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POINT-LINE INCIDENCE ON GRASSMANNIANS AND

MAJORITY LOGIC DECODING OF GRASSMANN CODES

PETER BEELEN AND PRASANT SINGH

Abstract. In this article, we consider the decoding problem of Grassmann

codes using majority logic. We show that for two points of the Grassmannian,

there exists a canonical geodesic between these points once a complete flag is

fixed. These geodesics are used to construct a large set of parity checks orthog-

onal on a coordinate of the code, resulting in a majority decoding algorithm.

1. Introduction

Let q be a prime power and let Fq be a finite field with q elements. The Grass-

mannian G`,m is an algebraic variety whose points correspond to `-dimensional

subspaces of a fixed m dimensional space over Fq. Corresponding to a projective

variety, one can associate a linear code in a natural way using the points of the

variety as a projective system [27]. The codes C(`,m) associated in this way to

the Grassmannians G`,m are known as Grassmann codes. Grassmann codes were

first studied by Ryan [23, 24] over the binary field and later by Nogin [19] over any

finite field. There it was shown that C(`,m) is a q-ary [n, k, d] code where

(1) n =

[
m

`

]
q

, k =

(
m

`

)
, and d = q`(m−`),

where
[
m
`

]
q

is the Guassian binomial coefficient given by[
m

`

]
q

:=
(qm − 1)(qm−1 − 1) · · · (qm−`+1 − 1)

(q` − 1)(q`−1 − 1) · · · (q − 1)
.

These codes have been an object of study ever since they were discovered. For

example, Nogin [19, 20] determined the weight distribution of the Grassmann codes

C(2,m) and C(3, 6). Kaipa, et al. [12] determined the weight distribution of the

Grassmann code C(3, 7). Several initial and final generalized Hamming weights

of C(`,m) are known as well [8, 9, 19]. Also variants of Grassmann codes, called

affine Grassmann codes, obtained by only taking the points in an affine part of the

Grassmann variety in the projective system, have been studied [1].

However, as far as the efficient decoding of Grassmann codes is concerned, not

much is known apart from an approach using permutation decoding [10, 14] leading

to an algorithm capable of correcting up to d/
(
m
`

)
−1 errors. In this article we give
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2 PETER BEELEN AND PRASANT SINGH

a decoding algorithm for Grassmann codes C(`,m) based on (one-step) majority

logic decoding. A key ingredient is that the dual Grassmann code C(`,m)⊥ is a

linear code of minimum distance three. Using ingredients from [2], it was shown

in [3], that the weight three parity checks generate C⊥. This gives the Grassmann

code C(`,m) an LDPC-like structure and majority logic decoding is a method used

for example in [15, Ch. 17] to correct errors for such codes. Moreover, majority

logic decoding has been used to give a decoding algorithm for binary Reed–Muller

codes [16, Th. 20, Ch. 13.7], which can be seen as special cases of affine Grassmann

codes. In this article we study to which extent one-step majority logic decoding

can be used for Grassmann codes. In order to do this, we construct sets of parity

checks orthogonal on every coordinate of the code. An essential ingredient in this

construction, is the study of geodesics between points on the Grassmannian, which

forms an important part of this paper. Finally we show that the resulting decoder

can correct approximately up to d/2`+1 errors for a fixed `, and q tending to infinity.

For a fixed ` and q, and m tending to infinity, we can correct up to Mq(`)d/2
`+1

errors, where

(2) Mq(`) :=


∏`
i=1

qi

qi−1 if q is even,

∏`−1
i=1

qi(q−1)
qi+1−1 if q is odd.

This performance compares favourably to previously known efficient decoders for

C(`,m), see Remark 4.8 for details.

2. Preliminaries

We begin this section with recalling the definitions of Grassmann varieties. We

give the construction of Grassmann codes, linear codes associated to Grassmann

varieties and recall the parameters of these codes. We define what we call a line

in Grassmannians and state a result that classify all these lines in terms of linear

subspaces of the vector space. For the sake of completeness, we recall some notions

and results related to lines in Grassmannian and Grassmann codes. These are the

results that we will be using in next two sections of this article.

As in the introduction, let Fq be a finite field with q elements where q is a prime

power and let V = Fmq be the vector space over Fq of dimension m. Let ` ≤ m be

a positive integer. The Grassmannian G`,m of all `-planes of V is defined by

G`,m := {P ⊆ V : P is a subspace of V and dimP = `}.

Note that, when ` = 1, the Grassmannian G1,m is the projective space Pm−1 =

Pm−1(Fq). In general, the Grassmannian G`,m can be embedded into a projective

space P(m
` )−1 via the Plücker map. More precisely, let I(`,m) be the set defined by

(3) I(`,m) = {α = (α1, . . . , α`) ∈ Z` : 1 ≤ α1 < · · · < α` ≤ m}.
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Fix some total order on I(`,m) and for every point P ∈ G`,m, let MP be an

`×m matrix whose rows forms a basis of P . The Plücker map is the map

Pl : G`,m → P(m
` )−1 defined by P 7→ [pα(MP )]α∈I(`,m)

where the αthcoordinate, pα(MP ), is the minor of the ` × ` matrix obtained from

MP by selecting its ` columns indexed by the coordinates of α. It is well known that

the Plücker map Pl is a well-defined, injective map. Moreover, the image of the

Grassmannian G`,m is a projective algebraic subset of P(m
` )−1. It is not hard to see

that the cardinality of the Grassmannian G`,m is given by the Gaussian binomial

coefficient
[
m
`

]
q
. Further, G`,m ⊂ P(m

` )−1 can be defined as the set of common zeroes

of the Plücker polynomials, which are certain irreducible quadratic polynomials. It

is well known that the Plücker map embeds G`,m non-degenerately into P(m
` )−1.

In other words, G`,m does not lie on any hyperplane in P(m
` )−1. Moreover, using

duality one can see that G`,m and Gm−`,m are isomorphic varieties. Therefore we

will assume throughout in this article that ` ≤ m−`. For a more detailed description

of Grassmannians and their properties, we refer to [13, 17].

Note that, from the Schubert cell decomposition of Grassmannians [17, 3.2.3]

and [11, Thm.1], we have

(4) |G`,m|=
[
m

`

]
q

=
∑

β∈I(`,m)

qδ(β),

where, δ(β) =
∑`
i=1(βi − i) for every β = (β1, . . . , β`) ∈ I(`,m).

Grassmann codes can now be defined using the points of G`,m, or more precisely

its image under the Plücker embedding, as a projective system. Some authors

use another point of view when constructing Grassmann codes, which we briefly

describe now for the convenience of the reader. Let G`,m = {P1, P2, . . . , Pn}, ,

where n =
[
m
`

]
q
. For 1 ≤ i ≤ n, choose an ` ×m matrices Mi, whose rowspace is

Pi. Now let X = (Xij) be an ` ×m matrix in variables Xij . For any α ∈ I(`,m),

let Xα be the minor of the `× ` submatrix of X obtained by selecting its columns

indexed by α1, α2, . . . , α`. Finally, let Fq[Xα : α ∈ I(`,m)]1 be the vector space

spanned by the minors Xα. Consider the evaluation map

Ev : Fq[Xα : α ∈ I(`,m)]1 → Fnq defined by f 7→ cf = (f(M1), . . . , f(Mn)).

The map is well defined as the Grassmannian G`,m does not lie on a hyperplane

[17, Exercise 3.1.2]. The image of this evaluation map is exactly the Grassmann

code C(`,m). Indeed, where using the point of view of projective systems, one

constructs the columns of a generator matrix of the code C(`,m), the evaluation

map produces all linear combinations of the rows of this generator matrix and hence

all codewords of C(`,m).

From the construction it is clear that the coordinates of a codeword of C(`,m)

can be indexed by the points of G`,m. Therefore, we can interpret the support of
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a codeword c ∈ C(`,m) as a set consisting of points from G`,m. To be precise, if

c = cf ∈ C(`,m) is any codeword then we write the support of c as

Supp(c) = {Pi ∈ G`,m : f(Mi) 6= 0}.

In the same way, the support of a codeword from C(`,m)⊥ will be viewed as a

subset of G`,m.

Later we will need that the automorphism group of a Grassmann code C(`,m)

acts transitively on the set of coordinates. This follows easily, since GL(m,Fq) acts

transitively on the set of `-dimensional subspaces of V . For a full description of the

automorphism group of C(`,m), see [7, Th. 3.7], [25, Exercise 3.5] and [5, Sec 6.6].

