, where fault trees
represent combinations of causes that lead to a specific consequence in a binary logic
and Bayesian networks represent the causal relation by conditional probability. Fault
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Figure A.1: Summary of knowledge representation methods by source of knowledge

trees are mostly based on an assessment of possibly critical states of a component
(Dubois et al., 2010) but can also integrate logical and time constraints (Simeu-Abazi
et al., 2011) between faults. BNs are widely used to incorporate operator knowledge,
e.g. in a hierarchy of component-wise BNs (Cai et al., 2016) or based on the results of
a structured Hazard and Operability Study (HAZOP) (Hu et al., 2015). Abele et al.
(2013) propose a combination of component ontology and learned probabilities from
historical data. Signed directed graphs (SDG) or their representation as adjacency
matrix can be generated from process topology and expert knowledge, or from process
data by a variety of correlation and causality methods (Yang et al., 2014). Guo et al.
(2010) suggest an SDG representing temporal constraints between alarms, assuming
that causality is reflected in the temporal succession of alarms. The functional HA-
ZOP used by Hu et al. (2015) is based on the causal inference in a multilevel flow
model. A complete MFM model combines process topology and operation knowl-
edge (Inoue and Gofuku, 2016), but a valid model can also be generated considering
the process topology as represented in a P&ID (Heussen and Lind, 2012) and basic
process principles (Lind, 2011). While all these methods have different advantages
and limitations, a range of alarm management and operator support approaches have
been proposed based on each of them (Wang et al., 2016a).

Even though root causes can be inferred based on both MFM (Larsson et al., 2004)
and SDG (Zhang et al., 2005), there is a need to accommodate dynamic changes to the
model (Kirchhiibel et al., 2017b). In this article we present a dynamic propagation
method to analyze root causes of multiple observations in a more efficient manner
developed for MFM model. Paper A.2 briefly compares the causal representation by
SDG and MFM. In Paper A.3 the proposed propagation method is described followed
by the proposed root cause ranking. In Paper A.4 the Tennessee Eastman process
(Downs and Vogel, 1993) is presented as case study and the set-up for measuring the
efficiency of the propagation is outlined. The results of the efficiency measurement and
the ranking approach are presented and discussed in Paper A.5. Finally, Paper A.6
summarizes the findings of this article and gives a perspective on further research and
future application based on the proposed method.
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A.2 Causal graphs

As outlined before, graph representations have been widely proposed as underlying
knowledge representation for causal analysis. Specifically, signed directed graphs
(SDG) or directed causal graphs (DCG) and Multilevel Flow Modelling (MFM) will
be briefly discussed here.

SDGs represent the causal interaction between process variables. Each node cor-
responds to one process variable, e.g. pressure, temperature, flow rate. The edges
are directed from cause to effect, with the sign + (or —) of each edge describing
an increase (or decrease) in the effect node when the cause node increases, or vice
versa. An SDG can be used to identify propagation paths of deviations in a process
variable. By traversing the graph backwards, i.e. in opposite direction of the edges,
causes for a deviation can be inferred, while forward traversal yields a tree of possible
consequences. Most approaches for alarm management or fault diagnosis perform
a backward propagation from each observed deviation, limiting the search e.g. by
defining a maximum path length (Arroyo Esquivel, 2017) or assuming a small num-
ber of unobserved nodes while all observed nodes can be used to validate or disregard
a proposed cause (Lv and Wang, 2007). Subsequently the identified root causes are
analysed by comparing the observations with forward propagated consequences or by
means of data-based methods (Lv and Wang, 2007; Wan et al., 2013).

While MFM also represents causal interaction in the system as a graph, the nodes
and edges reflect the functions of the system. These functions originate from the
design intention of the process. In an MFM model goals to be achieved and system
functions supporting the goal are hierarchically decomposed which is referred to as
the means-end dimension. The part-whole dimension reflects the decomposition of
each system function into basic material and energy flow functions. Figure A.2 shows
the function, i.e. node, and relation primitives available for modelling. (Lind, 2013)
The highest level of the hierarchy represents the purpose of the entire system which is
decomposed into interconnected structures reflecting necessary supporting functions.
To perform an analysis on a MFM model deviations of function states are propagated
along the graph based on connection patterns between the functions. Zhang (2015)
defines these patterns for both cause and consequence propagation. Further analysis
of the root cause candidates gained from backward inference has been proposed using
a database of common mistakes (Wang et al., 2016b), a ranking based fuzzy logic
(Dahlstrand, 1998) or the order of occurrence (Larsson, 2002)

Both MFM and SDG reflect the causality throughout a process plant. While the
nodes in an SDG can be mapped directly to process variables, MFM encodes process
variables by the semantic primitives for flows, levels, etc. Figure A.3 shows examples
of the mapping of MFM patterns to a SDG representation. Since each type of MFM
functions implies a specific behavior a pattern of two functions and their relation
reflects how failures are propagated (Petersen, 2000). Similar to a signed directed
graph (SDG) (Yang et al., 2014) two flow functions are connected by a relation, that
describes how the states associated with the respective functions affect each other.
The fundamental concepts of analysis by qualitative fault propagation and the method
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Figure A.2: Modeling primitives of MFM (Lind, 2011)

proposed here hold in both kinds of models (Yang et al., 2014; Zhang, 2015).

Similar to the decomposition into mass, energy, and information flows in MFM, the
dynamic causal directed graph (DCDG)(Arroyo Esquivel, 2017) splits the perspectives
for different flows. This decomposition enables a structured approach to building the
causal model accessible for domain experts, like process engineers and operators.
Since the functions used in MFM are closely related to flow sheets and diagrams
commonly used by these experts, MFM is promoted here as basis for incorporating
expert knowledge into the operator support system.
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Figure A.3: MFM and SDG representation of simple 3 tank process
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A.3 Method

In this section the concepts of fault propagation as well as the proposed dynamic
updating and presentation of results are described.

A.3.1 Deviation propagation

For on-line diagnosis the MFM model of a plant needs to be adapted to the current
configuration of the diagnosed plant (Kirchhiibel et al., 2017b). To allow for dy-
namic changes to the model a dynamic reasoning system is established, rather than
per-compiling the causality for all possible scenarios. In the MFM reasoning only
qualitative states similar to alarms of high/high-high and low/low-low are considered.
A negative edge in the equivalent SDG, like in Figure A.3, links a causing high to
a consequential low and vice versa, where the edge is directed from cause to effect.
Zhang (Zhang, 2015) presents a comprehensive description of MFM patterns and the
respective failure propagation. Iterative propagation of a deviation along the causal
connections in the model yields a tree of inferences respectively for causes and conse-
quences of the specific deviation comparable to fault and event trees commonly used
to analyze accident scenarios in processing industry.

The scope for the analysis is defined to cover qualitatively observable situations
during alarm floods and diagnosis in a plant-wide perspective. While the propagation
in any causal model can formally produce cycles, those are rarely meaningful for the
analysis of alarm floods. Considering that alarms are usually filtered or delayed to
move relatively slowly, oscillations would not be observable based on alarms or be at
a scale where the oscillating character is not relevant to identification of causes. The
propagation scope is limited by the following properties:

1. Number of times each node occurs in a path: Recycles and control loops can
cause cycles in the propagation. The same node is only allowed to occur with
the same inferred state, which is separately treated as a "loop”. Oscillations
inferred as the same node with an opposing state are deemed invalid.

2. Number of times each edge is traversed in a path: Due to above limitation of
node occurrences each edge can only be reached once per path.

3. Mazimum path length is not restricted in the current implementation.

A.3.2 Inference maintenance

The reasoning is based on two basic concepts, evidence and inference. All observations
from the system are considered as evidence which could be alarms or states detected
by other methods. An evidence consists of a specific MFM function in the model
and its observed state. Starting from each evidence, inferences of possible causes
and consequences are generated by traversing the patterns in the model. Each new
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inference also consists of an MFM function and the inferred state. An inference is
validated by the reasoning system to comply with the scope of the analysis, before
it triggers further propagation. Figure A.4 shows the decision tree for inference
validation.

new
assump-
tion

retrace stop

Figure A.4: Validation of Inferences

recurring
assump-
tion?

merge
conflict?

assump-
tion

yes no

= o

Figure A.5: Validation of inferences with merging

The previous implementations outlined in literature frequently consider one ev-
idence as a root cause and prune the resulting event tree based on other evidence
(Zhang, 2015) or identify a fault tree for a given evidence and compile a fault anal-
ysis for each scenario (Wang et al., 2016b). In the context of alarm floods, however,
the large number of simultaneous alarms does not allow the reliable identification of
one root event to base the analysis on. Hence, all plausible analyses have to be run
to identify the most likely causal scenario. In previous implementations (Larsson,
2002; Zhang, 2015) this could be realized by running a separate parallel analysis of
causes and consequences for an evidence generated from each alarm. The parallel and
independent analysis of each alarm, however, disregards that alarm floods are closely
related and caused by the interconnection of the system, therefore the analysis for
two adjacent alarms will be identical for most parts.
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Utilizing the inherent connection of alarm floods a new approach to reasoning
about multiple events in MFM is proposed. Propagating two connected evidences
e1 and e; independently along the graph will lead to identical inferences a; and as,
where the causal paths of both evidences coincide. The inferences a; and as about the
same function in the model, inferring the same state, and were inferred by traversing
the same relation. All inferences based on a; or as are bound to be identical as well,
since the same paths in the graph are traversed with the same deviation. Based on
this rationale only one of the identical inferences needs to be propagated and the
inferences from e; and e; are merged at a; = as. Figure A.5 shows the modified
validation of inferences.

Considering only relevant inferences is essential for effective operator support. To
comply with the defined scope of the analysis mechanisms for retracing contradictory
results and merging recurring inferences are outlined in the following. Furthermore,
the devalidation mechanism ensuring that no longer observed evidence is not consid-
ered in the inferred results is described.

A.3.21 Retracing

If an inference leads to a contradictory or oscillating loop in the causal path, the
contradictory inference is retraced. Since all inferences are causally linked to the
states they were inferred from, the inferences that lead exclusively to the contradiction
are retraced as well. The retracing is done iteratively until an inference that leads to
more, not-contradictory inferences is reached.

A3.2.2 Merging

If two inferences a; and as about the same function and the same state are inferred
using the same relation they can potentially be merged. Assume that a; is a valid
inference, that has been fully propagated and as is a new inference equal to a; regard-
ing the function, state and propagation direction. The inference tree 7,, = {41, J1}
inferred from a; contains a set of valid inferences A, concerning functions F,, and a
set of contradictory inferences A. = {F,,S.}, where A, N A. = &. To ensure the
validity of the results, the merging has to comply with the same conditions as any
individual inference. The path P,, = {As, Jo} leading to as traverses the functions
F5. In order to preserve the consistency of the resulting inference there can be no
contradiction between 7,, and P,,. To that end, there can be no contradictions be-
tween the path to as and the inferences from aq, i.e. F, N Fy = &. In the same
manner all functions in F,. have to form a contradiction with F5, i.e. F,. C F5. With
above conditions fulfilled a9 is effectively replaced by a; and the inferences leading
to as become justifications for a;.
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A.3.2.3 Devalidation

To only maintain valid results, a devalidation mechanism as shown in Figure A.6 is
implemented. An inference, that is no longer supported is marked as devalidated and
subsequently removed from all inferences that were based on it. If no other inferences
depend on a devalidated inference it is completely removed from the results. Through
dependencies of each inference this mechanism reliably cleans up all results that are
no longer relevant.

valid justifying

assump- evidence
tion changed
justifying remove
| evidence justifi-
removed cation
justifying
———————assumption——————— - - - -------------------------
devalidated

Figure A.6: Devalidation logic for result clean-up

A.3.3 Result interpretation

Previously the results of the inference were mostly represented in a tree form starting
from a single triggering evidence and cropped according to all other evidence. The
inferred causes or consequences are then represented in a form similar to fault and
event tree, respectively. A tree representation, however, is not meaningful when the
complex connections of multiple evidences are analyzed by the reasoning method
described before. The efficient dynamic update and combination of results is realized
by a multi-linked dependency structure for each inferred state. A directed graph
representing the causality between evidences and inferred states is a natural choice
for the representation. Finding the root cause in this graph is a matter of finding
a minimal tree, which includes as many observations as possible, while obeying the
directivity of the graph.

The best explanation for a given scenario is the root cause that is common to
the inferred cause tree for multiple observed faults. In order to select the most
appropriate cause a ranking for the root causes is proposed. Assuming that many of
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Algorithm 2 Weighing causes

R+ o
w, « 0Va € A(G)
for (a € A(G),0 (a) =0) do
Wy 1
M<+— o
N « {a}
while N # @ do
B+ {bec A(G),bn; € E(G)} \ M
N « N—n1
for (b€ B) do
Wp < Wp + We * Wy,

M+ M+Db
N+ N+b

end for

if 97 (ny) = 0 then
R+ R+ n1

end if

end while
end for

the observations are connected, an inferred cause becomes more meaningful the more
of the observations are explicable as its consequence. In addition, a causal connection
is less relevant the longer the propagation path between the cause and the observation
is. Accommodating these two premises each edge is weighted at w, < 1. Tracing the
inference, i.e. considering edges from consequence to cause for backward reasoning,
the weight of each node can be calculated sequentially as outlined in Algorithm 2.
By this weighing a cause that is closely related to some observations will be ranked
higher than a cause that is vaguely related to a larger number of observations. The
edge weight w. can be adjusted to emphasize the relevance of number of explained
assumptions or the length of the propagation path. The highest ranking cause can
be considered a root cause and a proper explanation of the situation can be compiled
as a consequence tree rooted in the common cause and spanning the observed faults.

The weighing is performed by traversing the resulting graph by the algorithm
outlined in Algorithm 2. All nodes are initialized to weight w = 0. For each evidence,
represented by a node with out-degree 0~ = 0, the weight is initialized to w, = 1
and the evidence is added to the set N of nodes to be searched, whereas the set of
already traversed nodes M is initialized as empty set. Taking the first node n; € N
the inferred causes B for ny are considered, excluding already traversed causes. The
weight of each inferred cause is incremented by the product of the edge weight and
the weight of the preceding inference w, - w,,,. The set of root causes R comprises of
all inferences that do not have any inferred causes, i.e. 7 = 0.



A .4 Case study 69

A.4 C(ase study

To validate the improvement by the proposed method, tests are performed on an MFM
model of the Tennessee Eastman challenge benchmark process initially presented by
(Downs and Vogel, 1993). The control strategy presented by (Ricker, 1996) and the
corresponding data available are considered as test scenario (Ricker, 2019). Propaga-
tion performance is compared between matching implementations of the propagation
algorithms both with and without the proposed merging rules. This section describes
the test case and outlines the performance measure applied.

