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Preface 
This PhD thesis is submitted in partial fulfillment of the requirements for the 
framework agreement of Joint Doctorate Degree between the Technical 
University of Denmark (DTU) and the Nanyang Technological University 
(NTU), Singapore. The work was conducted in the period from December 2017 
to March 2021 and guided by main supervisor Prof. Peter Steen Mikkelsen 
(DTU), co-supervisor Assoc. Prof. Morten Borup (DTU) and co-supervisor 
Prof. Adrian W.K. Law (NTU). The work was carried out mainly at DTU with 
two research stays at NTU in the periods February to July 2019 and January to 
July 2020.  

The thesis is organized in two parts: the first part is a synopsis that puts into 
context the findings of the PhD in an introductory review; the second part 
consists of the papers listed below. These will be referred to in the text by their 
paper number written with the Roman numerals I-III. 
 

I Palmitessa, R., Mikkelsen, P.S., Law, A.W.K., Borup, M. (2020). Data 
assimilation in hydrodynamic models for system-wide soft sensing and 
sensor validation for urban drainage tunnels. Journal of Hydroinformatics. 
(In press) https://doi.org/10.2166/hydro.2020.074 
 

II Palmitessa, R., Mikkelsen, P.S., Borup, M., Law, A.W.K. (2021). Soft 
sensing of water depth in combined sewers using LSTM neural networks 
with missing observations. Journal of Hydro-environment Research. (In 
press) https://doi.org/10.1016/j.jher.2021.01.006 

 

III Palmitessa, R., Pedersen, A.N., Borup, M., Sørensen, L., Law, A.W.K., 
Clemmensen, L.K.H., Mikkelsen, P.S. (2021). Anomaly detection in water 
depth observations from combined sewers using LSTM neural networks. 
(Manuscript) 

 

In this online version of the thesis, paper I-III are not included but can be 
obtained from electronic article databases e.g. via www.orbit.dtu.dk or on re-
quest from DTU Environment, Technical University of Denmark, Miljoevej, 
Building 113, 2800 Kgs. Lyngby, Denmark, info@env.dtu.dk.  
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iv 

In addition, the following publications, not included in this thesis, were also 
concluded during the PhD study: 

Palmitessa, R., Borup, M., Mikkelsen, P.S. (2018). Urban tunnel systems for 
conveyance and storage of storm- and wastewater: features, classification, 
and modelling. In 11th International Conference on Urban Drainage 
Modelling, 23-26 September, Palermo, Italy, pp. 251-254 (Extended 
abstract). 

Palmitessa, R., Mikkelsen, P.S., Law, A.W.K., Borup, M. (2019). A data 
assimilation scheme tailor-made for real-time modelling of urban drainage 
tunnels. In 17th International Computing & Control for the Water Industry 
Conference, 1-4 September, Exeter, United Kingdom, 2 pp (Extended 
abstract). 
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P.S. (2021). Machine learning for anomaly detection in combined sewer 
systems. In 14th annual Water Research Conference: Danish Water Forum, 
2 March, Online, p. 40 (Abstract). 
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of water depth in combined sewers using LSTM neural networks. In 
Singapore International Water Week 2021, 22 June - 2 July, Online, 3 pp 
(Extended abstract). 
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Summary 
Urban drainage systems are a strategic component of cities’ infrastructure, as 
they safeguard citizens’ health and properties. Most cities in Europe and North 
America are served by combined sewer systems built to meet the service levels 
of decades ago. Climate change, intensified urbanization and stricter 
environmental regulations are straining the existing infrastructure, and large 
investments are needed for futureproofing. The digitalization of urban drainage 
offers cost-effective solutions to upgrade the existing system without building 
new structures or adding new equipment. With a combination of models and 
data, utility companies can maximize the use of the available capacity and 
reduce the risk of flooding and pollution. 

The hydraulic state of combined sewer systems is typically monitored with a 
network of sensors. These are expensive to install and maintain, therefore they 
are placed only in strategic locations, leaving large parts of the system 
unobserved. Moreover, sensor observations are vulnerable to instrument faults, 
communication errors and cyberattacks. Models of the system can supplement 
the information from the sensors with a system-wide picture of the hydraulic 
state. Both physics-based and data-driven models exist capable of reproducing 
the behavior of sewer systems. If the prediction accuracy is sufficiently high, 
models can also act as soft(ware) sensors, working alongside hardware sensors 
or replacing them for periods of time. Model predictions can also be used to 
validate available observations and detect anomalous behavior. 

The potential of using models for real-time soft sensing and anomaly detection 
in combined sewer systems has not been fully exploited yet. Hydrodynamic 
models describe in detail the spatial and temporal distribution of the hydraulic 
variables but are computationally expensive and tend to drift off reality. 
Assimilating observations in real-time allows to update hydrodynamic models 
to the current state of the system, thus increasing their prediction accuracy. 
This is usually done by running an ensemble of model instances in parallel, 
which further increases the computational cost. A data assimilation scheme 
was developed and tested which limits the assimilation to a sub-system of the 
larger sewer system. This approach yielded accurate system-wide predictions 
of water depth, thus effectively enabling the soft sensing capabilities of the 
hydrodynamic model. The prediction was also used to validate an independent 
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sensor located 3.5 km upstream, revealing an issue of false echo in one of the 
analysed events. 

Purely data-driven models offer an alternative to physics-based models. They 
learn the behavior of the system from a series of historical observations and 
predict accordingly its response to given inputs. Artificial neural networks 
have long been used to predict water depths in combined sewer systems, and 
recent advancements in terms of algorithms and hardware have unlocked new 
possibilities. Long Short-Term Memory (LSTM) neural networks have gained 
popularity in natural language processing but are also particularly suited for 
time series forecasting. However, little is known about their efficacy with 
water depth observations from combined sewers.  

An LSTM neural network was trained with several months of water depth 
observations at 1-min resolution from different locations. The key network 
settings were calibrated to find an optimal setup that could work across 
different locations. The prediction accuracy was compared between scenarios 
with different gaps in the antecedent observations to simulate missing data. It 
was proven that the model could compensate the missing information on the 
antecedent state of the system with the other sources of information, namely 
the observed rainfall and the time of the day. This demonstrated the robustness 
of LSTM networks and their potential as soft sensing tools. In a separate test, 
the LSTM prediction was used as basis for anomaly detection. The 
observations were flagged as anomalous when they deviated significantly from 
the expected behavior of the system. However, the detection efficacy was 
dependent on the quality and quantity of the training data and changed across 
locations.  

Updated hydrodynamic models can generate accurate system-wide predictions 
but require detailed physical information. For these reasons, they are suited for 
soft sensing and anomaly detection in strategic structures within combined 
sewer systems. On the other hand, LSTM neural networks are trained on 
observations alone but have point-wise validity. Therefore, they can easily be 
deployed as a screening tool for large networks of sensors. By investigating 
and testing updated hydrodynamic models and LSTM neural networks, this 
thesis demonstrates their concrete potential for soft sensing and anomaly 
detection applications and promotes their integration in the monitoring and 
control workflows of modern utility companies.  
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Dansk sammenfatning 
Afløbssystemer er en vigtig komponent i byers infrastruktur, da de beskytter 
borgernes sundhed og ejendom. De fleste byer i Europa og Nordamerika 
betjenes af fælleskloakerede systemer, der er bygget til at opfylde de 
serviceniveauer, som blev opsat for årtier siden. Klimaændringer, intensiveret 
urbanisering og strengere miljølovgivning belaster den eksisterende 
infrastruktur, og der er behov for store investeringer til fremtidssikring. 
Digitaliseringen af afløbssystemer tilbyder omkostningseffektive løsninger til 
at opgradere det eksisterende system uden behov for at opføre nye bygværker 
eller tilføje nyt udstyr. Med en kombination af modeller og data kan 
forsyningsselskaber maksimere brugen af den tilgængelige systemkapacitet og 
dermed reducere risikoen for oversvømmelse og forurening. 

