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A B S T R A C T   

Human movement is a significant factor in extensive spatial-transmission models of contagious viruses. The 
proposed COUNTERACT system recognizes infectious sites by retrieving location data from a mobile phone 
device linked with a particular infected subject. The proposed approach is computing an incubation phase for the 
subject’s infection, backpropagation through the subjects’ location data to investigate a location where the 
subject has been during the incubation period. Classifying to each such site as a contagious site, informing 
exposed suspects who have been to the contagious location, and seeking near real-time or real-time feedback 
from suspects to affirm, discard, or improve the recognition of the infectious site. This technique is based on the 
contraption to gather confirmed infected subject and possibly carrier suspect area location, correlating location 
for the incubation days. Security and privacy are a specific thing in the present research, and the system is used 
only through authentication and authorization. The proposed approach is for healthcare officials primarily. It is 
different from other existing systems where all the subjects have to install the application. The cell phone 
associated with the global positioning system (GPS) location data is collected from the COVID-19 subjects.   

1. Introduction 

Influenza, more commonly known as “flu’, spreads around the world 
in seasonal epidemics, resulting in about three to five million yearly 
cases of severe illness and about 250,000–500,000 annual deaths, rising 
to millions in some pandemic years. For contagious entities to live and 
replication the succession of contagion in a new host, the virus should 
leave (not all virus cells) the current confirmed subject and root conta-
gion somewhere else. Diffusion of contagions can proceed via numerous 
possible ways (Ahmed et al., 2020; Magklaras & Bojorquez, 2020; 
Urbaczewski & Lee, 2020). Contagious viruses may be transferred either 
by direct or indirect connection. Direct connection happens when 
someone is exposed to an infectious source, such as a handshake, kiss, 

physical relation, breathing of transmittable viruses particles released 
by sneezing or coughing. Indirect connection happens when the virus is 
competent to resist and survive in the oppressive atmosphere outside the 
host body area for an extended duration and keep on infectious once 
definite occasion rises. Nonliving substances that are habitually infected 
comprise door handles, table chair, keyboard mouse, etc. Consumption 
of infected food or water item is also an indirect way of contagion. In 
1918 Spanish flu, then the 2003 SARS pandemic, and now COVID-19, 
these viruses are airborne and can, therefore, promptly transmittable 
infect large groups of people (Ahmed et al., 2020). 

Thus there is a need for a system that can detect, identify, and track 
outbreaks in real-time or near real-time to help contain the spread of 
disease. In some research, a method is used to collect user locations via a 
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user’s mobile device and correlated with sites in which a disease was 
identified. The system first receives a report of a user infected with the 
confirmed disease, after which the user’s close contacts during the in-
cubation period of the disease are alerted. However, the method suffers 
from several drawbacks. First, a user is only alerted to potential expo-
sure after the fact that once the user had already been likely exposed to 
the disease. Second, the system relies on receiving confirmation of 
illness. At that point, the close contacts during the incubation period are 
backtracked and alerted for possible exposure. Third, the close contacts 
need to be in close physical proximity to be alerted to potential expo-
sure. Even then, the system does not determine the likelihood of the 
infection being transmitted. Fourth, the system does not consider the 
user’s personal information, such as age, which can affect the incubation 
period. Fifth, the method is only useful for tracking diseases that spread 
from person to person. Diseases that a person does not transmit (e.g., 
food poisoning) are not detected even though other users may catch it at 
the source. Sixth, the method does not detect unknown diseases. Finally, 
the system does not track or alert users to other location-based hazards 
(Cencetti et al., 2020; Maccari & Cagno, 2020). 

Current solutions are not proficient in producing personalized fore-
casts for confirmed subjects and suspects. Such as, previously designed 
research approaches fail to forecast if a distinctive suspect in close 
contact with the confirmed subject will develop an infection but only 
offer forecasts on the expose of an infection through a broad area. Op-
erations of existing models do not protect users’ privacy by using subject 
interfaces with multimedia data, browsing, text, and calls (Ahmed et al., 
2020; Cencetti et al., 2020; Maccari & Cagno, 2020). For example, these 
kinds of applications utilize AI (artificial intelligence) practices and data 
collection procedures that authorize a computer to produce a person-
alized data stream, which breaks the privacy boundary. Such as, appli-
cations gather browsing outcome information created on interpretations 
in search logs that designate website focuses comprised in the search. In 
recent times, in countries such as India, a mobile application called 
"Aarogya Setu" was launched to help the citizens identify the COVID19 
infected individuals via Bluetooth. The "Aarogya Setu" mobile applica-
tion is connected with the repository of COVID19 patients governed by 
government officials (Gupta, Bedi, Goyal, Wadhera, & Verma, 2020). 
However, the Aarogya Setu mobile app does not provide real-time 
tracking of the COVID19 suspected individuals based on GPS 
Spatio-temporal data. Klar R. and Lanzerath D. discussed the challenges 
and vulnerabilities of COVID19 tracking mobile applications (Klar & 
Lanzerath, 2020). However, they did not discuss anything related to 
real-time tracking of COVID19 suspects using GPS Spatio-temporal data. 
Martin and his fellow researchers’ discussed the security aspects of 
various smart mobile devices (Martin, Karopoulos, Hernández-Ramos, 
Kambourakis, & Fovino, 2020). However, they did not discuss anything 
related to tracing and tracing COVID19 suspected individuals using GPS 
location data. 

Hanson and his team discussed and analyzed various mobile health 
applications and their assistance for COVID-19 management. However, 
the conducted research work did not provide any details about the real- 
time tracking of COVID19 suspects via a mobile application (John Leon 
Singh, Couch, & Yap, 2020). Fahey R. and Hino A. discussed various 
aspects of COVID19 privacy, social limits based on public health re-
sponses. However, the presented research work did not provide any 
details related to GPS based tracking privacy issues and real-time 
detection of COVID19 suspects using location data (Fahey & Hino, 
2020). Mallik and his team discussed a GPS tracking application to track 
the ambulances carrying COVID19 health patients. The presented 
research work discussed a handy application for pandemic situations. 
However, they did not facilitate real-time tracking of COVID19 suspects 
using their location data (Mallik, Sing, & Bandyopadhyay, 2020). 
Franch-Pardo and his fellow research team discussed critical details 
related to GPS Spatio-temporal data, its usage, and applications. How-
ever, they did not propose any system which can facilitate real-time 
tracking of COID19 individuals based on their GPS location data (van 

Franch-Pardo, Napoletano, Rosete-Verges, & Billa, 2020). Skoll and his 
fellow researchers discuss the ideas of COVID-19 testing and surveil-
lance, digital contact tracing, and mass-testing of COVID19 individuals 
in the USA. However, they did not propose a real-time system to detect 
COVID19 suspects using GPS Spatio-temporal data (Skoll, Miller, & 
Saxon, 2020). Menni and his team discussed the real-time tracking of 
COVID-19 symptoms reporting and prediction related concepts. How-
ever, they did not discuss anything about GPS based tracking of 
COVID19 individuals using their location data (Menni, Valdes, & Frei-
din, 2020). 

