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SUMMARY
Enzymesmaintain metabolism, and their concentration affects cellular fitness: high enzyme levels are costly,
and low enzyme levels can limit metabolic flux. Here, we used CRISPR interference (CRISPRi) to study the
consequences of decreasing E. coli enzymes below wild-type levels. A pooled CRISPRi screen with 7,177
strains demonstrates that metabolism buffers fitness defects for hours after the induction of CRISPRi. We
characterized the metabolome and proteome responses in 30 CRISPRi strains and elucidated three gene-
specific buffering mechanisms: ornithine buffered the knockdown of carbamoyl phosphate synthetase
(CarAB) by increasing CarAB activity, S-adenosylmethionine buffered the knockdown of homocysteine
transmethylase (MetE) by de-repressing expression of the methionine pathway, and 6-phosphogluconate
buffered the knockdown of 6-phosphogluconate dehydrogenase (Gnd) by activating a bypass. In total,
this work demonstrates that CRISPRi screens can reveal global sources of metabolic robustness and identify
local regulatory mechanisms that buffer decreases of specific enzymes. A record of this paper’s transparent
peer review process is included in the Supplemental Information.
INTRODUCTION

Enzymes catalyze biochemical reactions that maintain meta-

bolism and cell growth. Correspondingly, expression levels of

enzymes influence cellular metabolism and fitness. Growth of

E. coli, for instance, is affected by the abundance of single en-

zymes (Dekel and Alon, 2005; Li et al., 2014), as well as by the

total mass of catabolic enzymes (You et al., 2013). However, it

is not clear to what extent the expression of every single enzyme

in a cell influences metabolism and fitness.

The consequences of perturbing enzyme levels were investi-

gated with knockout libraries of yeast and E. coli (Baba et al.,

2006; Giaever et al., 2002). Studies with these libraries showed

that the absence of a single enzyme has very precise and spe-

cific effects on metabolism (Fuhrer et al., 2017; M€ulleder et al.,

2016) and transcription (Kemmeren et al., 2014). However,

knockouts are extreme cases and they are not feasible for key

metabolic enzymes, which are essential for growth on single car-

bon sources such as glucose. Moreover, knockouts are static

and, therefore, they may reflect metabolic states that have
56 Cell Systems 12, 56–67, January 20, 2021 ª 2020 The Authors. Pu
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already adapted at the level of gene expression (Hosseini and

Wagner, 2018; Ishii et al., 2007) or by mutations (McCloskey

et al., 2018a). Thus, it is difficult to learn about acute responses

to perturbations of enzyme levels using gene deletions.

To understand the consequences of enzyme-level perturba-

tions around wild-type levels, a series of studies measured

enzyme expression in different environmental conditions

(Buescher et al., 2012; Gerosa et al., 2015; Hackett et al.,

2016). These studies showed that most enzymes have different

expression levels in different conditions and that the average

enzyme mass of E. coli cells changes more than 2-fold across

conditions (Schmidt et al., 2016). However, expression changes

across conditions were mainly driven by global growth-depen-

dent regulation (Erickson et al., 2017), and delineating local regu-

lation from these data has proven difficult (Gerosa et al., 2013;

Keren et al., 2013). An approach to achieve more specific and

localized changes of enzyme levels is to delete regulatory pro-

teins that control enzyme expression. For example, deleting pro-

tein kinases in yeast caused widespread and specific changes of

enzyme levels (Zelezniak et al., 2018), and deletion of
blished by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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transcription factors in E. coli amino acid biosynthesis led to in-

creases of only the enzymes that belong to the respective regu-

lon (Sander et al., 2019). However, because deletion of regula-

tors affects the expression of many enzymes simultaneously, it

is still difficult to decipher which enzyme was responsible for

certain metabolic phenotypes.

Thus, it remains an open question as to how cellular meta-

bolism responds to moderate changes of a single enzyme.

Such changes can occur in nature due to expression noise

(Metzger et al., 2015; Newman et al., 2006) or mutations of genes

that encode enzymes (Kacser and Burns, 1981). Control theory

suggests that moderate changes of an enzyme have only small

and local effects on metabolism, which means that local

changes should not propagate globally (Levine and Hwa, 2007;

Mazat et al., 1996). This robustness of metabolism is somewhat

expected, but mostly theoretical studies examined the mecha-

nisms that enable metabolic robustness (Chandra et al., 2011;

Grimbs et al., 2007). The few studies that measured robustness

against changes of enzyme abundance focused on specific

pathways (Fendt et al., 2010; Tanner et al., 2018), but robustness

was not measured at a metabolism-wide level.

Recent developments of targeted genome modification

methods have advanced our ability to perturb the expression of

single genes with high precision and high throughput. For

example, synthetic promoter libraries in yeast mapped the pre-

cise relationship between the expression level of genes and

cellular fitness (Keren et al., 2016). Many of the 80 target genes

in this study encoded key metabolic enzymes and their expres-

sion levels had little effect on the fitness of yeast. Anothermethod

to modulate gene expression is CRISPR interference (CRISPRi),

which represses transcription of a target gene with a complex of

deactivated Cas9 (dCas9) and a single guide RNA (sgRNA) (Qi

et al., 2013). As CRISPRi is inducible, it permits time-resolved

studies (Camsund et al., 2020; Rishi et al., 2020) and functional

analyses of genes that are essential and, therefore, not viable in

knockout libraries (Peters et al., 2016; Rishi et al., 2020; Rousset

et al., 2018). Many CRISPRi screens measured simple pheno-

types, such as fitness and growth, but to our knowledge, there

is nocomprehensive study that combinedCRISPRi perturbations

in metabolism with multi-omics analysis.

Here, we combined a metabolism-wide CRISPRi screen with

multi-omics analysis of 30 CRISPRi strains to investigate how

E. coli metabolism responds to decreases of enzyme levels.

First, we measured the competitive fitness of 7,177 strains in a

metabolism-wide CRISPRi library. An inducible CRISPRi system

enabled us to measure the time delay between inducer addition

and appearance of fitness defects. Only 7 CRISPRi strains re-

sponded within the first 4 h after induction of CRISPRi, while

fitness defects of most strains appeared with a considerable

time delay (in average 7.8 h). This provided the first evidence

that E. coli metabolism is robust against decreasing enzymes

below wild-type levels. The metabolome and proteome of 30

CRISPRi strains showed that changes in the metabolic network

were local and specific. For example, target enzymes were al-

ways among the most downregulated proteins (on average 5-

fold). At the metabolome level, we observed strong concentra-

tion changes of substrate metabolites and allosteric effectors.

We show, for 3 CRISPRi strains, that these changes contributed

to buffering the knockdown: (1) increases of ornithine buffered
the CarAB knockdown by allosterically activating the enzyme,

(2) S-adenosylmethionine triggered a compensatory upregula-

tion of the methionine pathway in the MetE knockdown, and (3)

6-phosphogluconate was responsible for activation of the Ent-

ner-Doudoroff (ED) pathway in the Gnd knockdown. Overall,

our results highlight the central role of regulatory metabolites in

maintaining robustness against ever-changing concentrations

of enzymes in a cell, which occur in nature due to stochastic ef-

fects such as expression noise, cell division, or fluctuating

environments.

RESULTS

An Inducible CRISPRi System Identifies Rate-Limiting
Enzymes
For dynamic knockdowns of enzymes, we used a CRISPRi sys-

tem that consisted of an aTc-inducible dCas9 on the chromo-

some (Lawson et al., 2017), and a constitutively expressed

sgRNA on a plasmid (Qi et al., 2013) (Figure 1A). To evaluate

the dynamics of gene interference with this CRISPRi system,

we targeted a YPet reporter protein inserted in the E. coli

genome (Lawson et al., 2017). These experiments showed an

exponential decrease of the YPet content per cell, indicating a

constant dilution of the YPet protein by growth (Figure 1B). The

1-h delay between inducer addition and decrease of YPet may

be occurring due to the time of dCas9 expression and its target

search (Jones et al., 2017). Moreover, YPet expression was only

repressed in the presence of the dCas9 inducer aTc, showing

tight control of the CRISPRi system (Figure 1B). Thus, CRISPRi

allowed us to dynamically decrease the abundance of proteins

starting from unrepressed (wild-type) levels.

