A terahertz and infrared sensitive photomultiplier tube with a fieldmixing photocathode

Lange, Simon Lehnskov; Kabir Noori, Narwan; Kawai, Naoya; Jepsen, Peter Uhd

Published in:
Proceedings of 45th International Conference on Infrared, Millimeter, and Terahertz Waves

Link to article, DOI:
10.1109/IRMMW-THz46771.2020.9370591

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
A terahertz and infrared sensitive photomultiplier tube with a field-mixing photocathode

Simon L. Lange¹, Narwan Kabir Noori¹, Naoya Kawai² and Peter U. Jepsen¹
¹DTU Fotonik, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
²Department 22, Manufacturing #2, Electron Tube Division, Hamamatsu Photonics K.K., Japan

Abstract—In this work, we present a photomultiplier tube (PMT) with a metasurface photocathode that is based on ultrafast field emission (FE) from incident terahertz (THz)- and infrared (IR) light. We mix the incident electric field with the electric field from an electronic source to decrease the PMT detection threshold. Due to the pronounced non-linearity of FE, this approach allows for extremely sensitive light detection – possibly down to few or even single photon level across the entire THz- and IR frequency range.

I. INTRODUCTION

In 2019, we introduced a novel class of PMTs with light detection sensitivity in the entire THz- and IR frequency range [1]. The PMT concept is based on a metasurface photocathode that emits electrons into vacuum as a result of ultrafast FE, which is illustrated in Fig. 1a and 1b. In contrast to conventional photocathodes operated by the photoelectric effect from single photons, FE photocathodes are not limited in use by the work function of the photocathode material. Instead, the metasurface design concentrates the electromagnetic (EM) field of the incident light on to discrete, sharp metal emission tips. The concentration process is linear in the EM field, and it is therefore possible to collect the field from a large number of photons to enable FE from materials with a much larger work functions than the energy of individual photons.

II. RESULTS

FE requires electric fields on the order of V/nm to be effective. We have previously shown that it is feasible to use metasurfaces obtain such extreme field strengths on the emission tips in the THz range starting from as low as 20 kV/cm incident field, corresponding to approximately 10¹⁸ photons at 0.5 THz. In this work, we demonstrate a metasurface concept that potentially decreases this number to a few- or even single photons.

Fig. 1c shows a SEM micrograph of the metasurface, element concentrates the incident EM field onto its two tips. Opposite of each tip, a bias line is introduced which is held at a higher potential than the antenna using an electronic source. The electron concentration is reliable on the bias and the incident EM field. Based on the Fowler-Nordheim FE equation, this modulation can be expressed as

$$\frac{dI}{dE_{\text{light}}} = \frac{a}{\Phi} \left(2E_{\text{bias}} + 2E_{\text{light}} + b\Phi^2 \right) \exp \left(-\frac{b\Phi^2}{E_{\text{bias}} + E_{\text{light}}} \right)$$

where \(f \) is the emission current density, \(E_{\text{bias}} \) is the electric field due to the electronic bias, \(a \) and \(b \) are constants, \(\Phi \) is the emitter work function, \(E_{\text{light}} \) is the electric field from the incident light and \(dI/dE_{\text{light}} \) is the relative change in the emission current density established by \(E_{\text{bias}} \) due to the influence of \(E_{\text{light}} \). Since PMTs can detect changes in the emission current down to a single electron, one can by careful tuning of \(E_{\text{bias}} \) allow for detection of extremely small values of \(E_{\text{light}} \).

Fig. 1g shows the result of an experiment that proofs the principle, where emitted electrons are recorded in a time-of-flight electron spectrometer. \(E_{\text{light}} \) is too weak to emit electrons from the metasurface, but when \(E_{\text{bias}} \) is applied, the addition of the fields allow for electron emission. Fig. 1f shows the opposite situation where \(E_{\text{light}} \) is too strong to emit electrons by itself. By reversing the sign of \(E_{\text{bias}} \), the emission is heavily suppressed – these two situations are the principle for a PMT with a very large dynamic range.

REFERENCES

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 29,2021 at 08:55:56 UTC from IEEE Xplore. Restrictions apply.