Now, let us describe lines in G`,m, which we will use extensively in the next

sections [21, Ch. 3.1].

Definition 2.1. Let U ⊂ W be two subspaces of V of dimensions `− 1 and `+ 1

respectively. A line in G`,m is define by

L(U,W ) := {P ∈ G`,m : U ⊂ P ⊂W}.

It is well known that the Plücker image of L(U,W ) gives a line in the projective

space P(m
` ) − 1. Further, every line of projective space P(m

` )−1 contained in G`,m is

the Plücker image of some L(U,W ) [6, Lemma 5, Page 57]. Here, we are identifying

the Grassmannian G`,m and its image under Plücker map. The next lemma is a

simple consequence of the definition of a line on the Grassmannian.

Lemma 2.2. [9, Lemma 3] Let P and Q be two distinct points of the Grassmannian

G`,m. The following are equivalent:

(1) P and Q lie on a line in G`,m,

(2) dim(P ∩Q) = `− 1,

(3) dim(P +Q) = `+ 1.

Dually, it is also not hard to determine whether or not two distinct lines intersect.

Lemma 2.3. Let L(U1,W1) and L(U2,W2) be two distinct lines on the Grassman-

nian G`,m. Then these two lines intersect if and only if one of the following is

satisfied:

(1) U1 = U2 and dim(W1 ∩W2) = `,

(2) W1 = W2 and dim(U1 + U2) = `,

(3) U1 6= U2, W1 6= W2, and U1 + U2 = W1 ∩W2.

In first two cases, the intersection point is W1 ∩W2, U1 + U2 respectively. In the

third case the intersection point is U1 + U2 (which equals W1 ∩W2).

Proof. It is not hard to see that if (1), (2), or (3) is satisfied, then the lines L(U1,W1)

and L(U2,W2) intersect in the indicated point. Conversely, suppose that L(U1,W1)

and L(U2,W2) intersect. In this case there exist an `-dimensional space P satisfying
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U1 ⊂ P ⊂ W1 and U2 ⊂ P ⊂ W2. If U1 6= U2 and W1 6= W2, then U1 + U2 ⊆ P ⊆
W1 ∩W2, but equality needs to hold as dim(U1 + U2) ≥ ` ≥ dim(W1 ∩W2). �

The following notion of injection distance between two points P,Q ∈ G`,m is

defined in [26, Def. 2].

Definition 2.4. Let P,Q ∈ G`,m be given. The injection distance between P and

Q is defined by dist(P,Q) := `− dim(P ∩Q).

In particular Lemma 2.2 implies that two distinct points of the Grassmannian

lie on a line if and only if they are at distance one. In the next lemma we quote

a result from [4] in which the number of points at distance i from a given point P

was determined.

Lemma 2.5. [4, Lemma 9.3.2] Let P ∈ G`,m be given. For any 0 ≤ i ≤ ` the

cardinality of the set {Q ∈ G`,m : dist(P,Q) = i} is given by

qi
2

[
`

i

]
q

[
m− `
i

]
q

.

For future reference, we state and prove the following lemma, where an alterna-

tive expression for the cardinality of {Q ∈ G`,m : dist(P,Q) = i} is given:

Lemma 2.6. For any 1 ≤ i ≤ ` the following identity holds:

∑
`≥r1>···>ri≥1

1≤s1<···<si≤m−`

i∏
j=1

q`+i−rj+sj−1 = qi
2

[
`

i

]
q

[
m− `
i

]
q

.

Proof. Let R(i, `) be the set of all i-tuples r = (r1, . . . , ri) ∈ Zi satisfying ` ≥ r1 >
· · · > ri ≥ 1. Similarly, let I(i,m − `) be the set defined in equation (3). Further,

write aj = `− rj + 1 and a = (a1, . . . , ai). Note: r ∈ R(i, `) if and only if a ∈ I(i, `)
Then we have∑

r∈R(i,`)

s∈I(i,m−`)

i∏
j=1

q`−rj+sj−1 =
∑

a∈I(i,`)
s∈I(i,m−`)

i∏
j=1

qaj+sj−2

=

 ∑
a∈I(i,`)

q
∑i

j=1(aj−1)

 ∑
s∈I(i,m−`)

q
∑i

j=1(sj−1)


=

 ∑
a∈I(i,`)

q(
i
2) · qδ(a)

 ∑
s∈I(i,m−`)

q(
i
2) · qδ(s)


= qi

2−i
[
`

i

]
q

[
m− `
i

]
q

.

Here we used equation (4) in the final equality. The lemma now follows. �
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Let i be a positive integer satisfying 1 ≤ i ≤ `. Given P,Q ∈ G`,m, we say that

a sequence L1, . . . , Li of distinct lines connects P to Q if P ∈ L1, Q ∈ Li and for

all 1 ≤ j < i, the intersection Lj ∩Lj+1 is not empty. Then two points P and Q of

the Grassmannian are at distance i if and only if there exists a sequence of i lines

L1, . . . , Li on the Grassmannian connecting P to Q and no sequence consisting of

fewer than i lines connecting P to Q exists. This reformulation of the distance

between P and Q is used in [5, Prop. 6.6.2] when discussing Grassmann graphs.

We conclude this section by stating the following result from [3, Thm. 24] that

indicates the key role of lines on Grassmannians in understanding parity checks

and hence decoding of C(`,m).

Theorem 2.7. The minimum distance of the dual Grassmann code C(`,m)⊥ is

three. Further, the three points of G`,m corresponding to the support of a minimum

weight codeword of C(`,m)⊥, lie on a line in the Grassmannian. Conversely, any

three points on a line in G`,m, form the support of some minimum weight codeword

in C(`,m)⊥.

3. Geometry of lines on Grassmannians

In this section we will study the geometry of the lines introduced in the previous

section more closely. For the rest of the article, unless it is said specifically, we fix

i as a positive integer satisfying 1 ≤ i ≤ `. The notion of distance motivates the

following:

Definition 3.1. Let P ∈ G`,m be a point and let i be an integer satisfying 0 ≤ i ≤ `.
The ith closure P

(i)
of P in G`,m is defined by

P
(i)

:= {Q ∈ G`,m : dist(P,Q) ≤ i}.

One can think of P
(i)

as a ball of radius i and center P withinG`,m. Alternatively,

one can define

P
(i)

= {Q ∈ G`,m : dim(P ∩Q) ≥ `− i}

= {Q ∈ G`,m : dim(P +Q) ≤ `+ i} :

We extend the definition of P
(i)

by setting P
(i)

= ∅ for any negative integer i and

P
(i)

= G`,m for i ≥ `+ 1. Note that P
(0)

= {P} and P
(`)

= G`,m. Geometrically,

P
(i)

is the collection of all points Q of the Grassmannian connected to P by a

sequence of at most i lines on the Grassmannian.

Remark 3.2. Let i be an integer satisfying 0 ≤ i ≤ `. Without going into any details,

we would like to mention here that the ith closure P
(i)

of P in the Grassmannian

G`,m is the Schubert variety Ωα(`,m) corresponding to the dimension sequence

α = (i+ 1, i+ 2, . . . , `,m− i+ 1,m− i+ 2, . . . ,m)
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Note that for every 0 ≤ i ≤ ` we have P
(i−1) ⊂ P (i)

and that the Grassmannian

G`,m is the disjoint union of sets P
(i) \ P (i−1)

. More precisely,

(5) G`,m =
⊔̀
i=0

(
P

(i) \ P (i−1))
.

Using Lemma 2.5, one immediately obtains the following:

(6) |P (i) \ P (i−1)|= qi
2

[
`

i

]
q

[
m− `
i

]
q

.

One can think of the points on G`,m as the vertices of the Grassmann graph.

Since in a connected graph, one has the notion of a geodesic, this point of view will

give rise to geodesics between two points in G`,m. For a more detailed exposition

of geodesics we refer to [5, Sec 1.6] and [25, Sec 1.1.1].

Definition 3.3. Let i be an integer satisfying 0 ≤ i ≤ ` and let Q ∈ P (i)\P (i−1)
be

a point. A geodesic from P to Q is sequence P = (Q0 = P,Q1, . . . , Qi−1, Qi = Q)

of i+ 1 points in G`,m satisfying

dist(P,Qt) = t, dist(Qt, Qt+1) = 1, and dist(Qt, Q) = i− t, ∀ 1 ≤ t ≤ i− 1.