To further test the dynamics of the CRISPRi system, we tar-

geted genes encoding enzymes in pyrimidine nucleotide biosyn-

thesis. All pyrimidine enzymes are essential for the growth of

E. coli on glucose minimal medium. Therefore, knockdowns of

pyrimidine genes should cause a growth defect when enzyme

levels reach a critical threshold. At this threshold, the target

enzyme limits biosynthesis of uridine monophosphate (UMP)

and, eventually, affects growth (Figure 1C). Expression of

dCas9 was either induced by supplementing aTc at the start of

the cultivation (induced cultures), or cells were grown without

an inducer (uninduced cultures). A control strain without target

grew similar in induced and uninduced cultures, which means

that dCas9 expression alone causes no growth burden (Fig-

ure 1D). Uninduced cultures of all pyrimidine knockdowns

grew similar to the control, confirming that the CRISPRi system

is tight. Induced cultures, in contrast, displayed a wide range

of growth phenotypes: knockdown of the first two enzymes of

the pathway (PyrB and PyrC) hardly affected growth, while the

PyrE knockdown caused a strong growth defect. Knockdown

of PyrF and PyrD impaired growth as well, but the effect ap-

peared relatively late after induction of CRISPRi (around 5 h).

In conclusion, CRISPRi allowed us to induce dynamic de-

creases in protein-levels (Figure 1B). The 5-h delay between

inducer addition and appearance of growth defects in the PyrF

and PyrD knockdowns, suggests that the target protein is diluted

by growth until it reaches a critical level. In contrast, the early

growth defect in the PyrE strain indicates that this enzyme is

already expressed at a critical level in the wild type. This is
Cell Systems 12, 56–67, January 20, 2021 57



Figure 1. Dynamic Knockdowns of Enzymes with CRISPR Interference

(A) The CRISPR interference system consisted of an E. coli strain (YYdCas9) that has dCas9 integrated into the genome (Lawson et al., 2017), and a sgRNA on a

plasmid (Qi et al., 2013). dCas9 is under control of an aTc-inducible Ptet promoter. The sgRNA is under control of a constitutive promoter.

(B) Dynamic knockdown of YPet, which is integrated into the genome of the YYdCas9 strain. YPet fluorescence is shown for cells that express either a control

sgRNA (black) or a sgRNA that targets YPet (orange). YPet fluorescence per optical density (OD) is normalized to an uninduced culture with the control sgRNA.

The YPet knockdown was induced at time = 0 h by supplementing 200 nM of aTc. Data are represented as mean, and the gray areas are ±SD (n = 3).

(C) Knockdownof an enzyme impairs growthwhen its concentration reaches a critical level. The target enzyme is the enzyme, which is encoded by the gene that is

repressed with CRISPRi.

(D) Growth of cells expressing the control sgRNA, or sgRNAs targeting genes that encode enzymes in pyrimidine nucleotide biosynthesis. Expression of dCas9

was induced by supplementing 200 nM of aTc (blue) or dCas9 was not induced (black). Cells grew onminimal glucosemedium in microtiter plates. Means of n = 3

cultures are shown.
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consistent with previous reports about the suboptimal expres-

sion of PyrE in K12-derived E. coli, due to a frameshift mutation

upstream of the pyrE gene (Jensen, 1993). The comparably

weaker growth defects of the other pyrimidine knockdowns indi-

cated that these enzymes do not operate at a critical level. How-

ever, an alternative explanation is that the sgRNAs for these tar-

gets are weaker or not functional. Therefore, we next targeted

genes with several sgRNAs and designed sgRNAs for all meta-

bolism-related genes in E. coli.

E. coli Metabolism Is Robust against CRISPRi-
Knockdowns of Enzymes
The latest genome-scale model of E. coli metabolism, iML1515,

includes 1,515 genes (Monk et al., 2017), and we constructed

sgRNAs that target these genes using array-synthesized oligo-

nucleotides (Figure 2A). Per gene, we designed 4 to 6 sgRNAs

that target different loci on the coding strand. The resulting

sgRNAs were cloned in a pooled approach and, subsequently,

transformed into E. coli that carried dCas9 on the genome (Fig-

ure 1A). Sequencing of the CRISPRi library showed that 7,177

unique sgRNAs were present in the library and they targeted

1,513 of the 1,515 genes in the iML1515 model (Figure S1; Table

S1). We cultured the library for 13 h on glucose minimal medium

without induction of dCas9, which hardly changed the composi-

tion of the library: the fold change of single CRISPRi strains after

13 h was normally distributed around 1, and only 47 out 7,177

strains (0.6%) showed a fold change >2 (Figure S1). The stable
58 Cell Systems 12, 56–67, January 20, 2021
composition of the uninduced library confirms again tight control

of the CRISPRi system. Subsequently, we induced dCas9

expression and followed the library composition by next-gener-

ation sequencing for 14 h in intervals of 1 h (Figure 2A). Every 2 h,

the cultures were back diluted into freshmedium, to avoid limita-

tions of oxygen and nutrients. To assess reproducibility, we used

two independent cultivations. Fitness scores of single CRISPRi

strains were quantified as fold change of sgRNA counts, which

were reproducible between the two independent cultivations

(Figure S2).

To explore dynamic patterns of fitness scores of the 7,177

CRISPRi strains in the library, we performed k-means clustering

with their individual time profiles (Figure 2B). The fitness scores

of 44% of the CRISPRi strains were constant for 14 h (cluster

A). Another 32% of the strains in cluster B showed a slight in-

crease in fitness scores. This cluster included a control strain

that expressed a sgRNA with no target (orange line in cluster B,

Figure 2B). This shows that increasing fitness scores are due to

a relative enrichment of strains that have wild-type-like growth.

However, some strains had higher fitness scores than the control

strain suggesting that these knockdowns confer a competitive

advantage over the wild type. Knockdowns of 18 genes resulted

in fitness scores >1.5 after 14 h (with at least two sgRNAs, Table

S2), thus indicating that expression of these genes is not optimal

on glucose minimal medium. Two of the suboptimally expressed

genes encoded enzymes that produce important secondarymes-

sengers in E. coli: cyclic-AMP (cyaA) and ppGpp (relA). This



Figure 2. Dynamic Knockdowns of 1,513 Genes in the Metabolic Network of E. coli

(A) A CRISPRi library targeting 1,513 genes in the latest genome-scale reconstruction of E. colimetabolism (iML1515). Each gene was targeted with 4–6 sgRNAs,

which are equally distributed on the coding strand. sgRNAs were cloned in a pooled approach on plasmid pgRNA-bacteria and YYdCas9 was transformed with

the resulting plasmid library (see also Figure 1A). The library was induced with 200 nM aTc at time = 0 h, and cultured for 14 h in shaking flasks. The culture was

back-diluted every 2 h into fresh medium. Samples for next generation sequencing were collected every hour. See also Table S1.

(B) K-means clustering of fold-changes of 7,177 sgRNAs. Time-course data were clustered into k = 4 clusters. Box plots represent the distribution of sgRNAs in

each cluster per time point. Orange dots in cluster B indicate a control strain that expresses a sgRNA with no target. See also Table S2.

(C) Examples of fitness-score dynamics of CRISPRi strains (ppc with low variability between 5 sgRNAs and trpE with high variability between 5 sgRNAs).

Sigmoidal curves were fitted to the time course of each sgRNA. The response time was defined as the time point when the fold-change of a sgRNA was 0.5.

Different colors are different sgRNAs. Full and dashed lines are fits to experiment 1 (squares) and experiment 2 (circles).

(D) Response times in experiment 1 and experiment 2. Shown are 1,182 sgRNA that had response times below 14 h (average of experiment 1 and experiment 2).

57 sgRNAs that had more than 20% error are shown in red. See also Table S3.

(E) Venn diagram showing the overlap between 253 ‘‘metabolic bottleneck genes’’ (blue), genes that are essential on glucose minimal medium (red), and genes

that encode enzymes with metabolic flux (green).

(F) Response times of all 253 ‘‘metabolic bottleneck genes’’. See also Table S4. Shown is the average response time of the two strongest sgRNAs of each gene.

