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Summary

Estimation and simulation of structure and motion are key topics in computer vision,
computer graphics, and augmented reality. There are many connections between these
terms. Structure and motion are naturally connected, and knowledge of either implies
knowledge about the other. When dealing with images, estimation and simulation
are, in some aspects, the opposites of each other. When we estimate, we extract
information from images, and when we simulate the imaging process, we create images
given information about the appearance of the scene.

In recent years, the interplay between these four terms has grown larger. An example
of this is in augmented reality applications where simulation and estimation must
work together. Accurate estimation of the surrounding environment is necessary to
create realistic, digitally overlaid content and immersive experiences.

In this thesis, we present work that lies in the span of estimation, simulation, structure,
and motion. Our goal is to explore synergies between simulation and estimation
concerning structure and motion. We investigate how we can use simulations to make
better estimations and how we can use estimations to create realistic simulations.
The work is split into three areas. Estimating motion to interpolate frames in video
sequences, estimating geometry to create illusory motion of physical objects, and
simulating the imaging process to estimate geometry.

Our contributions demonstrate that we can use simulations to estimate geometry
better and that by estimating structure and motion, we can simulate novel camera
viewpoints in time and space that can be used to create both video frame interpolations
and immersive augmented reality experiences.
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Danish Summary

Estimering og simulering af struktur og bevægelse er nøgleemner i computer vision,
computergrafik og augmented reality. Der er mange forbindelser mellem disse termer.
Struktur og bevægelse er naturligt forbundede, og viden om den ene medfører viden om
den anden. Når man beskæftiger sig med billeder, så er estimering og simulering, i nogle
aspekter, hinandens modsætninger. Når vi estimerer, så udtrækker vi information fra
billeder, og når vi simulerer billeddannelse, så danner vi billeder givet information om
scenens udseende.

I de senere år er samspillet mellem disse fire termer blevet større. Et eksempel på
dette er i augmented reality anvendelser, hvor simulering og estimering skal arbejde
sammen. At estimere de omkringliggende omgivelser nøjagtigt er nødvendigt for at
skabe realistisk, digitalt overlejret indhold og fordybende oplevelser.

I denne afhandling præsenterer vi arbejde der ligger i spændet af estimering, simulering,
struktur og bevægelse. Vores mål er at udforske synergier mellem simulering og
estimering vedrørende struktur og bevægelse. Vi undersøger hvordan vi kan bruge
simuleringer til at lave bedre estimater, og hvordan vi kan bruge estimater til skabe
realistiske simuleringer. Arbejdet er opdelt i tre områder. Estimering af bevægelse for
at interpolere billeder i videosekvenser, estimering af geometri for at skabe illusorisk
bevægelse af fysiske objekter og simulering af billeddannelsesprocessen for at estimere
geometri.

Vores bidrag viser, at vi kan bruge simuleringer til at estimere bedre geometri, og at
ved at estimere struktur og bevægelse kan vi simulere nye kamerasynspunkter i tid og
rum, der kan bruges til at skabe både interpolationer i videosekvenser og fordybende
augmented reality-oplevelser.
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CHAPTER1
Introduction

As suggested by this thesis’s title, the work presented here is related to four keywords:
structure, motion, estimation, and simulation. The contributions of the thesis primarily
lie in these four areas and the interface between them.

Structure and motion in images have been important topics for researchers in computer
vision and computer graphics for many decades and continues to be important in
many applications today. Sometimes they are studied independently of each other,
but they are often also studied together, as either holds much information about the
other. Image projections of an object in motion allow for reconstruction of both the
3D geometry, or structure, and the object’s motion. This process is known as structure
from motion [Ull79 ]. Reversely, if the structure of a scene in motion is known, it is
not very complicated to determine how this translates to motion in images.

Estimation and simulation are two very central concepts in vision and graphics. By
estimation, we mean the process of producing approximations. By simulation, we
mean the process of imitating a process or behavior. Traditionally, computer vision’s
main task has been to estimate properties from images such as object geometry or
appearance, whereas computer graphics have dealt with simulating the imaging process
by synthesizing images given their appearance attributes. Since the late ’90s, however,
the line between these fields has become less evident. The vision community has seen
an increasing interest in generating content, e.g., in computational photography, and
the graphics community has seen increased interest in estimating, e.g., photometric
properties. The resurgence of virtual- and augmented reality, and the problems that
have arisen from this, have also prompted more interaction between vision and graphics
to solve those problems.

The interface between the four terms is manifold. As mentioned, structure and motion
are inherently linked. Estimating them are classic problems in computer vision, and
synthesizing (or simulating) images using known structure and motion is fundamental
to graphics. Estimating and simulating can thus, to some extent, be considered the
dual of each other. When we estimate, we extract information given images, and when
we simulate, we create images given information. Much research focuses on either
estimation or simulation. With this thesis’s work, we seek to take advantage of this
dualism and explore synergies between estimating and simulating concerning structure
and motion to achieve better results.
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Estimation Simulation

A B

C
Figure 1.1: Visualizing how the contributions of this thesis uses simulations to create
estimations and uses estimations to create simulations.

1.1 Scope & Objectives
This thesis’s focus is to investigate applications in the interface between structure,
motion, estimation, and simulation, and if interaction between the terms can be used
in synergy to achieve better results. More concretely, we want to examine if we can
use simulations to create better estimations and use estimations to create better
simulations. Specifically, we aim to accomplish the following objectives:

Use estimated motion to simulate motion and interpolate images.

Use estimated geometry to simulate physical motion.

Use simulated imaging process to estimate geometry.

Contributions A to C each deals with one of these objectives. The contributions either
use estimations to do simulations or vice versa. This is illustrated in Figure 1.1 .

Estimate Motion in Images to Simulate Motion and Interpolate Images
We want to investigate if we can estimate motion in a temporal image sequence and
use this information to interpolate images at novel time points. Motion between images
is often estimated by relating changes in image intensity at a point to movement of
the intensity pattern where the points in the pattern are assumed to have constant
intensity. Our goal is to let a statistical model learn to estimate motion in image
sequences and interpolate images between the originals by showing the model how the
interpolated images are supposed to look. In this way, the model learns to predict
motion in a self-supervised manner. As part of this goal, an objective is to drop the
assumption of constant intensity and let the model gain knowledge about the world
by itself and possibly deviate from the assumption. Not enforcing this assumption
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enables the model to possibly learn a better motion representation suitable for the
task of interpolating images.

Current methods to estimate motion are generic and use the same model to estimate
the motion for all image sequences. We aim to transcend those methods by developing
a model that can bootstrap itself and learn to be particularly good for the specific
sequence that it is interpolating or going even deeper and optimize itself to be better
for each individual frame that is being created using the model.

Use Estimated Geometry to Simulate Physical Motion With this objective,
the goal is to use geometry estimation to meaningfully interact with the physical world
and create the illusion that real-world objects are moving when they, in fact, are not.
We aim to do this by projecting specific light patterns onto the objects, tuned in a
way to create a very subtle effect.

Movement is a strong attention cue, and making objects appear to move can be used
to grab people’s attention to specific objects. Some attention cues are better than
others for specific tasks. Subtle attention cues, such as the one we aim to create, is
possibly preferred to more crude cues in certain situations. Such a situation might be
to ensure compliance, e.g. if we want to remind a person to take their pills. Another
situation might be that we want to hint at the next clue in an escape room.

This objective is an example of an augmented reality application. To achieve the goal
successfully it is imperative that the experience is immersive. The digitally overlaid
perceptual information needs to blend in seamlessly with the physical world to make
it immersive. To blend seamlessly and create an immersive experience, we estimate
accurate geometry and appearance parameters for the object in focus. With these
estimations, we want to create an image from the projector’s point of view and adapt
the light pattern to simulate motion of the object in the physical world realistically.

Use simulated imaging process to estimate geometry Estimating object ge-
ometry from images is typically a two-step process. The first step is to produce a set
of points sampled from the object’s surface, called a point cloud. The second step
is to produce a surface from the sampled points. The first step encompasses several
sub-steps. When reconstructing an object’s surface from structured light images, the
structured light is first decoded, the resulting images are undistorted and rectified,
point correspondences between cameras (or projectors) are found, and points are
triangulated. With each step, we potentially throw away information and add noise
that will influence the end result. When a surface is reconstructed from a point cloud,
all prior information is usually discarded. This makes tracing the information and
error flow from input images to the final result very complicated.

Our goal is to avoid all of the sub-steps as well as the intermediate point cloud
representation and estimate surface geometry directly from the input images. To do
this, we simulate the imaging process to recreate the captured structured light images.
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By comparing rendered images with captured images and measuring the difference
we can directly relate the parameters of our reconstructed surface with the original
input data in a meaningful way. When iteratively updating the surface geometry, we
improve the simulation until the simulated images look like the captured images.

This approach makes use of the duality between estimating parameters from images and
producing images given some parameters. Instead of treating surface reconstruction
as a backward problem of estimating geometry from images, we recast the problem as
a forward problem of simulating the imaging process used to capture the images.

Our aim with the approach is to improve the surface reconstruction. Both in terms of
producing a more accurate reconstruction, but also in terms of traceability from input
to output. By simulating the imaging process, we can directly measure how each pixel
in the images affect the resulting surface geometry.

1.2 Thesis Structure
The thesis is divided into chapters whose content relates to the previous section’s
objectives.

Chapters 2 and 3 contains background information and related work associated with
the objectives and contributions of this thesis. Chapter 2 gives a description of central
aspects of the image formation process, how it can be modeled, and about motion in
images. Chapter 3 introduces aspects of geometry and shape acquisition in computer
vision.

In Chapter 4 we present the contributions of the thesis, and in Chapter 5 we conclude
and return to the objectives described in the section above.



CHAPTER2
Digital Images

Whether we want to extract information from images or render synthetic images, it is
necessary to understand how images are formed from photons passing through the
lens of a camera and hitting the image sensor, followed by being digitized into the
array of pixels we call a digital image.

This chapter will cover the basic theory behind how digital images are formed and
how we can model this process. This includes how we mathematically can describe a
camera, how we can fit the model’s parameters to a real camera, how photons are
converted into pixel values, and how noise occurs in that process. We will also briefly
cover how motion in images can be described, introduce a method for simulating it
and give a short description of convolutional neural networks, a standard tool used to
estimate parameters in images.

2.1 Imaging process
In this section, we will first describe the imaging process and how we can model it.
Firstly, we will describe how a digital image is formed and how we can describe noise
in the image. Secondly, we will describe how we can model a camera as perspective
projection and describe how we can use this model for a real camera.

2.1.1 Image formation and noise
Images taken with a digital camera are the results of the image sensor converting
photons into an array of digital values through a sequence of steps. Conventional
digital cameras do not directly measure the photons hitting the sensor but measure
each pixel’s irradiance during the exposure time t. Photons are converted into electrons
using the photoelectric effect. The electrons form a charge, which is converted into
voltage by a capacitor, which subsequently is amplified and digitized [Eur16 ; Die04 ].
This process is depicted in Figure 2.1 .

The imaging process is not deterministic, and real-world images taken with a digital
camera will always contain some amount of noise. How much depends on the quality
of the image sensor and on the amount of light in the environment. When photons
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Figure 2.1: From photons to pixel values. Photons hit a pixel and are converted into
electrons, which are converted into a voltage, which is amplified and digitized. Figure
adapted from [Die04 ]

arrive at the image sensor, they do so following a Poisson distribution. If µe is the
mean number of electrons that have been created from photons, then it follows that it
has variance

σ2
e = µe. (2.1)

This noise term is usually referred to as shot noise or photon noise.

Even if no light reaches the image sensor, there will still be some amount of electrons
present. This is called the dark signal and has mean µd and variance σd. The dark
signal comes mainly from thermally induced electrons. Noise arising from the camera
electronics, such as the voltage conversion and amplification, is typically included in
σd, which is called the readout noise and is Gaussian-distributed and independent of
the signal. The mean of the digital signal y comes out to

µy = K (µe + µd) , (2.2)

where the single parameter K is the overall system gain, which covers the process
of converting electrons into voltage, amplifying the signal, and digitizing it with an
analog-to-digital converter.

Combining the different noise terms, the variance of the digital signal y, or the noise,
becomes

σ2
y = K2 (σ2

d + σ2
e

)
. (2.3)

2.1.2 Modelling a camera
To both understand image formation and how to simulate it, we need a way of
mathematically describing a camera. The most common way of doing this is by using
the pinhole model, sometimes also referred to as perspective projection [HZ04 ]. The
projection of a 3D world point to an image plane is found by intersecting the image
plane and the line that joins the 3D point with an optical center, which is another
point in space that defines the camera’s position. The distance f from this point to
the image plane is called the focal length. If [X,Y, Z]T is the 3D point in space and
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[x, y]T is the corresponding point in the image plane, the latter can be found by means
of equal triangles (see Figure 2.2 )

x = f
X

Z
(2.4)

y = f
Y

Z
. (2.5)

With homogeneous coordinates, this projection is a linear mapping which can be
described by a 3x4 projection matrix P, i.e., if q is the 3D point in space in and p is
the projected point in the image plane, both in homogeneous coordinates, then

p = Pq =

f 0 0 0
0 f 0 0
0 0 1 0

q (2.6)

The focal length f is one of the internal camera parameters that are used to convert
image coordinates in world units to pixel coordinates. In the pinhole camera model,
the internal parameters are given by the intrinsic matrix A defined as

A =

 f β cx

0 αf cy

0 0 1,

 (2.7)

where (cx, cy) is the intersection point between the image plane and the line going from
the optical center perpendicular to the image plane. This is known as the principal
point, and the line is called the optical axis. The parameters α and β are parameters
used to handle non-square and sheared pixels. With the quality of modern cameras,
these are often not included and α = 1 and β = 0.

Finally, the position of a camera may not coincide with the origin of the world space,
and it may have an arbitrary orientation. This is accounted for by transforming the
3D world coordinates with a rotation vector R and translation vector t. These are
known as the extrinsic parameters of the camera.

Putting together the extrinsic parameters and intrinsic parameters the pinhole camera
model is defined by

p = Pq = A [R t] q. (2.8)

Non-linear distortion In some cases, we want a more precise camera model. The
linear assumption that straight lines are imaged as straight lines will, in general, not
hold for real cameras due to the many lens elements a modern camera lens usually
contains. This problem is typically alleviated by extending the pinhole camera model
to correct for lens distortion with the Brown-Conrady distortion model [Bro66 ; Con19 ].
Two components comprise this model; one accounting for radial distortion and one
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Figure 2.2: Caption

accounting for tangential distortion. Radial distortion is usually the most significant
part of this and is in the Brown-Conrady model modeled as a correction term by the
polynomial function

r(x, y) =
(
k1r

2 + k2r
4 + k3r

6) [x
y

]
, (2.9)

with x = (u− cx)/f , y = (v − cy)/f and r =
√
x2 + y2 is the radius from the optical

axis. The parameters k1, k2, and k3 are internal parameters of the camera called
distortion coefficients. The tangential distortion component is added to correct for
misalignment between the various optical lens elements in the camera lens and is
modeled by the term

t(x, y) =
[

2p1xy + p2(r2 + 2x2)
p1(r2 + 2y2) + 2p2xy,

]
, (2.10)

with p1, and p2 being internal tangential distortion coefficients. For expensive, high-
quality lenses, this term is often very insignificant.

