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Abstract
Wind power producers participating in today’s electricity markets face significant variability in

revenue streams, with potential high losses mostly due to wind’s limited predictability and the

intermittent nature of the generated electricity. In order to further expand wind power gener-

ation despite such challenges it is important to maximise its market value, and move decisively

towards economically sustainable and financially viable asset management. In this paper, we

introduce a decision-making framework based on stochastic optimisation, that allowswind power

producers to hedge their position in the market by trading physically settled options in futures

markets in conjunction with their participation in the short-term electricity markets. The pro-

posed framework relies on a series of two-stage stochastic optimisation models that identify

a combined trading strategy for wind power producers actively participating in both financial

and day-ahead electricity markets. The proposed models take into consideration penalties from

potential deviations between day-ahead market offers and real-time operation and incorporates

different preferences of risk aversion, enabling a trade-off between the expected profit and its

variability. Empirical analysis based on data from the Nordic region illustrates high efficiency of

the stochastic model and reveals increased revenues for both risk neutral and risk averse wind

producers opting for combined strategies.

KEYWORDS:
Trading strategies, electricity markets, futures markets, options, uncertainty, stochastic program-
ming, risk, wind energy.

1 INTRODUCTION

During the past decadewind energy has expanded significantly its share in power systems, to the degreewhere it canmeet consumption for several
consecutive days. However, electricity markets were designed with a focus on fuel based conventional generation with minimum exposure in
renewable energy sources (RES). This, in turnmakesmarkets and those that participate in them, vulnerable to the limited predictability and increased
variability associated with wind energy 1. Such exposure can often bring price volatility and increase the cost of regulation due to imbalances
between market schedule and realised production; both significant challenges for wind energy’s economic sustainability and further expansion.

It is therefore imperative to consider how such challenges can be addressed so that wind energy’s full potential is achieved. In the context
of the liberalised electricity sector, participating in the futures markets is a viable option that can mitigate exposure to financial risks linked with
uncertainty both in generation and consumption. Like with conventional commodities, energy can also be traded in futures markets at a fixed
price determined before the settlement of short-term electricity trading floors, i.e. day-ahead, intraday or balancing markets. Specifically, Deng
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and Oren 2 discuss how several types of financial instruments (e.g. forward contracts, futures and swaps) can be used by generators, load serving
entities (utilities) and system operators to mitigate their exposure in market price risks. In the same direction, further integration of options in
contracts for demand-side management is proposed in 3.

Towards a more formal approach that relates to fundamental methods from finance literature, Oren 3 applies the Black-Scholes model by
replacing stock prices with the forward market clearing under the assumption of zero dividend (i.e. a zero-risk interest return on the stock). The
Black-Sholes model1 is an analytic tool that can determine theoretical prices of specific derivatives over time given the stock price, the associated
dividend and a stock volatility measure, but despite its dominance in finance literature, there is not a consensus on how it can be applied on elec-
tricity markets. Lane et al. 5 identify a limitation of the Black-Scholes model as it assumes a log-normal distribution of electricity prices. Instead, they
propose an agent-based approach using genetic algorithms to simulate the market participants’ valuations as they determine whether to buy or
sell an option. Similarly, Bhanot 6 simulates option prices based on estimates of electricity market prices to demonstrate the impact of consumption
uncertainty on electricity markets, using models of Brownian motion to estimate market prices.

Although the aforementioned approaches clearly show that derivatives can be used to contain exposure in price volatility and hedge against
uncertainty in electricity prices, they do not identify the steps that a market participant can follow to achieve the discussed positive results. Liu
and Wu 7 move towards this direction by introducing a risk management decision framework for conventional generators participating in multiple
trading floors (i.e. day-ahead and real-time) of an electricity market. Pineda and Conejo 8,9 further contribute in this line of work by looking at how
conventional generators determine an optimal portfolio of forward contracts and options while considering specific operational constraints such
as the availability of production units. They propose a stochastic framework which takes into account three sources of uncertainty: derivatives and
day-ahead market clearing prices, and the probability of failure for the production units and demonstrate that options can be more appropriate
hedging instruments than forward contracts. Despite the significance of such contributions, they overlook stochastic generation by restricting their
analysis to conventional generators. Designing a trading framework to assist wind power producers in their decision making poses a challenging
problem as it introduces new sources of uncertainty and additional market layers i.e. real-time balancing markets.

Against this background, the contribution of this paper lies in formulating a trading framework based on stochastic optimisation that determines
the optimal trading strategy for wind power producers with varying risk sensitivity, trading options under the requirement that if an option is
settled the contracted energy will be generated, in addition to participating in the day-ahead electricity market. This paper extends the state of the
art by accounting for more dimensions of uncertainty and considering a realistic representation of an electricity market that consists of multiple
trading floors i.e. futures markets, day-ahead scheduling and real-time balancing. Modelling this complex decision-making process would naturally
require a multi-stage optimisation framework that could be practically intractable. To address this challenge we decompose a typically multi-stage
stochastic optimisation problem to two two-stage stochastic problems. The proposed formulation provides a computationally tractable model,
while it establishes an implicit link between trading electricity through derivatives in futuresmarkets and day-ahead scheduling and physical delivery
of electricity. An empirical analysis of the proposed framework for a realistic test case utilising historical data of options, electricity market prices
and wind power generation for the Nordic region, demonstrates the efficiency of the stochastic model and illustrates the advantage of combined
trading in futures and short-term electricity markets, as opposed to only participating in the day-ahead market. The numerical evaluation concludes
with an analysis of a risk averse producer’s exposure to different levels of risk which reinforces trading options as a risk diminishing strategy that
limits exposure to regulation costs by favouring futures to day-ahead markets.