Den hydrauliske tilstand af fælleskloakerede systemer overvåges typisk med et 
netværk af sensorer. Disse er dyre at installere og vedligeholde, og derfor 
placeres de kun strategiske steder, hvilket betyder at store dele af systemet ikke 
observeres direkte. Desuden er sensorobservationer sårbare over for 
instrumentfejl, kommunikationsfejl og cyberangreb. Modeller af systemet kan 
supplere informationen fra en sensor med et billede af den hydrauliske tilstand 
i hele systemet. Der findes både fysisk baserede og datadrevne modeller, der 
er i stand til at reproducere kloaksystemers opførsel. Hvis 
forudsigelsesnøjagtigheden er tilstrækkelig høj, kan modeller også fungere 
som soft(ware) sensorer, der arbejder sammen med hardwaresensorer eller 
erstatter dem i perioder. Modelforudsigelser kan også bruges til at validere 
tilgængelige observationer og opdage uregelmæssig adfærd. 

Potentialet ved at bruge modeller til soft-observering i realtid samt anomali-
detektion i fælleskloakerede systemer er endnu ikke fuldt udnyttet. 
Hydrodynamiske modeller giver en detaljeret beskrivelse af den rumlige og 
tidsmæssige fordeling af de hydrauliske variable, men er beregningsmæssigt 
dyre og har tendens til at drive væk fra virkeligheden. Assimilering af 
observationer i realtid gør det muligt at opdatere hydrodynamiske modeller til 
systemets aktuelle tilstand og dermed øge deres nøjagtighed. Dette gøres 
normalt ved at køre et ensemble af modeller parallelt, hvilket yderligere øger 
beregningsomkostningerne. En dataassimileringsmetode, som begrænser 
assimileringen til et undersystem af det større kloaksystem, er her blevet 
udviklet og testet. Denne fremgangsmåde gav nøjagtige forudsigelser af 
vanddybde i hele systemet, hvilket muliggør den hydrodynamiske models brug 
til soft-observering. Forudsigelsen blev også brugt til at validere data fra en 



x 

uafhængig sensor placeret 3,5 km opstrøms, hvilket afslørede et problem med 
falske ekkoer i en af de analyserede begivenheder. 

Rent datadrevne modeller tilbyder et alternativ til fysisk baserede modeller. De 
lærer systemets opførsel ud fra historiske observationer og forudsiger derefter 
dets reaktion på kendte input. Kunstige neurale netværk har længe været brugt 
til at forudsige vanddybder i fælleskloakerede systemer, men nylige fremskridt 
indenfor algoritmer og hardware har givet nye muligheder. Long Short-Term 
Memory (LSTM) neurale netværk har vundet popularitet inden for behandling 
af naturlige sprog, men er også særligt velegnede til tidsrækkeforudsigelser. 
Der findes dog ikke meget viden om deres brugbarhed til observationer af 
vanddybde fra fælleskloakker. 

Et LSTM neuralt netværk blev trænet med flere måneders observationer af 
vanddybde ved 1-minuts opløsning fra forskellige lokationer. De vigtigste 
netværksindstillinger blev kalibreret til at finde en optimal opsætning, der 
kunne fungere på tværs af forskellige lokationer. Forudsigelsesnøjagtigheden 
blev sammenlignet mellem scenarier med forskellige huller i de foregående 
observationer for at simulere manglende data. Det blev bevist, at modellen 
kunne kompensere for den manglende information om systemets forudgående 
tilstand med andre informationskilder i form af observeret nedbør og 
tidspunktet på dagen. Dette demonstrerede LSTM-netværks robusthed og deres 
potentiale som software observeringsværktøjer. I en separat test blev LSTM-
forudsigelsen anvendt som basis for opdagelse af anomalier. Observationerne 
blev markeret som anomalier, hvis de afveg markant fra systemets forventede 
opførsel. Opdagelseseffektiviteten var dog afhængig af kvaliteten og 
kvantiteten af træningsdataene og var forskellig fra sted til sted. 

Opdaterede hydrodynamiske modeller kan generere nøjagtige 
systemforudsigelser, men kræver detaljerede fysiske oplysninger. Af disse 
grunde er de velegnede til soft-observering og anomali-detektion i udvalgte, 
vigtige bygværker i fælleskloakerede systemer. På den anden side trænes 
neurale LSTM-netværk kun på observationer og er gyldige for specifikke 
punkter. Derfor kan de let implementeres som et screeningsværktøj til store 
sensornetværk. Ved at undersøge og teste opdaterede hydrodynamiske 
modeller og LSTM neurale netværk demonstrerer denne afhandling deres 
potentiale for soft-observering og anomali-detektion samt fremmer deres 
integration i overvågnings- og kontrolarbejdsprocesserne i moderne 
forsyningsselskaber.  
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1 Introduction 
1.1 Background 
Urban drainage systems (UDSs) are critical for the livability of urban areas, as 
they divert used and excess water to treatment and disposal. Most cities in 
Europe and North America are served by combined sewer systems built over 
decades. These receive used water from both households and non-residential 
facilities, mixed with precipitation runoff. Under normal conditions, the 
combined sewage is conveyed to a treatment facility. However, during intense 
precipitation, the excess water needs to be stored or released into the 
environment. The occurrence of intense events is expected to increase as a 
consequence of climate change (Arnbjerg-Nielsen et al., 2013). At the same 
time, environmentally conscious administrations are imposing stricter 
regulations on the release of untreated water from sewers. Thus, large 
investments are needed to ensure that these aging infrastructures can meet the 
ever-increasing service demand. 

Responses to this problem typically fall within grey, green or digital solutions. 
Grey solutions aim at expanding the capacity of combined sewer systems by 
enlarging the existing structures or building auxiliary storage structures. As an 
alternative to volume expansion, a number of solutions aim at reducing or 
delaying runoff at source, often integrating vegetation and artificial structures. 
Thus, these solutions are termed green infrastructure, although a plethora of 
terms are in use (Fletcher et al., 2015). Grey and green strategies can be seen 
as opposed, but often the optimal solution relies on a combination of the two 
according to the local political, environmental, technical, economic and social 
factors (Dolowitz et al., 2018). 

A third option is offered by digital solutions. The advancements in information 
and communication technologies have enabled new approaches for optimizing 
the management of urban drainage systems (Eggimann et al., 2017). Data and 
models are becoming essential for both monitoring and control purposes. 
Digitalization and automation allow information to be transmitted and 
processed in real time to inform prompt control decisions (García et al., 2015). 
This can help maximizing the use of the available storage capacity and thus 
reduce the need for additional physical structures (Kerkez et al., 2016). 
However, as data is poised to influence all stages of UDSs, from planning to 
monitoring, new ethical and technical challenges arise (Makropoulos & Savíc, 
2019). 
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1.2 Data and models 
Data is used to represent all aspects of combined sewer systems. Information 
about assets, including geometry and materials, are typically digitized and 
updated as the network evolves. Inputs to the system are also quantifiable, 
although with a margin of uncertainty. Wastewater inflows to the system are 
derived from the distribution of users and their water consumption, and 
generally follow repetitive patterns. Precipitation runoff, instead, is of aleatory 
nature and needs to be observed. Despite the emerging use of radar sensors, 
precipitation observations remain uncertain, mostly due to their heterogenous 
spatial distribution (Campisano et al., 2013). Infiltration from the surface and 
the groundwater can contribute significantly to the total inflow in dry weather, 
and generally requires long series of data to be quantified (de Ville et al., 2017). 