Combining the two terms the Brown-Conrady distortion model maps distorted image
coordinates (u, v) to undistorted coordinates (u′, v′) by[

u′

v′

]
=
[
u
v

]
+ r(x, y) + t(x, y) (2.11)

2.1.2.1 Camera Calibration

When a real camera is modelled by the pinhole camera model the camera needs to
be calibrated, meaning that the parameters A, R, t, and possibly the distortion
parameters k = [k1, k2, k3, p1, p2]T needs to be determined. The de facto standard
method for doing is the one presented by Zhang [Zha99 ]. In this method, a planar
pattern with discernible features with known relative distances is imaged. From the
image locations of these features in a single image, a homography can be established,
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determining the relative pose between the camera and the planar object and admits
constraints on the intrinsic parameters. With multiple images, where either the camera
or the planar object has moved, the intrinsics A can be determined with a linear
closed-form solution. The solution is refined by a non-linear optimization step which
minimizes the sum of squared reprojection errors

arg min
A,k,{Ri},{ti}

n∑
i=1

m∑
j=1
‖uij − ŭ (A,k,Ri, ti,qj) ‖2, (2.12)

where uij is the observed image coordinates of the jth point in the ith image,
ŭ (A,k,Ri, ti,qi) is the projection of the point qj into the ith image as defined
by Equations (2.8 ) and (2.11 ). The points qj is defined in the coordinates of the
planar object as qj = [x, y, 0]T, and thus the camera pose given by Ri and ti is relative
to the pose of the planar calibration object.

2.1.2.2 Projector Calibration

For some applications, it is necessary to have a calibrated camera and a calibrated
projector. Contribution B is an example of such an application. A projector can be
considered an inverse camera, as the light rays being emitted from the projector can
be described in the same projective way as the camera captures light rays. The only
difference is the direction of the light rays, and therefore a projector is commonly
modeled as a pinhole camera. However, calibrating a projector is not possible to do
in the same fashion as for a camera since the projector cannot observe features on a
calibration object.

Some approaches to calibrating a projector are based on precise positioning and
movement of a calibration object relative to the projector [Guo+05 ; Che+09 ]. Other
approaches project feature points onto planes whose pose are determined with a
calibrated camera [KMK07 ; Sad+05 ; SC08 ].

Structured light sequences are used in other approaches to create a mapping between
camera pixel coordinates and projector pixel coordinates. This mapping allows for
creating images of a calibration object from the projector’s point of view [ZH06 ].
One method using this concept is presented by Moreno and Taubin [MT12 ]. Their
approach uses the same method for projector calibration as for camera calibration,
after determining the position of feature points on a calibration object in the projector
image plane. To determine these, they project structured light sequences onto the
calibration object. Decoding the structured light sequences observed by the camera
yields a mapping between pixel coordinates in the camera’s image plane and the image
plane of the projector. This mapping is then used to map the feature points from
camera image coordinates to projector image coordinates. However, the mapping is
only defined precisely in the camera’s pixel locations and cannot be used directly to
map from image coordinates, not in exact pixel locations. Therefore, it is necessary to
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interpolate between pixel locations. The interpolation is done using local homographies.
For each feature point in the camera, a local homography H is fitted to a small patch
of pixels around the point by solving

H = arg min
H̃

∑
uc

∥∥∥up − H̃uc

∥∥∥2
, (2.13)

where uc are the pixel coordinates in the image and up are the corresponding projector
coordinates. Other methods use a global homography[PP10 ]. The advantage of using
local homographies is that a linear relationship is only assumed close to each feature
point. This approach allows for modeling non-linear distortion of the projector, which
is significant for many projectors.

2.1.2.3 Stereo Calibration

Determining the relative pose between a number of cameras (or projectors) is called
stereo calibration. Each camera’s pose is given by a rotation matrix Rc and a
translation vector tc, which relates it to the world coordinate system. Often this
coordinate system is defined by the position and orientation of one of the cameras.
The relative pose between two cameras can be found from a series of images of a planar
calibration board, similar to camera calibration. It is a necessity that the calibration
board is visible on both cameras. As for camera calibration, a linear solution is first
found from point correspondences, and this is followed by a non-linear optimization
step [HZ04 ]. In the optimization step, the stereo reprojection error is minimized,
defined by

arg min
{Rc}{Ri},{ti}

n∑
i=1

m∑
j=1
‖u1,ij − ŭ (A1,k1,Ri, ti,qj) ‖2

+ ‖u2,ij − ŭ (A2,k2,RcRi,Rcti + Rc,qj) ‖2. (2.14)

Again, ŭ is projection into an image defined by its input parameters, u1,ij and u2,ij

are the observed image coordinates in camera one and two, respectively, of the jth

point in the ith image, qj = [x, y, 0]T are the 3D points defined in the coordinate
system of the calibration board, Ri and ti is the pose of the first camera relative to
the calibration board, and Rc and tc is pose of the second camera relative to the first,
which is what we ultimately are interested in.

2.2 Motion in images
An image captures a single moment in time and is inherently static. However, in
sequences of images, such as videos, objects may move from one image to the next or
appear to move. Motion in image sequences has been studied extensively for many
years. This includes determining and describing the motion and creating new image
sequences from a single image, where motion has been induced.
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2.2.1 Estimating motion
Estimating motion in images has seen interest in many applications. The motion
may arise from either the observer’s movement, movement of the observed scene, or
both. When we estimate motion in images, distinguishing the cases can be challenging
without prior knowledge. What we estimate is thus the relative motion. The most
common way of describing motion in images is in terms of optical flow.

2.2.1.1 Optical flow

Optical flow is a very general way of describing motion in images, in which each
pixel is assigned an independent motion vector describing the movement of that pixel.
Optical flow is typically computed between subsequent images in a sequence under the
assumption that a pixel’s intensity in the image is constant but merely shifts position
with time. This assumption means that optical flow can be determined as the motion
of the intensity pattern. The motion is traditionally determined by relating it to the
change in image brightness [HS81 ]. The assumption that the intensity of a pixel (x, y)
at time t is constant but moves to a new location with time yields the equation

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t), (2.15)

where I(x, y, t) is the intensity at location (x, y) at time t, and ∆x,∆y,∆t are the
shifts in position and time. Assuming that the motion is small, the right-hand side
can be linearized and letting ∆t→ 0 we end up with

∂I

∂x

dx

dt
+ ∂I

∂y

dy

dt
+ ∂I

∂t
= 0, (2.16)

which is known as the brightness constancy constraint. This is an equation in two
unknowns dx

dt and dy
dt , which is exactly the optical flow. To compute the flow, an

additional constraint is necessary. Various constraints have been proposed, such as
constant optical flow in small regions [LK+81 ] or regularising the flow field with a
smoothness term [HS81 ].

2.2.2 Simulating motion
What humans perceive may not always coincide with reality. Our visual system tries
to process sensory information and adapt it to standard viewing situations. Sometimes
the adaptions cause us to interpret a scene incorrectly [BP06 ]. This effect causes rise
to what is known as optical, or visual, illusions. An important class of optical illusions
is those where we perceive motion even when there is no motion.

2.2.2.1 Motion Without Movement

In Contribution B we make use of a visual illusion by Freeman, Adelson, and Heeger
[FAH91 ] called ’Motion Without Movement’. This method derives patterns from a
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single still image, where the patterns appear to be moving. They base their method
on the phenomena that our visual system interprets local phase changes as global
motion. To create the phase change, the image I(x, y) is convolved with two filters that
are identical except shifted in phase by 90 degrees, and the results are interpolated.
Specifically, the second derivative of a Gaussian G and its Hilbert transform H are
used. The image sequence is computed by

D(x, y, t) = cos(ωt) (I ∗G) (x, y) + sin(ωt) (I ∗H) (x, y), (2.17)

where ∗ is the convolution operator and ω controls the motion’s temporal frequency.

The result of (2.17 ) is a sequence of interpolated filter responses. When watched at a
constant frame rate, they a clear illusion of motion. However, it is interpolated filter
responses, which will look quite different from the original still image. To make the
original image appear to be moving, we can simply add some amount of the filter
response, controlled by a parameter α to the original image

Im(x, y, t) = I(x, y) + αD(x, y, t). (2.18)

2.3 Convolutional neural networks
Convolutional neural networks are a commonly used tool to estimate properties in
images. They are very versatile and have shown strengths for many complicated visual
tasks, such as image classification [KSH17 ; He+16 ], pose estimation [BT16 ; Bul+20 ],
and image denoising [UVL18 ; Bro+19 ].

Feedforward neural networks are function approximators which maps an input x to an
output y = f(y; θ) where θ are parameters that the model learns by seeing examples
of x and y [Goo+16 ].

The function f is typically composed of a number of layers f1, f2, . . . , fn

f(x) = fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1(x). (2.19)

Learning the layers’ parameters is usually done using the back-propagation algo-
rithm [RHW86 ], also called reverse-mode automatic differentiation.

In convolutional neural networks, the layers are made up of a set of image filters that
are convolved with the output of the previous layer (or the input for the first layer),
and the weights in the filter are the learned parameters.

In Contribution A we use a convolutional neural network to predict motion from an
unknown frame to its two neighboring frames in a video sequence.



CHAPTER3
Geometry in

Computer Vision
The initial objective of the field computer vision was to mimic human vision as part
of an attempt to replicate human intelligence in computers. One of the earliest tasks
was that of recovering the 3D structure of a scene from images thereof. This task is
still an active area of research. In Contribution C , we present a novel method for
reconstructing surfaces in a structured light setup.

Typically, reconstructing a continuous surface is done in two steps, which may include
several substeps. The first step is to sample points from the boundary of the object.
These point samples are usually referred to as a point cloud. The second step is then
to produce a continuous surface from the point cloud.

To generate a point cloud, we need a way of computing the distance, or depth,
between points on the object and the cameras observing it. Different computer vision
algorithms attempt to mimic various depth cues that the human visual system uses to
achieve this. One of the cues human perception uses to infer depth, and the one most
algorithms replicates, is stereopsis. Stereopsis is the depth perception that arises from
binocular disparity, i.e., the difference in position of a point between the two different
retinal images, that our eyes see from their different positions [HR95 ].

3.1 Point triangulation
Using binocular disparity in two or more images of the same scene, acquired from
different positions, to determine the distances from a point on an object to the cameras
is called point triangulation.

Point triangulation is the process used to sample a point cloud from the surface of
an object, which subsequently can be used to recover the full surface. Light from a
3D point travels in straight lines onto the image sensors of the cameras observing
it. These lines can be determined from the observed image coordinates that the 3D
point projects to and known camera positions. The 3D position of the point is where
the lines intersect. Figure 3.1 illustrates this concept. To mathematically describe
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Figure 3.1: Estimation of 3D point by triangulation.

this, suppose that p1 = [u1, v1, 1]T and p2 = [u2, v2, 1]T are projections of a 3D point
q = [X,Y, Z, 1]T into two calibrated cameras defined by projection matrices P1 and
P2. The task is then to recover q. If the ith row of Pj is denoted Pi

j then a simple
linear method arises from rearranging the equations given by the projections

s1

u1
v1
1

 =

P1
1

P2
1

P3
1

q, and s2

u2
v2
1

 =

P1
2

P2
2

P3
2

q, (3.1)

to form the linear system 
P3

1u1 −P1
1

P3
1v1 −P2

1
P3

2u2 −P1
2

P3
2v2 −P2

2


︸ ︷︷ ︸

B

q = 0, s.t. q 6= 0, (3.2)

In real situations, all parts used to construct B stem from noisy measurements and
thus will contain errors. Instead of finding the null space of B it is therefore common
to determine q by

arg min
q
‖Bq‖2, s.t. ‖q‖ = 1. (3.3)

One way of solving this is by choosing the unit singular vector corresponding to
the smallest singular value of B [HZ04 ]. This linear method often produces good
results. Analysis, however, reveals that when solving the problem in Equation (3.3 ),
observations from cameras further away are weighted more [HZ04 ]. To obtain a better
estimate of q, the reprojection errors can be minimized, similarly to camera calibration
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in Section 2.1.2.1 . The result of Equation (3.3 ) is then used as a linear initializer for
this minimization problem.

Before we can start triangulating points, we need to observe the same point in multiple
cameras. Determining image points coming from the same 3D point is known as the
correspondence problem.

3.2 Structured Light Scanning
We typically distinguish between images acquired with passive lighting and images
acquired with active lighting when determining image correspondences between two or
several images. Structured light scanning is an imaging technique that falls in the latter
category and is used to acquire the shape of objects in the form of a point cloud. As
opposed to passive methods, such as multi-view stereo, where correspondences typically
are determined as points with similar neighborhoods in the image space [Sei+06 ],
structured light actively illuminates the scene with coded patterns. The coding of the
patterns makes finding correspondences between images a less complicated task.

The main principle in structured light scanning is that one or more cameras acquire
images of a scene illuminated by several patterns from an active light source, typically
a projector. The patterns encode the scene with information from which dense
correspondences from the projector to the cameras or between the cameras can easily
be determined and subsequently triangulated. The result is a dense 2.5D depth image,
which easily can be converted into a point-cloud or a triangle mesh.

3.2.1 Phase Shifting
There exists an abundance of coding strategies for structured light. In this section, we
will focus on the commonly used phase-shifting patterns. For an overview of various
structured light coding strategies, see [Sal+10 ]. Phase-shifting patterns uniquely
encodes every point along the coding axis by a phase value. The coding axis is
typically the projector’s horizontal axis. Objects will deform the recorded pattern
observed by a camera. Suppose the phase value in each camera pixel is determined.
This yields correspondences between the camera pixels and projector pixels. From
these correspondences, points can be triangulated to recover a point cloud from the
object’s surface. If using more than one camera, and the triangulation is done between
the cameras, the patterns can be considered a way of adding a unique texture to the
object. This texture makes it significantly easier to determine dense correspondences
between the cameras.