Underflow Product

Inlets

Figure A.7: Mass flow of the Tennessee Eastman process, supporting heat and pres-
sure flows are shown in A.6

A.4.1 Tennessee Eastman process

The Tennessee Eastman Challenge process has been proposed as the basis for com-
parable studies on plant wide control and fault diagnosis strategies, as such it lends
itself well as a demonstration for alarm analysis. To generate alarms the operating
limits given by Downs and Vogel (1993) are considered. For the remaining process
variables a 2% band around the base case value is set for low and high alarms as
suggested by Ma and Li (2017). Table A.1 summarizes the applied thresholds and
variable tags. A simplified MFM model is shown in Figure A.7 and in Figure A.10.
As a demonstration of the propagation method rather than the modeling framework,
only the thermal process is considered in the model. The contribution of the reaction
and the control of compositions is omitted in this demonstration.
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Table A.1: Process variable tags and alarm thresholds for low (L) and high (H) alarms

Variable Description Tag L base case H unit
number
1 A feed F1 0,24 0,25 0,26 kscmh
2 D feed F2 3589,00 3664,00 3735,00 kg h !
3 E feed F3 4419,00 4509,00  4599,00 kg h™t
4 C feed F4 9,16 9,35 9,54 kscmh
5 Recycle flow F8 26,36 26,90 27,44 kscmh
6 Reactor feed rate F6 41,49 42,34 43,19 kscmh
7 Reactor pressure P, 0,00 2705,00 2895,00 kPagauge
8 Reactor level L, 50,00 75,00 100,00 %
9 Reactor temperature T, 0,00 120,40 150,00 °C
10 Purge rate F9 0,33 0,34 0,34 ksecmh
11 Separator Tsep 78,50 80,10 81,70 °C
temperature
12 Separator level Lsep 30,00 50,00 100,00 %
13 Separator pressure Psep  2581,03 2633,70 2686,37 kPagauge
14 Separator underflow F10 24,66 25,16 25,66 m> Rt
15 Stripper level Lstr 30,00 50,00 100,00 %
16 Stripper pressure Psr  3040,16 3102,20 3164,24 kPagauge
17 Stripper underflow F11 22,49 22.95 23,41 m> !
18 Stripper Tstr 64,42 65,73 67,05 °C
temperature
19 Stripper steam flow F5 225,70 230,31 234,92 kg ™1
20 Compressor Work W, 334,60 341,43 348,26 kW
21 Reactor cooling The 92,71 94,60 96,49 °C
water outlet
temperature
22 Condenser cooling Tec 75,75 77,30 78,84 °C

outlet temperature

A.4.2 High coolant temperature fault

As scenario the alarm sequence produced by case IDV12 is analyzed. Since the
presented MFM model omits the composition of different streams it lends itself best
to the diagnosis of a thermal disturbance. This test case introduces a step change to
the condenser cooling inflow temperature. Figure A.8(a) shows the evolving alarm
situation over the first 7.5 hours of the data set. The offset is introduced at 1:00,
leading to an immediate alarm state of low purge flow F9. As the major application
of this method is expected to be alarm floods the alarms occurring due to the offset
are considered in direct succession rather than the actual time frame to underline
the real-time applicability of the method. The applied alarm sequence is shown in
Figure A.8(b).
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Figure A.8: Evolving alarm states during high coolant temperature situation

A.4.3 Algorithm performance

The propagation and maintenance algorithm is implemented in a Java framework,
which implies large uncertainties when evaluating the execution time (Georges et al.,
2007). To yield comparable results the execution time of each update step is mea-
sured in an individual experiment. The setup phase before each experiment includes
all preceding update steps to identify the difference in performance in emerging sit-
uations. A bench-marking harness is used to warm-up and evaluate the Java virtual
machine. Table A.2 lists the relevant parameters for the benchmark. As a measure
of performance the execution time and number of intermediate assumptions for each
update of the alarms are recorded. Additionally the proposed ranking is applied to
the results.

Table A.2: Parameters for benchmark execution of each update step

Forks ‘ Warm-up runs ‘ Measurement runs ‘ total considered runs
3 ‘ 3 ‘ 10 ‘ 30

A.5 Results and Discussion

To illustrate the efficiency of the proposed method both the proposed merging method
and the same propagation implementation without merging are compared. This sec-
tion presents the results and evaluates the improvements gained by the proposed
method. The execution performance is presented, as well as the application of the
proposed cause ranking approach. Finally, limitations and perspectives of the pre-
sented work are discussed.
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A.5.1 Execution performance

The recorded execution performance shown in Figure A.9 underline that the proposed
method consistently reduces the number of intermediate inferences by up to 31% in
the given scenario. In contrast the execution time of the merging method is longer by
up to 8% when propagating an isolated fault, while multiple connected alarms can be
propagated significantly faster at up to 29% of the execution time. The discrepancy
between number of inferences and propagation time is due to the additional eval-
uation necessary to ensure correct merges and complete propagation. In the given
scenario the reduced propagation more than compensates for the increased evaluation
procedure for any causally connected alarms.
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Figure A.9: Execution performance by time for update (bars with confidence interval)
and intermediate inferences generated (lines) per update step

A.5.2 Result Ranking

For each update step the propagation results are weighed by the proposed method to
point out the most likely root causes. Table A.3 shows how the actual root cause of
"high condenser cooling inlet temperature” represented by "Condenser:T_i:tra:high”
in the propagation results is weighed after each update step. The connected structure
of the results generated using the merging method lends itself very well for this
ranking, as root causes concerning the same function and state only appear once in the
graph. In contrast, propagating individual paths without merging would repeat the
same state and function for each possible path increasing the complexity of calculating
the weight and comparing the individual paths.
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Table A.3: Root cause rank of actual cause and top ranked root cause after each
update step

No. ‘ Position  Weight ‘ Top Cause Top Weight
1 15 0.377 | Low reactor pressure 0.735
3 8 0.599 | High reactor pressure 0.735
4 1 1.262 | High condenser coolant temperature
5 1 2.119 | High condenser coolant temperature

A.6 Conclusions and perspectives

The presented method of combining the propagation of multiple observations in a
causal graph was shown to significantly increase the efficiency of the propagation for
causally connected observations. This is an important step toward the application
of causal graphs for real-time analysis in alarm flood situations when many related
alarms are caused by a few faults in the system. In addition to the efficient propaga-
tion the presented method reduces the size of the propagation result and eliminates
identical causal paths, even for single observations. Thus, the further analysis of root
cause candidates is easier, as individual causes are not repeated within the result
graph. Methods like Bayesian Belief Networks are well established for the analysis
of fault-tree structures and can be applied for further analysis, such as updating the
likelihood of root cause candidates and identify the most relevant information in order
to distinguish root cause candidates by determining the value of information. The
fault-trees generated by parallel inference pose a problem for this kind of analysis,
as identical paths would occur independently, hiding relevant links when mapped
directly into a Bayesian network. In contrast, the graph resulting from the merging
method links recurring paths together and can, hence, be directly mapped into a
meaningful Bayesian representation.

The proposed ranking of root causes was shown to produce meaningful results
and reliably put the actual cause among the top candidates. While the length of the
propagation was uniformly penalized in the presented case study, the ranking method
provides the flexibility to incorporate available knowledge, like the MFM model syn-
tax by varying the edge weight for different relations hence giving higher penalties
on relations representing physical connections and lower penalties on intentionally
designed couplings like implemented controllers.
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Appendix: MFM model

For easier visualization the mass and energy perspective of the MFM model have
been separated. The labels on the open relations indicate how the two parts of the
model are to be connected. For example the pressure input to the stripper is realized
by the inflow of gas to the stripper, i.e. Mass:F/, which represents the C feed stream.
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Figure A.10: Heat and pressure flows of the Tennessee Eastman process
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Abstract:

Established control room systems in processing industry are prone to overload opera-
tors during severe plant upsets. Automatic diagnostic assistants have been proposed
to assist operators in high load situations. To ensure a correct diagnosis the assistant
system needs to be aware of configuration changes. Standard Operating Procedures
detail when and how the plant configuration is to be changed and are established
during plant design to ensure consistent and safe operation. Tracking the correct exe-
cution of a procedure is relevant to both, detecting errors during procedure execution
and adapting diagnostic models. In this contribution we describe methods for rep-
resenting documented procedures as automata and validating the procedures against
log files of the control system. We propose a fast approach of detecting procedure ex-
ecutions and action sets associated with procedure steps. The presented methods are
demonstrated in an industrial case study of a filtration system and validated against
complete sequence alignment.

B.1 Introduction

Alarm systems are the primary interface for human operators in industrial plants in
case of abnormal situations and yet poorly managed alarms can cause severe oper-
ator overload and have been identified as the cause for a number of large accidents
across different industry domains Goel et al., 2017; Wang et al., 2016a. In conse-
quence guidelines and indicators for successful alarm management have been devel-
oped by industry. Norms published by the ISA (2009) and IEC (2014) complemented
by guidelines and best practise handbooks, e.g. by EEMUA (2013), Hollifield and
Habibi (2006), and Rothenberg (2009), highlight the industrial relevance of alarm
management. Studies have shown the effectiveness of rigorously implemented alarm
management Soares et al., 2016.

D. Kirchhiibel et al. (2019a). “Combining Operations Documentation and Data to Diagnose
Procedure Execution”. Computers and Chemical Engineering. accepted in Nov 2019 pending revi-
sion.
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The most crucial failures of alarm systems are alarm floods that overwhelm the
operator with a large number of nearly simultaneous alarms. The multitude of infor-
mation frequently leads the operators to start treating symptoms while missing out
on the root causes Hollnagel, 2002. A range of approaches to handle alarm floods
have been proposed, with a dominant trend of employing data analysis methods. The
common methods include pattern matching, sequence matching Lai and Chen, 2017,
and analysis of temporal dependence Folmer et al., 2014. In addition, plant connec-
tivity and causality measures have been proposed as the basis for causal analysis of
the plant Abele et al., 2013; Hu et al., 2017c. Once a causal structure of the plant
is established, consequential alarms can be suppressed to help operators focus on the
alarms associated with root causes Larsson et al., 2007. Given that a plant or sys-
tems experiences recurring abnormal situations and consequently a number of widely
similar alarm floods, data based methods provide a good tool for examination and
interpretation by process experts Hu et al., 2017b. However, the lack of prior data
would cause a purely data-based solution to fail, while analysis based on causality
would still be applicable.

Since plants frequently operate in more than one configuration Quiniones-Grueiro
et al., 2019, these causal models need to adapt in the same manner as Beebe et al.
(2013) have identified the need to dynamically manage alarm configurations to ac-
count for different operational modes. In the context of fault detection and isolation
Quinones-Grueiro et al. (2019) summarize a variety of approaches for tracking the
current operational mode, i.e. configuration, of the system: Most of the presented
approaches use one model per mode and detect the current mode as the best match-
ing between observations and mode modelling Quinones-Grueiro et al., 2019. The
alternative approach is to track the system transitions and determine the current
mode based on the combination of individual variable transitions Srinivasan et al.,
2005. At a plant wide level, transition information such as opening and closing of
valves is readily available from the supervisory control and data acquisition system
(SCADA). Logically, a mode-tracking approach based on transitions at supervisory
level can be based on available SCADA events.

In the interest of a comprehensive operator support Kirchhiibel et al., 2019c,
tracking the correct procedure execution is just as important as identifying the cor-
rect operational mode at all times. The majority of changes to operational modes in
a plant are related to well documented procedures, such as start-up or maintenance
operations Quinones-Grueiro et al., 2019. Modes can be distinguished more concisely
at different abstraction levels in functional process models, where mode transitions
happen at the level of operational goals, changed relations between operational goals
and supporting functions, or a different combination of components and realised func-
tions Lind et al., 2012; Zhang, 2015. The authors’ previous work Kirchhiibel et al.,
2017a presented a concept of explicitly including the limitations of each mode in the
respective functional model. However, the data in the study presented in the present
work suggests that additional conditions may inhibit or cause a mode change. This
paper presents a framework for tracking operational modes during procedure execu-
tion based on SCADA events. We present a formalism for representing operation
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procedures. Similar to Abdallah et al. (2018) this automaton representation can di-
rect the adaptation or change of underlying diagnostic models, independent of their
implementation. By using data logged from SCADA the representation can be re-
fined and attributed with reference constraints for normal execution, enabling on-line
diagnosis of the procedure execution.

In the following section the representation of operational modes, related methods
of mode-dependent alarms and sequence alignment, and the proposed methods for
identifying and analysing procedure executions are outlined. The industrial case study
is then introduced and its results are presented and discussed. Finally, the validity of
the proposed method and the advantage for a rapid deployment of advanced support
systems are summarised.

B.2 Methods

This section details the relevant methods for representing operational procedures,
determining triggering alarms, and identifying the execution sequence from data.
Then we propose methods for detecting candidates for the execution of a specific
procedure as well as a fast analysis method to validate the execution from available
log files.

B.2.1 Representing Operational Procedures

Operations procedures are an essential part of plant operation, as they ensure a con-
sistent execution and high quality and safety of operation EPA, 2007. In emergency
situations as well as during transients in operation, like start-up or shutdown, opera-
tion procedures define the sequence of actions and expected outcome in the system.
These procedures are implemented in the automatic control system or executed by
human operators. Operational procedures are thoroughly documented in terms of
the specific steps and the timing or thresholds between each step to the extent of
integrating computerised procedures with the operator interface. The steps of an
operational procedure correspond to state transitions of the plant and can thus be
represented as a finite state machine or automaton notation.

In an automaton notation each state corresponds to the current configuration and
settings of the plant. Transitions are characterised by a condition and by the set
of changes made to the plant. Each transition 7" = {¢, A} describes the necessary
condition ¢ to execute the step and the set of actions A associated with the transition.
One specific operation procedure to move the plant from operation point O; to another
operation point O; is represented by a valid trace in the automaton Lunze, 2004.
The trace will normally contain a number of intermediate states si, ..., s,. Like the
operation points these states are characterised by the configuration of valves and
set points of the controllers throughout the plant. The condition to initiate the
procedure, i.e. transition Tp, s, may be tied to a complex condition of multiple
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variable thresholds. In the interest of reliability in a stressful situation for the operator
all following transitions T, s, ., are commonly conditioned on a time constraint or the
behaviour of an individual process variable. Figure B.1 illustrates the representation
of an operational procedure as an automaton.

Figure B.1: Example automaton of an operation procedure. Procedures leading back
to their starting state are typical for maintenance operations.

B.2.2 Alarm dependent modes

Since the execution of operational procedures changes the plant configuration or mode
of operation, individual components will reach the configured alarm limits. These
mode dependent alarms could be suppressed given a reliable association of a mode
change to subsequent occurrence of the alarm. Inversely, the execution of specific
procedures is closely related to specific situations in the plant which could be indicated
by an alarm. Hence, alarms could serve as indicators for the transition 7o, s, .

The association rule discovery proposed by Hu et al. (2017a) defines an alarm to
be dependent on mode change based on two conditions: The alarm occurs frequently
enough to be relevant and the probability of the alarm following the mode change
is close to 1. Swapping the datasets for alarms and mode indicators allows the ap-
plication of this method to discover alarms z; that trigger a procedure execution y;.
Consequently the nomenclature of the conditions is adapted as follows. The number
of mode occurrences & exceeds the user-defined threshold Fy; and the approximated
probability p(y;|x;) of the mode change occurring after the alarm is 1 or close to 1.

§(xi — yi) > Fun (B.1)
Sy = S W)
p(yz| l) §($z) ~1 (B-Q)

The time window W}, determining whether an occurrence of xz; is followed by y;
should be set sufficiently large to account for the operator’s reaction time. Further-



B.2 Methods 79

more, for the alarm to be a reliable precursor for the specific procedure execution, the
procedure should only be executed if the alarm occurred, introducing the additional
constraint that, effectively, the number of occurrences of the alarm and the procedure
execution match &(x;) ~ &(y;).

