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Summary

Detection and evaluation of abnormal events in industrial process systems is

vital for safe and undisturbed operation. Failure to treat a process operating in an

abnormal state can lead to a loss of system functions that are necessary for recovering

the process to a nominal state. Advances in process monitoring technologies pose the

issue of information overload, namely, the difficulty for an operator to monitor and

understand the process information that is provided in real-time. In extreme cases,

the operator accidentally disregards critical information, which leads to incorrect

diagnosis. Disasters such as the Deepwater Horizon explosion and the crashing of

Lion Air Flight 610 and Ethiopian Airlines Flight 320 share a common post-accident

diagnostic report: though the primary cause of these incidents was not attributed to

operator error, their outcomes would have been significantly mitigated if operators

had been provided with relevant and accurate diagnostic information.

To address the issue of information overload, this thesis proposes a statistical

method for detecting and evaluating abnormal changes in the signal characteristics

of process variables. The method is independent of process knowledge; it only

requires a collection of samples for process variables gathered from past operations

rather than a physical understanding of the system. The motive for this approach

is based on the complexity of modern industrial process systems, as a detailed

physical description of the influence of process inputs on process outputs for a

system comprising thousands of process variables may not be available. The thesis

argues that the performance of the proposed method is associated with its ability to

extract features from samples gathered from while the process was consistent with

nominal operating conditions. Existing methods provide satisfactorily performance

of detecting abnormal events. The thesis argues that their performance of evaluating

abnormal events could be improved.

The scientific contributions of the research cover two topics, namely, the detection

of abnormal events in nonlinear, dynamic systems and the evaluation of abnormal

changes in process variables. A method is proposed for extracting features from

samples for process variables with an artificial neural network - a mathematical

model that describes a nonlinear function. Abnormal event detection is facilitated by
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comparing the features of new observations against those of samples gathered from

while the process was consistent with nominal operations. It is concluded that an

abnormal event has occurred if the disparity of this comparison exceeded a certain

threshold. Abnormal changes in process variables are evaluated by combining a

structural analysis of the artificial neural network with a contribution analysis of

process variables on the detected abnormal event. The novelty of the proposed

method is that it does not require prior instances of abnormal events to evaluate

abnormal changes in process variables.



Resumé

Det er altafgørende at detektere og evaluere unormale hændelser i industrielle

processystemer til at sikre en sikker og uforstyrret drift. Manglende behandling af

en proces, som opererer i en unormal tilstand, kan føre til tab af systemfunktioner

som er nødvendige for at processen returnerer til en nominel tilstand. Fremskridt

indenfor procesovervågningsteknologier udgør en risiko for overbelastende mængder

af information og data, hvilket vanskeliggør operatørens overvågning og forståelse

af den procesinformation, som vises i realtid. I ekstreme tilfælde overser oper-

atøren kritiske information, hvilket kan fører til forkerte diagnoser. Katastrofer som

Deepwater Horizon-eksplosionen, Lion Air Flight 610 og Ethiopian Airlines Flight

320 flystyrtene deler fælles diagnostiske ulykkes rapporter. Selvom den primære

årsag til disse hændelser ikke blev tilskrevet operatørfejl, kunne deres udfald være

blevet betydeligt anderledes hvis operatørerne fik relevante og nøjagtige diagnostiske

oplysninger.

For at løse problemet med informationsoverbelastning præsenteres der i denne

afhandling en statistisk metode til at detektere og evaluere unormale ændringer i sig-

nalkarakteristika for procesvariabler. Metoden er uafhængig af viden om processen,

da det kun kræver en samling af procesvariable observationer indsamlet fra tidligere

operationer uden en større fysisk forståelse af systemet. Motivationen til denne

afhandling er baseret på kompleksiteten af moderne industrielle processystemer,

da en detaljeret fysisk beskrivelse fra procesinputs til procesoutputs i et system

kan omfatte tusindvis af procesvariabler som muligvis ikke er tilgængeligt. Afhan-

dlingen argumenterer for, at den foreslåede metode er baseret på dens evne til

at udtrække funktioner fra observationer indsamlet, da processen foregik under

normale driftsforhold. Eksisterende metoder giver tilfredsstillende detektering af

unormale hændelser. I denne afhandling argumenteres der for, at deres evner til at

evaluere unormale hændelser kan forbedres.

Det videnskabelige bidrag i denne afhandling dækker over to emner, nemlig

påvisning af unormale hændelser i ikke-lineære, dynamiske systemer og evaluering

af unormale ændringer i procesvariabler. Der beskrives en metode til at ekstrahere

”features” fra observationer af procesvariabler ved brug af et kunstigt neuralt netværk,
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hvilket er en matematisk model, der har ikke-lineære funktion. Unormale hændelser

påvises lettest ved at sammenligne ”features” i nye observationer med dem, der

blev indsamlet, da processen foregik under normale driftsforhold. En unormal

hændelse konkluderes til at have fundet sted, hvis forskellen i denne sammenligning

overstiger en bestemt tærskel. Unormale ændringer i procesvariabler evalueres

ved at kombinere en strukturel analyse af det kunstige neurale netværk med en

bidragsanalyse af procesvariabler baseret på den detekterede unormale hændelse.

Det innovative ved den beskrevne metode er, at den ikke kræver tidligere forekomster

af unormale hændelser for at evaluere unormale ændringer i procesvariabler.



Samantekt

Uppgötvun og mat á óeðlilegum atburðum í iðnaðarkerfum skipta miklu máli fyrir

örugga og ótruflaða nokun kerfanna. Takist ekki að meðhöndla ferli sem starfar í

óeðlilegu ástandi getur það leitt til þess að kerfisaðgerðir tapast sem eru nauðsynlegar

til að endurheimta ferlið í eðlilegt ástand. Framfarir í tækni við ferlaeftirlit geta haft

í för með sér ofgnótt upplýsinga, þ.e. erfiðleika fyrir kerfisstjóra að fylgjast með og

skilja upplýsingar um ferli sem eru veittar í rauntíma. Við sérstakar aðstæður kann

kerfisstjóri að líta óvart framhjá mikilvægum upplýsingum með þeim afleiðingum

að greining reynist ekki rétt. Hörmungar eins og Deepwater Horizon sprengingin

og hrap Lion Air 610 og Ethiopian Airlines 320 hafa verið greindar eftirá með sama

hætti: þótt aðalorsök þessara atvika hafi ekki verið rakin til mistaka kerfisstjóra hefði

verið hægt að milda afleiðingar þeirra verulega ef kerfisstjórar hefðu verið veittar

viðeigandi og nákvæmar greiningarupplýsingar.

Til að takast á við ofgnótt upplýsinga leggur þessi ritgerð til tölfræðilega aðferð til

að greina og meta óeðlilegar breytingar á merkiseinkennum ferlabreytna. Aðferðin

er óháð ferlaþekkingu; það þarf aðeins safn sýnishorna fyrir ferlabreytur sem safnað

er frá fyrri aðgerðum frekar en eðlisfræðilegan skilning á virkni kerfisins. Hvatinn

að þessari nálgun er byggður á flækjustigi nútíma iðnaðarkerfa þar sem ítarleg

eðlisfræðileg lýsing á áhrifum ferlainntaks á ferlaúttak fyrir kerfi, sem samanstendur

af þúsundum ferlabreytna, er hugsanlega ekki til staðar. í ritgerðinni er því haldið

fram að virkni þeirrar aðferðar sem lögð er til sé tengd getu aðferðarinnar til að

draga fram eiginleika úr sýnishornum sem safnað var þegar ferlið hafði eðilega virkni.

þótt núverandi aðferðir greini óeðlilega atburði með fullnægjandi hætti er því haldið

fram í ritinu að auka megi getu þeirra til að meta óeðlilega atburði.

Vísindalegt framlag rannsóknarinnar er tvíþætt: annars vegar greining á óeðlilegum

atburðum í ólínulegum, tímaháðum kerfum og hins vegar mat á óeðlilegum breytingum

á ferlabreytum. Lögð er til aðferð til að draga fram eiginleika úr sýnishornum fyrir

ferlabreytur með gerfitauganet - stærðfræðilegt líkan sem lýsir ólínulegu falli. óeðli-

leg uppgötvun á atburði er auðvelduð með því að bera saman þætti sem varða nýjar

athuganir við þætti sem byggja á sýnishornum sem safnað var þegar ferlið hafði

eðlilega virkni. óeðlilegur atburður er talinn hafa átt sér stað ef misræmi í þessum
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samanburði fór yfir ákveðin mörk. óeðlilegar breytingar á ferlabreytum eru metnar

með því að sameina formgerðargreiningu á gerfitauganetinu og framlagsgreiningu á

ferlabreytum á greindan, óeðlilegan atburð. það sem er nýtt við aðferðina sem lögð

er til er að það þarf ekki fyrri tilvik af óeðlilegum atburðum til að meta óeðlilegar

breytingar á ferlabreytum.
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Chapter 1

Introduction

Human beings regularly operate systems they understand little of. An example

of such a system is the automobile. A 2020 report on car ownership statistics states

that 93.3% of households in the U.S.A. have access to at least one vehicle [8]. An

individual earns the right to drive a car by obtaining a driver’s license, which is

granted if the individual has (a) demonstrated their ability to drive under normal

conditions via a road test; and (b) confirmed their knowledge of driving and relevant

rules via a theory test. There is, however, no explicit requirement that the driver

knows the innate functionality of the vehicle they have earned the right to drive.

A driver is essentially an operator who supervises the operation of a car. Cars

are equipped with a user control interface that is operated by a combination of the

hands and feet. Those controls include a steering wheel, pedals for engaging the

brakes and rotary speed of an engine, and several buttons and dials for turning on

lights and other functions. Cars are also equipped with a dashboard - a control panel

that displays control and monitoring instruments, such as vehicle speed, engine

speed, and fuel level. Other features exist to ensure safe operation of the vehicle,

such as indicators for low oil pressure, high engine temperature, and engagement

of the handbrake. Though the driver’s primary objective is to operate the car with

a certain goal in mind (such a transportation) under certain constraints (such as

time), they must also monitor the condition of the car to ensure its safe operation.

An engineering artifact is developed with a certain functionality that permits it to

satisfy a certain goal. Over time, an artifact becomes unable to meet the goal it was

designed for and is considered to no longer being consistent with normal operating

conditions. Such an incident ensues either via a steady degradation of functionality,

such as a reduction in the power output of a car engine that develops with use, or via

an event that the artifact was not designed for, such as the puncturing of a tire with a

sharp object. Human beings are regularly confronted with the problem of diagnosing
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abnormal conditions of engineering artifacts. The task can appear burdensome if

one knows little about the innate function of said artifact, such as the case of a

driver operating a car. However, human perception and the ability to memorize past

experiences provides a different means to diagnosis. A driver learns with use the

sensory information they expect to receive whilst operating a car. Via experience,

the driver memorizes the typical response of engaging the engine in terms of sound

(auditory information), acceleration (visual information from the dashboard and

vestibular information), and mechanical vibrations (vestibular information), and

develops an expectancy for the distance their car may drive with a full tank. With

time, the driver may never learn the functional aspects of a car, but may develop an

understanding on what constitutes a normal operating experience. The driver then

detects abnormal conditions when the learned experience is not met by their current

experience. An extreme example would be the unexpected event of smoke rising

out from the hood of the car. A subtle example would be a decreased capability to

accelerate that occurs under a certain gear configuration.

The ability to (a) determine when an abnormal event has occurred; and (b)

extrapolate any exposed symptoms becomes invaluable when qualitative diagnosis is

performed by a certified expert, i.e., a car mechanic in the car example. Symptomatic

information aids in the diagnostic process because it provides an initial starting

point for diagnosis. For example, notifying the sight of smoke could imply problems

with the engine’s water cooling system, and a lack of acceleration and presence of a

hissing noise at the back of the car implies an issue with the exhaust system.

This thesis considers the diagnosis of abnormal events in industrial process

systems. Modern industrial process systems are complex arrangement of engineering

artifacts that are continuously monitored by its operators. Current state of the art

systems for diagnosis correspond closely to the car-example provided above, namely,

that operators are provided with symptomatic information that they must evaluate

when performing diagnosis. This is made possible from the fact that process systems

are equipped with numerous measurement devices, which permits a high-level of

observability in terms of inferring the system’s internal states. However, the method

for how this information is provided often results with it being unclear, which risks

incorrect diagnosis. This thesis is directed towards improving this.

1.1 Industrial systems and abnormal event management

An industrial process system is an engineered arrangement of control systems and

associated instrumentation that facilitates the control and monitoring of industrial

processes - procedures involving chemical, physical, electrical, or mechanical steps
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that transform raw material and energy into a usable product. Industrial systems are

an integral component of manufacturing, that is, the production of things essential

to human activity. Manufacturing is important to the economic and technological

welfare of society, so much so that a strong manufacturing base is vital if a nation is

to provide a high standard of living for its people [44]. Figure 1.1 shows that manu-

facturing is a stable contributor to overall GDP [14], [70]. In fact, manufacturing

has contributed roughly 16% of the world’s overall GDP during the past decade.

Quality management is the process of overseeing the quality of products, as

well as the means to achieve it. It is central to the production process. It has

several components, but of relevance in this thesis is quality assurance and quality

control. ISO 9000 defines quality control as “a part of quality management focused

on fulfilling quality requirements” [57]. Quality control focuses on detecting defects

in end products, such as an abnormal composition of carbon, hydrogen, oxygen, and

Figure 1.1: Manufacturing, value added (% of GDP) for the world and top five manufacturing

countries (by total value of manufacturing). Data obtained from World Bank Open Data

[140].



4 Chapter 1. Introduction

sulfur in refined petroleum. Quality control ensures that an industrial process is

following the operations that it was designed for. ISO 9000 defines quality assurance

as “a part of quality management focused on providing confidence that quality

requirements will be fulfilled” [56]. Quality assurance is preventative in nature, and

ensures that industrial processes are implemented correctly by recognizing flaws in

the process. An example would maintaining the temperatures in the fractionating

columns of a distillation tower within specified limits, thus ensuring that crude oil is

separated into its different components.

Process control and process monitoring are two pillars that facilitate quality

control and quality assurance in industrial process systems. Process control is

the integration of control engineering with process engineering disciplines that

uses industrial control systems to achieve a consistent production level in terms of

performance, safety, and quality with minimal human assistance. Low-level micro-

actions that used to be performed by human operators, such as the opening and

closing of valves, are now performed in an automated manner. Automation allows for

accurate control actions that facilitate a level of production unachievable purely by

human manual control. Process monitoring accounts for the continuous surveillance

of process variables, namely, the collection of control inputs and measurement

outputs, in order to evaluate abnormal events that interfere with nominal operating

conditions. Process monitoring contributes to quality control and assurance by

being a central component of Abnormal Event Management (AEM) – a procedure

consisting of: (a) timely detection for judging the occurrence of an abnormal event;

(b) diagnosing its causal origins; and (c) taking appropriate control decision to bring

the process back to a nominal state.

An abnormal event is an abnormal change in the nominal function of a process

system that causes a deterioration in its performance [20]. It is synonymous to

a fault. Abnormal events include structural changes such as a leakage in a heat

exchange pipe that permits the mixing of hot and cool fluids, as well as parametric

changes such as a malfunction in a power supply that reduces its supply of electric

current. In principle, disturbances - actions of the environment on a system - and

faults can have similar effects on a system; they cause an undesired change in a

system. However, an important distinction between faults and disturbances is that

disturbances are always present, while faults may be present. Furthermore, a control

system is designed to attenuate the influence of known disturbances. Faults, which

tend to not be known, are not taken into consideration during control design, such

that the controller will fail to attenuate its influence.

The performance regions that are considered in the context of fault diagnosis

are shown in Figure 1.2. Assume that the condition of a system can be described
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by the two process variables x1 and x2. The system is considered to exhibit nominal

operating conditions, i.e., satisfy its innate function, if it remains in the region of

required performance. Movements in the (x1,x2) space should only be the result of

control actions that attenuate disturbances and reference changes. Faults bring the

system into the region of degraded performance. A diagnostic system is to detect

this fault-induced shift and diagnose its causal origins. A recovery control action is

then initiated to prevent further degradation of performance and return the system

back to the region of required performance. This sequential process of diagnosis and

recovery constitutes the AEM procedure, and is invoked when the system crosses

the border of the required and degraded performance regions. AEM is critical to

the survival of industrial process systems; if left untreated, a fault may progress to

failure, which is “the inability of an engineering process, product, service or system

to meet the design team’s goals for which it has been developed” [31], and may lead

to the loss of system functions such that recovery is not possible. In principle, AEM

is the means by which the development of a fault to failure is prevented.

It is noteworthy to point out that systems remaining in the region of required

performance are not necessarily free of faults. For example, even if a corrective

action moves a system from the region of degraded performance back to the region

Region of required

performance

Region of degraded

performance

Region of failure

Recovery

boundary

FaultRecovery
Failure progressio

n

Recovery

x1

x2

Figure 1.2: Regions of required and degraded performance.



6 Chapter 1. Introduction

of required performance, the fault still persists; the corrective action simply “hides”

the effects of the fault. For instance, switching from a faulty primary power supply

to a secondary power supply will retain operational performance, but the primary

power supply remains faulty. A closed loop controller may even keep the system

within the region of required performance if certain faults occur. For instance, a

leakage in a tank can be negated by pumping more water into the tank; the leakage

persist, but the amount of water contained remains the same.

Figure 1.3. depicts the integration of an AEM architecture with a closed loop

control system, where the measured states of the plant are actuated via a combination

of (a) open loop control signals and (b) closed loop control signals. Closed loop

control signals regulate the system in terms of reference tracking and disturbance

rejection. Faults are classified as follows:

• Plant faults: Faults that affect the dynamic properties of the system;

• Actuator faults: Plant properties are unaffected, but actuators provide unde-

sired/degraded performance.

• Sensor faults: Plant properties are unaffected, but sensors produce erroneous

readings.

The blocks ‘diagnostic system’ and ‘recovery decision’ comprise the AEM architecture.

The diagnostic system processes the control input signals u and measured output

signals y to detect an abnormal event and then characterize information on actuator,

plant, and sensor faults fu, fp, and fs, respectively. The recovery decision consoli-

dates/uses the fault information to produce an appropriate control decision ur that

recovers the process back to a nominal state. This research project focused on the

diagnosis of abnormal events, which corresponds to the diagnostic system block.

1.2 Diagnosis of abnormal events

Abnormal events negatively impact several aspects of production. For instance,

a fault-induced deterioration in process performance can reduce overall product

quality, as well as increase the operational cost required to maintain stable pro-

ductivity, resulting in diminished economic profit. Abnormal events can be the

source of accidents that result in occupational injury, illness, and death, which have

negative impacts on society. A fault progressing to the failure of a single system

function may render an entire process non-operational. Failures can be the cause

of major catastrophes that have serious environmental ramifications, such as the

Deepwater Horizon oil spill. Though the context of abnormal events so far has been
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Actuator Plant

Controller

Sensor

Diagnostic

system

Recovery

decision

y
uc

uo

ur

u

fp

d

fu fs

r

fu, fp, fs

Figure 1.3: General AEM architecture. Notation: y - Output; r - Reference; uc - Closed loop

control input; uo - Open loop control input; ur - Recovery control input; u = [uc,uo,ur] - Input;

d - Plant disturbance; fu - Actuator fault; fp - Plant fault; fs - Sensor fault.

on industrial processes, abnormal events also occur in other systems. For example,

the crashing of Lion Air Flight 610 and Ethiopian Airlines Flight 302 stemmed from

a malfunction in the angle of attack measurements, resulting in loss of life.

AEM is essential for maximizing productivity, maintaining stable plant operation,

and ensuring the safety of human operators. Timely diagnosis creates a larger time

window for initiating recovery control actions that restore the process back to a

nominal state and prevent further progression to failure. Various methods have been

developed for abnormal event diagnosis over the years. Each method requires prior

knowledge about the nominal behavior of a process, but the source and representa-

tion of this knowledge differs between the methods. Approaches are divided into

knowledge-based methods, where knowledge stems from an understanding of the

process using first principles, and evidential-based methods, where knowledge is

gathered from past experiences and a more abstract understanding of the process.

Each approach is subcategorized into a quantitative or qualitative method.
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1.2.1 Knowledge-Based Quantitative Methods

Knowledge-based quantitative methods are based on analytically redundancy

[131]. An explicit mathematical model is used to estimate the output measurements

given the computed input control signals. A residual computes the difference

between the output measurements and their estimates. The residual represents

the consistency between the physical plant and its analytical model. The residual

will be non-zero due to faults, disturbances, process and measurement stochastisity,

and/or model uncertainties. Incorporating more knowledge increases the residual’s

sensitivity to faults and decreases it to the other variations. Consider the depiction

of a single tank system in Figure 1.4. The nonlinear differential equation describing

the nonstochastic evolution of the liquid level in the tank is derived by applying

mass balances and Bernouilli’s law:

dh
dt

=− a
A

√
2gh(t)+

k
A

u(t) (1.1)

h

y1

y3

u

y2

Figure 1.4: Illustration of an open loop single tank system. Notation: h - liquid level; y1 -

measurement of inlet flow; y2 - measurement of liquid level; y3 - measurement of outlet flow;

u - control input signal for valve.
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where A is the cross section of the tank, a is the cross section of its outlet hole, and

ku(t) is the flow into the tank. The measurements of the inlet flow, liquid level, and

outlet flow are:

y(t) =
[
y1(t) y2(t) y3(t)

]ᵀ
=
[
ku(t) h(t)

√
2gh(t)

]ᵀ
(1.2)

The consistency of the single tank system with the model is reflected by the residual:

r(t) = y(t)− ŷ(t) (1.3)

where ŷ(t) is evaluated by solving for y(t) in Eqs. (1.1)-(1.2) given the control signal

v(t) computed during the system’s operation. The residual r(t) is then evaluated in

order to detect, isolate, and identify faults that occur in the system.

1.2.2 Knowledge-Based Qualitative Methods

Knowledge-based qualitative methods are based on qualitative causal models

- models that describe the influence relationship between process components,

process functions, and control architecture [132]. Diagnosis is a combination of

causal modeling of the system and fault-symptom analysis. It consists of a knowledge

base (a large set of if-then-else rules that detail a system’s causal nature) and an

inference engine that searches though the knowledge base to derive conclusions,

i.e., causes, from given evidence of abnormal process behavior. Unlike knowledge-

based quantitative models, qualitative models do not require knowledge of the

underlying physics governing a process but rather a fundamental understanding

of its behavior. For example, a qualitative model that summarizes the single tank

system in Figure 1.4 is:
dh
dt

∝ F1(t)−F2(t) (1.4)

where F1 and F2 correspond to the inlet and outlet flows, respectively. Rather

than describing the inherent dynamics of the liquid level, Eq. (1.4) describes its

fundamental behavior: the rate of change in liquid level is proportional to the

difference of the inlet and outlet flows. In principle, Eq. (1.4) describes a cause-and-

effect relationship. The remainder of the equations are:

u(t) ∝ F1(t) (1.5)

y(t) =
[
y1(t) y2(t) y3(t)

]ᵀ
∝

[
F1(t) h(t) F2(t)

]ᵀ
(1.6)

A signed directed graph (SDG) is a qualitative causal model that incorporates the

cause-and-effect relations among process components and functions with abnormal

deviations observed in process variables. The graph consists of nodes that represent
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the condition of process functions and directed edges that represent the causal

relationship between them. A node takes the value of 0 when its corresponding

process variable satisfies nominal operating conditions, + when its variable exhibits

an abnormal positive deviation, and − when its variable exhibits an abnormal

negative deviation. Arcs take values of + and − representing the propagation of

a cause-and-effect chain in the same or opposite deviation, respectively. A SDG

of Eqs. (1.4)-(1.5) is shown in Figure 1.5. The expected symptoms of three faults

known to occur in the system are shown from the SDGs: a blockage in the inlet flow

(Figure 1.5(a)), a blockage in the outlet flow (Figure 1.5(b)), and a leakage in the

tank (Figure 1.5(c)). Diagnosis consists of comparing the symptoms observed in a

SDG with symptoms expected from known faults.

1.2.3 Evidential-Based Quantitative Methods

Evidential-based quantitative methods establish a diagnostic system with a com-

bination of: (a) historical process data - a collection of samples for process variables

gathered during past operations of the process; and (b) knowledge of whether data

was sampled from when the process exhibiting nominal or abnormal behavior [133].

Diagnosis consists of characterizing new observations as being sampled from either

a nominal or abnormal process.