The rest of the paper is organised as follows. In Section 2 we introduce the basic concepts from futures and electricity markets and outline
the decision-making process of a wind power producer actively participating in these markets. In Section 3 we identify the sources of uncertainty
involved in our problem and outline the process to formulate statistical scenarios compatible with the stochastic optimisation problems also intro-
duced in this section. These stochastic optimisation problems are numerically evaluated in Section 4, showing how the proposed framework can
be used for wind power producers operating in the Nordic region. Finally, we conclude in Section 5.

2 THE MARKET FRAMEWORK

This section introduces the decision-making process for a wind power producer trading options in addition to its participation in the short-term
electricity markets. Prior to that, we relay the basic principles behind the financial products and describe a typical market setup that consists of a
day-ahead and a real-time trading floor.

1An analysis of the Black-Scholes model exceeds the scope of this paper; as such, further information can be found in finance related literature cf. 4.
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2.1 Derivatives based on electricity
Derivatives are financial contracts that draw their value from the value of an underlying asset such as a commodity or even another financial
instrument. Having electricity as the underlying asset can lead to derivatives that provide hedging opportunities and can reduce the risk of exposure
to balancing costs often associated with renewable energy. There are several types of derivatives that offer various advantages and can mitigate
different types of risk depending on the terms of the contract.

In this context, a forward contract is an agreement to buy or sell a specific amount of electricity at a certain price at an arranged date in the
future known as expiration or maturity date. Any transaction involves two parties, with the party selling the electricity assuming a short position
and the party buying it assuming a long position. A producer may accept a contract at a price that is higher than the one expected at the electricity
market several days, weeks, months or even years ahead and profit by exercising that contract instead of participating in the actual market. Still,
under the terms of the agreement, it is mandatory for the short party to sell the agreed quantity, even if it is not possible to produce it. This can
expose producers to additional risks, which however that can be addressed by introducing more complex financial instruments such as options. As
opposed to forward contracts, options are non-mandatory agreements that allow their holders to either buy (i.e. call options) or sell (i.e. put options)
a specific amount of energy at the expiration date for a fixed price known as exercise or strike price. Both call and put options have long and short
sides depending on whether they are bought or sold.

2.2 The electricity markets
Electricity markets are more complex than the commodity markets that finance literature refers as spotmarkets. The real-time component and the
very nature of electricity differentiate commodity markets from electricity markets which typically consist of trading floors sequentially cleared
at different time horizons. The largest volumes of electricity are traded today in day-ahead markets, cleared 12 to 36 hours before the physical
delivery of electricity with producers and consumers submitting offers in the form of price-quantity bids. Once the market is cleared, the operator
announces the day-ahead price and an initial generation schedule. Wind power producers comply to the same rules as the conventional ones, only
in their case, actual production may deviate from day-ahead schedule given that their offers are based on forecasts.

To cope effectively with the uncertainty in a market driven power system, producers have to consider complex trading strategies that span
through the various trading floors in order to mitigate their exposure to increased balancing costs and financial losses due to the deployment of
typically expensive reserves. The simplified overview that follows, is based on the components used for this specific work; a detailed analysis of
electricity markets and the role of various actors from market operators to transmission and distribution operators can be found in 10 and 11.

2.3 Decision making for wind power producers
Against this background, we outline the decision-making process of a wind power producer actively participating in both futures and short-term
electricity markets. We focus on a simple market setup which consists of a day-ahead market followed by a real-time market to settle energy
deviations with respect to the day-ahead schedule.

In this basic framework, a wind power producer aims to maximise its revenue by determining its optimal involvement in both the futures and
the day-ahead electricity markets. At the beginning of the planning period, the producer decides on the purchase of a set of financial contracts,
with the decision on whether to exercise them or not left closer to delivery, at the day-ahead market. Noting that the day-ahead decisions can be
executed at a rolling horizon on a daily basis with hourly resolution before the day-ahead market clears, the decision process consists of a planning
period and an active trading period with the following characteristics

• At the planning period ranging from years, months, weeks or days prior to the day of delivery of each contract, the producer decides on the
purchase of derivatives which may include a variety of financial instruments at different maturity dates covering an extended period.

• At each hour of the active trading period, which typically concludes the day-ahead market clearing, the producer decides whether or not
to exercise the derivative if that is applicable (i.e. option) based on estimates of its actual production and market prices and determines its
offer in the day-ahead electricity market. In case of futures at their expiration date, they are exercised based on the terms of the contract.

This process is described in Figure 1 which provides the timeline for participating in all three trading floors. In this context, let a producer
purchase a put option on selling 100 MW at 40 e/MWh at the price of 1 e/MWh. At the time of maturity the producer chooses whether to
exercise it or not depending on its estimate of the day-ahead market clearing. If the market price is expected at 30 e/MWh, then the producer will
exercise it to receive a payment of 4000 e while participating only in the electricity market would have led to a payment of 3000 e. For a day-
ahead market price estimated at 50 e/MWh the producer expects to yield higher profit if it does not exercise the option. The producer chooses
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to sell its production in the market instead and disregards the 100 e paid to acquire the option; an alternative that would not have been available
had the producer signed a forward contract instead. In that case, the opportunity to benefit from the increased price would have been missed.

The example intuitively demonstrates the benefits of trading options and the corresponding risks. Increased profits are a clear benefit but they
come at a significant risk as it is highly unlikely that the option or market prices will be known prior to the decision-making process. Irrespective
of the derivative a wind power producer selects, and despite the wide range of available financial instruments2 there will always be financial risks
when trading electricity, as long as there is uncertainty in generating and consuming it. Price volatility follows and even if literature shows that
futures markets can reduce exposures to such risks, it acknowledges that additional ones are brought as new sources of uncertainty are introduced.

To address the challenges faced by wind power producers participating in both futures and short-term electricity markets requires a decision-
making process that accounts for multiple sources of uncertainty. In this context, the proposed framework utilises an approach based on stochastic
optimisation to incorporate uncertainty that relates both to wind energy’s stochastic nature and to the limited information on market outcomes.