B.2.3 Sequence alighment

Besides the start of a procedure, it is desirable to diagnose the intermediate execution
steps of the procedure. To identify the normal execution the recorded data from the
alarm and event logs are considered as reference. Considering each procedure execu-
tion as a sequence of events in the SCADA system, all sequences for the procedure
can be aligned to provide a reference for the events and conditions related to the
procedure.

Sequence alignment has been proposed to identify occurrences of similar alarm
floods as a method for situation assessment during alarm flood incidents Lai and Chen,
2017. Sequence alignment enables multiple aspects of the analysis: New sequences can
be compared in similarity to known sequences as a basis for classifcation. Additionally,
given a group of similar sequences, their common events and respective timings can be
used as features for classification of new sequence observations. The method proposed
by Lai and Chen (2017) is based on dynamic programming for optimal alignment of
multiple sequences. For n sequences of similar length M the complexity is estimated
as O(n - M?).

A sequence is considered as a set of tuples (e, t;), where k € {1.K}, i € {1.M}
with the number of event types K and M event occurrences in the sequence. First
the sequence is represented as a K x M time distance matrix representing the time
span between the event assigned to the column and the event type represented by
each row. A weighing function is then applied to the time distance matrix:

d2
Wik = €Xp <—21;>

where o can be chosen to blur the order of the event by considering close-by matches
in terms of timing as well Lai and Chen, 2017.

While the similarity of sequences for an operational procedure should be consid-
ered a given, the common sequence alignment can be used to refine the reference for
the sequence. Potentially the sequences reveal additional events whose correlation
with the sequence is not obvious from plant documentations but can be used for
diagnosis. A draw-back of a complete sequence alignment approach like this one is
the analysis complexity of finding the total alignment of a large number of procedure
executions. Guo et al. (2017) propose a simple matching based on a sliding window
around the time projection of one sequence onto the other to determine the likelyhood
of two sequences to match. However, to establish a reference pattern for a procedure
the actual alignment is most relevant.
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B.2.4 Execution detection

In order to identify the sequences representing a procedure, time windows with the
known plant action can be detected in the log files based on the expected events, such
as valve control signals. A transition log is compiled from the event sets associated
with the respective transitions, i.e. procedure steps. To distinguish the procedure
steps from isolated manipulations a sliding window of size W5, needs to contain the
complete set. This is illustrated by the first event a; in Figure B.2. To additionally ac-
count for undocumented changes to the actual implementation of the procedure, this
constraint is relaxed so that all instances where the window contains the maximum
number of events associated with the transition are considered as occurrences.

1.0 ay
5.0 ax
5.0 as
| 50| ay [T, 0,
| 80 asz |
10.0 a1 }TO s Time a; ag | ay asz a4 | Ay as | aq | as
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Figure B.3: 1-out-of-N like mapping of the

Figure B.2: Example log with detected transition occurrences (gray
event log with occur- boxes) and end of procedure indicator (dashed
rence candidates box) highlighted

Given this transition log, identification of the procedure executions is a matter of
finding all sequences where the transitions occur in order, or at least the majority of
the procedure execution matches. If all transitions of the procedure are associated
with time conditions, the documented procedure can directly be interpreted as se-
quence and all potential executions are detectable by a sequence projection onto the
transition log as used by Guo et al. (2017). More generally, the procedure is consid-
ered to be delimited by its first and last transition. Consequently, all time windows
contained between a detection of the first and last transition are considered execu-
tion candidates. If the first or last transition consist of only one action, the sequence
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of the first or last two transitions respectively determines the limits of an execution
candidate, to maintain the distinction from individual actions. Additionally, missing
start or end identifiers can be substituted by an expected execution time to perform
analysis of faulty executions. Alternatively, the candidates can be discarded as in-
complete executions. Figure B.2 and Figure B.3 show a log file and the respective
detection windows for transition candidates. Since T, o, only contains one event in
the considered automaton shown in Figure B.1, the last two transitions mark the end
of an execution candidate to avoid confusion with isolated events.

B.2.5 Fast sequence analysis

Once the execution candidates are determined the actual trace in the automaton is
considered, yielding a number of groups of actual executions. Assuming an accurate
documentation, the trace occurring most resembles the correct procedure execution.
Other traces might be related to manual operations or could hint toward common
mistakes if they appear in significant numbers.

The complete analysis for representing a procedure as an automaton validated by
logged data is outlined in Figure B.4. First the documented procedure is represented
as an automaton with the expected sequence of transitions and the action sets corre-
sponding to each transition. Based on the established transition sets, the event and
alarm log from SCADA for a reference period is transformed into a tranisition log as
shown in Figure B.3. Procedure execution candidates can then be identified by cor-
responding pairs of the start and end transitions as described in the previous section.
For each execution candidate the trace is identified from the timed sequence of the
occurring transitions and classes of identical traces are determined. Subsequently, the
automaton structure and event sets per transition can be refined using the relevant
classes of traces. Finally the reference statistic for the transition executions can be
determined from the occurrences within each class.
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Figure B.4: Block diagram of the sequence identification

B.3 Industrial Case Study

As a case study we investigate the automatic back-washing modes of a sea-water
fine filter unit, shown in Figure B.5. The filtration system consists of 4 parallel fine
filter units, three of which are always operational, while one may be back-washed.
The sequence of valve operations is outlined in Table B.1 and Figure B.6. These
operations can be executed in two different procedures, leading either from normal
operation to air scouring or directly to back-washing with water.

Per the operations manual air scouring would be used in rare cases, when the
filter is severely clogged. Otherwise the filter is back-washed with water when the
differential pressure exceeds a preset threshold or at least once a day.

In the case study the proposed sequence identification is applied to detect sequence
candidates. The sequences are then analysed in terms of alarm dependency using the
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Figure B.5: Flow sheet of the studied filter unit cviza/s?

presented pattern mining approach and the proposed fast sequence analysis is used
to determine the reference automaton for normal execution which is evaluated for its
completeness by multiple sequence alignment.

Table B.1: Mode transitions of an individual filter unit

Transition Action set
s 3:0ff
al 1:0ff, 4:0f1f, 6:On, 8:0On
al 3:0n, 6:01f, 14:0ft, 5:0On, 17A:On, 17B:0Off
a2 17A:0ff, 17B:On
ab 8:0ff, 7:On, 11:On
b 1:0ff, 4:0ff, 14:0ft, 3:On, 5:On, 7:On, 11:On
c0 3:0ff, 11:0ff
cl 5:0ft, 7:0ff
c2 1:On, 5:0n, 14:0On, 3:0On
c3 3:0ff

¢/ 5:0ff, 4:On, 3:0On
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Figure B.6: Automaton of the filter unit. Edges are labelled with the conditions
before the transition occurs and the transition name.

B.4 Results

Identifying the documented transitions with window size T};, = 30 seconds from the
A & E log the transition log and sequence candidates were established. Table B.2
summarises the transition log. The two paths in the automaton are marked by the
combinations (s,a0) and (s, b) as start of a sequence candidate, while any occurrence
of ¢4 terminates a sequence candidate. Since the respective high differential pressure
alarm occurred over 70% more often than the procedure was executed the conditional
probability can never approach 1. This discrepancy was likely caused by the addi-
tional logic restricting back-washing operation to only one out of four parallel units.
Therefore, this sequence could not be reliably related with the alarm occurrence.
The timing of the transitions conditioned with 0 flow could be up to 3 minutes
according to the operations manual. However, the data analysis revealed these transi-
tions to consistently occur after about 20seconds after the preceding transition. This
period is within the chosen detection interval for the action set of the same transition.
Thus the combinations (s, a0), (s,b), and (¢3, c4) were considered as complete transi-
tions leading to the reduced automaton shown in Figure B.9. Furthermore, transition
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Table B.2: Summary of Transition log, corresponding alarm and resulting sequence
candidate

Event Occur-
rences
S 3447
al 974
al 963
a2 3841
ab 973
b 41
c0 1027
cl 10
c2 1014 *
c3 3447
c4 1009
DP alarm 1733 1
Start 1009 2

* 5:0ff never detected
! high differential pressure
% (s,a0) and (s,b) sequences

c1 is rarely detected and no complete occurrences of ¢2 where found. Upon closer
inspection, it was found that in fact the occurrences of ¢2* reliably contain the action
set [7:Off, 1:On, 14:On, 3:On], effectively combining (c1, ¢2).

The identified transition traces in the execution candidates are visualised in Fig-
ure B.8, based on the reduced automaton. Some traces are incomplete since the
succession of two start or end markers respectively was corrected by limiting the se-
quence to a 4bmin interval. The grouping reveals back-washing with air scouring as
the most frequent operating mode and back-washing with water as the second con-
sistent trace. The time constraints shown in Figure B.9 were based on the two most
frequent traces, which were considered the ground truth for the plant operation. To
verify the identified traces the alignment of all sequences identified as back-washing
with air scouring was determined. Figure B.7 shows the pairwise similarity scores
and the respective sequence length, in terms of number of events during the execu-
tion period. All scores are relatively high at above 0.5 and the larger clusters show
some correlation to the sequence length. The common alignment of a random sample
of ca. 5% of sequences with the most frequent trace shown in Figure B.10 does not
indicate any consistent deviations from the considered action sets. While the action
sets are consistent, the order of the specific events varies which is reflected by the
slight offset of the sequence start from time 0. The reported set point changes of
flow controllers FC3 and FC11 appear as additional information, which could not be
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anticipated from the procedure documentation.
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Figure B.7: Pairwise similarity scores and sequence length. Ordered according to
highest similarity clusters.
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B.5 Conclusion

The transitions between operational modes as described in the procedures of the
operations manual can be used to define diagnostic automata and identify relevant
transitions in A&E logs. While the actual execution should follow the operations
manual, our case study revealed some significant deviations allowing the consideration
of a simplified automaton for the procedure diagnosis. The plant documentation
provides a reliable basis for analysis, but due to operator habits or undocumented
changes to the plant operation the ground truth represented in daily operation can
differ. This highlights the complementary nature of engineering documentation and
available data.

The presented method for execution detection and the action set based analysis
of procedure executions enables the quick design of diagnostic automata validated
by data from the specific plant. Incorporating well documented operational proce-
dures into a diagnostic system is allows more comprehensive support, for instance by
tracking the proper execution or considering operational procedures in a prognosis
for developing faults. The proposed validation process can be a valuable tool to re-
vise operation culture if deviations from the designed procedures affect efficiency. In
continuation of the presented work we are investigating the on-line adaptation of the
causal presentation for accurate on-line diagnosis.
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Abstract: The complexity of modern industrial plants poses significant challenges
for the design of effective operator interfaces. Although established practices can
significantly reduce the frequency of alarms, operators often cannot resolve the failure
cascades commonly occurring during emergency situations.

Automating control rooms by incorporating design and operation knowledge about
the systems can significantly improve operator efficacy. Intelligent support systems
should reduce the amount of information and provide more context to the operators.
The operators focus should be shifted from information acquisition to taking informed
decisions about mitigation steps.

This contribution gives a brief review of the development of Multilevel Flow Mod-
eling (MFM) and its application to provide operators with decision support and sit-
uation awareness, focusing on implementations directly utilising the knowledge rep-
resented in MFM. Finally, current efforts toward a comprehensive intelligent human
machine interface for operators are outlined.

C.1 Introduction

Operators controlling industrial plants mostly rely on the alarm system to detect off-
sets requiring an action. Alarm system should be maintained in a state that does not
overload operators during normal operation. However, during emergency situations
the connections throughout a processing plant frequently lead to cascades of true
alarms overwhelming the operator by presenting alarm floods (Beebe et al., 2013).
To deal with alarm flood situations, the relation between the occurring alarms has
to be analysed and presented to the operators as concise as possible. An intelligent
operator decision support systems guides the plant operators to the region of the
plant where the cascade originated from and offer assistance on how to mitigate the
situation (Rothenberg, 2009). A timely analysis and suggestions for counter-action
can help operators drive the process back to normal operation.

D. Kirchhiibel et al. (2019¢). “Toward Comprehensive Decision Support Using Multilevel Flow
Modeling”. In: 5th IFAC Conference on Intelligent Control and Automation Sciences. Belfast, UK:
IFAC-PapersOnlLine.
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Level of Automation Acquisi- Analysis Decision Execu-
tion tion
Triggered 5 +
execution
Single solution 4
Selected 3 + +
alternatives
Complete set 2 o +
No assistance 1 o o o

Figure C.1: Current (o) and envisioned (+) level of automation based on Parasuraman
et al. (2000)

In addition to established alarm management practices in industry, mostly data
driven alarm analysis methods have been proposed to reduce the strain on opera-
tors in abnormal situations. However, incorporating design and operation knowledge
into the operator support can help operators with further prognostic information and
a more concise understanding of the situation and its consequences (Wang et al.,
2016a). The analysis of recorded incidents is an established tool to predict recur-
ring critical situations, for instance Zhu et al., 2016 propose matching the patterns
of previous alarm floods. However, these methods depend on reliable data records
and the assumption that those critical situations occurred before. A combination of
alarm records with connectivity information from plant documentation is shown by
Schleburg et al., 2013 to support the alarm analysis where only little data is avail-
able. While the plant documentation provides information about the connectivity
of components in the plant the nature and direction of causality between deviations
is necessary for an accurate analysis of closely linked deviations (Yang et al., 2014).
Besides the identification of causal relations between alarms (Larsson et al., 2006),
knowledge about the process can be used to automatically generate mitigation pro-
cedures for the current situation (Gofuku, 2011).

Traditionally the level of automation at a plant-wide level is characterised by a
large cognitive load on the operators who only get alarm and trend information from
the human-machine interface without any context. Parasuraman et al. (2000) outline
the trade-offs to consider to define the level of automation. Fig. C.1 illustrates the
current state of plant operation and the target for a meaningful operator support tool.
The goal is to provide a comprehensive solution to reduce the loads on operators and
to guide them in critical situations. Therefore, the processing tasks of identifying the
situation from a multitude of alarms and continuous signals should be hidden from
the operators. Instead, operators will be provided with a short list of the most likely
situation analysis and provided with a complete set of tentative consequences to base
their decision on. Finally, a set of relevant mitigation procedures will be generated
based on the operators diagnosis.
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Figure C.2: MFM function primitives adapted from Lind, 2013. Flow function primi-
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Figure C.3: MFM modeling example of 3 tank system. Being an experimental setup,
the process is not assigned any objectives.
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Multilevel Flow Modeling (MFM) has been proposed as a modeling methodology
for all aspects of operator support. The method was originally developed to rep-
resent designers’ and operators’ understanding of the process and it was gradually
extended to provide a comprehensive causal representation of an industrial plant.
MFM provides an abstract representation of the connected mass and energy flows
in a processing plant as a set of functions. A MFM model explicitly includes the
causality between the functions fulfilled by the process units. A MFM model is a
hierarchical decomposition of goals to be achieved by certain functions of the system,
as well as a part-whole decomposition of each system function into basic material and
energy flow functions. MFM provides a graphical modeling language with symbolic
representations of these basic flow functions and the relation between functions and
objectives of the system. (Lind, 2013) Similar to other graph models, like bond-graphs
(Borutzky, 2010) or signed directed graphs (Yang et al., 2014), MFM captures the
causal connections throughout the process. However, it also takes a more contextual
approach by analysing the plant at the plant-wide level relevant to operator decisions
in control rooms rather than the mathematical detail required for other applications.

