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Introduction  

Anthropogenic climate change is causing worldwide species redistributions and local 

extinctions, altering community compositions and ecosystem functioning (Babcock et al., 

2019; Román-Palacios & Wiens, 2020). As global environmental change forces species to 

adapt or shift their distributional ranges, conservation actions need to anticipate individual 

species’ responses, and how these will in turn affect ecosystem functioning and human 

wellbeing (Bonebrake et al., 2018; Pecl et al., 2017; Tittensor et al., 2019). Thus, one of the 

emerging objectives within conservation science is to protect areas of heightened 

evolutionary potential (i.e. increased genomic diversity and/or pre-adapted individuals; Funk 

et al., 2019; Razgour et al., 2019), which requires vulnerability assessments from methods 

such as physiological experiments, land- or seascape genomics, or forecasting species 

distribution models (Grummer et al., 2019; Wilson et al., 2020).  

 A taxon’s vulnerability to climate change is often assessed with species distribution 

models (SDMs; Guisan & Thuiller, 2005) that predict the probability of occurrence from 

correlations between known occurrences and environmental variables (Elith & Leathwick, 

2009). However, most assessments of species range shifts from SDMs disregard the 

occurrence of intraspecific climatic tolerances, local adaptation, and gene flow (Rilov et al., 

2019). This is problematic, as genetic variation is a crucial component of a species’ 

resilience, with areas of high neutral diversity inferring more raw material for adaptation to 

occur, and high adaptive diversity inferring pre-adapted populations (Bitter et al., 2019;  

Nielsen et al., 2020a). There have been efforts to assess lineage (D’Amen et al., 2013; 

Espíndola et al., 2012) and population (Banta et al., 2012; Jay et al., 2012) level responses to 

climate change with ‘genetic SDMs’, often showing a disproportionate loss of genetic 

variation over the species’ range. However, to date, most studies including genetic variation 

in SDMs applied neutral loci to delineate population level variation, which may not capture 

differentially adapted populations (Mittell et al., 2015). Studies including candidate or A
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‘outlier’ loci, i.e. presumed to be under selection, are thus necessary to identify differentially 

adapted populations (Xuereb et al., 2020). Yet, comparisons of neutral and outlier loci to 

assess intraspecific vulnerability to global change remains limited, especially in the marine 

environment. In a recent terrestrial study, Razgour et al. (2019) used outlier loci to identify 

differentially adapted populations in two bat species, finding that projected distributions into 

the future differed between populations.  

Developing separate SDMs on differentially adapted populations is an important step 

in understanding the intraspecific responses to future environmental change. However, this 

methodology does not account for nonlinear gene-environment relationships (Fitzpatrick & 

Keller, 2015) that are better captured with Gradient Forest (GF) models. Originally used as a 

community-level approach to predict species assemblages and species turnover (Ellis et al., 

2012; Pitcher et al., 2012), GF models can also serve to predict within-species communities, 

and map areas of ‘genomic-turnover’ (Fitzpatrick & Keller, 2015). Gradient Forest models 

can also be used to determine intraspecific ‘genomic vulnerability’, which is derived from the 

mismatch between current and future spatial genomic composition (Bay et al., 2018; Morgan 

et al., 2020). Such approaches to predict intraspecific vulnerability present a hitherto 

unexplored opportunity to quantify climate change responses in marine species, which are 

generally more sensitive to warming than terrestrial organisms (Pinsky et al., 2019). Further, 

comparing the predicted responses to global change across levels of taxonomic organisation 

with SDMs and GF models has yet to be conducted. Characterising spatio-temporal 

vulnerability from models accounting for different biological levels is essential to support the 

identification of climatic refuges for future conservation efforts (Carroll et al., 2017; Morelli 

et al., 2016). 

 Here we apply an innovative comparative approach to characterise both intra- and 

interspecific vulnerability based on species- and gene-environment interactions in the marine 

environment. This was performed within South Africa, one of the world’s most biodiverse 

marine regions (Griffiths et al., 2010), an ocean warming hotspot (Hobday & Pecl, 2014), and 

currently underrepresented in marine range shift studies (Sorte et al., 2010). Coastal South 

Africa is unique, as it is bordered by two contrasting boundary currents, with striking 

transitions in habitat conditions taking place over relatively short distances (Fig. 1; van der 

Bank et al., 2019). The coast is composed of five biogeographic regions (Fig. 2), defined by 

changes in environment (i.e. temperature, salinity, precipitation), habitat type, and species 

composition (van der Bank et al., 2019). Intraspecific phylogeographic breaks of South 

African marine species often correlate with these biogeographic breaks, possibly owing to 
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similar environmental features shaping species and genetic level biodiversity patterns (Teske 

et al., 2011). The region is currently experiencing strong environmental changes, such as an 

increase in mean annual air temperature (Kruger & Shongwe, 2004), and sea surface 

temperatures (Rouault et al., 2010). The combination of unique oceanographic features and 

the marked environmental gradients in this region could easily drive species into vastly 

different physical conditions and substantially alter community compositions. There are 

however, few predictions of future species range shifts within this highly unique and 

threatened marine region (but see Bolton et al., 2012 for an empirical range shift example). 

Moreover, in other regions of the world, studies suggest species-specific responses to future 

change (Bates et al., 2014; Sunday et al., 2015), highlighting the need to identify future 

climatic refuges across multiple species and regions. Thus, this study compares vulnerability 

patterns across three ecologically important southern African marine invertebrates to identify 

areas of multispecies evolutionary potential in a known marine biodiversity hotspot. 