Evidential-based quantitative methods are divided into two different approaches,

namely, supervised anomaly detection and unsupervised anomaly detection. Su-
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0

y2 ∝ h
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+

+

− +

−
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−

−

−
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Figure 1.5: SDGs for the single-tank system with symptoms of (a) a blockage in the inlet flow,

(b) a blockage in the outlet flow, and (c) a leakage in the tank. Circular nodes represents

qualitative variables, and diamond-shaped nodes represent faults.
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pervised anomaly detection formulates diagnosis as a classification problem. The

method requires knowledge of the process’s condition for every sample such that

each sample is labelled as “nominal”, “abnormal 1”, “abnormal 2”, etc. A classifier

is trained to identify which of a set of faults a new observation belongs to. Unsu-

pervised anomaly detection formulates diagnosis as a feature extraction problem.

The method requires historical data strictly sampled from a process consistent with

nominal operational conditions. A feature extractor is trained to extract features

from the nominal data. Fault detection consists of comparing the features of new

observations against those learned from the nominal data; a fault is deemed to have

occurred if the disparity is significantly large. Unlike supervised anomaly detection,

unsupervised anomaly detection offers no information of which fault has occurred.

1.2.4 Evidential-Based Qualitative Methods

Evidential-based qualitative methods are grounded in qualitative trend analysis

- abnormal deviations in process variables are referred to in terms of qualitative

elements, such as: normal, high, low, increasing, decreasing, etc [133]. A trend is a

change in a process variable that develops with time. Diagnosis via trend analysis

involves a hierarchical representation of evident variable trends, comparison of

current trends with trends of previous faults, and the ability to distinguish between

control input-induced transients and abnormal deviations.

1.3 Motivation, goals, and scope of the project

This research project was a part of larger research venture on “Water-Management”

funded by the Danish Hydrocarbon Research and Technology Center (DHRTC) at

the Technical University of Denmark. The goal of the “Water-Management” project

is to improve monitoring and operations of oil and gas production platforms. Under

development is a methodology that generates a knowledge-representative qualitative

causal model from plant documentation that facilitates abnormal event diagnosis

and recovery action planning. The goal of this work was to propose a method

for detecting and evaluating evidence of abnormal process behavior that serves as

evidence for initiating the causal model’s inference engine.

The size and complexity of oil and gas production platforms - or any modern

process plant, for that matter - is an important factor in the design of a method for

abnormal event diagnosis. For example, there may be as many as 1500 observable

process variables in a large process plant [9]. Size can render a knowledge-based

quantitative approach to diagnosis cumbersome, as a large number of process vari-

ables requires a mathematical model that is represented by a large set of differential
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equations that relate the influence of control inputs on the measurements outputs.

Most achievements in knowledge-based quantitative methods are dedicated for linear

time-invariant systems, despite the fact that most practical systems are time-variant

and nonlinear [151]. For example, oil and gas production plants involve the flow

of compressible fluids, which requires competence in thermodynamics and compu-

tational fluid mechanics to model. Models available in the literature may require

certain model parameters that are unknown or difficult to determine experimentally.

Rather than being based on first principles, process knowledge is regularly

represented in the form of plant documents and operator experience. Fault diagnosis

is performed in modern process plants with a combination of alarm systems and

causal reasoning [139]:

• Alarm systems: Alarm systems provide operators with information on ab-

normal changes in the characteristics of process variables. According to the

industrial standard ANSI/ISA-18.2 [55], “an alarm system is the collection of

hardware and software that detects an alarm state, communicates the indica-

tion of that state to operators, and records changes in the alarm state”. The

alarm state characterizes an abnormal change in a variable’s characteristics

with a qualitative label such as high, low, increasing, decreasing, etc. The most

common approach in detecting an alarm state xa(t) of a process variable x(t) is

to compare its value to a constant high and low trippoints xlow and xhigh [135]:

xa(t) =


0, if xlow ≤ x(t)≤ xhigh

−, if x(t)< xlow

+, if x(t)> xhigh

(1.7)

In principle, alarm systems are a synthesis of (a) an evidential-based quanti-

tative approach for detecting abnormal events; and (b) an evidential-based

qualitative approach for characterizing abnormal changes in process variables.

• Causal reasoning: Upon receiving an alarm state/states, an operator applies

their qualitative-based process knowledge to (a) deduce its causal origins and

(b) deduce the corrective control actions needed to return the variable to

within normal operating ranges. Though this approach is a knowledge-based

qualitative method, operators tend to perform this manually on the fly and

without any explicit qualitative model such as a SDG.

This approach to AEM has become difficult for three reasons:

• Selection of alarm limits: The selection of alarm limits is an important factor

in the process of characterizing abnormal changes in process variables. An
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abnormal change may remain undetected if the limits are specified incorrectly,

which can lead to an incorrect diagnosis from causal reasoning. Consider again

the single tank system in Figure 1.4. Figure 1.6(a) displays a time series of

control signal u and the measurements y1, y2, and y3. A leakage in the tank

occurs at sample Tf and causes the measured tank level y2 and measured

outflow y3 to decrease such that y2 and y3 cross their lower control limits.

Consequently, the nodes of x and F2 are given a negative label in the SDG

in Figure 1.6(b). Figure 1.6(c) displays a time series of the same signals. A

blockage occurs at the inlet flow at sample Tf and causes a decrease in the

measured inlet flow rate y1, measured tank level y2, and measured outflow y3.

Variables y2 and y3 cross their lower limit, but the decrease in y1 is undetected

due to the improper selection of its alarm limits. Consequently, the nodes of

x and F2 are given a negative label in Figure 1.6(d), while node F1 is given a

nominal label. The SDG of Figure 1.6(d) is exactly the same as in Figure 1.6(b);

hence the blockage would be improperly reasoned as a leakage fault.

• Univariate approach to multivariate diagnosis: Causal reasoning is a multi-

variate approach to diagnosis: the collection of alarm states one receives are

assessed collectively when determining their causal origin. Eq. (1.7) indicates

that the method for characterizing an alarm state is univariate: the process

variable x(t) is assumed to be independent from other variables when evaluat-

ing the alarm state xa(t). The assumption of independence between abnormal

variables is rarely met in large industrial process systems. In practice, the

qualitative state of a process variable may only be assessed by considering the

qualitative state of the remaining variables in a process [58], [91]. Conse-

quently, a multivariate approach to diagnosis that is dependent on information

that is assessed with a univariate method is liable to produce incorrect results.

• Information overload: Advances in electronics and sensor technologies have

made monitoring systems and devices cheaper, easier to implement, and

capable of monitoring previously unobservable process states. As a result,

modern industrial process systems can monitor a large number of process

states, which increases the amount of process information available as data.

A system comprising a deep integration of computer systems with physical

processes is termed a cyber-physical system [79], [80]. Cyber-physical systems

are one of the leading innovative fronts in Industry 4.0 [142]. Coupled with

the fact that industrial systems increase in size over time to increase production,

the number of sensors and computers connected to every modern industrial

process has increased significantly over the past decades. Consequently, not
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only has the complexity of systems increased but so has the amount of process

information that is provided to an operator in real-time. An overload of

information may prove difficult to comprehend and act upon at the onset of an

abnormal event. This slows down diagnosis and increases the risk of incorrect

diagnosis [41]. It is also the case that an operator is exposed to more alarms

during nominal operation that occur due to poorly selected alarm limits. In

such situations, alarms become useless distractions, and poses the risk that

an operator may doubt the information provided to them. Several incident

reports have highlighted scenarios of information overload and ignored alarms

as one of the root causes for the incidents [29] [48]. Industrial statistics show

that 70% of industrial accidents are caused by human errors, some of which

are attributed to poorly managed alarm system [131].

Venkatasubramanian et al. [133] postulate that a successful diagnostic system

for a large industrial process system is a hybrid of three diagnostic components:

(a) an evidential-based quantitative method for detection; (b) an evidential-based

qualitative method for explicitly assessing abnormal process trends; and (c) a

knowledge-based qualitative method for root-cause analysis. Alarm systems address

the first and second diagnostic component, whereas causal reason address the

third diagnostic component. However, as discussed above, the integration of alarm

systems with causal reasoning can lead to incorrect diagnoses. The main objective of

this work is develop a method that meets the first and second diagnostic components

and simultaneously addresses the limitation of alarm systems. The goals of the

project were defined as follows:

1. Develop an evidential-based quantitative method for establishing a multivariate

diagnostic model that detects abnormal events occurring in complex processes;

2. Develop an evidential-based qualitative method that evaluates the trends of

abnormal process variables with an established diagnostic model.

Based on these goals, the project scope includes:

1. The diagnostic model is to detect abnormal events in an unsupervised manner:

the model is established by learning the features of historical process data, with

detection consisting of comparing the features of new observations against

those learned from nominal data. The motive for choosing this approach over

supervised anomaly detection is that the latter requires a sufficient amount of

data for every possible abnormal event, which is difficult to acquire by because

(a) repeating occurrences of certain faults are rare; and (b) a single fault may

have varying effects that depend on the current state of the process.
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Figure 1.6: Diagnosis for single tank system with (a)-(b) leakage in the tank and (c)-(d)

blockage in the inlet flow. Evidence is not obtained for F1 in (c)-(d) due to incorrect limits for

y1, causing to the symptomatic information in (d) to be equivalent to (b).

2. To facilitate the diagnosis of abnormal events that have not occurred before, ab-

normal changes in process variables are evaluated in an unsupervised manner:

variable trends are assessed with the diagnostic model rather than comparing

them with the trends of previous cases of abnormal events.

3. The proposed methods must be suited for nonlinear and dynamic processes.
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1.4 Thesis outline

This thesis is written as a collection of publications. Main results were submitted

to journals and peer-reviewed conference proceedings over the course of the Ph.D.

study. The main body of this dissertation offers a comprehensive summary of the

state-of-the-art in evidential-based quantitative diagnosis. The chapters are:

Chapter 2 introduces the concepts behind a multivariate approach to evidential-

based quantitative diagnosis. The chapter explains that the approach consists

of two parts: (a) the discovery of a low-dimensional principal manifold that

provides a joint summary for the distribution of a high-dimensional process

variable space; and (b) detecting abnormal abnormal process variable observa-

tions by referring them against the principal manifold.

Chapter 3 provides a summary of the most common state-of-the-art methods

for finding principal manifolds, detecting abnormal events, and isolating ab-

normal process variables. The chapter highlights some their limitations. The

chapter motivates the method that was adopted in the research project.

Chapter 4 provides a summary of all main contributions that are provided in

Appendices A-E

Chapter 5 concludes the thesis and provides a summary of its overall contri-

bution to AEM, and proposes research areas for future study.



Chapter 2

Multivariate evidential-based
abnormal event diagnosis

This chapter introduces a multivariate approach to evidential-based abnormal

event diagnosis. The chapter begins with an introduction to principal manifolds,

which are low-dimensional representations that provide a summary of the joint

behavior of high-dimensional variable distributions. The discovery of principal

manifolds serve as a prelude to feature extraction - a numerical process for deriving

a new set of low-dimensional principal variables that retain informative properties of

an original, high-dimensional variable space. The chapter ends with the application

of feature extraction for abnormal event diagnosis.

2.1 Principal manifolds

Consider a data set consisting of 30 observations of two variables x1 and x2

shown in a scatter plot in Figure 2.1(a). It is sometimes the case that one wishes

to summarize the joint pattern exhibited by the samples. One approach is to treat

one of the variables as a response variable and the other as an explanatory variable.

The task is to construct a linear regression model that predicts the response from the

explanatory variable. Figure 2.1(a) shows the prediction of x2 modeled as a linear

function of x1, estimated by least squares. This estimation approach is equivalent to

finding the sum of squared deviations along the response variable x2.

One may not always have a preference for which variable is treated as either

a response or explanatory, but would still like to summarize the joint behaviour

between the variables. Figure 2.1(b) shows the prediction of x1 modeled as a linear

function of x2, as well as a dashed line that corresponds to the linear regression

model in Figure 2.1(a). The figure shows that assigning a different variable as
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the response leads to a noticeably different joint summary. Figure 2.1(c) shows a

straight line that treats the variables symmetrically; it is found by minimizing the

sum of squared orthogonal deviations. The dashed lines correspond to the regression

models in Figures 2.1(a) and 2.1(b). It can be seen that the line that treats x1 and x2

symmetrically sets a compromise between the two regression models.

A straight line provides an accurate symmetric summary provided that the

variables are linearly related. The line must be generalized as a nonlinear function

if it is to provide an accurate summary of nonlinearly related variables. Instead of

x1

x2

(a)
x1

x2

(b)

x1

x2

(c)
x1

x2

(d)

Figure 2.1: Linear regression that minimizes the sum of squared deviations in the response

variable (a) y2 and (b) y1. (c) A straight line that minimizes the sum of squared deviation

in variables y1 and y2. (d) A smooth curve that minimizes the sum of squared deviations in

variables y1 and y2.
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summarizing the data with a straight line, a smooth curve is used. Such a curve

passes pass through the middle of the data in a smooth way, whether or not the

data is linearly related. Figure 2.1(d) shows a nonlinear curve that summarizes

the nonlinear joint behaviour between x1 and x2. The curve treats the variables

symmetrically. Such a curve, called a principal curve, minimizes the orthogonal

distance between itself and the samples.

A principal curve is a smooth, one-dimensional curve that passes through the

center of a m dimensional data set [47]. Its shape minimizes the squared deviations

in all variables to the curve and provides a nonlinear summary of the data. The

curve is a vector f(λ ) of m functions of a single variable λ . These functions are called

coordinate functions, with λ parameterizing the curve and providing an ordering

along it. Let x ∈ Rm be continuous random vector. The curve f is called a principal

curve of x if:

E(x|λf(x) = λ ) = f(λ ) (2.1)

where the projection index λf : Rm→ R1 is defined as

λf = sup
λ

{λ : ||x− f(λ )||= inf
µ
||x− f(µ)||} (2.2)

The projection index λf(x) is the value of λ for which f(λ ) is closest to x. The defini-

tion of a principal curve in two dimensions is illustrated in Figure 2.2. The smooth

curve f(λ ) is a principal curve if it traverses through a series of projection points that

minimize the sum of squared deviations of samples that project orthogonally to f(λ ).
It is noteworthy to point out that the definition of a principal curve does not

imply that each sample x has a unique projection index λf(x). In other words, a

single projection point along f(λ ) may be shared by multiple samples. Figure 2.2

shows 96 observations summarized by a principal curve consisting of 26 projections,

where each point is shared by four observations. Multiple samples having a scaled

form of a common projection vector is attributed to common cause multivariate

variations occurring in the direction of the projection vector.

Figure 2.3(a) shows a three dimensional data set summarized by the principal

curve f(λ ). The same concepts apply as for the two-dimensional example - the

principal curve passes through a series of projection points that minimize the sum of

squared deviations of the three-dimensional samples that project there orthogonally.

The concept of a principal curve can be generalized to higher-dimensional mani-

folds. Consider the case of a principal surface - a smooth, two-dimensional surface

that passes through the center of x ∈ Rm where m≥ 3. The surface is a vector f(λλλ )
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x1

x2

f(λ )

xi

x j

λf(xi) = λf(xj)

Samples

Projection points

Figure 2.2: Principal curve f(λ ) given a set of samples for x. The points xi and x j share a

projection point, and their projection vectors are a scalable version of each other.

of m continuous function of two variables λ1 and λ2:

f(λλλ ) =


f1(λ1,λ2)

f2(λ1,λ2)
...

fm(λ1,λ2)

 (2.3)

As before, let x ∈ Rm be a continuous random vector. The surface f is a principal

surface of x if:

E(x|λλλ f(x) = λλλ ) = f(λλλ ) (2.4)

Here the projection index λλλ f(x) is the value of λλλ for which the point on the surface

f(λλλ ) is closest to x. Figure 2.3(b) illustrates a principal surface f(λλλ ) summarizing a

three-dimensional data set.

A principal manifold is defined as q-dimensional manifold that jointly sum-

marizes the continuous random vector x ∈ Rm, where q < m. Principal manifolds

summarize the principal axis of variance of a m-dimensional variable distribution.

The manifold f is called a principal manifold of x if:

E(X|λλλ f(X) = λλλ ) = f(λλλ ) (2.5)



2.1. Principal manifolds 21
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x3

f(λ )

(a)

x1
x2

x3

f(λλλ )

(b)

Figure 2.3: (a) Principal curve f(λ ) given a set of samples for a three dimensional variable

distribution and (b) principal surface f(λλλ ) given a set of samples for a three dimensional

variable distribution. Projection vectors are included.

where the projection index λλλ f : Rm→ Rq is defined as

λλλ f = sup
λλλ

{λ : ||x− f(λλλ )||= inf
µµµ
||x− f(µµµ)||} (2.6)

The manifold is a a vector f(λλλ ) of m continuous function of q variables:

f(λλλ ) =


f1(λ1,λ2, . . . ,λq)

f2(λ1,λ2, . . . ,λq)
...

fm(λ1,λ2, . . . ,λq)

 (2.7)

As was the case for principal curves, the definition of a principal manifold does not

imply that each sample x has a unique projection index λλλ f(x) - a single projection

point on the manifold f(λλλ ) may be shared by multiple samples.

Given a specified dimension q, the task at hand is to construct a numerical model

that estimates a q-dimensional principal manifold given a set of n observations of

a m-dimensional variable vector x. The original approach proposed by Hastie and

Stuetzle [47] is to (a) initialize the principal manifold f(λλλ ) as a linear function of

an initialized distribution λλλ and then (b) iteratively improve the projection index

λλλ f and redefine the distribution λλλ until the condition in Eq. (2.5) is satisfied.

Estimation accuracy is largely determined by the complexity of the model f(λλλ ), such

as the number of available parameters in the coordinate functions in f(λ ). However,
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obtaining an estimate for principal manifold may also be formulated as a feature

extraction problem.

2.2 Dimensionality reduction

Dimensionality reduction is a numerical technique for transforming a high-

dimensional variable space into a low-dimensional feature space with the constraint

that the reduced dimension retains informative properties of the original space. It is

typically employed as an initial data-processing step to identify salient properties of

data that ultimately improve the performance of subsequent tasks, such as regression

and classification [109]. Approaches are divided into (a) feature selection: the

process of selecting a subset of relevant variables; and (b) feature extraction: the

process of deriving a new set of principal variables [107]. Consider the continuous

random vector x ∈ R6. An example of feature selection is the following isolation of

variables: 

x1

x2

x3

x4

x5

x6


→

x2

x4

x5

 (2.8)

Here the features x2, x4, and x5 are simply a subset of the variable vector x. The

central motivation for using feature selection is that the original space contains

variables that are either redundant due to variable correlations, i.e., xi ≈ x j for

i 6= j or xi = x j + ei j for i 6= j, or irrelevant for the required analysis, and can thus

be dismissed without inducing significant loss of information. Feature extraction

attempts to retain the entire original variable space to derive new features:

x1

x2

x3

x4

x5

x6


→

z1

z2

z3

=

g1(x)
g2(x)
g3(x)

 (2.9)

Here, each feature zi is a function gi of the original variable vector x.

If the continuous random vector x ∈ Rm comprises variables that are treated

neither as a response nor explanatory, then the feature extraction z = g(x) is the

process of finding a q-dimensional principal manifold f(λλλ ) that summarizes x, where
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z , λλλ . Let x∈Rm×1 be a vector of continuous random variables. An optimal mapping

to the feature space z ∈ Rq×1 is sought in the form:

z =
¯
E (x) (2.10)

where
¯
E is a vector function, composed of q individual functions;

¯
E = [E1,E2, . . . ,Eq]

ᵀ

such that if zi represents the ith element of z,

zi = Ei (x) (2.11)

The optimal mapping z =
¯
E (x) is difficult to derive if one lacks a set of algebraic

equations that describe the relationship between the variables in x. One solution

is to augment feature extraction with a subsequent feature expansion task where

the objective is to reconstruct, i.e., estimate, the original variable space x̂ ∈ Rm×1

from a transformation of z. The inverse transformation that reconstructs the original

variable space is implemented by a second vector function
¯
D = [D1,D2, . . . ,Dm]

ᵀ:

x̂ =
¯
D(z) (2.12)

The objective is for z to retain sufficient information about x that permits an accurate

reconstruction x̂. The vector functions
¯
E and

¯
D are selected to minimize the loss of

information represented by the following loss function:

L (x, x̂) = ||x− x̂||2 (2.13)

Minimization of Eq. (2.13) consists of minimizing the sum of squared deviations be-

tween the original variables x and reconstructions x̂. With respect to Figure 2.2, this

corresponds to minimizing the squared distance between samples and projections.

In principle, the process of deriving the transformations in Eqs. (2.10) and (2.12)

constitues the estimation of a q-dimensional manifold described in Eq. (2.5) where

(a) feature extraction
¯
E(x) corresponds to the projection index λλλ f; and (b) feature

expansion
¯
D(z) corresponds to the function f(λλλ ).

2.3 Multivariate Quality Control Methods

Most industrial alarm systems monitor the qualitative state of process variables

with univariate control charts such as Schewart, CUSUM, and EWMA. The charts

examine the variables independently, and it is assumed that abnormal event that

affects multiple process variables is reflected in the individual charts. However, the

assumption of independence between abnormal process variables is rarely met. It is

often the case that the qualitative state of an abnormal variable is only inferrable by

considering the qualitative state of the remaining variables in the system [58], [91].



24 Chapter 2. Multivariate evidential-based abnormal event diagnosis

The difficulty with using univariate control charts to diagnose faults occurring in

multivariate systems is illustrated by reference to Figure 2.4. Two process variables

(x1,x2) are considered for ease of illustration. The joint plot of (x1,x2) shows that

samples for x1 and x2 follow a multivariate Normal distribution and are negatively

correlated when the process is operating under nominal conditions. The ellipse

encapsulates 99.73% of the nominal samples. Unexplained common cause variation

is attributed to process and measurement stochasticity. The nominal samples are also

plotted as individual time series charts with their corresponding 99.73% upper (UCL)

and lower (LCL) control limits. Abnormal samples gathered from when the process

operated under an abnormal condition that terminated the correlation between x1

and x2 are included in the individual charts and the joint plot. By inspection of

each of the univariate charts, each variable appears to be consistent with nominal

operating conditions since the abnormal samples are within the control limits. On

the other hand, the multivariate joint plot shows that some of the abnormal samples

are outside of the joint control region. Therefore, an indication of the abnormal

process condition is only revealed in the joint plot and not in the univariate charts,

where abnormal samples are incorrectly considered nominal. This improvement in

detectability is understood by considering the effect the correlation between x1 and

UCL

MEAN

LCL

U
C

L

M
EA

N
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L

x1

Sample

x 2

Sam
ple
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Figure 2.4: Monitoring of two variables depicting the misleading nature of univariate charts.
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x2 has on forming a joint control region. When the correlation is not considered, the

control region would have otherwise been the square shaped contour parameterized

by the UCLs and LCLs of x1 and x2, wherein the abnormal samples reside and remain

undetected. Incorporating the correlation between x1 and x2 compresses the square

shaped region into an ellipse, thereby constricting the limit that classifies a sample

as abnormal. Evaluating the qualitative trends of abnormal variables thus consists of

assessing the movement of samples that reside outside the joint control region.

Detecting and evaluating abnormal events with a multivariate correlation ap-

proach is rooted in the discovery of principal manifolds. A principal curve is the

only possible manifold for the example in Figure 2.4. Figure 2.5 displays the joint

plot of nominal samples from Figure 2.4. The principal curve is a straight line that

traverses through the middle of the samples and points in the direction of joint

maximal variance. Included in the plot are two abnormal samples that reside outside

the 99.73% joint control region. It is necessary to point out that a suitable choice

for a joint control region that summarizes the joint behavior of nominal process

variables is strictly dependent on the distribution of samples. In the case of the

samples in Figure 2.5, an elliptical control region is suitable because the samples

follow a multivariate Normal distribution with a correlation index of ρy1,y2 =−0.91.

However, not all data distributions follow the assumption of normality, and so an

elliptical control region may not always be viable.

Fault detection is the first step in multivariate process monitoring. The Hotelling

T 2 statistic and the squared prediction error (SPE) statistic (also known as the Q

statistic) are used for assessing the condition of a process. The SPE and T 2 statistics

are illustrated in Figure 2.5. These multivariate indices are preferable to univariate

indices because the correlation between variables is taken into account. Although

both the Hotelling T 2 and SPE statistics are used for detecting abnormal events,

it is necessary to point out that they measure different statistical properties of

variable distributions, and their roles in process monitoring are not symmetric. The

SPE statistic is representative for the Euclidean distance between a sample and its

projection on the principal manifold, and is used as an indicator for variability that

breaks nominal process variable correlations. The T 2 statistic is representative for

the distance between a sample and the origin of the principal manifold, and is used

as an indicator for process variables that lie outside of previously seen operating

limits. The control limits CLSPE and CLT 2 define the bounds of nominality, and a

process is considered nominal if:

SPE ≤CLSPE

T 2 ≤CLT 2

(2.14)
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Figure 2.5: Illustration of monitoring statistics and their respective control limits.