As an intuitive example a simple 3 tank system is shown in Fig. C.3. The mass
flow in itself is only composed of the water source, transports between storages, and
a sink. The participant relations toward the transports reflect that the set point of
the valves is the only determinant of the flow with the exception of V2, which is
determined by the level controller on tank L2. This example illustrates the readily
understood syntax underlying all MFM models, where multiple flow structures are
usually combined in a hierarchical manner supporting the overarching goals of the
plant.

Based on the knowledge in an MFM model, intelligent systems can be developed
to assist operators in assessing the state of the plant. The major aspects of intelligent
operator support are alarm filtering, root cause analysis and identifying mitigation
procedures. Concepts and implementations for each of these aspects are found in
the literature. However, no complete system covering the whole range from alarming
to mitigation suggestions has been presented to date. The following section outlines
a chronology of the research aiming at the application of MFM for online operator
support in one of the mentioned aspects. Finally, a conclusion of the past efforts and
an overview of our current efforts at the Technical University of Denmark toward a
comprehensive operator support tool based on MFM is given.

C.2 Chronology of MFM based approaches to Operator
Support

This section focuses on works that directly apply the MEFM representation for different
aspects of operator support. Approaches such as the diagnosis based on a functional
Hazop (Hu et al., 2015), are closely related to the issues of operator support, but do
not use the MFM model in an online fashion.
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Figure C.4: Chronology of MFM implementations for operator support and situation
awareness.

The fundamentals for using MFM in an automatic support system were established
by Lind, 1991 with the first implementation of generic reasoning in an object oriented
structure of MFM concepts. The ABSTRACTIONS framework made it possible to
dynamically reason about the propagation of faults through a MFM model based on a
generic rule base that could be applied to any given model and fault situation (Lind,
1991). Fang and Lind, 1995 present a real time application of the ABSTRACTIONS
framework through an interface to the programmable logic controller (PLC) of a pilot
process that provides a causal diagnosis by propagating faults along the relations
inside the MFM model.

In contrast, Sassen et al., 1991 proposed an efficient hierarchical search inference of
possible root causes. The inference uses a reduction of the MFM model to a hierachy
of goals and sub-goals essentially reflecting a fault tree. The fulfilment of each of
these goals can be evaluated against the actual state of the plant and causes can be
traced deeper in the hierarchy until the root cause is identified. In the same manner
local faults, which do not affect the plant as a whole, can be analysed by searching
the respective sub-tree. Similar to this goal decomposition and the hierarchical search
through the goals of the system, Takizawa and Monta, 1996 introduce a hierarchical
search in MFM models. An efficient diagnosis within the MFM model is realised by
first tracing the fault to a specific flow structure in the hierarchy. The inferred fault
propagation within the flow structures can be evaluated against the actual system
state. Inconsistencies between the inference and measured deviations are used to
identify the location of anomalies. They further presented heuristics to estimate
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measurements for components without instrumentation to establish more detailed
diagnoses.

The application of an MFM based expert system for alarm based root cause anal-
ysis and sensor validation was demonstrated by Larsson, 1996. The system is applied
to group alarms according to the causality represented in MFM. The alarms are deter-
mined to be primary alarms close to the root cause of the disturbance or consequential
alarms which are caused by a disturbance represented by another alarm. The evalua-
tion of the state is proposed as interactive questions to the operator. However, these
interactions slow down the system and impede the real-time applicability. Hence,
the system is suggested to be used in an on demand manner to understand occurring
situations. Taking into account that alarms are not necessarily configured correctly,
Dahlstrand, 1998 proposed a fuzzy assignment of the fault states before performing
the alarm analysis described by Larsson, 1996. This analysis was reported to yield
more robust results that can cope with common issues like chattering alarms.

While the MFM modeling of goals and functions had been well established, Pe-
tersen, 2000 identified a need to refine the representation of causality between flow
functions. The distinction between direct and indirect influence and a comprehensive
set of propagation rules for patterns in the MFM syntax are defined by Petersen, 2000.
Larsson et al., 2004 advocated for dynamic adjustment of causality in MFM mod-
els rooted in the consideration that the process dynamics are adjusted for different
operation modes. The proposed method determines a pairwise correlation measure
of local features in the process data. A low correlation measure indicates that the
causal connection of the respective functions should be inhibited. Thus, the same
model can be applied to the diagnosis of a process in different stages, given that the
differences between operation modes only affect the causality and not the structural
link of functions to components. (Larsson et al., 2004)

Dahlstrand, 2002 expanded on the causal alarm analysis to identify minimal sets
of root causes that fit the observed alarms. The analysis is done by reduction of
causal dependency graph covering all function and state combinations in a given
MFM model. The resulting causal paths can cover observed as well as unobserved
alarms making the method robust against chattering alarms. The method produces
a number of explanations that can help narrow the operator’s focus to the correct
process regions. Ouyang et al., 2005 demonstrated the application of MFM for the
diagnosis of design accidents in a nuclear reactor.

Gofuku and Tanaka, 1997 propose to augment the functional model with oper-
ational knowledge to include alternative behaviours of specific parts of the system.
They realise this extension by generating a quantitative simulation model using Hy-
brid Phenomena Theory based on the abstraction in MFM to facilitate prognostic
operator support. Furthermore, they propose an operator support interface utilising
the design intention incorporated in MFM models to explain abnormal situations and
augmented by mitigating actions. These possible counter-actions could be identified
from the operational knowledge and verified by the quantitative simulation model.
Expanding on their previous work, Gofuku, 2011 demonstrated the use of additional
knowledge in combination with the causal reasoning in MFM to generate linguistic



C.3 Ongoing research 95

explanations of an analysis in the model. They also reiterate a simplification method
for the model previously outlined by Fang, 1994. The simplification contracts func-
tions that are not directly linked to components and thus reduces the paths included
in the explanation for the operator.

Incorporating similar information to operational knowledge proposed in (Gofuku
and Tanaka, 1997), Us et al., 2011 suggest an alarm design method based on MFM.
External conditions and disturbances for individual functions of the system are used
to identify points of mitigation and early warnings for arising alarms, creating a
dependency structure of possible faults. The proposed alarm system considers only
alarms associated with the modelled function of the plant and incorporates the conse-
quence reasoning to predict alarms that will soon be triggered due to the propagation
through the plant. (Us et al., 2011)

Zhang, 2015 has presented the most recent set of propagation rules for MFM
models and applied it to the diagnosis of a nuclear power plant. The work also
explores the adaptation of the model or its links to the process to accommodate
different modes of operation as previously pointed out by Larsson et al., 2004. In
contrast to Larsson’s approach, the mode adaptation of process-function and means-
ends relations is proposed rather than causalities inside the repective flows.

Finally, Wang and Yang, 2016 outline an implementation of an MFM based expert
system similar to Dahlstrands reduction of a causal dependency graph. However, they
additionally include a link between modelled faults and common operator mistakes
to represent the identified set of root causes in a more natural language than the
underlying MFM model.

C.3 Ongoingresearch

As outlined in Section C.1 the operator tasks can be split up into the four parts: data
acquisition, situation analysis, decision and counter-action execution. Some work has
been published concerning the data acquisition and linking it to the causal analysis,
e.g. (Dahlstrand, 1998) and (Larsson et al., 2004), but in general most of the work
related to MFM considers the input to be valid alarms. Instead, the majority of
applications of MFM focus on the second step of situation analysis. Most notably
the groups of Lind and Larsson have proposed methods of cause analysis and more
recently Wang and Yang, 2016 have outlined an online system using MF'M to identify
root causes. The recent work of the group of Gofuku has been focused on using MFM
as the basis for generating operation procedures. Either in unknown situations or to
automate the generation of procedures the methods outlined by Gofuku, 2011 can
guide the execution of mitigation procedures once a diagnosis is established. While
all of the research outlined above contributes to the different aspects of control room
automation, each aspect has been researched mostly in isolation. Fig. C.5 outlines
the envisioned process for implementing a comprehensive operator support system.
To get meaningful results from the proposed knowledge based system the initial
knowledge needs to be accurate. Nielsen et al., 2018a are proposing a framework for
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model validation by comparing the inference generated from an MFM model with
the propagation documented by experts in e.g. a Hazard and Operability Study
(HAZOP) or aqcuired from numerical simulation or process data. As outlined by
Lind, 2017, the creation of a model library will facilitate the modeling process. A
library for different processes in the oil and gas sector is currently being developed
at the Technical University of Denmark (DTU). By providing validated models for
common subsystems in engineering documents of a specific application domain the
overall model consistency can be improved.

In the control room the support system has to diagnose the situation and pro-
vide suggestions within a time frame of minutes or below to enable the operator to
react before the system trips. In (Kirchhiibel et al., 2017b), the authors outline a
new propagation method that reduces the computational effort for the graph based
inference of multiple concurrent offsets. The accuracy of the model can be further
increased by the extension of the inference rules to include diverse implementations
of control loops under investigation by Zhang and Lind, 2017. To overcome the un-
certainties introduced by heterogeneous alarm configuration, the detection of faults
by data analysis methods and machine learning are considered as interface between
the process and the operator support system.

While a set of actual root causes can help focus the diagnosis, the estimation of
tentative consequences and the ensuing risk is just as relevant to prioritise further
steps and take appropriate actions. The operator can be provided with a range of
plausible explanations for the situation based on the inference. The authors suggested
a preliminary ranking method of identified root causes to determine the most relevant
causes for the operator to consider (Kirchhiibel et al., 2017b). In continuation of the
considerations in (Zhang, 2015) the adaptation of the model used for the inference to
the current situation is further being investigated in terms of knowledge representation
(Kirchhiibel et al., 2017a) and the identification of the current situation. Future
research will further concern the loop closure from actually observed situations and
operator reactions to the underlying model.

As the final stage of the operator support system the knowledge represented in an
MFM model can be used for automatic planning of procedures to mitigate a detected
deviation. Based on the concepts proposed in (Gofuku, 2011), Song and Gofuku, 2017
outlined a planning method using the MFM based causal inference. This branch of
investigation is also pursued by the group at DTU.
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Figure C.5: Development and application process for a knowledge based advanced
operator support system.

C.4 Conclusion

The presented chronology shows that a number of implementations and applications
have been reported continuously since the first implementation of MFM. However, the
complementary elements of alarm management and root cause analysis and reaction
suggestions have been widely separated in the research. The current research efforts
at the Technical University of Denmark and collaboration partners aim to combine
the whole range from initial offset detection to alarming and finally counter-action
generation. Within the context of operator support the integration of diverse methods
with knowledge representation in MFM are under investigation. The current research
projects and partners as well as recent publications can be found on the research
group’s website http://mfm.elektro.dtu.dk.
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Abstract: Intelligent fault diagnosis systems can be a major aid to human opera-
tors charged with the high-level control of industrial plants. Such systems aim for
high diagnostic accuracy while retaining the ability to produce results that can be
interpreted by human experts on site. Signed directed graphs have been shown to
be a viable method for plant-wide diagnosis that can incorporate both quantitative
information about the process condition as well as qualitative information about the
system topology and the functions of its components. Their range of application in
industrial settings has been limited due to difficulties regarding the interpretation of
results and consistent graph generation. This contribution addresses these issues by
proposing an automated generation of signed directed graphs of industrial processes
in the chemical, petroleum and nuclear industries using Multilevel Flow Modeling; a
functional modeling method designed for operator support. The approach is demon-
strated through a case study conducted on the Tennessee Eastman Process, showing
that Multilevel Flow Modeling can facilitate a consistent modeling process for signed
directed graphs. Finally, the resulting benefits regarding qualitative reasoning for
plant-wide diagnosis are discussed.

D.1 Introduction

The operation of industrial plants in the chemical and petroleum industries poses a
significant challenge to human operators on site. Especially the operation in abnormal
plant states, which is characterized by e.g. the failure of one or multiple components,
can be problematic. The production loss due to the operation in such abnormal plant
states, which accounts for up to 18% of the total production loss (Crowl and Louvar,
2011), could be severely reduced if correct recovery strategies were executed by the
operators in time. One of the main reasons for delayed or incorrect reactions by
the operators during plant recoveries is that the information provided to them is not
tailored to support quick, informed decision making. The alarm systems currently

C. C. Reinartz et al. (2019). “Generation of Signed Directed Graphs Using Functional Models”.
In: 5th IFAC Conference on Intelligent Control and Automation Sciences. Belfast, UK: IFAC-
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featured in industrial plants provide a descriptive overview of the plant state, featuring
alarm signals, which indicate a deviation of the process from its nominal condition.
Information about the potential relation of these alarms is not displayed (Rothenberg,
2009). It is imperative to provide the operators on site with a decision support system,
which can generate comprehensive and contextual information about the current plant
state to improve the overall performance of operations on industrial plants. This
information should include probable root causes of existing disturbances and potential
actions countering their effects. Due to the high degree of connectivity in most
industrial plants, a local fault may propagate through large parts of the system.
Most observed disturbances and alarms are in fact the result of such a propagation
and do not necessarily give any indication about the actual fault. A system for
fault-diagnosis in large-scale processes needs to capture the causal connections of the
system to be able to reason about the origins of faults. Additionally, the diagnosis
must be comprehensible for the human operators on site, if the software is intended
for decision support (Yang et al., 2012).

Model-based (Venkatasubramanian et al., 2003a; Venkatasubramanian et al., 2003b)
and process history based methods (Venkatasubramanian et al., 2003c¢) for fault-
diagnosis have been presented in the past. This paper will focus on Multilevel Flow
Modeling (MFM) and Signed Directed Graphs (SDG). Both methods belong to the
field of qualitative, model-based analysis and both possess the capability to capture
causal connections within complex industrial processes. Research into improving the
results obtained from SDG-based methods using quantitative approaches has been
conducted with promising results (Maurya et al., 2007; Peng et al., 2014; Wan et al.,
2013; Yang et al., 2012). A drawback of using SDGs is that both the model generation
and the interpretation of obtained results is not straightforward. Multilevel Flow
Modeling is capable of producing results that can be interpreted by process experts,
but the combination of the method with quantitative modeling approaches, though
possible (Hu et al., 2015; Kim and Seong, 2018; Larsson et al., 2004), has not been
researched extensively yet. A mapping between SDG and MFM models offers the
potential to make results obtained by one method accessible to the other and thereby
extend the application range of both methods. The basic concepts of both methods
are outlined in Sections D.2 and D.3, followed by an explanation of the method for the
automated signed directed graph generation in Section D.4. The method is tested
on the Tennessee Eastman process in Section D.5 and the results are discussed in
Section D.6.