Specifically, this study aims to: 1) characterise spatial genomic composition and 

predict genomic vulnerability based on neutral and outlier loci per species; 2) predict species 

distributional shifts into the future, and the environmental drivers of these range shifts, and 3) 

compare species- and gene-environment relationships and vulnerability footprints between 

species and populations. We anticipate a mismatch between species and genomic 

vulnerability, as this has been previously shown within SDMs run at both the species and 

population level (Jay et al., 2012; Razgour et al., 2019). However, our novel approach 

directly compares species forecasts from SDMs with genomic forecasts from GF models, the 

latter of which are capable of capturing complex gene-environment relationships. Here, we 

expect that areas in which SDMs predict range losses (i.e. high vulnerability) might correlate 

with areas of low genomic vulnerability, as these populations may be pre-adapted to climatic 

changes such as warming. Verifying this hypothesis will increase our understanding of how 

climatic resilience differs between species and populations of co-distributed taxa occurring in 

a climate change hotspot. More broadly, this work is an essential step in predicting the 

trajectories of coastal ecosystems under global change. 

 

Materials and Methods 

Gradient Forest modelling to infer genomic variation-environment relationships 

To infer how climatic variables shape, and will continue to shape, the genomic variation of 

southern African rocky shore species, allele frequency data from genome-wide single A
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nucleotide polymorphisms (SNPs) was input into Gradient Forest (GF) models. These models 

assess the relationships between environmental variables and biological abundances by 

creating an ensemble of individual decision trees (Ellis et al., 2012). More specifically, a 

machine-learning algorithm is used to partition splits between values of each environmental 

variable, then calculate the change in allele frequency at each environmental split value, for 

each allele (Ellis et al., 2012). The amount of variation explained at each split value, termed 

the ‘split importance’, is summed along the environmental gradient for each allele and 

aggregated across alleles to create a genome-wide turnover function, per environmental 

variable.   

Gradient Forest models were fitted to the allele frequencies of putatively neutral and 

outlier SNP datasets for three rocky shore species, the Cape urchin (Parechinus angulosus), 

Common shore crab (Cyclograpsus punctatus), and Granular limpet (Scutellastra 

granularis). These species are ecologically important and broadly distributed along the 

environmental gradients of the southern African coastline, but exhibit different ecological 

niches and life histories (Branch, 2016; Branch & Branch, 2018). They also have the largest 

molecular datasets of southern African marine species, spanning four of the five recognised 

bioregions (Fig. 2). The genomic datasets were previously obtained by Nielsen et al. (2020b) 

and included ~40 individuals each from 13 to 14 sites for C. punctatus, P. angulosus and S. 

granularis (Fig. 2). Allele frequency datasets were generated using a pooled restriction site-

associated sequencing (RAD-seq) approach, specifically using ezRAD; ezRAD uniquely 

allows for a combination of high coverage at specific loci and low coverage across the entire 

genome (Toonen et al., 2013). To ensure accurate inferences, we included a large number of 

individuals per pool, and imposed stringent coverage and quality filtering criteria, as well as 

custom scripts to account for linkage disequilibrium (see Nielsen et al., 2020b for details). 

Inferences of population differentiation were shown to be robust to changes in bioinformatic 

filtering parameters such as minimum coverage and read count (Nielsen et al., 2020b).  

Following the approach of Dalongeville et al., (2018), who used multiple outlier 

detection models to account for inconsistencies in model assumptions and algorithms, a 

comprehensive suite of outlier detection methods were used to identify the set of candidate 

outlier SNPs used here (see Nielsen et al., 2020b for details) to account for and minimize 

high false discovery rates. Briefly, this involved the use of seven models, consisting of four 

overarching model types: the auxiliary and core Bayesian hierarchical models of BayPass 

v.2.1 (Gautier, 2015), Latent Factor Mixed Models (LFMM) of the R package LEA (Frichot 

& François, 2015), Moran Spectral Outlier Detection (MSOD) and Moran Spectral 
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Randomization (MSR) models from the R packages spdep and adespatial (Bivand et al., 

2011; Dray et al., 2017; Wagner et al., 2017), as well as Redundancy Analyses (RDA) and 

distance-based Redundancy Analyses (dbRDAs) using vegan (Oksanen et al., 2013) and 

adespatial R packages (see Nielsen et al., 2020b for further details on each model type and 

parameters used). The BayPass core model is a genetic differentiation outlier test, while the 

remaining models are based on genetic-environment association tests (GEAs). Additionally, 

LFMM is a univariate model, with all other models being multivariate. All model types were 

chosen as they either use relatedness to account for neutral population structure, or are based 

on null models of inferred demographic histories, both of which have been shown to lead to 

more robust outlier identification (Hoban et al., 2016). Moreover, our study system and 

species are well suited to avoid high false discovery rates in outlier dectection analyses, as 

there is evidence of high gene flow and demographic homogeneity (Nielsen et al., 2020b), as 

well as the axes of historical expansion and contemporary environmental variation being 

aligned in space (Frichot et al., 2015; Muller et al. 2012; Mmonwa et al. 2015). 

As there was very little ovelap in outlier loci selected between models (Nielsen et al., 

2020b), candidate loci selected by at least two outlier-detection methods were used to create a 

putative ‘outlier dataset’ per species, and were removed from the full SNP list to create a 

putative ‘neutral dataset’. It should be noted that even with the thorough approach used here, 

applying RAD-seq and relatively small SNP datasets to detect candidate loci requires some 

trade-offs. For example, stringent outlier detection methods may lead to missing true adaptive 

alleles in the genome, but at the same time their use increases confidence that the identified 

outlier SNPs represent those at which selection is acting. We tried to navigate this balance by 

identifying outliers selected by two or more models (to account for false positives), but at the 

same time using a variety of models (to account for false negatives; Dalongeville et al., 2018; 

Forester et al., 2018). The neutral datasets consist of 1 177, 810, and 1 632 SNPs, and the 

outlier datasets consist of 13, 12, and 26 SNPs, for C. punctatus, P. angulosus, and S. 

granularis, respectively. These allele frequencies served as the response variables in the GF 

models. The GF models also conduct a form of GEA analysis (i.e. the type of test 

predominantly used to identify the outlier SNPs stated above), and thus further filtering of the 

SNPs was performed at that stage, with all those having a goodness-of-fit value R
2
 < 0 being 

excluded (see GF methods below for more details). 

