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Coincidence Factors for Domestic EV Charging
from Driving and Plug-in Behavior

Jacob Bollerslev, Student Member, IEEE, Peter Bach Andersen, Member, IEEE, Tue Vissing Jensen, Mattia
Marinelli, Senior Member, IEEE, Andreas Thingvad, Student Member, IEEE, Lisa Calearo, Student

Member, IEEE, and Tilman Weckesser, Senior Member, IEEE

Abstract—This study models the coincidence factor (CF) of
EV charging given driving and plug-in behaviors by combining
data sources from travel surveys and recorded EV charging data.
From these we generate travel and plug-in behaviors by using a
Monte Carlo approach to derive coincidence factors. By varying
EV battery size, rated charging power and plug-in behavior, their
influence on the coincidence factor is examined. The key results
show that the coincidence factor decreases to less than 25% when
considering more than 50 EVs with a charging level of 11 kW,
with the coincidence factor strongly depending on the number
of EVs considered. By contrast, driving behavior and battery
size have a minor influence on the coincidence factor. Further,
when mixing the parameters, such as EV battery size and rated
charging power, then especially the active power drawn by the
feeder does not change linearly. Ultimately, the study aims to add
to the state-of-the-art by solely and systematically focusing on the
CF and its sensitivity to a number of key factors. For planning
and design, distribution system operators may use this study as
a part of their planning for integration of electric vehicles in the
electrical grid.

Index Terms—Electric Vehicles, Power system analysis, System
analysis and design, Vehicle-Grid Integration, Coincidence factor,
Charging simultaneity

NOMENCLATURE

a) Abbreviations:
EV Electric Vehicle
SOC State of charge (rel. to capacity)
SSE Sum of squared errors
CF Coincidence factor
TU The Danish National Travel Survey
DSO Distribution System Operator

b) Sets:
T Time steps in simulation
D Days in simulation
Bs Set of batches for scenario s
Rb Set of runs in batch b
Vr Set of EVs in run r
J Set of journeys in database
S Set of scenarios

c) Parameters:
η Performance (km driven per kWh)
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lj Distance of journey j in km
∆SOCused

j Energy(SOC) usage during a journey
es Rated battery capacity for scenario
rs Rated charging power for scenario
SOC low State of charge at which an EV charges off-site

during a journey
Eoffsite Increase in state of charge per off-site charging

event
γ̂s, k̂s, ĉs Fitted parameters for coincidence factor model

for scenario s
Mb Number of EVs in batch b

d) Variables:
SOCarrival

v,d SOC upon arrival at home for EV v on day d
SOCdeparture

v,d SOC remaining upon departure from home for
EV v on day d

∆SOCoffsite
v,d Total amount of energy recharged during the

journey for EV v on day d
∆tcharge

v,d Charging time to fully recharge EV
cfb Coincidence factor for batch b
Pr(t) Power drawn from feeder in run r at time t
γ, k, c Coincidence factor model fit parameters
σ Standard deviation of max. CF
µ Mean of max. CF

e) Functions:
cfb(Mb) Model output coincidence factor from batch b

for Mb EVs
cfs(M |γ, k, c) Fitted coincidence factors for number of EVs

M in scenario s
P peak
s (M) Peak active power draw for number of

chargers M in scenario s

I. INTRODUCTION

With several countries seeking to phase out sale of
non-electric vehicles over the coming years [1], energy needs
for transportation will increasingly be covered by the electrical
grid. Subsequently, the grid faces not only higher demand,
but a demand that is concentrated depending on the charging
locations available and the behavior of drivers. These factors
could cause a rise in the coincidence factor of loads, requiring
additional investments in grid infrastructure [2].

For system operators it is crucial to understand how
the roll-out of electrified transportation will reflect in grid
requirements over the coming decade. As a large part of
the demand is expected to come from the residential sector
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[3], which simultaneously requires the most costly grid
reinforcement, characterizing the impact of electric vehicle
(EV) adoption for residential load is especially pertinent.

To address this concern, a model of how residential EV
coincidence factor (CF) depends on both driving behavior and
the technical composition of charging infrastructure and EVs
is needed. While many comprehensive studies have already
been done on grid impacts of EV charging, [4–6], very few
studies have an explicit and specific focus on the CF itself.
As such, the CF’s sensitivity to model inputs is typically
underexplored, with models not capturing the full range of
parameters impacting charging power requirements.

To fill this gap, we develop a model of EV charging which
includes a wider range of factors than previously studied.
The model uses driving patterns based on a database of
user-reported travel behavior, plug-in behavior from real-world
charging events, and a widened range of model parameters. We
systematically consider the sensitivity of coincidence factors
to EV parameters, and show how our method extends to
combinations of these parameters. Further, we present methods
for systematically deriving CFs from such models in a way that
corrects for the inherent uncertainty of capturing population
parameters.

The remainder of the paper is organized as follows. In
Section II, we outline the findings of previous studies on
EV user behavior and coincidence factors of EVs.Section III
introduces our model for calculating the CF and describe
the model parameters and inputs, while section IV describes
considerations made for the implementation of the model.
Based on the results presented in section V, we provide
recommendations in section VI for policy and modeling of
EVs. Finally, we conclude and indicate directions for future
work in section VII.