D.2 Representing causal relations using Signed Directed
Graphs

Signed directed graphs provide a generally applicable means of representing qualita-
tive causal models (Venkatasubramanian et al., 2003a). A mathematical expression
for SDG models G = (V, E, ¢,) is defined by Bondy and Murty (1976). The nodes
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(V) of a SDG represent system variables and the arcs (E) connecting the nodes repre-
sent the effect of these variables on each other. Each node has an assigned qualitative
state ¢ : V' — {+,0,—}, which indicates whether the state of the variable repre-
sented by the node is higher, equal or lower than nominal. Each directed arc has
either a positive or a negative sign ¢ : £ — {+, —}, which is determined by the di-
rection of effect between two variables. The direction of the arc is determined by the
cause-effect relation of the connected nodes. Each arc points from the 'cause’ node
to the ’effect’ node. Figure D.1 displays the two basic connection types that can be
expressed using signed directed graphs. States are propagated in SDGs by traversing

G—@ @@

(a) (b)

Figure D.1: Basic positive (a) and negative (b) connection types between two nodes
of a signed directed graph.

the edges connecting the nodes. A state v (v;) = '+’ will propagate to all nodes
directly connected to v;. Nodes connected via positive arcs will assume a high state
(4+) and nodes connected via negative arcs will assume a low state (-). The benefit of
SDGs is that causal dependencies are explicitly expressed through the signed edges.
Because of that, the state propagation is straight forward and easily traceable. SDG
can furthermore be applied very broadly, since the modeling language is not derived
from processes of any specific industry. A drawback of using SDG is that the direct
representation of causalities does not enable a direct inference about the reason for
the causality. This limits the usefulness of obtained results for further utilization by
human experts.

D.3 Multilevel Flow Modeling

Multilevel Flow Modeling is a functional modeling method designed to model indus-
trial processes such as nuclear and chemical plants. The benefit of MFM is that both
the models and the reasoning results can be interpreted by process experts in the field,
since the modeling language is based on concepts that they are already familiar with,
such as mass and energy flows. MFM models are meant to capture the functionality
and the causal relations between system parts rather than the topology on a compo-
nent level. In Multilevel Flow Models, processes are divided into mass, energy, and
control flow structures. These contain more detailed process representations, which
are modelled using the basic function- and relation types displayed in Fig. D.2. Each
basic function type is assigned a qualitative state, which corresponds to commonly
used terminology for alarm states used in industrial applications. The functions Stor-
age, Transport, Source and Sink can assume the states high, normal and low. High
and low states signify that the function variable is outside of its nominal range. The
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barrier function can assume a normal or a breach-state. The balance function has
only a normal state and serves as a flow-distribution function. Lind (2011) provides
an overview of the basic model components and modeling principles.

MFM is different from other qualitative modeling techniques like SDGs because causal
relations are expressed implicitly. The causal relation between two MFM-functions

Functions
Mass and Energy Flow Control
source transport storage steer trip
© & O | 9 © |
structure
sink barrier balance regulate suppress C)
Relations
Influence Means-End Control
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Figure D.2: Basic MFM Functions and Relations (Zhang, 2015).
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Figure D.3: Influencer (a,b) and participant (c) relations between ”storage” and
“transport” functions.

is determined by the respective function types (Storage, Sink, Source, Balance, Trans-
port), the connection types (influencer, participant) and the position of the functions
towards each other, considering the direction of flow in the system (upstream, down-
stream). The direction of flow in the system is indicated by the arrow in the trans-
port function symbol. Transport-type functions (transport, barrier) affect adjacent
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functions by default. Non-transport functions (storage, sink, source, balance) affect
adjacent functions, if they are connected via an influencer relation. Figure D.3 shows
three MFM models, which represent different explicit causal relations. The cases of a
“high” state of the transport function and a "high”-state of the storage function are
considered as examples. Table D.1 summarizes the causal inference for the models in
Fig. D.3. In the case shown in Fig. D.3a, a "high” state of the transport signifies an
outflow of the storage, which is higher than expected. The result is a decrease and
eventual ”"low” state of the level of the storage. The explicit cause-effect relation from
the transport to the storage therefore has a negative sign. In the cases provided in

Table D.1: Inferences for MFM-models in Fig. D.3

Scenario  Initial state Inference

transport: high storage: low

Case 7a”
storage: high transport: high
transport: high storage: high
Case "b”
storage: high transport: low
transport: high storage: high
Case 7¢”

storage: high transport: not affected

Figures D.3b and D.3c, a "high” state of the transport function will lead to an even-
tual “high” state in the storage, since the storage will fill faster than expected due
to the higher than nominal input. The explicit cause-effect relation from transport
to storage has a positive sign in these cases. The case D.3c is different from D.3b,
because it features a participant relation, which signifies that the state of the storage
does not affect the transport function directly. Reasoning about causality in MFM
requires the implementation of a fixed set of propagation-rules for each combination
of MFM-functions (Zhang et al., 2013).

D.4 Conversion of MFM models to Signed Directed Graphs

The aim of the conversion is a signed directed graph that captures the explicit causal
relations, which are implicitly expressed in the MFM model. Such a graph can be gen-
erated in three steps, if an MFM model is available. First, n SDG nodes are created,
where n equals the amount of functions in the MFM model and each node corresponds
to a specific function. The explicit causalities between the MFM-functions are then
extracted by using the rules described by Zhang et al. (2013) in the second step. The
signed edges of the SDG can be generated based on the information about explicit
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causalities that was extracted in step two, as shown in Fig. D.4 for the most basic
MFM models. Fig. D.4a shows participant relations between transport and storage

0" 8"
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(a) Participant relations. (b) Influencer relations.

Figure D.4: Representation of Signed Directed Graph equivalents of basic MFM
relations.

functions. It can be observed that the nodes representing the storage function in
the SDG have no outgoing edges, since the participant relation implicitly states that
the state of the storage does not have a direct effect on the state of the transport
function. The lack of outgoing edges on the nodes representing the storages states
the same relation explicitly. The same model with influencer instead of participant
relations is shown in Fig. D.4b. In this case both MFM models result in an identical
signed directed graph representation, which is a direct result of the MFM-reasoning
that is illustrated in Table D.1, considering that the node "V1” corresponds to the
storage function in the upper model and to the transport function in the lower model
in Fig. D.4b. It provides a good example for why Multilevel Flow Models are better
suited for human interpretation than signed directed graphs. The MFM models in
Fig. D.4b represent two different physical processes, e.g. a tank being drained by an
outflow (top) and a tank being filled by an inflow (bottom), which is not apparent
in the signed directed graph representation. Because the signed directed graph does
not capture and thus does not contain such implicit information about the process,
it is not possible to generate a MFM model from a SDG directly. Reasoning results
obtained from SDGs can, however, be transferred to MFM models if a mapping be-
tween the nodes of both models is established, which is always the case if the SDG is
generated from an MFM model.

D.4.1 Reduction of Signed Directed Graphs

As mentioned above, a primary purpose of MFM is the representation of the process
in a human-readable format. This necessitates that elements of the process, which
are not monitored but still vital for the human operator’s understanding, have to
be considered in MFM models to ensure a comprehensible output. Signed directed
graphs do not necessarily need to keep to this restriction. In most cases only process
variables which are monitored or can be actuated are considered in SDG representa-
tions, since they can provide direct feedback to the reasoning system. Signed directed
graphs generated using MFM will initially feature all variables that are captured in
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the MFM model, including those that are not monitored. The MFM representation
does, however, include information about which MFM-functions are directly con-
nected to process measurements using a ’process variable” tag, thus defining a set of
monitored nodes I. This information can be used to reduce generated signed directed
graphs to exclusively include nodes representing monitored variables. The applied
reduction scheme consisting of two main steps is described in Fig. D.5 and illustrated
by a simple example in Fig. D.6. Nodes, whose indegree 8~ or outdegree 97 is equal

Step 1:
while v; e V\I; 8 (v;) =0V 6+(’Uz‘) =0do
VeV \ Vi
end while
Step 2:
while v; € V'\ I do
for et € E; et = (v, v;) do
for e € E; e= = (v;v,) do
if v,, # v, then
e* = (Vm vn)
E+ EUe*
end if
end for
end for
V<V \ Vi
end while

Figure D.5: Reduction algorithm used to obtain a graph featuring only monitored
nodes. V, I, and E are defined as the sets of nodes, monitored nodes and edges,
respectively.

VA1 V2 V3
& &
V4
(a) (b) (c)

Figure D.6: Multilevel Flow Model (a), equivalent Signed Directed Graph represen-
tation (b) and SDG representation excluding "V2” (c) of a hypothetical process with
branching causal relations.

to zero are removed in the first step, unless they represent a process variable. The
remaining nodes that are not connected to process variables are recursively removed
in the second step. A similar reduction scheme was previously described by Kramer
and Palowitch (1987). The reduced graph represents the same causal relations as the
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original in regard to the measured process variables, but representations of internal
connections between unmeasured nodes may be lost. This is acceptable if the target
application uses the process data as its primary source of information.

D.5 Case Study

The Tennessee Eastman process is a well-known process from the chemical indus-
tries that was first introduced by Downs and Vogel (1993). It has since been used
as a benchmark problem for studies in fault-diagnosis (Yin et al., 2012), state esti-
mation (Ricker and Lee, 1995), control (Zerkaoui et al., 2010) and others. The five
main components of the process are the reactor, condenser, vapour-liquid separator,
stripper and the compressor. The open loop process presented by Downs and Vogel
(1993) is unstable and needs to be shut down due to high reactor pressure, if left
unchecked. Ma and Li (2017) adopt a control scheme presented by D’Angelo et al.
(2016) to test the performance of a fuzzy signed directed graph model of the reactor
of the TE-process for fault diagnosis. The graph created by Ma and Li (2017) is used
as a reference model for this case study, since it has been successfully applied for
fault-diagnosis for the Tennessee Eastman reactor and serves as a good benchmark.
The flowsheet and control scheme are displayed in Fig. D.8.

The aim of this case study is to compare a SDG that was generated using a MFM
model of the Tennessee Eastman reactor to a reference SDG presented by Ma and Li
(2017) and reach conclusions about the merit of the method proposed in this article
based on the consistency between the MFM model and the generated SDG on the
one hand and the similarity between the generated and reference SDGs on the other
hand.

The MFM model used as a basis for the graph generation is displayed in Fig. D.9.
It was designed from the knowledge represented in the flow sheet using the model-
ing strategy presented by Lind (2017). The graph shown in Fig. D.7 is the direct
result of the application of the principles presented in Sections D.4 and D.4.1. The
consistency of MFM and generated SDG is tested by comparing the results of single
fault propagation applied to both graphs. To this end, all scenarios resulting from
a single fault input are generated using the propagation rules for MFM and SDG,
respectively. It is then verified that nodes referring to the same process variable have
the same state in all corresponding scenarios. This test was successfully run for all
single fault scenarios (positive and negative deviation of each process variable) of the
generated Tennessee Eastman Reactor model.

It is apparent that the generated (black edges) and reference (black and red edges)
graphs are very similar. The automatically generated graph does not contain ad-
ditional edges compared to the reference. The reference graph contains four edges
and thus for causal relations which are not covered by the generated graph. It was
expected that these relations would not be represented in the generated model, since
they take the effect of the stripper and vapour-liquid separator into account, which
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have not been considered in the MFM model that focuses on the functionality of the
reactor. It is noticeable that the generated graph does not feature any edges which
imply "false” causal relations, which is important, since invalid causalities can lead
to incorrect reasoning and thus impede the fault analysis.

Figure D.7: SDG describing the causalities between measurable process variables that
affect the TE-Reactor. Red edges: Causalities described by Ma and Li (2017) that
do not appear in the MFM-generated SDG.
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Figure D.8: Flowsheet of the Tennessee Eastman process containing the control struc-
ture used by Ma and Li (2017).
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Figure D.9: Multilevel Flow Model of the Tennessee Eastman Reactor. Displayed are
functional elements of the process which have either direct or indirect influence on
the reaction. Measurable process variables are highlighted blue. Red print indicates
the variables belonging to means-end relations. Process variable names are directly
adopted from the used reference study conducted by Ma and Li (2017). The process
is modelled using the MFM-modeling principles descibed by Lind (2017).
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D.6 Conclusion

The conversion of functional process models to signed directed graphs is generally
achieved by translating implicit causalities to explicit ones, as presented in Section
D.4. Such an approach is realizable for many functional modeling concepts, e.g. some
of those presented by Erden et al. (2008), indicating that the presented method is in
principle applicable for other approaches than Multilevel Flow Modeling as well.
Researchers focusing on signed directed graph based fault analysis profit from us-
ing functional models in two ways. They can use the existing modeling guidelines
developed for the functional modeling concepts that are designed to identify causal
structures in specific industrial applications. Following such guidelines ensures con-
sistent model design and thereby consistent design of the signed directed graphs used
for the analysis. In addition to that, the opportunity to express the diagnosis output
in a functional modeling framework designed for the evaluation by process experts
facilitates communication in the respective target industry.

A major benefit for researchers in the field of functional modeling is that the exten-
sively researched field of fault diagnosis using signed directed graphs becomes directly
accessible. This provides the opportunity to integrate such research into the devel-
opment of functional reasoning systems with minimal effort.

The method presented in Section D.4 facilitates the addressed consistent model gen-
eration for processes in the chemical, petroleum and nuclear industries. Initial testing
on the Tennessee Eastman process has yielded promising results, including a auto-
matically generated, well-formulated signed directed graph model of the Tennessee
Eastman reactor which closely matches models presented in literature. Further case
studies on systems from the chemical and petroleum industries as well as further re-
search on the integration of signed directed graphs into the Multilevel Flow Modeling
concept are planned for the near future.
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Abstract: The complexity of modern industrial plants poses significant challenges for
the design of effective alarm systems. Rigorous alarm management is recommended to
ensure that the operators get useful information from the alarm system, rather than
being overloaded with irrelevant state information. Alarm management practices
have been shown to significantly reduce the frequency of alarms in industrial process
plants. These practices help focusing the operators’ attention on actually critical
situations. However, they cannot resolve the cascades of critical situations frequently
occurring during emergency situations.

Multilevel flow modelling (MFM) has been proposed as a way of representing
knowledge about the industrial process and infer causes and consequences of devia-
tions throughout the system. The method enables the identification of causes and
consequences of alarm situations based on an abstracted model of the mass and en-
ergy flows in the system. The application of MFM for root cause analysis based alarm
grouping has been demonstrated and can be extended to reason about the direction
of causality considering the entirety of the alarms present in the system for more
comprehensive decision support.

This contribution presents the foundation for combining the cause and conse-
quence propagation of multiple observations from the system based on an MFM
model. The proposed logical reasoning matches actually observed alarms to the
propagation analysis in MFM to distinguish plausible causes and consequences. This
extended analysis results in causal paths from likely root causes to tentative conse-
quences, providing the operator with a comprehensive tool to not only identify but
also rank the criticality of a large number of concurrent alarms in the system.

D. Kirchhiibel et al. (2017b). “Identifying causality from alarm observations”. In: International
Symposium on Future 1&C for Nuclear Power Plants (ISOFIC) 2017. Gyeongju, Korea, pp. 1-6.
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E.1 Introduction

Modern industrial plants contain a large number of interacting control loops and
concurrent processes affecting the productivity and safety of the system.

While control practices for individual components and constrained processes are
widely adapted in industry, plant-wide control often faces too many uncertainties
from the environment and the interconnected processes to be economically feasible
Rangaiah and Kariwala, 2012. Human operators who rely on alarm systems to su-
pervise the plant operation thus control the vast majority of plants in the energy,
petrochemical and chemical industries. Due to the large risks for humans as well as
the environment in case of failures, rigorous alarm management is recommended for
these industries to avoid overloading the operators EEMUA, 2013.