Most importantly, the state of the sewer system can be characterized 
numerically to track the quantity and quality of water in the different 
components of the system. This data is needed to inform control decisions and 
ensure that the service demand is met. Water level measurements are the most 
common type of observations from UDSs. Water level sensors are generally 
very accurate but need to operate in harsh environments with limited access. 
Low-power wireless communication techniques allow cost-effective collection 
of spatially distributed, real-time observations with battery-powered sensors 
(Ebi et al., 2019). However, as the number of sensors deployed increases, so 
do maintenance costs. Therefore, water level sensors are typically placed in 
strategic structures, e.g storage basins and overflow chambers, leaving large 
parts of the system without direct observations. 

Models, on the other hand, are capable of generating a system-wide estimate 
of the state of the system. To replicate the behavior of the sewer system, models 
need to incorporate our knowledge of the driving physical processes or to be 
exposed to long series of observations. Several types of models are in use with 
different levels of complexity. The choice between them depends on the 
purpose at hand, e.g planning, design, monitoring, forecasting or control. 

Physics-based or white-box models carry a mathematical formulation of the 
hydrological and hydraulic processes dominating the behavior of urban 
drainage systems. Their level of detail generally relates to the required 
computational effort. Computational Fluid Dynamics (CFD) models have the 
highest level of detail and are mostly reserved for individual structures, such 
as overflow chambers (Isel et al., 2014). 1D hydrodynamic models are best 
suited for representing the entire sewer system, as they reproduce with “high 
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fidelity” the temporal and spatial distribution of water across the system with 
reasonable computational resources. On the other hand, simplified and 
spatially lumped models are faster to run and, therefore, more suitable for 
control purposes (Vanrolleghem et al., 2005). At all levels of detail, models 
generate uncertain predictions that reflect the imperfect knowledge of inputs 
and the inherent simplifications of reality (Deletic et al., 2012). Observations 
can improve the prediction accuracy if used to calibrate the model parameters 
or update the model states dynamically (Borup et al., 2011), a process known 
as data assimilation (DA). 

In contrast, data-driven or black-box models derive the behavior of the system 
from the available data. Grey-box models combine deterministic and data-
driven elements and preserve some knowledge of the physical processes 
(Breinholt et al., 2011). A purely data-driven model is built to replicate the 
relationship between input and output without any domain knowledge. 
Generally, this type of models requires much less computational resources than 
a physics-based model and adapts easily to new information. Among black-
box models, Artificial Neural Networks (ANN) have since long been used to 
model the complex, non-linear behavior of urban drainage systems (Loke et 
al., 1997). ANNs learn recurrent patterns in data in resemblance to biological 
neural systems (Schmidhuber, 2015). 

Both physics-based and data driven models can act as soft (software) sensors 
to supplement or replace the hard (hardware) sensor, provided they are 
sufficiently accurate. This requires that the model is calibrated and validated 
against a set of observations. A soft sensor can provide an estimate of states of 
the system that are not directly observed or fill gaps of information on directly 
observed states. This could be the case if the hard sensor is faulty or under 
maintenance. Depending on the type of model, the soft sensor can be localized 
in space or cover large portions of the UDS. Examples of both types are 
reported in the literature, including a CFD-derived model for the monitoring 
of a combined sewer overflow (Ahm et al., 2016) and a system-wide digital 
twin of the urban drainage system for model-based real-time monitoring of the 
whole network (Pedersen et al., 2021). 

In terms of water quantity in combined sewer systems, the major challenge for 
soft sensors is to replicate the complex, non-linear relationship between the 
rainfall input and the hydraulic state (water level/depth or discharge). An 
example of this relationship is shown in Figure 1. In dry weather, the water 
depth follows a repetitive diurnal pattern in addition to the infiltration 
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contribution. In wet weather, instead, the response to the rainfall intensity is 
nonlinear and location-specific, as it is affected by the geometry of the system 
and the presence of control devices, such as gates, weirs, pumps, etc. 

 
Figure 1. Example of water depth observations and model predictions in dry and wet 
weather. Adapted from Paper II. 

1.3 Cyber-physical security 
When the digital sensing and control become tightly intertwined with the 
physical assets, urban drainage systems can be regarded as cyber-physical 
systems (Sun et al., 2020). The operation of cyber-physical systems relies 
heavily on the quantity and quality of data available (Rajkumar et al., 2010). 
Thus, cyber-physical systems are more vulnerable than conventional physical 
systems to failure and attacks (Ding et al., 2018), and it is paramount that the 
data streams can be trusted with very high reliability (Blumensaat et al., 2019). 
Given the scale and critical function of UDSs, this increased vulnerability can 
potentially lead to serious consequences. One notable example is the breach 
that occurred in 2000 at the Maroochy Water Services in Queensland, 
Australia, in which a former contractor maliciously gained control of 150 
pumping stations (Slay & Miller, 2007). By the time the attack was detected 
three months later, one million liters of untreated sewage had been discharged 
to the local waterways. While the digital transformation exposes new 
vulnerabilities of urban drainage systems, technological advancements at the 
same time offer solutions to help reducing risks (Moy De Vitry et al., 2019). 
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To ensure the security of cyber-physical systems, conventional network 
security should be backed up by an intrusion detection system, capable of 
identifying a breach that has already occurred (Ramotsoela et al., 2018). 
Anomaly detection is a subset of intrusion detection which aims at identifying 
deviations from the normal behavior of the system (Kwon et al., 2019). As 
such, it is also effective in detecting non-malicious malfunctions of the 
monitoring and control equipment. For highly dynamic systems like urban 
drainage, the normal behavior cannot be estimated solely based on the 
statistical distribution of the historical data, but also requires a model capable 
of understanding the driving processes and estimating the present state of the 
system. A model with a similar capability also fits the requirements of a soft 
sensor. 

1.4 Objectives 
The overall aim of this thesis is to bridge the gap towards the field 
implementation of soft sensing and anomaly detection in combined sewer 
systems, with an exclusive focus on water depth observations. The aim is 
pursued by investigating the following research questions:  

i) How is the terminology related to soft sensing and anomaly detection used 
in the context of urban drainage systems? 

ii) Can 1D hydrodynamic models be optimized for soft sensing and anomaly 
detection in combined sewer systems by means of data assimilation? 

iii) Can Long Short-Term Memory neural networks be trained to replicate the 
behavior of combined sewer systems with sufficient accuracy for soft 
sensing and anomaly detection purposes? 

iv) For which type of applications are the two investigated methods suitable?  

These research questions reflect the objectives of the three attached papers 
(Table 1). Paper I presents a data assimilation scheme tailor-made for urban 
drainage tunnels that aims at enabling 1D hydrodynamic models with soft 
sensing and sensor validation capabilities. Paper II and III investigate the use 
of Long Short-Term Memory neural networks in predicting the behavior of 
combined sewer systems. Their focus is soft sensing and anomaly detection, 
respectively. Both Paper I and II use data from the Damhus overflow tunnel 
system in Copenhagen, Denmark, while Paper III uses data from combined 
sewer overflow chambers in Odense, Denmark. 
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Table 1. Overview of scientific papers included in this thesis: objectives, case study and 
model used. 

Paper Objectives Case study Model 

I • System-wide soft sensing 
• Cross-validation of sensors 

(anomaly detection) 
• Computational cost 

minimization 

Damhus overflow 
tunnel system,  
Copenhagen, DK 

Updated 1D 
hydrodynamic 

II • Point-wise soft sensing 
• High prediction accuracy 
• Reproducibility 

Long Short-Term 
Memory neural 
network 

III • Anomaly detection (sensor 
validation) 

• Robustness  
• Minimal human intervention 

Combined sewer 
overflow chambers,  
Odense, DK 

 

1.5 Thesis structure 
This thesis is structured as follows. Chapter 2 discusses the main terminology 
and concepts related to soft sensing and anomaly detection in combined sewer 
systems. This first of the two investigated approaches, data assimilation in 1D 
hydrodynamic models, is presented in Chapter 3, together with the key findings 
from Paper I. Chapter 4, instead, focuses on the second approach, Long Short-
Term Neural networks and summarizes the results from Paper II and III. 
Chapter 5 draws a comparison between the two investigated approaches and 
discusses advantages and disadvantages of both. The last two chapters present 
the conclusions and the future perspectives, respectively. 
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2 Soft sensing and anomaly detection 
2.1 Terminology 
The term “soft(ware) sensor” is commonly used in industrial environments to 
refer to mathematical models of a system designed to estimate relevant system 
variables (Fortuna et al., 2007). A soft sensing model can be used to 
supplement or replace hard(ware) sensors, which often have high installation 
and maintenance costs. This is especially the case in urban drainage systems, 
which are difficult to access and require specialized personnel. Generally 
speaking, all models of combined sewer systems return estimates of relevant 
variables at different forecast horizons. However, to qualify as soft sensor, a 
model needs to be able to run in real-time and predict the current value of the 
target variable at multiple relevant locations. 