Note that CLSPE and CLT 2 correspond to the edges defined by an elipsoid encap-

sulating Normally distributed samples (Figure 2.5). Although the statistics appear

frequently in the literature, SPE is generally favored over T 2 for three reasons [63]:

1. The region defined by CLT 2 is associated with explained (nominal) variation

occurring in the process, whereas the region defined by CLSPE is associated

with unexplained common cause variation. It is normally the case that the

variance of process variables is more associated with explained variation.

Consequently, the region defined by CLT 2 is usually much larger than that of

CLSPE , and it usually takes a more severe fault for the T 2 statistic to cross its

limit. Additionally, a sample that exceeds the CLT 2 limit but not the CLSPE

limit implies that the nominal correlation structure among variables is retained

but that the sample has shifted significantly far away from the origin of the

principal manifold. This could be an indicator of an abnormal event, but

could also be a attributed to a nominal sample that was not available when

establishing the CLT 2 control region. Furthermore, the region defined by CLT 2

tends to coincide with the UCL and LCL of traditional univariate charts; thus

the T 2 statistic offers little improvement in fault detectability compared to the

SPE statistic which detects alterations in nominal process variable correlations.
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2. Abnormal event detection with the T 2 statistic requires for the principal man-

ifold to be defined beyond the CLT 2 limit. This is an easy task for linearly

correlated variables such as with the example in Figure 2.5, where the principal

curve (a straight line) is simply extended beyond the CLT 2 limit. However, this

task can be difficult for nonlinearly correlated variables such as the example

illustrated in Figure 2.6(a). It is often the case that few to no nominal samples

exist past the CLT 2 limit; hence defining a principal manifold may be ill-posed.

3. A CLT 2 limit may be undefinable for certain data distributions, such as for

the nominal samples shown in Figure 2.6(b). The cyclical nature of the data

distribution denies the extension of the principal curve and, to the same extent,

the existence of a CLT 2 limit. However, a CLSPE limit is definable.

Multivariate process monitoring consists of verifying that a principal manifold

is representable for new observations. New observations xnew are transformed via

Eqs. (2.10) and (2.12) to generate the features znew and reconstructions x̂new. The

Hotelling T 2 statistic is given by:

T 2 =
q

∑
i=1

z2
new,i

σ̄2
i

(2.15)

where σ̄i is the sample standard deviation of feature variable zi. The SPE statistic is:

SPE = ||x||2

=
m

∑
i=1

(xnew,i− x̂new,i)
2

(2.16)

CLT2 CLT 2
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SPE
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Figure 2.6: Principal curve for (a) a quadratic variable distribution and (b) a cyclical variable

distribution. Monitoring statistics and respective control limits are included.
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An abnormal event is detected if either statistic no longer satisfies the inequalities in

Eq. (2.14). The qualitative changes in abnormal process variables are then evaluated

by assessing the multivariate trends in the anomaly-suggestive statistic(s).

2.4 Relation to analytical redundancy

Feature extraction as an evidential-based quantitative approach to fault diagnosis

is comparable to (though not equivalent to) the knowledge-based quantitative

approach given by analytical redundancy. Consider the following system of linear

equations describing the flow of fluid through a liquid cooling unit:

h = N(0,1)

y1 = h+ e1

y2 = h+ e2

(2.17)

where h is the flow through the cooling unit, y1 is the measured inlet flow rate,

y2 is the measured outlet flow rate, ei denotes a noise term for measurement yi,

and N(µ,σ2) denotes the normal distribution with mean µ and variance σ2. The

following process variable vector is defined:

x ,

[
x1

x2

]
=

[
y1

y2

]
(2.18)

A residual based on analytical redundancy is the difference between x1 and x2:

z1 = x1− x2 (2.19)

Substituting Eqs. (2.18) and (2.17) into Eq. (2.19) yields:

z1 = (h+ e1)− (h+ e2)

= e1− e2
(2.20)

In principle, z1 models the difference between the noise terms e1 and e2 when the

cooling system is operating nominally. In other words, the variance of z1 is attributed

to stochasticity present in the measurements. Coincidentally, z1 does not permit a

reconstruction of the original variables, as any information about h is lost in z1. Still,

z1 is sensitive to faults that alter the balance between the two flow rates; a significant

shift away from the mean of z1, i.e., zero, would imply the onset of a fault.

A feature based on feature extraction is the following weighted sum of x1 and x2:

z2 =
x1√

2
+

x2√
2

=

[
1√
2

1√
2

][
x1

x2

] (2.21)
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Substituting Eqs. (2.18) and (2.17) into Eq. (2.21) yields:

z2 =
h+ e1√

2
+

h+ e2√
2

=
2h√

2
+

e1 + e2√
2

(2.22)

Unlike the residual z1, the variance of z2 is attributed to nominal variations in the

flow rate h as well as the noise terms e1 and e2. This means that it is possible to

reconstruct the original variables from z2 since the feature retains information about

the process state h. Consider the following reconstruction for x̂1 and x̂2:

[
x̂1

x̂2

]
=


1√
2

1√
2

z

=


1√
2

1√
2

[ 1√
2

1√
2

][
x1

x2

]

=

[
0.5 0.5
0.5 0.5

][
x1

x2

]
(2.23)

The reconstruction mapping in Eq. (2.23) is given by the transpose of the feature

mapping in Eq. (2.21). The rationale behind Eq. (2.23) is self-evident: since x1 and

x2 are positively correlated, one can reconstruct either variable by taking the average

of x1 and x2. Substituting Eqs. (2.18) and (2.17) into Eq. (2.23) yields:[
x̂1

x̂2

]
=

[
0.5 0.5
0.5 0.5

][
h+ e1

h+ e2

]

=

[
h+0.5(e1 + e2)

h+0.5(e1 + e2)

] (2.24)

The reconstructions retain the flow rate h, and correspond to the original variables.

They only difference between the original variables and the reconstructions is that

noise terms e1 and e2 are uncorrelated in the former and correlated in the latter.

The example above demonstrates the key difference between abnormal event

diagnosis with analytical redundancy and feature extraction: the former produces

a residual that corresponds to the mean and variance of unexplained process and

measurement variations, while the latter produces a feature that corresponds to

the mean and variations of explained and unexplained process and measurement

variations. Correspondingly, features, which, unlike residuals, retain information

about nominal process variation, permit a reconstruction of the original variables.
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2.5 The unsupervised learning problem

In the absence of a priori knowledge on the relations among variables in the

continuous random vector x, feature extraction is formulated as an unsupervised

machine learning problem: the objective is to find the vector functions
¯
E and

¯
D

that minimize the loss function in Eq. (2.13), where
¯
E and

¯
D are parameterized by

a mathematical model. Unsupervised learning is used for other purposes besides

feature extraction, such as data compression, cluster analysis, and factor analysis.

Unsupervised learning can identify the underlying structure of data that facilitates

its use in a subsequent task such as regression or classification [33]. Figure 2.7(a)

illustrates a traditional approach for building and evaluating a mathematical model

trained to compress handwritten digits in an unsupervised manner. The model is

initially defined for the learning task, and is then trained to fit its model parameters

to a training data set - a set of training examples sampled from the data distribution

(handwritten digits). The model, now fitted, then makes predictions for the observa-

tions in a validation data set - a set of validation examples that provide an unbiased

evaluation of the model’s performance; if the evaluation is not satisfactory, then the

model is retrained with new model constraints. If model evaluation is satisfactory,

then the model makes predictions for the observations in a test data set - a set of test

examples that provide an unbiased estimate of the final model performance.

The use of unsupervised learning for abnormal event diagnosis is significantly

distinctive from other applications. Figure 2.7(b) illustrates the approach for building

and evaluating a mathematical model trained to extract features from process

variables. The figure shows that the training data set and validation data set

consists of samples gathered from a process exhibiting nominal operating conditions.

Coincidentally, the model is evaluated based on its performance at extracting features

from nominal data. However, the figure indicates that the test data set consists

of samples gathered from when the process exhibits both nominal and abnormal

operating conditions. In other words, once the model is evaluated to satisfactorily

extract feature from nominal samples, its final model performance is unbiasedly

estimated with both nominal and abnormal samples. This significant contrast

between the test and training/validation data sets is not traditional in machine

learning. It is akin to, for example, training an image classifier to classify between

several species of animals and then testing it with images of a new specie that is

unlike the prior investigated species; the classifier would fail at classifying this new

specie. Likewise, a feature extraction model will fail at extracting representative

features and be unable to reconstruct the original variables for abnormal samples.

However, it is this failure that permits abnormal event diagnosis; upon detecting
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that the feature extraction model is not representative for new observations, it is

concluded that the new observations must have been sampled from an abnormal

system, and can thus be analyzed to reveal the nature of this abnormality.

Feature extraction-based anomaly diagnosis consists of three steps:

Data distribution
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set
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set

Test set

Untrained

model

Trained

model

Model

definition

Model
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Faulty plant
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Figure 2.7: Comparison between (a) a traditional unsupervised learning problem and (b) an

unsupervised learning approach to anomaly detection. Note that the test sets between (a)

and (b) are different.
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1. Model creation: A feature extraction model is optimized with a training data

set Xt ∈ Rm×n. The data set consists of historical process data, which is the

collection of past n samples for m continuous process variables. These samples

must be collected from a process exhibiting nominal operating conditions. By

obtaining the transformations
¯
E and

¯
D, the model learns redundancies and

correlations present in nominal process variables.

2. Fault detection: A new observation for process variables xnew is propagated

through the optimized model to generate the principal variables znew and

reconstructions x̂new. The condition of the process is assessed by motoring

the SPE and Hotelling T 2 statistics. A fault is deemed to have occurred if the

control limits in Equations 2.14 are crossed.

3. Fault isolation: Once a fault is detected, the signal characteristics of the SPE

and Hotelling T 2 statistics are analyzed to determine abnormal changes in

process variables.



Chapter 3

State of the art

This chapter provides a summary of the fundamental theories and recent ad-

vances in feature extraction and its application to abnormal event diagnosis. The

chapter begins with a comparative overview of unsupervised methods for feature

extraction that are commonly referenced in the literature. The chapter details the im-

portance of selecting an appropriate dimension for the feature space and its influence

on multivariate monitoring statistics. A short summary is provided for the method of

extracting features from dynamic, i.e., auto-correlated and cross-correlated, process

variables. Approaches for defining multivariate control limits for different feature

extraction methods are presented. Lastly, the chapter provides an overview of the

state-of-the-art method for assessing abnormal trends in process variables.

3.1 Latent projection

Latent projection (LP) is a statistical approach to feature extraction. LP assumes

that prior knowledge on the relations among variables in the continuous random

vector x ∈Rm×1 is unavailable. The task of LP is to obtain the vector functions
¯
E and

¯
D from a statistical analysis of samples for x such that, given the dimension q for

the feature (latent) space, the squared difference ||x−
¯
E(

¯
D(x))||2 is minimized. The

vector functions
¯
E and

¯
D parameterize a LP model. In the context of abnormal event

diagnosis, the first step is to sample the process whilst it is consistent with nominal

operating conditions. The n samples are collected in the reference, i.e., training, data

matrix Xt ∈ Rm×n:

Xt =
[
x[1] x[2] · · · x[n]

]
=


x1[1] x1[2] · · · x1[n]

x2[1] x2[2] · · · x2[n]
...

...
. . .

...

xm[1] xm[2] · · · xm[n]

 (3.1)
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The vector functions
¯
E and

¯
D are then given from a LP of Xt . From Eq. (2.10), the

training samples are transformed to the feature matrix Zt ∈ Rq×n:

Zt = ¯
E(Xt) (3.2)

From Eq. (2.12), the feature matrix is transformed to the reconstruction matrix

X̂t ∈ Rm×n:

X̂t = ¯
D(Zt) (3.3)

The validation data matrix Xv and test (fault) data matrix X f , as well as their

respective feature matrices (Zv,Z f ) and reconstruction matrices (X̂v, X̂ f ), are defined

similarly. Note that X f consists of nominal and abnormal samples.

3.1.1 Principal component analysis

Principal component analysis (PCA) is a widely used approach for establishing

a linear LP model [114]. Within the class of linear methods, PCA delivers a model

with the least loss of information [51], [104]. Many state-of-the-art LP methods are

an extension of PCA. PCA consists of finding a set of principal component scores

ti = pᵀ
i x for i ∈ Z : i ∈ [1,m], where x is assumed to have mean of zero; if this is not

true, then x may be mean-centered. The column vectors pi form the orthonormal

principal component loading matrix P ∈ Rm×m. The first principal component score

t1 has maximum variance, the second principal component score t2 has the next

greatest variance, with additional scores up to m similarly defined. The scores ti form

the score vector t ∈ Rm×1, which is given by the transformation t = Pᵀx. Because

the orthonormal matrix P is orthogonal, i.e., PPᵀ = PP−1 = I, where I is the identity

matrix, the original variable vector x is reproducible via x = Pt. The loading matrix

P is given by the eigenvectors of the covariance matrix ΣΣΣ of x:

ΣΣΣ = PΛΛΛPᵀ (3.4)

where ΛΛΛ is a non-negative real diagonal m×m matrix whose diagonal elements λi

are the corresponding eigenvalues of the loading vector pi. The eigenvalues λi are

the variances of the principal component scores ti, i.e., Var(ti) = λi. If ΣΣΣ is not known,

then it may be estimated with:

ΣΣΣ =
Xᵀ

t Xt

n−1
(3.5)

LP with a model given by PCA involves identifying q principal components

that explain most of the predictable variation in x. The remaining m−q principal

components are attributed to unpredictable common cause variation. For that

purpose, the loading matrix is partitioned as follows:

P =
[

P̂ P̃
]
, P̂ ∈ Rm×q, P̃ ∈ Rm×(m−q) (3.6)
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The variable vector x is then decomposed into the reconstruction vector x̂ and the

residual vector x̃:

x = x̂+ x̃

= P̂t̂+ P̃t̃

= P̂P̂ᵀx+ P̃P̃ᵀx

(3.7)

The mapping to the latent vector z is:

z = t̂ = P̂ᵀx (3.8)

The mapping to the reconstructions x̂ is:

x̂ = P̂z (3.9)

3.1.2 Independent component analysis

The PCA of x computes a collection of m unit vectors pi that constitute an

orthonormal basis. The change of basis t = Pᵀx warrants that the scores ti are

linearly uncorrelated with (orthogonal to) one another as long as the original

variables x follow the assumption of multivariate normality [114]. Likewise, the

scores ti are correlated with one another if x does not follow the assumption of

multivariate normality. From a geometric perspective, PCA can be thought of as

fitting a m-dimensional ellipsoid to x, where each axis i of the ellipsoid is represented

by the direction pi and length corresponding to λi. The ellipsoid is representable

for x as long as x follows a multivariate Gaussian distribution. Coincidentally, a

LP model given by PCA provides a suitable estimation for the principal manifold

z = t̂⊆ t of x as long as x follows the assumption of multivariate normality.

The independent component analysis (ICA) of x consists of searching for a linear

transformation that minimizes the statistical independence between its components

[28], [53]. ICA is preferred over PCA if the variables in x do not follow a multivariate

Gaussian distribution but remain linearly related. ICA was originally developed for

blind source separation applications: the objective is to recover a set of independent

source signals after that have been mixed by an unknown linear transformation

[126]. The concept of ICA may be seen as an extension of PCA: PCA defines an

orthogonal basis that aligns along the direction that best explains the variability of x,

whereas ICA defines a linear span (not necessarily orthogonal) that orients along the

direction that best explains the hidden sources comprising x. ICA proves useful if the

variance of the process variable vector x is explained by a source, i.e., disturbance,

that is not measured directly but has considerable influence on process variations.

Coincidentally, if the variation in x is explained by an immeasurable source variable,
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then an ICA-based LP model will generate features z that are unobtainable with PCA

and are more suitable for estimating the principal manifold of x.

To illustrate ICA, consider two independent source variables s1 = U
(
−
√

3,
√

3
)

and s2 = U
(
−
√

3,
√

3
)

that have the uniform distribution shown in Figure 3.1(a).

The range of values for the uniform distributions are chosen to make the mean zero

and the variance equal to one. The independent components IC1 and IC2 correspond

to the source variables s1 and s2. The vectors represented by IC1 and IC2 form an

orthogonal basis that summarizes the independence between s1 and s2. The sources

are mixed as follows:

x = As, (3.10)[
x1

x2

]
=

[
1 3
1 1

][
s1

s2

]
(3.11)

Figure 3.1(b) shows a scatter plot of the mixtures. The mixed data has a uniform

distribution on a parallelogram with a correlation index of ρx1,x2 ≈ 0.89; the random

variables x1 and x2 are therefore not independent. The independent components

IC1 and IC2 are represented in the mixed space as AIC1 and AIC2: the two vectors

define a linear span that explains the non-Gaussian variation comprising the mixed

data. The principal components PC1 and PC2 are given by a PCA of the mixed data.

PC1 and PC2 are represented as A−1PC1 and A−1PC2 in the original source space

in Figure 3.1(a). Clearly, the vectors represented by A−1PC1 and A−1PC2 do not

summarize the statistical independence between s1 and s2. The objective of the ICA
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Figure 3.1: Scatter plots of (a) the source variables and (b) the mixed variables. 1000

samples are plotted.
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of x is to determine A−1 that transforms the mixed space x to the source space s,
where the uniform variation in each source variable si corresponds to the vector

represented by the independent component ICi.

The example given above demonstrates that the independent components IC1

and IC2 are an appropriate representation of the statistical independence observed

by the source signals, whereas the principal components PC1 and PC2 are not.

When solving for independent components, it is assumed that the mixed variable

vector x ∈Rm×1 can be expressed as a linear combination of the unobservable source

variable vector s ∈ Rd×1, where d ≤ m (for simplicity, it is often assumed that d = m

[53]). The source and mixed variables are assumed to have means of zero; if this

is not true, then x may be mean-centered. Given the reference data matrix Xt , the

relationship between the mixed and source variables is given by:

Xt = ASt +Et (3.12)

where A ∈ Rm×d is the unknown mixing matrix, St ∈ Rd×n is the source matrix, and

Et ∈ Rm×n is the residual matrix. The task of ICA is to estimate the mixing matrix

A and the original source matrix S from solely the observations X. Without further

constraints, it is impossible to identify both A and S from X. Hence, one major

assumption is that the source variables si are statistically independent with each

other and that their variances are equal to one. The demixing matrix W ∈ Rd×m

provides an estimate of the inverse of the mixing matrix A, i.e., W≈A−1, such that:

St ≈WXt (3.13)

The transformation W projects the mixed signals X onto the independent components

that summarize the uniform distribution of S, where the rows of W project the mixed

data onto a single independent component.

Similar to PCA, ICA-based LP requires the selection of q dominant components

from the d available independent components, i.e., q rows in demixing matrix W.

The remaining d−q rows are attributed to common cause variation. For that purpose,

the demixing matrix is partitioned as follows [84]:

W =

[
Ŵ
W̃

]
, Ŵ ∈ Rq×m, W̃ ∈ R(m−q)×m (3.14)

The mixed variable vector x is decomposed into the reconstruction vector x̂ and

residual vector x̃:

x = x̂+ x̃

= Ŵ−1ŝ+W̃−1s̃

= Ŵ−1Ŵx+W̃−1W̃x

(3.15)
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The mapping to the latent vector z is:

z = ŝ = Ŵx (3.16)

The mapping to the reconstruction vector x̂ is:

x̂ = Ŵ−1z (3.17)

ICA-based process monitoring is applicable when the source of significant variance

in process variables is unknown and cannot be attributed to common cause variation.

For example, wind speed has a significant effect on the variance a wind mill dynamics

and control system; if unmeasured, it can be considered as hidden source factor.

Another example is the presence of control changes that are not registered as

computer process variables signals, such as the manual opening of a gas valve.

3.1.3 Kernel component analysis

The LP methods reviewed so far are only viable in a linear setting; PCA is viable

if x follows the assumption of multivariate normality and ICA is viable if x is a

linear combination of an independent uniformly distributed source vector s. It is

sometimes the case that variables in x observe nonlinear characteristics that result

in nonlinear correlations, such as those shown in Figures 2.6(a) and 2.6(b). In such

cases, variables exist on a nonlinear principal manifold that cannot be modeled with

a linear LP method.

Nonlinear ICA is an extension of ICA addressed for nonlinear mixing models

[54], [113]. If x is assumed to be a nonlinear mixture of the independent source

vector s:

x = f(s)+ e (3.18)

where f : Rd → Rm is an unknown nonlinear function, then the task of nonlinear ICA

is to estimate s by finding an inverse mapping g : Rm→ Rd such that:

s≈ g(x) (3.19)

Kernel principal component analysis (KPCA) augments PCA with a kernel method

[119]. The basis of kernel methods is to map the predictors of a machine learning

model to a higher dimensional space prior to fitting the model. Kernel methods are a

class of algorithms that transform a linear model into a nonlinear model by mapping

its predictors with a nonlinear kernel function [120]. Expanding the original variable

space makes it possible for variable relations, that were impossible to model in the

original variable space, to be modeled in the higher dimensional space. KPCA maps
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the variable vector x to a higher dimensional space and then computes the principal

components in that feature space that describe the nonlinear variations in the data.

The concept behind KPCA is too extensive for a short summary and is thus left out

in this thesis. A detailed review of KPCA and its application in multivariate process

monitoring is provided in [40], [82], [96], [100], [118], [119],. Multivariate

process monitoring with KPCA is analogues to that of PCA and ICA; q kernel principal

components that explain most of the predictable nominal variation in x are identified

in the higher dimensional space to decompose the original variables x into the

reconstruction vector x̂ and residual vector x̄.

The kernel method is also used as a means for obtaining the inverse (demixing)

function from nonlinear ICA [81], [136], [150].

3.1.4 Autoencoders

An autoencoder (AE) is a type of an artificial neural network (ANN) configured

for LP. The theoretical base for ANNs is inspired by studies of the brain and nervous

system in biological organisms [69]. McCulloch and Pitts [94] introduced the

concept behind ANNs by creating a computational model for neural networks. Neural

activity was based on an “all-or-none” process that is comparable to high threshold

logic. The objective was to convert continuous input information into a discrete

decision output. Rosenblatt [110] developed the concept further by introducing the

perceptron - an algorithm for learning a binary classifier that maps the real-valued

input vector x ∈ Rm×1 to a single binary output value f (x):

f (x) =

1, if wx+b > 0

0, otherwise
(3.20)

where w ∈ R1×m is a vector of real-valued weights and b is the bias that shifts the

decision boundary, i.e., threshold, away from the origin. Figure 3.2(a) illustrates the

perceptron. Multiple perceptrons arranged into an interconnecting structure such as

in Figure 3.2(b) forms a complex logical network that computes a logical function.

In fact, the perceptrons comprising a logical network can be configured to resemble

logic gates contained in logic circuits [99].