Alarm management practices have been shown to significantly reduce the amount
of irrelevant alarms presented to the operator by thoroughly scrutinizing the neces-
sity and importance of the most frequent alarms and where possible combining and
removing redundant alarms Rothenberg, 2009. A well maintained alarm system can
avoid operator overload during normal operation. However, emergencies frequently
generate cascades of true critical situations throughout the plant that overwhelm the
operator with so called alarm floods. To cope with such situations the relation of
those alarms needs to be examined and compiled into concise information to aid the
operator in identifying the most relevant and immediate threats.Beebe et al., 2013

To identify relevant information during alarm floods the causality relation of the
occurring alarms is a key information. While the analysis of historian data on the
alarms gives insight in common correlation between alarm occurrences, inference of
causality requires incorporating process knowledge.Wang et al., 2016a

Multilevel Flow Modelling (MFM) provides an abstract representation of an in-
dustrial process as a decomposition of connected mass and energy flows Lind, 2013.
MFM methodology has been proposed as a versatile process representation to ana-
lyze causal patterns in a plant Us et al., 2011. Inoue et al. Inoue and Gofuku, 2016
propose to use MFM for counter action planning in unknown emergency situations.
Larsson and DeBor Larsson et al., 2007 and more recently Wang et al. Wang et al.,
2016b have demonstrated the application of MFM for root cause identification and
alarm reduction based on identified root causes. The combination of dynamic alarm
reduction and a system to propose feasible counter-actions would enable operators to
react efficiently to any situation in the plant.

As a starting point toward this comprehensive operator support system the exten-
sion of the method for root cause identification is described here. The identification
of root causes as well as propagation paths based on the causality between observed
alarms is discussed in this contribution. The following sections introduce the MFM
methodology and the propagation reasoning based on MFM models. Based on that
the proposed method for combination is outlined and conclusions for future work are
drawn.
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E.2 Multilevel Flow Modelling

Multilevel Flow Modelling (MFM) represents the goals and functions of a system by
decomposing the mass and energy flows as means and ends of operating the system.

Each flow component along the means-end dimension is described by basic flow
functions. By the combination of means-end decomposition of the overall operation
and part-whole perspective of individual flows the function of the system is analyzed
and can be represented as a graphical model using the MFM concepts shown in
Figure E.1. As example the MFM model of a watermill is considered, adapted from
Lind Lind, 2011 and shown in Figure E.2.
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Figure E.2: MFM model of a
watermill as decribed by Lind,
Figure E.1: MFM concepts used for modelling. 2011

The model shows the main objective of grinding grain as obj1, which is achieved
by the mass flow of grain in mfsi. The grains fed into the mill are converted to flour
and split-up bran. Energy flow efs! reflects the conversion of the energy from the
water by the gears and mill stone to energy used for grinding and energy losses not
used in the system. This energy in turn is supported by the mass flow of water into
the flume across the water wheel represented by mfs2. In this way the interacting
functions throughout the system are described for the nominal operation.

Industrial plants, however, often have a multitude of different operational situ-
ations by design. Each of these operational modes is defined by different nominal
functions in the system and thus requires an adaptation of the model Kirchhiibel
et al., 2017a. As described by Inoue et al. Inoue and Gofuku, 2016 adapting the
model also facilitates the investigation of alternative behaviors of the plant.
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E.3 Prognostic and Diagnostic Reasoning

Based on the MFM modelling primitives the propagation of failures through the
system can be analyzed. Combinations of propagated states and patterns in the
model describe the failure propagation in the system. Zhang Zhang, 2015 describes
the most recent version of these propagation rules.

high-high
high
low

low-low

high-high
high
low

low-low

999!

Figure E.3: Downstream consequence propagation of faults on a transport function
Zhang, 2015

The rules are defined for both, plausible causes and consequences of an observed
state. The example in Figure E.3 shows how a failure associated with a transport
function has consequences on connected functions downstream of that transport. Ap-
plying all propagation rules to an observed failure, a fault tree of failures in the model
can be generated. The resulting tree generally reflects alternative propagation paths
at the same level. The alternative paths are not necessarily but frequently mutually
exclusive.

In conjunction with a set of truth-maintenance rules the possible propagation
paths of each observation present in the system can be dynamically generated. This
way changes to the observations as well as the considered configuration of the plant
are taken into account at any given moment. The resulting causal paths are lim-
ited to plausible scenarios connected to specific observations, whereas a generic fault
model as used by Wang et al. Wang et al., 2016b comprises a comprehensive causal
representation of all possible states. While the computational burden of this dy-
namic approach is higher than a precompiled causal graph, it yields more flexibility
to accommodate changes of the system behavior.

The propagation analysis for causes of two different faults is illustrated in Fig-
ure E.4. Each subordinate level in the tree structure reflects plausible causes for the
immediate parent.

The fault tra2:low equals to a low processing throughput of the mill, meaning that
no grain is being milled. The other fault tra9:high corresponds to a too high flow of
water from the flume over the waterwheel. The comparison of the two consequence
trees reveals, that neither of the two observed alarms can be the cause for the other.
In fact, if the low throughput were caused by a fault of the water flow it would be
the opposite - low flow instead of a high flow as observed.
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Figure E.4: Cause analysis of two Figure E.5: Cause and consequence
faults in the water mill, common cause analysis for observation of high flume
bal3:leak is highlighted level

In addition, a later observation of the flume level being high — sto2:high — is
considered (Figure E.5). This observation may well be a direct cause for the high
flow of water from the flume. If it were the only fault in the system, however, it could
not explain why the production of the water mill is low in the considered situation.
Hence, a combined analysis of the possible causes and consequences is necessary.

E.4 Combining Multiple Alarms

By comparing the cause tree representation for the first two considered failures in
Figure E.4 the common cause bal3:leak can be manually inferred. For a more com-
plex system and a larger number of simultaneous observations, however, the proper
inference becomes significantly more complex. This raises the need for a general and
structured solution for reliable identification of the best explanation.

Considering the combination of all suggested causes and consequences as a directed
causal graph grants a better overview of the whole situation. Furthermore, a directed
graph can be systematically analyzed by applying graph theory.

The example of tra2:low and tra9:high results in the graph shown in Figure E.6.
All edges are directed from cause to consequence. The green nodes represent the
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states that are supported by observations. The results generated from tra2:low are
shown in blue and the results based on the observation tra9:high are shown in black.

tra2:low and tra2:high both cause that the main objective of the water mill would
fail, i.e. objl:false. This relation is ommited here for readability.

Figure E.6: Graph combining the causes and consequences suggested for two faults
in the water mill. The graph is directed from cause to consequence.

Finding the root cause in this graph is a matter of finding a minimal tree, which
includes as many of the observations as possible while obeying the directivity of the
graph.

The tree rooted in bal3:leak thus yields the best explanation for the given obser-
vations. In terms of the physical system this can be interpreted as the water spilling
over the water wheel instead of being transported by the buckets of the water wheel.
This could for instance be caused by the water wheel being broken or bypassed.

Fach causal tree that can be identified by this analysis can be extended to also
cover the consequence scenarios for the current situation. Considering a tree T" whose
leaves are the observations o(7"), the tree can be extended by the consequences of
each of these observations, so long as a consequence does not refer to a function that
is already considered by any vertex in 1" or any observation from the system.

Applying this method to the example results in the tree shown in Figure E.7. The
states in grey are the relevant consequences beyond the observed states.
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Figure E.7: Consequence tree derived from the first observed scenario

The combined graph can be efficiently updated with new connected observations.
Considering sto2:high, the complete cause and consequence analysis is already present
in the graph and no new inference is necessary. As there exists no causal tree that
also includes the new observation, the high flume level has to be an independent
contribution to the high flow from the flume.

The diagnosed causes would hence be a high inflow to the flume (sou3:high or
tra8:high) as well as the spill of water represented by bal3:leak. The consequences
will no longer include a low level in the flume (sto2:low) as the flume level has been
identified as a likely cause for the situation. This shows, that the combined analysis
of fault propagation from the observations yields a clear distinction of the causality
between connected functions in the system.

E.5 Conclusion

This contribution outlined a generic method for situation analysis and distinction of
causality based on MFM reasoning and graph interpretation.

In the context of alarm management for a complex plant the underlying framework
as well as the models have to be adaptive for many different configurations in the
plant.

The method proposed here takes in dynamic reasoning results based on an MFM
model and has the potential to reliably distinguish the direction of causality as well
as identifying the most plausible root causes and tentative consequences of any given
scenario.

This method is currently being implemented in a real-time environment of a pilot-
scale oil and gas production plant. Further investigation will be dedicated to the
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efficiency of the method and the integration of selective advanced signal processing
for prognostic analysis of scenarios and fast distinction of situations.
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Abstract:

Safety and efficiency of modern industrial plants can be improved by providing op-
erators with effective digital assistants to diagnose abnormal situations occurring in
the plant. To make sense of a large number of alarms, root cause analysis can help
pinpoint the origin of an abnormal situation. We investigate the translation of qual-
itative causal models into Bayesian belief networks (BBN) to utilize efficient tools
for probability inference. The diagnosis result of a fault scenario of the Tennessee-
Eastman-Process highlight the feasibility of the principle approach and the ongoing
research aims to fully leverage the potential of BBN.

F1 Introduction

The impact of situational awareness in the decision-making process of operators of
industrial processes has long been a concern in safety critical operations. In order
to address the challenge of human factors the performance of the operator interface
naturally is essential. Situational awareness is necessary to maintain reliability, an-
ticipate events and respond appropriately when or before they occur. Comprehension
of the situation is based on a synthesis of perceived information. This comprehension
requires an understanding of the significance of the presented elements beyond simply
being aware of information. By developing digital assistants to support the operator,
the operators can make better-informed decisions.

Reducing the number of alarms presented to an operator, by means of alarm
management has been the subject of many improvement efforts in industry. This re-
flects in the guidelines and standards defined for process industries, most significantly
the Engineering Equipment Materials Users’ Association (EEMUA) publication 191

D. Kirchhiibel and T. M. Jgrgensen (2019). “Generating Diagnostic Bayesian Networks from
Qualitative Causal Models”. In: 24th IEEE International Conference on Emerging Technologies
and Factory Automation ( ETFA ). IEEE, pp. 1239-1242.
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(EEMUA, 2013). Hollifield and Habibi (2006) have compiled an overview of the cur-
rent best-practice in industry. It is necessary to combine all available information to
provide accurate assistance: recorded data, as well as design and operation knowledge
(Wang et al., 2016a).

Digital diagnostic assistants for “human in the loop” real-time operations can
be valuable in identifying root causes of failures (Natarajan and Srinivasan, 2014;
Nguyen et al., 2016) or even predict the onset of disturbances that could lead to
failures (Zhang, 2015; Zhu et al., 2016), thereby reducing downtime and limiting
stress for the operators. To establish a model of the system, technical documentation
like P&IDs and process flow diagrams, are important (Wang et al., 2016a), but it is
also vital to “harvest” expertise and experience from engineers and operators (Cai
et al., 2016) or empirical data (Nguyen et al., 2016). Based on this data the causality
between offsets in the plant can be modeled and the fault propagation can be analyzed
to identify root causes (Zhang, 2015), (Arroyo Esquivel, 2017).

Bayesian Belief Networks (BBN) have been proposed as means of diagnosing faults
based causal process representations. BBN yields a way of representing uncertainty
about the causal relationships and with efficient Bayesian inference one can update
likelihood estimates of the unobserved states and the potential root causes, implying
the possibility of ranking them. One approach to establish the process representation
on which Bayesian Network analysis can be added is to apply Hazard and Operability
Studies (Hazop) (Hu et al., 2015) or fault-tree analysis (Milford, 2006), (Bobbio et
al., 1999), which are usually prepared for risk assessment.Peng et al. (Peng et al.,
2014) also describe the application of Bayesian inference to distinguish root causes
identified by fault propagation in a multi-logic causal model. However, producing and
maintaining accurate representations of a process in safety documents in a consistent
digital format is a lengthy process involving process, safety and operations experts.

Multilevel Flow Modeling (MFM) facilitates the generation of causal models. Rep-
resenting the process as a hierarchy of mass, energy, and control flows by functional
concepts provides a structured approach to modelling causality. (Lind, 2013) Using
the abstract causal model reduces the knowledge engineering effort and fault prop-
agation is used to propose root cause candidates. To identify the actual root cause
BBN can then be used, similar to the approach in (Peng et al., 2014).

This paper examines more closely the application of BBN for on-line fault diagno-
sis based on causal models. The approach is demonstrated on a case of the Tennessee
Eastman Process simulator (TEP) (Downs and Vogel, 1993) .The paper is organized
as follows. First we present a causal model of the thermal aspects in the TEP based
on the concept of Multilevel Flow Models (MFM) (Lind, 2013). Next, we outline
different approaches to generate a BBN from the causal model. Finally, we obtain
the probabilities of all possible root causes and compare the results with the true
fault for the investigated TE scenario.
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F.2 Causal Model of the Tennessee Eastman Process

The MFM causal model shown in Figure F.1 represents the thermal aspects of the
TEP. The MFM methodology decomposes the system into mass and energy flows as a
hierarchy of means and supported objectives of the plant. By using abstract function
primitives to represent the different flows the model can be related to the design
intentions and human understanding of the plant operation (Zhang, 2015). Some of
the abstract mass or energy flow functions in the model directly relate to measurable
quantities in the process, such as pressures, temperatures, and flow rates, as well as
manipulated variables. The implicit causal model in MFM yields a causal di-graph
for the measurable quantities of the TEP shown in Figure F.2.

For the diagnosis, we consider the scenario of a high condenser coolant tempera-
ture, indicated by two alarms: F9 high and F5 low. The alarms are generated by a
2% band around the steady state value (Ma and Li, 2017) using the simulation data
provided by Rikker (Ricker, 2019).

F.3 Bayesian Belief Nets

A Bayesian belief network is a probabilistic graphical model that describes variables
and their conditional dependencies based on a directed acyclic graph. Efficient algo-
rithms exist for both inference of probabilities and learning of the causal structure. As
such, it represents an established methodology for analyzing complex causal depen-
dencies between faults (Jensen, 1996; Pearl, 1988). There are a number of synonyms
in the literature all corresponding to a Bayesian Belief Net (BBN). These include
Bayes nets, directed acyclic graphs, and probabilistic networks.

A BBN models the joint probability distribution of the combined states of the
system under consideration - in our case given by the nodes in the (combined) fault-
tree(s). The BBN is defined by a directed acyclic graph in which each edge corre-
sponds to a conditional dependency and each node corresponds to a unique random
variable. In addition to the graph structure, the BBN contains Conditional Probabil-
ity Tables (CPT) for all nodes having one or more parents and by marginal probability
tables for the root nodes (nodes without parents). Generally, one can say that a BBN
is a solution to model complex systems because they perform the factorization of the
variables joint distribution based on the conditional dependencies. The main objec-
tive of BBNs is to compute the distribution probabilities of a set of unknown variables
given the observation of one or more other variables. The detailed principles of this
modeling tool are explained in (Pearl, 1988), (Jensen, 1996).

Building a BBN involves both a structural part (the graph) and a quantitative
part (the probability tables). Both of these parts can be learned from data. However,
developing a BBN for a complex system entirely by learning from historical diagnostic
cases, although very attractive, is rarely an option due to lack of data. On the other
hand updating an existing model from data is often feasible. It is also important
to note that the structural part (the backbone of the causal dependencies) is more
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Figure F.1: Multilevel Flow Model of
the TEP. Decomposition of the process
by flow function primitives (Lind, 2013)
for mass flow (blue), pressure (green),

heat transfer (yellow), and control loops
(white).