Genes are grouped into metabolic categories according to the definition in iML1515. The name of the most sensitive target is shown for each category. Red dots

are genes with response times below 4 h. Orange dots are the 30 targets in Figure 3. See also Figures S1–S4.
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observation is consistent with a previous study that showed sub-

optimal regulation by cyclic-AMP and ppGpp in E. coli (Towbin

et al., 2017). We confirmed the fitness advantage of the relA strain

in microtiter plate cultivations (Figure S3).
The remaining 24% of sgRNAs in cluster C and D caused mild

and strong fitness defects, respectively. The sigmoidal dynamics

of fitness scores in cluster D suggest that the CRISPRi strains in

this cluster drop out from the library, presumably because the
Cell Systems 12, 56–67, January 20, 2021 59
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knockdown created a metabolic bottleneck. To identify at which

time point the knockdowns created a metabolic bottleneck, we

estimated a ‘‘response time’’ for each CRISPRi strain by fitting

a sigmoidal function to the time course of the fitness score (Fig-

ure 2C; Table S3). The response time was defined as the time

point when the knockdown caused a 50% reduction of fitness,

and response times were reproducible between the two experi-

ments (Figure 2D). In total, 253 genes were targeted by at least

two sgRNAs that caused response times below 14 h, and we

refer to these 253 targets as metabolic-bottleneck genes (Table

S4). Most metabolic-bottleneck genes had similar response

times for the 4–6 sgRNAs: 70% had responses times that varied

less than ±20% between different sgRNAs (Figure S4). The

different sgRNAs bind at different positions of the target genes,

and therefore they should have different repression efficiencies

(Qi et al., 2013). Yet, the position hardly affected response times

(Figure S4). This result indicates that repression efficiencies have

smaller effects on response times than target-specific factors.

Themajority of the metabolic-bottleneck genes (203 out of 253;

80%) are essential for growth on glucose medium (Figure 2E). Ac-

cording to simulations with the iML1515 model, 224 of the 253

metabolic-bottleneck genes (88%) encode enzymes that carry

metabolic flux with glucose as a sole carbon source. Only 11

genes (4%) are neither essential nor encode enzymes with meta-

bolic flux (Table S4). For 3 of the 11 genes, the fitness defect can

be explained bypolar effects because an essential or flux-carrying

gene is encoded downstream of the target gene and in the same

operon. The remaining eight genes may have previously unrecog-

nized functions that have strong effects on cellular fitness.

The average response time of the 253 bottleneck genes was

7.8 h, which is relatively late compared to the seven most sensi-

tive targets that had a response time below 4 h (red dots in Fig-

ure 2F). The seven most sensitive targets were: the ilvE/ilvD

operon, ppc, sucA, lpxC, cysD, pyrG, and the nrdA/nrdB operon.

A hypothesis is that these genes encode enzymes that are rate-

limiting steps and therefore they are expressed near-critical

levels. For example, ribonucleoside-diphosphate reductase

(NrdAB) supplies deoxyribonucleotide triphosphates (dNTPs)

for DNA replication, and previous work showed that NrdAB is

rate limiting for DNA synthesis (Gon et al., 2006). Similarly, PEP

carboxylase (Ppc) supplies tricarboxylic acid (TCA)-cycle pre-

cursors for biosynthesis of 10 out of the 20 amino acids (anaple-

rosis). Thus, near-critical Ppc levels may limit overall protein syn-

thesis. This hypothesis is supported by the observation that

overexpression of Ppc increases the growth rate of E. coli

(Chao and Liao, 1993).

In summary, only 7 out of the 1,513 metabolism-related genes

had response times below 4 h. Themajority of knockdowns, how-

ever, responded late to the induction of CRISPRi (on average 7.8

h). This suggests that E. coli is robust against reducing the abun-

dance of most metabolic enzymes and that few enzymes are ex-

pressed near-critical levels. Next, we wondered how strongly the

abundance of target enzymes decreased and which mechanisms

buffered the decreases of enzymes.

CRISPRi Enforces Consistent Decreases of Target
Enzymes and Specific Proteome Responses
To probe how strongly CRISPRi downregulated the target en-

zymes, we measured the proteomes of 30 CRISPRi strains (Fig-
60 Cell Systems 12, 56–67, January 20, 2021
ure 3A and Table S5). The target enzymes included one of the

most sensitive targets in the pooled CRISPRi screen: Ppc that

converts PEP to oxaloacetate in E. coli. We also included

PckA, which catalyzes the reverse reaction and should have no

relevance for growth on glucose. Other targets were distributed

over the metabolic subsystems, such as glycolysis (Pts, Pgi,

PfkA, PfkB, FbaA, GapA, Eno, TpiA, PykA, and PykF) and the

oxidative pentose-phosphate pathway (Zwf and Gnd). From

the TCA cycle, we selected the first step catalyzed by citrate syn-

thase (GltA), as well as the succinate dehydrogenase complex

(SdhABCD). Furthermore, eight target enzymes were in biosyn-

thesis pathways of amino acids (AroA, IlvC, MetE, and GdhA)

and nucleotides (Adk, PyrF, PurB, and PurC), or both (Prs and

CarAB). The remaining targets were CysH in sulfur assimilation,

GlmS in amino sugar biosynthesis, and Dxs in the isoprenoid

pathway. We cultured these strains in microtiter plates and

measured their proteomes 4.5 h after dCas9 induction. At this

time point, growth phenotypes appeared in 10 out of 30 CRISPRi

strains (Figures 3B and S5). Each strain was cultured in tripli-

cates with and without induction of dCas9, resulting in a total

of 180 proteome samples.

Theproteomedatashowedthatall targetenzymesdecreased to

a similar extent (in average 5.1-fold, Figures 3C andS6). In 20of 29

knockdowns, the targetenzymewas themostdownregulatedpro-

tein among all 1,506 measured proteins (Figure S7). Target en-

zymes hardly decreased in uninduced cultures, showing that the

CRISPRi system is tight and inducible (Figure 3C). We confirmed

for the PfkA andMetE strain that target enzymes were also down-

regulatedatearlier timepoints (FigureS8), supportingourassump-

tion that target enzymes decrease progressively after induction of

CRISPRi (similar to the YPet knockdown, Figure 1B).

Intuitively, stronger decreases of the target enzyme should

cause a stronger growth defect. However, there was no correla-

tion between decreases of target enzymes and reduction of

growth (Figure S9). This again indicates that repression effi-

ciencies have smaller effects on growth phenotypes than

target-specific factors (e.g., overcapacities of the target enzyme

itself). However, we observed a correlation between the reduc-

tion of growth and the number of significantly changed proteins

(2-fold, p value < 0.05, Figure S9). This means that strains with a

growth defect had stronger proteome changes, whereas the

proteome was stable in strains without a growth defect. We

then analyzed if these proteome changes were a global

growth-dependent response (Scott et al., 2010) or if proteome

changes were specific. As the average similarity of proteome

changes between pairs of CRISPRi strains was only 6% (Fig-

ure S10), we concluded that each knockdown caused specific

proteome changes. For example, the proteome changes

affected different metabolic subsystems (Figure S11), and in

some CRISPRi strains (Pts, AroA, MetE, CarAB, and IlvC), en-

zymes in the same metabolic subsystem as the target enzymes

were upregulated (green dots in Figure S7).

In summary, CRISPRi decreased the abundance of target en-

zymes by an average of 5-fold (Figure 3C). Decreases of target

enzymes hardly affected the growth of 19 CRISPRi strains, while

growth rates of 10 CRISPRi strains declined �1 h before the

sampling time point (Figure 3B). Thus, E. coli metabolism toler-

ates substantial decreases of enzyme levels and we next

wondered which mechanisms enable this robustness.



Figure 3. Growth Defects and Abundances of Target Enzymes in 30 CRISPRi Strains

(A) Metabolic map showing the target enzymes of 29 CRISPRi strains. The control strain expressed a sgRNAwithout a spacer sequence. Operon structures of the

targets are shown in Figure S6. See also Table S5.

(B) Growth curves of the 30 CRISPRi strains. See also Table S6. Uninduced cultures are shown in black. Induced cultures are shown in orange (200 nM aTc was

supplemented at time = 0 h). Samples for proteomics were collected at the end of the cultivation (4.5 h). Growth curves showmeans of n = 3 cultures. Background

colors indicate the reduction in growth rates at the time of sampling. Growth rates were estimated using linear regression with the last 4 time points of growth

curves. Abbreviations of target enzymes are described in Table S5.