The majority of GPS network’s mobility data represents (Bibri, 2018; 
Jamal & Habib, 2020; Kontokosta & Hong, 2021; Lu, An, Hsu, & Zhu, 
2019; Silva et al., 2021) a similar pattern, such as the smart societies. 
Smart societies are categorized as mutually connected and mutually 
dependent through various network arrangements. The interconnecting 
physical layer of these networks extends orders of magnitude greater 
than the overlaying network’s growth rate. This generates the bulk of 
data with surprising rates compared to the past. This produces "Mobility 
IoT," which is closely associated with the Big data setting(typically 
storage, data pre-processing, and inference) over massive GPS datasets 
that impose stringent computational resource demands. The above 
Bigdata issues will require a radical and modern approach to address the 
emerging problems and keeping up with the expected flood of received 
Bigdata. 

The proposed COUNTERACT framework offers a methodology to 
address the big data research challenges and provide advanced analytics 
holistically. The COUNTERACT uses the HYPERBOLIC (Thai et al., 
2016) framework for big data analytics. This concept offers a generic 
computational substrate for data pre-processing, representation, 
dimensionality reduction, data correlation-clustering, inference, ana-
lytics, visualization search-navigation, and decision making in near 
real-time. The (Bello-Orgaz, Jung, & Camacho, 2016) Big data analytics 
concept constructs basic pre-processing statistical learning operations 
and introduces analytics and interpretation for the optimum inference to 
recognize the infection. The received GPS data may be in raw or net-
worked form. The networked data is correlated data(nodes), and the 
combinations of complex networks show their correlation paths. To 
resolve the above issues, we proposed COUNTERACT. 

2. Proposed work 

The technique and device defined is a way to deliver a switch on 
epidemics of numerous infections, contagions, or well-being in-
timidations of multiple types. The method obtains location data from 
subject and subject systems. Subject systems may apply a GPS data or a 
cellular network to find location data. The system then develops a cor-
relation server to measure the vicinity of numerous cellphones, subject 
systems, or supplementary devices, and any other activity of attention. 
To investigate, in a module, the system analyzes location information 
linked with local maps and actions. For a location-enabled consumer, 
the system defines a list of the adjacent encounters with other location- 
enabled consumers (suspected infections). This location data is reserved 
for a certain period, and information is clipped for an extended time. In 
one of the system modules, the period is proportional to the incubation 
spells of several infections, bacteria, etc. The system collects location 
information that a specific or ‘local origin of contagion’ has been 
recognized either from the user, from a healthcare service professional, 
or a government body. The COUNTERACT method backpedals all con-
nections for the confirmed subject until the last possible suspect. 

The COUNTERACT signals everyone who has been exposed to the 
contagious site or infected person. Expose is described in a different way 
for numerous pandemics. For somewhat that comprises airborne mi-
croorganisms, in the same four-wheeler automobile, shared workplace, 
passenger plan, ship, cineplex, bars-eatery, public gathering events 
where people spaced densely, etc. For microorganisms that spread via 
physical contacts, such as office meetings, they are used as the signals for 
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notifying suspects in the housed party. The proposed system discovers 
potential contagion causes by backpedaling and observing through the 
branches for each suspect in the close connection cosmos of the 
confirmed subject. The suspect and confirmed subject mobile location 
data and backpedaling data are provided to the suitable authorized or-
ganization. Individual mobile subscriber controls the present data and 
backtracking data. Therefore, the COUNTERACT system notifies each 
consumer about being exposed to contagion, and the consumer regulates 
whether tracing data would be studied. The suspect’s location data is 
delivered to specialists after applying the filter, censoring the consumer’ 
multimedia, calling, browsing, and text-related data to guard the con-
sumer’s privacy. This location information recognizes regions that may 
be contagious, trails of contagion, separation, etc. The information is 
useful to acknowledge, oversee, and possibly hold any infection point 
source. The system offers a map of the infection exposure for each 
confirmed subjects and suspects separately. The map may define the 
chronological development of the infection and may support in fore-
casting its spread. COUNTERACT developed an approach to the real- 
time recognition, managing, and control of epidemics. By tracing 
chronological location data, it can offer historic and recently received 
data. Up until today, not considerable may be prepared. Nevertheless, 
with pervasive cellular mobile phones and telecommunications net-
works, the ability to continuously alert consumers’ locations have been 
generated. COUNTERACT system is inevitable and necessary in the 
present scenarios of virus outbreaks, i.e., COVID-19. 

2.1. Methodology 

The COUNTERACT system includes a data mining module, database 
server module (temporary), correlation module, user thresholds (based 

on proximity and time spent) and alert rules module, geographic tracing 
module, location reception sub-module, contagion site tracing module, 
recognition module, mobility behavior model and mapping module, this 
better presented by Fig. 1. Fig. 1 represents the complete architecture 
and design of COUNTERACT. Once the user requests the system with the 
mobile number of the subject for the infection tracking, the system sends 
the request to the GPS activities’ teleservice provider. Teleservice pro-
vider gets access information of GPS data from Lawful Interception Box 
(LIB) and Lawful Interception Controller (LIC), and the data is sent 
through the internet link to Database Server Module. Database server 
module data is delivered to different modules and sub-module for 
analytical processing. GPS data is a big data set. It gets user mobility- 
related pieces of information for many events and hundreds of hours, 
so the Data Pruning Module prunes it. Data Pruning Module removes the 
data, which is not useful either for future use or too distorted. Another 
analytics module is Data Mining Module, which has two sub-modules: 
Mobility Behaviour Module and Correlation Server Module. Mobility 
Behavior Module checks the subject’s mobility behavior for the required 
days and is responsible for forecasting and generating the missing 
mobility data. 

In contrast, the Correlation Server Module identifies the correlations 
between various mobility events. User Threshold and Alert Rules Mod-
ule, which has the sub-module Authorities/Users, perform the spatio-
temporal analysis to recognize the probability of possible contagion 
based on proximity and time spent between subjects. The above modules 
are based on the HP Edge Line Computing Device (Anonymous, 2021). 

The mentioned sections are responsible only for the domestics spread 
recognition and tracing, but it is not complete when the virus becomes 
pandemic; for this purpose, COUNTERACT introduces Virtual Private 
Server. Virtual Private Server Based on Edge Computing gets GPS data 

Fig. 1. COUNTERACT system block diagram.  
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success of various infected confirmed subjects and their respective 
contagious sites. The privacy of infected subjects is maintained through 
the Anonymous Search Log Data Module. This GPS data from the Log 
Search Module is sent to Location Comparision Module to recognize a 
similar town/area or beyond that. The Location Comparison Module 
report is delivered to the Regional/Global Pandemic Spread Detection 
Module to verify the type of spread (Global or Regional). Once the 
Regional/Global Pandemic Spread Detection Module decides, the 
Regional/Global Pandemic Alert Module issues alert. 