Figure F.2: Signed directed graph gener-
ated from MFM model. Positive (solid)
and negative (dashed) edges are directed
from cause to effect. Minor reciprocal in-
fluence (red) and influence of controlled
variables (yellow) removed to generate
BBN. Nodes are coloured according to
MFM perspectives.

difficult to learn than the parameter values of the probability tables. Accordingly, it is
advantageous to draw structural information from an available causal representation
of the system. There have been a number of publications showing how to map a fault-
tree to a BBN (Milford, 2006), (Bobbio et al., 1999). It is in principle straightforward
and the OR gates can be directly represented by deterministic CPTs. In addition we
can then easily represent uncertainty in the anticipated propagation of causes to
consequences by modifying the CPTs using so-called Noisy OR gates (Antonucci,
2011).

F.4 Generating Bayesian Nets

In the following, we outline three different paths of generating a BBN from the pre-
sented causal model. Firstly, a recipe for removing cycles in the causal di-graph is
presented, generating a BBN with trinary states for all variables in the graph. Subse-
quently, two different ways of interpreting the fault-trees generated by back tracing
into a BBN.

A. Trinary Representation

If it is possible to translate a causal graph directly into a BBN, each variable can be
considered as having one of three states: no deviation (normal), too low value (low),
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or too high value (high). However, control loops in the system will reflect as cycles in
a causal graph, whereas a BBN needs to be acyclic by definition. We propose a recipe
to resolve these cycles and create a BBN from a causal di-graph, or signed di-graph.
The approach is based on the following assumptions:

e During normal operation, reciprocal influence between two variables has a dom-

inant direction, due to the process and control design.

e Actuated variables are likely root causes, e.g. a fault in the sensor, controller
implementation, or the actuator can cause an offset.

Consequently, the following steps are performed to generate a BBN:

1. Identify and keep only dominant influence between reciprocal variables. See
Figure F.2.

2. Remove edges from controlled variable to corresponding actuated variable, if
they are part of a cycle. See Figure F.2.

3. Generate a CPT for each intermediate node using Table F.1. Each entering
edge ej; of node v; has sign s;;. If v; has multiple entering edges the cross
product of the states is formed as the sum of the high or low observations, the
normal state is only probable if all parent nodes indicate normal.

Table F.1: CPT for intermediate node v;

based on parent v;

Table F.2: CPT for binary root cause
based on trinary parent node

8 =1

trinary

Vi v high normal  low high high  normal low
fault occurred 1 1 0
high 1 0 0
normal 0 | 0 normal . 0 1 1
low 0 0 1 low trinary high  normal low
Sii =/
Vi . v | high normal  low fault occurred 0 1 1
’ L normal 1 1 0
high 0 0 1
normal 0 1 0
low 1 0 0

B. Mapping Causal Paths

The assumptions presented in A will often be too simplistic to cover all scenarios in a
plant, e.g. if a cycle led to remove the influence of P, on MV6 by rule A.2 there would
be no propagation causing F9 high. Alternatively, we explore a situation specific ap-
proach to generating the BBN. Given specific fault observations, the causal model
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can be used to trace back the causal path and identify possible root causes. In doing
so, only a subset of the graph will be traversed and occurring cycles are detected.
The back-tracing spans a fault-tree but common consequences linking branches of
the fault-tree are being ignored. To penalize longer propagations uncertainty is in-
troduced for each traversed edge in the causal model, assuming a higher likelihood
of local causes rather than long propagation paths in the system. Independent back
tracing of multiple faults will lead to individual fault-trees. To reach a meaningful
diagnosis nodes representing the same variable cannot be considered independently
per fault-tree or causal path, as they refer to the same physical entity. Two ways of
combining the generated fault-trees are considered here: (B1) combining all recurring
nodes or (B2) maintaining split trees unless the causal paths overlap. The former
approach requires re-examining nodes previously detected to form cycles as the com-
bination of independent fault-trees can recreate those cycles. The latter approach
avoids these cycles by only combining identical causal paths. In this way, we ensure
to have single nodes for root causes but we may have multiple copies of intermediate
nodes. The nodes of the mapped BBN each represent a specific deviation with two
states — “fault occurred” or “ok” To incorporate the uncertainty introduced by the
propagation Noisy-OR gates define the conditional probability of “fault occurred” if
a given parent node also has a “fault occurred” state but with the respective uncer-
tainty depending on the length of the causal path between parent and intermediate
node.

C. Connecting Root Causes

While the complete BBN representation of the causal model with trinary nodes cor-
rectly interprets states that are mutually exclusive, a BBN generated by combining
fault-trees can contain nodes referring to the same variable in mutually exclusive
states without representing their relation. As outlined by Lampis (Lampis, 2010)
a common n-ary parent node incorporating all fault states and “normal” can link
mutually exclusive root nodes.

Extending method B with the notion introduced in A, a trinary node with the
states “high”, “normal”, and “low” is added as parent to the root nodes in the BBN
created from independent fault-trees. Since the intermediate nodes are not coherently
linked in the same manner, the uncertainty according to the propagation length is
maintained for the intermediate nodes. Table F.2 represents the CPT for a binary
root cause depending on the trinary parent node.

F.5 Diagnosis Results

Table F.3 shows the probabilities inferred by the respective BBNs with the CPTs
described before and no prior knowledge about the marginal distributions (“stupid
prior”). Hugin Researcher (Kjeerulff and Madsen, 2013) was used to design and
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diagnose the BBNs. In case of the trinary representations the marginal probability
for “high” and “low” is 33.33%.In the binary cases either of the independent root
nodes for “high” and “low” can show “fault occurred” with 50%. Accordingly, the
deviation from 33.33% or 50%, respectively, after Bayesian inference, indicates the
likelihood of the fault being the root cause.

Table F.3: Root cause probabilities (high / low in %) for TEP scenario high condenser
coolant temperature T cc

Root (A) (B1) (B2) (C1)
cause | Trinary  Combined Split Combined
& Trinary
T 56.71 / 5337/  54.80/ 35.55/
"1 14.08 50.04 50.07 31.12
14.08 /
MV 56.71 o o o
17.96 / 50.04/  50.16/ 29.24/
MV4 46.11 56.18 64.09 37.43
37.88 / 50.05/  51.24/ 33.30/
MVS 26.82 50.13 50.33 33.37
E 36.63 / 50.07 50.78 / 33.34/
fed 12981 50.04  50.22 33.32
T. 29.81/ 50.04/  50.22/ 33.33/
M 136,63 50.06 50.78 33.34
m:;_])i 34.62 / 50.07/  50.70/ 33.35/
MV3 31.87 50.04 50.11 33.32

From Table F.3 we observe that all BBNs put the actual root cause as first or
second highest probability. However, the significant shortcoming of the fault-tree
based BBNs (B and C) is reflected in the consistently higher probability of MV4_ low
as root cause, since it could immediately cause F5 low. However, the missing link
between the mutually exclusive states prevents the interpretation of this contribution.
On the other hand, the presented trinary BBN does not contain the same notion of
uncertainty for longer propagations represented by the Noisy-OR gates, since the
noisy combination of more than binary states is not trivial, and at the same time
some causalities had to be removed from the model to create a valid trinary BBN.

The diagnosis achieved by the two approaches of binary BBN yield the same
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ranking of causes. The introduction of trinary root causes for the binary model does
not affect the ranking of the root causes, but allows a clearer distinction between the
fault states of a single variable. It is noted that the required post-processing of the
split paths can be significantly smaller, if the overlap of consistent causal paths is
already considered during the back tracing in the causal model.

F.6 Conclusion

In summary, the presented investigation reveals a great potential in using BBN to
interpret the root cause analysis based on causal models and shortlist the most rel-
evant root causes to support operators. However, generating a general diagnostic
BBN from a causal model is limited by the acyclic nature of BBNs. On the other
hand, back tracing multiple observations and combining their fault-trees into a BBN
disregards causal connections that could improve the diagnostic power of the BBN.

The combination of the comprehensive trinary and simple binary representation
of quantitative fault states improves the diagnosis of the binary network but cannot
fully capture causality of a given situation. The ongoing work focuses on identifying
an efficient method to map a given causal model into a BBN maintaining as much as
possible of the causal structure in a given situation while leveraging the possibilities
of a trinary representation of process variables.
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Abstract:

Operating complex plants is an increasingly demanding task for human operators.
Diagnosis of and reaction to on-line events requires the interpretation of real time
data. Vast amounts of sensor data as well as operational knowledge about the state
and design of the plant are necessary to deduct reasonable reactions to abnormal
situations. Intelligent computational support tools can make the operator’s task
easier, but they require knowledge about the overall system in form of some model.

While tools used for fault-tolerant control design based on physical principles and
relations are valuable tools for designing robust systems, the models become too
complex when considering the interactions on a plant-wide level. The alarm systems
meant to support human operators in the diagnosis of the plant-wide situation on the
other hand fail regularly in situations where these interactions of systems lead to many
related alarms overloading the operator with alarm floods. Functional modelling can
provide a middle way to reduce the complexity of plant-wide models by abstracting
from physical details to more general functions and behaviours. Based on functional
models the propagation of failures through the interconnected systems can be inferred
and alarm floods can potentially be reduced to their root-cause. However, the desired
behaviour of a complex system changes due to operating procedures that require
more than one physical and functional configuration. In this paper a consistent
representation of possible configurations is deduced from the analysis of an exemplary
start-up procedure by functional models.

The proposed interpretation of the modelling concepts simplifies the functional
modelling of distinct modes. The analysis further reveals relevant links between the
quantitative sensor data and the qualitative perspective of the diagnostics tool based
on functional models. This will form the basis for the ongoing development of a novel
real-time diagnostics system based on the on-line adaptation of the underlying MFM
model.
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G.1 Introduction

Modern complex production plants are becoming increasingly demanding due to the
distributed nature of the control system and increased requirements of safe and ef-
ficient operations. While every component of a system may be within its operating
margins, undesired interaction betweens certain component states can accumulate to
catastrophic situations. It is therefore important to not only consider single compo-
nents but the combination of all interrelated parts of a complex system. In order to
cope with the complexity of systems different perspectives are relevant to represent
the interactions within the system beyond different time scopes and levels of de-
tail with regards to structure, function and behaviour (SFB). (Venkatasubramanian,
2011)

For robust and fault-tolerant systems tools, such as structural analysis have been
developed to model the interrelations between subsystems and enable failure diag-
nosis. (Blanke et al., 2016) However, for plant-wide diagnosis industrial plants rely
mostly on the experience and diagnostic skills of human operators. The operators
establish the state of the plant based on alarms generated for possibly abnormal
states indicated by sensor readings. (Wang et al., 2016a) While the concepts for
fault-tolerant systems are used on the level of components or subsystems, the ma-
jority of improvements for alarm systems reviewed by Wang et al. (Wang et al.,
2016a) disregard the process knowledge and rely on data driven methods. This can
be related to the problem of high complexity of an overall plant described by Venkata-
subramanian et al. (Venkatasubramanian, 2011), especially considering the extension
and replacement of components throughout the live span of an industrial plant.

One way to overcome the lack of process knowledge incorporated in alarm sys-
tems and the high complexity of mathematical descriptions is presented by the SFB
approach. SFB modelling provides an abstraction of the system, that can be used to
analyse and diagnose the system based on the interaction of different structures, func-
tions and purpose. One form of SFB modelling is Multilevel Flow Modelling (MFM),
which provides a modelling language as well as a diagnostics tool for qualitative cause
consequence reasoning to identify how abnormal states propagate through the system.
(Venkatasubramanian, 2011; Zhang, 2015)

As addressed by hybrid systems modelling certain conditions or events in the
control system lead to different states of a system by changing its behaviour.(Blanke
et al., 2016) On a plant-wide level such discrete states can be generated by different
configurations of subsystems because of operational procedures or to efficiently use
redundant systems. Such configurations can be considered as operational modes of
a plant. While operational modes have been the subject of MFM related research
(Lind, 1992; Lind et al., 2012), no consistent and easy way of modelling these modes
has been proposed. The research of operational modes of a nuclear power plant by
Lind et al. (Lind et al., 2012) showed that each mode can be represented in a distinct
MFM model with regards to functions and goals of the mode. Those distinct models,
however, disregard the operational knowledge on how modes are interconnected and
what the boundaries of the modes are with respect to operation procedures.
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This paper describes a new way of interpreting control functions and relations
as part of the operational knowledge included in MFM. Similar to hybrid systems
modelling discrete events are identified that determine boundaries of a mode and
facilitates the incorporation of operational procedures in MFM models through the
generation of interpreted models that express implicit knowledge. The proposed
interpretation reveals, how the constraints for validity of the qualitative model are
closely linked to the quantitative aspects of real-time sensors or alarms and will form
the basis of the ongoing development to link MFM modelling and artificial intelligence
approaches to create a novel plant-wide on-line diagnostics system based on the cause
and consequence reasoning in MFM.

In section G.2 different approaches to plant-wide on-line diagnostics are outlined
and the basic concepts of modelling and reasoning in MFM are briefly described as
well as the state of the art with regards to operational modes, especially in MFM.
Section G.3 describes the concepts for linking control functions and modes based on
discrete models of a start-up procedure. In section G.4 the mode models generated
with the proposed interpretation are evaluated. Finally the conclusions drawn from
this conceptual work and the future development based on this concept are outlined
in section G.5.

G.2 State of the art

The study of Venkatasubramanian (Venkatasubramanian, 2011) describes how the
computerization of industrial processes has lead to robust and fault tolerant control of
components and that artificial intelligent approaches have been shown to enhance the
maintenance scheduling and degradation diagnostics for specific applications. While
these systems help improve the performance of a specific components most diagnostics
systems are based on physical or statistical models of the system and would become
too complex if all, possibly undesired, interactions between the components of the
system are to be considered. From a system safety perspective the robustness of
automated system parts does not make the entire system resilient to failure. One weak
point is presented by the vast amount of information that a human operator needs
to process, which makes the assessment of an emergency situation difficult, especially
given the limited time frame for appropriate reaction. (Venkatasubramanian, 2011)
Modern industrial plants are equipped with a large number of sensors and control
systems that can generate alarms to alert the human operator to a possible failure.
With the increasing number of distributed control systems the number of alarms in a
plant increases as well. While statistics driven analysis of plant data can aid auditing
processes and filtering of excess alarms, the propagation of abnormal states due to
the interconnections of components in the plant leads to alarm floods that overload
the operator and make it hard to identify the origin of the failure. While alarm floods
have been investigated by different groups, there is no established applicable solution
to deal with alarm floods. Identifying related alarms that lead to alarm floods requires
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a system with knowledge about the interactions of different components in the plant.
(Wang et al., 2016a)

Incorporating the expert knowledge of human operators and plant designers into
a support system can aid the decision making process by identifying root causes and
planning appropriate reactions. To implement this approach rule based expert sys-
tems have been developed. These system can analyse a situation and infer procedures
based on rules that are deducted from the expert knowledge of operators. A drawback
of such systems is the domain specific nature of the expert knowledge and thus the
narrow applicability of one such support system. (Cholewa, 2004) A more generic ap-
proach to communicating and evaluating expert knowledge is presented by functional
modelling (FM). FM frameworks commonly abstract a system as a set of desired
behaviours of the whole system or as a combination of functions of its components.
This abstraction provides a general overview of the entire system by interconnect-
ing different knowledge domains. The schematic representation of FM can facilitate
computer reasoning about the entire system. (Erden et al., 2008)

The functional modelling language of MFM was originally developed as analy-
sis tool to assist human operators in identifying and handling unknown operation
situations (Burns and Vicente, 2001) and to support the design of human-machine
interfaces (Lind, 2011). MFM has been demonstrated as a valuable tool to represent
operational knowledge about processing plants in a range of technological areas in a
machine readable form. Among others MFM is used for operator support scenarios
in research projects such as the OECD Halden Reactor Project(Zhang, 2015), where
the MFM framework is applied for cause and consequence reasoning about abnormal
states of the plant. This kind of reasoning allows the operator to relate connected
alarms and react more efficiently with a focus on the root causes and preserving
essential system functions.(Zhang, 2015) Another branch of MFM has focused on de-
riving fault trees and failure mode analyses(Gofuku et al., 2006) and possible counter
actions(Inoue et al., 2015) based on MFM.