Phase-shifting patterns encode the scene with N sinusoidal patterns of the form

Ip,n(up) = 1
2 + 1

2 sin
(

2π
(
f
up

Np
− n

N

))
, (3.4)
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where f is the frequency (or the number of periods within the projector), up is the
projector column, Np is the total number of projector columns, and n ∈ 1, . . . , N is
the index of the pattern. Note here that the pattern only changes in the horizontal
direction of the projector. Patterns can similarly be defined in the vertical direction.
The intensities observed by the camera is

Ic,n(uc, vc) = Ac(uc, vc) sin
(

2π
(
f
up

Np
− n

N

))
+ Bc(uc, vc), (3.5)

where up

Np
is the corresponding normalized projector coordinate for the camera pixel in

question, Ac is the intensity of the projector light reflected into the camera, and Bc is
the intensity of light corresponding to other light sources in the scene. With these, we
can separate the light in the scene into direct and global light, which is described in
Section 3.2.2  . Both Ac and Bc as well as the phase, or projector column, can easily
be computed using the discrete Fourier transform.

With phase-shifting patterns, a scene can be encoded using only three shifts. Increasing
the number of shifts, or patterns, increases the precision at which the terms above can
be determined. In practice, different sequences with different frequencies are often
used.

3.2.1.1 Phase Unwrapping

The phases that we estimate are wrapped. That means that we only know them modulo
2π [JB94 ]. This causes ambiguities when determining correspondences. Unwrapping
the phases, and thereby resolving the ambiguities, is therefore necessary. In principle
this can be achieved by adding a multiple of 2π when a sharp shift occurs in the
phases along the coding axis. Due to several factors, mainly noise, this will usually
not give a good solution.

One way of unwrapping the phase values is by utilizing that we typically project more
than one sequence of patterns. By choosing the frequencies of the sequences carefully,
we can find the unwrapped phase with the heterodyne principle [RRT97 ]. If two
phases with wavelength λ1 and λ2 are subtracted, the result is a beat phase function
with wavelength λb given by

λb = λ1λ2

λ1 − λ2
. (3.6)

This is illustrated in Figure 3.2 . By choosing λ1 and λ2 such that λb = 1 the result is a
phase function which spans the entire projector. This is achieved when the frequencies
are chosen such that f2 = f1 + 1. The beat function can be used to determine the
multiples of 2π that we need to add to the original unwrapped phases in order to
unwrap them.
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up

phase

λ1

λ2

up

phase

λb

Figure 3.2: Figured adapted from [RRT97  ], illustrating how a beat function with
wavelength λb can be determined by subtracting two phase functions with wavelength
λ1 and λ2.

3.2.2 Direct and Global Illumination

When a camera takes a picture of a scene, it measures the irradiance in each pixel. In
other terms, the camera measures the amount of light that bounces on the objects in
the scene and hits the camera sensor. In structured light imaging, the light can be
separated into two parts. The first part is the projector light reflected by the objects,
and the second part is everything else. This separation is also referred to as direct and
global illumination. The latter contains ambient light and light due to effects such as
subsurface scatting and interreflections. Global illumination may lead to unwanted
reconstruction artifacts in the reconstruction, and therefore we often want to separate
the direct light and the global light [CSL08 ].

When patterns of the form (3.5 ) are observed, we automatically gain a way of separating
direct light from global light [Nay+06 ], given by

Ldirect = 2Ac, Lglobal = Bc −Ac.

In Contribution C we utilize the global and direct light estimates to create realistic
looking renderings, trying to replicate images captured by a camera. We do this by
using the estimated Ac and Bc to render images on the form (3.5 ).
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3.3 Surface Reconstruction
After a point cloud has been obtained, the second step is to reconstruct a continuous
surface. Reconstructing a physical object’s surface has been an active topic since the
earliest days of computer vision in the early 1970s. Back then, reconstructing 3D
structure from images was merely seen as a step towards full scene understanding
and artificial intelligence. Since then, however, recovering digital versions of objects
has become valuable in, e.g., many engineering applications or for cultural heritage
preservation.

3.3.1 Surface representations
We can represent surfaces in several different ways. When choosing a representation to
use for a specific application, it is vital to consider different representations’ strengths
and weaknesses. Suppose the application, e.g., is to measure geometric distances on
the object. Then it is sufficient to represent the surface with point samples from
the object boundary since it is fast and easy to compute distances between points.
Point samples, however, do not contain any neighborhood information about which
points are close to each other geodesically. This property may be required for other
applications. Most applications require a representation that specifies the entire
surface continuously. Surfaces representations are commonly split into either explicit
representations or implicit representations. Figure 3.3 shows a 2D example of an
explicit and an implicit representation of the same curve.

3.3.1.1 Explicit surfaces

Explicit representations define, explicitly, the boundary of an object. One way of
doing this is by parameterizing the surface by a function f : X → R3, where X ⊂ R2.

Figure 3.3: Left: A curve representing the boundary of an object with the inside in
gold. Middle: Explicit representation using piecewise linear segments. Right: Implicit
representation with deep blue meaning large negative values and bright yellow meaning
high positive values.
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The surface S is then given by S = f(X).
Most freeform surfaces are impractical or even impossible to represent exactly, and
therefore various approximations are used.

Spline surfaces Producing a single parameterization to represent a complex shape
is not an easy task. Instead, the surface is often represented by a set of surface patches,
with each patch having its own parametrization. A common way of parameterizing
the patches is by defining control points ci ∈ R3 and a set of basis functions Ni(u, v)
and combining them in the form

f(u, v) =
n∑

i=1
ciNi(u, v). (3.7)

The most typically used basis functions are B-splines, which are piecewise polynomials
with minimal support. The minimal support implies that each control point ci only
has local influence on the geometry. Furthermore, B-splines has the property that∑n

i=1 Ni(u, v) = 1, which means that the surface is completely contained in the convex
hull of the control points. Together with the local influence this means that controlling
the geometry of the surface can be done by simply moving the control points.
To represent a complex, continuous surface, we need a large number of pathces linked
together smoothly. Ensuring smoothness in the transition between the patches is
however, not trivial.

Subdivision surfaces Subdivision surfaces are akin to spline surfaces in that a set
of control points defines them. However, instead of combining these with a set of
basis functions, they form a control mesh that is repeatedly subdivided. In contrast
to spline surfaces, we can represent objects of arbitrary topology without the need for
linking together patches. They cannot, however, be used to represent objects with
arbitrary geometry.

Triangle meshes Triangle meshes are a special case of polygonal meshes. Polygonal
meshes represent the surface by a set vertices V , a set of edges E , and a set of faces F .
Polygonal meshes are thus not a parameterized surface, albeit still an explicit surface
representation. In a triangle mesh, each face f ∈ F connects exactly three vertices
making each face a triangle, hence the name. Since triangles are planar, triangle
meshes are piecewise linear. The approximation error when using them to represent
smooth surfaces is O(h2), where h is the maximum edge length [Bot+06 ]. This implies
that the error from using a triangle mesh representation is inversely proportional
to the number of faces, which means that we can represent any smooth surface as
precisely as needed by simply adjusting the number of faces.
Moreover, triangle meshes allow for arbitrary topology and for changes to the surface
geometry by merely moving the vertices. Together these features render triangle
meshes as a powerful and versatile means of representing surfaces.
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3.3.1.2 Implicit surfaces

Another way of specifying a surface is to implicitly represent it as the kernel of
some function F : R3 → R, or in other terms, the surface is given by the level set
S = {(x, y, z) ∈ R3 |F (x, y, z) = 0}. Since F is defined over an entire volume, this is
also referred to as a volumetric representation. This representation is very often used
in medical imaging for various modalities such as CT or MRI scans. Normally F is
defined to be negative inside an object and positive outside. Implicit representations
have several advantages. Some of the most important are:

With one simple function evaluation, we can determine if a point is inside or
outside an object.

Boolean operations on implicit surfaces amount to simply looking at the sign
of F . Using Boolean operations, it is easy and efficient to make changes to the
topology of the surface.

Contrary to explicit surfaces, such as a triangle mesh, however, we cannot easily
change the geometry of an implicit surface.

Signed distance function The most widely used implicit surface representation is
the signed distance function. This specifies the distance to the object surface, with
negative values corresponding to points inside the object and positive values to points
outside. This makes distance calculations to the surface trivial.

3.3.2 Surface reconstruction from point cloud
Throughout the years, a wealth of methods for reconstructing surfaces from point
clouds have been proposed. For an overview of many of these methods we refer the
reader to Berger et al. [Ber+17 ]. In general, there are two approaches for reconstructing
a surface from a point cloud. A surface can either be fitted to the points, or the points
can be interpolated. To make the first approach tractable, certain prior assumptions
must be made, e.g., smoothness of the resulting surface. Most methods using this
approach are volumetric, where the surface is implicitly defined as a level set of a
function defined in a volume.

In the second approach, the point clouds are assumed to be noise free, and reconstruct-
ing a surface is treated as a combinatorial problem, where a neighborhood structure
needs to be imposed on the points in the point cloud.

Another class of methods for surface reconstruction, are methods that bypass the
intermediate point cloud representation, and reconstructs a surface directly from
images. The distinction between the two types of methods is visualized in Figure 3.4 .
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Images Reconstructed surface

Point cloud

Figure 3.4: Surface reconstruction from images is most often are two-step approach,
where an intermediate point cloud representation is first determined, followed by a
surface reconstruction step (route below). Other methods use a one-step approach
where the surface is reconstructed directly from the images (route above).

3.3.2.1 Volumetric Surface Reconstruction

Volumetric methods for surface reconstruction represent surfaces, as the name implies,
in a volume. The surface is implicitly defined as a level set of a function, which is
often defined on a regular grid of voxels. An early and defining method of this kind
for reconstructing surfaces of arbitrary geometry is that of Hoppe et al. [Hop+92 ]. In
this work, a signed distance field is computed as the distance to locally fitted planes.
The zero-level set of the distance field defines the surface.

The arguably most well-known method is Poisson Reconstruction [KBH06 ]. This
method estimates an indicator function, which is one inside the surface and zero
outside the surface. Normals are computed at each point in the point cloud, and the
oriented points are treated as samples of the gradient field of the indicator function.
The problem then amounts to finding an indicator function whose gradient field best
fits these samples. Solving this problem in the least-squares sense is formulated as a
Poisson equation, hence the name. Screened Poisson Reconstruction is an extension of
this work, where interpolation constraints are incorporated for each point in the point
cloud, penalizing the indicator function deviating from zero at these points [KH13 ].
In Contribution C we use Screened Poisson Reconstruction to create starting guesses
for a minimization problem.

A variety of other methods reconstruct surfaces using an implicit function. These
include determining an indicator function using a wavelet basis [MPS08 ], determining
a signed distance field and regularizing it using a Markov Random Field [PBL09 ],
computing a signed distance field using a moving least squares approach [SOS04 ], or
implicitly defining the surface as the decision boundary of a learned classifier given by
a neural network [Mes+19 ].

If an explicit representation, e.g., a triangle mesh, is required, this can be extracted
using isosurface polygonization algorithms such as Marching Cubes [LC87 ].
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3.3.2.2 Combinatorial Surface Reconstruction

Surface reconstruction from point clouds can also be considered a combinatorial
problem, where the original points in the point cloud, or a subset of them, are
interpolated. Usually, a triangle mesh is created from this set of points [CG06 ]. This
contrasts with the surface fitting methods described in the previous section, where
the resulting surface does not necessarily pass through the original points of the point
cloud. Typically, combinatorial methods are based on extracting the surface as a
subset of triangles from a Delaunay triangulation [Boi84 ; EM94 ; ABK98 ].

3.3.3 Surface reconstruction directly from images
While most surface reconstruction algorithms take a point cloud of samples from the
object boundary as input, some algorithms attempt to recreate the surface directly
from images, thereby avoiding the process of producing a point cloud from the images.

Kutulakos and Seitz [KS00 ] introduces Space Carving. This algorithm computes the
surface by considering the set of all shapes consistent with the input images and
determining a special shape of this set, called the photo hull, which contains all of the
other shapes in the set within its volume.

Some methods reconstruct the surface by deforming a surface representation such
that it is consistent with the input images. One such method is the one presented
by Zhang and Seitz [ZS00 ], and improvements to this method [IS02 ; IS03 ; YXA04 ;
YXA07 ].

More recent methods are based on formulations of differentiable rendering, through
either raytracing [LHJ19 ], or smoothed rasterization [Liu+19 ].

In Contribution C , we present a method in this category of reconstructing the surface
directly from images. Our method, however, is specifically designed for images acquired
using structured light.



CHAPTER4
Contributions

In this chapter, we present three contributions. In Contribution A , we present a
method for video frame interpolation, which can be used to create slow-motion videos
from regular ones. In Contribution B  we create illusory motion of physical objects by
projecting light patterns onto them. Making objects appear to be moving can be used
to attract visual attention to the object. In Contribution C  , we present a method for
mesh-based surface reconstruction from structured light images, which can be used to
recreate accurate digital 3D versions of physical objects.

4.1 Synthesizing spatiotemporal viewpoints
Common to Contributions A to C is that they all deal with synthesizing images from
different viewpoints. The goal in Contribution A is to synthesize novel viewpoints,
mainly temporally but to some extent also spatially. In Contribution B we synthesize
novel viewpoints spatially as a tool to simulate motion of physical objects, and in
Contribution C we recreate the viewpoints of captured images by simulating the entire
structured light imaging process and use it to reconstruct surfaces.

4.1.1 Synthesizing novel viewpoints in time from estimated motion
In Contribution A we represent a method for video frame interpolation. Video frame
interpolation is mainly view synthesis in the temporal domain, and to a lesser extent
in the spatial domain. To achieve frame interpolations of high visual quality, it is
important to retain naturally occuring motion in the images, as simply interpolating
based on image intensities rarely will give realistic results. An example of this kind of
frame blending can be seen in Figure 4.1a .

Our method synthesizes a novel frame halfway between two input frames in time. To
preserve the scene’s natural movement, we explicitly estimate the motion and use
the estimate to create the middle frame. We do this by computing weighted motion
fields, akin to optical flow, from the unknown middle frame to the two input frames.
We use the weighted motion fields to linearly combine pixel values from the input
frames to obtain the middle frame. Determining motion from an unknown frame to
two known frames is a complicated visual task, which requires translating pixel values
to scene understanding, such as how objects move relative to the camera and how they
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interact with light in the scene. Convolutional neural networks have been shown to
excel in many complicated visual tasks and thus seems natural to utilize to estimate
the motion fields.

Optical flow is one of the most used ways of describing motion in images. As stated,
the motion fields that we determine are closely related to optical flow. We also
determine a vector for each pixel in the unknown frame describing the motion of that
point. In optical flow, the brightness constancy constraint is enforced to reduce the
set of equations’ underdetermination. We choose not to employ this constraint for
the motion model to be more general and to allow the scene to become darker or
brighter. In practice, we do this by also predicting weights with the motion field. By
relaxing the brightness constraint, our motion model becomes more general but also
more underdetermined, which complicates the process further. This also supports the
use of a convolutional neural network to learn the motion.