Eight environmental variables were selected for the GF models based on their 

importance for rocky shore ecology (Branch & Branch, 2018), marine species distributions 

(Bosch et al., 2018), and significance in shaping genomic variation within the study species 
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(Nielsen et al., 2020b). These variables were the means and ranges of sea surface temperature 

(SST), sea surface salinity (SSS), air temperature (T) and precipitation (P). Atmospheric 

variables were obtained from WorldClim (Fick & Hijmans, 2017) at a ~1km resolution, for 

three time periods: present day (averaged over 1950-2000), 2050 (averaged over 2041-2060), 

and 2070 (averaged over 2061-2080). The Community Climate System Model (CCSM4), 

Hadley Centre Global Environmental Model 2 (HadGEM2-ES) and Model for 

Interdisciplinary Research on Climate Earth System Model (MIROC-ESM) General 

Circulation Models (GCMs) were downloaded for atmospheric variables, and cell values 

were averaged over the GCMs using the ‘overlay’ function of the raster R package (Hijmans 

et al., 2015). Oceanic variables were obtained from Bio-Oracle2.0 (Assis et al., 2018), at a 

resolution of ~9km, for present day (averaged over 2000–2014), 2050 (averaged over 2040-

2050), and 2100 (averaged over 2090-2100). Within the Bio-Oracle2.0 dataset, oceanic 

variables were already provided as an ensemble of different GCMs (i.e. averages from 

CCSM4, HadGEM2‐ES and MIROC5 GCMs; see Assis et al., 2018 for details). For all 

climate model ensemble data, two separate Representative Concentration Pathways (RCPs) 

were considered for the future variables, namely the intermediate emissions scenario RCP 4.5 

and ‘worst case’ scenario RCP 8.5. For the GF models, the layers pertained to their original 

resolutions, but for the SDMs (outlined in further detail below), the atmospheric raster layers 

were resampled to the same cell size of the oceanic variables, using the ‘resample’ function 

with the ‘nbg’ method within the raster R package, so that these could be stacked into a 

single layer. 

Since GF models cannot directly accommodate spatial variables, principal coordinates 

of neighbour matrices (PCNMs) were also included as predictors to account for spatial 

autocorrelation and unmeasured environmental variation. PCNMs were calculated with the 

vegan R package, and the first half of the positive PCNMs were retained as inputs into the 

GF models (Manel et al., 2010; Sork et al., 2013). To account for collinearity between 

environmental predictor variables, we implemented conditional permutations within the GF 

models, following the protocol outlined by Strobl et al. (2008), using a correlation threshold 

(r) of 0.5. Default values were used for the number of predictor variables randomly sampled 

as candidates at each split, number of regression trees fit per allele, and the proportion 

training and testing samples per tree. Five hundred trees were run per dataset. Gradient Forest 

models were assessed by the overall goodness-of-fit (R
2
) per allele, and the significance of 

each environmental variable was assessed by the relative importance weighted by R
2
 A
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(Martins et al., 2018; Morgan et al., 2020). Only alleles with R
2
>0 are included in the 

aggregate turnover function per environmental variable. 

Turnover functions from the GF models were used to transform the environmental 

variables into a common biological importance scale, termed here as ‘genomic importance 

values’ (sensu Fitzpatrick & Keller 2015). The genomic importance values were mapped in 

biological and geographic space in a manner similar to ordination, but accounting for non-

linear and/or threshold changes that occur within the environmental gradients. Specifically, a 

Principal Components Analyses (PCA) was used to transform the environmental variation 

into three principal components (PCs). We followed Fitzpatrick and Keller (2015), by 

centring but not scaling the transformed environmental variables, to retain the magnitude of 

the genomic importance among variables. The difference in allele frequencies between map 

cells was assigned to the first three PCs and partitioned into red/green/blue (RGB) colour 

palette, which were then mapped using the ‘plotRGB’ function of the raster R package. The 

resultant ‘genomic turnover’ maps indicate areas of genomic similarity by similar coloured 

map cells, and a change in allele frequencies by a change in colour. Individuals on either side 

of these turnover areas are presumed to have different demographic histories (if using neutral 

loci), or be under different selection pressures (if using outlier loci). 

The GF turnover functions were also used to create ‘genomic vulnerability’ maps, 

which indicate areas where gene-environment relationships will be most disrupted under 

future climatic conditions (Bay et al., 2018; Fitzpatrick & Keller 2015). These maps were 

created by first transforming the future environmental variables in a similar manner as 

described above for the current day variables, and then calculating the Euclidean distance 

between the current and future genomic importance values for each map cell. Areas in which 

the Euclidean distances are high indicate populations that will experience the greatest impact 

from future environmental shifts, due to their alleles being less likely to match the climatic 

changes (Bay et al., 2018; Martins et al., 2018; Morgan et al., 2020). These genomic 

vulnerability maps are limited by the simplified gene-environment interactions used to 

identify the adaptive optima of alleles, but are still a novel and valuable tool to characterise 

relative vulnerability, without accounting for migration or multi-gene interactions allowing 

alleles to track climatic changes.  

As only SNPs with a R
2
>0 are included in the turnover functions and mapping 

analyses, the allele frequencies of the subset of SNPs retained in the GF models were 

visualised in PCAs created using vegan and ggplot2 (Wickham, 2016) R packages. This was 

done to assess how well the SNPs in the GF models reflect patterns seen in the entire SNP 
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datasets, which were previously used to assess neutral and outlier population structure 

(Nielsen et al., 2020b). To assess whether the different sets of environmental predictor 

variables lead to differences in the SDM and GF vulnerability outputs, additional GF models 

were run with the subset of uncorrelated environmental variables similarly used in the SDM 

models (referred to in the following section), as predictor variables. This exploratory analysis 

was conducted on the outlier SNP data, using RCP 4.5.  