Remark 3.4. It is not hard to see that for every 1 ≤ i ≤ ` and Q ∈ P (i) \ P (i−1)
,

a geodesic from P to Q exists. One can construct such a geodesic using induction.

For example, let U1 be a hyperplane of P containing P ∩Q. Now take y ∈ Q\P ∩Q
and define Q1 = U1 + 〈y〉. Clearly P ∩ Q1 = U1 and Q1 ∩ Q = (P ∩ Q) + 〈y〉. In

other words, dist(P,Q1) = 1 and dist(Q1, Q) = i − 1. In the same way we can

construct Q2 by replacing Q with Q1.

Note that this definition is equivalent with saying that there are i lines L(Ut,Wt)

for 1 ≤ t ≤ i connecting P to Q. In this case Qt is the intersecting point of lines

L(Ut,Wt) and L(Ut+1,Wt+1) for every 1 ≤ t ≤ i−1. The next lemma is important

for the last section of this article and we will be referring to this again and again.

This lemma is very similar to [22, Lemma 2.12] and can be deduced immediately

from it. For the sake of completeness we include a short proof.

Lemma 3.5. Let i be an integer satisfying 0 ≤ i ≤ `, let Q ∈ P (i) \ P (i−1)
be a

point, and let P = (P,Q1, . . . , Qi−1, Q) be a geodesic from P to Q. Then

P ∩Qt+1 ⊂ P ∩Qt and P +Qt ⊂ P +Qt+1 ∀ 1 ≤ t ≤ i− 1.

In particular, P ∩Q ⊂ Qt ⊂ P +Q for every 1 ≤ t ≤ i− 1.

Proof. Let 1 ≤ t ≤ i− 1 be arbitrary. We claim that P ∩Qt+1 ⊂ P ∩Qt. If this is

not true, then as dim(P ∩Qt+1) = `− t− 1, we get dim(P ∩Qt ∩Qt+1) ≤ `− t− 2.
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Hence,

dim((P ∩Qt) +Qt+1) = dim(P ∩Qt) + dim(Qt)− dim(P ∩Qt ∩Qt+1)

≥ (`− t) + `− (`− t− 2)

= `+ 2.

On the other hand, (P ∩ Qt) + Qt+1 ⊆ Qt + Qt+1 and dim(Qt + Qt+1) = ` + 1.

This is a contradiction and hence we get P ∩Qt+1 ⊂ P ∩Qt.
Similarly, if P +Qt ⊂ P +Qt+1 is not true then, as dim(P +Qt+1) = `+ t+ 1,

we get dim(P + Qt+1 + Qt) ≥ ` + t + 1 + 1 = ` + t + 2. On the other hand, we

have (P +Qt)∩Qt+1 ⊇ (P ∩Qt+1) + (Qt ∩Qt+1). Now as dim(Qt ∩Qt+1) = `− 1,

we get dim((P + Qt) ∩ Qt+1) ≥ ` − 1. Since Qt is a point from the geodesic, by

definition we have dim(P +Qt) = `+ t. This gives

dim((P +Qt) +Qt+1) = dim(P +Qt) + dimQt+1 − dim((P +Qt) ∩Qt+1)

≤ (`+ t) + `− (`− 1)

= `+ t+ 1,

which is a contradiction. �

For the rest of the article we fix a point P ∈ G`,m, an integer 1 ≤ i ≤ ` and a

complete flag passing through P :

(0) = U0 ⊂ U1 ⊂ U2 ⊂ · · · U`−1 ⊂ U` = P =W` ⊂ W`+1 ⊂ · · ·Wm−1 ⊂ Wm = V.

We will now investigate geodesics satisfying certain conditions with respect to this

flag.

Definition 3.6. Let i be an integer satisfying 0 ≤ i ≤ ` and let Q ∈ P (i) \ P (i−1)

be a point. Given a geodesic P from P to Q, say P = (P,Q1, . . . , Qi−1, Q), we

define two i-tuples r(P) = (r1(P), . . . , ri(P)) and s(P) = (s1(P), . . . , si(P)), where

for 1 ≤ t ≤ i:
rt(P) = max{j : Uj−1 ⊆ Qt}

and

st(P) = min{j : Qt ⊆ W`+j}.

To ease the notation, we will sometimes write rt and st instead of rt(P) and

st(P) if the geodesic P is fixed. In the next lemma we will show that these i-tuples

for a given geodesic from P to a point Q are increasing. More precisely,

Lemma 3.7. Let i be an integer satisfying 0 ≤ i ≤ `, let Q ∈ P (i) \ P (i−1)
, and

let a geodesic P = (P,Q1, . . . , Qi−1, Q) from P to Q in G`,m be given. Then the

corresponding i-tuples r(P) and s(P) satisfy

` ≥ r1 ≥ r2 ≥ · · · ≥ ri ≥ 1 and 1 ≤ s1 ≤ · · · ≤ si ≤ m− `.
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Proof. We only prove the first part involving r(P). The second part can be shown

similarly. Clearly ` ≥ r1. Now let 2 ≤ t ≤ i and let rt = j. By definition, this

means Uj−1 ⊆ Qt but Uj * Qt. As Uj−1 ⊂ P , we get Uj−1 ⊆ Qt∩P . From Lemma

3.5 we have P ∩ Qt ⊆ P ∩ Qt−1. Consequently, Uj−1 ⊆ Qt−1 and hence rt−1 ≥ j.

This completes the proof for the sequence r(P). �

For any point Q ∈ P (i) \ P (i−1)
we define some new constants that are going to

be very useful in understanding the geodesics between P and Q.

Definition 3.8. Let i be an integer satisfying 0 ≤ i ≤ ` and let Q ∈ P (i) \ P (i−1)

be a given point. For every 1 ≤ t ≤ i we define

γt(Q) = max{j : dim(Q+ Uj) = `+ i− t}

and

δt(Q) = min{j : dim(Q ∩W`+j) = `− i+ t}

If from the context the point Q is clear, we will simply write γt and δt. The

constants γt indicate the jump positions (in reverse order) in the dimension in the

sequence of nested subspaces Q + U0 ⊆ Q + U1 ⊆ · · · ⊆ Q + U` = Q + P. Hence

0 ≤ γi < γi−1 < · · · < γ1. Moreover γ1 ≤ ` − 1, since dim(P + Q) = ` + i.

Similarly, the constants δt indicate the jump positions in dimension in the sequence

of nested subspaces Q ∩ P = Q ∩ W` ⊆ Q ∩ W`+1 ⊆ · · · ⊆ Q ∩ Wm = Q. Hence

1 ≤ δ1 < δ2 < · · · < δi ≤ m − `. In the next theorem, we will show that for every

Q ∈ P (i) \ P (i−1)
there exists a geodesic such that the corresponding i-tuples are

strictly increasing. The constants γt and δt will appear in a natural way. First we

need a lemma.

Lemma 3.9. Let i be an integer satisfying 0 ≤ i ≤ ` and let Q ∈ P (i) \P (i−1)
, and

recursively define

Qt :=

P if t = 0,

((Qt−1 ∩Q) + Uγt) + (W`+δt ∩Q) if 1 ≤ t ≤ i.
.

Then P = (Q0, . . . , Qi) is a geodesic from P to Q.

Proof. Directly from the definition, we see that Q0 = P . Moreover, note that

dim(Q+Uγi) = ` and dim(W`+δi ∩Q) = `. Hence Q+Uγi = Q =W`+δi ∩Q, which

implies that Qi = Q.

We will now prove with induction on t the claim that for all 0 ≤ t ≤ i− 1:

dim(Qt) = `, dim(P∩Qt) = `−t, dim(Qt∩Qt+1) = `−1, and dim(Qt∩Q) = `−i+t.

If t = 0, the only nontrivial statement is that dim(P ∩ Q1) = ` − 1. We have

Q1 = ((P ∩Q) + Uγ1) + (W`+δ1 ∩Q). Since (P ∩Q) + Uγ1 ⊂ P, we have

P∩Q1 = ((P∩Q)+Uγ1)+(P∩W`+δ1∩Q) = ((P∩Q)+Uγ1)+(P∩Q) = (P∩Q)+Uγ1 .
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Moreover, dim((P ∩Q) +Uγ1) = dim(P ∩Q) + dim(Uγ1)− dim(P ∩Q∩Uγ1). Since

P ∩Q∩Uγ1 = Q∩Uγ1 and by definition dim(Q+Uγ1) = `+ i−1, we may conclude

that dim(P ∩ Q1) = ` − 1. Here we computed the dimension Q ∩ Uγ1 using that

dim(Q+ Uγ1) = `+ i− 1 by the definition of γ1.