We have chosen not to train the neural network explicitly to produce accurate motion
fields. Although a strong motion model is needed to retain the videos’ natural motion,
the main goal is to produce interpolated images of high visual quality. Therefore, the
network is instead trained to produce motion fields that are good for synthesizing an
accurate unknown frame. To do this, the network is trained from triplets of images.
The two outer frames are input and, the middle frame is used for evaluating the loss
function. As a consequence of this formulation, there is no need for labeled data. The
video sequences, from which the network is trained self-supervises the training.

The results presented in Contribution A are better than or comparable to the publically
available state-of-the-art algorithms at the time of publication. Frame interpolation is
a very active research topic, though, and many approaches have been presented since,
most notably Softmax Splatting [NL20 ].

(a) Overlaid input
frames

(b) Ground truth (c) Ours without CFT (d) Ours

Figure 4.1: Representative example of how the cyclic fine-tuning improves the inter-
polated frame. It can be seen that the small misalignment of the tire and yellow “41”
is corrected by the cyclic fine-tuning. Figure from Contribution A 
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4.1.1.1 Cyclic fine-tuning

The concept of cyclic fine-tuning is presented in Contribution A  and is a novel approach
to fine-tuning a convolutional neural network at inference time. It uses the fact that
the output modality is the same as the input modality, and the output from our model
can therefore also be used as input. By taking advantage of this fact, we can fine-tune
the network for each specific frame that we want to interpolate. The process shown in
Figure 4.2 . The predicted frame Î1.5, can be used to predict two new frames Î1 and
Î2. Notice that we have ground truth images I1 and I2 corresponding to these. That
means that we can compare the synthesized images and the real images and quantify
how well they resemble each other. The quantified resemblance is a measure of how
useful the predicted frame Î1.5 is for predicting. This can be considered a proxy of how
well the frame has been synthesized. In other words, if the frames that are predicted
based on this frame look nothing like the real images, then this frame is probably not
very well synthesized, and contrary if the predicted frames based on this frame look a
lot like the ground truth images, then the predicted frame Î1.5 is likely of high quality.
From Figures 4.1c and 4.1d it can be seen that cyclic fine-tuning greatly improves the
visual quality.

The concept is not limited to our video frame interpolation network but can be used
with any video frame interpolation network or even neural networks for other tasks
where the input and output have the same modality.

f

f

f

f

f

I0

I1

I2

I3

Î0.5

Î1.5

Î2.5

Ĩ1

Ĩ2

Figure 4.2: Diagram illustrating the cyclic fine-tuning process when predicting frame
Î1.5. The model is first applied in a pairwise manner on the four input frames I0, I1, I2,
and I3, then on the results Î0.5,Î1.5, and Î2.5. The results of the second iteration, Ĩ1
and Ĩ2, are then compared with the input frames and the weights of the network are
updated. This process optimizes our model specifically to be good at interpolating
frame Î1.5.
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4.1.2 Synthesizing novel viewpoints in space from estimated
structure

In order to simulate motion of physical objects in Contribution B , a key component is
the ability to synthesize novel viewpoints. Specifically, we synthesize an image from
the projector’s point of view. This section describes how this is done in greater detail
than in the original paper, where many details were left out due to length restrictions.

Synthesizing an image from the perspective of the projector is done through a number
of steps. These are:

(i) Calibrate a structured light setup with a projector and two cameras using the
methods described in Sections 2.1.2.1 to 2.1.2.3 .

(ii) Compute colored point clouds from each camera.

(iii) Project the point clouds to the projector image plane.

(iv) Combine the projector images and clean the result to obtain a synthesized image.

Computing colored point clouds We compute colored point clouds using a
structured light setup. By colored, we mean that we associate the color in the camera
image with the 3D point. The two cameras in the setup are placed on either side of the
projector. This placement allows for better coverage of the object in focus, compared
with only using one camera. Using phase-shifting structured light sequences outlined
in Section 3.2 , we create two separate 3D scans - one for each camera-projector pair.

Projecting point clouds to projector image plane If p = [X,Y, Z, 1]T is a
point in the point cloud corresponding to the first camera in homogeneous coordinates,
and Pp and P1

c are the projection matrices of the projector and the first camera
respectively then the projections

sp

up

vp

1

 = Ppp and sc

uc

vc

1

 = P1
cp, (4.1)

gives us the projector and camera pixel coordinates (up, vp) and (uc, vc). Note that
due to the construction (uc, vc) are integer coordinates while (up, vp) in general will
not be. If we denote the image from the first camera by I1

c , then the unknown projector
image I1

p is constructed by defining by

I1
p (bupe, bvpe) := I1

c (uc, vc) , (4.2)

with b·e is the rounding-operator. Using the same process, we can also create a
projector image I1

p with the point cloud corresponding to the second camera. In many
cases, several points will hit the same pixel in the projector image. This is handled
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by defining the value in the projector image as the mean of the camera intensities of
these points. Some of the points in the 3D scans will have miscalculated depths due
to errors in the phase estimation. Due to this, they intersect the wrong pixels in the
projector image, resulting in individual pixels with wrong values. For this reason, the
images are filtered with a 3 × 3 median filter. Examples of the images created like
this are shown left in Figures 4.3b and 4.3d .

Combining the projector images After the two images are created, one corre-
sponding to each camera, they are combined by a weighted average. The two images
may differ slightly in brightness. Therefore a brightness scale factor k is computed by

k = median
{

I1
p

I2
p

}
, (4.3)

where the division is pixel-wise, and the median is taken over all pixels. We use this
scale factor as a measure of how the two images differ in brightness and use it to
create the combined projector image

Ip = 1
2
(
I1

p + kI2
p

)
(4.4)

The result from this is seen in Figure 4.3e , where the red pixels indicate missing values
in the projector image.

Since we are not interested in making the whole scene, appear to be moving, but
only a specific object, we create a segmentation mask of the object. We get this by
thresholding the depth map corresponding to the image followed by morphological
operations. An example of a mask created with this procedure is shown in Figure 4.3f  .

Finally, the image’s missing values are inpainted using an algorithm based on bi-
harmonic functions, which is available in the widely used image processing library
scikit-image [Wal+14 ; DH18 ]. Figure 4.3g shows the final result.

4.1.2.1 Synthesizing with uncalibrated setup

Even in an uncalibrated setup, we can still synthesize an image from the projector’s
perspective. When we use phase-shifting structured light sequences, the coding axis is
typically in the projector’s horizontal direction. This gives us a mapping from columns
in the camera to columns in the projector. If we also include a sequence in the vertical
direction, we similarly obtain a mapping from camera rows to projector rows. If we
combine the two, we get a mapping f from camera pixel coordinates to projector
coordinates

(up, vp) = f(uc, vc). (4.5)

Using this, we can construct the projector image described in the previous section
according to (4.2 ) and on.
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(a) Image captured by
left camera.

(b) Synthesized projec-
tor image using left
camera.

(c) Image captured by
right camera.

(d) Synthesized projec-
tor image using right
camera.

(e) Combined projector images.(f) Mask of object created by
thresholding depth.

(g) Final result with object ob-
ject segmented with mask and
missing values inpainted.

Figure 4.3: Creating an image from the projector’s point of view.
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Although this approach has a significant advantage that we do not need to calibrate
the system, it has the drawback of giving us no depth information about the object
and the scene. First of all, this makes the task of segmenting the object from the
rest of the scene much harder as we can only only rely on 2D information. Secondly,
without depth information we cannot adapt 2D ’Motion Without Movement’ filters to
the 3D geometry of the object.

4.2 Simulating motion of physical objects
Making static objects appear to move without touching them may, to some, sound like
an impossible task. This task is, nevertheless, what Contribution B attempts to solve.
As mentioned in Section 2.2.2 , the human visual perception system may perceive
motion where there is no motion. This can be due to, e.g., changes in luminance or
color. This effect has been known for many years, and optical illusions utilizing this
are numerous. In Contribution B  , we adapt an illusion aptly called ’Motion Without
Movement’ [FAH91 ] to a projector-camera setup to make a static physical object
appear to be moving through continuous changes to the luminance of the object. The
steps taken to achieve the effect are as follows:

(i) Synthesize image from projector’s point of view according to Section 4.1.2 .

(ii) Use the filters from [FAH91 ] on the synthesized image.

(iii) Project the filter response back onto the object.

For step (ii) the filters can either be used as described in the original paper or be
adapted to the geometry of the object. In the next section we present a method for
doing the latter.

4.2.1 Geometry Aware Filtering
The filters described by Freeman, Adelson, and Heeger [FAH91 ] are 2D image filters,
and thus the filtering is done in image space, without accounting for the geometry of
the object. Therefore, the projected pattern is, to a great extent, view-dependent, and
the perceived effect may decrease as we deviate from the viewpoint of the projector.

When we synthesize the projector image as described in Section 4.1.2 , we get an
intensity in all pixels and the 3D position for each pixel. With this information, we
can compute a normal vector at each point using the 3D position of neighboring
pixels. The 3D position of the pixel and the normal vector defines the tangent plane.
By filtering in the tangent plane, instead of in the image plane, we approximate
filtering along the surface, under the assumption that the object is locally planar. We
determine a homography between the image plane and the tangent plane to do the
filtering in the tangent plane. A few considerations are necessary when determining
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the homography. The first is that the area in the tangent plane that we apply the
filters to should be constant for all points. The second is that slightly changing the
pixel position should also only alter the filter response slightly unless there is a large
change in the object’s geometry. We satisfy both of these by choosing an orthonormal
basis that changes smoothly over the surface [Fri12 ]. Figure 4.4 shows an example of
which image pixels are used when filtering in the image plane and when filtering in
the tangent plane.

4.2.2 Simulating physical motion by projection of filter response
To create the effect of illusory motion, the filter responses from step (ii) in Section 4.2 

are projected onto the object. This creates a visual effect that the object is moving
sideways or rotating around itself.

From demonstrating the setup, it is clear that the effect is indeed perceived as motion.
It is also clear that the effect is very subtle, as was initially intended. Due to the
subtlety of the effect, some things will ruin the effect of motion. If the projector light
is too bright, the illusion of motion can be ruined, as the luminance changes are too
large. An inaccurate calibration of projector and cameras also ruins the effect, as the
synthesized projector image will be blurry.

Simulating physical motion can be used to attract people’s attention. Our attention is
captured when there are sudden changes, such as motion, in our environment. Creating
a subtle motion effect can catch people’s attention without the effect appearing
intrusive. However, this was not explored further, so it remains to be determined if
the effect can, in fact, be used to attract and guide the attention of humans.

4.3 Estimating geometry by simulating imaging
process

In Contribution C  , we represent a novel method for reconstructing an object’s surface
from structured light image sequences. The method is based on simulating the image
acquisition process, using a parameterized surface, and comparing the rendered images
with recorded images. The surface parameters are then iteratively changed to make
the rendered images look like the recorded images. We frame this as an optimization
problem. This approach differs significantly from how surface reconstruction typically
is done, where multiple steps are needed to recover the object’s surface. Figure 4.5 

shows a comparison between the traditional steps and the steps in our approach. We
show that our method can reconstruct various objects with very high accuracy. In
particular, our method is very good at reconstructing sharp features such as edges or
corners. We also show that our methods are very robust with regard to image noise.
An example of a reconstruction is shown in Figure 4.6 .



32 4 Contributions

(a) Filtering in image plane. (b) Filtering in tangent plane.

Figure 4.4: Filtering with ’Motion Without Movement’ filters can either be done in
the image plane or the tangent plane. The figures above show which image pixels
both of these approaches correspond to.

As our method is based on iteratively updating an object’s geometry to fit captured
images best, we choose to parameterize the surface using a triangle mesh. The geometry
of a triangle mesh can be changed by only moving the vertices. We can, however,
not easily change the topology of a triangle mesh. Therefore, our optimization’s
initial surface needs to have the same topology as the object whose surface we aim
to reconstruct. Using a triangle mesh also has the advantage, that computing the
derivatives of the parameters (the vertex positions) with respect to the pixel differences
is relatively simple. This is because any pixel only influences the derivatives of three
vertices. All pixels, stemming from the parameterized surface’s projection into the
cameras, belong to exactly one face each. The three vertices whose derivatives are
affected by a pixel are precisely those that define the face to which the pixel belongs.

4.3.1 Advantages of simulating imaging process
There are several advantages to replacing the steps in the traditional reconstruction
pipeline with a simulated imaging process. The first advantage is traceability from the
input images to the final reconstructed surface. With each step in the typical pipeline,
we throw the information from the previous step away. Moreover, with each step,
additional noise will be added and propagated to the final result. The complex error
propagation and lack of information flow severely hinder the evaluation of how well
the reconstructed surface corresponds to the original image data. In contrast, in our
approach, we can directly compare the output, in the form of rendered images, with
the captured images and compute how the differences affect the reconstructed surface.

Another advantage of simulating the imaging process and formulating surface recon-
struction as an optimization problem is that we can simultaneously use all recorded
image data. Usually, a point cloud is created for each camera position separately, and
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Images

Determining
phases

Rectifying
phase images

Determining
correspondences

Triangulating
points

Reconstructing
surface

Surface

Optimizing
parameterized surface

Figure 4.5: The steps involved in estimate a surface from structured light images. The
black route on the left shows the steps needed in the typical approach. The red route
on the right shows the step needed in the approach in Contribution C .

Figure 4.6: The method from Contribution C  used to reconstruct the Stanford Bunny
starting from a sphere. From left to right: Initial mesh (sphere), after 50 iterations,
after 750 iterations, and the converged result. The final reconstruction has 13 780
vertices and a symmetric volume difference error of 0.30%, when compared to the
ground truth. Figures is from Contribution C .
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these sub-scans are then subsequently registered to each other using the calibrated
camera positions or with a registration step using, e.g., the Iterative Closest Point
algorithm [BM92 ; AHB87 ], or sometimes both. There is no need for a registration
step in our approach since all images are handled simultaneously and included in the
optimization. Note that for the results in Contribution C , we know the exact camera
position, and the same knowledge would trivialize merging sub-scans in the traditional
pipeline. In real scenarios, we only know the camera positions to some degree of
accuracy. For that reason, both the relative camera positions and a registration
algorithm are used in succession to register sub-scans. If the individual point clouds
are very noisy or have little overlap, the accuracy of algorithmic registrations will be
negatively affected. With our method, there is no need for a separate registration step.
As we optimize using all image data simultaneously, we can incorporate the camera
poses as the optimization parameters. By including the camera poses as parameters,
the registration is part of the optimization. In this way, the registration is done to
fit the original image data best and is unaffected by missing overlap between point
clouds or images.