II. BACKGROUND

The impact of EV charging on the distribution system is
an important and timely topic. Distribution grid operators will
need to proactively prepare and dimension their grids based
on realistic assumptions on the magnitude of the additional
loading from EV charging.

Essential to quantifying the potential grid impacts is
the coincidence factor (CF). According to the International
Electrotechnical Commission (IEC), the CF is defined by ”the
ratio, expressed as a numerical value or as a percentage, of
the simultaneous maximum demand of a group of electrical
appliances or consumers within a specified period, to the sum
of their individual maximum demands within the same period”
[7]. Therefore the CF indicates the tendency of a set of loads
to consume at the same time: for a lower CF, less grid capacity
is required to serve the same set of loads. At the same time, an
increase in CF may endanger grid security, and subsequently
force grid reinforcement to happen early.

This story is further complicated by the muddling of the
concept of CFs in distribution grid operation, where the CF in
general use refers to the observed maximum load taken relative
to the fuse size, instead of relative to the observed maximum
power draw. In this way, CFs become a scaled proxy for total
downstream load, rather than a strict measure of simultaneity.

When discussing CF, an important distinction should be
made between small-scale, here meaning of order 50 units,
and large-scale deployments. While the exact cut-off depends
on the dynamics examined, due to reversion to the mean,
the maximum observed load in large-scale deployments come
primarily from coordinating factors such as the evening peak
or price-following, while for small-scale deployments the
maximum observed load is driven by stochastic uncertainty
[8]. In deriving CFs, there is a fundamental difference in these
two regimes, with the CFs for the small-scale regime primarily
sensitive to the number of units considered and the probability
of overlap of random fluctuations. This is particularly relevant
for CFs arising from EVs, as the rollout of EVs on a feeder will
be a gradual process, with long periods spent at low numbers
of units and some feeders being small enough to never leave
the small-scale regime.

Describing a realistic CF for EVs is complex as it depends
on both technical and behavioral factors. Technical factors
include the range of charging opportunities available to users,
the size of the vehicle’s battery and the charging power
supported by charging equipment - all of which is subject
to continuous development. Behavioral factors couple both
to user psychology, where e.g. the impact of range anxiety
may change as EVs become commonplace, and to market
interactions, where several suggestions for so-called smart
charging seek to distribute EV charging loads across the
day through tariffs or incentives. We proceed to examine
previous works in this area, to examine how CFs from EVs
are represented in current literature.

A. State of the art

As previously mentioned, behavioral factors are important
to consider when investigating the CF of EV charging. In
several studies, various behavioral factors are included when
considering the user behavior for EV owners, however, the
majority all have two factors in common: distance driven
during a trip and the arrival time. Many of the studies including
user behavior are primarily focused on investigating the grid
impact of EVs. Such studies typically consider the distance
driven and arrival time using a stochastic modeling approach
[9–12]. In contrast, there are also studies focusing solely on
the user behavior, and exploring other factors impacting the
user behavior [13–19]. These studies explore factors such as
different trip chains dependent on the EV owner’s occupation
[17, 18], social characteristics of EV owners [14], and plug-in
probability curves [13, 19]. For the aforementioned studies,
a mix of real-world or synthetic data is used to model user
behavior. This paper uses the Danish National Travel Survey
[20] to obtain a distribution for distance driven and arrival
time at home. Further, plug-in probability curves based on
real-world charging data are used [19].

A few studies are especially relevant for the present
investigation as they include an explicit description of the CF
for EVs.

In [15] Quirós-Tortós et al. utilize a dataset based on 221
residential EV users and more than 68,000 charging events.
Probability density functions are generated for plug-in events
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per day, start charging times and the SOC (beginning and end
of charging session). Then a Monte Carlo approach is used to
quantify a diversified peak demand for a different number of
EVs. The CF is plotted for up to 200 EVs for both weekdays
and weekend. The study finds that the CF will stabilize below
40% when exceeding 50 EVs and the paper quotes a CF of
33% for 1000 EVs. The calculation of the CF is based on
the technical specifications of the Nissan Leaf with a rated
charging power of 3.6 kW and 24 kWh batteries.

A study by Venegas et al. [21] uses a multi-agent EV
model, a French survey and census data to analyze impacts
of systematic and non-systematic charging in rural and urban
distribution grids. Here systematic charging means that the
EV is plugged in every night, regardless of SOC, while
with non-systematic charging the EV is only plugged in
when a low SOC necessitates a recharged. For systematic
charging the paper finds a CF of 40% (which is quoted as a
common recommendation for sizing in collective residential
buildings in France) - but does not elaborate on the CF
during non-systematic charging. The study concludes that
non-systematic charging will generally reduce grid loading.

A study by Calearo et al. [22] proposed a method to generate
individual charging patterns to quantify loading impacts on
distribution grid feeders. The combined charging patterns are
applied to a representative radially run, semi-urban low voltage
grid. The study finds a CF of 45% for single-phase charging
(3.7 kW), while this decreases to 25% for three-phase charging
(11 kW). The decrease in CF means that even though charging
power is tripled the combined peak only increases by 50%.
The study concludes that for a 100% EV penetration scenario;
single phase charging will cause undervoltages due to phase
imbalance while three-phase charging may ultimately result in
transformer/cable overloading.