3 OFFERING STRATEGY FOR AWIND POWER PRODUCER

In this section we describe how the two-step decision process expands to a multi-stage optimisation problem with each stage corresponding to
different points in time when uncertainty is unveiled and different trading floors. We present the intuition behind the reduction of a typically multi-
stage problem to a series of two-stage stochastic optimisation problems and then introduce themathematical formulation of the trading framework
for both risk neutral and risk averse producers.

We consider a wind power producer trading in all the three markets introduced in Section 2. The producer’s objective is to maximise profits from
purchasing options in the futures markets while actively trading in the day-ahead market based on forecasts of its production and consequently
susceptible to losses in the real-time market due to potential imbalances.

3.1 An optimisation framework for trading wind energy under uncertainty
The structure of this problem resembles the decision-making process of energy investment and capacity expansion problems, common in the
technical literature (for an in-depth introduction to this topic cf. 12). Specifically, the options purchase phase in the wind power trading problem
is analogous to the investment decision of a capacity expansion problem, while participation in the short-term electricity market is modelled
similarly in both problems. Furthermore, both problems involve high level of uncertainty, e.g. in future electricity prices, that requires proper risk
management. In addition, in both cases the decisions to be made are dynamic in a sense that they are made throughout a long planning horizon as
more uncertain parameters become known, e.g. the options strike price or the fuel cost of new generation assets.

Given that the problem at hand involves three trading floors spanning a horizon up to a quarter, a reasonable approach would be to formulate a
multi-stage stochastic optimisation problem akin to investment decision problems 13,14. However, there are two notable differences between these
problems in terms of uncertainty modelling and timing of decisions that prevent the application of a stochastic multi-stage optimisation formu-
lation in practice. Regarding the former aspect, the variability and uncertainty of wind energy in investment problems are typically approximated
throughout the planning horizon by duration curves derived from historical data, which are divided into time segments of different production lev-
els. While this approach captures adequately the characteristics of wind energy in a very long-term horizon, e.g. 20 years as the typical lifetime of
wind farms, it poorly describes uncertainty in the shorter time horizons that are more common in trading applications. In such cases, profitability
is largely driven by real-time forecast errors and the associated imbalance penalties and not long-term investment returns.

Considering the timing of decisions, typical investment problems adopt a static approach, whereby the optimal expansion decisions are obtained
for a single representative year, assuming that the rest of the power system characteristics remain unchanged in the future. Unlike power sys-
tem configuration that may remain relatively unchanged, option prices are much more volatile and thus it is highly essential for the proposed
trading strategy to capture this dynamic behaviour. On the other hand, an attempt to model all the uncertainty sources that are involved in our
options purchase and energy trading problems in an accurate probabilistic framework preserving also the timing of decision-making would yield a
computationally intractable multi-stage stochastic optimisation problem.

To overcome these complexities we propose an alternative approach exploiting some of the properties that stem from the practical implications
of the specific problem that is to be addressed. First, we consider that options purchased during a period q to be exercised at a future period q

′ can
be exercised at any trading day during q

′ . Furthermore, the options’ transaction fee is set equal to 0.0045e/MWh3 with the price the producer pays

2Further definitions and examples of several types of derivatives incl. forward contracts and options are found in 4. Moreover, Deng and Oren 2 provide
a detailed overview of applications in electricity markets.

3This is the trading fee forNasdaq operatedNordic and Europeanmarkets; http://www.nasdaqomx.com/transactions/markets/commodities/Marketaccess/feelist
accessed at 07.06.18.
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to acquire an option set equal to 3 e/MWh, a value significantly higher than examples from literature cf. 8 in order to have a complete modelling
framework. The option fee and price, denoted by λO and λp respectively, are constants that do not impact the decision making process, although
they impact the producers’ total profits as seen in equation (3c)

The aforementioned practical attributes of the employed financial instruments allow us to decouple the multi-stage optimisation problem and
reduce it to a series of two two-stage stochastic optimisation programs linking the trading of options with participating in the day-ahead and real-
time markets; a process schematically shown in Figure 2 . Each of these two stochastic programs pertain to different decisions of the wind power
producer, i.e. options purchase and short-term trading subject to imbalance penalties.

In more detail, for the options purchase problem the first-stage decision is the amount of options to be bought today (here-and-now decision)
based on the revenues brought by the options exercised at an already known strike price. In turn, the second stage models the possibility to buy
options in the remaining of the quarter (wait-and-see decisions), based on the statistical estimation of the strike prices and the expected revenue
if they are executed in the active trading period. The amount of options bought during the planning period is not a hard constraint for our problem
given that we do not impose any budget constraints in the model as long as we compose an options’ portfolio with favourable strike prices that
can be exercised in the next period. This optimisation model is implemented as a receding horizon scheme with daily time-step, i.e. at each day
only the first stage of the purchase sequence is executed, while the rest are discarded.

The short-term trading stochastic optimisation problem that follows, is implemented on a daily basis as it models a wind power producer’s
participation in the short-term markets. In the beginning of each trading day and for 24 different instances, assuming hourly trading periods, the
model determines the producer’s optimal trading position each period. Here, we consider as first-stage decisions the day-ahead market offer and
the amount of options to be exercised, and as second-stage decisions the amount of energy that has to be sold/purchased in the balancing market
to cover deviations from the day-ahead schedule due to forecast errors. In this model, second-stage decisions are subject to uncertainty in terms
of balancing prices and the actual realisation of wind power production, due to the 12-36 hours time window between the gate closure of the
day-ahead market and the actual delivery of electricity.

The efficiency of the proposed trading framework and consequently its usefulness to a wind power producer heavily depends on the accuracy
of models used to describe the underlying stochastic processes. There are three sources of uncertainty: i) option strike prices, ii) wind power
realisation and iii) imbalance costs based on estimates of day-ahead and regulation prices, with i) affecting the option purchase problem and ii) and
iii) the short-term trading one. For both stochastic optimisation models we generate two distinct scenario sets that represent different realisations
of the random variables that correspond to the sources of uncertainty in our model using methods that are presented in detail in Section 4.2.