Our method is able to handle many camera poses and structured light patterns
simultaneously. The results presented in Contribution C uses 60 simultaneous camera
positions, each with 24 structured light patterns at 1920× 1080 resolution, and can
easily handle even more. That is approximately three billion squared error terms that
are summed in each optimization step. With so many squared error terms, there is a
lot of redundancy, meaning that our method is particularly good, e.g., in situations
with low signal-to-noise ratios. This is evident from experiments with varying camera
noise.

As our method is based on simulating the image acquisition process, there are cases to
which it can easily be extended and possibly have an advantage over the traditional
approach. One such example is surface reconstruction of specular objects. Very
often, high-dynamic-range imaging is used when capturing images of objects with
specularities. A good exposure level can then be determined for each pixel from
which the structured light signal can be decoded. Our method is easily extended to
a high-dynamic-range setting by simply rendering images corresponding to all the
exposure levels in the high-dynamic-range stack. Thus, our method can use all the
available information in the high-dynamic-range stack instead of simply choosing one
exposure level at each pixel. Overexposed pixels will not influence the result as the
renderings are clipped to the max value corresponding to bright white, which means
that the squared error will be zero in those pixels.

The rendering technique used in Contribution C is rather crude, and it may be
surprising how such good results can be achieved with relatively simple renderings.
The method can indeed be extended using more sophisticated rendering techniques.
This is, however, not necessary. The trick is that we estimate the direct and global
light from the captured images and use these for our renderings. This yields very
convincing renderings, which is apparent from Figure 4.7 . In Figure 4.7a a virtual
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projection of a structured light pattern is shown. Figure 4.7b shows the result when
we compensate for the observed radiometry with the estimated direct and global
light. There is an excellent likeness with the actual image, shown in Figure 4.7c . The
estimated direct and global parameters may be prone to errors, especially when images
are overexposed or underexposed. As in the case of the camera poses, the parameters
may easily be incorporated into the optimization problem to achieve better estimates.
In that case, the estimated values serve as excellent starting guesses.

(a) Rendering without radio-
metric compensation.

(b) Rendering with radio-
metric compensation.

(c) Captured image.

Figure 4.7: Illustration of how estimated global and direct light can be used to create
more realistic renderings.



CHAPTER5
Conclusion

In this thesis, we have presented research in the span of structure, motion, estimation,
and simulation. We have explored synergies between these terms. We have both
estimated structure and motion, and we have simulated structure and motion. In
Contributions A and B we estimated to simulate, and in Contribution C we simulated
to estimate.

Creating better estimations using simulations and creating better simulations using
estimations has been the goal of this thesis. This is a very broad goal, and more
specifically, the thesis has had three objectives.

The first objective was to estimate motion in image sequences and to use this motion to
interpolate temporally new images. This objective was the focus of Contribution A  . In
this contribution, we introduced the cyclic fine-tuning concept where a neural network
is improved at inference time, specifically for the prediction it is making. We utilize
that the model’s output also can be used as input to re-predict the original input and
that the usefulness as an input is a proxy measure of how well it has been predicted
in the first place. This concept is not limited to our model and can be used for other
methods where the input and output modalities are the same. In Contribution A ,
a convolutional neural network was trained in a self-supervised manner to predict
motion, and subsequently, the motion was used to create new images in-between the
original frames in a movie. To obtain interpolated frames of good visual quality, we
needed to retain the natural motion in the sequence, and therefore it was essential with
a model that could estimate the motion in the sequence. Using this model and cyclic
fine-tuning, we achieved better results than the publically available state-of-the-art
methods at the time of publishing.

The second objective was to use estimated geometry to simulate physical motion, or
in other terms, create the illusion that a real-world physical object is moving. This
objective is the topic of Contribution B . With this contribution, we show that we can
bring a 2D optical illusion to the physical realm and use it to simulate motion in an
augmented reality setting, within the limits of what is achievable with a projector.
This work indicates that it is feasible to use a projector to create immersive augmented
reality experiences when we adapt the projected light to the scene’s geometry.

We achieved the motion effect by projecting specific light patterns onto the object on
which we wanted to create the illusion. We created the light patterns by adapting a
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2D image optical illusion where filters are used on the image, and the filter responses
are interpolated. To adapt this effect to a physical 3D setting, we created an image of
the object from the projector’s point of view. This was done with a structured light
setup, where the geometry of the object was estimated and projected back into the
projector. The filters were used on this projector image, and the filter responses were
projected back onto the object to create the illusion of motion.

Estimating the geometry was not strictly necessary to create a projector image. How-
ever, estimating it enables us to adapt the 2D filters to the 3D setting. This adaption
makes the effect less view-dependent and thus makes the simulation more convincing.
Potential future work includes creating other motion effects and determining if the
effect can be a useful attention cue.

The third and final objective was to estimate geometry by simulating the imaging
process. Contribution C  dealt with this objective. In contrast to typical surface
reconstruction approaches, our formulation is an end-to-end model going directly
from input images to the output surface. With this formulation, we skip the many
steps usually needed to reconstruct surfaces from structured light images and gain full
traceability from the input images to the resulting final surface. The results showed
that our method produces very accurate reconstructions, and is especially good at
reconstructing sharp features such as edges or corners.

Instead of treating surface reconstruction as a backward problem, we reformulated
it as a forward problem where we simulated the imaging process and iterated the
simulation with updated parameters until the rendered images matched the captured
images. The parameters of the simulation were the vertex position of a triangle mesh.
When the process converged, the final set of parameters gave us the resulting surface
mesh.

By formulating the problem in this way, we gain several advantages over the tradi-
tional approach. As mentioned, we skip the many steps usually needed in surface
reconstruction to allow for better information and noise flow. The formulation and
implementation also allow us to use all input image data simultaneously. This allevi-
ates the issue of having to combine several subscans. Future work includes using this
method on real-world data.

To shortly summarize, we have met the three objectives set out at the beginning of
this thesis.
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Abstract. The objective in video frame interpolation is to predict ad-
ditional in-between frames in a video while retaining natural motion and
good visual quality. In this work, we use a convolutional neural network
(CNN) that takes two frames as input and predicts two optical flows with
pixelwise weights. The flows are from an unknown in-between frame to
the input frames. The input frames are warped with the predicted flows,
multiplied by the predicted weights, and added to form the in-between
frame. We also propose a new strategy to improve the performance of
video frame interpolation models: we reconstruct the original frames us-
ing the learned model by reusing the predicted frames as input for the
model. This is used during inference to fine-tune the model so that it
predicts the best possible frames. Our model outperforms the publicly
available state-of-the-art methods on multiple datasets.

Keywords: slow motion · video frame interpolation · convolutional neu-
ral networks.

1 Introduction

Video frame interpolation, also known as inbetweening, is the process of gener-
ating intermediate frames between two consecutive frames in a video sequence. 
This is an important technique in computer animation [19], where artists draw 
keyframes and lets software interpolate between them. With the advent of high 
frame rate displays that need to display videos recorded at lower frame rates, 
inbetweening has become important in order to perform frame rate up-conver-
sion [2]. Computer animation research [9, 19] indicates that good inbetweening 
cannot be obtained based on linear motion, as objects often deform and follow 
nonlinear paths between frames. In an early paper, Catmull [3] interestingly ar-
gues that inbetweening is “akin to difficult artificial intelligence problems” in 
that it must be able understand the content of the images in order to accu-
rately handle e.g. occlusions. Applying learning-based methods to the problem 
of inbetweening thus seems an interesting line of investigation.

Some of the first work on video frame interpolation using CNNs was pre-
sented by Niklaus et al. [17, 18]. Their approach relies on estimating kernels to 
jointly represent motion and interpolate intermediate frames. Concurrently, Liu

This is the authors' version of the work. The final authenticated version is available 
online at https://doi.org/10.1007/978-3-030-20205-7_26
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Ĩ1

Ĩ2

Fig. 1. Diagram illustrating the cyclic fine-tuning process when predicting frame Î1.5.
The model is first applied in a pairwise manner on the four input frames I0, I1, I2, and
I3, then on the results Î0.5,Î1.5, and Î2.5. The results of the second iteration, Ĩ1 and Ĩ2,
are then compared with the input frames and the weights of the network are updated.
This process optimizes our model specifically to be good at interpolating frame Î1.5.

et al. [11] and Jiang et al. [6] used neural networks to predict optical flow and
used it to warp the input images followed by a linear blending.

Our contribution is twofold. Firstly, we propose a CNN architecture that
directly estimates asymmetric optical flows and weights from an unknown in-
termediate frame to two input frames. We use this to interpolate the frame
in-between. Existing techniques either assume that this flow is symmetric or use
a symmetric approximation followed by a refinement step [6, 11, 16]. For non-
linear motion, this assumption does not hold, and we document the effect of
relaxing it. Secondly, we propose a new strategy for fine-tuning a network for
each specific frame in a video. We rely on the fact that interpolated frames can
be used to estimate the original frames by applying the method again with the
in-between frames as input. The similarity of reconstructed and original frames
can be considered a proxy for the quality of the interpolated frames. For each
frame we predict, the model is fine-tuned in this manner using the surrounding
frames in the video, see Figure 1. This concept is not restricted to our method
and could be applied to other methods as well.

2 Related work

Video frame interpolation is usually done in two steps: motion estimation fol-
lowed by frame synthesis. Motion estimation is often performed using optical
flow [1, 4, 25], and optical flow algorithms have used interpolation error as an
error metric [1, 12, 23]. Frame synthesis can then be done via e.g. bilinear inter-
polation and occlusion reasoning using simple hole filling. Other methods use
phase decompositions of the input frames to predict the phase decomposition of
the intermediate frame and invert this for frame generation [14,15], or they use
local per pixel convolution kernels on the input frames to both represent motion
and synthesize new frames [17, 18]. Mahajan et al. [13] determine where each
pixel in an intermediate frame comes from in the surrounding input frames by
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solving an expensive optimization problem. Our method is similar but replaces
the optimization step with a learned neural network.

The advent of CNNs has prompted several new learning based approaches.
Liu et al. [11] train a CNN to predict a symmetrical optical flow from the inter-
mediate frame to the surrounding frames. They synthesize the target frame by
interpolating the values in the input frames. Niklaus et al. [17] train a network
to output local 38x38 convolution kernels for each pixel to be applied on the
input images. In [18], they are able to improve this to 51x51 kernels. However,
their representation is still limited to motions within this range. Jiang et al. [6]
first predict bidirectional optical flows between two input frames. They combine
these to get a symmetric approximation of the flows from an intermediate frame
to the input frames, which is then refined in a separate step. Our method, in
contrast, directly predicts the final flows to the input frames without the need
for an intermediate step. Niklaus et al. [16] also initially predict bidirectional
flows between the input frames and extract context maps for the images. They
warp the input images and context maps to the intermediate time step using the
predicted flows. Another network blends these to get the intermediate frame.

Liu et al. [10] propose a new loss term, which they call cycle consistency loss.
This is a loss based on how well the output frames of a model can reconstruct the
input frames. They retrain the model from [11] with this and show state-of-the-
art results. We use this loss term and show how it can be used during inference
to improve results. Meyer et al. [14] estimate the phase of an intermediate frame
from the phases of two input frames represented by steerable pyramid filters.
They invert the decomposition to reconstruct the image. This method alleviates
some of the limitations of optical flow, which are also limitations of our method:
sudden light changes, transparency and motion blur, for example. However, their
results have a lower level of detail.

3 Method

Given a video containing the image sequence I0, I1, · · · , In, we are interested
in computing additional images that can be inserted in the original sequence
to increase the frame rate, while keeping good visual quality in the video. Our
method doubles the frame rate, which allows for the retrieval of approximately
any in-between frame by recursive application of the method. This means that
we need to compute estimates of I0.5, I1.5, · · · , In−0.5, such that the final sequence
would be:

I0, I0.5, I1, · · · , In−0.5, In.

We simplify the problem by only looking at interpolating a single frame I1,
that is located temporally between two neighboring frames I0 and I2. If we know
the optical flows from the missing frame to each of these and denote them as
F1→0 and F1→2, we can compute an estimate of the missing frame by

Î1 = W0W(F1→0, I0) + W2W(F1→2, I2), (1)
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Î1

Fig. 2. Illustration of the frame interpolation process with g from Equation (2). From
left to right: Input frames, predicted flows, weights and final interpolated frame.
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Fig. 3. The architecture of our network. Input is two color images I0 and I2 and output
is optical flows F1→0,F1→2, and weights W0,W2. Convolutions are 3× 3 and average
pooling is 2 × 2 with a stride of 2. Skip connections are implemented by adding the
output of the layer that arrows emerge from to the output of the layers they point to.

where W(·, ·) is the backward warping function that follows the vector to the
input frame and samples a value with bilinear interpolation. W0 and W2 are
weights for each pixel describing how much of each of the neighboring frames
should contribute to the middle frame. The weights are used for handling occlu-
sions. Examples of flows and weights can be seen in Figure 2. We train a CNN g
with a U-Net [20] style architecture, illustrated in Figure 3. The network takes
two images as input and predicts the flows and pixel-wise weights

g(I0, I2)→ F1→0,F1→2,W0,W2. (2)

Our architecture uses five 2 × 2 average pooling layers with stride 2 for the
encoding and five bilinear upsampling layers to upscale the layers with a factor
2 in the decoding. We use four skip connections (addition) between layers in the
encoder and decoder. It should be noted that our network is fully convolutional,
which implies that it works on images of any size, where both dimensions are a
multiple of 32. If this is not the case, we pad the image with boundary reflections.

Our model for frame interpolation is obtained by combining Equations (1)
and (2) into

f(I0, I2) = Î1, (3)

where Î1 is the estimated image. The model is depicted in Figure 2. All compo-
nents of f are differentiable, which means that our model is end-to-end trainable.
It is easy to get data in the form of triplets (I0, I1, I2) by taking frames from
videos that we use as training data for our model.
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3.1 Loss-functions

We employ a number of loss functions to train our network. All of our loss
functions are given for a single triplet (I0, I1, I2), and the loss for a minibatch of
triplets is simply the mean of the loss for each triplet. In the following paragraphs,
we define the different loss functions that we employ.

Reconstruction loss models how well the network has reconstructed the miss-
ing frame:

L1 =
∣∣∣
∣∣∣I1 − Î

∣∣∣
∣∣∣
1
. (4)

Bidirectional reconstruction loss models how well each of our predicted op-
tical flows is able to reconstruct the missing frame on its own:

Lb = ||I1 −W(F1→0, I0)||1 + ||I1 −W(F1→2, I2)||1 . (5)

This has similarities to the work of Jiang et al. [6] but differs since the flow is
estimated from the missing frame to the existing frames, and not between the
existing frames.