The subject of ANNs has developed considerably since its conception. Their use

extends beyond that of computing logical functions: ANNs are a stable in the field of

machine learning and are used for statistical tasks such as regression, classification,

clustering, feature extraction, probabilistic modeling, and prediction [42], [99],

[112]. ANNs are regularly applied in disciplinary fields such as speech recognition,

image analysis, and automated decision making [43], [74], [97].
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Of interest in this thesis are feedforward neural networks (FNNs) [115]. FNNs are

composed of neurons that are a functional alteration of the perceptron in Eq. (3.20),

namely, they map the input vector x to a real-valued output f (x). This change

permits continuous information to propagate through the FNN. Figure 3.3 shows

four interconnecting feedforward network layers that occupy a deep FNN. Each

network layer i is composed of ki neurons. For layer l, the real valued activation ai
l

of the ith neuron is related to the activations in the (l−1)th layer by the equation:

ai
l = σ

i
l

(
kl−1

∑
j=1

wi, j
l ·a

j
l−1 +bi

l

)
(3.21)

where the weight wi, j
l is a real-valued modeling parameter for the activation a j

l−1 of

the jth neuron in the (l−1)th layer, bi
l is the bias, and the activation function σ i

l is a

real-valued function. The expression in Eq. (3.21) can be rewritten in a vector form:

ai
l = σ

i
l
(
wi

lal−1 +bi
l
)

(3.22)

f (x)

x1

x2

x3

xk

1

x

w1

w2

w3

wm

b

(a)

1 1 1

(b)

Figure 3.2: (a) The perceptron. (b) A deep ANN composed of interconnecting perceptrons.
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where

wi
l =
[
wi

1 wi
2 . . . wi

kl−1

]
, al−1 =


a1

l−1

a2
l−1

. . .

akl−1
l−1

 (3.23)

The vector of activations al =
[
a1

l a2
l . . . akl

l

]ᵀ
is computed by rewriting the

expression in Eq. 3.22 in a matrix form:

al = σl (Wlal−1 +bl) (3.24)

where

Wl =


w1

l

w2
l

...

wkl
l

 , bl =


b1

l

b2
l

. . .

bkl
l

 (3.25)

and σl =
[
σ1

l σ2
l . . . σ

kl
l

]ᵀ
is a vector function where each element σ i

l is the

activation function for the ith neuron in the lth layer. Given n instances (observations)

for al−1, n instances for al are computed via an extension of Eq. 3.24:

Al = σl (WlAl−1 +bl) (3.26)

al,1

al,2

al,3

al,kl

1

Layer l

al−1,1

al−1,2

al−1,3

al−1,kl−1

1

Layer l−1

1

Layer l−2

1

Layer l +1

Figure 3.3: Illustration of four interconnecting network layers residing in a deep FNN.
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where

Al−1 =
[
al−1,1 al−1,2 . . . al−1,n

]
, Al =

[
al,1 al,2 . . . al,n

]
(3.27)

Activation functions define the final output of a neuron given the weighted sum of its

inputs. Several activation functions are defined in the literature, each with its own

useful properties. Figure 3.3 shows six activation functions that are commonly used

in the literature. A neuron employing the binary activation function in Figure 3.4(a)

corresponds to the perception in Eq. (3.20). The logistic sigmoid activation function

in Figure 3.4(b) is inspired by probability theory. It can be regarded as smoothed

version of the binary activation function, such that the output ranges continuously

between 0 and 1. The contrast between the binary and sigmoid activation functions

is equivalent to the distiction fuzzy logic and Boolean logic. The tangent hyperbolic

function is similar to the logistic sigmoid function, except the output ranges con-

tinuously between −1 and 1. It is typically used when processing mean-centered

data. Neurons may employ the identity function to permit unbounded activity. The

rectifier activation function may be regarded as a combination of the binary and

identity functions: a network composed of rectifier neurons will exhibit a sparse

activation where only some neurons are active, i.e., have non-zero output, with,

unlike a binary neuron, a continuous activation. In fact, the rectifier is, as of 2015,

the most popular nonlinear activation function [78]. Numerous other activation

functions, such as the exponential linear unit, are provided in the literature [108].

Activation functions affect the modeling performance of FNNs; given a machine

learning task, one activation function may be favorable over another given the

nature of the data. In fact, a neural network employing nonlinear functions can be

proven to satisfy the Universal Approximation Theorem, whereby it can model any

nonlinear function [30]. This property is not met by the identify function.

Given the input vector x ∈ Rkx×1, a FNN models the relationship between the

label vector y ∈ Rky×1 and x:

y = fFNN(x)+ ε

= ŷ+ ε

(3.28)

where fFNN is a function modelled by the FNN, ŷ is an estimate for y, and ε is the

model error. Figure 3.5 shows an illustration of a FNN with L hidden network layers

that connect the input layer to the output layer. The equation for ŷ given x is:

ŷ = σy (WyaL +by)

= σy (Wy×σL (WLaL−1 +bL)+by)

= σy (Wy×σL (WL×σL−1 (WL−1aL−2 +bL−1)+bL)+by)

= σy (Wy× . . .σ1 (W1x+b1) · · ·+by)

(3.29)
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Figure 3.4: Neuron activation functions: (a) the binary function, (b) the logistic sigmoid

function, (c) the tangent hyperbolic function, (d) the identity function, (e) the rectifier

function, and (f) the exponential linear unit function.

If n instances (observations) for x and y are provided in the form of X ∈ Rkx×n and

Y ∈ Rky×n, respectively, then n instances for ŷ in the form of Ŷ ∈ Rky×n are obtained

via a combination of Eq. (3.26) and Eq. (3.29):

Ŷ = σy (WyAL +by)

= σy (Wy× . . .σ1 (W1X+b1) · · ·+by)
(3.30)

Neural networks are trained, i.e., optimized, with a reference input set Xr and

reference label set Yr. The machine learning task is to optimize the weight matrices

Wi and biases bi where i ∈ Z : j ∈ [1,L] with the intent of minimizing a loss function:

Loss = L (Yr, Ŷr) (3.31)

where Ŷr is computed from Xr via Eq. (3.30). There are many forms for the error

function L , but the most common the quadratic cost function:

L (Y, Ŷ) =
1
n

∣∣∣∣Y− Ŷ
∣∣∣∣2 (3.32)
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Weights are optimized with backpropagation via stochastic gradient descent [99].

An AE is a FNN configured for LP. An AE consists of two parts, an encoder and a

decoder, where the former transforms the high-dimensional variable vector x ∈Rm×1

into the lower-dimensional feature vector z ∈ Rq×1 and the latter reconstructs the

original variable vector x̂ ∈ Rm×1 with a transformation of the features. With respect

to Eq. (3.29), this is equivalent to the substitution ŷ , x̂. The encoder maps the

input x ∈ Rm×n to the latent variables z ∈ Rq×n:

ei =

σ e
1 (W

e
1x+be

1) , for i = 1

σ e
i (We

i ei−1 +be
i ) , else

z = σ
z (WzeN +bz)

(3.33)

where i ∈ Z : i ∈ [1,N] and q < m. We
1 is the weight matrix between the input layer

and the first encoder layer. We
i is the weight matrix between layers i−1 and i, be is

the bias at layer i, and σ e
i is the component wise activation function at layer i. Wz,

bz, and σ z are defined similarly for the latent layer. The decoder maps the latent

1

Layer L

1

Layer 1

x1

x2

x3

xkx

1

Input layer

ŷ1

ŷ2

ŷ3

ŷky

Output layer

Hidden layers

Figure 3.5: Illustration of a FNN with L hidden layers.
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variables z ∈ Rq×n to the input reconstruction x̂ ∈ Rm×n:

di =

σd
1
(
Wd

1z+bd
1
)
, for j = 1

σd
j

(
Wd

j d j−1 +bd
j

)
, else

x̂ = σ
x̂ (Wx̂dM +bx̂)

(3.34)

where j ∈ Z : j ∈ [1,M]. Wd
1 is the weight matrix between the latent layer and the

first decoder layer. Wd
j is the weight matrix between layers j−1 and j, bd is the bias

at layer j, and σd
j is the component wise activation function at layer j. Wx̂, bx̂, and

σ x̂ are defined similarly for the output layer. Given the reference set Xt ∈ Rm×n, the

model parameters We
i ,be

i ,Wz,bz,Wd
j ,bd

j ,Wx̂, and bx̂ are optimized with respect to

minimizing the following reconstruction loss function:

L (Xt , X̂t) =
1
n

∣∣∣∣Xt − X̂t
∣∣∣∣2 (3.35)

Figure 3.6 shows an AE configured to extract a two-dimensional feature vector z
from a six dimensional variable vector x. The AE gradually condenses the input to

the feature space before gradually reconstructing it; such a configuration, i.e., one

where the dimension of every encoder/decoder layer is less than the original variable

space, is typically presented in the literature. The figure shows that dimensions of

the encoder and decoder layers are mirrored, but this it not a necessary requirement.

3.1.4.1 Relation to PCA, ICA, and KPCA

Under certain modelling constraints, AEs can uncover the mappings
¯
E(x) and

¯
D(x) given by other LP methods. For instance, an AE consisting exclusively of

neurons using the identity activation function will learn the transformations of Eqs.

(3.8) and (3.9) that are given by PCA [7], [106]. The transformations are learned

even if the encoder and decoder part comprise several layers of linear units. The

mappings given by linear ICA are learned by (a) having an AE consist exclusively

of linear neurons; and (b) augmenting the cost function in Eq. (3.35) with the

constraint that the latent activations in z are as independent as possible [68], [67].

Nonlinear ICA is facilitated by employing nonlinear activation functions. Wasserman

[137] presented the radial basis function neural network, where kernel functions

are learned with hidden neurons computing the radial basis functions of the inputs.

One of the challenges with kernel methods is the need to select a proper kernel

function and optimization its parameters prior to solving the method. The works

of Le et al. [76], [77] present a FNN that learns an optimal kernel function from

the data. Their experiments demonstrate superior feature extraction performance
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for a kernel-based AE than for a model given by KPCA. It is important to note that

despite the flexibility of an AE, the network must solve a nonlinear optimization

problem with the possibility of getting trapped in local minima, whereas PCA and

KPCA requires only the solution of an eigenvalue problem. For AE components need

to be specified in advance.

3.1.5 Determining the latent dimension q

The dimension q of the feature vector z ∈ Rq is an integral part of a LP model.

Section 2.1 details that q specifies the dimension of the principal manifold f(λλλ )
that jointly summarizes x ∈ Rm. Given a low dimension m, the dimension q may be

determined by, for example, a visual inspection of x as in Figure 2.3, where it is

shown that a principal curve summarizes the data in Figure 2.3(a) and a principal
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Figure 3.6: Illustration of a 6-4-3-1-3-4-6 AE.
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surface summarizes the data in Figure 2.3(b). However, determining q via a visual

inspection of x is difficult when m is large, as is often the case for large process

systems where there may be as many as 1500 observable process variables [9].

In the context of process monitoring, the principal manifold f(λλλ ) is to provide

a joint summary of the nominal process variance exhibited by the process variable

vector x; hence the dimension q of the LP model’s latent vector z should coincide with

nominal process variance while the remaining m−q dimensions should be attributed

to unexplained process and measurement stochasticity. A low q results with the

latent vector z not sufficiently retaining nominal process variance. Consequently,

the LP model is not be representative of nominal process behavior and provides

an inaccurate reconstruction x̂ by mistaking nominal variance as common cause

variance, thereby likely to generate incorrect results for abnormal event diagnosis. A

large q results with a LP model that models unexplained stochasticity by retaining

common cause variation in its latent vector z. Consider the following static process:

v = N(0,1)

h = v+N (0,0.1)+ f1

y1 = h+N (0,0.1)+ f2

y2 = h+N (0,0.1)+ f3

(3.36)

where v is an input signal, h is a process variable, y1 and y2 are output signals, f1 is

a process fault, and f2 and f3 are measurement faults. For the purpose of feature

extraction, the following variable vector is defined:

x =

y1

y2

v

 (3.37)

Vector x is sampled to produce the training set Xt , validation set Xv, and fault set

X f . Each set consists of 300 samples. For the fault set X f , the system operated

under nominal conditions for samples 1-75, ( f1, f2, f3) = (1,0,0) for samples 76-

150, ( f1, f2, f3) = (0,1,0) for samples 151-225, and ( f1, f2, f3) = (0,0,1) for samples

226-300.

An LP model is given by PCA since (a) the variables in x represent a linear system,

(b) the variables follow the assumption of normality, and (c) the source variable, i.e.,

input v, is known, rendering ICA unnecessary. The eigenvectors P and eigenvalues ΛΛΛ

are obtained from an eigendecomposition of the estimated covariance matrix Σ̂ΣΣ(Xt):

P =

0.5872 0.7473 0.3111
0.5886 −0.6580 0.4697
0.5557 −0.0927 −0.8262

 , ΛΛΛ =

3.3000 0 0
0 0.0446 0
0 0 0.0347

 (3.38)
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It is evident from Eq. (3.36) that variables y1, y2, and v are strongly correlated with

one another. Therefore, the variable vector x may be adequately summarized with a

principal curve, i.e., a principal manifold with q = 1. Since the intent of this example

is to demonstrate the issue with setting q as too large, two latent vectors z1 = P̂ᵀ
1x

(see Eq. (3.8)) and z2 = P̂ᵀ
2x are defined:

P̂1 =

0.5872
0.5886
0.5557

 , P̂2 =

0.5872 0.7473
0.5886 −0.6580
0.5557 −0.0927

 , (3.39)

where P̂1 and P̂2 are obtained via a decomposition of the principal loading matrix P
(Eq. (3.7)):

P =
[
P̂1 P̃1

]
, P̃1 =

 0.7473 0.3111
−0.6580 0.4697
−0.0927 −0.8262

 ,

P =
[
P̂2 P̃2

]
, P̃2 =

 0.3111
0.4697
−0.8262


(3.40)

From Eq. (3.39), z1 is a one dimensional vector and z2 is a two dimensional vector.

Consequently, the reconstruction vector x̂1 = Pz1 (see Eq. (3.9)) lies on a principal

curve, whereas x̂2 = Pz2 lies on a principal surface. By combining Eqs. (3.8) and

(3.9), the reconstruction sets X̂t,1 = P̂1P̂ᵀ
1Xt and X̂t,2 = P̂2P̂ᵀ

2Xt are generated. Fig-

ures 3.7(a) and 3.7(b) display a three dimensional scatter plot of the data contained

in X̂t,1 and X̂t,2, respectively. It is evident that the reconstructions X̂t,1 lie on a

principal curve and that the projections X̂t,2 lie on a principal surface.

A plot of the training set Xt is included in Figure 3.7(a). The figure demonstrates

that the principal component P̂1 is associated with nominal process variation in x
since the principal curve provides an adequate joint summary of the training set Xt ;

hence the remaining principal components P̃1 are associated with common cause

variation in x, represented by the spread of Xt around the principal curve. Note

that the first column of P̂2 is equivalent to P̂1 and that the second column of P̂2 is

equivalent to the first column of P̃1. Therefore, the principal surface described by

z2 is associated with both nominal process variation and common cause variation

in x retained along the primary (long) and secondary (short) axis, respectively, of

the ellipsoid in Figure 3.7(b). Table 3.1 presents the standard deviation of the SPE

(Eq. (2.13)) of reconstructing the training set Xt and validation set Xv with both LP

models. The table indicates that x̂2 retains more common cause variation than x̂1

since the standard deviation of the SPE of x2− x̂2 is less than x1− x̂1 for Xt and Xv.
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Figure 3.7: (a) Scatter plot of original training samples Xt and reconstructions X̂t,1, (b)

scatter plot of reconstructions X̂t,2 that lie on a principal surface illustrated by the ellipsoid.

Retaining common cause variation in a LP model creates erroneous results for

detecting abnormal events. Figures 3.8(a) and 3.8(b) show the SPE of reconstructing

each sample of X f with P̂1 and P̂2, respectively. Figure 3.8(a) shows that the SPE is

equally sensitive to each fault fi. Meanwhile, Figure 3.8(b) shows that the sensitivity

of the SPE varies depending on the fault fi, with f1 begin the least sensitive and f3

begin the most sensitive. Choosing a PCA-based LP model where q = 2 instead of

q = 1 would thus produce worse performance for fault detectability.

The issue with a large q is made clearer if one considers the fact that the principal

loading matrix P is obtained from an eigendecomposition of the estimated covariance

matrix Σ̂ΣΣ(Xt); hence P is solely dependent on Xt . Consider the case that a different

training set
¯
Xt is sampled. The eigenvectors

¯
P and eigenvalues

¯
ΛΛΛ obtained from an

eigendecomposition of the estimated covariance matrix Σ̂ΣΣ(
¯
Xt) are now:

¯
P =

0.5841 0.6378 0.5020
0.5922 0.0881 −0.8009
0.5551 −0.7651 0.3263

 ,
¯
ΛΛΛ =

3.1545 0 0
0 0.0422 0
0 0 0.0360

 (3.41)

std
{

1
n

∣∣∣∣Xi− P̂1P̂ᵀ
1Xi
∣∣∣∣2} std

{
1
n

∣∣∣∣Xi− P̂2P̂ᵀ
2Xi
∣∣∣∣2}

Xt 0.0254 0.0173

Xv 0.0249 0.0161

Table 3.1: Standard deviation of SPE of reconstructions.
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Figure 3.8: SPE of reconstructing each sample of X f with (a) P̂1 and (b) P̂2.

As before, the latent vectors
¯
z1 = ¯

P̂ᵀ
1x and

¯
z2 = ¯

P̂ᵀ
2x are defined where:

¯
P̂1 =

0.5841
0.5922
0.5551

 ,
¯
P̂2 =

0.5841 0.6378
0.5922 −0.0881
0.5551 −0.7651

 , (3.42)

are obtained from a decomposition of
¯
P. Note that P̂1 and

¯
P̂1 are similar while the

second columns of P̂2 and
¯
P̂2 are not. Figures 3.9(a) and 3.9(b) show the SPE of

reconstructing each sample of X f with
¯
P̂1 and

¯
P̂2, respectively. Note that the fault

matrix is X f remains the same as the one used to generate the SPEs in Figures 3.8(a)

and Figures 3.8(b). Similar to Figure 3.8(a), Figure 3.9(a) shows that the SPE is

equally sensitive to each fault fi. Similar to Figure 3.8(b), Figure 3.9(b) shows that

the sensitivity of the SPE varies depending on the fault fi, but with f3 being the least

sensitive and f2 begin the most sensitive. This change in fault sensitivity stems from
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Figure 3.9: SPE of reconstructing each sample of X f with (a) P̂1 and (b) P̂2.
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the difference in the second column of P̂2 and
¯
P̂2. Therefore, a large q makes a LP

model sensitive to common cause variation in training data; hence, two LP models

with consistent q trained yet on different data will generate different results for fault

detection, even if data is sampled from the same process.

Although the example above was demonstrated with a LP model given by PCA,

it is reasonable to assume that complications in abnormal event detection due to

a large dimension q of the latent vector z. will be present for a LP model given by

ICAand KPCA, as well as a LP model parameterized by an AE.

Several methods exist for estimating q for a LP model given by PCA [125]. Within

the process monitoring literature, q is typically selected by calculating the cumulative

percent variance (CPV) [1], [2], [10], [37], [39]. The CPV is a measure of the

percent variance captured by the first q principal components:

CPV(q) =

q
∑

i=1
λi

m
∑

i=1
λi

×100% (3.43)

The remaining percent variance is explained by the remaining m−q principal com-

ponents that are attributed to common cause variance. With this criterion, one

determines q by selecting a desired CPV, e.g., 80%, 85%, 90%, etc., which is sub-

jective. For instance, one should select a large CPV if the process observes minimal

stochasticity because the variance of the process variables is attributed to nominal

process variance. On the other hand, a process exhibiting significant stochasticity

requires a low CPV, since setting q too high would model the stochasticity and

introduce difficulties in detecting abnormal events.

An LP model given by ICA requires the selection of q dominant components from

the d available independent components. In PCA, the order of the row vectors ti of

the score matrix T is determined by their corresponding variance λi. However, the

ordering of row vectors wi of the demixing matrix W poses no statistical significance.

The problem becomes more complex if a nonlinear extension of ICA is used. A

number of methods have been suggested to determine a component order [6], [23],

[24], [52]. For example, in the linear setting, Cardoso and Souloumiac [17] sorted

the rows of W according to the L2 norm of each individual wi. LP is performed

by selecting the q dominant rows of the sorted demixing matrix W based on the

assumption that the rows with the largest L2 norm have the greatest effect on the

variation of the source variable vector s.
Methods for estimating q for a LP model given by KPCA tend to be a kernel

extension of those applied for PCA-based LP models, such as the CPV approach and

parallel analysis [35], [36], [65], [124]. With these methods, the objective is to not
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only estimate q but to also determine an optimal value for kernel hyperparameters,

such as the smoothing factor of the Gaussian kernel.

One advantage with a PCA/ICA/KPCA-based approach to establishing a LP model

is that the dimension q is chosen as a subset of the components obtained from solving

the eigendecomposition/demixing problem; hence, retaining additional components

does not require the optimization problem to be re-solved. AEs, on the other hand,

require the dimension q to be specified prior to optimizing the loss function in

Eq. (3.35). Therefore, changing the dimension q requires the optimization problem

to be re-solved. One approach is to generalize the Akaike’s information criterion

to be applicable to neural networks, thereby estimating the amount of information

lost by an AE when assessing its quality [98]. However, this approach still requires

a neural network to be continuously redefined. Incremental learning offers an

alternative approach [5], [111], [147], [152],. The principal idea is that neural

network structure progressively evolves over the optimization period in two ways:

neurons are added to aid in minimizing the objective function, and redundant

neurons are merged to obtain a compact representation that prevents overfitting.

3.1.6 Dynamic systems

Process variables of a dynamic process system generally exhibit correlations that

are time dependent. Consider the following dynamic process:

y[t] = u[t−1]+ e[t] (3.44)

where y[t] is the process output, u[t] is the process input, and e[t] is an unknown noise

parameter. It is evident from Eq. (3.44) that y[t] and u[t− τ] are cross-correlated for

the lag parameter τ = 1. If, for the purpose of LP, the variable vector were:

x =
[
y[t] u[t]

]ᵀ
(3.45)

then a LP model built for x in Eq. (3.45) would not model the cross-correlation

between y and u. Rather, it would provide a static approximation. An appropriate

variable vector would be:

x =
[
y[t] u[t−1]

]ᵀ
(3.46)

A LP model built for x in Eq. (3.46) would model the cross-correlation between y

and u. It is generally difficult to determine which process variable xi needs to be

displaced by a lag of l when defining the variable vector x. A generalized version for

the variable vector is:

x =
[
y[t] y[t−1] u[t] u[t−1]

]ᵀ
(3.47)
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An appropriate LP model built for x in Eq. (3.47) would model the correlation

between y[t] and y[t − 1], as well as retain y[t] and u[t]. In the general case of

establishing a LP model for a dynamic process system comprising m process variables,

Ku et. al [75] propose a modified version that defines a dynamic process variable

vector. The following historical vector for process variable i ∈ Z : i ∈ [1,m] is defined:

xl
i [k] =

[
xi[k] xi[k−1] . . . xi[k− l]

]ᵀ
(3.48)

The dynamic process variable vector is:

x =
[
xl

1[k] xl
2[k] . . . xl

m[k]
]ᵀ

(3.49)

Extending the variable vector x to include past l samples provides a dynamic for-

mulation of a PCA/ICA/KPCA/AE-based approach to LP intended for motoring of

dynamic process systems [26], [75], [83], [149].

3.2 Detection of abnormal events

Section 2.3 details that multivariate statistical process monitoring consists of

referring a new observation xnew against a LP model that is established with nominal

historical process data. The observation xnew is propagated through the model to

generate the features znew and reconstructions x̂new, whereafter the Hotelling T 2 and

SPE statistics are calculated with Eqs. (2.15) and (2.16), respectively. A process is

considered nominal if the inequalities SPE ≤CLSPE and T 2 ≤CLT 2 in Eq. (2.14) are

satisfied. Assuming that the SPE follows a chi-squared distribution, the control limit

CLSPE is computed with the following approximate value [12]:

CLSPE =
σ̄2

2µ̄
χ

2
(2µ̄2/σ̄2,α) (3.50)

where µ̄ and σ̄ are, respectively, the sample mean and sample standard deviation

of the SPE of a validation set Xv and α is the false alarm rate. For LP models

given by PCA, KPCA, or an AE, and assuming that the latent vector z follows

a multivariate normal distribution, the control limit CLAE is computed with the

following approximate value [123]:

CLT 2 =
q(n+1)(n−1)

n(n−q)
F(α,q,n−q) (3.51)

where α is the false alarm rate. Applications of Eqs. (3.50) and (3.51) for are found

in [26], [38], [85], [58], [63], [82], [91], [101]. Since SPE is generally favored

over T 2 (see section 2.3), SPE is used as the sole monitoring statistic in this thesis.
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The I2 monitoring statistic is a measure for the variation of a new observation in

the latent space of a LP model given by ICA [84]:

I2 =
q

∑
i=1

z2
new,i (3.52)

However, if the independent components have unit variance, as is usually the

case, then the I2 monitoring statistic is equivalent to the Hotelling T 2 statistic in

Eq. (2.15). Since the latent variables in ICA follow a uniform distribution, a kernel

density estimation is used in calculating the control limit of I2/T 2 and SPE [93],

[21], [146], [66], [87].

3.3 Evaluation of abnormal events

Monitoring of the SPE and T 2 statistic via Eq. (2.14) only provides information

on whether or not a process is nominal; by themselves, the statistics do not provide

information on which process variables contain an abnormal alteration in their signal

characteristics that are the cause of the detected abnormal event. Miller et al. [95]

propose analyzing the individual contribution of a process variable xi to the SPE

statistic for assessing abnormal trends in process variables. The contribution CSPE
i of

process variable i to the SPE is:

CSPE
i = (xnew,i− x̂new,i)

2 (3.53)

Variables showing large contributions are concluded to no longer be consistent with

nominal operating conditions. Note that there is no definition of what constitutes

a large contribution. This is left up to the judgment of the analyst. One diagnostic

approach is to rank the abnormality of a variable in accordance to its contribution to

the SPE, such that the variable with the largest contribution is considered the most

abnormal, the variable with the second largest contribution is considered the second

most abnormal, and so on for remaining variables [90].