In this context, as both stochastic optimisation problems are brought together to form the decision-making framework, it becomes apparent
that the short-term trading problem takes into consideration the information that becomes available in the periods after the options have been
purchased by using the output of the option purchase problem as its input. This, allows us to model the whole decision-making process as a series
of two-stage stochastic programs instead of a single multi-stage stochastic model, and therefore we can sidestep the practical caveat of modelling
wind power and market price uncertainties for an unnecessary long time horizon as the options purchase problem requires and only considers
these uncertainties when they really become relevant and can be actually modelled efficiently. This formulation is in line with the existing literature
cf. 15 as for both optimisation problems each stage represents a step from the two-step decision process with the here-and-now decisions made
during a planning period and the wait-and-see decisions made after the stochastic processes are realised.

3.2 Mathematical formulation
Despite modelling the decision process as two distinct but interconnected optimisation problems, there are some assumptions that apply to the
whole model, in addition to the assumptions for each stage. Specifically, we assume that producers behave as price-takers in markets exhibiting
perfect competition. That is, options’ prices, and day-ahead and real-time market clearings are not affected by the producers’ decisions. This
fundamental assumption is common in the relevant literature cf. 16,10,11 where perfect competition is assumed for electricity markets with the
producers not capable of influencing the market outcome.

In the option purchase problem, we omit more speculative financial instruments by only considering long positions (i.e. purchases) on physically
settled put options. Given that our analysis centres on wind power producers trading their actual production in electricity markets, we focus on
the financial instruments that will give them additional choices by allowing them to sell their estimated production either on futures or day-ahead
market.

Finally, regarding real-time markets, we assume that wind power producers are not capable of offering ancillary services. That is, they do not
actively bid in regulation or reserve markets and do not apply control strategies on their real-time production.

The option purchase problem
In the beginning of each day d1, a wind power producer has to decide on the number of options that should be purchased for the next period.
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Although the producer has access to an option’s strike price λSd1
for the present day, it still faces uncertainty regarding the evolution of option

prices λSd in the remaining days of the planning period d = {2, . . . ,D}. To account for this source of uncertainty, future options’ strike prices are
considered as random variables and modelled using a set of scenarios Ω such that λSdω is the strike price at day d and scenario ω with correspond-
ing probability of occurrence πω . Then, the optimal number of options xd1

to be bought in day d1 as well as the amount of options xdω that can be
purchased over the following days depending on price uncertainty outcome ω, are given as the solution to the following two-stage optimisation
problem

max
xd1

,xdω
λSd1

xd1
Eo +

D∑
d=2

Ω∑
ω=1

πωλ
S
dωxdωEo (1a)

subject to

0 ≤ xd1
≤ X, (1b)

0 ≤ xdω ≤ X, ∀d,∀ω, (1c)

xd1
+

D∑
d=2

xdω ≤ Xtot, ∀ω. (1d)

The objective function (1a) to be maximised is the expected revenue from possibly exercising the purchase options, where Eo denotes the size (in
terms of energy volume) of option o ∈ O. The expected revenue relates to the options’ purchase schedule, with the short-term term trading models
that follow determining whether they will be actually exercised or not. Constraints (1b) and (1c) set an upper limit X on the amount of options
purchased each day. Constraint (1d) states that the total number of options purchased for the whole planning horizon and for every scenario ω
must be at most equal to Xtot. In practice, this is a predefined parameter specified by the wind power producer according to the size and the
capacity factor of its portfolio as well as the options’ size Eo.

It is important to clarify that model (1) is executed in a daily rolling horizon until the end of the planning period or until the maximum number of
purchased options Xtot is reached. This allows to refine strike price information over time and incorporate it in decision-making using an updated
set of price scenarios. Given the lengthy decision horizon of the overall purchase process, i.e. up to a quarter in the current implementation, it is
plausible that long-term strike price dynamics are not accurately captured in the scenario set. This flaw, which stems from the nature of problem,
can be addressed by the proper selection of the daily purchase limit X to exploit favourable short-term strike prices but leaving a buffer on the
remaining number of options to be purchased at better prices which are not captured by the current scenario set. According to this procedure,
the value of parameter Xtot has to be updated on a daily basis subtracting the number of options bought the previous day.

Short-term trading strategy of a risk neutral wind power producer
Given the portfolio of options bought during the planning period based on model (1), the wind power producer has to decide how to trade its
energy production for the next day. In particular, the producer has to determine the amount of energy to be sold either in the day-ahead market
or through options, taking into account the penalties from the balancing market due to wind power production uncertainty. Aiming at maximising
its expected profit from participating in these trading floors, a wind producer solves the following two-stage stochastic program

max
pO

t ,p
D
t ,∆p+tω,∆p−tω

T∑
t=1

[
λSt pO

t + λ̂Dt pD
t +

Ω∑
ω=1

πω
(
λDtωr+tω∆p+

tω − λDtωr−tω∆p−
tω

)]
(2a)

subject to

pD
t + pO

t ≤W, ∀t, (2b)

pO
t =

O∑
o=1

utontoEo, ∀t, (2c)

nto ≤ No, ∀t, ∀o, (2d)

∆p+
tω + ∆p−

tω = Ptω − (pD
t + pO

t ), ∀t,∀ω, (2e)

∆p+
tω ≤ Ptω , ∀t, ∀ω, (2f)

∆p−
tω ≤W, ∀t, ∀ω, (2g)

pO
t , p

D
t ≥ 0, nto, ∀t, ∀o, (2h)

∆p+
tω ,∆p−

tω ≥ 0, ∀t,∀ω, (2i)

uto ∈ {0, 1}, ∀o. (2j)
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The objective function (2a) to be maximised is the total expected profit of the wind power producer. The first stage decision pO
t is the amount

of energy to be sold exercising available options with strike price λS. Similarly, the decision variable pD
t is the energy volume traded in the day-

ahead market at the expected spot price λ̂Dt . Note that regarding first-stage decisions, spot price uncertainty can be summarised in a single-valued
forecast, i.e. expected value, under the assumption that wind power production and day-ahead market price are not correlated; an assumption in
line with a setting of perfect competition in which wind producers cannot influence market prices. The second-stage variables ∆p+

tω and ∆p−
tω

represent the excess and deficit of energy production with respect to the scheduled quantities, respectively. Parameters r+tω and r−tω are the ratio
of the positive and negative imbalance prices respectively with the day-ahead market price λDtω in period t and scenario ω.