User location data is accessed through user cell phones and GPS. Cell 
phone location information is collected from a mobile phone base sta-
tion, and this location data is stored in the database. The correlation 
module augments location recognition data (bus, cineplex.etc) by add-
ing tree connection to the other users’ who have concurred location. 
Correlation of location is the function of time and distance, location 
overlapping, and cross path for adequately enough time with proximity. 
Such as, waiting at the bus stop may not activate a proximity correlation, 
but being on the bus to a commute for 15 min in the enclosed area may. 

The contagion tracing module comprises deep learning models 
trained-tested to obtain location data related to the tree of registered 
users and produce a prediction of suspects whose possibility was 
exposed. The geographic tracking module defines coverage intensities 
for the suspected users who have not been recognized as a possibility to 
get contagious. The geographic tracking module can use the location 
data linked with both confirmed (infected) subjects and suspected sub-
jects to precisely define how frequently each subject has been exposed to 
the infected subject. The geographic tracking module collects sugges-
tions of possibly diseased subjects from the recognition module. It 
connects the infected subjects’ user location data with that of the sus-
pected subjects to define coverage intensities for the suspected subjects. 
Suppose location data for subjects specify that suspected subjects were 
recorded in identical geographic regions as confirmed subjects inside a 
similar time stamp. In that case, the geographic tracking module can 
raise a coverage (congestion) level linked with the suspected subject. 
The geographic tracking module can decide a contagion level for each 
suspected subjects based on risk elements comprising the total number 
of encounters each subject had with confirmed infected subjects, and the 
period that each subject was exposed to a particular subject, the passed 
the time between coverages to confirmed subjects, or both the condi-
tions. The risk level can be exponentially varied for each encounter a 
suspected subject has with a confirmed subject conferring to each en-
counter’s contagion risk features. The risk level of encounters can be 
characterized as a scale value from zero to a hundred “contagion risk 
grade, " with zero signifying no coverages to the confirmed subject. A 
meeting with a longer duration and proximity will have a high increase 
in grades than a short time. The geographic tracking module splits a 
geographic area into a range of cell sites. The geographic module defines 
coverage intensities for each subject separately by recognizing that if the 
suspected subject’ cell-site data coincide with confirmed subject data 
location within the same range of time and proximity. The contagion 
tracing module produces singularized subject forecasts for suspects that 
the geographic tracing module classifies as probably to develop the 
infection. The contagion tracing module can generate an infection 
warning report (a text message or phone call) to the suspected individual 
to notify the suspect about his recent mobility caused by his exposure to 
contagion, and they will have symptoms soon. The mapping module 
offers location data plotting of the contagion coverage according to the 
suspected subject location data. 

Subject spatial data is observed over timestamp values from subject 
mobile phones. COUNTERACT system relies entirely on mobile phone 
location as well as GPS data, so in that case, the system designed 
Mobility Behavioral Modelling. The behavioral mobility modeling re-
ceives historical location data to apply a deep learning model to it. This 
model generates the location data of a particular duration with accept-
able accuracy. The correlation module produces this behavior-based 
mobility data projection. Once the mobility pattern is predicted, the 

correlation module sends the data to the database module. Database 
module associated with each mobile subject stores the location of the 
subject. This user database contains the usual mobility behavior and 
anomaly (unique) mobility pattern measured by mobility modeling. 
Such as, the subject may have different behavior on every second Friday 
as compared to other weekdays. 

The contagion tracing module could also be extended for the pre-
ventive alert notifications to the individuals. It can alert a healthy sub-
ject to prevent exposure by the confirmed subject. It identifies the 
measures that a healthy subject can take to escape an encounter within a 
confirmed subject’s period and proximity. For example, suppose the 
contagion tracing module recognizes the healthy subject’s mobility 
location data and behavioral mobility pattern. In that case, they will 
have a cross-path or encounter with the confirmed subject, the conta-
gion tracing module sends an alert notification. This alert notification 
contains a description of the risk and informing the healthy subject to 
change the route. Data mining module interfaces with user risk assess-
ment and warnings to produce notices through the alert module. Ac-
cording to the context, the Alert module sends notifications to labeled 
receivers (suspected subject) once the defined threshold or vigilant 
settings are encountered. The threshold or vigilant settings comprise 
past data, present data, in-depth learning analysis, and behavioral 
mobility patterns. 

The sub-module of the geographic tracing module is the location 
reception sub-module, which is liable for the reception of the subject’s 
location from the mobile phone or GPS. The location reception sub- 
module is also responsible for translating location data into the 
preferred format, such as location data from the cell tower, and GPS has 
a different display. The correlation module uses the location reception 
sub-module data to map the subject’s locations to actual locations (local 
train, cineplex, etc.). 

Fig. 2 represents a layered design of the proposed COUNTERACT 
system. The GPS based tracking module of the COUNTERACT system 
starts functioning by acquiring GPS-spatiotemporal data of COVID19 
patients from a mobile handset. The COUNTERACT system performs the 
in-depth analysis, tracking, and tracing of the acquired GPS data of 
COVID19 individuals. Furthermore, a notification module generates 
real-time notifications for emergencies and notifies the health-experts 
and house members. The services module provides location tracking, 
tracing, and tagging services to the COUNTERACT system. The user 
management and control module handle the access rights, authentica-
tion, and authorization mechanisms of users and various report gener-
ations, such as the total number of suspected COVID19 individuals, etc. 
Hadoop technology is used to query the COUNTERACT back-end based 
on time-stamp and location details of COVID19 suspects. The collected 
data will be stored on a Big data technology-based COUNTERACT cloud 
computing platform (Mongo DB back-end technology). The data logger 
module is responsible for keeping time-stamp based GPS data of various 
COVID19 individuals. The application layer is responsible for integra-
tion, aggregation, and interfacing of the acquired GPS Spatio-temporal 
data with the COUNTERACT system mobile application. It also pro-
vides real-time location information of COVID19 suspects via a COUN-
TERACT mobile application. 