The terms “soft(ware) sensing” and “soft(ware) sensor” are not widely used in 
the context of urban drainage, compared to other research areas (Table 2). One 
recurrent use of the term refers to a model that predicts an unobserved quantity 
starting from an observed one. This is the case of flows derived from water 
levels (Carstensen et al., 1996; Leonhardt et al., 2012; Ahm et al., 2016). 
Alternative terms to soft sensing used with a similar meaning are “data 
reconstruction” (Benedetti et al., 2008) and “gap filling” (Langeveld et al., 
2017). However, the majority of studies on soft sensing in combined sewer 
systems are focused on water quality, e.g. (Pedersen et al., 2020). 

Chandola et al. (2009) define “anomaly detection” as the problem of finding 
patterns in data that do not conform to expected behavior.  In this thesis, the 
analysed data are water depth observations from combined sewer systems and 
the expected behavior is computed with a model. The anomalies could have 
different origins. A system anomaly occurs when the water depth is correctly 
observed by the sensor, but it behaves differently from the norm, e.g. in case 
of a blockage or failure of the control equipment. A sensor anomaly, instead, 
refers to the scenario in which the system behaves as usual, but the sensor 
records a wrong observation, which could be caused, for example, by 
miscalibration or obstruction of the sensor. Finally, a transmission anomaly 
happens when the observation is altered maliciously or unintentionally while 
being sent from the data source to the data repository. Classifying anomalies 
according to their type would certainly add value to the detection mechanism 
but is not the purpose of this thesis. Therefore, in the following “anomaly” 
refers to any of the types described above. 
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Table 2. Number of hits on scopus.com for terms related to soft sensing and anomaly 
detection in a generic context or in associations with urban drainage ("urban drainage" OR 
"drainage network" OR "sewer system" OR "sewer network" OR "combined sewer" OR 
"separate sewer"). Accessed 24th February 2021. 

Term Generic context Urban drainage context 
Soft(ware) sensing/sensor 13880 94 
Data reconstruction 7088 18 
Gap filling 9470 34 
Anomaly detection 65048 73 
Data validation 10385 111 

 
The use of “anomaly detection” in the context of combined sewer systems is 
rare (Table 2). Branisavljević et al. (2011) tested various anomaly detection 
techniques on water depth, velocity and conductivity observations from 
combined sewers and discussed the benefit of data pre-classification. 
Frequently, the term is used with the meaning of fault or defect detection in the 
inspection of drainage pipes (Hassan et al., 2019; Moradi et al., 2020). 
Techniques for the detection of anomalous observations from sewer systems 
are more commonly termed “data validation” (Branisavljevic et al., 2010; 
Mourad & Bertrand-Krajewski, 2002). The term “sensor validation” as it is 
used in Paper I, can be considered a synonym of data validation, or rather an 
abbreviation of “sensor data validation”. 

2.2 Conceptual framework 
Anomaly detection can be dealt with as a classification or regression problem. 
In the first case the observations are classified as normal or anomalous based 
on a set or criteria or using an intelligent algorithm. For example, several 
machine learning algorithms exist that are capable of automatically classifying 
data after being trained on a labelled dataset (Russo et al., 2020) With the 
regression approach, a model carrying information on the relationship among 
system variables is used to predict the behavior of the system in response to a 
given input. Then, the deviations of the observed state from the expected one 
are flagged as anomalies, according to some predefined criteria. The 
hydrological and hydraulic processes governing combined sewer systems are 
well understood but lead to highly dynamic and non-linear behavior. Also, 
water depth observations are arranged in sequences with temporal correlation. 
For these reasons, the regression approach was considered the most promising 
and thus received focus of this thesis.  
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A regression model for anomaly detection also fulfils the requirements of a 
soft sensing model, which allows to couple the two processes in the same 
workflow. This is conceptualized in Figure 2. The initial step is the selection 
and training/calibration of the regression model. Training and calibration are 
terms commonly used with data-driven and physics-based models, 
respectively. But, in principle, they both consist in optimizing a set of 
parameters to ensure a better fit between the model output and a series of 
historical observations. At each step in time, the trained model is used to 
predict the expected state or behavior of the system, given a set of known 
inputs. In this thesis the predicted state is limited to the water depth at the 
analysed locations within the combined sewer system.  

If an observation from a hardware sensor is available at the current timestep, it 
is compared with the model prediction. A significant deviation between the 
two signals a potential anomaly. Instead, if no observation is available for the 
specific point in time and space, the prediction itself is used in replacement. 
Thus, the model acts as soft sensor. The algorithm then shifts forward in time 
in preparation for a new iteration as time advances. After a predefined period, 
or when a sufficient amount of new data has been collected, the model is 
updated with the new information to keep track of changes in the system 
behavior. The update can affect the model parameters or only the initial and 
boundary conditions. This framework is also applied when soft sensing is 
performed without detecting anomalies, as in Paper II. In that case the anomaly 
detection step in bypassed and all the observations are implicitly assumed to 
be valid. 

Figure 2. Conceptual workflow of soft sensing coupled with anomaly detection. From Paper 
II. 
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2.3 Urban drainage tunnels 
Urban drainage tunnels are being widely adopted worldwide in response to the 
increased pressures on the sewer systems. These strategic structures often have 
massive scales and require considerable investments of taxpayers money. At 
the same time, urban drainage tunnels are usually deeper than the rest of the 
network to operate by gravity, thus limiting their accessibility for maintenance 
purposes. Monitoring and controlling theses structures with sensors alone can 
expose the operator to serious risks, including malicious attacks. This is why 
urban drainage tunnels make for an interesting case study for both soft sensing 
and anomaly detection. 

A few large tunnels have been integrated in the combined sewer system of the 
city of Copenhagen, Denmark, and others are planned or under construction. 
They are a key component of the city’s climate adaptation plan, an ambitious 
project aimed at securing the urban area from the potential damages of pluvial 
flooding. Some tunnels are designed to rapidly discharge excess stormwater 
directly at sea. Others intercept the existing overflow structures and withhold 
the combined sewage that would have otherwise reached the natural recipient 
untreated. In combined overflow tunnels the sewage is stored until the end of 
the precipitation event and then pumped back into the network for treatment. 
A different typology of drainage tunnels has been adopted by the city-state of 
Singapore. Located close to the equator, Singapore experiences a tropical 
climate with abundant precipitation throughout the year. Stormwater is 
therefore drained separately from wastewater and partly directed at large 
reservoirs for treatment and reuse. Used water from the nearly 6 million 
inhabitants is instead collected in a massive tunnel system crossing the island 
for a total length of about 80 km. This centralized structure allows to optimize 
the management of the sewer network and reduce the need for pumping stations 
at the surface level, but the operation of the entire city depends on its correct 
functioning. 