The studies describing the CF of EVs have been found to
include three types of inputs: number of EVs, battery size and
charging power. Table I provides an overview of the inputs
mentioned in a number of studies.

TABLE I: Studies of coincidence factors of EV charging.

Study No. EVs Battery
Sizes [kWh]

Charging
Powers [kW]

Calearo et al. [22] 20, 127
1000 40 3.7, 11

Flammini et al. [23] 12
Quirós-Tortós et al. [15] 1-1000 24 3.6
Tong et al. [24] 20-10000 2, 3, 6, 15
Aunedi et al. [25] 1 - 54 3.7, 14
Thie et al. [26] 1-10
Palomino et al. [11] 1-6 6.6, 12.9, 19.2

B. Research gaps

Table I illustrates that the number of EVs and charging
power are commonly considered when defining the CF of EV
charging. A few of the identified studies also describe the
battery size of the EVs on which the CF is based. These inputs
are shown to vary significantly between studies, which is also
reflected in the obtained CFs. Several of the studies map the
CF as a function of number of EVs. While this relationship

typically follow the same trend, a rapidly decreasing CF
as a function of an increasing number of EVs, the CF for
a particular number of EVs is found to differ significantly
between studies.

In other words, how many EVs will it take before the
stochastic uncertainty of small-scale deployments is left
behind.

As an example, a CF of 50% is found for 2-3 EVs in [11,
26], while the same CF is found for more than 10 EVs in
[15, 25].

The inputs chosen are often informed by the particular trial
from which the data is extracted (vehicle type, charging power,
etc.) and the particular grid chosen as a case (number of
vehicles on a feeder) - the CF’s sensitivity to such inputs are
typically not explored.

III. MODEL INPUTS

A. Model introduction

The approach to modelling the CF of EVs is illustrated in
Fig. 1, which lists the relevant inputs and outputs of the model.

Fig. 1: Coincidence factor model overview.

We consider the following inputs, as they are expected to
impact the CF for a given feeder:
• Available charging power.
• EV battery size.
• Number of EVs.

The specific values for battery sizes and charging power are
based on expectations established together with the Danish EV
industry [27], based on car models and charging equipment
available presently and in the near future. The number of EVs
is based on a danish low voltage distribution feeder, which
generally has up to 100 customers connected. Therefore, the
number of EVs considered ranges from 1 to 100.

The following factors must be handled by the modeling of
each EV user’s behavior:
• Driving patterns, i.e. time of arrival and daily energy use.
• Probability that the user plug-in upon arrival.
• Utilization of public charging infrastructure.
A major source of variation, which we do not examine in the

present study is the composition of users on the feeder. That is,
we do not explicitly address similarities in behavior shared by
EV owners depending on their geographical location or other
factors. However, except for these unaddressed dimensions the
employed method allows robust calculation of CFs, which
cover a wide range of possible combinations. In the course
of the assays shown, we seek in particular to establish the
sensitivity of the CF found on the model parameters listed
above.
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In order to combine these inputs to form CFs, we apply
a Monte Carlo method, where a single CF is obtained for
each set of inputs given. The procedure for obtaining a CF
is as follows: First, many single-EV charging times series are
generated, which are combined at random many times to cover
a wide range of combinations. Then, from these many different
combinations it is possible to obtain the CF. In the next section
a single combination is referred to as a run, whereas a range
of combinations are referred to as a batch. An example of such
a single combination is shown in Fig. 2, which consists of 10
randomly selected single-EV charging time series. For each
set of inputs a large pool of single-EV charging time series is
generated, which ensures that a wide range of combinations
can be achieved.
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Fig. 2: Example of charging time series from the model with
a length of 3 days and a specific set of inputs. (top) Single EV
charging patterns with lines illustrating the charging duration
of each EV; (bottom) Charging time series for a run of 10
EVs. Similar charging behavior is obtained if simulated for
longer than 3 days.

This particular simulation lasts for 3 days, however, a
similar charging behavior will be observed if simulated for
longer than 3 days. Each EV charges at different times, and
for different lengths of time, leading to the charging time
series shown in the bottom plot of the figure. Since each
CF is derived for their corresponding set of input parameters,
then estimates for a particular feeder require the parameters of
the model to be tuned in order to match the specific feeder’s
characteristic in terms of e.g. battery size and number of EVs
on the feeder.

The following subsections provides an overview of the
main inputs used for the modeling of CFs, while details on
the generation of single-EV time series and the process of
combining these time series is the topic of section IV.

B. Inputs

1) Driving behavior: The driving behavior of this study
is from a large interview-based travel survey - The Danish
National Travel Survey (TU) [20]. This survey documents
travel patterns of the Danish population and is maintained and
developed by the Technical University of Denmark. Roughly
10,000 Danish citizens are interviewed each year, and this
study has access to more than 160,000 of such interviews.
Each interview contains a full account of the participant’s
travel activities for a single day, typically the one preceding
the day of the interview.

Each journey of the day is described including departure
time, arrival time, type of transportation, etc. Each interview
is given a weight, which indicates to how many people this
interview corresponds to in the entire population of Denmark.
In this study only the interviews matching the following
specifications have been selected:
• A passenger vehicle is the primary type of transportation

during the journey.
• Only weekdays are considered - Mondays through

Fridays.
• The journey starts and ends at the same location.