3. System modeling and performance evaluation 

In the undertaken study, we analyzed mobility data network data 
such as latitude and longitude of COVID-19 persons, their visited loca-
tions, the distance between two mobility data devices (within 1.25- 
meter distance) for 15 days. The researchers have also analyzed 
mobility patterns through simulation modeling to detect the possibility 
of COVID-19 spread: 
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3.1. COVID-19 pandemic direct infection suspicion model 

A mobility matrix Mobmobility is constructed using the global mobility 
network data, with elements Mmobility

p,q . Where, Mmobility
p,q represents the 

daily mobility movements of the COVID-19 subject and the number of 
individuals who came closer to the COVID-19 subject and have crossed 
the set threshold boundary of 1.25 m. It also represents COVID-19 
subject’s relocation movements at a particular location p register at a 
time t, day d, and last day d-1 to mobility data relocation movements for 
the incubation period (for COVID19, we considered d = 15 days) (Gupta 
et al., 2020). The calculation of the direct infection suspicion DS(t,d) can 
be represented by Eq. (1), 

DS(t,d) =

[
∑15

d=1
(C19mobility

p ×
∑N

n=1
NSn, p

mobility)
]
× Aarea

DC19p , NSn, p

(1)  

C19mobility
p,q = COVID19 subject Mobility at location p; 
NSn = The list of neighboring healthy individuals who have traveled 

near a COVID-19 subject for 10 min at location p; 
n = 1, 2, 3…. N; 
d = day, 1,2, 3…15; 
t = time when COVID-19 subject and neighboring healthy individual 

come within the vicinity of the set threshold limit of 1.25 m.; 
n = total number of individuals who came in contact with COVID-19 

subject; 
Aarea = average mobility of the COVID-19 subject and the total 

Fig. 2. A layered representation of a COUNTERACT system.  
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number of neighboring healthy individuals based on the radius rp,q at 
location p; 

DC19p , NSn, p = distance between COVID-19 subject and the neigh-
boring healthy individuals. 

It is a fact that the listed parameter values may vary with time, 
location, and geographical regions. The proposed model provides a 
probabilistic analysis of the direct suspected COVID 19 cases based on 
the accessible mobility network data, which is essential information for 
tracking the suspicious cases in a particular region at a specific time t 
and day d. However, to enhance the accessible COVID-19 Pandemic 
Direct Infection Suspicion Model and recognize the possibility of the 
number of individuals who have traveled near the directly suspected 
COVID-19 neighboring individual for 10 min or more. We have modeled 
an Indirect Infection Suspicion Model to identify the indirectly suspected 
COVID-19 individuals. 

3.2. COVID-19 pandemic indirect infection suspicion model 

To model indirect COVID19 epidemic dynamics, a scholastic 
COVID19 pandemic indirect infection suspicion model is used for 
finding indirectly suspected COVID-19 subjects for the incubation 
period. Thus, an indirect mobility matrix iMmobility is constructed using 
the global mobility network data, with elements Mmobility

p,q . Where, 
Mmobility

p,q represents the daily mobility movements of healthy individuals 
who have traveled near COVID-19 suspected in a particular area for 
more than 10 min (Gupta et al., 2020). It also shows their relocation 
movements between the area p and q register at a time t, day d, and last 
day d-1 to mobility data relocation movements for 15 days. The calcu-
lation of the direct infection suspicion IDS(t,d) can be represented by Eq. 
(2), 

IDS(t,d) =

[
∑15

d=1
(iC19imobility

p ×
∑N

n=1
iNSn, p

imobility)
]
× Aarea

DiC19p , iNSn, p

(2)  

iC19mobility
p,q = Suspected COVID19 Subject Mobility at location p, 

iNSn = The list of neighboring individuals who have traveled near a 
suspected COVID-19 victim for 10 min at location p, 

DiC19p ,iNSn, p = distance between suspected COVID-19 subject and the 
neighboring healthy individuals. 

3.3. Mobility behavioral modeling 

As soon as sufficient historical movement records are accessible for a 
subject, movement patterns can be precisely forecasted by the Support 
Vector Machine (SVM) Classifier. However, subject movements are un-
systematic in behavior conditional to the situation; we can still recog-
nize the mobility behavior (Carvalho, Barbastefano, Pastore, & Lippi, 
2020). First, the algorithm finds the pattern in the historical records for 
the classifier to forecast the pattern. The patterns with the matching 
behavior are defined under the same class annotation. Ç1, Ç2 Ç3… Çn 
give the class annotation labels for n number of the movement pattern. 
Ŧ1, Ŧ2, Ŧ3 represent the timestamps, Ŧk and where k is the number of 
timestamps. The locations are shown by ǐ1,ǐ2,ǐ3….ǐf, and f is the number 
of sites. Let us assume the pattern for class  

Ç1=[Ŧ1 ǐ1, Ŧ2 ǐ2, Ŧ3 ǐ3, Ŧ4 ǐ4, Ŧ5 ǐ4]                                                      (3)  

Ç2=[Ŧ1 ǐ1, Ŧ2 ǐ2, Ŧ3 ǐ3, Ŧ4 ǐ4, Ŧ5 ǐ4]                                                      (4)  

Ç3=[Ŧ1 ǐ6, Ŧ2 ǐ2, Ŧ3 ǐ5, Ŧ4 ǐ3, Ŧ5 ǐ2]                                                      (5)  

Ç4=[Ŧ1 ǐ3, Ŧ2 ǐ3, Ŧ3 ǐ3, Ŧ4 ǐ4, Ŧ5 ǐ4]                                                      (6) 

These patterns and classes vary from subject to subject. In the pri-
mary phase of the research, forecasting algorithms mine location records 
every 10 min and mark the patterns hourly. Such as, a subject under test 

is at location ǐa, at time Ŧ1. So at location ǐb at time Ŧ2= Ŧ1+10 min, 
followed by Ŧ3= Ŧ3+10 min, Ŧ4= Ŧ3+10 min, Ŧ5= Ŧ4+10 min for the 
locations ǐc ǐc and ǐd respectively. The spatiotemporal series represents 
the pattern, which we denoted as the class annotation. With the increase 
in the time period, the classified patterns increase, resulting in a suffi-
cient training testing dataset. This large multiclass dataset is solved by 
SVM. Let us assume that there is a problem with forecasting class 
annotation for the mobility dataset ǲ. The spatiotemporal pattern for 
the dataset is given as Ŧ1 =ǐ1, Ŧ2 =ǐ2, Ŧ3 =ǐ3, Ŧ4 =ǐ4, and Ŧ5 =?; now the 
class label for the above pattern needs to be forecasted by n

r=1Çr=1
r . The 

projected mobility model measures the posterior probability for all the 
defined classes. Out of all the classes, the class with the greatest poste-
rior probability gets the responsibility to recognize the pattern followed 
by location prediction. Along with the above method, we also consider 
using the present GPS coordinates and applying them for the movement 
prediction. The mobility model uses the distance covered, movement 
direction, and movement speed to forecast the location in this additive 
approach. The mobility model acquires the GPS coordinates from the 
subject’s mobile phone handset every 15 s over 5 min. Forecast of up-
coming location will be prepared for Δţ = 5 min, Δţ = 10 min, 
Δţ = 15 min and Δţ = 20 min. 