It is noted that contribution analysis does not unambiguously reveal the cause of

an abnormal event. Rather, it will expose the group of process variables that are no

longer consistent with nominal operating conditions [90]. Operators can then focus

their attention on fewer variables, but must still apply their process knowledge to

infer a potential cause. Contribution analysis becomes a valuable diagnostic tool as

the process becomes more complex and the number of process variable grows.

LP models suffer a fault-smearing effect - an effect where an abnormal drift in

an abnormal variable generates contributions from variables consistent with nor-

mal operating conditions. The fault-smearing effect hampers contribution analysis

since nominal variables are highlighted and abnormal variables are obscured [128].
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Furthermore, there is no guarantee that abnormal variables have the largest con-

tributions [4], [60]. In extreme cases, the fault-smearing effect leads to incorrect

diagnosis. The fault-smearing effect occurs because the compression of variables

to a smaller latent space and subsequent expansion to the original variable space

enables nominal and abnormal variables to interact. Westerhuis et al. [138] offer

a second interpretation: the LP model, having been trained on nominal process

data, is not valid for abnormal process data and will produce model residuals, i.e.,

contributions, that cannot be trusted. The fault-smearing effect is illustrated with an

AE in Figure 3.10. A fault is induced in a process that causes an abnormal drift in the

variable x1. This abnormality propagates through the AE and manifests itself onto

the reconstructions, thereby generating a contribution for nominal process variables.

The works of Van den Kerkhof et al. [127], [128] show that the fault-smearing effect

is an unavoidable complication experienced by LP models. Yoon and MacGrecor

[148] propose a method for isolating abnormal variables that consists of comparing

the contributions for a newly detected abnormal event with the contributions for a

previously diagnosed abnormal event. However, the method is only applicable for

abnormal events that have occurred before; hence, the fault-smearing effect remains

an issue when evaluating previously unseen abnormal events.

Figure 3.11 visualizes the fault-smearing effect with a scatter plot of samples
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Figure 3.10: Illustration of the fault-smearing effect for an AE. Biases are not included in

order to improve visibility. Red edges indicate the propagation of the fault f through the AE.
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Figure 3.11: Illustration of the fault-smearing effect with a scatter plot. The fault f causes a

positive shift from sample xn to sample x f . Nonlinear LP generates the reconstruction at x̂ f .

for the process variables of a nonlinear static process. Two process variables are

considered for ease of illustration. The figure shows that nominal samples are

summarized by a nonlinear principal curve. The sample pair xn is the last indication

that the process is operating under nominal conditions. An abnormal event causes

a positive shift in x2 by a magnitude of f . The sample pair x f is sampled following

the onset of the abnormal event. LP towards the principal curve generates the

reconstruction x̂ f . The contributions CSPE
1 and CSPE

2 are determined from the SPE

between x̂ f and x f . The figure shows that the fault-smearing effect generates

contributions that are unrepresentative of the abnormal event: though the fault f

causes an abnormal shift in x2, the contributions CSPE
1 and CSPE

2 indicate that both x1

and x2 suffer from an abnormal change. The erroneous results from contribution

analysis are that (a) the contribution CSPE
2 does not correspond to the magnitude of

the fault f ; and (b) the contribution CSPE
1 incorrectly suggests that the fault causes

an abnormal shift in x1.
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3.4 Effect of standardization

It is usually the case that the scalings between process variables differ. Consider

the vector x of two process variables x1 and x2, where the former is a measurement

of pressure with a scale in pascals and the latter is a measurement of pressure with a

scale of kilopascals. Both variables measure the pressure of gas inside a tank; hence,

x1 and x2 are linearly correlated. Assume that the pressure of gas varies. Due to

differences in scaling between x1 and x2, a variance in gas pressure induces a larger

variance in x1 compared to x2. As a result, x1 is a dominant contributor to the total

variance in x. Differences in scaling among multiple process variables can affect the

estimation for the dimension q of a LP model’s latent vector z. Consequently, x is

typically standardized with zero mean and unit variance to ensure that the variance

of each variable contributes equally.

Figure 3.12 illustrates the effect of standardization on contribution analysis. Two

process variables are considered for ease of illustration. Figure 3.12(a) shows that

the variance of x1 is greater than that of x2 for unstandardized samples. An abnormal

event causes a positive shift in x2 by a magnitude of f . The sample pair x f is sampled

following the onset of the abnormal event. LP towards the principal curve generates

the reconstruction x̂ f . The contributions CSPE
1 and CSPE

2 are determined from the

SPE between x̂ f and x f . Note that CSPE
2 is larger than CSPE

1 . Figure 3.12(b) plots the

same data after standardization. Standardization ensures that the variance of x1 is

equal the variance of x2. However, standardization changes the perceived influence

of the fault such that the abnormal shift in standardized x2 is larger than the shift in

unstandardised x2. Standardization also affects the results from contribution analysis

by changing the magnitude of contributions such that CSPE
1 is equal to CSPE

2
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Figure 3.12: Scatter plots of (a) unstandardized samples and (b) standardized samples. Plots

illustrate the influence of standardization on contribution analysis. The fault f causes a

positive shift from sample xn to x f . Linear LP generates the reconstruction at x̂ f .



Chapter 4

Summary of Main Contributions

The contributions of the research presented in this thesis cover three topics.

The first relates to the modeling of nonlinear correlations among process variables

with LP methods, as well as the detection of abnormal events. The second topic

concerns the fault-smearing effect and the means to reduce it, as well the task of

isolating abnormal process variables via trend analysis. The third topic addresses

the LP-based modeling of process variables that exhibit nonlinear cross-correlations.

The contributions are reported in three journal articles (each undergoing a peer-

review process at the time of thesis submission) and two peer reviewed conference

proceedings. The contributions are presented in separate appendices A, B, C, D, and

E. The appendices are organized by the date the contributions were submitted to

their respective journal or conference proceedings. Their summaries are detailed in

this chapter by the order of the three aforementioned topics.

Modeling of nonlinear process variable correlations

(D) Hallgrímsson, Á.H., Niemann, H.H., and Lind. M (2020). Modeling Correla-

tions of Nonlinear Process Variables with Expanding Autoencoders. Journal of
Process Control. To be submitted for review.

This study examines the model complexity required for an AE to model nonlin-

early correlated process variables. Within the process monitoring literature,

common approaches are to configure an AE with (a) hidden encoder layers that

gradually reduce the dimension of original variables to the latent space; and

(b) hidden decoder layers that gradually restore the dimension of original vari-

ables from the latent space. This paper demonstrates that such configurations

are not sufficient for modeling certain nonlinearly correlated variables, and it

is shown that the AE provides a linear approximation of the principal manifold
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that summarizes the nonlinear joint behavior among variables. This paper

proposes an AE that includes hidden encoder/decoder layers with dimensions

larger than the original variables space. Such an AE, termed expanding AE,

is trained to identify the principal curves of three distinct two-dimensional

variable distributions. The results show that an expanding AE’s accuracy at

identifying principal curves is attributed to its expanding hidden layers.

(A) Hallgrímsson, Á.H., Niemann, H.H., and Lind. M (2019). Autoencoder based

residual generation for fault detection of quadruple tank system. IEEE Confer-
ence on Control Technology and Applications, p:994-999.

This study examines the residual generation performance of an AE used for

monitoring a quadruple tank process (QTP). The QTP employs a switching

controller design: the design switches between two different controller config-

urations depending on the combined state of several process variables. This

induces a bipartite (nonlinear) correlation structure among process variables:

process variables are positively correlated for one controller configuration

and negatively correlated for the other. Switching controllers are regularly

employed in multiobjective process systems. The AE’s residual generation

performance is compared against a LP model given by PCA. The results show

that the AE models the bipartite correlation among process variables while

the PCA-based model does not. A fault is induced in the QTP, and the results

show that the AE performed better than the PCA-based model at generating a

fault-sensitive residual.

The fault-smearing effect and isolation of abnormal process

variables

(B) Hallgrímsson, Á.H., Niemann, H.H., and Lind. M (2020). Improved process

diagnosis using fault contribution plots from sparse autoencoders. 21st IFAC
World Congress.

This study examines the fault-smearing effect that is observable when an

AE is used for abnormal event detection. Fault-smearing occurs when the

constriction of original variables to the latent space permits abnormal variables

to interact with nominal variables. Fault-smearing poses a problem for fault

contribution analysis. One active area of research within the process and

chemical engineering disciplines is the extraction and interpretation of valuable

process information from historical process data. The fundamental idea behind

proposed methods is to present a model employed for a certain data-based task
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(such as LP or system identification) and enlist a sparsity constraint that strips

away redundant model coefficients, thereby revealing the simplified structure

that underlies the data. The removal of model coefficients ultimately reduces

variable interactivity. This paper proposes a method for inducing sparsity in

an AE that is used for monitoring a nonlinear TTP - a process consisting of

two sub-systems. It is demonstrated that the sparsity constraint produces an

interpretable variable grouping effect that reveals the nonlinear correlations

among process variables. More specifically, the AE (a) groups together variables

that are coupled within the same sub-system; and (b) removes any interactivity

between variables that are decoupled between the different sub-systems. A

fault is induced in the TTP, and results from performing fault contribution

analysis show that sparsity (a) reduces the fault-smearing effect; and (b) makes

it possible to determine in which sub-system the fault resides.

(C) Hallgrímsson, Á.H., Niemann, H.H., and Lind. M (2020). Unsupervised

Isolation of Abnormal Process Variables using Sparse Autoencoders. Journal of
Process Control. Submitted paper under review.

This study proposes a method for isolating abnormal process variables with a

sparse AE. The paper explains that fault-induced movements in the process

variable space propagate through an AE to cause abnormal movements in the

reconstruction space. Previous works have shown that a sparse AE reduces

the interactivity of variables by removing redundant network connections,

thereby exposing the simplified structure that underlies the data. It is shown

that a simplified network structure makes it possible to propagate the detected

fault-induced movements in the reconstruction space backwards through the

sparse AE to isolate the abnormal movements in the original variable space.

The method is demonstrated with two distinct faults occurring in a simulated

TTP. One of the faults causes abnormal shifts in multiple process variables.

The results show that the proposed method can isolate the abnormal process

variables that are affected by a fault, even if the fault affects multiple variables.

Modeling of nonlinear cross-correlations

(E) Hallgrímsson, Á.H., Niemann, H.H., and Lind. M (2020). Fault detection with

recurrent autoencoders. Journal of Process Control. To be submitted for review.

This study investigates the fault detection performance of a recurrent autoen-

coder (RAE) used for monitoring of a dynamic system that exhibits cross-

correlated process variables. A RAE is an AE that includes internal states



62 Chapter 4. Summary of Main Contributions

(memory). This alows the RAE to exhibit temporal dynamic behaviour when

processing its input. The paper explains that methods such as dynamic PCA,

i.e., methods that perform dynamic LP by including past observations in its

original variable space, are not dynamic in a traditional sense since they do not

include any internal states. Rather, these methods mimic dynamic behavior

by performing simultaneous computation on current and past observations.

In this paper, a comparison in terms of fault detection performance is done

between a linear RAE and a model derived via dynamic PCA. Both models are

used for monitoring a linear process. The paper shows that RAEs are more

sensitive to a fault and thus offer better performance at fault detection. The

paper also demonstrates the nonlinear capabilities of a nonlinear RAE used for

monitoring a nonlinear process.



Chapter 5

Conclusions and Future Research

5.1 Conclusion

Motivated by the challenges of detecting and evaluating abnormal events in

complex industrial systems, the purpose of this research project was to contribute to

the area of multivariate statistical process monitoring. Advantage was taken from

recent developments in neural network-based machine learning methods proposed

in other research fields. This allows for the modeling and monitoring of nonlinear

dynamic processes, as well as the isolation of abnormal process variables.

The first contribution of this research project relates to the development of an

evidential-based quantitative method for detecting abnormal events in an industrial

process. The goal was to propose a method that established a diagnostic system capa-

ble of distinguishing between nominal and abnormal process variable observations.

It was assumed that the process was nonlinear and dynamic: consequently, process

variables would be nonlinearly cross-correlated. The proposed method is facilitated

with AEs: neural networks that are configured for LP - a numerical method for

performing feature extraction. Case studies showing cases of nonlinearly correlated

variables showed that accurate modeling of nonlinear correlations required hidden

encoder/decoder layers with dimensions larger than the original variable space. It

was shown that such an AE identifies a nonlinear principal manifold that summa-

rizes the nonlinear joint behavior between variables. Training an AE to accurately

model the correlations among nominal process variables facilitated abnormal event

detection. Case studies show that an AE generates a monitoring residual that (a) is

robust to nonlinear correlations present among process variables; and (b) is sensitive

to previously unseen faults. A RAE, which provides a dynamic formulation of an AE,

was proposed for the monitoring of dynamic processes. The results show that RAEs

provide better fault detection performance than standard dynamic approaches to
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LP-based process monitoring approaches.

The second contribution of this research project relates to the development of an

evidential-based qualitative method that isolates abnormal process variables. The

goal was to propose a method that determines the trends (movements) of abnormal

process variables with an AE that has been trained on nominal process data. The

proposed method is facilitated by augmenting an AE’s original optimization function

with a sparsity constraint. This promoted for a small number of high importance

network connections as redundant connections were pruned away. The result was a

sparse AE. Probing into a sparse AE provided insight into the process knowledge the

AE had captured. More specifically, the sparse AE reveals the nominal correlations

among process variables. It was shown that sparsity reduced the interactivity

among process variables, which consequently reduced the fault-smearing effect

that is present in fault contribution analysis; process variables unaffected by a

fault produced significantly less contributions, while affected variables produced

larger contributions. When combined with a simplified network structure, the

increased fault contribution disparity between process variables makes it possible

to propagate the detected fault-induced movements in the reconstruction space

backwards through the sparse AE to isolate the abnormal movements in the original

variable space. The method is entirely dependent on the availability of nominal

historical process data. In other words, prior instances of faults are not required

when isolating abnormal process variables.

As a whole, the research project contributes to the area of AEM. Recent advances

in information and process monitoring technologies have made modern industrial

systems a cesspool of sensory information, and it has become increasing difficult for

operators to comprehend and act upon an abnormal event due to an overload of

diagnostic information. This area of AEM, i.e., the processing of process information

to (a) detect and abnormal event; and (b) assessing abnormal process variable trends,

requires innovation if operators are to perform qualitative root-causal analysis,

particularly when under time constraints. The results from the proposed methods

show that such innovation in the context of nonlinear and dynamic industrial

processes is a possible reality.

5.2 Future research

The detection and isolation of abnormal process variables by means of AE-based

anomaly diagnosis is an open field for future research. Key extensions of the research

presented in this thesis are summarized in the following:

Monitoring of large processes: The methods proposed in this project were
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demonstrated on simulated processes that comprised a handful of process variables.

In fact, the quadruple tank process was the “largest” system that was composed of

eight process variables. A natural direction in continuing this research project would

be to demonstrate the proposed methods on much larger systems that are physically

available, i.e., not simulated. This would test their scalability for larger system, as

well as provide an indication of their suitability for real-world applications.

Application of different network activation functions: The AEs trained in this

project employed primarily the tangent hyperbolic activation function. The reason

for this design choice was based on the smoothness and monotonicity of the tangent

hyperbolic function. These two properties produced AEs with interpretable model

structure: smoothness ensured that there were no functional discontinuities in the

modeling of the reconstructions from the original variables, while monotonicity

preserved the influence order of neurons in layer l on neurons in layer l +1. The

smoothness and monotonicity properties were essential when isolating abnormal

process variables with a sparse AE, as the nonlinear influence of the tangent hy-

perbolic activation function could be omitted. There are, however, circumstances

where other activation functions may be more practical. For example, the linear

rectifier function should be employed when process variables exhibit piecewise linear

correlations since the rectifier is a piecewise activation function. The feasibility and

diagnostic performance of an AE using different activation functions given certain

process variable distributions should be considered for further research.

Non-unique isolation of abnormal process variables: The AEs optimized in

this project always provided a unique (non-ambiguous) isolation of abnormal process

variables. It is possible, however, for an AE to provide a non-unique (ambiguous)

isolation of abnormal process variables. The concept of uniqueness is illustrated

by reference to Figure 5.1. The figure shows a sparse AE trained for monitoring

a nonlinear process. Three correlated process variables are considered for ease of

illustration. The AE is used to detect a fault for the observation xnew, and one of the

observed movements in the reconstruction space was a positive shift in x̂1. This shift

is propagated backwards through the AE in Figure 5.1(a). Propagating this shift

backwards through the AE demonstrates the non-uniqueness property of the network:

inferring a shift in x2 produces an ambiguous result because the shift is either (a)

positive due to the positive causal relation between x2 and e1,1; or (b) negative due

to the negative causal relation between x2 and e1,2. Figure 5.1(b) shows the result of

backpropagating a second observed movement in the reconstruction space, namely,

a negative shift in x̂2. The figure shows that inferring a shift in z1 produces an

ambiguous result due to the conflicting influences from d1,2 and d1,3. The ambiguous

shift in z1 generates further ambiguous shifts backwards through the network such
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Figure 5.1: Causal inference for a positive shift in x̂1. The result is a positive shift in x3 and

an ambiguous shift in x2. Biases have been removed for improved visibility.

that inferring a shift in x1 and x3 is difficult. A resolution to the issue of non-unique

isolation of abnormal process variables is vital if the proposed isolation method is to

be used for variable distributions that require an AE with the non-unique property

to perform LP. One direction the project had proposed was to evaluate the sign of

the derivative of a neuron in layer l +2 with respect to a change in the activation of

an ambiguous neuron in layer l, given the observation xnew. This would determine

the path that a change in the ambiguous neuron propagates through layer l +1. For

the example in Figure 5.1(b), the proposed method corresponds to determining the
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sign of the derivative of x̂2 with respect to z1. If, for instance, the sign is negative

(given the observation xnew), i.e., a positive change in z1 induces a negative change

in x̂2, then the influence of a variation in z1 experienced by x̂2 is propagating through

the neuron represented by d1,3. Following this logic, the shift in z1 is determined

to be a positive shift since the shift in x̂2 is negative. Figure 5.2 shows the result of

propagating the resolved shift in z1 backwards through the AE. The size differences

of the arrows in the neurons represented by d1,2 and d1,3 illustrates the path a shift

in z1 propagates forwards through the AE: the negative change in x̂2 could only have

been explained by a positive change in z1 that propagated through d1,3, since the

sign of the derivative of x̂2 with respect to z1 is negative. Unfortunately, the validity

of the proposed method for resolving the non-uniqueness property had not been

tested at the time of thesis submission.

Isolation of abnormal process variables for dynamic systems: The proposed

method for isolating abnormal process variables was demonstrated with static AEs in

this project. However, static AEs were shown to produce false positives for fault de-

tection when the monitored process variables observed dynamic transients that were

induced by nominal reference changes. This meant that it was necessary to wait for

the process to reach steady-state to confirm that a false positive had occurred. RAEs

were proposed to alleviate this issue. The results show that RAEs (a) capture static

and dynamic nominal process variable transients in its latent representations; and

(b) are capable of distinguishing between a transient induced by nominal reference

changes and a transient induced by an abnormal event. The natural direction of the

research project was to demonstrate the proposed method for isolating abnormal
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Figure 5.2: Causal inference for a positive shift in x̂1. The result is a positive shift in x3 and

an ambiguous shift in x2. Biases have been removed for improved visibility.
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process variables with a RAE. However, the effectiveness of the proposed method

relies on the structural interpretability of a sparse static/RAE: propagating observed

abnormal movements in the reconstructions backwards through the AE becomes

difficult if its structure is too complex. Demonstrating the method with a sparse

RAE proved difficult since the sparse structure consisted of weight connections that

represented both static and time dependent variable correlations. A method for

isolating abnormal process variables in a dynamic setting is vital if RAEs are to be

used to diagnose abnormal events. One direction the project had proposed is to

train a static AE and RAE in parallel. Figure 5.3 illustrates this concept. Each AE

is provided with the original variables x as its input. The static AE is to generate

the vector x̂s that contains the static latent information about x, while the RAE is to

generate the vector x̂r that contains the dynamic latent information about x. The

two AEs are optimized so that the sums of x̂s and x̂r produces the reconstruction

vector x̂ that contains both the static and dynamic latent information about x. The

proposed architecture would decouple the static-correlations and cross-correlations

among variables into two separate AEs. This could enhance model interpretability

sufficiently enough so that the isolation of abnormal process variables is feasible.
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Figure 5.3: Proposed architecture.
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Abstract:

Increasing complexity of industrial processes has made statistical methods for process

monitoring and diagnosis a more attractive alternative to model-based methods. A

primary reason is that statistical approaches can be formulated to rely less on process

knowledge. Since multivariable processes can exhibit complex, nonlinear dynamics,

there is a need for methods capable of diagnosing nonlinear process data. A Monte

Carlo simulation was conducted on a numerical model of the quadruple tank process

(QTP) - a novel multivariate nonlinear process. The simulation was designed so that

the QTP exhibited bipartite nonlinear behavior. Reference data obtained from the

simulation was used to obtain principal component analysis PCA and autoencoder

AE models. The models generated residuals that were used to monitor the condition

of the process. The results showed that AEs, which have nonlinear functionalities,

performed better than PCA models at generating residuals.

*Corresponding author. E-mail: asdah@elektro.dtu.dk
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A.1 Introduction

The development of model-based fault detection methods for large-scale pro-

cesses, such as complex industrial systems, can require a considerable high effort.

Quantitative descriptions may be difficult to formulate from first principles due to

lack of a priori knowledge of the process. A developers lack of experience in the

the ab initio approach further hinders development. Data driven approaches and

statistical methods, which can be formulated to not rely on knowledge of the process,

offer an alternative way. This approach to quality control is more formally known

as statistical process control (SPC). The objective is to evaluate the performance of

a process with a quality variable that signifies whether the process is remaining in

a state of statistical control [91]. Most SPC methods applied in industry are based

on prioritizing a small number of process variables, i.e., measurement and control

signals, and examining them independently. Operators typically monitor the quality

of a process by observing traditional univariate control charts such as Schewart,

CUSUM, and EWMA [15], [91]. Despite their popular use, their successful perfor-

mance is hampered by the assumption that process variables are independent of one

another and that a single quality variable can verify that the collective process is out

of statistical control. Instead, the statistical condition of a process should be defined

as a multivariate property that takes into consideration the simultaneous quality of

all process variables. Abnormal events, such as faults and incorrect control decisions,

can cause unexpected changes in the associated variation between variables, which

should be identified in order to diagnose the abnormality. A second limitation of the

univariate approach is the difficulty in selecting which variables to monitor. Improper

selection may yield incorrect diagnosis since events may be reflected in unmonitored

variables. Lastly, the univariate approach is challenged by the increasing prevalence

of industrial big data. Industries across different areas of production are shifting

towards generating data with higher complexity by increasing the number of sensors

and computers connected to every industrial process [142]. Industrial big data yields

data sets that are too large for univariate methods. Consequently, prioritization

on which variables, some of which may not be well explained nor understood, to

monitor becomes difficult.

Dimensionality reduction techniques of multivariate processes for abnormal

event detection have gained increasing interest over the past decade [105]. Latent

projection (LP) methods, which transform data to a latent space of fewer dimensions,

are of particular interest. In principle, LP methods reduce the number of original

process variables by obtaining a set of principal variables that guarantee minimal

information loss. An LP model is built with historical data, i.e., a reference set,
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collected from a process existing in an "in-control" state. The quality of a process

is then monitored with a residual that reflects the amount of information loss for

new data observations. If an abnormal event occurs, the relations between process

variables may change such that the latent projection no longer applies to the new

observations. As a result, the principal variables cannot retain the information in the

original process data, causing the residual to increase.

The most well known LP method is principal component analysis (PCA). It is

a linear statistical procedure that determines a set of orthogonal vectors called

principal components (PCs) that point in the direction of maximal variance of

reference data [114]. A process is monitored by comparing the direction of variance

of new data samples with the reference PCs. Abnormal events typically cause

unexpected changes in the covariance structure of the process variables, which then

differ from the obtained PCs [75].

Since PCA is a linear transformation, it is ineffective at obtaining principal

directions for nonlinear data. This can be illustrated by reference to Fig. A.1, which

depicts the distribution of process variables x1 and x2 contained in Xa:

Xa =

[
x1[1] x1[2] · · · x1[n]

x2[1] x2[2] · · · x2[n]

]
∈ R2×n (A.1)

The variables were generated from a simulated bi-modal process in which the

association between x1 and x2 depended on the mode the process operated in. The

two modes are illustrated by Xb and Xc in Fig. A.1. The plot depicts the nonlinear

nature between x1 and x2 and how different PCs are obtained based on which

partition, i.e., Xa, Xb, or Xc, is used as reference data. The first PC for Xa depicts

that, on average, x1 and x2 are positively correlated. Even though it points in the

direction of maximal variance, it does not provide a meaningful description for

the nonlinear dependency. Quality control with this PC model would generate

false positives for abnormal event detection at the extremes of x1 and x2. On the

other hand, the first PCs for Xb and Xc provide a more precise description for the

bi-modal behavior observed by the process. In essence, the PCs between x1 and x2

are contextual, and depend on which mode the process is in.