These specifications restrict interviews to those people who
actively use their passenger cars during weekdays. The study
focuses on weekdays, since this is where previous studies
have found the largest CF to occur [25, 28]. From each
interview satisfying the above specifications, the arrival time
and distance driven in kilometers per day is used, which in this
study is referred to as a driving behavior. The distribution for
the arrival time and distance driven on weekdays is illustrated
in Fig. 3.
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Fig. 3: Distribution of arrival time and distance driven on
weekdays.

2) Plug-in behavior: The plug-in behavior is modeled by
utilizing a plug-in probability curve based on a study carried
out by Nissan – the study is based on the recorded behavior
of more than 10,000 24 kWh Nissan Leafs, and express the
probability that a plug-in will occur as a function of SOC
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and daily driving distance [19]. There is a total of six plug-in
curves used in this study where the main plug-in curve,
referred to as P24 is based directly on the obtained results
from the Nissan study as seen in Fig. 4. Whereas, P48L, P60L
and P60R are extrapolations made by the authors based on
P24 and described in Section III-B3. In addition, the two
remaining plug-in curves, P24A and P60S, are based on always
plugging in and keeping the plug-in curve for larger battery
sizes identical with P24 based on the SOC, respectively.

P24 is illustrated in Fig. 4 with a different probability
plug-in curve according to the average number of kilometers
driven per day. An increase in kilometers driven increases
the probability for the EV to plug-in upon arrival at home.
The modelling of plug-in curves for increasing battery sizes
and the implementation of the plug-in curve within the model
is described in more detail in sections III-B3 and IV-B1,
respectively.
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Fig. 4: Illustration of P24, which consists of a set of plug-in
probability curves differing by the average kilometers driven
[22, 29].

3) Plug-in curves for larger battery sizes: As part of the
investigation, we wish to examine the impact on CF of cars
with larger battery sizes, in particular 48 kWh and 60 kWh.
However, the plug-in curves shown in Fig. 4 are derived for
EVs with a battery size of 24 kWh. Thus, analogous curves
are required for these larger battery sizes.

Fundamentally, extending the plug-in curve to higher battery
sizes amounts to assuming how driver plug-in behavior
changes in changing from a 24 kWh EV to a 60 kWh EV.
Rather than proscribe a certain way to extend the plug-in
curve, we proceed to examine the sensitivity of CFs to the
choice of extension by examining scenarios corresponding to
how driver plug-in behavior may change with higher battery
sizes. In obtaining a larger capacity EV, the driver plug-in
behavior may: (1) remain unchanged, (2) change toward a
moderate increase in time between plug-in events, or (3)
change to fully exploiting the increased battery capacity
to minimize plug-in events. We model these changes by,
respectively, right shifting (R) the plug-in curve, using the
same (S) plug-in curve by SOC, or left shifting (L) the plug-in
curve. As a final sensitivity factor, we include a plug-in curve
where the driver always (A) plugs in.

The resulting plug-in curves are illustrated on Fig. 5, and
listed in Table II.
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Fig. 5: Extrapolated plug-in curves for trips of 40 km at larger
battery sizes. The curve for P24 overlaps the curve for P60S.

TABLE II: Plug-in curves extrapolated for larger battery sizes.

Profile Battery size Curve based on

P24 24 kWh Original data
P24A 24 kWh Always plug in
P48L 48 kWh Full use of extra range
P60L 60 kWh Full use of extra range
P60S 60 kWh Same as P24 by SOC
P60R 60 kWh No change in plug-in behavior

While the true plug-in behavior for higher-capacity EVs
may differ from those examined here, the chosen extensions
cover most reasonable cases, and thus allow examining the
sensitivity of our results to this choice.

C. Definition of scenarios

We proceed to combine a plug-in curve, the rating of the EV
charger, and the size of the EV battery to form the scenarios
defined in Table III.

TABLE III: Selected simulation scenarios.

Scenario Profile Charger
Size [kW]

Battery
Size [kWh]

S24O P24 3.7 24
S24B P24 11 24
S24D P24 22 24

S24A P24A 11 24
S48L P48L 11 48
S60L P60L 11 60
S60S P60S 11 60
S60R P60R 11 60

These scenarios are chosen to examine sensitivity to the
various parameters as follows:

For the base scenario (S24B; ”base”), we take the case of
a 24 kWh capacity EV connected to a 3-phase 16 A charger
for a maximum charging power of 11 kW, and applying the
P24 plug-in curve.

With respect to charging power, we choose to examine the
cases of a 3.7 kW single-phase charger (S24O; ”one-phase”),
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and the hypothetical case of using a three-phase 32 A charger,
doubling the charging power of 22 kW total (S24D; ”double”)
against the base scenario S24B.

By contrast, the choice of EV battery size cannot be cleanly
separated from the choice of the plug-in curve, and we choose
a three-tier strategy to handle this complication. First, the
base scenario S24B is compared to a scenario where the EV
always plugs in (S24A; ”always”). Second, scenario S24B is
compared to cases with 48 kWh and 60 kWh batteries, with
the plug-in curve shifted to the left for each up-scaling (S48L,
S60L; ”left”). Finally, scenario S60L is compared to other
scenarios with 60 kWh batteries, but where the plug-in curve
is the same as P24 by SOC (S60S; ”same”) and shifted to the
right (S60R; ”right”).