(C) The bar plot shows abundances of target enzymes in cultures with inducer (blue) and without inducer (gray). Data are normalized to the average enzyme-level

in uninduced cultures. The heatmap shows fold-changes of target enzymes between induced and uninduced cultures. Data were calculated using the means of

n = 3 samples per strain, error bars are propagated errors. See also Table S7. See also Figures S5–S11.
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Substrates and Allosteric Effectors Respond to
CRISPRi-Knockdowns of Enzymes
To understand how E. colimetabolism responded to the�5-fold

decrease of target enzymes, we measured the metabolome of

the 30 CRISPRi strains. Therefore, we collected samples for me-

tabolomics at the same time point as proteomics samples (4.5 h)

andmeasured 119 intracellular metabolites by liquid chromatog-

raphy-tandem mass spectrometry (LC-MS/MS). Especially sub-
strate metabolites responded strongly and specifically to knock-

downs of enzymes (Figure 4). In 18 out of 29 knockdowns, the

substrate increased more than 2-fold and was one of the most

changing metabolites. Products, in contrast, were more stable

than substrates (Figures 4 and S12). This observation is consis-

tent with a study in yeast, which suggested that increases of sub-

strates can maintain fluxes and global metabolite homeostasis

(Fendt et al., 2010).
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Figure 4. Metabolome Changes in 30 CRISPRi Strains Are Local and Specific

Intracellular concentration of 119metabolites in the 30 CRISPRi strains. See also Table S8. Metabolite levels are shown as log2 fold change between induced and

uninduced cultures. Samples were collected after 4.5-h cultivation in 12-well plates (see Figure 3B). Data are represented asmean (n = 2). Substrates of the target

enzymes are shown in orange, products in blue, allosteric inhibitors in magenta, and allosteric activators are green. SAM in the MetE strain is shown in black

(related to Figure 6). Note that isomers were not separated: g6p and f6p is the total pool of hexose-phosphates, r5p is the total pool of pentose- phosphates, dhap

and gap are the total pool dhap/gap. Abbreviations of metabolites are described in Table S5. See also Figure S12.
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In four strains, allosteric effectors of the target enzyme re-

sponded most strongly to the knockdown (CarAB, GlmS, Ppc,

and Zwf; Figure 4). Ornithine, for example, is an allosteric acti-

vator of carbamoyl phosphate synthetase (CarAB) and ornithine

increased 512-fold in the CarAB knockdown. As ornithine levels

in E. coli are 37-fold lower than the activation constant of CarAB

(Bennett et al., 2009; Bueso et al., 1999), increases of ornithine

should lead to a 92%higher activity of CarAB in vivo (Figure S13).

Thus, allosteric activation of CarAB by ornithine could buffer the

CarAB knockdown. Similarly, knockdown of Ppc decreased the

concentration of aspartate (13-fold) and malate (16-fold), which

are both allosteric inhibitors of Ppc. Absolute concentrations of

malate and aspartate are above the respective inhibition con-

stants of Ppc (Bennett et al., 2009; Gold and Smith, 1974). There-

fore, decreases of aspartate and malate should relieve inhibition

of Ppc, which increases its activity 4.1-fold in the Ppc knock-

down (Figure S13). In the GlmS and Zwf strain, we observed a

similar relieve from allosteric inhibition, because the respective

reaction product glucosamine-P and NADPH decreased. This

is in line with previous work showing that decreases of NADPH

release overcapacities of Zwf (Christodoulou et al., 2018) and

that glucosamine-P is a potent inhibitor of GlmS activity (Deng

et al., 2006).

In conclusion, knockdowns of enzymes caused specific and

localized metabolome changes: 22 CRISPRi strains showed

strong concentration changes of either the substrate metabolite

or a known allosteric effector of the target enzyme. In four

CRISPRi strains (Dxs, GapA, Prs, and IlvC) we could not directly

link substrates or known effectors to the target enzyme, although

in the Dxs knockdown the product metabolite (1-deoxyxylulose-

5-phosphate) decreased strongly and might be an unknown

regulator of the enzyme. Three other CRISPRi strains showed

no metabolome changes, which was expected because the

target enzyme is not used on glucose (Pck) or a minor isoenzyme

(PfkB and PykA). The local and specific metabolome changes in
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the CRISPRi strains are in line with previous work on enzyme-

level perturbations (Fendt et al., 2010; Kacser and Burns,

1973), which proposed that local metabolome changes buffer

against global changes. Next, we sought to obtain further evi-

dence for a buffering function of metabolite concentration

changes in three CRISPRi strains (CarAB, MetE, and Gnd).

Ornithine Buffers the CarAB Knockdown
Despite their potential to buffer knockdowns, allosteric effectors

are probably not responding to CRISPRi because they are regu-

lators, but rather because they are located up- or downstream of

the target enzyme. For example, ornithine increases in the CarAB

knockdown are most likely because ornithine carbamoyltrans-

ferase (ArgF and ArgI) is limited due to low levels of the CarAB

product carbamoyl phosphate (Figure 5A). This also implies

that allosteric activation of CarAB by ornithine cannot fully

compensate the CarAB knockdown. Nevertheless, ornithine

could have a buffering function that alleviates the consequences

of the knockdown. To understand the regulatory role of ornithine

in the CarAB knockdown, we developed a small metabolic

model of CarAB and the arginine-pyrimidine branch point

(STAR Methods and Figure 5A). Kinetic parameters of the model

were randomly sampled 1,000 times from physiologically mean-

ingful ranges based on in vitro parameters. With each of the

1,000 parameter sets, we simulated the CarAB knockdown using

two different models: the first model included allosteric activa-

tion of CarAB by ornithine (allosteric model), and the second

model did not include this regulation (non-allosteric model).

The allosteric model was more robust against the CarAB knock-

down than the non-allosteric model (Figure 5B). Especially fluxes

remained relatively constant in the allosteric model: 796 of the

1,000 simulations maintained 95% of the initial steady-state

flux. In contrast, the flux in the non-allosteric model decreased

continuously to about 50% of the initial steady state. Moreover,

concentrations of the end products, arginine andUTP/CTP, were



Figure 5. Ornithine Buffers the CarAB Knockdown

(A) Stoichiometry of the kinetic model of CarAB and the arginine-pyrimidine branch point. The dotted arrow indicates allosteric activation of CarAB by orni-

thine (orn).

(B) Simulation results of the allosteric model and the non-allosteric model with 1,000 parameter sets (thin lines). Thick lines are the average of 1,000 simulations.

Shown are the simulated reaction rate of r2 and metabolite dynamics of ornithine (orn, black), carbamoyl phosphate (cbp, purple), arginine (arg, blue) and UTP/

CTP (orange). CRISPRi was simulated by setting the expression rate of CarAB to zero at t = 0 min. The insert shows the full range average ornithine levels in the

non-allosteric model. (C) Measured concentration of orn, arg, UTP, and CTP in the CarAB knockdown. Metabolite levels are normalized to the time point before

induction. The culture was induced with aTc at t = 0 min. Small gray dots are measurements in n = 2 cultures and large colored dots are the mean. See also

Figure S13.
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more stable in the allosteric model than in the non-allosteric

model. These model results suggest that allosteric activation of

CarAB by ornithine can minimize perturbations to metabolic

flux and end products in arginine and pyrimidine nucleotide

biosynthesis.

To confirm the model results, we measured metabolites

dynamically in the CarAB knockdown (Figure 5C). Consistent

with the simulation results, ornithine had already increased

40 min after induction of the CarAB knockdown, while the end

products, arginine, CTP, and UTP remained relatively constant

for at least 2 h. The fast response of ornithine shows that the

CarAB knockdown perturbs the arginine-pyrimidine branch

point early after induction of CRISPRi. However, the perturbation

did not propagate into the end products of both pathways. Thus,

the combination of a metabolic model and dynamic metabolite

data provides additional evidence that ornithine has the potential

to buffer the CarAB knockdown.
S-Adenosylmethionine Causes a Compensatory
Upregulation of the Methionine Pathway in the MetE
Knockdown
Metabolome changes can also modulate gene expression

through allosteric interactions between metabolites and tran-

scription factors. For example, S-adenosylmethionine (SAM) is

an allosteric activator of MetJ, which is a transcription factor

that controls genes involved in methionine and SAM biosyn-

thesis (Figure 6A). SAM was the most decreased metabolite in

the MetE knockdown (Figure 4), and, correspondingly, all en-

zymes in themethionine biosynthesis pathway were upregulated

in the MetE strain (except the target MetE, Figure 6B). Thus, we

hypothesized that low levels of SAM deactivated the transcrip-

tion factor MetJ, which in turn de-repressed expression of genes

that encode enzymes in methionine and SAM biosynthesis. To

confirm that MetJ responded to the MetE knockdown, we ex-

pressed GFP in the MetE strain using a MetJ regulated promoter
(Zaslaver et al., 2006). Indeed, GFP expression increased with a

2-h delay after induction of CRISPRi, showing that MetJ re-

sponded to the knockdown (Figure 6C). Thus, we concluded

that low SAM levels caused a compensatory upregulation of

the methionine pathway. This hypothesis is supported by SAM

levels in all 30 CRISPRi strains: only two strains had low SAM

levels (MetE and Ppc strains), and methionine biosynthesis en-

zymes increased only in those strains (Figure S14).