If a process exhibits nonlinearly correlated data, quality control with PCA is

achievable by monitoring individual PC models build on reference data obtained

by sufficiently partitioning the data set into modal parts and other sets that depict

known nonlinear behavior. A drawback of such an approach is that it requires

knowledge about the nonlinear nature of the process. Furthermore, processes with

a large number of process variables may have complex relationships and variables

with smooth dependencies can be difficult to partition. The increasing prevalence of

nonlinearly correlated data has given rise to new algorithms that perform nonlinear
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Figure A.1: Scatter plot for x1 and x2 contained in data matrix Xa, where Xa has been further

partitioned into Xb and Xc. The two PCs of each of the three reference sets are included. A

primary PC has maximum variance and a secondary PC has minimum variance. The 99%

confidence intervals of the PCs are included.

dimensionality reduction. Several nonlinear LP methods perform a nonlinear form

of PCA, most notably kernel-based PCA [119]. Principal components are obtained

in high-dimensional, implicit feature spaces generated via a nonlinear mapping

of the original variable space. The kernel trick is used so that the method can

operate in the feature space without performing the nonlinear mapping, reducing

the computational complexity of the method. One drawback is that kernel operations

on one sample involves computations of the entire data set used to obtain kernel-

based PCs. Therefore, if years of process data is used to generate a kernel-based PCA

model, the computational complexity of online process monitoring will be high.

LP machine learning techniques such as autoencoders (AEs) offer an alternative

approach [130]. An AE is a type of artificial neural network trained to learn optimal

nonlinear transformations via backpropagation of its reconstruction error. AEs offer a

computationally efficient approach to working with large data sets since computation

of LPs is independent on the sample size of the reference set.

In this paper, a comparison study between PCA and AE residual generation
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models is performed on a numerical model of the quadruple tank process (QTP).

The QTP is a multivariate, nonlinear process that depicts a bipartite nonlinear

relationship between its process variables that, in the context of decentralized

control, is introduced via a change in its input-output control pairing [64]. The key

result in this study was that the AE was significantly better at generating residual

signals for the purpose of fault detection.

This paper presents the mathematical model of the QTP in section II. Section III

describes the PCA method and the AE is presented in section IV. Section V presents

how the dynamic behaviour of process variables can to be taken into consideration

when applying a LP method. Section V also describes how LP methods are used to

generate residuals that monitor the QTP. The effectiveness of the LP methods at

process monitoring are presented in section VI.

A.2 The Quadruple Tank Process

A schematic drawing of the QTP is given in Fig. A.2. The four tanks are supplied

with liquid that is transported from a large sump by the means of two gear pumps.

Liquid flows from the upper tanks into the lower tanks, which sequentially flows into

the sump. The relative supply of liquid across the four tanks is determined by the

configuration of two dual valves. The objective is to control the liquid levels in the

lower two tanks, which are monitored with two voltage-based level measurement

devices. A nonlinear numerical model of the QTP is derived by applying mass

balances and Bernouilli’s law to yield a set of differential equations that describes

the evolution of the liquid level of each tank. They are:

dh1

dt
=− a1

A1

√
2gh1 +

a3

A1

√
2gh3 +

γ1k1

A1
v1(1+η1)

dh2
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2gh2 +
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√
2gh4 +

γ2k2

A2
v2(1+η2)

dh3

dt
=− a3

A3

√
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√
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A4
v1(1+η1)

(A.2)

where Ai is the cross-section of tank i and ai is the cross-section of its outlet hole. The

liquid level of tank i is hi and g is acceleration due to gravity. The voltage applied

to pump i is vi and the corresponding flow is kivi(1+ηi), where ηi ∈ R is zero mean

Gaussian noise emitted from pump i. An interesting aspect of the quadruple-tank

system is the physical interpretation for the process in terms of how the valves

γ1 and γ2 are set. In particular, the nonlinear system is non-minimum phase for
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Figure A.2: A schematic of the QTP illustrating the connectivity of the tanks and location of

the pumps, dual valves, and the level measurement devices.

0 < γ1 + γ2 < 1 and minimum phase for 1 < γ1 + γ2 < 2. It follows that, through the

application of relative gain array (RGA), the following input-output paring rule for

decentralized control is derived [64]:

R1 : 0 < γ1 + γ2 < 1→ v1 controls y2, v2 controls y1

R2 : 1 < γ1 + γ2 < 2→ v1 controls y1, v2 controls y2
(A.3)

The pairing rule in (A.3) introduces a bipartite nonlinearity in the QTP, i.e., (v1,v2)

is correlated to (y2,y1) for 0 < γ1 + γ2 < 1 and correlated to (y1,y2) for 1 < γ1 + γ2 < 2.

The system is measured and actuated discretely with a sample time of Ts. The

measured level signals at sample k are:

y1[k] = kch1[k]+w1[k]

y2[k] = kch2[k]+w2[k]
(A.4)

where wi[k] ∈R is zero mean measurement noise with Gaussian distribution for level

signal i. For decentralized control, the error terms are:

e1[k] = r1[k]− y1[k]

e2[k] = r2[k]− y2[k]
(A.5)

where r1[k] and r2[k] are reference signals for level signals y1[k] and y2[k], respectively.

The error terms are minimized by a discrete PI controller configured with the
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proportional gain KP and integral gain KI . The controller adequately sets the

voltages v1 and v2 by taking into consideration the pairing rule in (A.3). Monte Carlo

simulations were performed on the QTP in order to generate reference data that

exhibited the bipartite nonlinear behavior imposed by the pairing rule in (A.3). The

reference data was subsequently used to obtain PCA and AE models. The uncertain

parameters were configurations of the two dual valves γ1 and γ2. Values for γ1 and

γ2 were sampled from two independent uniform distributions. Process, controller,

noise, and Monte Carlo parameters are listed Table A.1 [64].

A.3 Principal Component Analysis

It is a common occurrence that process variables in large-scale processes are

highly correlated with one another. It is then of practical interest to reduce the

dimensions of the original variable space to a lower dimension to reveal the simplified

structure that underlie it. A well known approach for dimensionality reduction is

PCA. Given a m× 1 vector of process variables x, the m× n reference data matrix

consisting of n standardized observations is:

X =



x[1] x[2] ··· x[n]

x1[1] x1[2] · · · x1[n]

x2[1] x2[2] · · · x2[n]
...

...
. . .

...

xm[1] xm[2] · · · xm[n]

 ∈ Rm×n (A.6)

The first PC of x is the linear transformation t1 = xᵀp1 that has maximum variance

subject to |p1|= 1. The second PC is the linear transformation t2 = xᵀp2 that has the

second greatest variance subject to |p2|= 1, and subject to the condition that it be

orthogonal to the first PC. Additional PCs up to m are similarly defined. The PCs

Table A.1: List of Parameters

Process param. Noise param. Controller param.

A1,A3 28 cm2 η1 N (0,10−4) Ts 10

A2,A4 32 cm2 η2 N (0,10−4) KP 20

a1,a3 0.071 cm2 w1 N (0,10−3) KI 0.1

a2,a4 0.057 cm2 w2 N (0,10−3)

kc 1 V/cm

k1 3.33 cm3/Vs Monte Carlo param.

k2 3.35 cm3/Vs γ1 U (a1,b1)

g 981 cm/s2 γ2 U (a2,b2)
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form the orthonormal principal component loading matrix P obtained by solving for

the eigenvectors of the covariance matrix ΣΣΣ of X:

ΣΣΣ = PΛΛΛPᵀ (A.7)

where ΛΛΛ is a non-negative real diagonal m×m matrix whose diagonal elements are

the corresponding eigenvalues. The diagonal entries λi of ΛΛΛ are the variances of the

PCs. The principal component scores are defined as the observed values of the PCs

for each of the n observation vectors:

ti = Xᵀpi, i = 1,2, ...,m (A.8)

Essentially, PCA decomposes the process matrix X as:

X = TPᵀ =
m

∑
i=1

tipᵀ
i (A.9)

It is often the case that a small number of PCs is sufficient to account for most of the

variability in the data. The first q PCs are determined with the cumulative percent

variance (CPV) approach to capture at least 85% of total variance:

∑
q
i=1 λi

∑
m
i=1 λi

×100%≥ 85% (A.10)

In this manner, dimensionality reduction is achieved by identifying q PCs that explain

most of the predictable variations in the data. The remaining q−m PCs are typically

associated with random noise present in the data. The X matrix is thus approximated

by:

X̂ =
q

∑
i=1

tipᵀ
i (A.11)

A.4 Autoencoders

An AE is an artificial neural network used for dimensionality reduction. An

AE consists of two parts, an encoder and a decoder. The encoder transforms high-

dimensional input into lower-dimensional features. The decoder then reconstructs

the original data with a transformation of the features [130]. Modifiable parameters

are introduced in the AE such that it learns in an unsupervised manner to minimize

the difference between its input and its reconstruction. The AE essentially learns to

compress data into a lower-dimensional representation that captures its essential

information. The compressed data, being sufficiently representative of the original

data, allows for accurate reconstruction of the input data.

The simplest form of an AE is a multilayered, feedforward, non-recurrent neural

network. Nonlinear transformations occur at the layers of the network, allowing for
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processing of data that has inherent nonlinear properties. An illustration of an AE is

given in Fig. A.3. The encoder maps the input X ∈ Rm to the latent variables Z ∈ Rq:

Ei =

σ e
1 (W

e
1X+be

1) , for i = 1

σ e
i (We

i Ei−1 +be
i ) , else

Z = σ
z (WzEN +bz)

(A.12)

where i ∈ Z : i ∈ [1,N]. We
1 is the weight matrix between the input layer and the

first encoder layer. We
i is the weight matrix between layers i−1 and i, be is the bias

at layer i, and σ e
i is the activation function at layer i. Wz, bz, and σ z are defined

similarly for the latent layer. The decoder maps the latent variables Z ∈ Rq to the

input reconstruction X̂ ∈ Rm:

Di =

σd
1
(
Wd

1Z+bd
1
)
, for j = 1

σd
j

(
Wd

j D j−1 +bd
j

)
, else

X̂ = σ
x̂ (Wx̂DM +bx̂)

(A.13)

where j ∈ Z : j ∈ [1,M]. Wd
1 is the weight matrix between the latent layer and the

first decoder layer. Wd
j is the weight matrix between layers j−1 and j, bd is the bias

at layer j, and σd
j is the activation function at layer j. Wx̂, bx̂, and σ x̂ are defined

similarly for the output layer. The modifiable parameters We
i ,be

i ,Wz,bz,Wd
j ,bd

j ,Wx̂,

and bx̂ are optimized with respect to minimizing the following loss function via

stochastic gradient descent [99]:

L (X, X̂) =
∣∣∣∣X− X̂

∣∣∣∣2 (A.14)

A.5 Dynamic latent projections

Directly applying a LP method on the reference data matrix X will construct a

static model. When the data contains dynamic information and the correlation of

variables is time dependent, projecting it to a latent space will not reveal the exact

relations between the variables but rather a static approximation[75]. Furthermore,

the transformed variables will be auto-correlated and possibly cross-correlated.

The dynamic data matrix X̄ is generated by introducing a properly chosen ’time

lag shift’ to the data matrix X. Applying a LP method on X̄ will construct latent
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Figure A.3: Illustration of an AE. Labels for the encoder and decoder of the network are

included.

variables that retain the cross-correlation between variables. Defining the time

shifted process variable vector:

x̄i[k] =
[
xi[k] xi[k−1] · · · xi[k− l]

]ᵀ
(A.15)

where i∈Z : i∈ [1,m], l is the time lag parameter, and k ∈Z : k ∈ [l+1,n], the dynamic

data matrix is:

X̄ =



x̄[1] x̄[2] ··· x̄[n]

x̄1[l +1] x̄1[l +2] · · · x̄1[n]

x̄2[l +1] x̄2[l +2] · · · x̄2[n]
...

...
. . .

...

x̄m[l +1] x̄m[l +2] · · · x̄m[n]

 (A.16)

where X̄ ∈ R(m·(l+1))×(n−l). With regards to X, the columns of X̄, i.e., x̄[k], are

composed of the sequence of columns (x[k],x[k−1], . . . ,x[k− l]) . Matrix X̄ can be

interpenetrated as describing the evolution of the past l samples in X.

Having built a dynamic LP model based on historical data collected when only

common cause variation was present, future behavior can be referenced against this

"in-control" model. New observations can be reconstructed from their projection

onto the latent space to obtain the residuals enew = x̄new− ˆ̄xnew. An abnormal event,

whose response is not present in the reference data used to establish the LP model,

can be detected by computing the squared prediction error (SPE) of the residuals of

new observations [73]:

SPE =
m

∑
i=1

(
x̄new,i− ˆ̄xnew,i

)
(A.17)
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A.6 Results and Discussion

A.6.1 Reference data generation from QTP simulation

Reference data was generated by performing a Monte Carlo simulation of the

QTP. Two simulation scenarios, noted as S1 and S2, were designed. Each scenario

specified the upper and lower bounds for the uniform distributions for γ1 and γ2. In

S1, γ1 ∼U (0.1,0.2) and γ2 ∼U (0.1,0.2). In S2, γ1 ∼U (0.8,0.9) and γ2 ∼U (0.8,0.9).
The scenarios were designed to generate data that demonstrated the influence of the

input-output paring rule in (A.3) on the dynamics of the system. From the paring

rule in (A.3), rule R1 was followed in simulation scenario S1 and rule R2 was followed

in scenario S2. Table A.2 presents the sampled values for γ1 and γ2. Each scenario

generated 3 unique configurations for γ1 and γ2, with each configuration simulated

for 6000 time steps. This resulted with a reference set of n = 36000 observations.

During each configuration, the process was excited by performing 30 step changes

to reference signals r1 and r2. The simulated control signals v1 and v2, measurement

signals y1 and y2, and dual valve configurations γ1 and γ2 were collected into the

following data matrix:

X =



x[1] x[2] ··· x[n]

v1[1] v1[2] · · · v1[n]

v2[1] v2[2] · · · v2[n]

y1[1] y1[2] · · · y1[n]

y2[1] y2[2] · · · y2[n]

γ1[1] γ1[2] · · · γ1[n]

γ2[1] γ2[2] · · · γ2[n]


(A.18)

A.6.2 Fault data generation from QTP simulation

The QTP was simulated with a decrease in the gain of pump 1, introduced via

the multiplicative fault:

k1, f = k1 · (1− f ) (A.19)

with f = 0.1. Reference signals were generated with the same simulation procedure

detailed in the previous subsection. The fault was introduced after 200 time steps.

This way, the first 200 samples of the simulation data described a process operating

under faultless conditions, whereas the remainder depicted a faulty process. Values

for γ1 and γ2 were sampled from scenario S2 and are presented in Table A.2. Due

to the selection of γ1, γ2, and reference signals, the LP models were tested with

previously unseen observations. Since a portion of the data described an "in-control"

process, it was possible to test the robustness of the generated residuals to new,
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Table A.2: Sampling of γ1 and γ2

Set type γ1 γ2 Pairing rule

Reference 0.1134 0.1426 R1

0.1107 0.1351 R1

0.1234 0.1043 R1

0.8127 0.8913 R2

0.8441 0.8350 R2

0.8347 0.8381 R2

Fault 0.8000 0.8302 R2

normal data. The same signals in the reference data matrix X were collected in the

fault data matrix X f .

A.6.3 Latent projection model generation and testing

A dynamic PCA model, named model M1, and a dynamic AE model, named model

M2, were generated with the results from simulating the QTP. Since the pairing

rule in (A.3) introduced a bipartite nonlinearity in the QTP, it was expected that

model M1 would be ineffective at retaining the nonlinear variance of the variables.

Consequently, the model would be less effective at generating residual signals.

The time lag parameter was selected as l = 2 by following the selection procedure

in Ku et al.[75]. The dynamic reference data matrix X̄ was subsequently generated

from X with (A.15) and (A.16), resulting with 18 row vectors. The dynamic fault

data matrix X̄ f was similarly obtained from X f . The matrices X̄ and X̄ f were

standardized with the mean and standard deviation of X̄. The CPV approach in

(A.10) was applied on X̄, resulting with q = 3 PCs being required to capture at least

85% of total variance. To ensure consistency, M1 was generated with q = 3 PCs

and the dimension of the latent layer in M2 was set to q = 3. The dimensions and

activation function of each layer in the encoder and decoder were chosen as:

[
dimL(E )

σ e
i

]
=

[ X E1 E2

18 54 54
tanh ReLU

]
,

[
dimL(D)

σd
i

]
=

[ D1 D2 X̂

54 54 18
ReLU tanh I

] (A.20)

where tanh is the tangent hyperbolic function, ReLU is the rectifier function, and I is
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(a) (b)

Figure A.4: Scatter plot of original and reconstruction of unshifted, i.e. xi[k] in (A.15),

standardized samples for v1 and y1 for models (a) M1 and (b) M2.

the identity function. Setting the dimension of the encoder and decoder layers as

triple the size of the input dimension, as well as utilizing two different activation

functions, allowed the AE to generate complex, higher dimensional features [102].

The tangent hyperbolic function was implemented at the latent layer.

Fig. A.4 illustrates the effectiveness of M2 at information retention for the

reference set. The deterministic part of the process variable pair v1 and y1 is

plotted, which depicts the bipartite nonlinearity introduced in the QTP; the variables

observed both positive and negative correlations, depending on which pairing rule

in (A.3) was being followed. This nonlinearity hampered the effectiveness of M1 at

reconstructing the variable pair. On the other hand, M2 performed much better at

data reconstruction.

Fig. A.5 displays the SPE of propagating the deterministic part of dynamic fault

data matrix X̄ f through models M1 and M2. The figure exhibits how the signals vary

with time as reference changes occurred and when the fault f was introduced. The

fault specified in (A.19) was introduced along with a reference change at time t f . In

comparison to M2, model M1 generated large values for SPE when the QTP operated

nominally. This is because the PCA model performed much worse at reconstructing

the data, as is depicted in Fig. A.4. Meanwhile, the SPE of M2 increased only

briefly during reference changes and observed a DC gain increase when the fault

was introduced. This demonstrates the sensitivity of the AE model to the simulated

fault and its ability to detect it. On the other hand, the PCA model made no clear

distinction that a fault had occurred, since its SPE signal was already of a large
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Figure A.5: SPE of propagating the deterministic part of the dynamic fault data matrix X̄ f

through models M1 and M2. A fault occurs at time t f .

magnitude prior to the fault.

Fig. A.6 displays the SPE of each model when the stochastic part of X̄ f was

included, with process and measurement noise now causing osculations in the

signals. Compared to M1, model M2 was less sensitive to random noise when the

QTP operated nominally. The amplitude of the random variations of the SPE of each

model increased when the fault was introduced, but M2 still depicted a clear DC

gain increase in its signal, indicating its sensitivity to the fault.

A.7 Conclusion

This paper introduces the application of LP based process monitoring models

that verify that a process is remaining in a state of statistical control. Future

behavior is referenced against the "in-control" model to detect abnormal events in

the process. Two LP methods were presented. The former established a linear PCA

model acquired by solving for the eigenvectors of the covariance matrix of sampled

reference data. The latter trained an AE, a type of an artificial neural network, to

.

Figure A.6: SPE of propagating the dynamic fault data matrix X̄ f through models M1 and M2.

A fault occurs at time t f .
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optimize its learning parameters so as to minimize the information loss resulting

from reducing the dimensions of the reference data. This allowed for a comparison

of effectiveness at detecting faults in the QTP.

The results demonstrated that the AE based model method was robust to new,

unseen observations that described an "in control" process, with large magnitudes

in the residuals only occurring during reference changes. The PCA basd model was

not robust, as reference changes caused lasting negative influences on its diagnosing

capabilities. The results also indicated that the inherent nonlinear nature of the

QTP reduced the effectiveness of residual generation with the linear PCA model. On

the other hand, due to its nonlinear functional capabilities, the AE showed better

performance at generating residuals.
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Abstract:

Development of model-based fault diagnosis methods is a challenge when industrial

systems are large and exhibit complex process behavior. Latent projection (LP), a

statistical method that extract features of data via dimensionality reduction, is an

alternative approach to diagnosis as it can be formulated to not rely on process

knowledge. However, LP methods may perform poorly at identifying abnormal

process variables due a “fault smearing” effect - variables unaffected by a fault

are unintentionally characterized as being abnormal. The effect occurs because

data compression permits faulty and non-faulty variables to interact. This paper

presents an autoencoder (AE), a nonlinear LP method based on neural networks, as

a monitoring method of a simulated nonlinear triple tank process (TTP). Simulated

process data was used to train the AE to generate a monitoring statistic representing

the condition of the TTP. Sparsity was introduced in the AE to reduce variable

interactivity. The AE’s ability to detect a fault was demonstrated. The individual

contributions of process variables to the AE’s monitoring statistic were analyzed to

reveal the process variables that were no longer consistent with normal operating

conditions. The key result in this study was that sparsity reduced fault smearing

onto unaffected variables and increased the contributions of actual faulty variables.
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B.1 Introduction

Effective online monitoring of process performance is integral for maintaining

stable plant operation, maximizing production, and ensuring the survivability of

industrial systems. In fact, abnormal events that disrupt plant performance can cause

up to 8% annual loss in production profit [16]. Due to the increasing complexity

of large-scale industrial processes, statistical methods - which can be formulated to

not rely on process knowledge - are a practical alternative to more traditional and

rigorous model-based fault detection methods. The relevance of statistical moni-

toring schemes is further supported by the current trend of industries to generate

industrial big data thanks to the integration of additional sensors, computers, and

other technological artifacts connected to every industrial process [142].

This approach to quality control is known as statistical process control (SPC)

[91]. An important component of SPC is diagnosis of a detected abnormal event and

determining its cause. Once an unintended plant upset is identified, it is typically

up to the operators to decipher which statistical quality variables contain signal

characteristics that help diagnose the problem. Unfortunately, industrial application

of SPC-based event diagnosis is ineffective since the most common practice for

monitoring the quality of a process is to observe traditional univariate control charts

such as Schewart, CUSUM, and EWMA [15]. Their application inherently assumes

that process variables are independent of one another, potentially making their use

ineffective at diagnosing events that affect multiple process variables.

Multivariate quality control (MQC) methods - which produce quality variables

that summarize the condition of several process variables - are a better alternative to

univariate approaches for monitoring of multivariable processes [105]. Essentially,

the Hotelling’s T 2 and Q statistics are paired with latent projection (LP) - dimension-

ality reduction methods such as principal component analysis (PCA) that uncover

the correlation structure of data - to detect out-of-control situations. A process is

monitored by comparing current plant behavior with an LP model representing

its “in-control” behavior. An abnormal event that changes the correlation between

process variables is detected when the monitored deviation between the current

process state and that predicted by the model exceeds a threshold.

Industrial applications of LP-based process monitoring tend to use linear methods,

such as PCA, due to their ease of implementation. Unsurprisingly, linear methods

result in high Type I and Type II error rates if the process is nonlinear [45], [144].

Nonlinear extensions of PCA have emerged to uncover both linear and nonlinear

correlations between variables. The focus of this paper is on autoencoders (AEs);

a type of artificial neural network that learns salient, encoded representations via
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nonlinear transformations of an original data set. Dong et al. [32] show that AEs

can discover principal curves, i.e., a one-dimensional curve whose shape provides

a nonlinear summary of the nonlinear structure of the complex data set it passes

through. Kramer [72] demonstrates significant improvement in nonlinear feature

extraction by using a multi-layered AE as opposed to a single-layered AE, assuming

that the dimension of latent layers were consistent.

Recent advances in AE-based process monitoring have been made by including

developments from other applications of neural networks. Yan et al. [144] observed

improved fault detectability of the Tennessee Eastman process over PCA-based

process monitoring by using novel variants of AEs; denoising AEs, which reconstruct

the uncorrupted version of corrupted input data, and contractive AEs, which penalize

the sensitivity of hidden representations to small (noisy) perturbations around the

input. Lee et al. [85] used a variational autoencoder (VAE) to enforce the monitored

data to follow a multivariate normal distribution in the latent space to facilitate

appropriate use of Hotelling’s T 2 monitoring charts for nonlinear and non-normal

processes, resulting in a reduction of Type I and Type II error rates. Osmani et al.