With the inputs and scenarios defined, we proceed to show
the working of the simulation model.

IV. MODEL IMPLEMENTATION

A. Model overview

Our examination proceeds by generating synthetic time
series of EV charging power for many synthetic feeders, and
analyzing the statistics of the resulting charging time series
to extract CFs for EV charging. Since the charging pattern
of two different EVs on the same feeder are uncorrelated, i.e.
any correspondence between departure time, trip length, arrival
time and plug-in between neighbours is purely coincidental,
we divide our model into two separate parts as illustrated in
Fig. 6.

Fig. 6: Submodels for deriving coincidence factors.

First, charging time series for many individual EVs are
generated. For each EV, this time series describes the power
draw of the single charger mounted in the EV driver’s
residence. These single-EV charging time series form the
charging pattern database. Examples of such single-EV
charging time series are seen in Fig. 2 (top).

Second, a number of single-EV charging time series are
randomly selected and combined to form the charging time
series of the feeder defined as a run r. A batch containing a
large number of independent runs is then analyzed to derive
a CF. Fig. 2 (bottom) shows how the number of EVs charging
simultaneously varies throughout a given run.

The generation of the charging pattern database is described
in Subsection IV-B, while the method for deriving CFs is
described in Subsection IV-C.

B. Generation of single-EV charging time series

Each single-EV charging time series from the charging
pattern database is generated based on the chosen EV

battery capacity, charger power rating and a journey selected
uniformly and randomly from the driving pattern database.

Depending on the EV’s battery capacity and the chosen
journey, a plug-in curve as illustrated in Fig. 4 and 5 is
assigned. Each simulated EV is assigned a daily driving
pattern, which is repeated every day in the simulated period.
Given that the single-EV charging time series will be
combined to form statistical aggregates, the re-use of journeys
will be sufficiently mixed due to the large number of samples
used to generate CFs.

The EV is initialized to have SOC = 100% at departure
on day 1, and then follows the steps listed below for each day
of the simulation:
• Reduce SOC according to journey length

(Subsection IV-B1)
• If SOC is below a threshold, the EV partially charges

using a public charger (Subsection IV-B2)
• The EV charges at home with a probability given by its
SOC according to the plug-in curve

• If the EV charges, SOC = 100% and the power signal
is set equal the rated charging power for the duration of
the charging (Subsection IV-B3)

The outcome is a charging time series of the power used by
the charger at each time t, P (t). Each charging time series
is run for 60 days, of which the first 10 days are discarded
before saving P (t) in the charging pattern database. It was
found that discarding 10 days is sufficient to achieve a stable
distribution of SOCs across EVs, such that the initialization
of all EVs at 100% SOC does not effect the results. The SOC
of the individual EV is continuous over the simulation time,
such that not charging on a given day increases the chance of
charging on the following day.

1) Daily energy use: The energy usage during each journey
j is given by

∆SOCused
j =

lj
η · es

, (1)

where lj is the journey’s distance in km es is the rated
battery capacity of the EV in kWh during scenario s and the
performance η of each EV is in this study defined as,

η = 5.7
km

kWh
. (2)

The performance corresponds approximately to the
battery-to-wheel efficiency of a Nissan Leaf, and is
representative for mid-sized electric sedans available on the
market today [30]. This study does not include charging
efficiency. However, our choice of η partially compensates
for this; according to the database [30], wall-to-wheel
performance at a 90% wall-to-battery charging efficiency will
result in a performance within the range, 4.7 to 5.9 km/kWh.

2) Public charging: If public charging is used, then upon
arrival at home on day d, the SOC of the EV v is given by

SOCarrival
v,d = SOCdeparture

v,d −∆SOCused
j + ∆SOCoffsite

v,d .
(3)
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The amount recharged at the public charger is given by

∆SOCoffsite
v,d = Eoffsite·

·

⌈
SOC low − (SOCdeparture

v,d −∆SOCused
j )

Eoffsite

⌉
, (4)

where dxe is the ceil operator.

3) Plug-in rate and charging time: At arrival on day d, a
combination of SOCarrival

v,d and the plug-in curve for the EV
gives the probability that the EV plugs in. The SOC at the
beginning of the next day is then given as

SOCdeparture
v,d+1 =

{
SOCarrival

v,d if EV does not charge
100% otherwise

. (5)

The time the EV v spends charging is calculated as

∆tcharge = es ·
1− SOCarrival

v,d

rs
, (6)

where rs is the rated active power in kW of the charger and es
the rated battery capacity of the EV in kWh during scenario
s.

Thus, for the given day d where the EV v is recharging,
the charging power time series Pv(t) is set equal to es from
t = tarrival to t = (tarrival + ∆tcharge).

C. Calculation of the coincidence factor from charging time
series

The charging time series contained in the charging pattern
database are now combined to form a charging time series for
the feeder. In a single run r, the total charging power time
series of a feeder is defined as

Pr(t) =
∑
v∈Vr

Pv(t), (7)

where for each EV v a charging pattern is sampled uniformly
at random from the charging pattern database, until the
required number of Mb EVs on the feeder is reached. This
process is repeated Nruns times to form a batch b consisting
of Nruns number of runs. The runs in each batch b are
subsequently analyzed to obtain CFs corresponding to the
input parameters.