Regardless of the type of water they are designed for (stormwater, wastewater, 
or combined sewage) urban drainage tunnels share a common defining feature: 
store and convey large quantities of water (Palmitessa et al., 2018). Despite the 
large dimensions, they are enclosed structures with a limited volume. 
Advanced monitoring techniques like soft sensing, can help optimize the 
available volume and inform smart control decisions. At the same time, it is 
greatly beneficial to be able to validate the incoming observations and detect 
anomalous data before they are given as input to the control algorithms. 
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2.4 Combined sewer overflows 
Combined sewer systems are usually equipped with overflow structures to 
release excess water during wet weather and prevent the combined sewage 
from flooding streets and buildings. Originally, these structures discharged the 
overflow and its pollutants load directly into the natural recipient. In recent 
times, stricter environmental regulations mandate the reduction or elimination 
of overflow events. Nonetheless, many overflow chambers still exist in the 
combined sewers of modern cities. These chambers fundamentally consist of 
two components: a storage volume, determined by its geometry, and a 
regulation mechanism for the diversion of the overflow. The regulation can be 
either active, if controllable, or passive, if fixed. A passive overflow chamber 
fills up during a rain event until the water has reached a crest level. If the water 
depth raises further, the excess combined sewage overflows outside the storage 
chamber and is conveyed to the recipient (Figure 3). 

To monitor the occurrence and magnitude of the overflow events, combined 
sewer overflows are often equipped with water level sensors. These are 
typically ultrasonic or pressure sensors and provide essential information for 
the monitoring and control of combined sewers. In dry weather, the water depth 
in the chamber follows the same repetitive pattern as the sewer pipes. During 
precipitation events, the water level increases in relation to the stored volume, 
which depends on the difference between inflow and outflow. When the 
storage capacity is met, the water starts overflowing as a function of the crest 
design. Across the three stages, the relationship between the precipitation and 
observed water depth changes. 

 
Figure 3. Schematics of a typical passive overflow chamber with water depth stages (dry, 
wet, and overflowing). Adapted from Paper II. 
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2.5 Inner and outer model 
Combined sewer systems include in their most simple form two main physical 
components: a catchment, which collects wastewater and precipitation runoff 
from their sources, and a drainage network that conveys the combined sewage 
to treatment and disposal. A model capable of replicating the behavior of the 
system needs therefore to capture the basic mechanism of the various water 
sources being combined and conveyed across the system over time. As the 
water travels downstream, it mixes with the runoff and the sewage from larger 
areas of the system, leading to increasingly more complex behavior. Therefore, 
it may be beneficial to used models with a higher level of detail and complexity 
in the most downstream areas of the network. 

Also, some structures have strategic roles in the operation of combined sewer 
systems, as is the case with drainage tunnels. Isolating a model of the selected 
structure can help optimizing the use of computational resources or increase 
the amount of information contained in the model. In this thesis, an “inner 
model” is focused on a downstream or strategic subsystem of the combined 
drainage system, whereas the “outer model” encompasses the upstream or 
peripheral parts of the system, including the catchment. The boundary between 
the outer and inner model is selected in a way that ensures the correct transfer 
of information from one to the other. 

Figure 4. Conceptual overview of a combined sewer system equipped with an overflow 
tunnel, and boundaries of inner and outer model. Adapted from https://tideway.london/. 

https://tideway.london/


13 

3 Updated hydrodynamic models 
3.1 1D hydrodynamic models 
Distributed urban drainage models (DUDMs) are physics-based models that 
simulate the spatial and temporal distribution of water across urban drainage 
systems. DUDMs typically include a model of the catchment, that converts 
precipitation and discharges in inflows to the network, and a hydrodynamic 
model of the drainage network, including pipes, basins, and control actuators. 
The catchment model describes the relative amounts of precipitation runoff, 
infiltration, and evapotranspiration, and connects the water sources to their 
point of entry into the sewer. Given the complexity of the surface flow and the 
large number of sources, the catchment component is usually represented in a 
lumped or conceptual fashion.  

The hydrodynamic component receives as input the location, amount, and 
timing of the inflows at the inlets and simulates the transport of water to the 
outlets, where the water leaves the system. The hydrodynamic simulation relies 
on large amounts of data about the assets, e.g. location and geometry of the 
pipes, and has a higher level of detail than the catchment component. However, 
to optimize the computational resources needed, the hydraulic variables are 
computed by solving the continuity and momentum equations in 1 dimension 
along the flow direction. This 1D hydrodynamic module is discretized in space 
at time, so that the hydraulic variables are computed only at specific time and 
space intervals. Nonetheless, models of large drainage systems typically 
include thousands of computational nodes for both water depth and flow, that 
need to be computed at each simulation step. 

3.2 Ensemble-based data assimilation 
Data assimilation (DA) refers to a class of techniques aimed at improving the 
accuracy of a model by dynamically adjusting the model states and/or 
parameters using external data. In the case of urban drainage models, the 
assimilated data can be observations from the sensors. The assimilation or 
update thus ensures that the model prediction stays close to reality. This 
enhances the soft sensing capabilities of the model and provides a reliable 
initial condition for model forecasts. The update can be restricted to the 
location where observations are available or be propagated to unobserved 
locations given the spatial correlation between model variables, which is 
particularly useful for soft sensing purposes. 
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In ensemble-based data assimilation, the uncertainty of the model prediction is 
compared with that of the observation and the model is updated with a weighted 
average of the two (Figure 4). While the uncertainty of the observation is 
defined by the user, the uncertainty of the model prediction is derived by 
running an ensemble of model instances. Each member of the ensemble is an 
exact copy of the model but is forced with a slightly different input and/or 
boundary condition. Ensemble-based DA was originally formulated by 
Evensen (1994) as Ensemble Kalman Filter (EnKF). EnKF is more suitable 
than non-ensemble assimilation for urban drainage models, provided that the 
computational resources are not a limiting factor (Borup et al., 2014) To 
overcome the need of perturbing the observations, Sakov and Oke (2008) 
introduced a deterministic variation of the EnKF, which is the technique 
applied to 1D hydrodynamic models in this thesis. A detailed mathematical 
description of ensemble-based data assimilation is given in Paper I, Section 2. 

Figure 4. Probability distribution of observation (black), perturbed model ensemble (green) 
and updated model ensemble (purple). 

3.3 Assimilation scheme 
A scheme was developed and tested for reducing the computational cost of 
ensemble-based assimilation in hydrodynamic models of sewers, while 
retaining the full spatial resolution.  This is achieved by running a single 
instance of the outer model and using its perturbed output as boundary 
condition to the inner model. The inner model retains the same level of detail 
of the original model but is limited to a selected subsystem. The boundary 
between the two models needs to be drawn strategically and should possibly 
coincide with the location of the sensors. To account for the uncertainty of the 
model, the hydraulic state at the boundaries is perturbed with a multiplication 
factor and a time displacement. The perturbation is different for each member 
of the ensemble. 

p(𝑥𝑥) 

𝑥𝑥 
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Since the perturbations are defined arbitrarily, the inner model can be exposed 
to unrealistic inputs at the boundaries. By assimilating the observed water 
depth at some of the boundaries, the hydrodynamic simulation becomes more 
stable. Furthermore, the observations from within the inner model are 
assimilated and the update propagates through the entire sub-system 
proportionally to the correlation between states. The scheme is thus composed 
of three stages: i) running the outer model, ii) perturbing the boundaries of the 
inner model, iii) assimilating the observations in an ensemble of the inner 
model (Figure 5). In an offline setting, the stages are executed sequentially for 
the entire simulation, while in an online scenario the cycle is repeated at each 
time step. If observations are missing, the assimilation step can be bypassed, 
and the non-updated ensemble would still represent the uncertainty of the 
prediction. 