 

Species Distribution Models to predict future species ranges 

Species distributions were projected into the future using correlative SDMs. These assume 

that environmental variables are the main determinant of species’ distributions, and use 

correlations between environmental variation and contemporary species occurrence patterns 

to predict species distributions into new environmental space (Guisan & Thuiller, 2005; 

Guisan & Zimmermann, 2000). Unlike GF models, SDMs cannot inherently account for 

collinearity between environmental predictor variables. Therefore, four environmental 

variables which are not correlated (Spearman’s R < 0.6; Variance Inflation Factor < 10), but 

expected to be important drivers of rocky shore ecological niches, were used as predictor 

variables in the SDMs. Specifically, these were mean SST, mean SSS, maximum air 

temperature and minimum air temperature (all based on monthly averages). These variables 

were downloaded from the same databases, for the same GCMs, RCPs, and time points as 

those used in the GF models.  

 Species presences were composed of downloaded occurrences from the Global 

Biodiversity Information Facility (GBIF; GBIF, 2020) and the Ocean Biogeographic 

Information System (OBIS; OBIS, 2020) databases (which were pruned for data entry 

errors), as well as personal observations and sampling locations. An equal number of pseudo-

absences (to presences) were randomly selected over five replicate runs using the biomod2 R 

package (Bermejo et al., 2018). As an ensemble of multiple model types has been shown to 

increase overall accuracy (Araújo & New, 2007; Forester et al., 2013) an ensemble of six 

models (Flexible Discriminant Analysis [FDA]; Generalized Additive Model [GAM]; 

Generalized Boosting Model [GBM], Generalized Linear Model [GLM]; Multivariate 

Adaptive Regression Splines [MARS]; Random Forest [RF]) was created in biomod2. 

Models were run with default parameters, with the exception of using 1000 trees for GBM 

the ‘mgcv’ function for GAM. Data was randomly subset into 70% for calibration and 30% 

for validation, over ten evaluation runs and three permutations. Following best practice for 
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marine SDMs (Bermejo et al., 2018; Bosch et al., 2018; Chefaoui et al., 2017) only models 

having Receiver Operating Characteristic (ROC; Fielding & Bell, 1997) greater than 0.8, and 

True Skill Statistic (TSS; Allouche et al., 2006) greater than 0.55 were retained in the 

ensemble per species.  

To assess the extent to which the SDMs extend the relationships between current 

environmental conditions and species distributions into novel environmental conditions, we 

created two-dimensional convex hulls of the environmental space at five time points into the 

past and future. Specifically, we compared the environmental variation of the four predictor 

variables (mean SSS and SST, and minimum and maximum air temperature) at the present 

day, the Mid-Holocene (6 thousand years ago; kya), Last Glacial Maximum (21 kya), 2050, 

and 2070/2100 (Beaugrand et al., 2015). Historical environmental variables were downloaded 

from the MARSPEC database (Sbrocco, 2014), representing an average between CCSM4 and 

MIROC5 GCMs (as past environmental features were not available for HadGEM2‐ES). 

Future environmental variables consisted of cell values averaged over the RCP 4.5 and 8.5 

scenarios. The environmental values were extracted from 28 points, spaced 200km apart 

along the coastline, over the full extent of the SDMs (i.e. the extent used for S. granularis). 

Values were extracted for each time point, with the 28 points extrapolated to the -120m 

bathymetry line of the Last Glacial Maximum (Fig. S1, Appendix S1). Euclidean distances 

were calculated between time points, and two principal components from a PCA were used to 

maximize the amount of variation explained by the environmental variables. The global 

convex hull was mapped, including all five time points, onto which each time step’s hull was 

mapped to compare the extent of environmental change across time periods (McWilliam et 

al., 2018). 

 

Results 

Genomic composition and vulnerability, and environmental drivers of these patterns 

The R
2
 weighted importance of environmental variables was higher in the outlier, compared 

to neutral SNPs, for all species (Fig. 3). Turnover in outlier SNP frequencies of the crab, C. 

punctatus, was strongly influenced by mean SSS, while those of the urchin, P. angulosus, and 

the limpet, S. granularis, were most strongly influenced by mean SST (Fig. 3). The 

cumulative importance plots (representing the GF turnover functions) also suggested that 

mean SSS and SST are important in driving the turnover of outlier frequencies of all species 

(Fig. S1-S3, Appendix S2). Parechinus angulosus and S. granularis showed congruent A
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cumulative importance curves, with similar values of precipitation, and mean SSS and SST, 

leading to changes in outlier frequencies (Fig. S2-S3, Appendix S2). 

The number of SNPs selected to create turnover functions differed between neutral 

and outlier SNPs per species, with 149, 112, and 340 neutral SNPs, and three, six, and 14 

outlier SNPs having R
2
>0 for C. punctatus, P. angulosus, and S. granularis, respectively 

(Table S1, Appendix S2). These subsets of loci generally reflected the genomic structuring 

seen in the entire SNP datasets, with the putative outlier loci showing more distinct east vs. 

west clustering than the neutral loci (Nielsen et al., 2020b; Fig. S4, Appendix S2). The 

patterns of genomic turnover, where map cells are coloured similarly if they portray similar 

allele frequencies, differed between the neutral and outlier loci, as well as across the three 

species. The neutral loci displayed higher genomic turnover along the eastern coast, while 

putative outlier loci showed higher turnover along the southwest coast (Fig. 4). The 

differences between genomic turnover between the outlier and neutral loci, calculated as 

Procrustes residuals, showed distinct areas of high differentiation in marker types between 

species (Fig. S5, Appendix S2). The highest discrepancies between neutral and outlier 

turnover were seen along the north-eastern coast for C. punctatus and the south coast for P. 

angulosus and S. granularis (Fig. S5, Appendix S2). The genomic turnover patterns of 

putative neutral and outlier loci generally followed the biogeographic breaks of the marine 

environment in the region (Fig. 2, Fig. 4).  