[103] monitored the condition of a turbo-compressor using a recurrent neural

network (RNN) that captured temporal dependency of process variables with the

additional regularization constraint that activations in the reduced space followed

a Bernoulli distribution. Cheng et al. [22] combined VAEs and RNNs to produce a

variational recurrent neural network for fault detection of the Tennessee Eastman

process.

Contributions in the AE-based SPC literature tend to prioritize fault detection

over fault isolation. Much of the subject matter focuses on reducing Type I and Type

II error detection rates by: (a) increasing model sensitivity to faults; (b) obtaining

more robust and complex monitoring statistics; and (c) reducing hampering effects

from nominal process changes. Though AEs have been used as a pre-training

step for fault-classification networks when labeled fault data is scarce [121], few

methods exist where fault isolation is performed exclusively with an AE. However,

rudimentary diagnosis with PCA models can be carried out with the analysis of

fault contribution plots [63], [95]. The plots indicate the contributions of process

variables to an observed increase in the T 2 or Q statistic, with variables showing

large contributions concluded as no longer following nominal operating conditions.

Operators can then apply process knowledge to determine an appropriate cause.

There are reports of fault contribution plots suffering from a property called “fault

smearing” - variables unaffected by the fault demonstrate a contribution and actual

faulty variables are obscured [138]. Smearing occurs because the compression of

the input to a smaller number of latent variables and subsequent expansion to the
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original space permits faulty and non-faulty variables to interact [128].

Gao et al. [39] imposed an elastic net constraint to obtain a sparse PCA model

for the Tennessee Eastman process. The result was a reduction in interactivity

between variables in the latent space. It subsequently lead to the discovery of

process knowledge, specifically the relationships among process variables.

The objective of this paper is to extend the analysis of fault contribution plots to

AEs and investigate the effect reduced latent variable interactivity has on process

variable contribution. Two AEs - a dense one and a sparse one - are generated

to monitor a numerical simulation of a nonlinear triple tank process (TTP) - a

variant of the quadruple tank process (QTP) [64]. Their ability to detect a fault is

demonstrated by inducing an abnormal bias in one of the TTP’s sensors. Individual

contributions of process variables to the AEs’ monitoring statistics are then analyzed.

The key result in this study was that sparsity reduced fault smearing onto non-faulty

variables and increased the contributions of faulty variables.

This paper presents the mathematical model of the TTP in section II. Section III

describes how a sparse AE is obtained and subsequently used in process monitoring.

The effectiveness of the sparse AE method at process monitoring and improved

generation of fault contribution plots is presented in section IV.

B.2 The Triple Tank Process

A schematic drawing of the TTP is given in Fig. B.1. The upper tanks are supplied

with liquid that is transported from a large sump by the means of two gear pumps.

Liquid flows from the upper left tank into the sump. The liquid from the upper right

tank flows into the lower tank, which sequentially flows into the sump. The objective

is to control the liquid levels in the upper left and lower right tanks, which are

monitored with two voltage-based level measurement devices. A level measurement

device is also fixed to the upper right tank. A nonlinear numerical model of the TTP

is derived by applying mass balances and Bernouilli’s law to yield a set of differential

equations that describes the evolution of the liquid level of each tank. They are:

dh1

dt
=− a1

A1

√
2gh1 +

1
2

k1

A1
v1(1+η1)

dh2

dt
=− a2

A2

√
2gh2 +

1
2

k1

A2
v1(1+η1)+

k2

A2
v2(1+η2)

dh3

dt
=− a3

A3

√
2gh3 +

a2

A3

√
2gh2

(B.1)

where Ai is the cross-section of tank i and ai is the cross-section of its outlet hole. The

liquid level of tank i is hi and g is acceleration due to gravity. The voltage applied
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to pump i is vi and the corresponding flow is kivi(1+ηi), where ηi ∈ R is zero mean

Gaussian noise emitted from pump i. The system is measured and actuated discretely

with a sample time of Ts. The measured level signals at sample k are:

y1[k] = kch1[k]+w1[k]

y2[k] = kch2[k]+w2[k]

y3[k] = kch3[k]+w3[k]

(B.2)

where wi[k] ∈ R is zero mean measurement noise with Gaussian distribution for

level signal i. For decentralized control, the error terms are:

e1[k] = r1[k]− y1[k]

e2[k] = r2[k]− y3[k]
(B.3)

where r1[k] and r2[k] are reference signals for level signals y1[k] and y3[k], respectively.

The error terms are minimized by a discrete PI controller. The closed loop control

laws for the process inputs are:

K1 : v1[k] = KPe1[k]+KI

k

∑
i=1

e1[i]Ts

K2 : v2[k] = KPe2[k]+KI

k

∑
i=1

e2[i]Ts

(B.4)
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Figure B.1: A schematic of the TTP showing the connectivity of the tanks and location of

the pumps, dual valves, and the level measurement devices. Included are the decentralized

feedback loops.
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Here KP and KI denote the proportional and integral gains, respectively, of the PI

controller. Monte Carlo simulations were performed on the TTP to generate data

sets that exhibited nonlinear correlations between the process variables. The data

sets were used to train, validate, and test an AE model that monitored the process.

The uncertain parameters were the reference signals r1 and r2. Values for r1 and r2

were sampled from two independent uniform distributions. Process, controller, and

noise parameters were based on the QTP from [64] and are listed in Table B.1.

B.3 Autoencoders

Process variables tend to be highly correlated with one another due to the

presence of physical laws and control loops in process plants. Feature extraction

can be performed on the original variable space to reveal the simplified structure

that underlies it. An AE - an artificial neural network used for learning encoded

representations for a set of data - is applicable when variables exhibit nonlinear

correlations. Given a m×1 vector of process variables x, the m×n reference data

matrix consisting of n standardized observations is:

X =



x[1] x[2] ··· x[n]

x1[1] x1[2] · · · x1[n]

x2[1] x2[2] · · · x2[n]
...

...
. . .

...

xm[1] xm[2] · · · xm[n]

 ∈ Rm×n (B.5)

An AE consists of two parts - an encoder and a decoder. The encoder transforms its

input X into new, higher-level representative features Z ∈ Rq×n. The decoder then

reconstructs the original data as X̂ ∈ Rm×n with a transformation of the features

[50]. Modifiable interconnecting weights are introduced in the AE such that it learns

in an unsupervised manner to minimize the difference between its input and its

reconstruction.

The simplest form of an AE is a multilayered, feedforward, non-recurrent neural

network. Nonlinear transformations occur at the layers of the network, allowing for

processing of data that has inherent nonlinear properties. The encoder maps the

input X ∈ Rm×n to the latent variables Z ∈ Rq×n:

Ei =

σ e
1 (W

e
1X+be

1) , for i = 1

σ e
i (We

i Ei−1 +be
i ) , else

Z = σ
z (WzEN +bz)

(B.6)
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Table B.1: List of Parameters

Process param. Noise param.

A1,A3 28 cm2 ηi N (0,0.1)

A2 32 cm2 wi N (0,0.0005)

a1,a3 0.071 cm2

a2 0.057 cm2

kc 1 V/cm Controller param.

k1 3.33 cm3/Vs Ts 10

k2 3.35 cm3/Vs KP 20

g 981 cm/s2 KI 0.25

where i ∈ Z : i ∈ [1,N]. We
1 is the weight matrix between the input layer and the first

encoder layer. We
i is the weight matrix between layers i−1 and i, be is the bias at

layer i, and σ e
i is the component wise activation function at layer i. Wz, bz, and σ z

are defined similarly for the latent layer.

The decoder maps the latent variables Z ∈ Rq×n to the input reconstruction

X̂ ∈ Rm×n:

Di =

σd
1
(
Wd

1Z+bd
1
)
, for j = 1

σd
j

(
Wd

j D j−1 +bd
j

)
, else

X̂ = σ
x̂ (Wx̂DM +bx̂)

(B.7)

where j ∈ Z : j ∈ [1,M]. Wd
1 is the weight matrix between the latent layer and

the first decoder layer. Wd
j is the weight matrix between layers j− 1 and j, bd is

the bias at layer j, and σd
j is the component wise activation function at layer j.

Wx̂, bx̂, and σ x̂ are defined similarly for the output layer. The modifiable parame-

ters We
i ,be

i ,Wz,bz,Wd
j ,bd

j ,Wx̂, and bx̂ are optimized with respect to minimizing the

following reconstruction loss function via stochastic gradient descent [99]:

L (X, X̂) =
1
n

∣∣∣∣X− X̂
∣∣∣∣2 (B.8)

Fig. B.2 illustrates a typical autoencoder that gradually condenses the input to the

latent space and then gradually reconstructs it. The dimension q of the latent layer

plays a significant role in the discovery of informative representations of the input.

The traditional approach is to create a bottleneck by setting q < m, thereby forming

an under-complete representation. In this case, the network pursues an effective

compression that retains information about input X. The compressed data, being

sufficiently representative of the original data, allows for accurate reconstruction of
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the input data, albeit with a non-zero reconstruction error. An AE using linear nodal

activation functions will uncover latent projection that correspond to the projection

onto the subspace obtained from PCA of the covariance matrix of X [7]. This occurs

even if the network is composed of several layers of linear units. However, Bourlard

and Kamp [13] show that PCA-like projections can be obtained even if nonlinear

functions are used since it is possible for activations to remain in the linear regions

of functions such as the sigmoid or tangent hyperbolic. This becomes unlikely if the

AE is composed of several hidden layers with varying activation functions [59].

B.3.1 Invoking network sparsity

Further optimization constraints are introduced to obtain latent representations

that generalize better and prevent over-fitting. One approach is to include the naïve

elastic net weight decay penalty - a regularized regression method that linearly

combines the L1 and L2 weight decay penalties of the LASSO and ridge methods

[154]. The loss function in (B.8) becomes:

L (X, X̂,W) =
1
n

∣∣∣∣X− X̂
∣∣∣∣2 +λ1 ||W||1 +λ2 ||W||22 (B.9)

where λ1 and λ2 control the importance of the LASSO and ridge regressions, respec-

tively, and W is the collection of weight matrices in (B.6) and (B.7). Biases b in (B.6)

and (B.7) are not included in the naïve elastic net penalty. Minimization of (B.9)

yields an optimized AE consisting of shrunk weights that minimize its reconstruction

loss. The individual contribution of each regularization term is: (a) L1 regularization

shrinks weights at a constant rate towards zero, thereby establishing a small number

𝑬𝑬1 

𝑬𝑬𝑁𝑁 
𝒁𝒁 

𝑿𝑿 

𝑫𝑫𝑀𝑀 

𝑫𝑫1 

𝑿𝑿� 

Encoder ℰ  Decoder 𝒟𝒟  

Encoded  
representation 

Figure B.2: Illustration of an under-complete AE. Labels for the encoder and decoder of the

network are included. Biases are excluded from the illustration.
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of high-magnitude, i.e., high-importance, connections by driving redundant weights

to zero; and (b) L2 regularization shrinks weights by an amount proportional to

their magnitude, thus penalizing larger weights more than smaller weights. The

net result is an interpretable grouping of correlated variables; L2 regularization

opposes the tendency of L1 regularization to prioritize one variable from a group

correlated variables and ignore the others. Grouping of process variables is relevant

for identification of control systems; Gao et al. [39] demonstrate that a sparse

principal component model can uncover the underlying process variable relations.

Weight connections deemed redundant can be removed to clarify the intercon-

nectivity of a neural network. Magnitude-based weight pruning is a technique that

reduces the number of non-zero weight parameters to invoke network sparsity. Zhu

and Gupta [153] introduce a pruning algorithm that progressively trims away redun-

dant weight connections. Weight connections are removed according to a pruning

function that sets the current sparsity percentage, i.e., the ratio of the number zero

magnitude weights to the total number of weights, of a network:

st = s f +(si− s f )

(
1− t− t0

n∆t

)3

for t ∈ {t0, t0 +∆t, . . . , t0 +n∆t} (B.10)

The network is first trained for t0 time steps to permit the weights to converge to an

acceptable solution. Thereafter the initial sparsity of the network is set to si (usually

zero). Weights are then pruned every ∆t steps to gradually increase the network’s

sparsity while allowing it to recover from any pruning-induced loss in accuracy. The

intuition behind the order of (B.10) is to rapidly prune the network in the beginning

phase when redundant connections are plentiful before slowing down once fewer

connections remain (Fig. B.3). The algorithm operates continuously over n sparsity

updates until the final sparsity value s f is reached. Zhu and Gupta [153] discovered

that large-sparse models consistently outperformed small-dense models when the

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

Figure B.3: Example sparsity function used for gradual pruning with s f = 0.8, si = 0.0,

t0 = 3000, ∆t = 100, n = 20.
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number of parameters was kept the same.

The pruning algorithm presented by Zhu and Gupta [153] is extended upon in

this paper. At every sparsity update st , each weight matrix Wi ∈W is divided by

the largest absolute value of Wi. This normalization step is done to prevent severe

pruning of weight matrices whose largest absolute value is much smaller compared

to the other matrices. The normalized matrices are then flattened and concatenated.

The smallest weights are then masked to zero until the desired sparsity level st is

reached. Furthermore, the pruning algorithm is stopped prematurely if the validation

loss experiences a 5%-10% increase.

Once pruning ends, the näive elastic net weight penalty is removed from the

training session. This is to relax the constraints on the AE and permit the remaining

weights to maximize their capacity to reduce the loss function in (B.8) without the

concern of any additional loss penalties.

B.3.2 Process Monitoring

Process monitoring consists of comparing current plant behaviour with that

predicted by an “in-control” AE trained with historical data collected when the

process exhibited nominal behaviour. New observations are propagated through the

AE to generate the residuals enew = xnew− x̂new. The quality of new observations is

assessed by computing the squared prediction error (SPE) (more formally known as

the Q statistic) of the residuals of new observations [91]:

SPE =
m

∑
i=1

(xnew,i− x̂new,i)
2 (B.11)

An abnormal event that changes the correlation between process variables will

cause the SPE to increase. Assuming that the SPE follows a chi-squared distribution,

the control limit can be computed with the following approximate value [12]:

CLSPEAE =
σ̄2

2µ̄
χ

2
(2µ̄2/σ̄2,α) (B.12)

where µ̄ and σ̄ , respectively, are the sample mean and sample standard deviation

of the SPE and α is the false alarm rate. An abnormal event is deemed to have

occurred if the SPE crosses the control limit. Abnormal process variables are isolated

by analysing the contribution of each variable i to the SPE in (B.11) [95]:

Ci = (xnew,i− x̂new,i)
2 (B.13)

Variables with large contributions are said to no longer be consistent with normal

operating conditions. It is noted that analysis of (B.13) does not determine the
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underlying cause of a fault. Rather, it will highlight the process variables containing

signal characteristics of a fault. The results of (B.13) must be integrated with a

qualitative model of the process that takes into account the causal nature of system

components to decipher the actual cause.

B.4 Results and Discussion

B.4.1 Derivation of influence rules

It was of practical interest to determine the influence of reference variables r1 and

r2 on the control and measurement variables; steady-state correlations uncovered by

the AE can then be validated to what is implied by the data. Fig. B.4 displays the

time series plots obtained from inducing random step changes in a single reference

(a)

(b)

Figure B.4: Time series of simulated process variables where (a) r1 is changed whilst r2 is

held fixed and (b) r2 is changed whilst r1 is held fixed. Red lines indicate the references for

the measurement.
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variable while keeping the other constant. The plots demonstrate that: (a) a step

change in r1 causes a transient change in the steady state values of y1, v1, and

v2, while variables y2 and y3 experience a transient change that has no affect on

their steady-state values; and (b) a step change in r2 has no influence on y1 and

v1 yet generates a transient change in the steady state values of y2, y3 and v2. The

correlation sets C1 = (r1,y1,v1,v2) and C2 = (r2,y2,y3,v2) are determined from the

plots. They indicate which process variables observe a permanent change in their

steady state value caused by a change in a reference signal.

B.4.2 Data generation from TTP simulation

The TTP was simulated with random step changes in reference signals r1 and r2

occurring every 200 time steps. The training set Xt (consisting of 300,000 samples)

and validation set Xv (consisting of 30,000 samples) were generated to train and

validate, respectively, an AE. Fig. B.5 displays the distribution of standardized

samples of variables in Xt in the form of scatter and histogram plots. The scatter

plots indicate the existence of nonlinear correlations between variable pairs (r1,v1),

Figure B.5: Scatter plot of standardized process variables, including a histogram along the

diagonal.



B.4. Results and Discussion 97

(v1,y1), and (v2,y1). The histogram plots reveal that several variables do not follow

the assumption of normality with v1 in particular.

The fault set X f (consisting of 300 samples) was generated by simulating the TTP

with a bias in sensor 1, introduced with the additive fault y1[k] = kch1[k]+w1[k]+ f

with f =−0.01. The fault was introduced after 100 time steps. No reference changes

occurred in r1 and r2. Fig. B.6 presents time series plots of the first 200 samples of

X f and shows the fault’s effect on the process variables. Deterministic results (in

grey) from the same simulation case (obtained by setting ηi and wi in (B.1), (B.2)

to zero) are included to aid in interoperability. The plots demonstrate that: (a) the

fault has no influence on r1 and r2; (b) the fault induces temporary changes in y1, y2,

and y3 that have no influence on their steady state values; and (c) the fault induces

a permanent change in v1 and v2 and thus carry steady-state signatures that explain

the presence of the fault.

B.4.3 AE model generation and testing

Two AEs, denoted AE1 and AE2, were trained with the training set Xt . Both

networks were inherently the same, i.e., same number and dimension of layers,

same number of latent variables, same initialization of the weights, and so on, except

AE2 included the näive elastic net weight penalty with λ1 = λ2 = 0.001 and was

pruned. The pruning parameters in (B.10) of AE2 were s f = 0.9, si = 0.7, t0 = 5000,

∆t = 100, n = 200, but early-stopping resulted with a sparsity of 80.86%. Both AEs

were trained for 12000 epochs using the Adam gradient-based optimization with a

learning rate of 0.001 for stochastic gradient descent [71]. The matrices Xt , Xv, and

X f were standardized with the mean and standard deviation of Xt . The dimension

Figure B.6: Influence of fault f1 at sample t f on (left) measurements and (right) control

inputs. Red lines indicate the references for the measurements.
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of the latent layer in each model was set to q = 2. This was to see if the sparse AE2

would expose the correlation sets C1 and C2. The dimensions and activation function

of each layer were specified as:

[
dimL(E ) dimL(D)

σ e
i σd

i

]
=

[ X E1 E2 D1 D2 X̂

7 9 9 9 9 7
tanh tanh tanh tanh I

]
(B.14)

where tanh is the tangent hyperbolic function and I is the identity function. The

tangent hyperbolic transfer function was primarily used since the data is mean-

centered. The design of the AE is essentially an expanded under-represented AE;

setting the dimension of the encoder and decoder layers larger than the size of the

input dimension allowed the AE models to generate complex, higher dimensional

features before information retaining compression occurred [102]. The tangent

hyperbolic function was implemented at the latent layer.

The training loss (TL) and validation loss (VL) from training AE1 and AE2 are

plotted in Fig. B.7. It can be seen that the TL and VL of AE2 observe a significant

difference that recedes when pruning ends. This is because the TL includes the näive

elastic net weight penalty in (B.9) that is then removed once pruning stops. The

figure shows that the VL of AE2 is similar to the VL of AE1 at the end of training.

In fact, the VL of AE2 is only 7.2% larger despite AE2 having 80.86% fewer weight

parameters than AE1.

Fig. B.8 portrays the connectivity between network layers of AE2 and shows the

propagation of original variables x to the reconstructions x̂. It can be seen that the

network has identified the correlations between process variables, thus eliminating

potential fault smearing between uncorrelated variables. The activation of the

0    5000 9701 12000
10-2

10-1

100

8000 9000 10000 11000 12000
10-2

10-1

Figure B.7: Training and validation losses during training. Right figure zooms in on epoch

interval [8000,12000] and includes final losses in its legend.
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second node in the latent layer is computed by the process variables of correlation

set C1. In addition, the activation is solely responsible for the reconstruction of the

same variables. The activation of the first latent node is determined by the variables

of correlation set C2 with the exception of v2. However, the latent node’s activation

reconstructs all of the variables of C2. From this it follows that fault signatures

contained in v2 cannot not smear onto r̂2, ŷ2, and ŷ3. Although it provides a partial

explanation for the loss in validation accuracy in comparison to AE1 (Fig. B.7), AE2

has discovered a form of reconstruction redundancy: although v2 appears both in

C1 and C2, it is sufficient to reconstruct it from a partial subset of process variables.

It is noted that the interconnectivity of AE2 is heavily influenced by the chosen

hyperparameters for the learning rate, regression coefficients λ1 and λ2, and pruning

parameters; a different selection is bound to result with a different connectivity.

The contribution plots obtained from propagating X f through AE1 and AE2 are

displayed in Fig. B.9. Plots from the deterministic equivalent of X f are included

to ease the analysis of the effect of network pruning on mean contributions. The

fault is detected by both AEs as their SPEs cross their control limit at sample t f ,

i.e., the onset of the fault. Despite the model complexity of AE1 being greater than

that of AE2, their SPEs are nearly identical over the fault set. This indicates that

a more complex model is not necessarily more sensitive to faults. Smearing onto

unaffected variables r2, y2, and y3 is less for AE2, indicated by a reduction in the

variance (Fig B.9(a)) and mean (Fig B.9(b)) of their contributions. In fact, their

mean contributions are zero once steady-state is reached because the steady state

fault signatures retained in v1 and v2 cannot propagate to r̂2, ŷ2, and ŷ3 (Fig. B.8).

Even though smearing occurs onto non fault-carrying variables r1 and y1, invoking

network sparsity guarantees that the steady state signal characteristics of faulty

variables v1 and v2 stay within the variables of correlation set C1. In fact, network

AE2 generates larger contributions for fault-carrying variables v1 and v2 and reduces

𝒁
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Figure B.8: Illustration of trained AE2, showing pruned weight connections (grey) and

remaining connections (black). Biases have been excluded from the illustration.
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the contributions for non-fault-carrying variables r1 and y1, indicating that network

sparsity makes faulty variables more highlighted.

It is reiterated that analysis of fault contribution plots does not determine the

cause of a fault. Instead, process variables containing steady-state fault signatures

are inferred. An additional “causal reasoning” step must be performed that takes into

consideration the causal nature of the monitored process, e.g, qualitative modeling

of relations between different components of a system, to determine the root cause

of fault-contaminated process variables. The presented method makes qualitative

diagnosis more effective, since the reduction of fault smearing ensures that more

precise qualitative information is provided.

B.5 Conclusion

This study introduces the combined application of a sparsity constraint and a

pruning strategy to produce a sparse AE with the purpose of diagnosing a sensor fault

occurring in the TTP. The obtained AE lead to the discovery of process knowledge,

specifically the relationships among process variables. The solution demonstrated

(a) (b)

Figure B.9: Magnitudes of contributions to the SPE from AE1 (grey) and AE2 (black) via (a)

stochastic simulations for X f and (b) deterministic simulations for X f . Dashed line in SPE

plot indicates the control limit obtained from Xv.
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that a sparse AE, which inherently has fewer parameters than a fully connected AE,

suffered little in its validation performance.

The results show that the proposed method improved the performance of fault

contribution plots; process variables unaffected by the fault produced significant

less contributions due a reduction of fault smearing. The results also demonstrated

that variables carrying no fault signatures, but were strongly correlated with the

faulty variables, observed reduced contributions. Finally, variables that contained

fault signatures produced larger contributions, providing further fault isolation

capabilities.
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Abstract:

Statistical approaches to fault diagnosis formulated on historical process data are

well-suited for complex processes where detailed process knowledge is missing.

However, methods for isolating abnormal process variables are prone to produce

ambiguous results because they are established on nominal data. Literature suggests

that diagnostic models are to include labeled abnormal data to improve fault isola-

tion, yet inconclusive results may remain for previously unseen faults. This paper

presents a method that isolates abnormal variables with an autoencoder (AE), a type

of neural network that performs latent projection, without requiring prior knowledge

of faults. The AE is trained on nominal process data with an additional sparsity

constraint to produce a sparse network. The network is then probed to extract

information regarding the correlation between process variables. Movements in the

AEs residual space are interrogated alongside the acquired knowledge to isolate the

variables that explain the observed movements. The method is demonstrated with a

simulation of a nonlinear triple tank process, and is shown to isolate both simple

and complex faults.
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C.1 Introduction

Process operators are regularly confronted with the problem of proposing an

appropriate cause to an abnormal event. In most scenarios, operators diagnose a

plant fault by isolating abnormal changes in process variable signals. A probable

cause is then assigned given a series of changes. As process plants become larger

and more complex, complete reliance on operators for signal evaluation becomes

more difficult. An increasing number of observable process variables will lead to

information overload, slowing down analysis and risking incorrect diagnosis. With

recent advances in data storage technologies, industry is more inclined to archive

historical process data [62]. The growing availability of large sets of process data,

coupled with increasing process complexity, has lead to an increase in research on

statistical monitoring methods formulated to rely exclusively on data and not on

process knowledge.