This scheme was tailor-made for combined sewer tunnels. These types of 
structures are connected to the combined sewer via its inlets and outlets. The 
inlets are typically overflow chambers, which are often equipped with water 
level sensors and are ideal candidates to act as boundary. Since tunnels are 
deeper than the surrounding sewer, there are generally no backwater effects 
towards the outer system. Therefore, if the water level at the outlet is known, 
the inner and outer model can be effectively run independently. Also, drainage 
tunnels mostly consist of a single stretch of large pipes. If observations from 
within the tunnel are assimilated within the inner model, the update would 
propagate both upstream and downstream, increasing the accuracy of the model 
and enhancing its soft sensing and sensor validation capabilities. 

 

Figure 5. Data flow of a time step in the proposed data assimilation scheme: i) a single 
instance of the urban drainage model is forced with rainfall observations and the states at 
the tunnel boundaries are read from its output; ii) the boundary states are perturbed to 
account for the model uncertainty; iii) the states predicted by the tunnel model ensemble are 
compared to the available observations to compute the update, which serves as initial 
condition for the following prediction. From Paper I. 
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3.4 Damhus drainage tunnel 
The Damhus combined sewer overflow tunnel in Copenhagen, Denmark, was 
used to test the proposed assimilation scheme. The surrounding sewer system 
was simulated with a highly detailed hydrodynamic model consisting of about 
800 km of pipes. The scale of the model makes the direct application of 
ensemble-based assimilation impractical and justifies the use of the proposed 
scheme. The outer model receives as input the rainfall observations from 10 
gauges distributed on the catchment and returns as output the water depth at 
the tunnel inlets and outlet. The tunnel itself is about 3.5 km long, with a 
constant diameter of 3 m and max depth of about 16 m below ground (Figure 
6). Several dropshafts connect the tunnel with the shallow system. A large 
portion of the tunnel inflow is discharged from four overflow chambers 
connected to the most upstream dropshaft, while a system of pumps located in 
the most downstream dropshaft is used to empty the tunnel. Water depth 
sensors are located at three of the upstream overflows, at the tunnel outlet, and 
in both the upstream and downstream dropshafts. Both rainfall and water depth 
observations at 1-min resolution were made available for selected rain events 
when the tunnel was partially or completely filled. 

Water depth observations from five sensors were assimilated in the inner 
model, while the observation from the upstream dropshaft was only used for 
cross-validation. All boundary states were perturbed with a time displacement 
uniformly distributed between -30 min and +30 min, and a multiplication factor 
normally distributed with standard deviation equal to 4%. The uncertainty of 
the assimilated observation was calibrated to optimize the prediction accuracy 
at the downstream dropshaft. Ensemble of various sizes were tested and an 
ensemble of 100 members was found to be a good compromise between 
accuracy and computational effort.  

 
Figure 6. Longitudinal profile of Damhus tunnel system with main dimensions (depths are 
reported as relative to the Danish Vertical Reference 1990). Adapted from Paper I. 
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3.5 Sensor cross-validation 
Three rainfall events of different magnitude were analysed (A, B and C). Each 
event covered a cycle of filling, emptying, and flushing of the tunnel. During 
event A the tunnel was completely filled until it overflowed to the nearby 
stream. At full capacity, the same water depth was observed at the upstream 
and downstream dropshaft, and the tunnel effectively behaved as a storage 
basin. Event A was used for testing the scheme and calibrating its parameters, 
including the perturbation coefficients and the standard deviation of the 
assimilated observations. The scheme was validated with event B, which was 
of moderate intensity and only led to a partial filling of the tunnel. In this case 
the tunnel behaved as a pipe and the water levels upstream and downstream 
were different. Nonetheless, the downstream update was propagated through 
the length of the tunnel and significantly improved the accuracy of the 
ensemble model prediction at the upstream dropshaft (Figure 7).  

Meanwhile event C had a moderate peak intensity, but the sensor observations 
suggested a different behavior of the tunnel. While the downstream dropshaft 
was only partially filled, the water level at the upstream dropshaft was seen 
nearly reaching the crest level. After the assimilation, the model ensemble 
predicteded with confidence that the upstream water level was close to the 
invert, in disagreement with the sensor. Upon further investigation, it was 
discovered that the upstream sensor was affected by false echo when the inflow 
to the tunnel intersected the field of vision of the sensor. This application 
demonstrates that the updated hydrodynamic model can both be used for 
system-wide soft sensing, as the update propagates upstream, and validation of 
the non-assimilated observations.  

For both soft sensing and anomaly detection purposes, it is important to 
quantify the degree of confidence in the model predictions. Classic accuracy 
metrics, e.g. Root Mean Square Error (RMSE) and Nash-Sutcliff Efficiency, 
do not fully capture the probabilistic information contained in the ensemble 
prediction. Other metrics were tested and compared, which are more suitable 
for probabilistic forecasts (e.g. the Continuous Ranked Probability Score). To 
validate the upstream observations the standardized residual of the ensemble 
prediction was computed at each time step. This was obtained by dividing the 
residual error of the ensemble mean by the expected standard deviation, which 
accounts for both the uncertainty of the sensor and the mode. All observations 
corresponding to a standardized residual error outside the [-2,2] interval were 
flagged as anomalous (Figure 7). 



18 

 

Figure 7. Water levels for Events B and C at the downstream (top row) and upstream 
dropshaft (middle row): observations in solid black line, and model ensembles (bands 
delimited by 5% and 95% quantiles, mean shown as dashed lines) without (green) and with 
(purple) data assimilation; Standardized residual (bottom row) of updated water level at 
upstream dropshaft. Adapted from Paper I. 
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4 Long Short-Term Memory networks 
4.1 Artificial Neural networks 
Artificial Neural Networks (ANN) mimic the learning processes of a human 
brain. The input signals are transformed and distributed between the artificial 
neurons via connections resembling artificial synapses (Figure 8). Repetitive 
patterns in the input signal strengthen some paths, thus embedding knowledge 
in the network. In practice, a weight is assigned to each connection and the 
optimal set of weights is calibrated in the training process by minimizing the 
prediction error of the output. If trained with a sufficiently representative 
dataset, the network is capable of predicting the expected behavior of the 
system in response to an independent set of inputs. This property can be 
exploited in modelling the complex non-linear behavior of combined sewer 
systems without any knowledge of their geometric and hydraulic properties. 

 
Figure 8. Internal structure of an Artificial Neural Network with neurons (circles) and 
synapses (grey arrows). 

ANNs have been used extensively for forecasting the behavior of combined 
sewer systems, but only a few applications explicitly addressed soft sensing 
and anomaly detection. For example, Bailey et al. (2016) successfully used an 
ANN for the early detection of blockages. Higher prediction accuracies can be 
achieved with the recurrent type of neural networks, which learn time 
dependencies in the training data and are thus ideal for series of observations. 
Long Short-Term Memory (LSTM) neural networks are a variant of recurrent 
ANN which can store long-term information with a system of gates that further 
manipulate the signal being transmitted through the network (Hochreiter & 
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Schmidhuber, 1997). LSTM networks have been proven to outperform ANN 
in predicting both flows (Sufi Karimi et al., 2019) and water levels (Zhang et 
al., 2018) in combined sewers. 

4.2 Setting up an LSTM network 
LSTMs are very flexible tools and modern software libraries offer a myriad of 
options to customize the network to the problem at hand. The key settings to 
be defined are the number of layers and neurons, which can be seen as the 
depth and width of the network and determine the learning capacity. The input 
data is arranged in a 3-dimensional structure (Figure 9). A window of input 
data is associated to each target observation. The size of the window is given 
by the number and length of the input series (features). Gaps can be introduced 
in the input window to simulate scenarios of missing observations. The number 
of windows is determined by the length of the period for which learning data 
is available. The input signal is transformed at various steps of the learning 
process according to user-defined functions, which also affect the accuracy of 
the predictions. All together, these settings constitute the non-trainable 
parameters of the neural network and are also termed hyperparameters to 
differentiate them from the trainable parameters (internal weights).  