When putative adaptive genomic composition was projected into the predicted 

environmental space of 2050, and 2070/2100, the results highlighted areas of increased 

genomic vulnerability where outlier allele frequencies will have to respond more rapidly to 

track future environmental changes (Fig. 5). Under the RCP 4.5 scenario, higher genomic 

vulnerability was found predominantly along the eastern South African coastline for C. 

punctatus (Fig. 5). In contrast, the west coast displayed higher genomic vulnerability for the 

other two species at both time points under RCP 4.5 (Fig. 5). Such species-specific patterns 

were also broadly found under the ‘worst case’ RCP 8.5 scenario, but with more of the 

coastline described as highly vulnerable at the 2070/2100 time point (Fig. S6, Appendix S2). 

These patterns were generally mirrored by the putatively neutral loci, with slight differences 

such as the P. angulosus west coast population being less vulnerable, and showing greater 

variation between RCPs 4.5 and 8.5 (Fig. S7, S8, Appendix S2). The models using the same 

four environmental variables as the SDMs demonstrated the same broad-scale patterns, but 

with P. angulosus showing high genomic vulnerability over a larger extent of the coastline, A
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which is also pronounced by S. granularis at the 2070/2100 time point (Fig. S9, Appendix 

S2).  

 

Forecasted species distributions and principal environmental features driving them 

All individual model types resulted in relatively high ROC and TSS scores, and thus were 

included in the ensemble models for each species (Table S1, Appendix S1). Similar to the GF 

models, mean SSS was the most important predictor of C. punctatus, and mean SST was the 

most important predictor of S. granularis distributions in the SDMs (Fig. S2, Appendix S1). 

For P. angulosus, minimum air temperature and mean SSS were the important predictor 

variables in the SDMs (Fig. S2, Appendix S1). The species distribution models under RCP 

4.5 showed distinct distributional changes both between species, and within a species across 

time steps (Fig. 6). At the 2050 projection, C. punctatus exhibited an increase in habitat 

suitability along the west coast, P. angulosus showed a decrease in suitability along the east 

and western coasts, and S. granularis showed a slight reduction in suitability along the range 

edges (Fig. 6). These changes were slightly more pronounced in the RCP 4.5 2070/2100 

projections, with most of the southern African coastline projected as habitable for C. 

punctatus, and S. granularis and P. angulosus being restricted to the south and western 

southern African coasts (Fig. 6). Similar distributional patterns were projected under RCP 

8.5, but with habitat suitability being lower overall for all three species, especially for P. 

angulosus and S. granularis at the 2070/2100 time point (Fig. S3, Appendix S1).  

The convex hulls of the environmental space showed that going further into the past 

and/or future lead to greater deviations from the reference environmental space used in the 

SDMs, but did not significantly differ from the present-day space, as all of them contained 

the centroid of the hull (Fig. 7). Therefore, as expected, the models in 2070/2100 are 

potentially less certain than those for 2050. However, overall the model environmental space 

did not substantially change from the current environmental space, validating their use.  

 

Discussion 

This study provides novel insights into assessing the vulnerability of marine species to global 

change, which we found varies both within and between species. Here, SDMs predicted 

species-specific range shifts, yet the modelled predictions did not capture the high genomic 

vulnerability that some populations will likely experience within these species level changes. 

Thus, species level predictions alone may misrepresent the vulnerability of a species to A
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climate change, by disregarding an individual population’s potential adaptive capacity to 

novel environments. We also found that outputs from the GF models resulted in more 

variation between different RCPs and timeframes than the SDMs, suggesting that gene-

environment relationships may be more sensitive to differences in environmental shifts. As 

such, including these relationships can potentially offer more fine-scale projections in species 

vulnerability assessments. The results from both model types also portrayed how multiple, 

species-specific, variables can be important drivers of biological patterns at species and 

genomic levels, corroborating calls for studies predicting marine species’ responses to future 

climatic change to include a multitude of variables in addition to sea temperature (McHenry 

et al., 2019). Additionally, while the genomic turnover patterns varied among species, and 

between putative neutral and adaptive markers, they broadly correlated with known 

biogeographic breaks. In a South African context, these breaks may be useful proxies for 

intraspecific evolutionary distinctness (Teske et al., 2011), but further work is needed to 

understand whether and how shifts in biogeographic breaks due to global change will 

influence species and population dynamics.  

 As marine conservation strategies aimed to maximise resilience increasingly include 

actions to both promote adaptation and mitigate the effects of climate change (Rilov et al., 

2020; Wilson et al., 2020), it is important to understand how vulnerability differs between 

metrics pertaining to species and populations. This study demonstrates how assessments of 

vulnerability differ between ecological processes shaping species distributions and 

evolutionary processes shaping population dynamics. The results indicate that resilience 

hotspots may vary depending on the vulnerability metric and/or species assessed, and provide 

a basis for future investigations into the complex ecological-genomic interactions within 

marine environments.  

 

Patterns of genomic composition between markers and species  

Broadly, we found differences in spatial genomic vulnerability among three co-distributed 

coastal species, as well as between putatively neutral and outlier markers within each species 

(Fig. 5; Fig. S6-S8, Appendix S2). This is expected, as vulnerability to climate change has 

been shown to be highly species-specific (Román-Palacios & Wiens, 2020; Sunday et al., 

2015). In addition, statistical outlier loci often show distinct patterns of genomic variation 

compared to putative neutral loci datasets (Grummer et al., 2019; Phair et al., 2019). Yet, 

despite the species differing in ecology and life history, all species display genomic turnover A
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(shown by the changes of colour in Fig. 4) that relates to the biogeographic breaks in the 

region (Fig. 2). These findings suggest that the environmental features shaping biogeography 

may extend to the molecular level of biodiversity patterns. For example, Stanley et al. (2018) 

found that genomic patterns corresponded to ecoregion delineations for five marine species 

with varying distributions and life histories in the northwest Atlantic. However, our findings 

provide a deeper level of insight by delineating turnover patterns between putatively neutral 

and outlier loci, in which we found that both data types roughly follow biogeographic breaks. 