Next, we wondered if the SAM-MetJ regulation buffered the

MetE knockdown. Therefore, we supplemented SAM to the

MetE strain and expected that this would prevent decreases of

SAM and, consequently, the compensatory upregulation of the

methionine pathway. The growth defect of the induced MetE

strain was indeed stronger in the presence of SAM (Figure 6D),

thus indicating that decreases of SAM buffered the knockdown.

The stronger growth defect in the presence of SAM was not due

to a general toxic effect, as the uninduced MetE strain was not

influenced by SAM (Figure 6D).

In summary, proteome and metabolome data recovered the

known allosteric interaction between SAM and the transcription

factor MetJ. GFP-promoter fusions confirmed that this regula-

tion is active in the MetE knockdown, and supplementing SAM

supported the hypothesis that SAM buffered the MetE knock-

down. Similar to the SAM-MetJ interaction, the metabolome/

proteome data recovered interactions between arginine and

ArgR (active in the CarAB strain), acetyl-serine and CysB (active

in the MetE and CysH strains), and transcriptional attenuation by

valine (active in the IlvC strain) (Figure S14). This highlights the

potential of CRISPRi and multi-omics data to identify regulatory

metabolite-protein interactions that are functional in vivo.
6-Phosphogluconate Activates the ED Pathway to
Bypass the Gnd Knockdown
Knockdown of Gnd increased the concentration of 6-phospho-

gluconate (6PG) (Figure 4), and upregulated enzymes in the ED
Cell Systems 12, 56–67, January 20, 2021 63



Figure 6. SAM Buffers the MetE Knockdown
(A) Schematic of methionine and SAM biosynthesis and regulation by the transcription factor MetJ.

(B) Abundance of enzymes in methionine and SAM biosynthesis in the MetE strain. See also Table S7. Enzyme levels are shown as log2 fold change between

induced and uninduced cultures (n = 3 cultures).

(C) The MetE knockdown was transformed with a fluorescent reporter plasmid that expressed GFP from a MetJ regulated promoter (pUA66-metB-gfp). The fold

change of GFP/OD between induced and uninduced cultures is shown in green. The fold change of OD is shown in black.

(D) Growth of the induced MetE strain (full lines) and the uninduced MetE strain (dashed lines), with supplementation of 1 mM SAM (black) and without (orange).

Lines in (C) and (D) are means of n = 3 cultures, and shadows show the SD. Induced cultures were supplemented with 200 nM aTc at t = 0 h. See also Figure S14.
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pathway (Figures 7A and 7B). Thus, we wondered whether in-

creases in 6PG were linked to the upregulation of the ED

pathway. Transcription of the ED pathway is regulated by two

transcriptional repressors: KdgR and GntR. While KdgR controls

only the two genes encoding the ED enzymes (Edd and Eda),

GntR controls additional genes that are involved in gluconate up-

take. One enzyme encoded by these genes (GntT) was also up-

regulated in the Gnd knockdown (Figure 7B), suggesting that

GntR responded to the knockdown. The activity of GntR is allo-

sterically inhibited by gluconate (Izu et al., 1997). Therefore, we

assumed that the accumulation of 6PG produced small amounts

of gluconate, which inhibited GntR and derepressed transcrip-

tion of edd and eda. Indeed, the intracellular concentration of

gluconate increased in the Gnd knockdown (Figure 7C). The

concentration of gluconate was 50 mM in the uninduced Gnd

strain, which is close to the wild-type levels (42 mM) (Bennett

et al., 2009). Induction of the Gnd knockdown increased gluco-

nate to 184 mM, which was probably sufficient to inhibit GntR

and derepress expression of edd and eda.

Increases of gluconate in the Gnd knockdown suggests that

gluconate acts as a regulatorymetabolite, which does not partic-

ipate inmetabolism but in regulation. We expected that we could

alter this regulation by disrupting the interconversion between 6-

phosphogluconate and gluconate. Therefore, we deleted gluco-

nate kinase (gntK) in the Gnd knockdown, which led to even

higher gluconate levels in the Gnd knockdown (246 mM unin-

duced, and 620 mM induced, Figure 7C). The higher gluconate

levels also increased the expression of the ED enzymes (Fig-

ure 7C). The higher abundance of ED enzymes, in turn, reduced

6PG levels in the DgntK/Gnd knockdown, showing that the ED

pathway is a bypass that enables overflow of excess 6PG.

In summary, the Gnd knockdown revealed a bypass function

of the ED pathway, which has been observed before in the

Gnd knockout (Jiao et al., 2003; McCloskey et al., 2018b).

Here, we discovered that expression of the ED-bypass is regu-

lated by 6PG, which is first converted into gluconate and then in-

teracts with the transcription factor GntR.
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DISCUSSION

Robustness is a fundamental feature of metabolism. A key

requirement for metabolic robustness is that small changes in en-

zymes levels have no global effects on overall metabolism. Other-

wise, fluctuating enzyme levels could decreasemetabolic flux and

eventually cellular fitness. Theories such as metabolic control

analysis predicted that metabolism is insensitive to enzyme-level

perturbations (Chandra et al., 2011; Grimbs et al., 2007; Kacser

and Burns, 1973; Levine and Hwa, 2007) but have not measured

this property at a system level. Studies that measured flux-

enzyme-metabolite relationships at a system level examined

the impact of nutritional changes on the metabolism of yeast

(Hackett et al., 2016) and E. coli (Gerosa et al., 2015). However,

how changes in enzyme levels affect metabolism is largely

unexplored.

In this study, we usedCRISPRi to perturb the expression of sin-

gle enzymes and found that metabolism buffers fitness defects

during the initial phase after the induction of CRISPRi. The oppo-

site effect has been reported for CRISPRi-knockdowns inBacillus

subtilis (Peters et al., 2016), where a constant knockdown (�3-

fold) prolonged initial lag-phases but did not affect growth during

exponential phase. Here, we observed that growth defects ap-

peared with a time delay, and only a few strains in a meta-

bolism-wide CRISPRi library responded within the first 3–4 h

(ilvE/ilvD, ppc, sucA, lpxC, cysD pyrG, and nrdA/nrdB). Earlier

studies support the high sensitivity of these targets, e.g., NrdAB

seems rate limiting for DNA synthesis (Gon et al., 2006) and the

overexpression of Ppc increases the growth of E. coli (Chao and

Liao, 1993). The high sensitivity of the ilvE/ilvD operon is probably

due to the frameshift mutation upstream of ilvG, which causes

suboptimal expression of these genes (Parekh and Hatfield,

1997). LpxC catalyzes the first committed step in lipid A biosyn-

thesis and the enzyme is a drug target for antimicrobials (Löppen-

berg et al., 2013). Sensitive targets in glycolysis were mostly

located in lower glycolysis, while upper glycolysis enzymes

(PfkA and Pgi) had longer response times (Table S4). This



Figure 7. 6-Phosphogluconate Buffers the Gnd Knockdown

(A) Schematic of the ED pathway (two enzymes Edd and Eda), and the oxidative pentose-phosphate pathway. GntK is a kinase that phosphorylates gluconate.

Intracellular gluconate can derive from dephosphorylation of 6PG.

(B) Fold-changes of the target enzyme (Gnd), and fold-changes of all measured proteins that are regulated by the transcription factor GntR (Edd, Eda, and GntT).

Shown are induced (+) and uninduced (�) knockdowns of Gnd in the YYdCas9 strain (blue) and the YYdCas9-DgntK strain (green). Samples were collected after

4.5-h cultivation in 12-well plates. Data are normalized to the uninduced Gnd strain (n = 3 cultures).

(C) Same as in (B) for intracellular metabolites. See also Table S9.
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observation is in linewith previous reports about a thermodynamic

bottleneck in lower glycolysis of E. coli (Flamholz et al., 2013).