Constraint (2b) ensures that the level of contracted energy through options and the day-ahead market is lower or equal to the installed capacity
W of the wind energy portfolio. This assumption highlights the responsibility of the decision maker as a participant in both futures and short-term
electricity market with a link in actual production and not just a speculative force acting only on financial markets. In this context, the energy sold
through options is defined according to constraint (2c), where nto and Eo denote the number and size of options units and the binary variable
uto is equal to 1 if option o is exercised in period t or 0 otherwise. Constraint (2d) limits the number of options exercised at each time period to
the number No of the corresponding options purchased. The positive ∆p+

tω or negative ∆p−
tω deviations from the contracted amount of energy

are calculated according to equation (2e), based on the realised wind power production Ptω for each scenario ω and period t. The split of energy
imbalance to positive and negative deviations requires that the imbalance penalties are r+tω ≥ 1 and r+tω ≤ 1. This property, which follows from
the Nordic balancing market structure, ensures that at the optimal solution either ∆p+

tω or ∆p−
tω will be equal to zero. Constraints (2f) and (2g)

set the upper bounds of the positive and negative imbalance equal to the wind power realisation and the installed capacity, respectively. Finally,
constraints (2h)-(2j) are variable declarations.

Short-term trading strategy of a risk averse wind power producer
Trading model (2) presented above aims at maximising the expected profit of a risk neutral wind power producer. This formulation does not
account though for the variance of revenue as well as about its dispersion from the expected value. However, it is often the case where a wind
power producer is not only interested in the expected value of its profit but also in the probability of experiencing heavy losses due to possibly
high imbalance penalties 1,17,18.

A common risk measure to account for the risk aversion in trading strategies is the conditional value at risk (CVaR). The CVaR at confidence
level α ∈ [0, 1) is defined as the mean value of the 1− α cases with lowest profit. The main advantage of CVaR compared to other risk measures
proposed in the technical literature, is its mathematical coherence 19 and its ability to take into account fat tails, i.e. probability distributions with
large skewness or kurtosis. CVaR is incorporated in the trading strategy model as follows

max
pO

t ,p
D
t ,∆p+tω,∆p−tω

Πω + β

(
ζ −

1

1− α

Ω∑
ω=1

πωηω

)
(3a)

subject to

constrains (2b)− (2j), (3b)

Πω =
T∑

t=1

[
λSt pO

t + λ̂Dt pD
t +

Ω∑
ω=1

πω
(
λDtωr+tω∆p+

tω − λDtωr−tω∆p−
tω

)]
, (3c)

− Πω + ζ − ηω ≤ 0, ∀ω, (3d)

ηω ≥ 0, ∀ω. (3e)

The new objective function (3a) is a trade-off between the expected profit and the CVaR of the profit distribution. The decision maker can adjust
this trade-off by selecting the value of the weighting parameter β according to its risk aversion level. In fact, for β = 0 the objective function (3a)
becomes identical to one of the risk neutral formulation in (2a). On the contrary, higher values of β indicate more risk averse behaviour, since the
CVaR term becomes more important. Choosing different values of β allows to draw the efficient frontier, i.e. a set of points (expected profit, risk)
that none of them is strictly dominant to the others. Constraint (3c) defines the profit for each scenario ω and constraints (3d) and (3e) along with
the auxiliary variables ζ and ηω are used to model the CVaR.

Short-term trading strategy as a deterministic problem
For the formulation of the day-ahead market participation as a deterministic problem we summarise wind power’s uncertainty into a single-valued
forecast, such as the stochastic process’s conditional expectation Ŵt. While such trivialisation of the forecasting process cannot be considered as
an original contribution, it does act as a benchmark for the proposed trading framework given that the deterministic model does not account for
potential imbalance penalties due to forecast errors.
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In this context, participation in the day-ahead market is formulated as the following optimisation problem

max
pO

t ,p
D
t

T∑
t=1

[
λSpO

t + λ̂Dt pD
t

]
(4a)

subject to

pD
t + pO

t = Ŵt, ∀t, (4b)

pO
t =

O∑
o=1

utontoEo, ∀t, (4c)

nto ≤ No, ∀t, ∀o, (4d)

pO
t , p

D
t ≥ 0, nto, ∀t,∀o, (4e)

uto ∈ {0, 1}, ∀o. (4f)

The objective function (4a) to be maximised is the profit of the wind power producer from trading its production in the day-ahead market and
through options. Constraint (4b) states that the amount of energy sold in the day-ahead market plus the total energy sold through options each
time period t is equal to the expected wind power production Ŵt. Constraints (4c)-(4f) remain the same as in the stochastic trading strategy (2).

Total expected profit for trading options and participating in short-term electricity markets
At the beginning of the active trading period, the maximum number of options No that can be exercised are equal to the total units purchased
during the previous quarter according to model (1). For every consecutive day this parameter is reduced by the number of units exercised the day
before. The stochastic models (2) and (3), and the deterministic one (4), are executed each day of the active trading period in a rolling planning
fashion, with look-ahead optimisation horizon of one day, using price and wind power production scenarios as they update daily.