The choice of optimal hyperparameters mainly depends on the characteristics 
of the output to be predicted and the number and type of input features. In this 
thesis, LSTM networks were used exclusively to predict water depth from 
combined sewer overflow chambers. To limit the required size of the network 
and consequently the computational effort, the set of inputs was reduced to 
only three features: minute of the day, for the recognition of the dry weather 
pattern; rainfall intensity, for the prediction of the wet weather response; and 
information on the antecedent hydraulic state. While the first two features are 
generally robust and reliable sources of information, the antecedent 
observations can potentially be missing or erroneous. This can undermine the 
usefulness of the prediction. The network learns that the antecedent 
observations have the highest correlation to the current observation among the 
three features and assigns them a higher weight. The prediction accuracy thus 
becomes largely dependent on the availability and validity of the antecedent 
observations, which is counterproductive when the aim of the prediction is to 
detect anomalous observations. To overcome this dependency, the network can 
be trained to operate without knowing the antecedent state or only a surrogate 
version, e.g. the baseline value of the day before. 
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Figure 9. LSTM input features and target, with input window length (w), gap length (g) and 
learning period (p). Adapted from Paper II. 

4.3 Prediction accuracy 
Water depth observations from four different locations were used for testing 
the LSTM network and assessing the prediction accuracy. The first series was 
from one of the boundary structures of the Damhus tunnel system described in 
Section 3.4, and includes 11 months of observations at 1-min resolution (Paper 
II). The other three series were from different locations in the combined sewer 
system of Odense, Denmark, and cover periods ranging from 1.5 to nearly 3 
years also at 1-min resolution (Paper III). All series were split into training, 
validation and testing subsets. The validation subset was used to guide the 
training process, which explains why a third independent subset was needed 
for testing the prediction accuracy.  

For both Damhus and Odense cases, rainfall intensity observations from 
different gauges were combined in a single average series, thus limiting the 
number of features and the size of the input window. The average series 
showed in all cases a higher correlation to the observed water depth than the 
individual series. The correlation was highest for delays between 30 and 60 
min and decreased significantly after 2 hours. This is a consequence of the 
nature of the hydrological processes occurring in a combined sewer network, 
as the inflows from the sub-catchments have different travel time to the 
observation location. Also, using the average series as input ensures that if one 
of the gauges becomes faulty, it does not compromise the network prediction. 
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As for the antecedent water depth observations, various approaches were tested 
to determine how much the knowledge of the recent past influences the 
prediction accuracy. Two networks with the same set of hyperparameters were 
trained with (scenario A) and without (scenario B) the antecedent observation 
as input. By comparing the RMSE of the network prediction in the two 
scenarios for different lengths of the input window it became evident that i) the 
network generally performed better if the antecedent observations were known, 
and ii) if the antecedent observations were unknown, a longer window was 
needed to capture the delayed response of the water depth to the rainfall input 
(Figure 10).  

 
Figure 10. Root Mean Square Error (RMSE) of 20 LSTM predictions in the testing dataset 
from the Damhus case with different input window lengths. Networks trained with (A) or 
without (B) the antecedent observations. Results presented are quartiles (box) and mean 
(cross). The whiskers extend to the minimum and maximum value or 1.5 times the inter 
quantile range. Values outside the whiskers range are marked as outliers (circles). Adapted 
from Paper II. 

Intermediate scenarios were also tested where a gap of constant length was 
introduced in the antecedent observations. This forced the network to 
compensate the missing information with the other input features and yielded 
intermediate accuracy compared to the other two scenarios. However, the 
LSTM best performed in a scenario if trained on the same scenario. This also 
applied to specific lengths of the gap. Therefore, in an operational setting 
several instances of the network should be maintained and applied at the 
occurrence of the specific scenario, which is a considerable computational 
overhead. On the other hand, the network trained without antecedent 
observations (scenario B) performed sufficiently well for soft sensing purposes 
while being independent from the availability and quality of observations. 
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Results from the Damhus case had, however, limited validity due to the short 
period of time used for testing (about 2 months), during which seasonal 
variations were negligible. Since the dry weather pattern was only described 
by the minute of the day, the same average behavior was predicted for all dry 
days of the year. This is often not the case due to seasonal variations in the 
amount of infiltrating water and in the response of the catchment to the rainfall. 
The validity of the approach for longer series of data was tested with 
observations from the Odense sewer system. It became evident that a large 
error was introduced by averaging the dry weather behavior over the year. 
Several combinations of input features were tested to identify one that could 
capture the seasonal variations without being vulnerable to sudden errors in the 
observation series. The 5% quantile of the previous day’s observations proved 
the best option as it helped predicting consistently the water depth baseline 
(Figure 4 from Paper III) and it was only affected by long-lasting anomalies or 
gaps. In the worst case, the observed baseline could be replaced with the 
predicted one and would still probably yield a sufficient prediction accuracy, 
since the baseline normally changes gradually over days and weeks. 

4.4 Anomaly detection indicators 
To upgrade an LSTM from soft sensor to anomaly detection tool, the deviation 
between the prediction and the observation needs to be quantified. In the 
simplest case, the residual error of the LSTM prediction can be used as 
anomaly indicator. However, the error is generally larger in wet weather, due 
to the uncertain response to the rainfall, and lower in dry weather, when the 
observations fall within a relatively narrow range. To account for the state-
dependency of the error, the absolute value of the residual was divided by the 
predicted value to obtain the relative residual (Figure 11). A small constant 
was added at the denominator to prevent the indicator from spiking when the 
prediction neared the invert level. Due to delays between predictions and 
observations, spikes of residual error were also observed at the beginning and 
the end of the wet weather events. These were downplayed by averaging the 
residual error over a day-long moving window. Using this indicator, only the 
long-lasting anomalies were highlighted, e.g. the blockage shown in Figure 11. 

A detection threshold was computed for both indicators as the mean plus twice 
the standard deviation over the validation period. The threshold represented 
the level of confidence in the LSTM prediction and changed across locations. 
In theory, only the statistically significant events should exceed the threshold 
and be flagged as anomalous. However, the residual error exceeded the 
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threshold on several occasions when the system was behaving as expected, 
potentially leading to numerous false alarms. This advocates for the use of 
separate indicators to discriminate between levels of urgency of the alarm. For 
example, a yellow warning could be raised when observations are filtered out 
because they are physically unrealistic; orange warnings could correspond to 
relative residual errors above the detection threshold; red warnings could be 
raised only when the daily average residual error threshold is exceeded.  

 
Figure 11. From top to bottom: rainfall intensity observations; water depth observation from 
a combined sewer overflow in Odense and LSTM prediction; relative residual error with 
anomaly threshold; average daily residual error with anomaly threshold. Thresholds are 
calculated as mean plus twice the standard deviation of the indicator over the validation 
period. Adapted from Paper III. 
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5 Discussion 
This thesis investigated the use of two very different models for soft sensing 
and anomaly detection in combined sewer systems. 1D hydrodynamic models 
represent the state of the art in urban drainage modelling and are the result of 
decades of iterative refinements. They achieve a fine balance between level of 
detail and computational cost and cover all the main hydrological and hydraulic 
processes occurring in a sewer system. The model prediction is generally 
accurate enough for planning and monitoring purposes, but it lacks an 
assessment of the uncertainty. The main advantage of this type of models is 
that the prediction has a fine spatial and temporal resolution and is extended to 
the entire system.  

Data assimilation is capable of enhancing the features of 1D hydrodynamic 
models, by dynamically adjusting the system states to better fit the available 
observations. Thus, an updated model can be regarded as hybrid physics-based 
and data-driven model. The model updates can significantly improve the 
prediction accuracy, while adding a probabilistic dimension. With ensemble-
based methods, the uncertainty of the model prediction is computed from the 
spread of an ensemble of model instances. Running a large enough ensemble 
is a resource-demanding task and has been one of the limiting factors in the 
adoption of data assimilation techniques in the field of urban drainage. This 
thesis presented a scheme for localized data assimilation that enables soft 
sensing and anomaly detection capabilities in 1D hydrodynamic models at 
feasible computational costs. 