Broadly, the findings demonstrate how environmental gradients, and the evolutionary 

processes they enact on species, can lead to intraspecific genomic clusters which have 

distinct evolutionary trajectories compared to the species as a whole (Prates et al., 2018; 

Razgour et al., 2018). Identifying these genomic clusters can be especially powerful when 

combined across taxa, which can indicate biogeographically significant units for conservation 

(Quiroga et al., 2019).  

 

Environmental drivers of species and genomic level composition 

Although the results showed similar genomic turnover patterns across species, the 

environmental variables driving these patterns were species-specific. Further, our work 

suggests that the principal environmental variables in genomic turnover functions differ 

between putatively neutral and adaptive loci. Similar to other work on these species (Nielsen 

et al., 2020b), both the GF and SDM analyses highlighted the importance of SSS for the crab, 

and SST for the limpet. Sea-surface temperature is a prevailing determinant of marine 

invertebrate distributions globally (Bosch et al., 2018), which is reflected here in the limpet 

distribution, and by the limpet and urchin genomic compositions. In contrast, the distribution 

of the crab was best explained by salinity, which was more unexpected as this species also 

inhabits estuarine environments, and has a wide salinity tolerance (Boltt & Heeg, 1975). 

However, the importance of salinity in the crab’s distribution could be driven by larval and 

juvenile life history stages, as salinity is a key parameter in larval development of decapod 

crustaceans (Anger, 2003). This notion is further supported by salinity proving to have a 

higher effect on the osmoregulatory abilities of juvenile, compared to adult, C. punctatus 

individuals (Winch & Hodgson, 2007). The urchin distribution was found to be mainly driven 

by SSS and minimum temperature in the SDMs (Fig. S2, Appendix S1) and by SST and 

range in precipitation in the GF models (Fig. 3; Fig. S2, Appendix S2). This mirrors findings 

of Nielsen et al. (2020b), who found that the urchin showed selection signals from a A
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combination of variables, compared to the strong selection patterns from solely SSS or SST, 

shown by the crab and limpet, respectively. We expected the urchin to be the least influenced 

by atmospheric variables, as it has the lowest rocky shore zonation of the three species, and 

as many studies indicate that sea temperature is highly important in urchin behaviour and 

physiology (Branco et al., 2013; Brothers & McClintock, 2015; Delorme et al., 2020; 

Pérez‐Portela et al., 2020; Zhang et al., 2017). Our finding of air temperature being more 

important in the urchin SDMs could be driven by multiple factors, such as this environmental 

feature being an important driver of other species in which the urchin is ecologically linked 

to, or minimum temperature being highly correlated to an environmental variable directly 

influencing the urchin’s biology but not included in the model, or due to biases from the 

spatial resolution and occurrence points (Smith & Santos, 2020). The urchin was also found 

to be strongly influenced by SSS in the SDMs, which could be due to changes in salinity 

being an important driver at multiple life history stages, as the larval development of urchin 

species has been shown to be highly sensitive to changes in salinity (Carballeira et al., 2011; 

Mak & Chan, 2018). Bosch et al. (2018) found that globally, SST and SSS have a strong 

importance in describing echinoderm, mollusc and arthropod distributions, which suggests 

that both of these variables should being included in SDMs predicting marine invertebrate 

species’ responses to global change. Ultimately, further research into the physiological, 

behavioural and ecological responses of marine species, across different life stages is crucial 

for better interpreting future patterns of species in changing environments.  

In the genomic turnover functions, SST appeared to be the most important predictor 

for both the urchin and limpet (Fig. 3.; Fig. S2, S3, Appendix S2), yet the resultant genomic 

vulnerability patterns differed between the two species, with the limpet having higher 

genomic vulnerability across southern Africa, in both neutral and outlier SNPs (Fig. 5; Fig. 

S6-S8, Appendix S2). Similarly, although the limpet and urchin have congruous 

contemporary distributions, the predicted habitat suitability of the two species differed into 

the future (Fig. 6). Similar discrepancies in forecasted distributions were found between two 

co-distributed Anolis lizard species, which the authors attribute to species-specific ecological 

and demographic constraints (Prates et al., 2016). Therefore, even though temperature has 

been shown to be a principal driver of biological patterns in marine systems (Bosch et al., 

2018), individual species responses to fluctuations in temperature are likely to differ based on 

their ecology and demographic histories (Nielsen et al., 2020b; Sunday et al., 2015). A
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While species- or gene-environment association analyses are vital tools to predict 

species’ responses to forecasted climatic change, they solely encapsulate correlations with the 

environment, disregarding integral biological processes and interactions. The inclusion of the 

latter may thus lead to further interspecific differences in vulnerability, particularly with the 

emergence of novel communities in response to climatic change (Catullo et al., 2015). 

Further work such as mechanistic and joint species distribution models, physiological 

measurements, and adaptive and demographic models are essential to fully understand each 

species’ responses to global change (Bush et al., 2016; Rilov et al., 2019). As a whole, our 

results stress the importance of comparative species distribution and seascape genomic 

analyses, which are an essential step towards elucidating ecosystem level resilience to global 

change. 

 

Species and genomic level forecasts identify distinct vulnerability hotspots  

The SDM and GF models offered distinct insights into areas where the study species will be 

at increased risk to future climatic change. From the SDMs, the limpet, and especially the 

urchin, showed range reductions, with only the western and southern coastline remaining 

habitable into the future (Fig. 6; Fig. S3, Appendix S1). This region is characterised by the 

Benguela upwelling ecoregion, which is experiencing a cooling trend due to increased 

upwelling, compared to the Agulhas current on the east coast, which is predicted to follow 

global warming trends (Rouault et al., 2010). The Benguela upwelling system may thus act as 

an important climatic refuge for other cool-temperate marine species in the region 

(Greenstein & Pandolfi, 2008; Riegl & Piller, 2003). In contrast, for the crab, the SDMs 

predicted that exposure to unfavourable environmental conditions will be far less pronounced 

than for the other two predominantly cool-temperate species. Specifically, it is forecasted that 

C. punctatus will expand its range both up the west and east southern African coast, as these 

marine environments become warmer and more saline (Fig. 6; Fig. S3, Appendix S1). 