CFs are typically defined as the maximum observed
total power consumption over the total of maximum power
consumption [7]. However, due to the large amount of
combinations examined, the model examined here can yield
extremes which would be exponentially rare in the real world.
Hence, the CFs derived would be overly conservative, and
require excessive grid reinforcement when used to dimension
real systems.

Instead of the maximum, we use high quantiles of the
simulated charging power time series, which confers two major
benefits: first, the quantiles correspond more closely to the
typical high-load situations in the grid than the maxima, while
their sensitivity to extreme events can be tuned through the
quantile used. Second, a large part of sampling variance is

eliminated, allowing for comparisons to use fewer batches as
the statistics stabilize faster.

Here, we choose to cover 99.5% of the time t ∈ T within
each run and 99.5% of the runs r ∈ Rb in a batch b. That is,
for each batch b we take the CF to be

cfb = Q.995

({
1

Mbrs
Q.995 ({Pr(t)|∀t ∈ T}) |∀r ∈ Rb

})
,

(8)

where Q.995 ({. . .}) denotes the .995 quantile over the given
set, rs is the rated power of the charger and Mb is the number
of EVs in the batch. At the amount of runs and days per run
considered here, the CFs found by (8) covers all but 1 hour
of charging use over a 5-year period.

D. Model fits

As a concise way of summarising the uncovered CFs, we
report the parameters for a fit of the form

cfs(M |k, γ, c) = k
1

Mγ
+ c, (9)

where M is the number of EVs, cfs is the CF for scenario
s, and k, γ and c are parameters to be fitted. Given a set of
batches b ∈ Bc of Mb EVs each, we find parameters which
minimize the sum of squared errors

SSE(k, γ, c) =
∑
b∈Bc

(cfs(Mb|k, γ, c)− cfb)2
, (10)

where cfb is the CF calculated from (8). The functional form
of (9) is inspired by the scaling when cfb are sums of N

i.i.d. variables, for which one would find cf(M) ∝ M−
1
2 .

In our fit, c represents an additional saturation effect for high
M . Other forms were tried, but (9) was found to give a good
representation for the scenarios examined here.

V. RESULTS

A. Determination of required number of runs per batch

The remaining undefined parameter is the number of runs,
Nruns in each batch. To determine this parameter, we generate
batches with 100 EVs per feeder at increasingly larger number
of runs until the inter-batch statistics stabilize. The Q1.00

quantile across runs was considered to obtain stable statistics.
Fig. 7 shows the statistics of the CF (8) for increasing Nruns,
showing how the statistics stabilize after Nruns = 1000.
Indeed, the results stabilize with a standard deviation of order
1%, corresponding to the inclusion or exclusion of a single EV
at the time which sets the CF. We observed this stabilization
also for lower numbers of EVs, and we keep Nruns = 1000
fixed for the remainder of the paper.

B. Base scenario

Using this fixed number of runs, we proceed to run 5 batches
at each of several number of EVs per batch, and fit the function
(9) to these. The obtained CFs are illustrated in Fig. 8 along
with the fit. For every scenario, there is a variation in the CFs
found. This variation corresponds in each case to a difference
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Fig. 7: Variation in coincidence factor across batches based
on different number of runs. The mean and standard deviation
of the maximum (Q1.0) coincidence factor is shown for 10
batches of 100 EVs.

of an additional EV charging, when comparing the fit to the
obtained CFs from the CF model as seen in Fig. 8. That is, CF
fits for M EVs have a sampling uncertainty of approximately
1/M . For this and other scenarios, the fitted parameters for
the CF as function of number of EVs is provided in Table IV.
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Fig. 8: Fitted model of coincidence factor for the base scenario,
based on 5 batches per number of EVs.

C. Sensitivity to charging power

The change in charging power has a significant effect on
the CF, as seen in Fig. 9, which clearly indicates that EVs
charging with a 11 kW charger, overlap less compared to EVs
charging with a 3.7 kW. Especially at 100 EVs, there is close

to a factor of 2 in difference between the two CFs for the
two scenarios, or more precisely a difference of 16 percentage
points. However, as seen the reduction in the CF is less when
increasing the charging power from 11 to 22 kW. At 5 EVs
the CF is fairly equal for both 11 and 22 kW, with a difference
of around 1− 2 percentage points, however, for an increasing
number of EVs the difference varies between 5−10 percentage
points. At 100 EVs there is a difference of 7 percentage points
between 11 kW and 22 kW, which is close to a factor 2 in
difference, similarly to the difference between 3.7 and 11 kW.
However, the effect of increasing the charging power from
11 to 22 kW does not reduce the CF by a similar amount
compared to the increase from 3.7 to 11 kW.
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Fig. 9: The coincidence factor’s sensitivity to a change in
charging power.