Metabolome and proteome responses of 30 CRISPRi strains

were local and specific, and together they indicated that meta-

bolism buffers the decrease of enzymes. This observation is sup-

ported by previous reports about overcapacities in metabolism,

such as enzyme overabundance (Davidi and Milo, 2017; O’Brien

et al., 2016; Sander et al., 2019), reserve fluxes (Christodoulou

et al., 2018), or overflow metabolism (Basan et al., 2015; Reaves

et al., 2013). It has been suggested that cells control these over-

capacities through metabolites that interact with enzymes

directly (Christodoulou et al., 2018) or metabolites that modulate

gene expression (Sander et al., 2019; Basan et al., 2015). Sub-

strate metabolites, for instance, can modulate enzyme activity

through Michaelis-Menten relationships and, thereby, buffer

enzyme-level perturbations (Fendt et al., 2010) or modulate

metabolic flux (Hackett et al., 2016). The strong increase of sub-

strates in 18 knockdowns indicates that substrate-level regula-

tion could be relevant in these strains. However, it remains

open whether these responses buffered lower enzyme levels

because in vivo kinetic parameters demonstrated that most of

the enzymes are saturated (Bennett et al., 2009; Park et al.,

2016). Yet, our three case studies (CarAB, MetE, and Gnd)

demonstrated that regulatory metabolites can contribute to buff-

ering decreases of enzymes. Future studies could further probe

the buffering capacity of metabolites by repressing the target

gene at a lesser (or stronger) extent (Hawkins et al., 2020), and

measure whether this leads to milder (or stronger) metabolome

and proteome changes.

In conclusion, our study shows that themetabolome responds

specifically and locally to enzyme-level perturbations by

CRISPRi and that E. coli tolerates substantial decreases of en-

zymes. This supports the prevailing hypothesis that the abun-

dance of single enzymes has little effects on metabolic flux

and that local changes in metabolism do not propagate globally

(Kacser and Burns, 1973). This mechanism may ensure a high
constancy of metabolic flux despite expression noise (Newman

et al., 2006; Taniguchi et al., 2010) or mutations that occur during

the evolution of metabolic networks (McCloskey et al., 2018a).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

NEB 5-alpha Competent E. coli: fhuA2

D(argF-lacZ)U169 phoA glnV44F80 D(lacZ)

M15 gyrA96 recA1 relA1 endA1 thi-1

hsdR17

New England Biolabs Cat#C2987

YYdCas9: BW25993 intC::tetR-dcas9-

aadA lacY::ypet-cat

Lawson et al., 2017 N/A

YYdCas9: BW25993 CRISPRi-

pgRNA_cntrl: intC::tetR-dcas9-aadA

lacY::ypet-cat

This study N/A

YYdCas9: BW25993 CRISPRi-

pgRNA_carAB: intC::tetR-dcas9-aadA

lacY::ypet-cat pUA66-PargE-gfp

This study N/A

YYdCas9: BW25993 CRISPRi-

pgRNA_metE: intC::tetR-dcas9-aadA

lacY::ypet-cat pUA66-PmetB-gfp

This study N/A

BW25113: F-, D(araD-araB)567,

DlacZ4787(::rrnB-3), l-, DgntK768::kan,

rph-1, D(rhaD-rhaB)568, hsdR514

Baba et al., 2006 JW3400-1

Genotypes and spacer sequences of

arrayed CRISPRi strains are listed in

Table S11

N/A N/A

Genotypes and spacer sequences of

pooled CRISPRi strains are listed in

Table S1

N/A N/A

Chemicals, Peptides, and Recombinant Proteins

Acetonitrile Honeywell Riedel-de Ha€en Cat#14261-2L

Methanol VWR Cat#83638.320

Anhydrotetracycline Sigma-Aldrich Cat#1035708-25MG

IPTG Roth Cat#CN08.2

Ampicillin Roth Cat#K029.2

Kanamycin Roth Cat#T832.3

Critical Commercial Assays

PierceTM Quantitative Colometric

Peptide Assay

Thermo Fisher Scientific Cat#23275

PierceTM BCA Protein Assay Kit Thermo Fisher Scientific Cat#23225

Deposited Data

Kinetic Model github.com/nfarke/Donati_Kuntz_et_al N/A

NGS Data http://www.ebi.ac.uk/ena/data/view/

PRJEB40851

PRJEB40851

Metabolomics data https://edmond.mpdl.mpg.de/imeji/

collection/u_8nsTTnbzAExmuZ

N/A

Proteomics data https://www.ebi.ac.uk/pride/archive/

projects/PXD022070

PXD022070

Oligonucleotides

Oligonucleotides are listed in Table S10 Eurofins N/A

Recombinant DNA

pgRNA-bacteria Qi et al., 2013 Addgene plasmid #44251

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

pUA66-PargE-gfp: pPargE-gfp Zaslaver et al., 2006 N/A

pUA66-PmetB-gfp: pPmetB-gfp Zaslaver et al., 2006 N/A

Software and Algorithms

Matlab R2018b (9.5.0.944444) for analysis

of experimental data

mathworks.com N/A

Python 3.7.4 python.org N/A

COBRApy opencobra.github.io/cobrapy N/A

Progenesis QIP (Waters) waters.com N/A

MASCOT (v2.5, Matrix Science) matrixscience.com N/A

SafeQuant https://cran.r-project.org/web/packages/

SafeQuant/index.html

N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Hannes

Link (hannes.link@synmikro.mpi-marburg.mpg.de).

Materials Availability
Plasmids and strains generated in this study are available on request from the Lead Contact, Hannes Link (hannes.link@synmikro.

mpi-marburg.mpg.de).

Data and Code Availability
Sequencing source data have been deposited at the European Nucleotide Archive (ENA) and are publicly available under the acces-

sion number: PRJEB40851. Proteome source data have been deposited at the PRIDE database and are publicly available under the

accession numbers: PXD022070. Metabolome source data have been deposited at the Open Research Data Repository of the Max

Planck Society (Edmond) and are publicly available at: https://edmond.mpdl.mpg.de/imeji/collection/u_8nsTTnbzAExmuZ . Original

code of the CarAB model is publicly available at the GitHub repository: https://github.com/nfarke/Donati_Kuntz_et_al. Scripts used

to generate the figures presented in this paper are not provided in this paper but are available from the Lead Contact on request. Any

additional information required to reproduce this work is available from the Lead Contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains and Culture
E. coli YYdCas9 strain (Lawson et al., 2017) was the wild-type strain used in this study. NEB 5-alpha Competent E. coli (Cat#C2987)

cells were used for cloning. All strains in this study derive from the YYdCas9 strain and are listed in the Key Resources Table.

Construction of Arrayed Strains
30CRISPRi strains were created by transforming the YYdCas9 (Lawson et al., 2017) strain with pgRNA-bacteria plasmids that harbor

the respective sgRNA (Addgene #44251). The spacer of sgRNAs consisted of a gene specific 20–22 base-pair region, which pairs

adjacent to an NGG PAM site. The spacers were designed to bind as close as possible to the start of the coding sequence (Table

S11). Addgene #44251 was used as a template to prepare all plasmids, which were cloned inhouse or provided by Doulix. All plas-

mids were validated by sequencing. For CRISPRi of YPet, the sgRNA targeted lacZ, the first gene of the operon that includes YPet

(Lawson et al., 2017). The plasmid pUA66 was used to measure promoter activity (Zaslaver et al., 2006). The DgntKmutant was con-

structed by P1 Phage transduction of YYdCas9 using the donor strain JW3400 (DgntK) from the KEIO collection (Baba et al., 2006).

The resulting strain was cured from the kanamycin resistance gene included in the transduction cassette. The deletion of gntK was

confirmed by sequencing. The final YYdCas9_DgntK strain was transformed with the pgRNA-gnd plasmid.

Construction of the CRISPRi Pooled Library
sgRNA guide sequences were designed with MATLAB scripts by searching for 4 to 6 equally distributed NGG PAM sites on the cod-

ing strand of each gene in the iML1515 model (Monk et al., 2017). Adjacent to PAM sites, 20 nt regions were selected. 150 nt oligo-

nucleotides were synthesized (Agilent Technologies, USA). The 150 nt sequences contained the 20 nt sgRNA guide sequences and

65 nt flanking regions homologous to the pgRNA-bacteria backbone. Oligonucleotides were amplified with 15 cycles of PCR ampli-

fication. The pgRNA-bacteria backbone (containing the nontargeting spacer sequence 5’-AACTTTCAGTTTAGCGGTCT-3’) was
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linearized by PCR and amplified oligonucleotides were inserted with Gibson assembly. The Gibson assembly product was purified

and subsequently transformed into electrocompetent E. coli YYdCas9 cells. Plating on four Petri dishes with 15 cm diameter resulted

in approximately 9.9 3 107 colonies. Colonies were washed from the plates, pooled and stored as glycerol stocks.