Now assume that the claim holds for t − 1. Since γt < γt−1, we get Q ∩ Uγt ⊆
Uγt ⊂ Uγt−1

. The definition of Qt−1, implies Uγt−1
⊂ Qt−1. We conclude Q∩Uγt ⊂

Uγt−1 ⊂ Qt−1. Hence inductively we get

dim((Qt−1 ∩Q) + Uγt) = dim(Qt−1 ∩Q) + dimUγt − dim((Qt−1 ∩Q) ∩ Uγt)

= (`− i+ t− 1) + γt − dim(Q ∩ Uγt)

= (`− i+ t− 1) + γt − (γt − i+ t)(7)

= `− 1.

By definition of Qt−1 we have W`+δt−1 ∩ Q ⊂ Qt−1 ∩ Q and using the induction

hypothesis, both are of dimension `− i+ t− 1. Therefore W`+δt−1 ∩Q = Qt−1 ∩Q.

As δt > δt−1, we get W`−δt−1
⊂ W`−δt and hence

(8) (Qt−1 ∩Q) + Uγt ⊂ (W`+δt−1 ∩Q) + Uγt ⊂ W`+δt .

Consequently

((Qt−1 ∩Q) + Uγt) ∩ (W`+δt ∩Q) = ((Qt−1 ∩Q) + Uγt) ∩Q.

On the other hand ((Qt−1 ∩Q) +Uγt)∩Q = (Qt−1 ∩Q) + (Uγt ∩Q). But the right-

hand side is equal to Qt−1 ∩ Q as Qt−1 ⊇ Uγt−1
⊇ Uγt . Putting all this together,

we get

dimQt = (`− 1) + (`− i+ t)− dim((Qt−1 ∩Q) + Uγt) ∩ (W`+δt ∩Q)

= (`− 1) + (`− i+ t)− dim(Qt−1 ∩Q)

= `.

This proves the first part of the claim that dim(Qt) = `.

The definition of Qt implies that ((Qt−1 ∩ Q) + Uγt) ∩ P ⊆ Qt ∩ P . Now,

using the definition of Qt−1, we obtain P ∩ Qt−1 ⊃ P ∩ W`−δt−1
∩ Q = P ∩ Q.

Hence, we may conclude that ((Qt−1 ∩Q) + Uγt) ∩ P = (P ∩Q) + Uγt . Moreover,

dim((P ∩ Q) + Uγt) = ` − t, since dim(Q + Uγt) = ` − i + t. Combining the

above, we get dim(P ∩Qt) ≥ `− t and consequently dist(P,Qt) ≤ t. Similarly, as

W`+δt∩Q ⊂ Qt∩Q, one obtains dim(Qt∩Q) ≥ `−i+t and hence dist(Q,Qt) ≤ i−t.
As dist(P,Q) = i we conclude dist(P,Qt) = t and dist(Q,Qt) = i− t. This proves

that dim(P ∩Qt) = `− t and dim(Q ∩Qt) = `− i+ t.

What remains to be shown is that dim(Qt∩Qt+1) = `−1. Since (Q∩Qt)+Uγt+1
⊂

Qt, we obtain that

Qt ∩Qt+1 = ((Q ∩Qt) + Uγt+1
) + (W`+δt+1

∩Q ∩Qt) = (Q ∩Qt) + Uγt+1
.
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Similarly as in equation (7), we can now show that dim(Qt ∩ Qt+1) = ` − 1. This

proves the claim.

The claim immediately implies that P is a geodesic from P to Q. �

Theorem 3.10. Let i be an integer satisfying 0 ≤ i ≤ `. For every Q ∈ P
(i) \

P
(i−1)

, the i-tuples r(P) and s(P) corresponding to the geodesic P constructed in

Lemma 3.9, are given by

rt = γt(Q) + 1 and st = δt(Q), for 1 ≤ t ≤ i.

In particular these i-tuples satisfy:

` ≥ r1 > r2 > · · · > ri ≥ 1 and 1 ≤ s1 < · · · < si ≤ m− `.

Proof. We will use the geodesic P constructed in Lemma 3.9 and determine its

i-tuples r(P) and s(P). First, we claim that rt = γt + 1. Recall that

rt = max{j : Uj−1 ⊆ Qt}.

By definition, we have Uγt ⊂ Qt. This gives rt ≥ γt + 1. On the other hand if

Uγt+1 ⊂ Qt then Uγt+1 + Q ⊆ Qt + Q. But we also have dim(Qt + Q) = ` + i − t
and by definition of γt we get dim(Uγt+1 +Q) > dim(Uγt +Q) = `+ i− t. But this

is a contradiction. This implies Uγt+1 * Qt. In particular, rt ≤ γt + 1 and hence

rt = γt + 1 for every 1 ≤ t ≤ i. Also, recall that

st = min{j : Qt ⊂W`+j}.

Using equation (8), we know Qt ⊂ W`+δt and hence st ≤ δt. Now, if Qt ⊆ W`+δt−1

then Qt∩Q ⊆ W`+δt−1∩Q. Note that this gives dim(W`+δt−1∩Q) ≥ `−i+t but by

definition of δt we have dim(W`+δt−1∩Q) < `−i+t. This is a contradiction. Hence

we get st = δt for every 1 ≤ t ≤ i. This completes the proof of the theorem. �

Remark 3.11. Note that the geodesic P constructed in Lemma 3.9 only depends on

P , Q and the flag. Since P and the flag are fixed throughout, we will therefore for

this geodesic use the notations r(Q) and s(Q) instead of r(P) and s(P).

In the next theorem we will prove that for a given Q ∈ P
(i) \ P (i−1)

there is

a unique geodesic (P,Q1, . . . , Qi−1, Q) such that the corresponding i-tuples r =

(r1, . . . , ri) and s = (s1, . . . , si) satisfy the strict inequality condition. This implies

in particular that this geodesic has to be the one constructed in Lemma 3.9.

Theorem 3.12. Let i be an integer satisfying 0 ≤ i ≤ ` and let Q ∈ P (i) \ P (i−1)

and let P ′ = (P,Q′1, . . . , Q
′
i−1, Q) be an arbitrary geodesic from P to Q. Let r(P ′) =

(r′1, . . . , r
′
i) and s′(P ′) = (s′1, . . . , s

′
i) are corresponding i-tuples and suppose that

r′1 > · · · > r′i and s′1 < · · · < s′i.

Then Q′j = Qj for every 1 ≤ j ≤ i, where the Qj are defined as in Lemma 3.9.
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Proof. We claim that r′t = γt + 1 for every 1 ≤ t ≤ i. Since Ur′t−1 ⊂ Q′t, we get

Ur′t−1 + Q ⊂ Q′t + Q and hence dim(Ur′t−1 + Q) ≤ dim(Q′t + Q) = ` + i − t. By

definition of γt we get r′t− 1 ≤ γt. Now, if r′t− 1 < γt, then we get dim(Ur′t +Q) =

dim(Ur′k−1 + Q) for some k > t. As Ur′k−1 ⊂ Ur′t−1, we obtain that Ur′t−1 + Q =

Ur′k−1+Q. Intersecting both sides of this equality with P , we get Ur′t−1+(Q∩P ) =

Ur′k−1 + (Q ∩ P ). By Lemma 3.5, we have P ∩Q ⊂ Q′k and moreover Ur′k−1 ⊂ Q′k
by definition of r′k. Hence Ur′t−1 ⊂ Ur′t−1 + (Q ∩ P ) = Ur′k−1 + (Q ∩ P ) ⊆ Q′k,

implying r′k ≥ r′t. But this contradicts the strict inequality r′k < r′t. Therefore, we

get r′t − 1 = γt.

Similarly, from the definition of s′t we haveQ′t ⊆ W`+s′t
and this gives dim(W`+s′t

∩
Q) ≥ dim(Q′t ∩ Q) = ` − i + t. Consequently, δt ≤ s′t. Now if δt < s′t, then

dim(W`+s′t
∩Q) = dim(W`+s′k

∩Q) for some k > t. Then W`+s′t
∩Q =W`+s′k

∩Q.