D. Sensitivity to battery size and plug-in curve

As seen in Fig. 10 the CF is less sensitive for a change
in battery size, independent of the chosen plug-in curve.
However, 60 kWh EVs still have the largest CF compared
to the others, and from 24 kWh to 60 kWh at 100 EVs there
is around 2 percentage points increase in the CF. Compared
to the scenario using P24A, where the EVs plug-in every day
upon arrival then the CF does not increase by much and still
remains below P48L and P60L, and only 1 percentage point
above P24 at 100 EVs. In addition, a plug-in curve, P24A,
with a plug-in rate of 1, independent of the remaining SOC
upon arrival at home has been included as a reference plug-in
curve. P24A can be considered as an extreme plug-in curve,
however, despite this it results in a similar CF as for the other
plug-in curves. As seen in Fig. 10 the other plug-in curves vary
with around ±1 percentage point around P24A at 100 EVs.

E. Sensitivity to plug-in curve choice for higher kWh EVs

Finally, we examine the dependency on the choice of the
plug-in curve. Fig. 11 shows the fits obtained by varying the
plug-in curve for a 60 kWh capacity EV connected with an
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Fig. 10: Sensitivity to a change in battery size and plug-in
curve.

TABLE IV: Fitted parameters for coincidence factor cf as
function of number of EVs according to (9).

Profile Battery size Charger size γ̂ ĉ k̂

P24 24 kWh 3.7 kW 0.460 21.11 140.90
P24 24 kWh 11 kW 0.442 4.55 115.98
P24 24 kWh 22 kW 0.816 9.07 190.57

P24A 24 kWh 11 kW 0.508 8.50 127.23
P48L 48 kWh 11 kW 0.430 6.47 109.51
P60L 60 kWh 11 kW 0.460 8.82 109.91
P60R 60 kWh 11 kW 0.441 5.89 112.53
P60S 60 kWh 11 kW 0.422 3.67 113.64

11 kW charger. A pairwise Student’s T-test on the underlying
batch results between S60R, S60S, and S60L reveal that for
less than or approximately 50 EVs, these data can be taken as
having a common mean. Above 50 EVs, the test indicates
a significant (p < 0.01) difference in means between the
scenarios. While this difference is statistically significant, our
results indicate that the choice of extension for plug-in curves
at larger battery sizes has an impact on CF of less than 2
percentage points.

F. Peak active power demand

While the focus of this study is primarily on the CF, it would
be useful to understand the peak power drawn by a feeder in a
given scenario. This is a step towards operationalizing the CF
for planning and designing the electrical grid. We present the
peak active power draw from all M chargers on the feeder,
defined as

P peak
s (M) = M · cfs(M) · rs, (11)

where rs is the rated charging power in kW and cfs is the CF
for M chargers for scenario s.

The peak active power draw is shown in Fig. 12. While
3.7 kW chargers have high CFs relative to their capacity, their
overall grid impact is a third less than that of 11 kW chargers.
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Fig. 11: Sensitivity to plug-in curves used for 60 kWh EVs.

By contrast, doubling the charging power from S24B to S24D
only results in at most a 20% increase in peak active power
draw.
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Fig. 12: Peak power draw from EV fleet by charger power.
The inset shows peak charging power relative to S24B.

Further, the marginal increase in peak transformer power
draw is greater with a small number of EVs, tailing off to
a near-linear increase for more than approximately 35 EVs.
Thus, a feeder will see a greater increase in peak power draw
as the first few EVs are integrated, but the increase is lessened
as additional EVs are added. This cautions against using linear
models for predicting EV demand based on demand data when
only a small number of EVs are present on the feeder, as peak
charging power does not scale linearly below ∼ 50 EVs.

G. Scenario overview

Table V provides an overview of the key figures from
the seven different scenarios. As seen between S24O, S24B
and S24D as the CF decreases, then the peak power draw
increases, hence illustrating the trade-off between reducing
the CF by increasing the charging power. Additionally, the
mean charging time for each EV reduces from around 3 hours
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TABLE V: Scenario overview for 100 EVs.

Scenario S24O S24B S24D S48L S60L S60S S60R S24A

Profile P24 P24 P24 P48L P60L P60S P60R P24A
Charger size [kW] 3.7 11 22 11 11 11 11 11
Battery Size [kWh] 24 24 24 48 60 60 60 24

Mean home charging
events [events/(EV · 7 days)] 4.30 4.30 4.30 1.66 1.21 3.21 4.31 7.0

Mean public charging
events [events/(EV · 7 days)] 0.53 0.53 0.53 0.14 0.13 0.04 0.04 0.53

Mean home charging
time [min/(EV · day)] 186.24 62.68 31.36 182.96 248.90 97.83 73.16 38.65

Peak power draw [kW] 133.2 220.0 286.0 242.1 253.0 220.0 231.1 231.0
Coincidence factor [%] 38.0 20.0 13.0 22.0 23.0 20.0 21.0 21.0

to 1 hour when increasing the charging power form 3.7 to
11 kW, and is further reduced to around 30 minutes when
considering a 22 kW charger. In addition, as seen there is
a clear difference in the mean home charging time and the
plug-in frequency between the three plug-in curves, P60L,
P60S and P60R, however, despite this difference they result
in very similar CF.

H. Combinations of parameters

The method as presented thus far has dealt with CFs
defined from single parameter sets. Realistic scenarios will
in general be based on different types of EVs, charger sizes
and plug-in curves, all contributing to the overall CF. While
a full treatment of such combinations is outside the scope
of this paper, we note that our model may be extended to
mixed models by altering how individual charging patterns
are included in the CF calculation.