Media
Cultivations were performed with LB medium or M9 minimal medium with glucose as sole carbon source (5 g L-1). M9 medium was

composed by (per liter): 7.52 g Na2HPO4 2 H2O, 5 g KH2PO4, 1.5 g (NH4)2SO4, 0.5 g NaCl. The following components were sterilized

separately and then added (per liter of final medium): 1mL 0.1MCaCl2, 1 mL 1MMgSO4, 0.6mL 0.1M FeCl3, 2mL 1.4mM thiamine-

HCl and 10 mL trace salts solution. The trace salts solution contained (per liter): 180 mg ZnSO4 7 H2O, 120 mg CuCl2 2 H2O, 120 mg

MnSO4 H2O, 180 mg CoCl2 6 H2O. For strains transformed with pgRNA-bacteria plasmids, 100 mg mL-1 ampicillin (Amp) was added

to the media. To induce expression of the dCas9 protein in the YYdCas9 strain, aTc was added to a final concentration of 200 nM. In

experiments with pUA66 plasmids 34 mg mL-1 kanamycin was added to the medium.

METHOD DETAILS

Cultivation Conditions for OD and YPet-, GFP-Fluorescence Measurements
Single colonies on LB+Amp agar plates were transferred into 5 mL LB+Amp liquid cultures. The LB pre-cultures were used to inoc-

ulate a second pre-culture inM9medium that was incubated overnight in 13mL culture tubes under shaking at 37�C.M9 pre-cultures

were diluted in 150 mL M9 medium (1:50) and incubated in 96-well plates. Every strain was cultured in triplicates with and without

addition of aTc to the M9 main culture (aTc was not added to pre-cultures). For YPet fluorescence measurements, 0.1 mM IPTG

was added to pre-cultures and main cultures to induce YPet expression. Optical density (600 nm) and YPet fluorescence (excitation

510 nm, emission 540 nm) was measured every 5 min using a plate reader (BioTek, Synergy). For GFP measurements, GFP fluores-

cence (excitation 490 nm, emission 530 nm) was measured in 10 min intervals using a plate reader (Tecan, Grödig, Austria, Spark).

CULTIVATION CONDITIONS FOR METABOLOME AND PROTEOME SAMPLING

Single colonies were transferred into liquid 5mL LB+Amp from fresh LB+Amp plates, and then re-inoculated inM9medium overnight

in 13mL culture tubes under shaking at 37 �C. For metabolomics and proteomics sampling, M9 pre-cultures were adjusted to a start-

ingOD600 of 0.05 into 12-well plates, with 2mL ofmedium in eachwell. Strains were cultivated in triplicates with or without aTc, added

at the beginning of the culture. Optical density at 600nm was measured every 10 min using a plate reader (Tecan, Spark) for 4.5 h.

Plates were then rapidly transferred to a thermostatically controlled hood at 37 �C and kept shaking during the sampling procedure.

For dynamic metabolomics, M9 pre-cultures were adjusted to a starting OD600 of 0.05 in a beaker containing 50mL of medium and a

magnetic stirrer. Beakers were incubated with 400 rpm magnetic stirring in a thermostatically controlled hood at 37 �C.

Cultivation Conditions of the Pooled CRISPRi Library
A preculture of 50mL LB+Ampwas inoculated with 500 mL of the pooled CRISPRi strain library from a glycerol stock and incubated at

37 �C for 5 hours. From the LB culture a second preculture inM9was inoculated with a dilution of 1:10000 and incubated for 13 hours.

After 13 hours the M9 preculture was in exponential phase and it was used to inoculate two main cultures with an initial OD of 0.05 in

shaking flasks containing 100 mL of M9 with 200 nM of aTc to induce expression of dCas9. Every hour, OD was measured and sam-

ples for sequencing were collected. Every 2 hours, the culture was back-diluted to an OD of 0.05 with fresh and prewarmed M9 con-

taining 200 nM of aTc. Samples were centrifuged to precipitate the cells and plasmids were extracted with the GeneJET Plasmid

MiniPrep Kit (Thermo Fisher Scientific).

Next Generation Sequencing and Data Analysis
To generate the DNA fragments of target regions, which are compatible with Illumina sequencing, a two-step PCR approach was

used. First, a 300 bp fragment including the sgRNA sequence and the flanking regions has been amplified using Q5 polymerase

(New England Biolabs, USA) and specific oligonucleotides binding at the target region (NGS_F2_adapter and NGS_R2_adapter,

Table S10). As template, 150 ng of the purified samples were used in a 50 mL PCR reaction with the following settings: 98 �C for

30 s, 12 cycles of 98 �C for 10 s, 65 �C for 30 s and 72 �C for 15 s; final extension at 72 �C for 5 min. Afterward, the PCR products

were purifiedwith a NucleoSpin Gel and PCRClean-up Kit (Macherey-Nagel, Germany) and eluted in 20 mLwater. In the second PCR,

when different pairs of indexes (i5 and i7) were added to each amplicon, Phusion High- Fidelity DNA Polymerase (New England Bio-

Labs, USA) was used with the following conditions: 98 �C for 30 s; 12 cycles of 98 �C for 10 s, 55 �C for 30 s and 72 �C for 20 s; final

extension at 72 �C for 5min. 4 ng of template was used in a final volume of 20 mL. Cleanup of the PCRproducts was donewith AMPure

XP beads (Beckman Coulter). All samples were run on a Bioanalyzer with an Agilent High Sensitivity DNA Kit (Agilent, USA) to analyze

their composition. Next, 100 ng of each sample was pooled and the concentration of the pooled samples was measured using the

Qubit dsDNA HS Assay on a Qubit 2.0 Fluorometer. The pooled samples were diluted, denatured and loaded on a MiniSeq High

Output Cartridge following the manufacturer’s instructions. To guarantee sufficient sequence diversity, 50% PhiX was spiked into

the samples. Single-end reads provided sequences, which were mapped to the sgRNAs in the CRISPRi library using a MATLAB

Script. Read counts were calculated with single-end sequencing reads that matched to sgRNA guide sequences in the CRISPRi
e3 Cell Systems 12, 56–67.e1–e6, January 20, 2021
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reference library (Table S1). Read counts per sgRNA (readsi) were normalized to the total number of read counts per sample (read-

stotal) to obtain frequencies of sgRNAs. Frequencies were normalized to the first time point (t = 0 h) to calculate fold-changes.

Constraint-Based Modeling
Genes that encode enzymes with metabolic flux during growth on glucose were determined with Flux Balance Analysis (FBA). The

E. coli iML1515 metabolic model was downloaded from BiGG Models http://bigg.ucsd.edu/ (King et al., 2016) and FBA simulations

were applied using COBRApy (Ebrahim et al., 2013) with parameters as described in Monk et al. (2017).

Kinetic Modelling of the CarAB Knockdown
The stoichiometry of themodel is shown in Figure 5A.Mass balancing yields a system of ordinary differential equations (ODEs), F, that

is a temporal function of the state variables x and the kinetic parameters p:

Fðx;pÞ = dx

dt
=

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

dorn

dt
= r1 � r3

dcbp

dt
= r2 � r3 � r4

darg

dt
= r3 � a1,m1

dutp

dt
= r4 � a2,m2

de2

dt
= � m ,e2

(Equation 1)

The six reactions (r1, r2, r3, r4, m1, m2) are described by the following kinetic equations:

The influx into the arginine pathway r1 is constant:

r1 = kcat1 (Equation 2)

Allosteric activation of reaction r2 by ornithine follows a power-law function:

r2 = kcat;2,e2,

�
orn

ornSS

�K2

(Equation 3)

where ornSS is the steady state ornithine concentration.

Reaction r3 follows a non-ordered Bi-uni mechanism:

r3 = kcat;3,
1�

1 +
Kmorn ,Kmcbp

orn ,cbp + Kmorn

orn
+

Kmcbp

cbp

� (Equation 4)

Reaction r4 follows simple Michaelis-Menten kinetics:

r4 = kcat;4 ,
cbp

cbp+K4

(Equation 5)

The growth rate m depends on m1 and m2, which follow Michaelis-Menten kinetics:

r5 = mmax;1,
arg

arg+ Km1

(Equation 6)
r6 = mmax;2,
utp

utp+ Km2

(Equation 7)
m = meanðm1;m2Þ (Equation 8)

In total, themodel includes 14 kinetic parameters kcat1, kcat2, kcat3, kcat4, K2, Km,orn, Km,cbp, K4, Km1, Km2, mmax1, mmax2, a1 and a2. The

ensemble modelling approach (Tran et al., 2008) was used to account for uncertainties in kinetic parameters.