The distance and direction of the subject’s movement in Δţ is 
measured by the location coordinates of the two consecutive location 
points (Latitude_A, Longitude_A) and (Latitude_B, Longitude_B). The 
direction is recorded through the slope value figured from 
(LatitudeB − LatitudeA)/(LongitudeB − LongitudeA)). Different slope 
values correspond to other direction of the user from the current loca-
tion, (Slope = 0, subject’s movement either west or east), (Slope>0 as 
well as Slope< 0, then, subject’s movement either northeast or south-
west), and ((LongitudeB − LongitudeA) = 0), subject’s movement 
either north or south). The approximate speed of the subject is calcu-
lated by applying the distance traveled in 5 min. So the distance covered 
by the subject in Δţ is given as speed * Δţ. These measured distances and 
directions are applied in the prediction of location. The mobility pro-
duction was for the missing spatiotemporal data. Let S be the set of 
functioning subjects in the contemporary time period (Ŧ) days, and R (i) 
denote the COVID-19 subjects in S(n) containing participant each car-
rying GPS locator (Ḡ). We briefly describe how we divided the data into 
two segments, one where the data of all the incubation period was 
available and the other where the data of at least one incubation day was 
missing: 

The condition I: if S(n) GPS locator (Ḡ) → “OFF”: Need to turn “ON” 
Ḡ to check and verify mobility prediction model (Ṕ); Condition II: if S 
(n) GPS locator (Ḡ) → “ON”: a) For Ŧ >=full incubation period. 
(mobility prediction model (Ṕ) to detect R (n) subject around n). b) For 
1 < Ŧ <12, the incubation period (Ṕ predicts the missing Ŧ and re-
generates the pattern followed by R (n) subject movement around n). 

3.4. System approach based on HP edge line computing, Artificial 
Intelligence, and Internet of Things 

Neural Networks (NNs) is a capable methodology for separating 
specific information from user mobility location data of IoT gadgets 
conveyed in tricky conditions. In light of its multilayer configuration, 
NNs is likewise proper for the edge computing condition. This way, in 
this article, we initially bring NNs for IoTs into the edge line computing. 
As existing nodes have restricted computational capacity, we likewise 
plan an offloading methodology to enhance IoT NNs applications with 
edge processing. In the performance assessment, we test how to imple-
ment various NNs events in an edge processing condition with our 
technique. The assessment results show that our approach outflanks 
other technological advancements on NNs for IoT. As edge computing 
unload processing events from the central cloud to the edge close IoT 
nodes, the transmitted information is tremendously decreased by the 
pre-processing systems. The edge computation can implement well 
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when the transitional data dimensions are lesser than the input data 
dimensions. Each layer of NNs can immediately downsize the transi-
tional data size until enough highlights are found. So, the NNs fit for 
edge computing since it is conceivable to upload portions of NN layers in 
the edge line and move the diminished transitional data to the virtual 
private cloud server. 

Another benefit of NNs in edge processing is the privacy aspects in 
transitional data delivery. Transitional data produced in customary 
large information frameworks, for example, MapReduce or Spark, con-
tains client privacy (Thai et al., 2016) as the pre-processing stays as 
information semantics. The transitional data in NNS, for the most part, 
have diverse semantics contrasted with the source information. For 
instance, it is challenging to comprehend the primary information with 
the highlights mined by a NNs filter in the intermediate NNs layer. 
Subsequently, in this article, we NNs for IoT into the edge line 
computing to improve learning execution to decrease traffic. We figure a 
versatile model that is perfect with various NNs. In this way, due to the 
diverse transitional data size and pre-processing overhead of various 
NNs, we express a scheduling issue to expand the quantity of NNs tasks 
with the limited system data transfer capacity and administration ability 
of edge nodes. Research additionally attempts to ensure the quality of 
service (QoS) of every NNs administration for IoT in the scheduling. We 
plan offline and online planning models to take care of the issue. 
Research performs simulation with different NNs undertakings and 
given edge processing settings. The exploratory outcomes show that our 
answer outflanks other improvement strategies on NNs for IoT (Fer-
nandes & GL, 2017; Li, Ota, & Dong, 2018). The primary commitments 
of this sub-section are summed up as follows. We initially bring NNs for 
IoT into edge line computing. As far as we could know, this is an in-
ventive work concentrating on NNs for IoT with edge line computation. 
We figure a flexible model for different NNs for IoT in edge computing. 
Likewise, this study structures a useful online model to advance the QoS 
and bandwidth of the edge line computing approach applied. 

The COUNTERACT system uses the HP edge line computing device 
and its features of advanced edge computing. In the HP edge line 
computing setup, the privacy-preserving edge line servers are denoted 
by set S, whereas se represents an edge server. The HP virtual private 
server is used as a cloud server, which is denoted by Cs. Sc, B represents 
the service capacity, bandwidth, and threshold parameter (threshold 
value prevents or minimizes the network congestion caused by the 
traffic between the se and Cs), and ʮ, respectively. B* ʮ represents sp 
maximum accessible bandwidth for the communication and traffic be-
tween the HP edge line server se and Cs. The all deep learning tasks are 
denoted by the set ϯ, whereas the ԏj represents a deep learning task of set 
ϯ with the bandwidth Bj. ԏj contains йj number of layers. Ʀpj represents 
the average ratio of the transitional data magnitude produced by the Pth 
layer [P є [1, йj]] with respect to the total input data size. Đij shows the 
applied input dataset size per unit of ԏj for an assigned edge line server 
se, and the transferring latency is represented by 

Ł = Đij ∗
Ʀpj
Bj

(7) 

The threshold value of transferring latency is set to Łj to maintain a 
reasonable quality of service. ȻPj represents the computational over-
head after the Pth layer, and the complete task overhead is ȻPj * Đij. The 
projected HP edge line computing architecture commits to allot opti-
mum allowable tasks [ԏ1,ԏ2,ԏ3 …ԏj] through neural network layers in-
tegrated with IoT. This offers a significant reduction in latency. The 
projected system offers real-time operation and addresses the scheduling 
issue through the dynamic switching between offline/online models. 
During scheduling, the offline model investigates the Pth layer’s 
parameter Pjp to support the optimum value of Ʀpj *ȻPj for the edge 
server sjp. Now the tasks are arranged in ascending sequence with 
respect to the input dataset size. The model starts with the scheduling of 
the smallest input dataset size in the edge line server. Moreover, this 
model monitors the edge line server resources for the effective and 

successful execution of task ԏj. In case the edge line server does not have 
acceptable bandwidth as well as QoS, the model varies the value of P 
until it finds the best P for the task execution in se. Even after checking 
all P values scheduling model fails to find a suitable P-value in edge line 
server se; the schedule model postpones task ԏj. The offline model’s 
complexity is given (|ϯ |∗|S|2∗P). On the other hand, an online sched-
uling model is used to evaluate the condition for ԏj task implementation. 
As the scheduling model receives limited features related to the current 
task, the model relies on past performance features. Indexes β1 and β2 
represent the maximum and minimum necessary bandwidth of a given 
task, correspondingly. Therefore, for task ԏj, the system first computes 
the Pjp and sjp. Followed by measuring a value  