Based on models (2), (3) and (4), the wind power producer decides on how to utilise the options purchased in model (1) by determining whether
to sell its energy production through these options or the day-ahead market. The producer’s total expected profit Πexp

Total is given by

Πexp
Total =

D∑
d=1

Πexp
d − (λO + λp)

O∑
o=1

NoEo (5)

where Πexp
d is the daily expected profit from models (2), (3) and (4), λO the option fee, λp the option premium, and No and Eo the number and size

of each of the purchased options o ∈ O respectively.

4 A CASE STUDY FOR THE NORDIC MARKETS

In this section we evaluate the proposed model based on a case study for the Nordic region. We first outline the Nordic electricity market setup
and then discuss how data requirements were met regarding scenario generation given the multiple sources of uncertainty. We then provide a
detailed evaluation of the decision-making process for the time period that includes the last three quarters of 2006 and the first three of 2007 and
outline the benefits of combined trading in both futures and day-ahead markets. Finally, we provide a risk analysis and demonstrate the impact of
risk aversion in the producers’ revenue.

4.1 The Nordic electricity markets
The Nordic electricity market consists of multiple trading floors depending on the time-horizon at which electricity is traded in connection with
physical power delivery. As shown in Figure 3 , there are four types of markets that define the Nordic setting.

At a long-term horizon spanning from years to days prior to delivery, electricity is traded through financial instruments which are bought and sold
in futures markets. In such markets participants trade financial products linked to a specific commodity. Electricity is treated as such a commodity
bereft of the characteristics that are associated with the power system (i.e. power balance, voltage, frequency control). Electricity derivatives for
the Nordic region, are traded in Nasdaq Nordic (formerly known as Nasdaq OMX).

The link with the power system is established closer to delivery for those trading in the day-ahead market. For the Nordic region such market
is operated by Nord Pool. In Nord Pool’s day-ahead market (Elspot) electricity suppliers and consumers with physical access to the power grid
place their offers which are aggregated to supply and demand curves. The market clearing price for each of the following day’s 24 hours is the
intersection of the two curves.
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The significant time interval of 12 to 36 hours between Elspot participation and physical operation for the renewable heavy Nordic countries
can potentially lead to significant deviations between day-ahead scheduling and physical delivery of electricity. In order to alleviate such deviations,
Nord Pool also operates an intraday market (Elbas), a continuous matching market operating at first-come, first-serve basis, which nevertheless
exhibits limited liquidity 20.

Once Elspot and Elbas markets are processed, there can be still power imbalances between electricity generation and consumption as we move
towards the delivery time. Responsible for mitigating such deviations and restoring system balance is the Transmission System Operator (TSO)
through the real-time market.

4.2 Data requirement and scenario generation
The proposed trading framework links trading futures with the day-ahead and real-time markets. As expected, the scenarios for both option
purchase and short-term trading problems require data from all three markets.

Derivatives
We consider six quarterly option contracts from Q2 2006 to Q3 2007. The volume of each option is set equal to 2190 MWh for the quarterly
interval which in turn consists of around 2190 hours given the number of days in each month including winter time or summer time and leap
years, and a base contract size of 1MW 21.

The scenarios for the expected daily option strike prices are generated using an auto-regressive integrated moving average (ARIMA) model
to describe options’ price dynamics and uncertainty over time. The ARIMA model characterises the uncertainty regarding the strike price of the
derivative of interest (i.e. a quarterly put option on price area DK1) based on historical data. This approach is widely adopted in energy price
forecasting applications and formally defined in the context of scenarios for stochastic optimisation in 8 and 11 among several sources.

Based on historical data from 02/01/2004 to 31/03/2006 we generate 20 scenarios for the daily strike prices for each decision period. For
each of the quarterly intervals, the expected prices are generated based on the data available prior to that day with each new day’s scenarios
taking into account the realisation of the price the day before.

Day-ahead market
We consider a set of expected prices to model the uncertainty a wind power producer faces regarding the day-ahead market clearing price, given
that it has to make a decision on its position prior to market clearing. Therefore, we generate 20 scenarios for the day-ahead market participation
stochastic problem based on historical Elspot prices for the period 01/04/2006 until 30/09/2007 using a simple approach inspired by the litera-
ture related to wind energy trading under uncertainty in which price stochasticity is estimated based on historical information without significant
loss in forecast accuracy 22, 1. For the purposes of the proposed setting, each one of the 20 day-ahead market price scenarios can be traced back to
a respective week using a sliding window of 20 weeks. For example, scenario ω1 considers Elspot prices one week prior to the decision, scenario
ω2 goes two weeks back and so on.

Real-time market
Regarding real-time operation the model requires forecasts of prices for upward and downward regulation and realisations of wind power pro-
duction. In principle, the ARIMA model could have been used to generate scenarios for the regulation prices based on historical data which could
then be used to calculate the ratio between regulation prices and the day-ahead market price. However, data was not available for the period
before the planning and settlement stages as required for training the ARIMA model. Instead, we exploit the seasonality in regulation prices
and generated data for 2005 based on histograms of the ratios for 2006, 2007 and 2008. We generate the scenarios by sampling from a Beta
distribution that fitted the synthesised data for 2005.