Adding P both sides and keeping in mind that P ⊂ W`+j for every j, we get

W`+s′t
∩ (P + Q) = W`+s′k

∩ (P + Q). Since Q′k ⊂ W`+s′k
by definition of s′k and

Q′k ⊂ P + Q by Lemma 3.5, we get Q′k ⊂ W`+s′j
and consequently, s′k ≤ s′t. But

this contradicts the strict inequality s′k > s′t. Hence s′t = δt.

Now, we will show that Qt = Q′t for 1 ≤ t ≤ i by induction on t. It is enough to

prove that for every 1 ≤ t ≤ i, (Qt−1 ∩Q) + Uγt ⊆ Q′t and W`+δt ∩Q ⊆ Q′t.
If t = 1, then (Qt−1 ∩ Q) + Uγt = (P ∩ Q) + Uγ1 , which is contained in Q′1,

since P ∩ Q ⊂ Q′1 by Lemma 3.5 and Uγ1 ⊂ Q′1 by definition of r′1 and the fact

that r′1 − 1 = γ1. Similarly by definition of s′1 and the fact that s′1 = δ1, we get

W`+δ1 ∩Q ⊇ Q′1 ∩Q. Since both spaces have dimension `− i+ 1, they are equal.

Hence W`+δ1 ∩Q ⊆ Q′1.

Now for the induction step assume t > 1 and Qj = Q′j for every 1 ≤ j ≤ t − 1.

We have (Qt−1∩Q)+Uγt = (Q′t−1∩Q)+Uγt . Applying Lemma 3.5 to the geodesic

(Q′t−1, . . . , Q
′
i−1, Q), we see that Q′t−1 ∩ Q ⊂ Q′t. Moreover, since r′t − 1 = γt, we

get Uγt ⊂ Q′t. This shows that (Qt−1∩Q) +Uγt ⊂ Q′t. Similarly as in the induction

basis, by definition of s′t and the fact that s′t = δt, we get W`+δt ∩ Q ⊇ Q′t ∩ Q.

Since both spaces have dimension `− i+ t, they are equal. Hence W`+δt ∩Q ⊆ Q′t.
This concludes the proof. �

4. A majority logic decoder for C(`,m)

Our aim in this section is to construct a decoder for the Grassmann codes C(`,m)

that runs in quadratic complexity in the length of the code. In order to do this,

we will construct certain “orthogonal” parity checks of C(`,m) and then use the

well-known method of majority logic decoding. First, we recall what we mean by

orthogonal parity checks and how to use them for majority logic decoding. For a

general reference on these topics, see [16, Ch 13.7] for the binary case and [18, Ch

1] for the q-ary case. As usual, we call a codeword of the dual code C(`,m)⊥ a

parity check for C(`,m).
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Definition 4.1. Let C be an [n, k] code. For 1 ≤ i ≤ n, a set J of J parity checks

of C is said to be orthogonal on the ith coordinate if the J × n matrix H having

these J parity checks as rows satisfies the following:

(1) Each entry in the ith column of H is 1.

(2) The Hamming weight of any other column of H is at most 1, i.e., if j 6= i

and the jth column of H contains a non-zero entry in the rth row, then this

is the only non-zero entry in this column.

Suppose that c ∈ C is the sent codeword, but that the receiver receives the

word w = c + e, for some e = (e1, . . . , en) ∈ Fnq . Given a coordinate i and a set

J = {ω1, . . . , ωJ} of parity checks orthogonal on the ith coordinate, we define

Sj(w) :=
∑n
a=1 waωj,a. Note that Sj(w) = Sj(e) = ei +

∑n
a=1;a6=i eaωj,a. Now if a

clear majority of the J values Sj(w) − wi, where 1 ≤ j ≤ J , equals −α, then we

define ĉi := α. In case of a tie, we set ĉi := wi. Doing this for each coordinate i,

results in the decoded word ĉ := (ĉ1, . . . , ĉn). This procedure of determining ĉ is

called majority logic decoding. It is not a priori clear that ĉ is a codeword or if it is,

then it is equal to the sent codeword c. However, the following theorem from [18]

guarantees that ĉ = c as long as the number of errors, i.e., the Hamming weight of

e is at most bJ/2c. For ease of reference, we include a proof, based on the proof

given in [18, Ch 1,Thm 1].

Theorem 4.2. [18, Ch. 1,Thm. 1] Let C be an [n, k] code such that for each

1 ≤ i ≤ n, there exists a set J of J orthogonal parity checks on the ith coordinate.

Then the corresponding majority logic decoder corrects up to bJ/2c errors.

Proof. Let c be a transmitted codeword and w = c + e be the received word with

error e ∈ Fnq . Assume that no more than bJ/2c errors have occurred. It is enough

to prove that if we have a set J = {ω1, . . . , ωJ} of J parity checks of C orthogonal

on the ith coordinate, then we can determine the value of ei by majority voting.

As before, we have,

Sj(w) = Sj(e) = ei +

n∑
a6=i

eaωj,a, for 1 ≤ j ≤ J.

Now we distinguish two cases.

If ei 6= 0, then ei is an error position. Since there are not more than bJ/2c errors

and the set J is orthogonal on the ith coordinate, the remaining bJ/2c − 1 errors

can appear in at most bJ/2c−1 equations above. As a result, at least J−bJ/2c+1

expressions Sj(w) have the value ei, i.e., the majority of Sj(w) assumes the value

ei.

On the other hand, if ei = 0, for 1 ≤ j ≤ J , we have

Sj(w) = Sj(e) =

n∑
t6=i

etωj,t.
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Among these expressions, at most bJ/2c can involve some error positions. Hence

at least J − bJ/2c expressions Sj(w) are zero. In other words, at least half of the

expressions Sj(w) have the same value as ei.

Thus, in either case, majority logic decoding recovers the i-th coordinate of the

sent codeword. �

To use this theorem for the decoding of Grassmann codes, we need to construct

as many orthogonal parity checks as possible for each coordinate. However, as the

automorphism group of C(`,m) acts transitively on the coordinates, we only need

to produce such parity checks for a single fixed coordinate. Then sets of parity

checks orthogonal on other coordinates can be obtained immediately. Therefore,

for the rest of the article we fix P ∈ G`,m and will construct parity checks that are

orthogonal on the coordinate corresponding to P . The starting point of our con-

struction is Theorem 2.7. First, note that if we take a line in G`,m passing through

P and any two points Q and R different from P on that line, then Theorem 2.7

guarantees the existence of a parity check for C(`,m) with support corresponding

to P , Q and R. Note that if q = 2, for a given line through P , there is a unique

choice for Q and R, since in that case a line contains exactly three points. In this

way, we can obtain for each line one parity check of Hamming weight 3 whose sup-

port contains P . All the parity checks obtained in this way are orthogonal on P as

they all are passing through P and any two distinct lines through P only intersect

at P . In this way we get
[
`
1

]
q

[
m−`
1

]
q

many parity checks orthogonal on P . Before

giving the general construction, we illustrate in the next example how are we are

going to use the parity checks corresponding to lines through P to increase the set

of parity checks orthogonal on P .

Example 4.3. Let V = F4
2 and let G2,4 be the Grassmannian of all planes of V .

Let C(2, 4) be the corresponding binary Grassmann code. Then C(2, 4) is a binary

[n, k, d] code where

n =

[
4

2

]
2

= 35, k = 6, and d = 16.