F(Ƣp
ij) ⟵ (β2 ⋅ Ϧ/ β1) * (β1 *Ϧ)                                                       (8) 

Ƣp
ij is the reserve service capacity of the edge line server, and Ϧ is the 

constant. 
In case  

(Bij
p – Đij

p * Ʀpj
p / Ł)) *(Ƣp

ij – Đij
p ⋅ �ijp) ≤ F(Ƣp

ij)                                   (9) 

and other edge line servers have adequate resources, the scheduling 
model implements task ԏj, and the estimated relationship of the online 
scheduling model is ( 1

(ln(β1
β2)+1)∗

)). Fig. 3 represents various GIU based 

screenshots and report screens of the proposed COUNTERACT system. 

4. Performance evaluation, discussion, and observation 

For implementing IoT and AI applications, the above mentioned 
computational resources (MSI GP73 Leopard 17,3 8RF-648NE, Nvidia 
GeForce GTX 1070, 8 GB, Intel® Core™ i7-8750H processor, 16 GB 
DDR4 RAM, HP edgeline server EL1000) have been used. The edge 
computing was introduced because the backtracking and suspect finding 
based on the user’s location data had the challenges of big data 
handling, high computation, real-time processing, privacy-preserving, 
and uploading information to the HP virtual private server. The pre-
sent system applied Keras Framework for Low short Term Memory 
(LSTM) neural network on Google Co-laboratory Open Source Python 
Tool. As presented in Fig. 4(a), two LSTM networks were selected, 
LSTM1 and LSTM2. The blue color plot represented the reduced data 
size ratio, and red color plots show the computational overhead. The 
deep learning neural networks are tested up to seven layers, but the 
results of up to five layers are considered because of the performance 
consideration. These layers were had different combinations of neurons 
and activation functions. Fig. 4(a) represented the number of neural 
networks layers reduced that applied input spatiotemporal data size. In 
contrast, the computational overhead increased by an increase in the 
number of layers. The maximum number of backtracked contacts tasks 
was up to 850. The input data size of each spatiotemporal backtracked 
contact was 774KB to 1700KB. The applied HP edge line server had 
excellent bandwidth and latency management. Fig. 4(b) shows the 
different computational time required while backtracking the contacts 
with superficial LSTM layers and layer scheduling concept. Layer 
scheduling over performed as compared to classical layer structure. 
When the COUNTERACT software was installed on the smartphone 
(Samsung Galaxy S9), the system tool 57 min. to prepare the infection 
report, while when the same system installed on the computer (MSI 
GP73 Leopard 17,3 8RF-648NE, Nvidia GeForce GTX 1070, 8 GB, Intel® 
Core™ i7-8750H processor, 16 GB DDR4 RAM) the computational time 
was 13 min., and computer system with HP edge line server EL1000 has 
reduced the computational time to 4 min. The same experiment was 
performed on the Smart Phone Samsung Galaxy S9 cell phone. The 
computational time was 15–18 times higher compared to a dedicated HP 
edge line server setup. Fig. 4(c) represents the performance of the 
selected inline algorithm for task scheduling as comparing the other two 
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First in First Out (FIFO) and Low Bandwidth First Deployment (LBF). 
FIFO model showed the deployment of the task until it ran out of 
bandwidth and network resources. FIFO recorded plot values from 384 
tasks. LBF was on the similar trend as FIFO in terms of the task 
deployment approach. As LBF recognized the deficiency of bandwidth, it 
pulled out the task when maximum bandwidth demand arises. The 
selected online algorithm for the task scheduling performed significantly 
well when the input task was near 465 (outperformed FIFO) and 987 
(Outperformed LBF). 

We collected 126 confirmed COVID-19 subjects’ spatiotemporal data 
in the incubation period for backtracking to conduct the recognition of 
contagion spread and hazard location. Only 23 % of subjects have all 15 
days of data available; the rest subjects data were missing for some days. 
In this case, we had an immediate need to have gold standard data where 
spatiotemporal data free from noise and bias, so we prepared data for 15 
days with our controlled subject. We annotated this control subject as a 
COVID-19 subject who has a regular office routine. We also annotated 
the following actors for the controlled subjects spatiotemporal data: 
H1=COVID-19 subject’s (our Gold standard) friend, H2= Shopkeeper 
where our subject used to get breakfast, H3= Cinema boy, H4, H5=
Persons sitting next to COVID-19 subject one on the left and other on the 
right, H6, H7= Persons sitting next to COVID-19 subject in bus one on 
the left and other on the right, H8=COVID-19 subject’s neighbor on the 
right side, H9=COVID-19 subject’s neighbor on the left side, H10=Food 
delivery boy, H11=Milk delivery boy, H12-H13=COVID-19 subject’s 
house-made, H14-H15=COVID-19 subject’s roommate. Below, Fig. 5(a) 
shows the mobility and interaction of the controlled subject to the other 

subjects that came across in daily living activity on one particular day, 
via the simulation on MATLAB R2018a. 

Fig. 5(b) shows, on the same day, when H1 meet the controlled 
subject, H1 fulfilled the condition of getting infected; based on the co-
ordination, we discovered that H1 spent more than 27 min with a dis-
tance of less than 2 m approximately. The performance of the infection 
prediction was the function of spatiotemporal data completeness in 15 
days of incubation, that’s why for the 15 days available data, system 
performance was optimum. The real number of infected people was 
done by contacting and confirming suspected people who came in 
contact with the particular COVID-19 subject. In contrast, the prediction 
solely depended on the spatiotemporal data-based backtracking. When 
we collected GPS-based spatiotemporal data, the data had high bias as 
the proximity is approximate. We did not get the exact distance between 
the infected subject and suspect, so it caused the system to consider the 
distance threshold 2 m ± 2 m. This caused the system to produce many 
false-positive (FP) predictions of suspected infected subjects. As (a) 
where all days data was available and we did not implement behavioral 
mobility prediction, we recorded the least number of false-negative (FN) 
0.010 as compared to the other three categories [(b), 2–3 days data 
missing, FN = 0.13], [(c), 4–8 days data missing, FN = 0.34], [9–12 
days data missing, FN = 0.39]. Whereas for the same reason as (a) had 
all the incubation data available, it recorded the highest false positive 
0.10 as it considered standard deviation distance 2 m. The proposed 
system was designed in such a way so that it would not miss any infected 
subject, i.e., false-negative should be as small as possible. Fig. 6(a) 
represents the ROC curve of all four confusion matrix, where complete 

Fig. 3. Screenshots of COUNTERACT graphical user interface.  