However, the GCMs used here predict ocean warming along the entire South African 

coastline, and thus do not account for the recent local cooling trend and increased upwelling 

within the Benguela current on the west coast (Rouault et al., 2010). The crab’s range 

expansion might be further impeded into the north-eastern Delagoa bioregion, as the species 

showed high levels of genomic vulnerability from the GF models in this area (Fig. 5). 

 The results here also contradict the general assumption of species with narrow range 

sizes being more vulnerable to climate change and local extirpation (Purvis et al., 2000). We A
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show that the crab, which has the smallest contemporary distribution, is predicted to be the 

least negatively affected by future environmental change based on the SDMs (Fig. 6; Fig. S3 

Appendix S1). The SDMs also showed the least variation in habitat suitability between RCPs 

for the crab, while RCP 8.5 outputs displayed more severe habitat loss for the limpet and the 

urchin, especially at the 2070/2100 time point (Fig. 6; Fig. S3, Appendix S1). Confidence in 

SDM outputs has been shown to vary depending on the number different RCPs, GCMs, and 

SDMs included (Thuiller et al., 2019), as well as the extent that the models predict into new 

geographic or environmental space; i.e. their transferability (Yates et al., 2018). We assessed 

the transferability of forecasted SDMs with convex hulls of the modelled environmental 

space, showing that predictive ability decreases further into the future, but does not 

drastically differ from environmental variability into the past (Fig. 7).   

The SDMs used here also assumed that there is available habitat within the entire 

region, that species cannot respond by adaptation and plasticity, and that environmental 

changes act on adult and larval stages equally, all leading to uncertainty in our predictions 

(Reusch, 2014). Furthermore, even though the SDMs identified the crab as a climate change 

‘winner’, due to its broadly warm-temperate, rather than cool-temperate range, its argued that 

warm-adapted coastal species are actually the most at risk to climate change due to their 

upper thermal limits being closer to their thermal optima (Somero, 2010). This is supported 

by the crab population in the warm-temperate region of South Africa having higher genomic 

vulnerability into the future (Fig. 5), meaning potentially warm adapted individuals might not 

be able to cope with further warming. It should also be noted that predicted species 

distributional changes do not account for behavioural mechanisms, such as actively selecting 

microhabitats, to remain within their thermal optima (Chapperon et al., 2017; Seabra et al., 

2011). While our results showed clear differences in predicted species responses to forecasted 

climatic changes, further analyses are ideally needed to assess the uncertainties in the SDMs, 

such as incorporating physiological tolerance (Franco et al., 2018), habitat condition (Hattab 

et al., 2014), and species interactions (Fulton, 2011) into the models. 

In addition to predicted species distributions, we also pinpointed areas of high 

genomic vulnerability, in which populations will likely have to drastically adapt to track 

future environmental changes (Fitzpatrick & Keller, 2015). As expected, the results showed a 

mismatch between species and population level sensitivity to future environmental change. 

For the crab, populations inhabiting the east coast were estimated to be highly sensitive to 

climatic changes based on their genomic vulnerability, yet this area was predicted to be 

highly stable based on the SDMs (Fig. 5, 6). Further, the west coast populations of both the 
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urchin and limpet were predicted to have higher vulnerability to future environmental change, 

yet this region was also predicted to remain more habitable than the east coast within the 

SDMs (Fig. 5, 6). These patterns were broadly mirrored by those under RCP 8.5 (Fig. S6, 

Appendix S2), but with more of the coastline being highly vulnerable for all species, 

especially in 2070/2100. Furthermore, the GF outputs were similar between those run using 

all eight environmental predictor variables or using the four same environmental predictor 

variables as in the SDMs, but with high genomic vulnerability extending over a larger area of 

the coastline further into the future with the smaller set of variables (Fig. S9, Appendix S2). 

Most studies to date have not considered multiple time points and RCPs when assessing 

genomic vulnerability, but the few that do (e.g. Jia et al., 2020; Morgan et al., 2020), as well 

as this study, suggest that increasing RCPs and timeframes leads to similar spatial patterns, 

but with overall increased vulnerability. As we did find differences in outcomes between 

species, environmental variables, and RCPs included in the GF models, it is important that 

these types of genomic vulnerability analyses follow the general ‘best practices’ of SDMs, by 

including multiple model inputs to better asses their uncertainty (Robinson et al., 2017; 

Thuiller et al., 2019).  

Even though there were only a few outlier loci from which the genomic vulnerability 

measures were derived, similar patterns were generally shown by the larger subsets of 

putatively neutral loci (Fig. S7, S8, Appendix S2), indicating that putatively neutral and 

adaptive loci may have similar gene-environment relationships, but to different extents. For 

example, Martins et al. (2018) also found similar spatial patterns of genomic vulnerability 

between all loci or solely environmental-associated loci, yet the latter of the two datasets 

displayed larger offset values. Our findings support the concept that local adaptation along 

environmental clines is not only shaped by selection, but also by neutral processes such as 

demographic history, contemporary gene flow, and standing genomic variation (Cayuela et 

al., 2020; Nadeau et al., 2016).  