As an example of this alteration, we examine the effect of
mixing 3.7 and 11 kW chargers in a certain proportion as seen
in Fig. 13. Hence, this corresponds to a mix between scenario,
S24O and S24B. The reason for using these two scenarios, is
both because the majority of the studies presented in Table
I primarily use chargers within this range, and the fact that
there is the largest difference between these two scenarios’
peak power draw and CF.

Fig. 13 shows that as the mix increasingly contain more 11
kW chargers, compared to 3.7 kW chargers, the CF decreases,
and the peak power draw increases. As the percentage of 11
kW chargers in the mix increases, it approaches the known
CF of 20% and the known power drawn of 220 kW. However,
neither the CF or the peak power draw changes linearly, which
is mostly dominant for the latter. This implies that a linear
interpolation between the end points will not result in the
correct peak power draw and CF for a given mix between
the two scenarios, which is also seen from Fig 13, where the
grey dashed line show the linear interpolation for the CF and
peak power draw, respectively. Furthermore, as a result of this
mixing, (11) is no longer valid, meaning the peak power draw
must be obtained from the time series itself. Note that each
data point in Fig. 13 is obtained from 5 batches, where each
batch consists of 1000 runs and each run of 100 EVs.
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Fig. 13: Different combinations of scenario S24B and S24O
with 100 EVs obtained from 5 batches. The x-axis indicates
how many percent of the 100 EVs are based on S24B and the
rest is based on S24O.

VI. DISCUSSION

For the scenarios where the charging power is kept constant,
any change in the plug-in frequency is counteracted by a
corresponding change in the charging duration, independently
of the choice of the plug-in curve. This results in a CF with
about 2 percentage points of variation across the different
battery sizes, as seen in Table V.

By contrast, the CF is increased by about 16 and 23
percentage points if the charging power is reduced from 11
kW and 22 kW to 3.7 kW, respectively. However, when
considering a 3.7 kW charger compared to a 11 kW and 22
kW charger the peak power demand is reduced by about 40%
and 60%, respectively.

Further, we find that the aggregation effect at higher
numbers of EVs is significant even for a relatively small
number of EVs. At this point it is important to know if there
are 20 or 25 EVs on a feeder, as it is to know the behaviors of
their owners or the characteristics of the EV. The aggregation
effect is primarily driven by different arrival times.

Increasing battery sizes reduce plug-in frequency from once
every other day to once every fifth day, leading to reduced
availability and thereby flexibility in the distribution network.
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Therefore, if EVs should be a resource for grid flexibility,
it may be necessary to incentivise users to plug-in their
EVs regularly or otherwise alter their behavior. This has
potential implications for future infrastructure upgrades in the
distribution network.

It is currently unclear to which extent our sampling of
journeys impacts our results. Since journeys from any part of
the country are equally weighted, the set of journeys chosen
for any given feeder may be more well-mixed than would be
expected for any given area. There may be difference in driving
patterns, e.g., between urban, sub-urban and rural grids, or in
different regions, leading to greater homogeneity for journeys
on any given feeder than found here. This would in turn entail
a higher CF, as the aggregation effect due to variations in
journeys would be less prominent.

VII. CONCLUSION

By modeling driving behaviours of sets of EVs, we find that
the coincidence factor is primarily influenced by the number
of vehicles considered and, to a lesser degree, the supported
charging power. A higher rated charging power will result in
lower coincidence factors, but higher peak power draws. By
contrast, including EV battery size and customer behavior are
responsible for smaller corrections, of order 2%.

Coincidence factors are found to quickly decrease to below
30% when considering a group of more than 30 vehicles,
and less than 25% when considering more than 50 vehicles
for 11 kW charging. The uncovered coincidence factors are
low compared to estimates in previous studies - especially
considering that this represents near-worst-case scenarios
based on a large number of combinations of behaviors.

For planning and design of the electrical grid when
integrating electrical vehicles, it is important to have a proper
understanding of the CF, in order to obtain the peak power
drawn by the feeder. By using inputs valid for the given
feeder, especially the number of customers connected and the
charging power, it is possible to obtain a CF matching the
particular feeder. Also, a trade-off between the cost of grid
infrastructure and grid security can be made by adjusting the
two quantiles. This paper decided to cover 99.5% of the time
in each run and 99.5% of all the runs in the batch. However,
depending on the requirement during planning it is possible to
adjust these quantiles, and they can be adjusted independently
of each other. Therefore, by lowering the quantiles a smaller
CF can be obtained, which will imply a reduced infrastructure
cost. As such, distribution system operators may use this study
as part of their planning for integration of electric vehicles in
the electrical grid. This is important as all European DSOs
shall develop and publish biannual network development
plans, which include requirements to the distribution system
for connecting new loads including electric vehicles.

Future studies may focus on how controlled charging alters
the coincidence factor, on the adverse effects that larger
batteries may have on EV availability for grid services, i.e.
fewer plugin events with a larger energy demand per event, or
examine homogeneous compositions of EV owners which may
increase the coincidence factor due to similarity in behavior.

Furthermore, an extension of performing a sensitivity analysis
on the wall-to-wheel efficiency and the inclusion of charging
power curves.
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