Now let {e1, . . . , e4} be the standard basis of V and P = 〈e1, e2〉. There are[
2
1

]
2

[
2
1

]
2

= 9 lines in G2,4 passing through P . Explicitly these lines are L(U,W ),

where there are three possible choices for U , namely 〈e1〉, 〈e2〉, or 〈e1 + e2〉, and

three possibilities for W , namely 〈e1, e2, e3〉, 〈e1, e2, e4〉, or 〈e1, e2, e3 + e4〉. For

example, we have L(〈e1〉, 〈e1, e2, e3〉) = {P, 〈e1, e3〉, 〈e1, e2 + e3〉}.
Each of these nine lines corresponds to a weight three parity check. These

parity checks are orthogonal on P . As mentioned before, the three points on

these lines form the support of the corresponding parity check. To increase the

number of parity checks orthogonal on P , we combine the nine we have found so

far with other weight three parity checks in a structured way. Consider the line
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L(〈e1〉, 〈e1, e2, e3〉). There are nine lines through 〈e1, e3〉. Let L(U,W ) be a line

through 〈e1, e3〉. One can verify directly that if U 6= 〈e1〉 and W 6= 〈e1, e2, e3〉, then

the two points on L(U,W ) different from 〈e1, e3〉, lie in P
(2)\P (1)

. In this way, we

get four lines through 〈e1, e3〉 intersecting P
(1)

only at 〈e1, e3〉. Similarly we will

get four such lines passing through the third point 〈e1, e2 + e3〉. The lines are given

in the figure below. Now, we enumerate the four lines through 〈e1, e3〉, say m1 =

L(〈e3〉, 〈e1, e3, e4〉), m2 = L(〈e3〉, 〈e1, e3, e2 + e4〉), m3 = L(〈e1 + e3〉, 〈e1, e3, e4〉),
m4 = L(〈e1 + e3〉, 〈e1, e3, e2 + e4〉), as well as the four lines through 〈e1, e2 + e3〉,
say n1 = L(〈e2 + e3〉, 〈e1, e2 + e3, e4〉), n2 = L(〈e2 + e3〉, 〈e1, e2 + e3, e2 + e4〉),
n3 = L(〈e1 + e2 + e3〉, 〈e1, e2 + e3, e4〉), n4 = L(〈e1 + e2 + e3〉, 〈e1, e2 + e3, e2 + e4〉).
Let ω be the parity check corresponding to the line L(〈e1〉, 〈e1, e2, e3〉), ωi be the

parity check corresponding to the ith line through 〈e1, e3〉 and ω′i be the parity

check corresponding to the ith line through 〈e1, e2 + e3〉. For every i the parity

check ω + ωi + ω′i is of weight five. Further, these four weight five parity checks

are again orthogonal on P as their supports consists of P and pairwise disjoint

sets of four points from P
(2) \ P . Therefore the set of 9 + 4 = 13 parity checks

obtained in this way is orthogonal on P . Note that we can not increase the set of

these parity checks any further. This is simply because the total support of these

13 parity checks consists of 1 + 9× 2 + 4× 4 = 35 points. However, G2,4 contains

exactly that many points, so there is no room for any further parity checks without

violating orthogonality. Now using the automorphism group, we can for each coor-

dinate produce a set of 13 parity checks orthogonal on that coordinate. Theorem

4.2 implies that we can correct up to six errors for C(2, 4) using this approach.

P
〈e1, e3〉 〈e1, e2 + e3〉

〈e3, e4〉

〈e3, e2 + e4〉
〈e1 + e3, e4〉〈e1 + e3, e2 + e4〉

〈e3, e1 + e4〉

〈e3, e1 + e2 + e4〉
〈e1 + e3, e1 + e4〉

〈e1 + e3, e1 + e2 + e4〉

〈e2 + e3, e4〉

〈e2 + e3, e2 + e4〉

〈e1 + e2 + e3, e4〉
〈e1 + e2 + e3, e2 + e4〉

〈e2 + e3, e1 + e4〉

〈e2 + e3, e1 + e2 + e4〉
〈e1 + e2 + e3, e1 + e4〉

〈e1 + e2 + e3, e3 + e4〉

Note that any parity check gives rise to a geodesic from P to a point either

in P or in P
(2)

. For example, the parity check corresponding to the line L(〈e1 +

e2〉, 〈e1, e2, e4〉) gives rise to two geodesics: (P, 〈e1 + e2, e4〉) and (P, 〈e1 + e2, e2 +
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e4〉). The parity check ω + ω1 + ω′1 described above, gives rise to four geodesics

(P, 〈e1, e3〉, 〈e3, e4〉), (P, 〈e1, e3〉, 〈e3, e1 + e4〉), (P, 〈e1, e2 + e3〉, 〈e2 + e3, e4〉), and

(P, 〈e1, e2 + e3〉, 〈e2 + e3, e1 + e4〉). This is the reason we studied geodesics in the

previous section. If we fix the flag 0 ⊂ 〈e1〉 ⊂ 〈e1, e2〉 ⊂ 〈e1, e2, e3〉 ⊂ V , then both

the geodesics (P, 〈e1 + e2, e4〉) and (P, 〈e1 + e2, e2 + e4〉) have the same 1-tuples,

namely r = (2) and s = (1). The four geodesics coming from the parity check

ω + ω1 + ω′1 have the same 2-tuples, namely r = (2, 1) and s = (1, 2). Note that

both r and s are strictly monotonic. It is possible to consider other parity checks

of weight five, for example one obtained by combining the lines L(〈e1〉, 〈e1, e2, e4〉),
L(〈e4〉, 〈e1, e2, e4〉), and L(〈e2 + e4〉, 〈e1, e3, e2 + e4〉). Also this parity check would

give rise to four geodesics, one of them being (P, 〈e1, e4〉, 〈e3, e4〉). The 2-tuples for

these four geodesics are also the same, namely r = (2, 1) and s = (2, 2). Note that

the strict monotonicity is not satisfied in s. We see that in this example, we can

get a maximal set of parity checks orthogonal on P by studying geodesics starting

at P of varying lengths with strict monotonic r and s tuples. This is the reason we

studied geodesics where both r and s are strictly monotonic in Theorems 3.10 and

3.12.

In the next theorem we show that the observations from the previous example

can be generalized for any code C(`,m). Recall that for Q ∈ P
(i) \ P (i−1)

, we

defined the i-tuples r(Q) and s(Q) in Remark 3.11. In view of Theorem 3.12 these

are the i-tuples of the unique geodesic from P to Q having strictly monotonic i-

tuples. Also recall that, throughout we are working with a fixed complete flag of

V , namely

(0) = U0 ⊂ U1 ⊂ U2 ⊂ · · · U`−1 ⊂ U` = P =W` ⊂ W`+1 ⊂ · · ·Wm−1 ⊂ Wm = V.

Theorem 4.4. Let `,m be positive integers satisfying ` ≤ m and C(`,m) be the

corresponding Grassmann code. Then for every 1 ≤ i ≤ ` there exists a set Ji of

Ji :=
⌊q

2

⌋i
qi

2−i[`
i

]
q

[
m−`
i

]
q

many parity checks of C(`,m) of Hamming weight 1+2i

such that:

(1) For any ω ∈ Ji, the support of ω consists of P and 2i points from the set

P
(i) \ P (i−1)

.

(2) For any ω ∈ Ji and Q,Q′ ∈ Supp(ω)\{P}, we have

r(Q) = r(Q′) and s(Q) = s(Q′).

(3) For any two distinct ω, ω′ ∈ Ji we have Supp(ω) ∩ Supp(ω′) = {P}.
(4) For any i-tuples (r1, . . . , ri) and (s1, . . . , si) satisfying ` ≥ r1 > · · · > ri ≥ 1

and 1 ≤ s1 < · · · < si ≤ m − `, there exist exactly
⌊q

2

⌋i∏i
j=1 q

`−rj+sj−1

parity checks ω in Ji, such that:

for any Q ∈ Supp(ω)\{P}, r(Q) = (r1, . . . , ri) and s(Q) = (s1, . . . , si).
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Proof. The proof is by induction on i. Assume i = 1. For each line, we obtain bq/2c
parity checks of weight three as follows. We partition the points on the line distinct

from P into bq/2c subsets of cardinality two and, if q is odd, a subset containing

only one point. For each such subset, say {Q,R} there is a parity check ω such

that Supp(ω) = {P,Q,R}, by Theorem 2.7. Since there are
[
`
1

]
q

[
m−`
1

]
q

lines in

G`,m through P , we obtain a set J1 with bq/2c
[
`
1

]
q

[
m−`
1

]
q

parity checks. It is clear

that these parity checks satisfy items (1) and (3).

We now show that for any two given points Q,Q′, not equal to P , on a line

L(U,W ) through P it holds that r1(Q) = r1(Q′) and s1(Q) = s1(Q′). From this

item (2) will follow. Since U = P ∩Q = P ∩Q′ and Ut ⊆ P for every 0 ≤ t ≤ `, we

get

r1(Q) = max{j : Uj−1 ⊆ Q}

= max{j : Uj−1 ⊆ P ∩Q}

= max{j : Uj−1 ⊆ P ∩Q′}

= max{j : Uj−1 ⊆ Q′}

= r1(Q′).

Similarly, as W = P +Q = P +Q′ and P ⊆ W`+t for every 0 ≤ t ≤ m− ` , we get

s1(Q) = min{j : Q ⊂ W`+j}

= min{j : P +Q ⊂ W`+j}

= min{j : P +Q′ ⊂ W`+j}

= min{j : Q′ ⊂ W`+j}

= s1(Q′).