Feature loss is introduced as an approximation of the perceptual similarity by
comparing feature representation of the images from a pre-trained deep neural
network [7]. Let φ be the output of relu4 4 from VGG19 [21], then

Lf =
∣∣∣
∣∣∣φ(I1)− φ(Î1)

∣∣∣
∣∣∣
2

2
. (6)

Smoothness loss is a penalty on the absolute difference between neighboring
pixels in the flow field. This encourages a smoother optical flow [6,11]:

Ls = ||∇F1→0||1 + ||∇F1→2||1 , (7)

where ||∇F||1 is the sum of the anisotropic total variation for each (x, y) compo-
nent in the optical flow F. For ease of notation, we introduce a linear combination
of Equations (4) to (7):

Lr (I0, I1, I2) = λ1L1 + λbLb + λfLf + λsLs. (8)

Note that we explicitly express this as a function of a triplet. When this triplet
is the three input images, we define

Lα = Lr (I0, I1, I2) . (9)

Similarly, for ease of notation, let the bidirectional loss from Equation (5) be
a function

LB(I0, I1, I2,F1→0,F1→2) = Lb (10)

where, in this case, F1→0 and F1→2 are the flows predicted by the network.
Pyramid loss is a sum of bidirectional losses for downscaled versions of images

and flow maps:

Lp =

l=4∑

l=1

4lLB
(
Al(I0), Al(I1), Al(I2), Al(F1→0), Al(F1→2)

)
, (11)

where Al is the 2l × 2l average pooling operator with stride 2l.
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Cyclic loss functions. We can apply our model recursively to get another
estimate of I1, namely

Ĩ1 = f
(
Î0.5, Î1.5

)
= f

(
f (I0, I1) , f (I1, I2)

)
. (12)

Cyclic loss is introduced to ensure that outputs from the model work well as
inputs to the model [10]. It is defined by

Lc = Lr
(
Î0.5, I1, Î1.5

)
. (13)

Motion loss is introduced in order to get extra supervision on the optical
flow and utilizes the recursive nature of our network.

Lm = ||F1→0 − 2F1→0.5||22 + ||F1→2 − 2F1→1.5||22 (14)

This is introduced as self-supervision of the optical flow, under the assumption
that the flow F1→0 is approximately twice that of F1→0.5 and similarly for F1→2

and F1→1.5, and assuming that the flow is easier to learn for shorter time steps.

3.2 Training

We train our network using the assembled loss function

L = Lα + Lc + λmLm, (15)

where Lα, Lc and Lm are as defined in Equations (9), (13) and (14) with λr =
1, λb = 1, λf = 8/3, λs = 10/3 and λm = 1/192. The values have been selected
based on the performance on a validation set.

We train our network using the Adam optimizer [8] with default values β1 =
0.9 and β2 = 0.999 and with a minibatch size of 64.

Inspired by Liu et al. [10], we first train the network using only Lα. This is
done on patches of size 128 × 128 for 150 epochs with a learning rate of 10−5,
followed by 50 epochs with a learning rate of 10−6. We then train with the full
loss function L on patches of size 256 × 256 for 35 epochs with a learning rate
of 10−5 followed by 30 epochs with a learning rate of 10−6. We did not use
batch-normalization, as it decreased performance on our validation set. Due to
the presence of the cyclic loss functions, four forward and backward passes are
needed for each minibatch during the training with the full loss function.

Training data. We train our network on triplets of patches extracted from
consecutive video frames. For our training data, we downloaded 1500 videos in
4k from youtube.com/4k and resized them to 1920×1080. For every four frames
in the video not containing a scene cut, we chose a random 320× 320 patch and
cropped it from the first three frames. If any of these patches were too similar
or if the mean absolute differences from the middle patch to the previous and
following patches were too big, or too dissimilar, they were discarded to avoid
patches that either had little motion or did not include the same object. Our
final training set consists of 476,160 triplets.
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Data augmentation. The data is augmented while we train the network by
cropping a random patch from the 320 × 320 data with size as specified in the
training details in Section 3.2. In this way, we use the training data more ef-
fectively. We also add a random translation to the flow between the patches,
by offsetting the crop to the first and third patch while not moving the center
patch [18]. This offset is ±5 pixels in each direction. Furthermore, we also per-
formed random horizontal flips and swapped the temporal order of the triplet.

3.3 Cyclic fine-tuning (CFT)

We introduce the concept of fine-tuning the model during inference for each
frame that we want to interpolate and refer to this as cyclic fine-tuning (CFT).
Recall that the cyclic loss Lc measures how well the predicted frames are able
to reconstruct the original frames. This gives an indication of the quality of the
interpolated frames. The idea of CFT is to exploit this property at inference
time to improve interpolation quality. We do this by extending the cyclic loss
to ±2 frames around the desired frame and fine-tuning the network using these
images only.

When interpolating frame I1.5, we would use surrounding frames I0, I1, I2,
and I3 to compute Î0.5, Î1.5, and Î2.5, which are then used to compute Ĩ1 and Ĩ2 as
illustrated in Figure 1 on page 2. Note that the desired interpolated frame Î1.5 is
used in the computation of both of the original frames. Therefore by fine-tuning
of the network to improve the quality of the reconstructed original frames, we
are improving the quality of the desired intermediate frame indirectly.

Specifically, we minimize the loss for each of the two triplets (Î0.5, I1, Î1.5)

and (Î1.5, I2, Î2.5) with the loss for each triplet given by

LCFT = Lc + λpLp, (16)

where λp = 10, and Lp is the pyramid loss described in Section 3.1. In order
for the model to be presented with slightly different samples, we only do this
fine-tuning on patches of 256× 256 with flow augmentation as described in the
previous section. For computational efficiency, we only do this for 50 patch-
triplets for each interpolated frame.

More than ±2 frames can be applied for fine-tuning, however, we found that
this did not increase performance. This fine-tuning process is not limited to our
model and can be applied to any frame interpolation model taking two images
as input and outputting one image.

4 Experiments

We evaluate variations of our method on three diverse datasets: UCF101 [22],
SlowFlow [5] and See You Again [18]. These have previously been used for frame
interpolation [6, 11, 18]. UCF101 contains different image sequences of a variety
of actions, and we evaluate our method on the same frames as Liu et al. [11], but
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Overlaid input frames Ground truth SepConv L1 [18] CyclicGen [10] Ours

Fig. 4. Qualitative examples on the SlowFlow dataset. Images shown are representative
crops taken from the full images. Note that our method performs much better for large
motions. The motion of the dirt bike is approximately 53 pixels, and the bike tire has
a motion of 34 pixels.

Table 1. Overview of the datasets we used for evaluation.

Number of
sequences

Number of frames
Avg. sequence

lengthDataset Resolution Interpolated Total

SlowFlow [5] 34 1280× {1024, 720} 17,871 20,458 602
See You Again 117 1920× 1080 2,503 5,355 46
UCF101 [22] 379 256× 256 379 1,137 3

did not use any motion masks as we are interested in performing equally well
over the entire frame. SlowFlow is a high-fps dataset that we include to showcase
our performance when predicting multiple in-between frames. For this dataset,
we have only used every eighth frame as input and predicted the remaining
seven in-between in a recursive manner. All frames in the dataset have been
debayered, resized to 1280 pixels on the long edge and gamma corrected with a
gamma value of 2.2. See You Again is a high-resolution music video, where we
predict the even-numbered frames using the odd-numbered frames. Furthermore,
we have divided it into sequences by removing scene changes. A summary of the
datasets is shown in Table 1.

We have compared our method with multiple state-of-the-art methods [6,10,
11,18] which either have publicly available code and/or published their predicted
frames. For the comparison with SepConv [18], we use the L1 version of their
network for which they report their best quantitative results. For each evaluation,
we report the Peak Signal to Noise Ratio (PSNR) and the Structural Similarity
Index (SSIM) [24].
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Table 2. Interpolation results on SlowFlow, See You Again and UCF101. PSNR, SSIM:
higher is better. Our baseline is our model trained only with L1 + Lb + Ls and con-
strained to symmetric flow. Elements are added to the model cumulatively. Larger
patches means training on 256 × 256 patches. Bold numbers signify that a method
performs significantly better than the rest on that task with p < 0.02.

SlowFlow See You Again UCF101

Method PSNR SSIM PSNR SSIM PSNR SSIM

DVF [11] - - - - 34.12 0.941
SuperSloMo [6] - - - - 34.75 0.947
SepConv L1 [18] 34.03 0.899 42.49 0.983 34.78 0.947
CyclicGen [10] 31.33 0.839 41.28 0.975 35.11 0.949

Our baseline 34.28 0.903 42.50 0.984 34.39 0.946
+ asymmetric flow 34.33 0.904 42.54 0.985 34.40 0.946
+ feature loss 34.29 0.901 42.62 0.984 34.60 0.948
+ cyclic loss 34.33 0.900 42.73 0.984 34.62 0.947
+ motion loss 34.31 0.900 42.74 0.984 34.61 0.948
+ larger patches 34.60 0.907 43.14 0.986 34.69 0.948
+ CFT 34.91 0.912 43.21 0.986 34.94 0.949

Comparison with state-of-the-art. Table 2 shows that our best method,
with or without CFT, clearly outperforms the other methods on SlowFlow and
See you Again, which is also reflected in Figure 4. On UCF101 our best method
performs better than all other methods except CyclicGen, where our best method
has the same SSIM but lower PSNR. We suspect this is partly due to the fact
that our CFT does not have access to ±2 frames in all sequences. For some
of the sequences, we had to use −1,+3 as the intermediate frame was at the
beginning of the sequence. Visually, our method produces better results as seen
in Figure 5. We note that CyclicGen is trained on UCF101, and their much worse
performance on the two other datasets could indicate overfitting.

Effect of various model configurations. Table 2 reveals that an asymmetric
flow around the interpolated frame slightly improves performance on all three
datasets as compared with enforcing a symmetric flow. There is no clear change
in performance when we add feature loss, cyclic loss and motion loss.

For all three datasets, performance improves when we train on larger image
patches. Using larger patches allows for the network to learn larger flows and the
performance improvement is correspondingly seen most clearly in SlowFlow and
See You Again which, as compared with UCF101, have much larger images with
larger motions. We see a big performance improvement when cyclic fine-tuning
is added, which is also clearly visible in Figure 6.

Discussion. Adding CFT to our model increases the run-time of our method
by approximately 6.5 seconds per frame pair. This is not dependent on image
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Input frames Ground truth DVF [11] SepConv L1 [18] CyclicGen [10] SuperSlomo [6] Ours

Fig. 5. Qualitative comparison for two sequences from UCF101. Top: Our method
produces the least distorted javelin and retains the detailed lines on the track. All
methods perform inaccurately on the leg, however, SuperSlomo and our method are
the most visually plausible. Bottom: Our method and SuperSlomo create accurate
white squares on the shorts (left box). Our method also produces the least distorted
ropes and white squares on the corner post, while creating foreground similar to the
ground truth (right box).

size, as we only fine-tune on 256× 256 patches for 50 iterations per frame pair.
For reference, our method takes 0.08 seconds without CFT to interpolate a
1920× 1080 image on an NVIDIA GTX 1080 TI. It should be noted that CFT
is only necessary to do once per frame pair in the original video, and thus there
is no extra overhead when computing multiple in-between frames.

Training for more than 50 iterations does not necessarily ensure better results,
as we can only optimize a proxy of the interpolation quality. The best number of
iterations remains to be determined, but it is certainly dependent on the quality
of the pre-training, the training parameters, and the specific video.

As of now, CFT should only be used if the target is purely interpolation
quality. Improving the speed of CFT is a topic worthy of further investigation.
Possible solutions of achieving similar results include training a network to learn
the result of CFT, or training a network to predict the necessary weight changes.

5 Conclusion

We have proposed a CNN for video frame interpolation that predicts two optical
flows with pixelwise weights from an unknown intermediate frame to the frames
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Overlaid input frames Ground truth Ours without CFT Ours

Fig. 6. Representative example of how the cyclic fine-tuning improves the interpolated
frame. It can be seen that the small misalignment of the tire and yellow “41” is corrected
by the cyclic fine-tuning.

before and after. The flows are used to warp the input frames to the intermediate
time step. These warped frames are then linearly combined using the weights to
obtain the intermediate frame. We have trained our CNN using 1500 high-quality
videos and shown that it performs better than or comparably to state-of-the-art
methods across three different datasets. Furthermore, we have proposed a new
strategy for fine-tuning frame interpolation methods for each specific frame at
evaluation time. When used with our model, we have shown that it improves
both the quantitative and visual results.

Acknowledgements. We would like to thank Joel Janai for providing us with
the SlowFlow data [5].
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Abstract

For many applications in augmented reality (AR), the
user has a much more enjoyable experience if the AR sys-
tem is able to properly guide the user’s attention. In this ex-
tended abstract, we explain how to create patterns of light
that when projected onto an object are perceived as if the
object itself is moving. This can be used as a spatial atten-
tion cue. We accomplish this with a calibrated projector-
camera setup to synthesize an image from the projector’s
point of view. This image is filtered to create local phase
changes that are then projected back onto the object and
perceived as motion. Our method will be shown as a live
demonstration at the CV4AR/VR workshop at CVPR 2019.

1. Introduction
Visual attention is important as it affects our perfor-

mance in many visual tasks [2]. To successfully accomplish
tasks such as visual search or tele-assistance we need effec-
tive spatial attention cues to attract the attention of a user.
What constitutes an effective cue is in part determined by
the task at hand. A very obvious cue, such as a big bounc-
ing red arrow, might be the best, if the purpose is to alert
the user of possible danger. In many other situations, how-
ever, more subtle cues might be preferred. This could be in
the setting of an escape room game where we would guide
players towards the next clue if they are stuck. A very ob-
vious cue could possibly ruin the fun of the game, however
a subtle one, which would take longer to notice, could be
useful.

As described by Carrasco and Barbot [2], our attention
is involuntarily captured by sudden changes in the environ-
ment. We seek to exploit this effect by creating apparent
motion through light projection. While the human ability to

∗These authors contributed equally to this work.

(a) Left camera (b) Projector (c) Right camera

Figure 1. Example of a synthesized image from the projector’s
point of view (b), along with the camera images the intensities
are sampled from (a, c).

detect motion is not better in the peripheral vision [10], the
speed of visual processing does increase in the peripheral
vision [3]. When something moves differently compared to
the movement of the observer, it becomes a powerful cue
to attract attention, especially in the periphery of the vi-
sual field [12]. This is referred to as a relative-motion cue.
Our idea is to guide attention by creating apparent relative-
motion cues in a scene by means of a light projector that
modifies the appearance of a physical object to make it look
as if it were moving, thereby creating illusory motion.