Finally, for the wind power production for the period between 01/01/2006 and 24/10/2007 we use data from the Western Denmark area
(DK1) collected by the Danish TSO (Energinet.dk) and processed in 23. Wind power measurements were originally available for approximately 400

geographically distributed grid connection points aggregated into 5 zones with the data set consisting of point forecasts, quantile forecasts and
the actual power measurements for each zone and for the whole DK1 area, normalised by the available capacity of each zone at each time. In
this paper we consider aggregated zone 5 as a single wind power producer and use the quantile forecasts to generate scenarios based on the
methodology outlined in 24 and 25. Wind power scenarios are issued based on non-parametric probabilistic forecasts while the interdependence
structure of forecast errors among a set of prediction horizons is captured using Copula theory 26,24. These statistical scenarios are derived from
probabilistic forecasts of wind power production. The temporal interdependence structure of forecast errors is captured by a covariance matrix
estimated using a transformation of prediction errors to Gaussian multivariate random variables. Long-term variations of this covariance matrix are
accounted using an exponential forgetting scheme.
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It should be noted that the scenario generation methods we employ represent only parts of the literature, with the empirical evaluation of the
proposed framework not depending on the used forecasting techniques. While the contribution of this paper lies in the trading framework itself,
we acknowledge that there are several approaches of different complexity that can be used to generate scenarios. For example, 1 generate price
scenarios based on historical data to estimate the mean, variance and correlation between prices of different trading floors, a simpler method to
the introduced ARIMA process. Still, irrespective of the methods used to generate scenarios, their complexity and the accuracy they may bring
in generating realistic outcomes for the decision makers, sometimes it may be impossible to employ them due to their reliance on historical data
which may be unavailable for a specific time period. Specifically for this study, the historical period was imposed based on such restrictions on the
availability of data for all three markets, namely for the option contracts

In such cases, decision makers have to make assumptions and synthesise data so that the generated scenarios maintain statistical significance.
In this context, 8 generate prices for forward contracts based on the their scenarios for market prices under the assumption that close to power
delivery the prices of forward contracts converge to the market prices while taking note that more advanced forecasting methods can generate
more accurate scenarios.

Having derived the scenarios for the two stochastic optimisation problems we now proceed to evaluate the model.

4.3 Empirical evaluation
The numerical simulation of the trading framework consists of two parts. For the first part, we assume a risk neutral decision maker and assess the
impact of its participation in both futures and day-ahead markets against participating only in the day-ahead market. We evaluate the proposed
framework described by optimisation problems (1) and (2) using two cases to denote a lower and an upper bound for the performance of the
model. The lower bound is defined by the deterministic optimisation model (4), while for the upper bound we assume that it is possible for the
decision maker to have access to perfect information regarding the involved uncertainties, thus eliminate regulation costs. For the second part, we
evaluate the option purchase and short-term trading problems assuming a risk averse decision maker as described by optimisation models (1) and
(3) to demonstrate the impact of risk control on the decision-making process.

To evaluate the model’s efficiency against uncertainty, we introduce a simple two-step process. First, we obtain the decisions made at time step
t by solving the main stochastic optimisation models (1) and (2) for all time steps leading up to t − 1. For the second step, we use the solution
already acquired for time step t against the observed outcome from the given data. By iteratively implementing this process for time steps t > 1

we obtain a set of revenues that includes the estimated outcome of the model and the actual ones based on the observed outcomes. Based on a
process described in 22 we use these revenues to assess the trading strategies through the ‘performance ratio’ given by

γ =
RO +RDA +RB

R∗
DA+O

(6)

where RO,RDA,RB, are the revenues from trading options and participating in day-ahead and real-time markets respectively. R∗
DA+O is the nor-

malisation factor that denotes the revenue a producer would have obtained had its forecast been equal to the actual realisation. Due to this
normalisation, γ takes values in (−∞, 1]. Naturally, the ideal outcome would be γ = 1 corresponding to perfect forecasts whereby all market
deviations are equal to 0.

Now, regarding wind capacity, in the Danish context the average wind capacity factor of onshore wind farms located in Denmark during 2006
and 2007 was around 20% and 25%, respectively. In this context, the nominal capacity of the wind power portfolio considered is 258 MW, which
corresponds to an average quarterly wind power production equal to 125 GWh. Finally, we assume that a producer can purchase up to 60 options
each quarter, capped at 5 options daily, setting themodel constraintsXtot andX to 60 and 5 respectively. Themodel’s sensitivity to both assumptions
is further examined in this section.

Initially, the main benefits of purchasing electricity options in addition to participating in the day-ahead market are outlined in Table 1 which
shows a clear advantage of combined trading for all models, irrespective of how (or whether) theymodel uncertainty. In particular, combined trading
yields 20.7% and 15% additional revenue for the deterministic and stochastic models respectively and an increase of 13.4% for decision makers
with access to perfect information.

Combined participation in both futures and day-ahead markets and the impact of uncertainty are detailed in Table 2 . The amount of energy
traded in eachmarket under perfect foresight is less compared to the energy traded in the stochastic model andmore compared to the deterministic
model, mainly due to the number of exercised options and consequently due to the energy traded through options. Still, a producer maximises its
revenue under perfect foresight by avoiding the regulation costs that are bound to occur under uncertainty. Overall, the stochastic model achieves
2% less revenues compared to perfect information, with the deterministic model resulting in 7% less revenues. Consequently this translates to
performance ratio equal to 97.68% and 92.48% for the stochastic and deterministic models, respectively.

For the numerical evaluation of the option purchase problem (cf. model (1)) quarterly purchase limit Xtot and daily limit X have been arbitrarily set
equal to 60 and 5 respectively. Determining these values reflects on the intuition regarding physical and economic aspects of the option purchase
problem and has a clear impact on the outcome of the model. Figure 4 shows sensitivity on the daily purchase limit, with the strike price increasing
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as the daily limit decreases. Furthermore, prices increase as the block of options purchased at the beginning of each quarter increases. However, this
clear trend regarding the strike prices is not reflected on the total revenues. Solving again the options purchase and short-term trading problems
from models (1) and (2) for various quarterly and daily limits, shows that for all values of quarterly blocks, revenues decrease as the daily limit
increases, while revenues increase as quarterly blocks increase (Table 3 ).