To complete the induction basis, we show item (4). Let ` ≥ r1 ≥ 1 and 1 ≤ s1 ≤
m − ` be given. Consider all (` − 1)-dimensional U ⊂ P such that Ur1−1 ⊂ U but

Ur1 * U . There are exactly
[
`−r1+1

1

]
q
−
[
`−r1
1

]
q

= q`−r1 such spaces. Similarly,

consider all (` + 1)-dimensional spaces W satisfying P ⊂ W ⊂ W`+s1 but W *
W`+s1−1. There are exactly

[
s1
1

]
q
−
[
s1−1
1

]
q

= qs1−1 such W . Now take any point

Q distinct from P on a line L(U,W ), with U and W chosen as above. Then by

construction r1(Q) = r1, since Ur1−1 ⊂ U ⊂ Q, while Ur1 ⊂ Q would imply that

Ur1 ⊂ Q∩P = U using that Ur1 ⊂ P . Similarly s1(Q) = s1. If either U contains Ur1
or W is contained inW`−s1−1, then for any point Q on L(U,W ), we have r1(Q) > r1

or s1(Q) < s1. Hence no other parity checks in J1 satisfy the requirements from

item (4). This completes the proof of item (4).

Now we consider the induction step. Assume that i ≥ 2 and that the theorem is

true for i−1. Let r = (r1, . . . , ri) and s = (s1, . . . , si) be two given i-tuples satisfying

` ≥ r1 > · · · > ri ≥ 1 and 1 ≤ s1 < · · · < si ≤ m− `. Then ` ≥ r1 > · · · > ri−1 > 1

and 1 ≤ s1 < · · · < si−1 < m− `. By the induction hypothesis, we know that there
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exist precisely bq/2ci−1
∏i−1
j=1 q

`−rj+sj−1 parity checks ω in Ji−1 with (i−1)-tuples

(r1, . . . , ri−1) and (s1, . . . , si−1). For any of these parity checks, we are going to

construct a set Ji(r, s) consisting of exactly bq/2cq`−ri+si−1 parity checks of weight

1 + 2i satisfying (1), (2), (3), and having i-tuples r and s.

Choose Qi−1 ∈ Supp(ω) \ {P}, then by Theorems 3.10 and 3.12 there exists

a unique geodesic Pi−1 = (P,Q1, . . . , Qi−1) from P to Qi−1 such that r(Pi−1) =

(r1, . . . , ri−1) and s(Pi−1) = (s1, . . . , si−1). We claim that there exist q`−ri+si−1

many lines L(U,W ) in G`,m passing though Qi−1 such that for any point Qi on

L(U,W ) different from Qi−1, the sequence Pi = (P,Q1, . . . , Qi−1, Qi) is a geodesic

from P to Qi satisfying r(Pi) = (r1, . . . , ri) and s(Pi) = (s1, . . . , si). First of all,

if L(U,W ) is a line through Qi−1 such that for one point Qi on L(U,W ) different

from Qi−1, the sequence Pi = (P,Q1, . . . , Qi−1, Qi) is a geodesic from P to Qi

satisfying r(Pi) = (r1, . . . , ri) and s(Pi) = (s1, . . . , si), then the same is true for all

the other points on L(U,W ) as well. Indeed, if Q′i is another point on L(U,W ),

then somewhat similarly as in the induction basis, one obtains

ri = ri(Qi) = max{j : Uj−1 ⊆ Qi}

= max{j : Uj−1 ⊆ Qi−1 ∩Qi} since Uri−1 ⊆ Uri−1−1 ⊆ Qi−1
= max{j : Uj−1 ⊆ Qi−1 ∩Q′i} since Qi−1 ∩Qi = U = Qi−1 ∩Q′i
= max{j : Uj−1 ⊆ Q′i} since Uri(Q′i)−1 ⊆ Uri−1−1 ⊆ Qi−1
= ri(Q

′
i).

Similarly one obtains si(Q
′
i) = si.

To obtain the number of possible lines L(U,W ) it is now enough to count the

number of points Qi in G`,m satisfying:

(a) dim(Qi−1 ∩Qi) = `− 1,

(b) dim(P ∩Qi) = `− i,
(c) r(Qi) = (r1, . . . , ri), i.e Uri−1 ⊆ Qi but Uri * Qi, and

(d) s(Qi) = (s1, . . . , si), i.e. Qi ⊆ W`+si but Qi *W`+si−1.

Indeed, the first two condition are equivalent to saying that Pi = (P,Q1, . . . , Qi−1, Qi)

is a geodesic from P to Qi, while the last two conditions guarantee that r(Pi) =

(r1, . . . , ri) and s(Pi) = (s1, . . . , si). Since ri < ri−1 and si > si−1, we have

(9) Uri−1 ⊂ Uri ⊆ Uri−1−1 ⊆ Qi−1 ∩ P

and similarly

(10) P +Qi−1 ⊆ W`+si−1
⊆ W`+si−1 ⊂ W`+si .

First, we compute the number of possibilities for codimension one spaces U in Qi−1,

which will play the role of Qi ∩Qi−1, and then the number of possibilities in which

to extend U to an `-dimensional space satisfying (a)− (d).
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Keeping equation (9) and condition (c) in mind, we have that any such U should

satisfy Uri−1 ⊆ U but Uri * U . Hence there are
[
`−ri+1

1

]
q
−
[
`−ri
1

]
q

= q`−ri many

choices for U . Given one of these choices for U we choose Qi ∈ G`,m containing

U and satisfying Qi ⊆ W`+si but Qi * W`+si−1. There are
[
si+1
1

]
q
−
[
si
1

]
q

= qsi

many possibilities for Qi. We claim that this Qi satisfies (a)− (d).

By construction U ⊂ Qi ∩Qi−1 and Qi *W`+si−1. Since equation (10) implies

Qi−1 ⊆ W`+si−1, we see that Qi 6= Qi−1. Hence Qi ∩ Qi−1 = U and dim(Qi ∩
Qi−1) = `− 1. This proves (a).

Note that U ∩ P ( Qi−1 ∩ P , since Uri * U , but Uri ⊂ Qi−1 ∩ P . Hence

dim(U ∩ P ) ≤ ` − i. On the other hand U is a hyperplane in Qi−1 and U ∩
P = U ∩ (Qi−1 ∩ P ). Hence dim(U ∩ P ) ≥ dim(Qi−1 ∩ P ) − 1 = ` − i. We

conclude dim(U ∩ P ) = ` − i. Clearly, U ∩ P ⊆ Qi ∩ P , from which we see that

dim(Qi∩P ) ≥ `− i. We claim equality holds, which will prove (b). By construction

Qi ⊆ W`+si but Qi * W`+si−1. Hence P + Qi ⊆ W`+si but P + Qi * W`+si−1.

Since U ⊂ Qi−1, from equation (10) we get P + U ⊆ W`+si−1 and hence we have

P + U $ P + Qi. Consequently, dim(P + U) < dim(P + Qi). We have seen that

dim(P ∩ U) = ` − i and therefore dim(P + U) = ` + i − 1. On the other hand,

dim(P + Qi) = 2` − dim(P ∩ Qi). This implies dim(P ∩ Qi) < ` − i + 1 and we

conclude that dim(P ∩Qi) = `− i. This proves (b).

To prove (c) we need to show that Uri−1 ⊆ Qi but Uri * Qi. The first part is

clear as Uri−1 ⊂ U ⊆ Qi. For the second part note that if Uri ⊆ Qi, then from

equation (9) we get Uri ⊆ Qi∩Qi−1 = U . However by construction Uri * U . Hence

Uri * Qi. This completes the proof of (c).

Finally, (d) follows by construction of Qi as Qi ⊆ W`+si but Qi *W`+si−1.

Combining the above, we see that there exist q`−ri+si possibilities for Qi. Hence

there exist a set L(Qi−1, ri, si) of q`−ri+si−1 lines through Qi−1 with the de-

sired properties. We fix an enumeration of these q`−ri+si−1 lines. If we choose

another point Q′i−1 ∈ Supp(ω) \ {P}, we can use the argument to get a set

L(Q′i−1, ri, si) of q`−ri+si−1 lines L(U ′,W ′) in G`,m through Q′i−1 such that for

any point Q′i on L(U ′,W ′) different from Q′i−1, the corresponding sequence P ′i =

(P,Q′1, . . . , Q
′
i−1, Q

′
i) is a geodesic from P to Q′i satisfying r(P ′i) = (r1, . . . , ri) and

s(P ′i) = (s1, . . . , si). For each point Q′i we also fix an enumeration of the q`−ri+si−1

lines.