First, a steady flux distribution was calculated that is common for all subsequent parameter sets (r1 = 0.958 mM min-1, r2 =

1.425 mM min-1, r3 = 0.958 mM min-1, r4 = 0.467 mM min-1, m1 = 0.958 mM min-1, m2 = 0.467 mM min-1). The flux distribution was

estimated using flux balance analysis. Arginine andUTP efflux (m1 and m2) were calculated as the product of their biomass coefficients

(a1 = 95.8 mM, a2 = 46.7 mM) and the growth rate on glucose (m = 0.01 min-1).
Cell Systems 12, 56–67.e1–e6, January 20, 2021 e4
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Binding constants (K-values) and metabolite concentrations (Ornithine = 0.01 mM, UMP = 0.50 mM, Arginine = 0.138 mM) were

obtained from literature and Cbp concentration was set to 1 mM. The concentration of e2 was set to 1 mM. The binding constants

were sampled 1000 times from 10-fold intervals based on literature values (Km,orn = 0.32 mM (argF/I, Ecocyc), Km,cbp = 0.36 mM

(argF/I, Ecocyc), K4 = 0.028 mM (Brenda ID: 696699), Km2 = 0.05 mM (pyrH, Ecocyc)). The power-law term K2 was sampled between

1 and 4 in the regulated model and was set to zero in the dysregulated model. Km1 was fixed to 1310-5 mM.

With the ensemble modelling approach the system is initially set into a steady state. To test stability of the steady states, eigen-

values of the Jacobian matrix were calculated, and tested if all eigenvalues are negative (l < -10-6). The procedure was repeated until

1000 stable steady states were achieved. The perturbation by CRISPRi was then simulated for all stable models by setting the

expression rate of e2 to zero:

de2

dt
= 0 � m ,e2 (Equation 9)

Metabolomics Measurements
Cultivations were performed as described above. Culture aliquots were vacuum-filtered on a 0.45 mm pore size filter (HVLP02500,

Merck Millipore). Filters were immediately transferred into a 40:40:20 (v-%) acetonitrile/methanol/water extraction solution at -20 �C.
Filters were incubated in the extraction solution for at least 30 minutes. Subsequently, metabolite extracts were centrifuged for 15 mi-

nutes at 13,000 rpm at -9 �C and the supernatant was stored at -80 �C until analysis. Metabolite extracts weremixed with a 13C-labeled

internal standard in a 1:1 ratio. LC-MS/MS analysis was performed with an Agilent 6495 triple quadrupole mass spectrometer (Agilent

Technologies) as described previously (Guder et al., 2017). AnAgilent 1290 Infinity II UHPLC system (Agilent Technologies) was used for

liquid chromatography. Temperature of the column oven was 30�C, and the injection volume was 3 mL. LC solvents in channel A were

either water with 10 mM ammonium formate and 0.1% formic acid (v/v) (for acidic conditions), or water with 10 mM ammonium car-

bonate and 0.2% ammonium hydroxide (for basic conditions). LC solvents in channel B were either acetonitrile with 0.1% formic

acid (v/v) (for acidic conditions) or acetonitrile without additive (for basic conditions). LC columns were an Acquity BEH Amide (30 x

2.1mm, 1.7 mm) for acidic conditions, and an iHILIC-Fusion(P) (50 x 2.1mm, 5 mm) for basic conditions. The gradient for basic and acidic

conditionswas: 0min 90%B; 1.3min 40%B; 1.5min 40%B; 1.7min 90%B; 2min 90%B. The ratio of 12C and 13C peak heights was

used to quantify metabolites. 12C/13C ratios were normalized to OD at the time point of sampling. Absolute concentrations of gluconate

were determined from 12C peak heights and an external calibration with an authentic standard. A specific cell volume of 2 mL mg-1 was

used to calculate the cell volume.

Proteomics Sample Preparation and Measurement
Cultivations were performed as described above. Culture aliquots were transferred into 2 mL reaction tubes and washed two times

with PBS buffer (0.14 mM NaCl, 2.7 mM KCl, 1.5 KH2PO4, 8.1 Na2HPO4). Cell pellets were resuspended in 300 mL lysis buffer con-

taining 100 mM ammonium bicarbonate, 0.5 % sodium lauroyl sarcosinate (SLS). Cells were lysed by 5 minutes incubation at 95 �C
and ultra-sonication for 10 seconds (Vial Tweeter, Hielscher). Cells were again incubated for 15 minutes with 5 mM Tris(2-carbox-

yethyl)phosphine (TCEP) at 90�C followed by alkylation with 10 mM iodoacetamide for 15 minutes at 25 �C. To clear the cell lysate,

samples were centrifuged for 10 minutes at 15,000 rpm and the supernatant was transferred into a new tube. Protein samples were

quantified using a BCA Protein Assay kit (Thermo Fisher Scientific). For each sample, 50 mg of proteins was aliquoted to new tubes,

volumes were adjusted and cell lysates were digested with 1 mg trypsin (Promega) overnight at 30�C. SLS was removed by precip-

itation. Therefore, trifluoroacetic acid (TFA) was added to a final concentration of 1.5% and incubated at room temperature for 10mi-

nutes. After centrifugation (10 minutes at 10,000 rpm), the supernatant was used for C18 purification of peptides using Micro Spin-

Columns (Harvard Apparatus). The purified peptide solutions were dried and resuspended in 0.1 % TFA. The concentration of

peptides in the samples was measured with a colorimetric peptide assay (Pierce�Quantitative Colorimetric Peptide Assay, Thermo

Fischer Scientific). Analysis of peptides was performed by with a Q-Exactive Plus mass spectrometer coupled to an Ultimate 3000

RSLC nano with a Prowflow upgrade and a nanospray flex ion source (Thermo Scientific). Peptide separation was performed on a

reverse-phase HPLC column (75 mm x 42 cm) packed in-house with C18 resin (2.4 mm, Dr. Maisch GmbH, Germany). The following

separating gradient was used: 96% solvent A (0.15% formic acid) and 4% solvent B (99,85% acetonitrile, 0.15% formic acid) to 30

% solvent B over 60minutes at a flow rate of 300 nL/min. The data acquisition mode was set to obtain one high resolutionMS scan at

a resolution of 70,000 full width at half maximum (at m/z 200) followed by MS/MS scans of the 10 most intense ions. To increase the

efficiency of MS/MS attempts, the charged state screening modus was enabled to exclude unassigned and singly charged ions. The

dynamic exclusion duration was set to 30 seconds. The ion accumulation timewas set to 50ms forMS and 50ms at 17,500 resolution

for MS/MS. The automatic gain control was set to 3x106 for MS survey scans and 1x105 for MS/MS scans. Label-free quantification

(LFQ) of the data was performed using Progenesis QIP (Waters), and for MS/MS searches of aligned peptide featuresMASCOT (v2.5,

Matrix Science) was used. The following search parameters were used: full tryptic search with two missed cleavage sites, 10ppm

MS1 and 0.02 Da fragment ion tolerance. Carbamidomethylation (C) as fixed, oxidation (M) and deamidation (N,Q) as variable modi-

fication. Progenesis outputs were further processed with SafeQuant. The data was further processed with custom MATLAB scripts.
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Statistical analysis was performed using custom MATLAB scripts. The number of replicates (n) of each experiment can be found in

the respective figure caption. In growth assays, n represents the number of independent microtiter plate cultures. For proteomics and

metabolomics n represents the number of independent microtiter plate or shake flask cultures. Three replicates were used for me-

tabolomics, and one of the three replicates was removed based on its Euclidean distance from the other two replicates. The remain-

ing two replicates were used to calculate means. This removed outliers in the metabolome data set, which can occur due to the high

sensitivity of the metabolome during sampling. In the proteomics dataset, proteins with an average variability between triplicates

higher than 20% were removed. This left 1507 proteins that were measured in every sample. Significant proteins were defined

with a two-fold cut-off and a p-value<0.05 for a two-sample t-test. Similarity of proteomes was obtained calculating the Jaccard in-

dex of significantly differentially expressed proteins.
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