Fig. 4. (a) Reduced data size ratio vs Number of Deep Learning Network Layers, (b) Performance of Layer Scheduling and classical layers for various task load to 
computational time (c) Online Task Scheduling algorithm evaluated, compared with FIFO, LBF under different applied tasks and deployed tasks. 
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days data secured a promising curve through exceptional accuracy 
0.945, sensitivity 0.90, and specificity 0.99; on the other hand, perfor-
mance went down with the decrease in incubation days data as [2–3 
days data missing, accuracy 0.84, sensitivity 0.81 and specificity 0.87], 
[4–8 days data missing, accuracy 0.67, sensitivity 0.69 and specificity 
0.66], [9–12 days data missing, accuracy 0.61, sensitivity 0.62 and 
specificity 0.61]. As the proximity of suspect subjects with COVID-19 
subject goes beyond the threshold 

distance, the chance of getting infected reduces with increase in 
distance and decrease in time spent together. Whereas when the infected 
subject and suspected subject at proximity less than 2 m, there is a 
higher probability of infection even when they spend less time together. 
Fig. 6(b) shows 3D probability distribution with a change in proximity 
and time spent together. The scale axis defines the score of chances of 
infection from -10 (which is safest) to +10 (highest probability of getting 
infected). 

Fig. 5. (a) 3D COVID-19 Subject moments relative to other subjects, (b) 3D moment of COVID subject relative to his friend (H1), and yellow box highlight the time 
duration they spend together, that caused him (H1) to get effected with COVID-19 as well. 
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5. Limitation and future work 

The incomplete spatiotemporal data in the instance files stops us 
from correctly evaluating which movement algorithm best records the 
spread of authentic infection. However, the COUNTERACT system is an 
integrated contagion spread recognition approach and significant for 
community well-being resolutions, etc. Spatiotemporal mathematical 
prototypes of spread execute finest with added spatiotemporal bigger 
data size. The event statistics are not entirely complete to conduct the 
disease spread at its best. One of the reasons for this limited data is the 
assumption on the mobility of missing incubation bay’s data. Therefore, 
a position variation can fail to be seized if the GPS and the mobile phone 
are off, and the projected location for a specified day might not resemble 
the location where the individual has been to. The spatial measure 
balances seizing applicable signal and particulars, processing parame-
ters magnitude, and measuring out the noise. This assumption of 
mobility prediction increases the bias in spatiotemporal data. 

Moreover, the location data’s privacy is a critical aspect that needs to 
address without solving it; people hesitate to use the software tool. The 
experiments are ongoing to resolve privacy issues through differential 
privacy (Qiao et al., 2019) for GPS location data. Differential privacy 
approaches work on the anonymization approach, which assures the 

resultant of computing completed on the applied database will not differ 
considerably despite even if any subject’s data are incorporated in the 
database. 

6. Conclusion 

COUNTERACT system comprises reception of subject location data; 
treating the location data to produce location information, the location 
information consisting of a point of contact between the confirmed 
COVID-19 subject and the suspected subjects. Disease trajectory indi-
cated the relation of the neighboring individual with disease trajectory. 
Location information was sorted and updated regularly in the storage. 
The update included shaving of location information, of negligible risk 
according to the proximity, and removing time/date periods where the 
COVID19 subject spent less time with the neighboring subject. The 
proposed tool generated a list of adjacent subjects based on the mobile 
number of COVID19 subjects. COUNTERACT is a computer- 
implemented infection forecast technique performed by a computing 
system. It is including identifying, based on the subset of the population 
who are likely carrying an infection. Recognizing, by the computing 
system, an exposure level of a user to the contagion based on a corre-
lation of a first location data related with the user with a second location 

Fig. 6. (a) ROC curve of COUNTERACT system performance on a prediction of spread among healthy subjects, (b) 3D Simulation of the contagion spread among 
healthy subject from a controlled COVID-19 subject to the threshold value of proximity and time spent. 
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data related with one or more users in the subset of the population who 
are likely carrying the infection; recognizing, by the computing system 
and based on the exposure level, whether the user is likely to be or 
become ill; providing, for display on a user computing device, a notifi-
cation indicating that the user has been exposed to the infection. It 
identifies an action for avoiding exposure to the contagion; and 
providing a notification alerting the user to the action to a computing 
device associated with the user. Determining the user’s exposure level to 
the contagion determines that the user was present in a geographic re-
gion within an exposure window. There are highly populated developing 
countries such as India, Brazil; they suffered most during the lockdown 
phase. These developing economies were finding it hard to manage the 
primary day to day facilities and livelihood. The proposed system can 
serve in a new normal condition of the virus outbreak, where instead of 
shutting down the nation, we can practice social distancing and track the 
spread of the virus. This is the modern and technologically advanced 
path for the sustainability of society. 

Consent to participate 

All participants gave consent to participate in the data collection 
process. Written informed consent was obtained for publication of this 
research article. 

Ethics approval 

The study protocol was designed according to the hospital’s clinical 
study regulation and approved by the Internal Ethics Committee. 

Funding 

This work is supported by Eurotech MSCA H2020 (Grant No. 
754462), ARC ITRH for Digital Enhances Living (Grant No. 
IH170100013), and REACH (Grant No. 690425). 

Declaration of Competing Interest 

The authors declare no conflict of interest. 

References 

Ahmed, N., Michelin, R. A., Xue, W., Ruj, S., Malaney, R., Kanhere, S. S., et al. (2020). 
A survey of covid-19 contact tracing apps. IEEE Access. 

https://www.hpe.com/us/en/servers/edgeline-systems.html (11th Nov 2020). 
Bello-Orgaz, G., Jung, J. J., & Camacho, D. (2016). Social big data: Recent achievements 

and new challenges. Information Fusion, 28, 45–59. 
Bibri, S. E. (2018). The IoT for smart sustainable cities of the future: An analytical 

framework for sensor-based big data applications for environmental sustainability. 
Sustainable Cities and Society, 38, 230–253. 

Carvalho, D., Barbastefano, R., Pastore, D., & Lippi, M. C. (2020). A novel predictive 
mathematical model for COVID-19 pandemic with quarantine, contagion dynamics, 
and environmentally mediated transmissio18n. medRxiv. 

Cencetti, G., Santin, G., Longa, A., Pigani, E., Barrat, A., Cattuto, C., et al. (2020). Using 
real-world contact networks to quantify the effectiveness of digital contact tracing 
and isolation strategies for Covid-19 pandemic. medRxiv. 