Now we construct parity checks from ω as follows: for each Qi−1 ∈ Supp(ω)\{P}
and 1 ≤ a ≤ q`−ri+si−1, choose, using Theorem 2.7, a parity check ωa,Qi−1

of

C(`,m) of weight three with support contained in the ath line of L(Qi−1, ri, si),

such that the support of ω + ωa,Qi−1
does not contain Qi−1. Like in the induction

basis, we will do this in bq/2c different ways using a partition of the points on the

ath line of L(Qi−1, ri, si) distinct from Qi−1.
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Then for each 1 ≤ a ≤ q`−ri+si−1, we obtain bq/2c parity checks of the form

η(a, ω) := ω +
∑

Qi−1∈Supp(ω)\{P}

ωa,Qi−1
.

First of all, note that P ∈ Supp(η(a, ω)) and Supp(η(a, ω)) \ {P} ⊂ P
(i)\P (i−1)

.

Also note that by construction, property (2) is satisfied. Further, |Supp(η(a, ω))|=
1 + 2i. Indeed no lines of L(Qi−1, ri, si) and L(Q′i−1, ri, si) can intersect each

other. If they would intersect in a point, say Q, there would exist two distinct

geodesics Pi and P ′i from P to Q both having i-tuples r and s. But this is not

possible by Theorem 3.12. Using a similar argument, we obtain that Supp(η(a, ω)∩
Supp(η(a′, ω′)) = {P} if a 6= a′ or ω 6= ω′. In particular η(a, ω) and η(a′, ω′) are

mutually orthogonal on P if a 6= a′ or ω 6= ω′. If a = a′ and ω = ω′, but

we used different sets of points from the partitions of the same lines in the sets

L(Q′i−1, ri, si), then by construction the support of the corresponding parity checks

only have P in common.

This proves (3). Finally, by construction and using the induction hypothesis, we

have for given strictly monotonic r = (r1, . . . , ri) and s = (s1, . . . , si), found exactly

bq/2ci
∏i
j=1 q

`−rj+sj−1 parity checks. Adding over all possible such i-tuples and

using Lemma 2.6, the result follows. �

Corollary 4.5. Let C(`,m) be a Grassmann code and let P ∈ G`,m be an arbitrary

point. There exists a set J consisting of J :=
∑`
i=1

⌊q
2

⌋i
qi

2−i[`
i

]
q

[
m−`
i

]
q

many

parity checks for C(`,m), which is orthogonal on the coordinate P . In particular,

using majority logic decoding, we can correct up to bJ2 c errors.

Proof. Let P ∈ G`,m be an arbitrary point. We define J := ∪`i=1Ji, where Ji are

as in Theorem 4.4. Choose 1 ≤ i ≤ `. By Theorem 4.4 the set of parity checks

Ji is orthogonal on P . Since the support of the parity checks in Ji consists of P

and a further 2i points in P
(i) \ P (i−1)

, they are orthogonal to the parity checks

from Jt for any t 6= i. This proves that J is orthogonal on P . Using Theorem 4.4

again, we see that |J |=
∑`
i=1|Ji|= J . Now the last part of the theorem follows

from Theorem 4.2. �

Remark 4.6. In the construction of the set J , many coordinate positions have been

used. More precisely, since the parity checks in Ji have support in P and 2i points

of P
(i)\P (i−1)

, the total number of points that occur in one of the parity checks in

J equals:

1 +
∑̀
i=1

2i
⌊q

2

⌋i
qi

2−i
[
`

i

]
q

[
m− `
i

]
q

.

If q is even, and in particular for binary Grassmann codes, then equations (5) and

(6) imply that any point of G`,m occurs in the support of a parity check in J .

Hence the set J cannot be extended further for even q.
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Remark 4.7. As Example 4.3 shows, the majority logic decoder from Corollary 4.5

does not in general decode up to half the minimum distance of C(`,m). Let us

investigate more closely what happens. If ` = 1, then C(1,m) is an [n, k, d] =

[(qm − 1)/(q − 1),m, qm−1] code. In fact it is a first order projective Reed–Muller

code. We have J = bq/2c
[
1
1

]
q

[
m−1
1

]
q

= bq/2c(qm−1−1)/(q−1). Hence in the binary

case, we decode up to half the minimum distance, while for large q we can correct

up to roughly d/4 errors.

More generally, if ` and m are fixed and q tends to infinity, then it easy to see

that J/d→ 1/2`. Hence for large q we can correct up to d/2`+1 many errors using

Corollary 4.5. If ` and q are fixed, but m tends to infinity, a direct calculation

shows that limm→∞ J/d = Mq(`)/2
`, where Mq(`) is as in equation (2). Note that

Mq(`) > 1 if q is even, while Mq(`) < 1 if q is odd. It is not surprising that the

case q is even performs better than the odd case, since for even q, we have used all

points of G`,m in the support of some parity check in J , while for odd q there are

points that do not appear in the support of any parity check in J . The following

small table gives an impression on what happens for small values of q, `, and m.

q 2 2 2 2 2 2 3 3 3 4 4

` 2 2 2 2 3 3 2 2 2 2 2

m 4 5 6 7 6 7 4 5 6 4 5

J 13 49 185 713 309 2045 25 169 1330 114 1554

d 16 64 256 1024 512 4096 81 729 6561 256 4096

Remark 4.8. Note that any one-step majority logic decoder is fast to execute. In

our case, the computation of a parity check from Ji costs 2i multiplications in Fq.
Therefore, to carry out the majority voting for a single coordinate P ∈ G`,m costs

N multiplications in Fq, where

N =
∑̀
i=1

2i
⌊q

2

⌋i
qi

2−i
[
`

i

]
q

[
m− `
i

]
q

.

Note that N ≤ |G`,m|−1, since |G`,m| is the length n of the code C(`,m) and for

each coordinate different from P , at most one multiplication needs to be carried

out. Performing the majority logic decoding on all coordinates therefore takes at

most n(n − 1) multiplications in Fq. In this model, we assumed that for each

coordinate, the used set of orthogonal parity check on that coordinate was stored

in memory. For a given coordinate P , the memory requirement would be of the

order of magnitude of n: one would need to store the support sets of the used parity

checks, i.e., essentially a partition of the n− 1 coordinates distinct from P , and for

each coordinate a value from Fq to indicate the coordinates of the parity checks.

Hence the total memory requirement would be of the order of magnitude n2.

The memory requirement can easily be reduced. If we only store the set of

orthogonal parity checks on one fixed coordinate P , we could apply an automor-

phism of the Grassmannian to obtain the required sets of orthogonal parity checks
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on the other coordinates. As explained in Section 2, the n points of G`,m can be

represented by certain `×m matrices, which we may assume to be in row-reduced

echelon form. Applying an automorphism then boils down to multiplying these n

matrices with a suitable m ×m matrix, after which the result should be brought

in row-reduced echelon form again. This would cost around `m2n operations us-

ing naive matrix multiplication algorithms. The m×m matrix could be stored in

memory. Doing this for all coordinates, would give rise to a cost of m2n in memory

to store the needed m×m matrices, while the computational cost would be `m2n2.

Since m and ` are at best logarithmic in n, this would not increase the running

time of the decoder by much, while the memory requirement would be reduced

significantly.

Grassmann codes have been decoded in the literature before. Kroll–Vincenti

have studied permutation decoding for the codes C(1, 4), C(1, 5), and C(2, 4) [14].

Ghorpade–Piñero [10] have extended this approach to affine Grassmann codes [1],

which are codes that can be seen as Grassmann codes that have been punctured

in
[
m
`

]
q
− q`(m−`) coordinate positions. The algorithm in [10] can decode up to

d/
(
m
`

)
− 1 errors and although a complexity analysis was not given, it seems that

their algorithm uses around kn2 multiplications in Fq.
Let us compare our decoding algorithm with theirs. First of all, the complexity

of our algorithm is slightly better. Moreover, if ` and q are fixed, but m tends to

infinity, their error-correcting radius will tend to zero, while we have seen that ours

tends to Mq(`)/2
`+1 > 0. Note

(
m
`

)
> 2`+1 for every ` ≥ 3, or ` = 2 and m ≥ 5, or

` = 1 and m ≥ 5. Hence if ` and m are fixed, but q tends to infinity, our algorithm

performs better as well.
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