2. Projecting Illusory Motion

Prior work in guiding visual attention has mainly been
focused on head-mounted displays and images displayed on
a screen. The spatial attention cues used include flicker-
ing [16, 17], blurring [8], and color manipulation [9]. Spa-
tial projection has been shown to be more effective than
head-mounted displays in providing spatial instructions in
assembly tasks [1]. Research in attention cues for spa-
tial projection is however limited. Some use laser projec-
tion [14, 7] as a simple cue. Similar to our approach Taki-

1



Figure 2. Five frames sampled from the continuous loop of motion our method produces. Top row: Picture of object taken with
camera. Bottom row: Image projected by projector to create corresponding picture. Videos showing the effect can be seen at
http://people.compute.dtu.dk/jnje/illusory-motion.

moto et al. [15] uses a calibrated projector-camera setup.
They modulate color information recorded with the camera
and project the result back onto the object. For humans,
the sensitivity to color variations declines faster compared
with the sensitivity to luminance [6]. It thus seems natural
to investigate modifying the luminance instead.

Our approach to create the illusion of motion is based
on adapting the work by Freeman et al. [4] to a projector-
camera setup. In short, they apply local filters with contin-
uously varying phase over time to the image. This is based
on the observation that local phase changes are interpreted
as global motion. We synthesize an image from the view-
point of the projector (Figure 1) and use it as input for their
method. The filter response is then projected back onto the
object. In Figure 2, examples of the object with the filter
response projected onto it are shown along with the images
projected.

2.1. Projector-camera calibration

We use two cameras and a projector mounted in a fixed
setup, and we model the projector and cameras as pinhole
cameras with radial distortion. To calibrate the system we
encode the projector’s pixel coordinates using structured
light [13], detect corners in images of a checkerboard and

convert these to the projector’s pixel space by local homo-
graphies [11]. The projector and cameras are then calibrated
with Zhang’s method [18].

2.2. Synthesizing image from projector’s point of
view

To synthesize an image from the projector’s point of
view we use structured light to create two 3D-scans of the
object - one based on each camera. The resulting point
clouds and the pixel intensities associated with the points
are then projected back to the projector to form the desired
image (Figure 1). Creating two separate 3D-scans enables
us to scan all points visible in the projector and at least one
camera, thereby getting better coverage of the object. After
the points from each scan have been projected to the pro-
jector’s pixel space they are rounded to the nearest integer
pixel. Because the projector has a lower resolution than the
cameras, each pixel in the projector contains multiple mea-
surements. We compute medians of these to obtain a single
value per pixel.

2.3. Creating Illusory Motion

With the image from the projector’s point of view, we
can directly apply the method of Freeman et al. [4] to this



image. As the filter responses contain both positive and neg-
ative values, and the projective setting has the constraint of
only adding light, we add a constant value to the filter re-
sponse to make all values positive. The filtered image is
multiplied with a mask to restrict light to the object, and the
resulting image is projected onto the object. Examples of
the projected image and the resulting effect are in Figure 2.

3. Future work

We can perhaps utilize the 3D information obtained
through our process to make the projected patterns less view
dependent. Because we know the 3D position of each pixel
in addition to its intensity, we can compute a normal at each
point. If we, based on these normals, choose a consistent
orthonormal basis at each point, such that the basis changes
smoothly over the object [5], and assuming that the object
is locally planar, we can project the filter onto this plane,
and thereby approximate convolution along the surface of
the object instead of in image space.

Our current work has been focused on creating the illu-
sion of motion. Further work is needed to determine un-
der which circumstances it is perceived as motion and to
determine its effectiveness as a spatial attention cue. Fur-
thermore, examining how it affects the user’s experience of
interacting with the AR system, and how our cue compares
with using alternative spatial attention cues is important to
examine. Reasonable variables to look into would be how
much light is necessary to make the effect noticeable and
how this varies across the visual field.
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Abstract: When 3D scanning objects, the objective is usually to obtain a continuous surface. However,
most surface scanning methods, such as structured light scanning, yield a point cloud. Obtaining
a continuous surface from a point cloud requires a subsequent surface reconstruction step , which
is directly affected by any error from the computation of the point cloud. Here, we investigate the
possibility of using a one-step approach, where we compute the surface directly from structured light
images. To do so, we propose a new method based on minimizing the least-squares error between real
images and renderings of a triangle mesh, where the vertex positions of the mesh are the parameters
of the minimization problem. We present simulation experiments demonstrating that our one-step
method for computing a triangle mesh has several advantages over the two-step approach that relies
on an intermediate point cloud. Our method can produce accurate reconstructions when initializing
the optimization from a simple sphere. We also show that our method is good at reconstructing sharp
edges and robust with respect to image noise. In addition, our method is useful for improving the
output from other reconstruction algorithms if we use these as initialization.

Keywords: 3D surface reconstruction, 3D scanning, structured light, differentiable rendering

1. Introduction

Structured light 3D scanning of an object can be used to produce a point cloud from which
we can reconstruct a triangle mesh. The resulting mesh is a digital representation of the surface
of the scanned object. This has many applications including cultural heritage preservation and
industrial quality control [1,2]. For most applications, the accuracy of a recovered surface of the
reconstruction is of great import. Typically, producing point clouds from phase-shifting structured
light images is rather cumbersome. It involves determining the phases, unwrapping these, re-sampling
the unwrapped phases due to image distortion and rectification, finding point correspondences, and
finally triangulating these. Afterwards, the point clouds from different sub-scans need to be merged
before the final reconstruction of a triangle mesh. During this process of producing point clouds and
subsequently a triangle mesh, the image noise propagates non-linearly to affect vertex positions in
the reconstructed triangle mesh. We therefore propose to skip the point cloud, and the process of
creating it, and instead reconstruct surfaces directly from image intensities to investigate how that
affects the accuracy of the reconstructions. Using vertex positions as model parameters, we minimize
the least-squares error between rendered and recorded images to obtain a triangle mesh directly. An
example is in Figure 1.

Submitted to Sensors, pages 1 – 15 www.mdpi.com/journal/sensors
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Figure 1. Starting from a sphere, our method reconstructs the Stanford Bunny [3] from images with
low levels of noise. From left to right: Initial mesh (sphere), after 50 iterations, after 750 iterations, and
the converged result (1 952 iterations). The final reconstruction has 13 780 vertices and a volume error
(∆V) of 0.30%, when compared to the ground truth (depicted in Figure 4j).

Our method has three major implications: (1) explicit point triangulation from image
correspondences is no longer needed; (2) we understand how noise in the image data affects the
final reconstruction; (3) the reconstruction is done for all image data simultaneously.

Similar approaches have been used for multi-view passive stereo but to the best of our knowledge
not for structured light reconstructions. In structured light, dense correspondences can be established,
usually yielding much higher accuracy in weakly textured areas.

In many reconstruction methods, the raw image data is not considered during the
reconstruction [4]. The reconstruction is instead done using unstructured point clouds that have
been constructed from the image data. This means that noise due to imaging and point matching
processes is not modeled in the reconstruction at all, and this noise is then non-linearly propagated
through to the end result. With our approach, the only step in the method where an error is minimized
is in the image intensity domain. This enables us to minimize a more meaningful error, which is
especially important in applications with a low signal-to-noise ratio of the reflected light, e.g., when
scanning highly specular objects or when using short exposure times for fast acquisition.

2. Related work

Suppose we know the configuration of light and camera in a vision setup and the reflectance
properties of the imaged object. Obtaining the shape of the object based on its shading in an acquired
image is then referred to as the shape-from-shading problem [5]. The original shape-from-shading
method by Horn [5,6] used so-called characteristic curves to describe the observed shape. The method
was based on illumination from point-like sources and the shading would then only allow estimation
of the gradient along a path. This was the reason for using a collection of curves to describe the object
shape.

Curves are inconvenient in the sense that they require stitching to become a full surface description.
One way to fit a mesh instead of curves is to use an optimization technique that does not require
gradients. This has been done for a rectangular mesh using simulated annealing and simplex search [7].
Gradients are however preferable to ease the optimization problem. For triangle meshes, an approach
has been developed based on image gradients [8]. Unfortunately, the shape can be hard to recover
from image gradients due to color variance caused by normal variations in the surface. To keep
gradient-based optimization while having a method more robust to surface reflectance deviating from
an assumption of a specific shading model, we use structured light with a differentiable pattern.

Combination of shape from shading with a structured light approach like phase-shifting improves
the performance of the shape estimation [9,10] and enables simultaneous acquisition of shape and
object color (diffuse reflectance) [11]. We do not include estimation of spatially varying reflectance in
this study, but we note that this is an option. Only a height field was reconstructed in this previous
work. We take the concept one step further and reconstruct a closed 3D object as in the work of Zhang
and Seitz [8] but also exploiting structured light.
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The mesh-based reconstruction method of Zhang and Seitz [8] was improved by Isidoro and
Sclaroff [12,13] through the creation of a better initial mesh and by Yu et al. [14,15] using a model that
more accurately models the physical reflectance. Another option is to use multiview stereo to acquire
a good initial guess and then refine the mesh using a shape-from-shading approach [16]. Our method
can be used similarly with the innovation of using structured light to improve the robustness of the
mesh refinement.

The use of structured light has become a strong technique for point-based 3D reconstruction [17]
but has to the best of our knowledge not previously been tested in mesh-based 3D reconstruction.
Our motivation is to have the benefits of a mesh-based technique. An important benefit is that the
connectivity between points (vertices) is retained throughout the geometric refinement process.

The recent differentiable renderer from Loubet et al. [18] uses ray tracing and reverse mode
automatic differentiation. The use of such a framework for mesh refinement is an option. Every
rendering is however quite computationally demanding, so the optimization would have a significant
run time. Liu et al. [19] introduced the soft rasterizer, which is a faster differentiable renderer based on
a smoothed version of rasterization. This has shown promising results in other mesh reconstruction
tasks, but to make it able to render the structured light of a projector is nontrivial.

3. Method

Our method fits a surface to a set of structured light images by minimizing the squared differences
between rendered images and real images. We parameterize the object surface by a triangular mesh,
and the parameters we optimize are thus the vertex positions v. The real images are captured with
structured light phase-shifting from multiple camera-projector positions. We denote these images Ic,p,
where c ∈ C is the index of the camera-projector pair and p ∈ P is the index of the projected pattern.
We render images Ĩc,p(v) of our parameterized surface from the same camera-projector positions and
find the optimal vertex positions by solving the following minimization problem

argmin
v
L(v) = argmin

v
∑
c∈C

∑
p∈P

∥∥∥Ic,p − Ĩc,p(v)
∥∥∥

2

F
, (1)

where ‖ · ‖F is the Frobenius norm, i.e., we minimize the sum of squared differences over all pixels for
all patterns and all camera-projector pairs.

We generate our structured light images by projecting sinusoidal patterns of the form

1
2
+

1
2

sin
(
2πnpx + φp

)
, (2)

where x is the x-coordinate of the projector normalized to [0, 1], np is the frequency (number of periods)
of the pattern, and φp is a phase-shift. With structured light images, such as phase-shifted images
made from Equation 2, the goal is usually to find the x-coordinate of the projector, which subsequently
can be used for triangulation.

Our method is not specific to phase-shifting patterns, however, we use differentiable patterns to
make the minimization problem tractable.

3.1. Rendering images

To solve the minimization problem in Equation 1 we need to render the images Ĩc,p(v) in each
iteration. We want to adequately reproduce the structured light images that would have been obtained
if our current parameterized surface was a real object. We achieve this by simulating the structured
light process as seen from the viewpoint of the camera. We render the images using the formula

Ĩc,p(v) = Ac sin
(

2πnpX̃c(v) + φp

)
+ Bc. (3)
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Here, sin(·) is elementwise application of the sine function, np is the number of periods as in
Equation 2, φp is the phase-shift for the pth pattern, and X̃c(v) contains the x-coordinates of the
projector in the [0, 1] range for each pixel. We use the x-coordinate of the projector as the projector
is offset from the camera along its x-axis. The matrices Ac and Bc are amplitudes and biases that
are estimated from the ground truth images by fitting sinusoids at each pixel location. We find the
elements of X̃c(v) by tracing a ray from the camera through the center of each pixel and projecting
the point where it intersects the surface back to the projector. As we model the projector as a pinhole
camera, the point is projected to the projector as follows




q1

q2

q3


 = P

[
r
1

]
=
[
p1 p2 p3 p4

] [r
1

]
, (4)

where P is the projection matrix of the projector, pi is the ith column of P, and r is the 3D point where
the ray intersects the triangle face. The i, jth element of X̃c is then given by

X̃i,j
c =

q1

q3
. (5)

If the ray does not intersect the surface, we treat the pixel as background and set X̃i,j
c (v) := Xi,j

c , such
that the corresponding term in the loss L(v) will be zero.

Note that 2Ac is the proportion of projector light that is reflected into the camera and Bc −Ac is
the amount of global light. We estimate these to have the renderings better resemble the true images.
Fortunately, we need only estimate them once for each viewpoint, as we can then use these estimates
repeatedly in each iteration of the optimization.

3.2. Optimizing the surface

We use gradient descent to solve the optimization problem in Equation 1. In order to do this, we
need the gradient of L(v), which in turn depends on the gradient of the elements in X̃c(v). Recall that
each of these elements is computed by tracing a single ray from the camera to the surface of the object.
The gradient of X̃i,j

c will therefore only have contributions from the vertices spanning the triangle face
that intersects the ray. We can compute the derivative for one of these three vertices (pa) as follows

∂X̃i,j
c

∂pa
=

(
p1 − X̃i,j

c p3

q3
· d
)

λan
d · n , (6)

where d is the ray direction, n is the normal of the face, and λa is the barycentric coordinate
corresponding to pa. The equations for the remaining two vertices, pb and pc, use λb and λc but
are otherwise identical. For a derivation of Equation 6, see Appendix A.

As mentioned, we use gradient descent to update the vertex positions, that is

vi+1 = vi − αi∇L(vi), (7)

where vi, and vi+1 are the vertex positions in the ith and (i + 1)th iterations, respectively. To choose the
step-length αi we use a simple backtracking line-search strategy to choose

αi :=
1
2n α, (8)

where α is a fixed constant and n is the smallest non-negative integer such that L(vi+1) < L(vi) when
doing the update.
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3.3. Initializing the optimization

Up until this point, we have described how the iterative part of the optimization problem works,
but this is only one half of the problem. A good initial guess is extremely important to ensure
convergence. In the next two sections, we will introduce two possible ways to obtain an initial guess
for the minimization problem in Equation 1.

3.3.1. Using other reconstruction methods

One way of getting a good initial guess is by using a reconstruction found via another
reconstruction method. In this way, our method can be seen as a post-processing step that tries
to adjust the reconstruction to better fit to the original image data. In some of our experiments, we
have used Screened Poisson Reconstructions [20] at various depths as initialization. When using
Poisson reconstructions, we experience it often being beneficial to remesh the mesh before starting the
optimization.