LSTM neural networks can learn repetitive patterns in water depth 
observations from combined sewers and predict the behavior of the system in 
response to a given set of inputs. As such, they lack any knowledge on the 
physical processes occurring in the system and are purely data-driven. For this 
reason, their spatial and temporal validity is limited to that of the training 
dataset. If trained with a series of observation from a specific location, the 
LSTM prediction has point-wise validity as opposed to the system-wide 
prediction of hydrodynamic models. This limitation could be overcome by 
training a single network on several observation series at once, but this 
approach was not investigated in this thesis. Depending on the complexity of 
the network architecture and the quantity of training data, an LSTM neural 
network can be run at a fraction of the computational cost required by physics-
based models. By default, the LSTM prediction is deterministic, but various 
possibilities to add a probabilistic dimension are discussed in Paper III. 
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The key features of the investigated models are summarized in Table 3. It 
should be noted that the computational cost and prediction accuracy 
assessments are qualitative and comparative in nature and based on the general 
experience of the author. From the comparison, no clear winner emerges. 
Generally, the computational cost increases with the prediction accuracy. 
Therefore, the resource-demanding updated hydrodynamic models could be 
reserved for soft sensing and anomaly detection in selected, strategic sub-
systems of the larger combined sewer, e.g. large tunnels. Instead, LSTM 
networks can easily be deployed to several individual locations and could be 
suitable to supplement and validate large networks of sensors.  

Table 3. Key features of investigated models for soft sensing and anomaly detection in 
combined sewer systems 

Model 1D Hydrodynamic Updated 1D 
hydrodynamic  

LSTM neural 
network 

Mechanism Physics-driven Hybrid physics- and data-
driven Data-driven 

Spatial extent System-wide System-wide 
(inner model) Point-wise 

Computational cost ●● ●●● ● 

Prediction accuracy ●● ●●● ● 

Type of prediction Deterministic Probabilistic Deterministic or 
probabilistic 
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6 Conclusions  
The following conclusions were drawn in response to the research questions 
formulated in Section 1.4. 

i) A limited number of examples can be found in the scientific literature of 
the use of “soft sensing” and “anomaly detection” in connection to urban 
drainage systems, despite their popularity in other fields of research. The 
concept of using a model prediction to extend and validate the information 
from the hardware sensors is well established, and both physics-based and 
data-driven models are used for the purpose. These applications are 
sometimes referred to as “gap filling”, “data reconstruction” and “data 
validation”. In this thesis, the terms soft sensing and anomaly detection 
imply that the underlying model is capable of running in real time and are 
preferred for their broad meaning.  

ii) 1D hydrodynamic models represent an optimal compromise between level 
of detail and computational effort required. They can potentially qualify 
for soft sensing and anomaly detection already in their deterministic 
formulation. Ensemble-based data assimilation was capable of significantly 
improving the prediction accuracy of the 1D hydrodynamic model of an 
urban drainage tunnel and added a probabilistic dimension to its output. As 
a consequence, the updated model could be trusted to simulate the behavior 
of unobserved locations and observations could be flagged as anomalous if 
they fell outside the confidence interval of the ensemble prediction. The 
only drawback is that running a sufficiently large ensemble of models in 
parallels requires prohibitive computational resources for large models. A 
solution was proposed that restricts the ensemble application to a selected 
area of the combined sewer, thus optimizing the computational resources 
for strategic locations. However, the efficacy of the assimilation relies on 
the availability and quality of the assimilated observations, which should 
in principle be independently validated to prevent them from corrupting the 
update.   

iii) A Long Short-Term Memory neural network was optimized to predict 
water depth observations from combined sewer overflows and tested with 
several scenarios of data availability. The prediction accuracy was highest 
when the antecedent observations were used as input. In this scenario, 
though, the network prediction was vulnerable to missing and anomalous 
observations. However, if appropriately trained, the LSTM was capable of 
compensating the missing information on the past state of the system with 
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the other available input features, namely minute of the day and rainfall 
intensity. This yielded a more robust soft sensing model that consistently 
predicted the water depth with sufficient accuracy. The LSTM prediction 
was also used as basis for the automatic detection of anomalies in incoming 
observations from the hardware sensor. A detection method was proposed 
that uses simple indicators and thresholds representing the level of 
confidence in the model. Despite the indicators were tailored on the 
characteristics of water depth observations, the frequency of false alarms 
was still too high for practical applications. False alarms could be reduced 
either by further improving the prediction accuracy of the model or 
accounting for the large uncertainty in predicting the exact height and 
timing of the wet weather peaks.   

iv) Both investigated models have their own advantages and disadvantages. 
Updated hydrodynamic models have higher computational cost but return 
more accurate and system-wide predictions. On the other hand, LSTM 
networks can be easily deployed to large sensor networks with minimal 
domain knowledge but have limited spatial validity. Therefore, as a general 
principle, the two approaches are better suited from the inner and outer 
model, respectively. A synergy between the two approaches remains to be 
explored.  
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7 Perspectives  
Ensemble-based data assimilation was proven to significantly improve the 
prediction accuracy of 1D hydrodynamic models. The restriction of the update 
to a selected sub-system was justified by the need to contain the computational 
cost. However, as more tasks are assigned to computational servers and the 
cost to performance ratio of hardware decreases, the argument is bound to 
become less relevant in the future. At that point, ensembles of large 
hydrodynamic models could be run in parallel and observations from tens or 
hundreds of sensors could be assimilated at once. Also, information on the 
control actuators (e.g. the state of a gate or the flow through a pump) could be 
directly assimilated in the hydrodynamic model to yield an even better fit to 
the actual state of the system. The interplay between the different and 
potentially contrasting sources of information should than be investigated to 
prevent physically unrealistic phenomena to be introduced in the model. 
Finally, the use of updated 1D hydrodynamic models for probabilistic 
forecasting deserves further investigation, especially for the potential of 
informing risk-based control decisions.  

Long Short-Term Memory neural networks were used to predict water depth 
from combined sewers with sufficient accuracy. The same network was used 
for both dry and wet weather periods with different degrees of success. LSTM 
predictions were generally less accurate in wet weather, when the response of 
the water depth to the rainfall input is highly non-linear due to the dynamic 
conditions of the catchment and the specific properties of overflow chambers. 
For example, when the water level exceeds a defined threshold the excess in-
flow is diverted. This threshold limits how much the water depth can increase 
in response to peaks of rainfall intensity and contributes to the non-linearity of 
the problem. In this thesis, it was chosen to apply the same network to all rain-
fall regimes (dry, wet and overflowing) to avoid the need of classifying the 
incoming observations, as it could introduce some form of bias. However, the 
classification could potentially be fully automated by means of fuzzy logic, as 
already done in hydrological applications (Talei et al., 2013). Also, probabil-
istic LSTM predictions have been proposed with an ensemble approach. Alter-
natively, a single neural network could be set to return as output the statistical 
properties of the observation (e.g.  mean and standard deviation), provided that 
an adequate probabilistic loss function is used. A similar approach has already 
been described in the scientific literature (Gulshad et al., 2017) but no applica-
tion can be found in the field of urban drainage so far. 
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Finally, there is untapped potential in the synergy between the two investigated 
techniques. As discussed, data assimilation relies on the assumption that the 
assimilated observations are valid. Therefore, a system is needed to 
independently assess the quality of the observations and cross-validation can 
only partially answer to this need. LSTM networks would serve the purpose 
well, since they are trained with historical observations from a single location 
and are independent from the nearby sensors. A probabilistic LSTM would 
even dynamically quantify the uncertainty of the assimilated observation, thus 
replacing the otherwise arbitrary parameters of the proposed assimilation 
scheme. 
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