For the second part of the analysis we consider different risk preferences in the decision-making process with a producer now considering the
impact of extreme scenarios on its expected profit due to very high imbalance costs. Replacing the short-term trading model (2) with (3) leads
to risk aware trading strategies for risk averse decision makers. The trading framework, now consisting of models (1) and (3), is evaluated with
α = 0.95 against the weight parameter β that measures risk aversion. As shown in Figure 5 and Table 4 , increasing risk aversion decreases the
expected total revenues and increases the CVaR. Specifically, the expected revenue of a risk averse producer (β = 20) is 1.57 m. e or 5.7% less
than that of a risk neutral one (β = 0), although the risk of profit variability is reduced as indicated by the significantly larger (120%) value of the
CVaR term (Figure 5 ). Further analysis of how energy is distributed between options and the day-ahead market (Table 4 ) reveals that as risk
aversion increases, more energy is traded as options and less is traded in the day-ahead market. This is justified by risk averse producers preference
in trading options given that it is an action that incurs no losses at that stage. On the contrary, participating in the day-ahead market may lead to
losses if the clearing price is lower than the option strike price. In addition, by reducing its participation in the day-ahead, a producer reduces its
exposure to regulation costs due to imbalances between day-ahead scheduling and real-time operation.

The model was evaluated using an Intel i7 4-core processor clocking at 3.4 GHz with 8 GB of RAM running CPLEX 12.6 under GAMS. The
computational time for the short-term trading model for a risk neutral producer was 27 minutes. This is the total computational time covering 540

runs of the model as it calculates the producer’s profit through 6 quarters.

5 CONCLUSIONS

This paper presents a trading framework to support decision making of wind power producers trading financial products and participating in the
day-ahead and real-time electricity markets. Based on stochastic programming, the model accounts for three sources of uncertainty, i.e. option
prices, wind power production and imbalance costs from the deviation between estimated and actual production, while it spans through three
trading floors and their corresponding time horizons. Ideally, these decision-making processeswould have been formulated asmulti-stage problems,
albeit specific complexities related to the dynamic interaction between futures and short-term electricity markets called for a different approach.

The main contribution of this work is the formulation of an optimisation framework that incorporates both financial and short-term electricity
markets accounting for various sources of uncertainty involved in each stage. Exploiting the properties of the futures market, we tackle the wind
power offering problem in a practical manner by solving a series of two-stage stochastic programs that preserve an implicit link between the
different types of markets in a computationally tractable formulation. Initially, the option purchase problem determines the number of options to
be purchased each quarter. In turn, the short-term trading problem determines the number of options to be exercised and the day-ahead market
offers each day of the following quarter.

In addition to its methodological merit, the proposed formulation leads to a computational tractable model that allows an extensive empirical
evaluation of the decision-making framework. In this context, numerical simulations based on data from the Nordic region in the period during
2006-2007, show that a wind power producer, irrespective of its risk sensitivity, can increase its revenues by implementing a trading strategy that
combines participation in both futures and day-ahead markets. Moreover, for risk averse producers, it is shown that they increase their revenues by
trading heavily in the futures market and limiting their position in the day-ahead market. The scenario generating methods used for the numerical
solution of the stochastic optimisation problems represent with adequate accuracy the involved uncertainty. While we acknowledge that more
advanced scenario generation methods could have been considered, there is a clear indication on the positive impact of combined participation in
both markets.

Nevertheless, for future lines of work the option purchase and short-term trading models can be further improved so that they provide a more
accurate and more realistic decision framework. Further future work involves the option purchase problem, which instead of a fixed daily option
purchase step, quantitative methods based on historical data could determine whether to purchase all available options based on the daily prices.
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FIGURE 1 Timeline for a producer participating in multiple trading floors.
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FIGURE 2 Schematic representation of the full scale multi-stage stochastic optimisation problem for wind power trading in financial, day-ahead
and balancing markets.
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FIGURE 3 The structure of the Nordic electricity markets.
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FIGURE 4 Option closing prices for quarterly total limits of 60 and 100 options and various purchase steps.
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FIGURE 5 The impact of risk aversion parameter β on total revenues.
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TABLE 1 Total profit for wind power producers.

Day-ahead market Options and day-ahead market
Deterministic model [m e] 21.09 25.46
Stochastic model [m e] 23.39 26.89
Perfect info. [m e] 24.26 27.53



20 Papakonstantinou A. et al.

TABLE 2 An overview of the combined trading strategy.

Deterministic model Stochastic model Perfect info.
Total scheduled energy [GWh] 650.59 727.86 676.88

Energy sold in the day-ahead market [GWh] 277.42 255.68 246.75
Energy sold through options [GWh] 373.17 472.18 430.13

Number of options exercised 171 215 183
Positive imbalance [MWh] 118.04 164.79 -
Negative imbalance [MWh] 91.76 215.77 -
Down-regulation costs [m e] 3.56 5.50 -
Up-regulation costs [m e] 3.53 6.42 -

Total revenue [m e] 25.46 26.89 27.53
Performance ratio (γ) [%] 92.48 97.68 100
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TABLE 3 Total revenues for various quarterly and daily purchase limits.

Daily / Quarterly limits 60 options 100 options 200 options
2 options 27.56 28.71 -
5 options 26.89 26.46 24.12

10 options 26.84 25.69 22.71
20 options 26.74 25.67 21.81
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TABLE 4 Amount of energy traded in options and day-ahead market based on the parameter β.

Weighting factor
β

Total traded energy
GWh

Energy traded as options
GWh

Energy traded in day-ahead market
GWh

0 727.86 472.18 (64.9%) 255.68 (35.1%)

0.2 696.09 463.60 (66.6%) 232.49 (33.4%)

0.5 666.54 455.90 (68.4%) 210.63 (31.6%)

1 638.54 450.80 (70.6%) 187.74 (29.4%)

5 573.40 425.75 (74.2%) 147.65 (25.8%)

10 757.80 420.15 (75.3%) 137.64 (24.7%)

20 549.02 416.84 (75.9%) 132.18 (24.1%)
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