Overall, the results suggest that climatic exposure (i.e. the extent of environmental 

change experienced by a species) may not directly relate to climatic sensitivity and adaptive 

potential (i.e. how well equipped species are to respond to environmental change; Dawson et 

al., 2011). For example, even though the west coast populations of the limpet and urchin are 

predicted to remain within each species’ known environmental space, many of the cold 

adapted individuals in these populations may not be genetically equipped to adapt to warming 

temperatures (if warming does indeed happen here). Alternatively, the east coast populations 

of the crab may not be able withstand temperature or salinity changes due to genomic, rather 
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than ecological, constraints. Changes to these gene-environment associations may lead to 

changes in species abundances, consequently altering community composition, further 

impacting species distributions (Harley et al., 2006). However, further testing is needed, such 

as with whole genome sequencing and/or transplant and common garden experiments, to 

validate the assumption that the correlations between allele frequencies and environmental 

variables reflect patterns of local adaptation and fitness (Fitzpatrick et al., 2018). Also, this 

study was limited to relatively small SNP datasets, using RAD-seq and non-model marine 

species, and as such, greater inferences can be made using more advanced genomic 

techniques on species with available reference genomes (Benjelloun et al., 2019; Manel et al., 

2016). Furthermore, measures of genomic vulnerability cannot account for shifts in allele 

frequencies due to selection, genetic drift, or gene flow, and therefore may overestimate 

(Exposito-Alonso et al., 2018) or underestimate (Crisci et al., 2017) vulnerability. It should 

also be noted that the study species are expected to have relatively high adaptive capacity, as 

they have large effective population sizes, overlapping generations, and dispersive 

reproductive modes, and thus spatial vulnerability patterns should also be assessed in species 

with traits making them sensitive to change (Bennett et al., 2019; Catullo et al., 2015). 

 

Potential implications for conservation  

Climatic refuges identified from SDMs are increasingly informing conservation planning to 

promote species resilience (Morelli et al., 2016; Wilson et al., 2020). We show here that 

genomic and other population level measures of vulnerability are also crucial to predict 

species’ responses to climate change. Because both SDMs and GF model outputs are limited 

by various levels of uncertainty, using them in combination and highlighting areas of overlap 

can potentially lead to more robust inferences of future climatic refuges, especially when 

combined across multiple species. For example, the results here suggest that the southern 

coast of South Africa is the least vulnerable to future change across models and species, 

echoing local predictions of southern African endemic coastal species being squeezed 

southwards by the cooling west coast and warming east coast (Blamey et al., 2015; Whitfield 

et al., 2016). 

Alternatively, due to the differences in environmental space restricting species and 

genomic composition found here, and presumed differences in how species and genes will 

respond to environmental change, prioritizing areas over an array of climatic velocities may 

be the best way to ensure species persistence. This ‘portfolio approach’ of prioritizing a range A
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of current and future suitable habitats and environmental conditions is key to ensure that 

adapted populations can actively or passively enhance the gene pools of those populations 

less likely to track future environmental change (Beyer et al., 2018; Matz et al., 2020). While 

further work is needed to fully describe the adaptive capacity of coastal marine systems in 

our study region and elsewhere (Munday et al., 2013), this study is an essential step in 

understanding marine species’ sensitivity to global change across biological scales, and offers 

a unique framework to further understand species resilience to changes in biological-

environmental interactions.  
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Figure Legends 

 

Figure 1- Sea surface temperatures (averaged over 2000–2014 and from Bio-Oracle2.0; Assis 

et al., 2018), increasing from yellow to red, and major ocean currents within the study region. 

 

Figure 2- Samples sites from which genomic data was obtained for C. punctatus, P. 

angulosus, and S. granularis (a), as well as the bioregions obtained from van der Bank et al., 

(2019), with the Delagoa Bioregion indicated in the box for clarity (b).  

 

Figure 3- The relative importance of each environmental predictor variable in describing the 

turnover in allele frequencies from the Gradient Forest models based on either neutral (N_*) 

or outlier (O_*) loci for C. punctatus (*_CP), P. angulosus (*_PA) and S. granularis 

(*_SG). Darker shaded squares represent higher importance of predictor variables per 

genomic dataset. Predictor variables shown here include: range in air temperature (Trange), 

mean air temperature (Tmean), range in sea surface temperature (SSTrange), mean sea 

surface temperature (SSTmean), range in sea surface salinity (SSSrange), mean sea surface 

salinity (SSSmean), range in precipitation (Prange), mean precipitation (Pmean), and four 

principal coordinates of neighbour matrices (PCNMs).  

 

Figure 4- The composition of genomic turnover shown in geographic space, in which the first 

three principal components of the Gradient Forest transformation of allele frequencies are 

partitioned into the red, green, and blue colour palette and each palette is overlaid, creating 

the colours seen on the maps. The colours are arbitrary, but similar coloured map cells 

indicate similar allele frequencies in either putatively neutral (a, c, e) or outlier (b, d, f) loci 

for C. punctatus (a, b), P. angulosus (c, d), and S. granularis (e, f). Only alleles with a R
2
>0 

were included in the Gradient Forest transformations (number in the top left corner). 

 

Figure 5- Spatial patterns of outlier genomic vulnerability, calculated as Euclidean distance 

between current and future genetic spaces, shown for RCP 4.5, for 2050 (a, c, e), and 

2070/2100 (b, d, f; 2070 for landscape, and 2100 for seascape variables), for C. punctatus (a, 

b), P. angulosus (c, d), and S. granularis (e, f). Areas with darker coloration indicate areas of 

high vulnerability, where genomic composition will have to change the most to track 

environmental change.  
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Figure 6 - Habitat suitability (ranging from zero, where species will likely be absent, to 1000, 

where species are most likely to be present) is shown for present day (a, d, g), and in the 

future under the intermediate RCP 4.5 scenario at 2050 (b, e, h), and a combination of 2070 

for the two terrestrial variables and 2100 for the two seascape variables (c, f, i), for C. 

punctatus (a-c), P. angulosus (d-f), and S. granularis (g-i). Darker shaded regions represent 

higher habitat suitability. 

 

Figure 7- Environmental variation within the species distribution models, shown in two-

dimensional space, with the global environmental space across all five time points shown in 

grey, and the environmental space pertaining to each time period overlaid in colour. The 

Present day (c), as well as two past time points: Last Glacial Maximum (a), Mid-Holocene 

(b); and two future time points: 2050 (e), 2070/2100 (f; 2070 for terrestrial layers, and 2100 

for oceanic layers) are shown.  
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