Fahey, R. A., & Hino, A. (2020). COVID-19, digital privacy, and the social limits on data- 
focused public health responses. International Journal of Information Management, 55, 
Article 102181. https://doi.org/10.1016/j.ijinfomgt.2020.102181 

Fernandes, R., & GL, R. D. S. (2017). A new approach to predict user mobility using 
semantic analysis and machine learning. Journal of Medical Systems, 41(12), 188. 

Gupta, R., Bedi, M., Goyal, P., Wadhera, S., & Verma, V. (2020). Analysis of COVID-19 
tracking tool in India: Case study of aarogya setu mobile application. Digital 
Government: Research and Practice, 1(4), 8. https://doi.org/10.1145/3416088. 
Article 28 (December 2020). 

Jamal, S., & Habib, M. A. (2020). Smartphone and daily travel: How the use of 
smartphone applications affect travel decisions. Sustainable Cities and Society, 53, 
Article 101939. 

John Leon Singh, H., Couch, D., & Yap, K. (2020). Mobile health apps that help with 
COVID-19 management: Scoping review. JMIR nursing, 3(1), Article e20596. https:// 
doi.org/10.2196/20596 

Klar, R., & Lanzerath, D. (2020). The ethics of COVID-19 tracking apps – Challenges and 
voluntariness. Research Ethics, 16(3-4), 1–9. https://doi.org/10.1177/ 
1747016120943622 

Kontokosta, C. E., & Hong, B. (2021). Bias in smart city governance: How socio-spatial 
disparities in 311 complaint behavior impact the fairness of data-driven decisions. 
Sustainable Cities and Society, 64, Article 102503. 

Li, H., Ota, K., & Dong, M. (2018). Learning IoT in edge: Deep learning for the Internet of 
Things with edge computing. IEEE Network, 32(1), 96–101. 

Lu, M., An, K., Hsu, S. C., & Zhu, R. (2019). Considering user behavior in free-floating 
bike sharing system design: A data-informed spatial agent-based model. Sustainable 
Cities and Society, 49, Article 101567. 

Maccari, L., & Cagno, V. (2020). Do we need a Contact Tracing App? arXiv preprint arXiv: 
2005.10187. 

Magklaras, G., & Bojorquez, L. N. L. (2020). A review of information security aspects of 
the emerging COVID-19 contact tracing mobile phone applications. arXiv preprint 
arXiv:2006.00529. 

Mallik, R., Sing, D., & Bandyopadhyay, R. (2020). GPS tracking app for police to track 
ambulances carrying COVID-19 patients for ensuring safe distancing. Transactions of 
the Indian National Academy of Engineering, 5, 181–185. https://doi.org/10.1007/ 
s41403-020-00116-8 

Martin, T., Karopoulos, G., Hernández-Ramos, J. L., Kambourakis, G., & Fovino, I. N. 
(2020). Demystifying COVID-19 digital contact tracing: A survey on frameworks and 
mobile apps, wireless communications and mobile computing. https://doi.org/10.1155/ 
2020/8851429 

Menni, C., Valdes, A. M., Freidin, M. B., et al. (2020). Real-time tracking of self-reported 
symptoms to predict potential COVID-19. Nature Medicine, 26, 1037–1040. https:// 
doi.org/10.1038/s41591-020-0916-2 

Qiao, Y., Liu, Z., Lv, H., Li, M., Huang, Z., Li, Z., et al. (2019). An effective data privacy 
protection algorithm based on differential privacy in edge computing. IEEE Access, 7, 
136203–136213. 

Silva, J. C. S., de Lima Silva, D. F., Neto, A. D. S. D., Ferraz, A., Melo, J. L., 
Júnior, N. R. F., et al. (2021). A city cluster risk-based approach for Sars-CoV-2 and 
isolation barriers based on anonymized mobile phone users’ location data. 
Sustainable Cities and Society, 65, Article 102574. 

Skoll, D., Miller, J. C., & Saxon, L. A. (2020). COVID-19 testing and infection 
surveillance: Is a combined digital contact-tracing and mass-testing solution feasible 
in the United States? Cardiovascular Digital Health Journal, 1(3), 149–159. https:// 
doi.org/10.1016/j.cvdhj.2020.09.004 

Thai, M. T., Wu, W., & Xiong, H. (Eds.). (2016). Big data in complex and social networks. 
CRC Press.  

Urbaczewski, A., & Lee, Y. J. (2020). Information Technology and the pandemic: A 
preliminary multinational analysis of the impact of mobile tracking technology on 
the COVID-19 contagion control. European Journal of Information Systems, 1–10. 

van Franch-Pardo, I., Napoletano, B. M., Rosete-Verges, F., & Billa, L. (2020). Spatial 
analysis and GIS in the study of COVID A review. The Science of the Total Environment, 
739, 140033. https://doi.org/10.1016/j.scitotenv.2020.14003 

H. Ghayvat et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0005
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0005
https://www.hpe.com/us/en/servers/edgeline-systems.html
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0015
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0015
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0020
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0020
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0020
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0025
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0025
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0025
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0030
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0030
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0030
https://doi.org/10.1016/j.ijinfomgt.2020.102181
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0040
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0040
https://doi.org/10.1145/3416088
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0050
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0050
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0050
https://doi.org/10.2196/20596
https://doi.org/10.2196/20596
https://doi.org/10.1177/1747016120943622
https://doi.org/10.1177/1747016120943622
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0065
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0065
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0065
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0070
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0070
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0075
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0075
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0075
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0080
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0080
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0085
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0085
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0085
https://doi.org/10.1007/s41403-020-00116-8
https://doi.org/10.1007/s41403-020-00116-8
https://doi.org/10.1155/2020/8851429
https://doi.org/10.1155/2020/8851429
https://doi.org/10.1038/s41591-020-0916-2
https://doi.org/10.1038/s41591-020-0916-2
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0105
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0105
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0105
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0110
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0110
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0110
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0110
https://doi.org/10.1016/j.cvdhj.2020.09.004
https://doi.org/10.1016/j.cvdhj.2020.09.004
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0120
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0120
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0125
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0125
http://refhub.elsevier.com/S2210-6707(21)00090-1/sbref0125
https://doi.org/10.1016/j.scitotenv.2020.14003

	ReCognizing SUspect and PredictiNg ThE SpRead of Contagion Based on Mobile Phone LoCation DaTa (COUNTERACT): A system of id ...
	1 Introduction
	2 Proposed work
	2.1 Methodology

	3 System modeling and performance evaluation
	3.1 COVID-19 pandemic direct infection suspicion model
	3.2 COVID-19 pandemic indirect infection suspicion model
	3.3 Mobility behavioral modeling
	3.4 System approach based on HP edge line computing, Artificial Intelligence, and Internet of Things

	4 Performance evaluation, discussion, and observation
	5 Limitation and future work
	6 Conclusion
	Consent to participate
	Ethics approval
	Funding
	Declaration of Competing Interest
	References