G.2.1 Multilevel Flow Modelling

A MFM model is a hierarchical decomposition of goals to be achieved by certain
functions of the system, as well as a part-whole decomposition of a system function
into basic material and energy flow functions. MFM provides a graphical modelling
language with symbolic representations of these basic flow functions and the relation
between functions and objectives of the system. Figure G.1 shows the defined MFM
primitives. In a MFM model the flow function primitives are usually used in several
flow structures. The functions are connected by influence relations inside a flow
structure and by means-end relations across decomposition levels representing the
contribution to another function or an objective.

Besides the analysis and representation of function, MFM can be used to reason
about the system performance. The reasoning is established in terms of qualitative
performance of each function and the propagation of abnormal performance states by
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Table G.1: MFM control functions(Lind,
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the relations of one function to another. Table G.2 shows the underlying equations
and the qualitative states that form the basis for the reasoning system. Cause and
consequence inference rules for the possible combinations of flow functions and rela-
tions have been detailed by Petersen(Petersen, 2000) and most recently elaborated
on by Zhang et al. (Zhang, 2015; Zhang et al., 2013). The reasoning considers the
abnormal states of functions in the way alarm systems commonly represent abnormal
sensor readings as high (high-high) or low (low-low). Based on the interactions of
the function primitives the propagation of abnormal states can be inferred in both
forward (consequence) and backward (cause) direction.

Table G.2: Underlying equations, constraints and failure states of MFM flow func-
tions(Petersen, 2000; Zhang, 2015)

Flow Balance equation State Constraints Abnormal states
function
Transport Fin = Four = F Frow < F < Fhign low low, low, high,
high high
Storage Y Fout = XFin +dV/dt View £V < Viign low low, low, high,
high high
Source Yo = View £V < Vhign low low, low, high,
Funknown + dV/dt hlgh hlgh
Sink YFi, = View £V < Viign low low, low, high,
Funknown + dV/dt high high
Balance YFout = 2 Fin sourcing, leak, block
Barrier Fin = Four = F F=0 leak

In addition to the fundamental flow functions and objectives, MFM allows the
modelling of control functions as means of intervention. Lind (Lind, 2005) intro-
duced the action notation for the control functions in table G.1. This notation uses
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the temporal operator T and an operator I, where the state after T is achieved by
the control intervention instead of the state after I which the system would move
to without intervention. These control functions are concerned with the functional
meaning or intention of the control design e.g. to keep a flow in an heat exchanger
steady rather than a specific realization of the controller. A control function is nor-
mally connected to an objective that represents the target function to be controlled.
The actuate relation connects the control function to the functions that controlled to
achieve that target, e.g. a pump is actuated in order to maintain a certain water level
in a tank. Zhang et al. (Zhang et al., 2014) point out that the purpose of a control
action can be modelled for automated as well as manual intervention. Control func-
tions in MFM are thus a way of extending the model with expert knowledge about
the way a plant is operated.

G.2.2 Operational Modes

In the context of diagnosis and faults-tolerant control a similar concept to operational
modes is reflected in the hybrid nature of fault-tolerant systems. Fault-tolerant con-
trol reconfigures the structure and parameters based on logic as reactions to discrete
events, such as faults in the system. The different configurations can be represented
as distinct states, exposing a specific behaviours based on the configuration of the
control. The evolution of these states can be described e.g. by Petri nets or similar
representations. The combination of continuous model for each state and the discrete
events limiting the validity of a state is represented in a hybrid systems model. In
the hybrid model the discrete events limiting a state are described as constraints on
specific system variables. (Blanke et al., 2016)

Operational modes as such have been investigated by Lind et al. (Lind et al.,
2012) with regards to their representation in MFM. Operational modes can occur
on two different levels of abstraction: as a relation of objective to function, or as a
relation of function to physical structure. On either abstraction level modes can be
defined both ways, as a selection of means to achieve a constant end, or as a selection
of ends that can be achieved by the same means. Zhang (Zhang, 2015) elaborates
that this classification is relevant to assess the operability of plant as indication for
necessary mode shifts, e.g. configuration changes. Such a configuration change could
be between redundant systems, changing the physical structure (means) to achieve
the same function (end). Equally a configuration change could be opening a valve
(means) thus changing its function (end) from blocking to transporting. Analogously
a certain set of functions could serve different objectives, depending on the mode,
or vice versa. However, the boundaries of one operational mode are at present not
represented in the MEM models. 7 Inoue et al. (Inoue et al., 2015) use MEM models
to generate plausible operation procedures in unknown emergency situations. In
order to generate these procedures knowledge about possible, and possibly undesired
alternative functions of physical components has to be considered. This kind of
situation relates directly to the function to structure mode definition by Lind (Lind
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et al., 2012). Gofuku et al. (Gofuku et al., 2006) introduced operational information
in addition to the MFM models to include the required knowledge. For the context
of operational modes the most relevant aspects of operational information are the
component behaviour and operation knowledge.

Component behaviour knowledge refers to the plausible behaviours of a physical
structure and their functional representation. Operation knowledge represents the
possible interventions and the functional influence of the intervention. Operation
knowledge is essentially part of MFM models by including manual as well as automatic
interventions in the modelled control functions (Zhang et al., 2014). The other aspects
of operation information are not as clearly defined in the MFM Framework as the
additional information Gofuku et al. (Gofuku et al., 2006) describe. Alternative
behaviours of components have been widely disregarded by the MFM framework,
since a MFM model is used to represent intended behaviour (Zhang, 2015).

G.3 Operational modes and control

In order to illustrate the concepts to consistently represent operational modes in
MFM the discrete models of two modes in a start-up procedure of a generic power
plant are analysed.
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Figure G.2: Filling of a generic power Figure G.3: Pressurizing of a generic
plant power plant

To get the power plant up to operation the first step is filling the boiler drum and
piping with water. Figure G.2 shows the active material flow path during this stage
of the start-up procedure: Water is pumped from a reservoir into the boiler drum
and the ventilation valve is left open to allow air to escape from the steam piping at
the output of the boiler. The goal of this stage is to fill the drum to the required
water level before the steam production can be initiated. The MFM model shown in
figure G.4 reflects the described material flow with the function primitives of MEFM.
In addition to the intended material flow, the closed off parts of the system, namely
the economizer recirculation and the recirculation of steam through the condenser are
included as barriers in the MFM model. Including these barriers allows to consider
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faulty valve behaviours in the reasoning. The control of the water level in the drum
by actuating the feed pump is reflected by the control flow structure, specifying the
intention of the mode as producing the required water level.
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Figure G.4: MFM model of filling

Figure G.5: Mode change indicators
and corresponding control function in
subsequent modes

Before the steam turbine can be operated to produce energy, pressurized steam
has to be generated in order to provide enough energy to convert in the turbine. After
steam has been generated is superheated and recirculated to raise the pressure in the
system. The MFM model shown in figure G.6 is developed according to the active
components in figure G.3. The mass flow structure of fuel and air in the burner is
included in the model. The heat from the burner enables the introduction of the
energy into the system as represented by the energy flow structure. In this mode
the control of the temperature and pressure in the steam piping actuates the flow of
steam through the condenser to raise the thermal energy in the steam piping. The
overall goal of this stage of the operation procedure is to generate the necessary steam
pressure to be able to spin up the turbine.

Comparing the functional representation of corresponding elements across the two
modes reveals that the goal and end-point of these modes are related to the control
actions, more specifically the end point of produce action. While the control function
remains present in subsequent modes, the associated control action changes e.g. from
produce to maintain as shown in figure G.5. The representation of valves that can
either be closed or opened to change the physical configuration of the system is either
a barrier or as a transport function.

Besides valves as a means of changing the system configuration, specific compo-
nents, like the burner, can be enabled or disabled. This behaviour is reflected in the
way that a disabled components function does not contribute to the function of the
system and is thus not considered in the model.

The concepts described in the further part of this section have been developed
based on these findings and present a pre-processing of a designed MFM model into an
interpreted model. The interpreted models are intended to work with the established
cause and consequence reasoning based on MFM.
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Figure G.6: MFM model of pressurizing

G.3.1 Control sequence

The distinct models for the start-up modes have shown, that the end-point associated
with the overall objective of one mode is linked to producing a certain storage level in
order to prepare the system for the next operational mode. This objective of produc-
ing, thus increasing, a certain storage level can not be inferred from the underlying
definition of a storage shown in table G.2. According to the definition of a storage
the only constraint is on the level of the storage.

In order to reflect the intended aspect of a defined inflow in order to increase
the storage level, the function of the storage has to be considered to act like a sink.
The interpretation of a storage to be produced with a defined inflow is shown in
table G.3. By explicitly including a transport function the inflow can be constraint
with relation to the quantitative values in the physical system. Figure G.9 shows the
cause reasoning output for a high level in stol of the fill mode represented in figure G.4.
Considering the states as indicators rather than faults this can be interpreted as
possible paths to achieving the goal of this mode: The storage level can be raised by
generating a high inflow into the system as well as by keeping the outflow low (no
water should leave through the vent valve).

Similar constraints can be introduced for all control functions in MFM. Based
on the action schemes defined for the MFM control functions there is an inherent
sequence of the control functions in relation to operational modes, as shown in fig-
ure G.7. Reasoning about the validity of one mode can be based on the quantitative
constraints linked to the intended behaviour of a controlled storage. A breach of
either of the constraints on the storage level or the timely change thereof, represented
by the in or outflow, indicates a necessary configuration change or a failure of the
controller.
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Analogous to the concepts of fault-tolerant control the breach of the constraints
can be interpreted as a discrete event that leads to a change in the system configura-
tion. The discrete states of a fault-tolerant system as well as the designed operation
modes of the overall plant can be defined and reasoned about as exemplified in fig-
ure G.8. An important difference, however, is the fact that the model for each mode
expresses the boundaries it is designed for explicitly, as opposed to the continuous
models in hybrid systems where assumptions for a mathematical model are implicit
in the model and expressed explicitly only by the separately defined events.
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Figure G.9: MFM based cause tree for high water level in the generic powerplant
during filling
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G.3.2 Modelling configuration

The difference in the configurations considered in the distinct models of the power
plant start-up can be represented by transport or barrier functions reflecting the state
of a valve. As described in the previous section the reasoning about operational modes
is closely related to the intention represented by control functions. Consequently, the
control relations are explored as a means of representing configuration in MFM.

MFM defines three control relations, where the enable and disable relation directly
correspond to the two complementary states a configuration valve can have (open or
close). However, the functional representation of a configuration valve can coincide
with the function of a continuously actuated control valve. The enable and actuate
relations are thus interpreted to reflect the normal function, while the disable relation
is interpreted in the preprocessing to reflect a closed valve or deactivated component.

The analysis of the start-up procedure revealed that a closed valve does not only
affect the MFM function representing it, but also propagates through the means-
end relations, specifically the mediate and producer-product relations. In effect, if a
transport function as producer is interpreted as barrier, the transport function, that
is the product, also has to be interpreted as a barrier.

Using the concepts for interpretation proposed here, allows for a mode to be
represented by a set of control functions that reflect the objective of the mode and a set
of control relations to reflect the configuration. This set can be defined as additional
information for a MFM model as reference, thus adding a two step process to generate
the interpreted models for the MFM based cause and consequence reasoning: The
first step is model generation, that adapts the reference model to contain the control
functions and relations for the respective mode. The second step is the interpretation
of the control relations and the functions to represent the intended behaviour of the
mode in an interpreted model that is subsequently used for the reasoning.

G.4 Generating models

By joining the MFM model of all modes a reference model to accommodate all modes
can be derived. This model essentially reflects all possible flows as they could for
example be found in a piping and instrumentation diagram. An exemplary combined
model for the generic thermo-electric power plant is shown in figure G.10

Using the proposed interpretation concepts the MFM representation for a specific
mode can be generated. For the sake of readability the explicit modelling of the
intention of control has been left out of the interpreted model for filling shown in
figure G.11. Comparing this model to the discretely modelled representation of the
same mode in figure G.4 there are some obvious differences.

The central mass flow structure of the discretely developed model for the filling
mode did not contain the recirculation of water through the condenser, since that part
of the system is not part of the functional scope of the mode. However, the functional
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Figure G.10: Reference model (fill mode) for a generic thermo-electric power plant

information is fundamentally the same, given that the barrier at the output of the
discrete model is reflected more in detail by the two barriers in the recirculation.

The energy flow, while not relevant to the function of this mode, is represented in
the interpreted model. A detailed inspection of that energy flow reveals, that there is
no intended energy flow: From the source in the energy flow only barriers connect to
the other functions and the two storages are connected to suppress control functions,
thus acting as balances.
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Figure G.11: Meta-model of the fill mode

G.5 Conclusion

Functional modelling can provide the framework for representing process knowledge
for a range of engineering applications. Incorporating such knowledge in a reasoning
systems enables the creation of operator support tools that can help diagnosing the
current state of a complex plant and provide guidance for reasonable reactions. This
kind of plant-wide diagnosis is believed to be capable of relieving the load of alarms
operators are confronted with by identifying connected alarms and thus yielding more
meaningful information. MFM presents such a functional modelling framework with
an established reasoning system for cause and consequence diagnostics.

In this work the distinctive elements of operational modes and the boundaries of
each mode have been investigated with regards to functional modelling. Based on
the analysis of distinct functional models for a start-up procedure concepts for the
consistent representation of operational modes in MFM are proposed. These concepts
facilitate the modelling of operational modes in MFM by using a common reference
model as basis for the generation of specific mode models. The common model can be
derived from existing engineering documentation, such as piping and instrumentation
diagrams, and thus simplifies the modelling process in MFM.
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G.6 Future work

The proposed interpretation of the intention of each mode provides the means of
linking the models for specific configurations to the real-time environment equipped
with sensors. In the development process for a complete real-time diagnostics system
based on MFM these concepts will serve as the basis for dynamically adapting the
functional model to the actual state of the plant. An important element of this is
to provide the rule system with knowledge about manual and automatic intervention
points in the plant and their possible functions, as it is realized through the control
relations in the proposed concepts.

The future effort in this field will be directed to the application of machine learning
approaches to facilitate the identification of failure states from real-time sensor data,
as well as the consolidation of the MFM based reasoning to enable on-line adaptation
of the model to reflect the current state of the system. The goal for this project is to
provide a novel kind of diagnostics system, that incorporates the operational knowl-
edge and enables an organised representation of the state of a plant by identifying
relevant failure paths from the on-line data.
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