3.3.2. Using simple shape

Another way of getting a good initial guess is by solving a related, but simpler, minimization
problem, and use the result as initialization for the minimization problem in Equation 1. If we denote
the x-coordinates of the projector from the ground truth images by Xc, we can solve the simpler
problem given by

argmin
v

∑
c∈C

∥∥∥Xc − X̃c(v)
∥∥∥

2

F
, (9)

and use the solution as an initial guess for our problem in Equation 1. The method used to recover Xc

depends on the patterns displayed, but for two sets of phase-shifted patterns, the heterodyne principle
can be used [21].

To make the initial problem simpler, we start with a mesh that has few vertices and gradually
increase the number of vertices by remeshing. This enables us to use a simple shape, e.g., a sphere as
our initial mesh.

3.3.3. Remeshing

As described in Sections 3.3.1 and 3.3.2 we use a remeshing algorithm. The algorithm we use is
adapted from the Python geometry processing library Pymesh [22]. The outline of the algorithm is
shown in Algorithm 1.

Algorithm 1: Remeshing algorithm adapted from [22]
Input: Mesh, target edge length `
Result: Mesh
Remove degenerate triangles
Split edges longer than `
while mesh is changed do

Collapse edges shorter than `
Split obtuse triangles (angle bigger than 150◦)

Remove self-intersections
Remove duplicate faces
Replace mesh with outer hull of mesh
Remove duplicated vertices
Split obtuse triangles (angle bigger than 179◦)
Remove isolated vertices
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Figure 2. Crop of image shown with varying levels of noise. From left to right: k = 1, k = 102, k = 103.

4. Experiments

To demonstrate the usefulness of our method, we have carried out a few experiments, that we
will briefly introduce. First, we show that our method can reconstruct an object starting from a sphere,
see Figure 1. Secondly, we reconstruct three different objects at multiple levels of noise, see Figure 2.
Finally, we compare against a Poisson reconstruction at two levels of noise and show that our method
can reconstruct sharp edges.

4.1. Generating ground truth images

We did all our experiments using synthetic ground truth images, to have access to the ground
truth shape of the mesh to compare against. Our ground truth images are made by projecting two sets
of phase-shifted patterns with 15 and 16 periods respectively, with 16 shifts of the first pattern and 8
shifts of the second, such that

np =

{
15 p ∈ [1, 2, . . . , 16]

16 p ∈ [17, 18, . . . , 24]
(10)

and

φp =

{
2πp 1

16 p ∈ [1, 2, . . . , 16]

2π(p− 16) 1
8 p ∈ [17, 18, . . . , 24].

(11)

4.1.1. Rendering

We render the ground truth images using ray tracing with 100 samples per pixel for anti-aliasing,
and we use the Lambertian reflectance model to describe the optical properties of our objects of interest.

4.1.2. Noise

As these ground truth images are noise-free, we add noise to make the images more realistic.
For this, we model the noise of a pixel with intensity x by a Gaussian distribution with mean x and
variance

σ2 = σ2
r + xσ2

p , (12)

where the first term σr describes the signal-independent sensor read-out noise and the second term
xσp describes the signal-dependent shot noise. We choose σr and σp by using the noise levels from
a baseline camera [23]. Our noise levels are then defined as multiples of this baseline noise level,
controlled by k as follows

σ2(x, k) = k(4.5 · 10−7 + x · 2 · 10−5), (13)

such that k = 1 gives the noise levels of a baseline camera for x ∈ [0, 1]. After adding noise, we clamp
pixel values to the [0, 1] range. Examples of images for different values of k are in Figure 2.
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Figure 3. Visualization of one of the circles from our camera-projector setup. In all experiments we use
3 circles with 20 cameras each. Red objects indicate a camera and blue indicates a projector. The dotted
lines show which cameras and projectors belong together.

4.2. Quantitative evaluation

We quantitatively evaluate the performance of our method by measuring the symmetric volume
difference between the ground truth and a reconstruction as a percentage of the volume of the ground
truth. We refer to this as ∆V and compute it as

∆V =

∣∣(S \ S̃
)
∪
(
S̃ \ S

)∣∣
|S| , (14)

where S and S̃ are the ground truth and reconstruction considered as solids, and | · | is the volume of a
solid.

4.3. Experiment details

We evaluate our method on three different shapes. The Stanford Bunny [3], a combination of a
cylinder and a box with various truncated corners, and a dandelion vase [24]. These shapes are in the
bottom row of Figure 4. When starting from a simple shape as described in Section 3.3.2, we have used
the same sphere across all our experiments. When optimizing the simpler problem in Equation 9, we
did remeshing for every 25th iteration. At each remeshing step, we decrease the target edge length
which yields meshes with finer and finer resolution. For the ith remeshing step we set the target to

`i = 0.99i · 0.025 · dBB, (15)

where dBB is the largest diagonal of the bounding box of the current mesh. To be able to solve
the problem in Equation 9, we have estimated Xc using the heterodyne principle [21]. In all our
experiments, we have used 60 camera-projector positions organized in 3 circles, with 20 in each circle,
to mimic a structured light scanner with the object placed in three different poses on a turntable
rotating 18◦ between each image. One of these circles is visualized in Figure 3. The camera resolution
for all renderings is 1920× 1080 pixels.

In Figure 1, we show how our method can reconstruct the Stanford Bunny starting from a sphere.
The reconstruction was done for k = 1. After finishing the optimization based on Equation 9, we
remesh the result by halving the target edge length ` from the last remeshing step, to get a mesh with
even finer resolution. The two in-progress images shown, are during the initial optimization directly
on Xc. The final reconstruction contains many of the fine details of the true bunny (Figure 4j).
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(a) k = 1, ∆V = 0.81% (b) k = 1, ∆V = 0.060% (c) k = 1, ∆V = 0.41%

(d) k = 102, ∆V = 0.83% (e) k = 102, ∆V = 0.074% (f) k = 102, ∆V = 0.47%

(g) k = 103, ∆V = 0.60% (h) k = 103, ∆V = 0.076% (i) k = 103, ∆V = 1.6%

(j) Ground truth (k) Ground truth (l) Ground truth

Figure 4. Reconstructions made by our method on three different objects, for increasing levels of
noise k.
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Bunny Box Vase

Reconstructions 3 350 6 000 2 300
Ground truth 34 817 4 619 44 852

Table 1. Approximate number of vertices of each of the objects in Figure 4.

103 104 105

10−3

10−2

10−1

Number of vertices

∆
V

Poisson
Opt. from Poisson
Opt. from sphere

(a) Low image noise (k = 1)

102 103 104

10−3

10−2

10−1

Number of vertices

∆
V

(b) High image noise (k = 103)

Figure 5. Comparison showing ∆V as a function of the number of vertices in the mesh for
reconstructions of the box with cylinder. Poisson is the Poisson reconstruction, where only the
connected component with the largest volume has been kept, as the Poisson reconstruction sometimes
produces multiple connected components for high levels of noise. Opt. from Poisson and sphere is
our method using the initial guesses described in Section 3.3. The Poisson reconstruction was done for
spatial octree depths of 4 to 8.

To examine how our method is affected by noise, we reconstruct all three objects starting from a
sphere with varying levels of image noise (k ∈ [1, 102, 103]), which we show in Figure 4. We see that
our method is largely unaffected by noise and is still able to reconstruct the shape. The details lacking
in our reconstructions are mostly due to us not having made the mesh fine enough to represent these
details, which can also be seen in Table 1.

Finally, we compare against Screened Poisson reconstruction in Figure 5, for multiple depths
of the reconstruction. The point cloud used for the Poisson reconstruction for k = 1 contains 22
million points and the one for k = 103 contains 17 million points. Our method consistently achieves a
lower error than the Poisson reconstruction. The meshes from some of these data points are shown in
Figure 6.

5. Discussion

Our method has the same implicit assumption about the appearance of the object that is necessary
for structured light. This assumption is that the amount of global light in each pixel, i.e., the light that
is not directly reflected, is the same for all patterns. This is approximately true for high-frequency
sinusoidal patterns [25].

Although we have used the Lambertian reflectance model to render our synthetic data, we do
not expect this to be a limitation of our method. It does not rely on the assumption of Lambertian
reflectance due to the use of structured light, and therefore does not rely on estimating a texture map
of the object, neither implicitly nor explicitly.

In our experiments, we have had the advantage of knowing the camera and projector positions
exactly, which is not the case when working with real data. This can however be remedied relatively
easily, by including the positions of these as parameters in the optimization problem. Additionally,
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(a) A noisy input image. (b) Poisson reconstruction with
7 064 vertices. ∆V = 1.28%

(c) Our method with 6 038
vertices. ∆V = 0.08%

(d) Crop of noisy image. (e) Close-up of Poisson
reconstruction.

(f) Close-up of our method.

Figure 6. Our method can reconstruct meshes with sharp edges from very noisy images (k = 103). Our
method has a lower error (∆V) than a Screened Poisson reconstruction with a comparable number of
vertices (spatial octree depth 7).

we do not need to purely rely on our estimates of Ac, Bc, as these can also be optimized for. We do
however expect both Ac, Bc, and the camera-projector positions to be known quite accurately and
would suggest letting them be part of the optimization only once the original optimization problem
has converged.

In order to solve the optimization problem, we compute the derivative of our loss function,
which involves the derivative of our rendering. This is potentially problematic as our rendering is not
differentiable at depth discontinuities, i.e., where non-neighbouring faces of the mesh are bordering
each other in the image space. This could e.g., be the ear and body of the Stanford Bunny. Our method
will in this case experience aliasing error in the renderings and derivatives. However, since the faces
are observed from multiple views simultaneously, there is often another view where the same edges
are observed with continuous depth. The problem is thus mitigated and since it occurs only for a small
percentage of the pixels for each iteration it was not a problem in our optimization experiments.

A disadvantage of our method is that it is not able to handle topology changes. In practice, this
means, that the initial mesh must have the same topology as the true object.

The choice of using a mesh as the surface representation to optimize has some advantages. It is
very efficient to compute the gradient of our loss function for a mesh, as each pixel only influences a
constant number of elements in the gradient, which makes it suitable for parallel implementation on a
GPU (Graphics Processing Unit).

6. Conclusion

Our primary contribution is a novel model for computing a surface mesh directly from structured
light images without the need for an intermediate point cloud. With this model, we have shown that the
direct computation of a triangle mesh gives higher accuracy and is particularly good at reconstructing
sharp features such as corners and edges, which are smoothed out using the two-step Screened Poisson
reconstruction that we compare with. Further, we have obtained very high robustness to noise by
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optimizing the vertex positions directly from the images. Finally, our approach completely avoids
partial scans that must subsequently be aligned, because the optimization is done for all images at once.
This demonstrates the advantage of directly reconstructing a surface from structured light images
using differentiable rendering.

Author Contributions: Conceptualization, J.W., J.F.and A.D.; methodology, J.N., M.H.and J.B.; software,
J.N.and M.H.; investigation, J.N.and M.H.; visualization, J.N.; supervision, A.D., J.B.and J.F.; writing–original
draft preparation, J.N., M.H., J.F.and A.D.; writing–review and editing, all authors. All authors have read and
agreed to the published version of the manuscript.

Funding: The work presented in this paper is part of the research project “FlexDraperProduct: Developing an
integrated production-ready solution for automated layup of prepregfiber plies”, funded by Innovation Fund
Denmark (Grant No. 8057-00011B). The support is gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.



Version December 20, 2020 submitted to Sensors 12 of 15

Appendix A. Derivation of Equation 6

In this appendix, we derive the gradients of the elements of X̃c(v) with respect to the vertices v.
Let X̃i,j

c be the i, jth element of X̃c(v). This is found by tracing a ray through the center of the i, jth pixel
in the camera until it intersects the surface at a point r, that is

r = o + td, (A1)

for some t, where o is the position of the camera and d is the direction of the ray. Modelling the
projector as a pinhole camera, this point is projected back into the projector by




q1

q2

q3


 =




P1,1 P1,2 P1,3 P1,4

P2,1 P2,2 P2,3 P2,4

P3,1 P3,2 P3,3 P3,4



[

r
1

]
. (A2)

If we define p1 =
[

P1,1 P1,2 P1,3

]
and p3 =

[
P3,1 P3,2 P3,3

]
then

X̃i,j
c =

q1

q3
=

p1 · r + P1,4

p3 · r + P3,4
. (A3)

The point r intersect a triangle with vertices pa, pb, and pc. The normal of this triangle can be computed
by

n = (pc − pb)× (pa − pc) . (A4)

Using the normal we can write t as

t =
(pb − o) · n

d · n . (A5)

Using the chain-rule we have that

∂X̃i,j
c

∂pa
=

∂X̃i,j
c

∂t
∂t

∂pa
(A6)

=

(
3

∑
i=1

∂X̃i,j
c

∂pi

∂pi
∂t

)
∂t

∂pa
(A7)

=

(
∂X̃i,j

c
∂r
· d
)

∂t
∂pa

. (A8)

Here

∂X̃i,j
c

∂r
=

∂q1
∂r q3 − q1

∂q3
∂r

q32 (A9)

=
∂q1
∂r − X̃i,j

c
∂q3
∂r

q3
(A10)

=
p1 − X̃i,j

c p3

q3
. (A11)

The last missing term in Equation (A8) is

∂t
∂pa

=
∂

∂pa

(pb − o) · n
d · n (A12)

=

∂
∂pa

[(pb − o) · n] (d · n)− [(pb − o) · n] ∂d·n
∂pa

(d · n)2 (A13)
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=

∂n
∂pa

>
(pb − o)− t ∂n

∂pa

>
d

d · n (A14)

=

∂n
∂pa

>
(pb − o− td)

d · n (A15)

=

∂n
∂pa

>
(pb − r)

d · n , (A16)

with

∂n
∂pa

=
∂

∂pa
(pc − pb)× (pa − pc) (A17)

=
∂

∂pa
(pc − pb)× pa (A18)

=
∂

∂pa
[pc − pb]× pa (A19)

= [pc − pb]× , (A20)

where we utilise that a cross-product a× b can be written as a matrix-vector product [a]× b using a
skew-symmetric matrix. Inserting into Equation (A16) we get

∂t
∂pa

=
(pb − r)× (pc − pb)

d · n . (A21)

If we write r using barycentric coordinates, r = λapa + λbpb + λcpc with λa + λb + λc = 1, then
Equation (A21) reduces to

∂t
∂pa

=
(pb − (λapa + λbpb + λcpc))× (pc − pb)

d · n

=
(λa(pc − pa) + (1− λb)(pb − pc))× (pc − pb)

d · n
=

λa(pc − pa)× (pc − pb)

d · n
=

λan
d · n . (A22)

Putting it all together, we have (Equation 6)

∂X̃i,j
c

∂pa
=

(
p1 − X̃i,j

c p3

q3
· d
)

λan
d · n . (A23)

The derivatives with respect to pb, and pc can be found with similar derivations.
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