Data-driven process monitoring can be divided into two different approaches,

namely, statistical fault classification and feature extraction. Fault classification is

the problem of identifying to which of a set of faults a new observation belongs.

Unfortunately, developing an effective classifier requires an abundant number of

training observations for every possible fault. Obtaining sufficient training data

proves difficult when faults, regardless of their severity, rarely occur. Feature extrac-

tion is the process of deriving numerical quantities intended to be informative about

a data set. It is applied to process monitoring by comparing the features of new

observations with features of a reference data set describing the nominal behavior of

a plant. A fault is detected when the disparity, usually represented by a monitoring

statistic, exceeds a certain threshold. Since it is often the case that historical process

data contains disproportionately more samples explaining nominal plant behavior,

monitoring based on feature extraction is generally favored over fault-classification.

The focus of this paper is latent projection (LP) - a method related to feature

extraction. The method reduces the dimension of the original process variable

space to produce features that retain information in the original data. In practice,

LP uncovers the nominal correlation structure of process variables as correlated

variables are summarized with a single principal variable. An LP model detects

fault-induced abnormal changes in the correlation structure among process variable.

Venkatasubramanian et al. [133] propose that a successful diagnostic system is a

hybrid of three diagnostic components: (a) a data-driven method for quick detection;

(b) a trend-based method for assessing abnormal changes in process variables; and

(c) an expert system that proposes a probable cause given the result from trend

analysis. In the context of LP, much of the available literature addresses the first
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diagnostic component. Within the class of linear methods, Principal Component

Analysis (PCA) and Parial Least Squares (PLS) have been successfully applied to

linear systems where process data follows the assumption of normality [91], [63],

[90]. For nonlinear systems where the normality assumption is not met, indepen-

dent component analysis, kernel PCA, and neural networks demonstrate superior

performance [84], [82], [45]. Ku et al. [75] propose dynamic LP, where the process

variable vector is extended with past samples to include dynamic behavior in the LP

model. An overview of these methods is provided in [49].

Component wise residual analysis in the form of contribution plots are the pri-

marily used diagnostic tool for assessing abnormal trends in process variables [95],

[138]. The plots indicate the contribution of each variable to the monitoring statistic.

If the statistic exceeds its control limit, the variables exhibiting the largest contribu-

tions are investigated. However, LP produces a fault smearing effect wherein signal

characteristics of abnormal variables smear onto nominal variables [3]. Identifying a

probable cause becomes difficult since the results from trend analysis are ambiguous.

Yoon and MacGregor [148] propose a workaround where normalized contributions

are compared with previously diagnosed contributions in a fault library to isolate

the faulty variables. However, the method only applies to abnormal events that have

occurred before, and thus fault smearing remains an issue for unfamiliar faults.

The objective of this paper is to develop a method that can isolate abnormal

variables with an LP model without requiring prior knowledge of faults. It is assumed

that the process being monitored is nonlinear and that its variables do not obey the

assumption of normality. Autoencoders, a type of neural network designed for LP,

are chosen since neural networks are capable of fitting any nonlinear function [30].

However, it is the author’s opinion that the proposed method scales onto other LP

methods as well. The AE model is optimized with an additional sparsity constraint

to produce a sparse network, permitting one to probe into it to extract information

regarding the interconnecting structure between process variables. Once a fault

is detected, the LP model is interrogated to determine the changes in the process

variables that would have produced the obtained contribution plots.

The organization of this paper is as follows. Section 2 reviews the method of

LP in the context of PCA and AEs. Section 3 describes how AEs optimized with a

sparsity constraint can expose process variable structure. Process monitoring with

AEs and the isolation of abnormal process variables is discussed in section 4. Section

5 presents the results from diagnosing two different faults occurring in a triple tank

process. The last two sections provide a discussion and conclusion, respectively, of

the results.
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C.2 Latent Projection

Latent projection, also known as dimensionality reduction, is a numerical tech-

nique that transforms high-dimensional data to a smaller set of latent, principal

variables that retain essential information about the original data. The technique

sets a compromise between the degree of dimensionality reduction and loss of

information. Latent projection methods have seen increased application in process

monitoring as large processes with many observable variables can be monitored

with a smaller number of principal variables. Let X ∈ Rm×n represent a reference

data matrix consisting of n standardized observations of an m×1 vector of process

variables x. An optimal mapping to the latent space Z ∈ Rq×n is sought in the form:

Z =
¯
E (X) (C.1)

where
¯
E is a vector function, composed of q individual functions;

¯
E = [E1,E2, . . . ,Eq]

ᵀ

such that if zi represents the ith row vector of Z,

zi = Ei (X) (C.2)

The inverse transformation that reconstructs the original dimensionality of the data

is implemented by a second vector function
¯
D = [D1,D2, . . . ,Dm]

ᵀ:

X̂ =
¯
D (Z) (C.3)

The vector functions
¯
E and

¯
D are selected to minimize the loss of information

represented by the average squared prediction error (SPE):

L (X, X̂) =
1
n

∣∣∣∣X− X̂
∣∣∣∣2 (C.4)

C.2.1 Principal Component Analysis

Within the class of linear methods, the transformation with the least information

loss is obtained via PCA [51], [104]. PCA is a procedure that performs an orthogonal

transformation on X to produce the scores matrix T ∈ Rm×n:

T = PᵀX (C.5)

where P ∈ Rm×m is the principal component loading matrix. The score vector ti

is the ith row vector of T. The procedure has the following properties: (a) the

loading matrix P is orthonormal, i.e., PPᵀ = PP−1 = I, where I is the identity matrix,

and thus X is reproducible via X = PT; and (b) the first principal component score

t1 = pᵀ
1X has maximum variance, the second principal component score t2 = pᵀ

2X has

the second greatest variance, with additional scores up to m similarly defined. The
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loading matrix P is obtained by solving for the eigenvectors of the covariance matrix

ΣΣΣ = XᵀX/(n−1):
ΣΣΣ = PΛΛΛPᵀ (C.6)

where ΛΛΛ is a non-negative real diagonal m×m matrix whose diagonal elements are

the corresponding eigenvalues. The diagonal entries λi of ΛΛΛ are the variances of the

principal component scores ti.

Latent projection is achieved by identifying q principal components that explain

most of the predictable variation in the data. The remaining m−q principal compo-

nents are associated with common cause variations. For that purpose, the loading

matrix is partitioned as follows:

P =
[

P̂ P̃
]
, P̂ ∈ Rm×q, P̃ ∈ Rm×(m−q) (C.7)

Matrix X is then decomposed into the reconstructed data matrix X̂ and residual data

matrix X̃:

X = X̂+ X̃

= P̂T̂+ P̃T̃

= P̂P̂ᵀX+ P̃P̃ᵀX

(C.8)

Analogies can be drawn between the mapping functions in Eqs. (C.1) and (C.3)

and principal component decomposition in Eq. (C.8), namely: (a) The latent space

Z =
¯
E (X) is equivalent to the score matrix T̂ = P̂ᵀX, thus

¯
E (X), P̂ᵀX; and (b) The

reconstruction space X̂ =
¯
D (Z) is equivalent to X̂ = P̂T̂, thus

¯
D (Z), P̂T̂.

C.2.2 Autoencoders

PCA is unsuitable for dimensionality reduction of process variables that exhibit

nonlinear correlations. Doing so resembles to fitting a first order linear regression

model to a polynomial data set; the model retains the average trend of the data but

fails in describing its nonlinearity. Similarly, loading vectors in P will describe the

average linear correlations present in nonlinear data.

The existence of nonlinearly correlated variables requires for extensions of PCA

that perform nonlinear mappings between the original and reduced dimension

spaces. Such models describe the data with better accuracy than PCA for the same

number of latent variables. Nonlinear latent projection is achieved with AEs - a type

of artificial neural network designed for dimensionality reduction. The simplest form

of an AE is a multilayered, feedforward, non-recurrent neural network, illustrated

in Fig. C.1. The vector functions
¯
E and

¯
D are generated with a nonlinear basis

function approach. The network is composed of several vectors of nodes, known as
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network layers. With the exception of the input layer, each layer is a component

wise nonlinear function of a linear transformation of its previous layer. The encoder

maps the input X ∈ Rm×n to the latent variables Z ∈ Rq×n:

Ei =

σ e
1 (W

e
1X+be

1) , for i = 1

σ e
i (We

i Ei−1 +be
i ) , else

Z = σ
z (WzEN +bz)

(C.9)

where i ∈ Z : i ∈ [1,N]. We
1 is the weight matrix between the input layer and the

first encoder layer. We
i is the weight matrix between layers i−1 and i, be is the bias

at layer i, and σ e
i is the component wise activation function at layer i. Wz, bz, and

σ z are defined similarly for the latent layer. The decoder maps the latent variables

Z ∈ Rq×n to the input reconstruction X̂ ∈ Rm×n:

Di =

σd
1
(
Wd

1Z+bd
1
)
, for j = 1

σd
j

(
Wd

j D j−1 +bd
j

)
, else

X̂ = σ
x̂ (Wx̂DM +bx̂)

(C.10)

where j ∈ Z : j ∈ [1,M]. Wd
1 is the weight matrix between the latent layer and the

first decoder layer. Wd
j is the weight matrix between layers j− 1 and j, bd is the

bias at layer j, and σd
j is the component wise activation function at layer j. Wx̂,

bx̂, and σ x̂ are defined similarly for the output layer. The modifiable parameters

We
i ,be

i ,Wz,bz,Wd
j ,bd

j ,Wx̂, and bx̂ are optimized with respect to minimizing the loss

function in Eq. (C.4) via stochastic gradient descent [99].

Fig. C.1 shows that the dimensions of the encoder and decoder layers are larger

than the size of the input dimension. This permits the AE to generate complex,
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Figure C.1: Illustration of an autoencoder.
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higher dimenional features before and after data compression [102]. Since the

process data in X is usually mean-centered and real valued, the tangent hyperbolic

activation function is used at the hidden layers of Ei, Z, and D j, and the linear

identity function is used at the output layer of X̂.

C.3 Discovery of Process Knowledge

It is known that the performance of neural networks is largely determined by

their level of complexity, with maximum modeling accuracy achieved by increasing

the number and size of network layers. However, proceeding in such a direction has

a tendency of overfitting a model to the training data that then performs poorly on

validation and test data. This is undesirable in statistical fault diagnosis since due

to the disparity between the training and test set; both are sampled from the same

process, but the former describes its nominal behavior while the latter may contain

samples describing abnormal behavior. An overfitted AE corresponding too close to

nominal data does not necessarily capture the overall behavior of the process and

may perform poorly at diagnosing abnormal data.

It is favourable to use a network with minimum complexity that retains acceptable

levels of accuracy in order to prevent overfitting. A simple method is to have an

algorithm by which a large network (whose complexity is greater than is justified

by the data) is progressively trimmed down in size by identifying and deleting

redundant weights in the network. Redundant weights are defined as those that

are small in absolute magnitude. The optimization function is augmented with

the naïve elastic net penalty to promote for a small number of high-importance

weight connections, thereby shrinking the remaining weights to zero. The penalty

is a regularized regression method that linearly combines the L1 and L2 weight

decay penalties of the LASSO and ridge methods [154]. The dual objective function

becomes:

L (X, X̂,W) =
1
n

∣∣∣∣X− X̂
∣∣∣∣2 +λ1 ||W||1 +λ2 ||W||22 (C.11)

where W is the collection of weights in the AE and λ1 and λ2 control the importance

of the LASSO and ridge regressions, respectively.

Zhu and Gupta [153] introduce a magnitude-based weight pruning algorithm

that periodically removes redundant weights. Trimming occurs according to a

pruning function that sets the current sparsity percentage, i.e., the number of zero

magnitude weights divided by the total number of weights, of a network:

st = s f +(si− s f )

(
1− t− t0

n∆t

)3

for t ∈ {t0, t0 +∆t, . . . , t0 +n∆t} (C.12)
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The algorithm begins by setting the initial sparsity of the network to si after t0 training

steps. The network is then gradually pruned every ∆t steps to increase its sparsity

while permitting it to recover from any pruning-induced loss in accuracy. The order

of the pruning function enforces rapid pruning in the initial phase when redundant

weights are abundant before slowing down once fewer connections remain. Weights

are continuously pruned over n sparsity updates until the final sparsity value s f is

reached or if modeling accuracy deteriorates significantly.

Minimization of the weight-redundancy inducing optimization function in Eq.

(C.11) in combination with the pruning function in Eq. (C.12) produces a sparse

network. Consequently, the establishment of a small number of high-importance

connections encourages an interpretable variable grouping effect. It is then possible

to probe into a sparse AE to extract information from it regarding the inherent

relationships between process variables. For example, Gao et al. [39] demonstrate

the discovery of feedback control loops and downstream process variable relations

by constructing a sparse PCA model of the Tennessee Eastman process. Similarly,

Bhat and McAvoy [11] used a pruning strategy to discover correlations between

process variables existing in the context of time series prediction.

The pruning strategy is used to uncover the relationships between the process

variables of the system illustrated in Fig. C.2. In this example, the open loop control

signal v1 and measurement signal y1 are correlated with one another through open

loop subsystem A. Similarly, the open loop reference signal r1, closed loop control

signal v2, and measurement signal y2 are correlated with one another through closed

loop subsystem B.

The system is excited with random variations in v1 and r1, and the resulting

signals are sampled to generate a reference data set. The result of training an AE

to project the variables down to two dimensions along with the pruning strategy

Subsystem A Subsystem B

Controller

System
𝑟1𝑣1

𝑦1 𝑣2 𝑦2

Figure C.2: Example system.
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Figure C.3: Included are the magnitude of the weights within the network.

is illustrated in Fig. C.3. The structure of the pruned AE exposes the relationships

between the variables; v1 and y1 are projected to one of the available latent variables

whilst r1, v2, and y2 are projected to the other. This indicates that the interaction

between each group of variables can be summarized by a single variable. In effect,

the AE learns the underlying structure of the process system. Furthermore, each

group of variables is subsequently reconstructed with their corresponding latent

variable and remain independent from one another.

C.4 Online process monitoring and fault contribution analysis

Online process monitoring consists of referring new variable samples against an

"in-control" AE trained with historical data collected when only common cause varia-

tion was present in the process. New observations are reconstructed by propogating

them through the AE to obtain the residuals enew = xnew− x̂new. Previously unseen

changes in signal characteristics caused by an abnormal event can be detected by

computing the SPE (otherwise known as the Q monitoring statistic) of the residuals

[91]:

SPE =
m

∑
i=1

(xnew,i− x̂new,i)
2 (C.13)

Assuming that the SPE follows a Chi-squared distribution, a control limit is computed

with the approximate value [12]:

CLSPEAE =
σ̄2

2µ̄
χ

2
(2µ̄2/σ̄2,α) (C.14)

where µ̄ and σ̄ are the sample mean and sample standard deviation of the SPE and

α is the false alarm rate, respectively. An abnormal event is said to have occurred if

the SPE statistic crosses the control limit, signifying that the trained AE no longer

applies to the new observations.
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The common approach to contribution analysis is determining the individual

contributions of process variable i to the SPE in Eq. (C.13) [95]:

Ci = (xnew,i− x̂new,i)
2 (C.15)

The analysis is magnitude-based, and variables showing large contributions are

concluded to no longer be consistent with normal operating conditions. Operators

can focus their attention on few variables in the plant and apply their process

knowledge to infer potential causes.

The problem with magnitude-based contribution analysis is that a fault smearing

effect will generate contributions from variables that are operating within normal

conditions. This is an inherent property of latent projection methods; the compres-

sion to a smaller latent space and subsequent expansion to the original space enables

faulty and non-faulty variables to interact. The fault-smearing effect hampers fault

diagnosis since non-faulty variables are highlighted and faulty variables are con-

cealed. The effect primarily occurs within groups of correlated process variables that

are entangled in control loops and coupled across different process units. However,

erroneous contributions are also observable from variables decoupled from a faulty

subsystem if couplings exist within the latent projection model. These couplings are

removed by applying the pruning strategy in the previous section or by explicitly

building separate LP models for each decoupled system as in [90]. However, con-

tributions from normal variables coupled with abnormal variables are unavoidable

[127].

The contribution analysis proposed in this paper is the examination of linear

prediction errors, i.e. the unsquared contributions of Eq. (C.15):

Ci = xnew,i− x̂new,i (C.16)

In addition to providing a magnitude for the relative contribution of each variable

to the SPE, the sign of linear contributions indicate the direction the reconstruction

x̂new,i has shifted from xnew,i. For example, if Ci is positive then x̂new,i has shifted

negatively from xnew,i. Previous reports imply that linear contributions can determine

whether a process variable is too low or too high, but its application is explored fully

in this paper [90], [138]. More specifically, the trained AE model is interrogated

with observed output drifts in x̂new to determine changes in signal characteristics of

original process variables at the input xnew.

Process faults typically cause abnormal drifts in a subset of process variables.

Identifying the direction of these drifts permits determining a probable cause. Since

abnormal variables form a subset of xnew, propagating them through the pruned AE

will affect a subset of x̂new. A list of observed shifts in x̂new is obtained by computing
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the linear contributions in Eq. (C.16) for each xnew,i. Drifts in xnew that explain the

observed shifts are determined by interrogating the list of observed shifts in x̂new

with the underlying AE; each entry in the list is propagated backwards through

the AE, forming a connection between potential shifts at its input that explain the

observed output shift in question. Doing this for every observed shift produces

a list of causal paths. Causal paths that explain multiple observed output shifts

with the same derived input shifts are pooled together into reasoning paths. Finally,

a list of possible explanations for the detected fault is obtained by invalidating

potential reasoning paths by applying a priori knowledge about process variables

that cannot contain faulty signatures. For example, the signal characteristics of open

loop reference and open loop control signals cannot be influenced by a fault; they

are external signals whose values are uninfluenced by the process plant.

The diagnostic strategy is demonstrated on the system depicted in Fig. C.2.

Fig. C.4 shows the linear contribution plots produced by the AE in Fig. C.3 when

an abnormal positive shift occurs in v2 at sample t f . The abnormality is detected

as the SPE crosses its threshold. From the linear contribution plots xi− x̂i, the

most noticeable result is that no contributions are observed for v̂1 and ŷ1 while the

remaining variables display noticeable contributions. This is due to the pruning

strategy; the fault carried by v2 cannot influence v̂1 and ŷ1 since there is no connection

established by the AE (Fig. C.3). If, on the other hand, the AE remained unpruned

and a connection existed, the fault would smear from v2 onto v̂1 and ŷ1, regardless

if v2 is explicitly decoupled from v1 and y1 (Fig. C.2). This would generate a

contribution for v̂1 and ŷ1, hampering variable isolation by providing too much

information. The pruning strategy guarantees that faulty variable v2 smears only

onto r̂1, v̂2, and ŷ2, at least making it easier to know in which control loop the fault

resides [46].

The contribution plots demonstrate the smearing of the fault residing in v2 onto

r1 and y2; even though r1 and y1 are known to be nominal, their contribution plots

indicate otherwise. Although the plots suggest that the fault is contained within the
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Figure C.5: Illustration of causal paths.
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Figure C.4: Contribution plots. Fault occurs at sample t f .

variables of subsystem B, it is impossible to know which variables are inconsistent

with normal operating conditions by relying on the plots alone. Despite v2 providing

the largest contribution, one cannot conclude that it is the variable that explains

the fault; for example, r1, v2, and y2 could all be abnormal with v2 being the most

abnormal. An expert system would be required to interpret the observations which

could require additional effort if this is the first recorded occurrence of the fault.

The concealed abnormal variable v2 is unveiled by interrogating the causal paths

of the observed shifts in the reconstructed variables. The contribution plots indicate

a positive shift in r̂1, a negative shift in v̂2, and a positive shift in ŷ2. Causal paths are

derived by individually backpropagating the shifts through the sparse network in

Fig. C.3 whilst considering the sign of the weight connections and the monotonicity

of the tangent hyperbolic activation function. The causal paths are illustrated in Fig

C.5 and summarized in Table C.1. The crosses along the diagonal of the original

variables indicate the presence of a confliction rule that is discussed later; for now,

the rule is that a valid causal path cannot be derived from xi to x̂ j if i = j.

The causal paths are pooled into valid reasoning paths by examining compliments

and conflicts between the paths. Table C.1 reveals that: (a) causal paths 1 and 2

conflict with another with respect to y2, i.e., y2 cannot simultaneously experience

a positive and negative shift; (b) observations 2 and 3 conflict with another with

respect to r1; and (c) causal paths 1 and 3 agree with another with respect to v2.

The final results are compiled in Table C.2 and are: (a) a combined positive shift in

r̂1 and a positive shift in ŷ2 could only have been induced by positive shift in v2; and

(b) a negative shift in v̂2 could only have been induced by combined negative shift in

r1 and a negative shift in y2. An illustration of the derived reasoning paths is given in
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Table C.1: Causal paths.

Causal path r̂1 v̂2 ŷ2 r1 v2 y2

1 ↑ × ↑ ↑
2 ↓ ↓ × ↓
3 ↑ ↑ ↑ ×

Table C.2: Reasoning paths.

Reasoning path r̂1 v̂2 ŷ2 r1 v2 y2

1 ↑ ↑ ↑
2 ↓ ↓ ↓

Fig. C.6. The correct diagnosis, i.e., that v2 experienced an abnormal positive drift,

is obtained by considering that it is known a priori that r1 is an open loop signal and

thus unable to carry any indication of a fault. This leaves the latter results as the

only viable and correct conclusion; that the fault detected via statistical means could

only have been induced by a positive drift in the signal of v2.

The aforementioned confliction rule, namely, a causal path from xi to x̂ j is invalid

if i = j, is illustrated by reference to Fig. C.7. Two process variables are considered

for ease of illustration. It is known a priori that x1 is an open loop signal, and thus

its signal characteristic is insensitive to a fault. x1 and x2 are positively correlated
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Figure C.6: Illustration of reasoning paths.
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Figure C.7: Monitoring of two variables.

when the process exists in a state of statistical control, as depicted by the principal

axis of variance. The process is monitored via the SPE between the original variables

x = (x1,x2) and the reconstructed variables x̂ = (x̂1, x̂2) residing on the principal axis.

The variable pair xn is the last indication that the process is in control. The process

unexpectedly experiences a fault that causes a positive shift in x2 by a magnitude of

f , driving the process to x f . Latent projection along the principal axis generates the

reconstruction x̂ f and, as a result of fault smearing, generates the positive shift S1(x1)

in x̂1 and negative shift S1(x2) in x̂2. Fig. C.8 illustrates the causal paths derived

from backpropagating the observed reconstruction shifts. Here, the confliction rule

is neglected, e.g., a viable causal path for a negative shift in x̂2 is a negative shift in

x2. Based on the prior knowledge that x1 cannot explain the presence of the fault,
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Figure C.8: Causal paths obtained from not abiding to the confliction rule. Crosses indicate

path invalidation due to a priori knowledge. Weight connections are positive.
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one is left with two plausible explanations: the fault was caused either by a positive

or negative shift in x2. This result is ambiguous as the two explanations contradict

each other.

The contradiction is resolved by considering the displacement between the

reconstruction x̂ f and the last indicated nominal pair xn. What is actually being

interrogated for when backpropagating the observed reconstruction shifts is the

effect an abnormal shift in xn will have on its displacement from its reconstruction

x̂n. In other words, one desires the component wise shifts in xn that explains the shift

of x̂n to x̂ f . Hence the causal path in the right causal path of Fig. C.8 is logical; a

negative shift in xn will cause x̂n to move towards the bottom-left end of the principal

axis, coinciding to a negative shift in x̂2.

The ambiguous causal explanation obtained for x2 stems from it being the

faulty variable. The correct explanation, i.e., x2 has increased, is derived if the

true shift S2(x2) is backpropogated through the AE instead of the observed shift

S1(x2). Unfortunately, S2(x1), which relies on the sample prior to the fault, is

unattainable since contributions in Eq. (C.16) consider new samples. However, Fig.

C.7 demonstrates that latent projection of x f produces correct observed shifts for x̂ j

from a faulty variable xi as long as i 6= j; the observed shift S1(x1) corresponds, both

in direction and absolute magnitude, to the true shift S2(x1). This is the incentive

for the confliction rule, i.e., that the faulty variable xi will generate a correct shift

for x̂ j if i 6= j and an incorrect shift if i = j. Enforcing the confliction rule before

applying a priori knowledge produces the causal paths in Fig. C.9. After applying

the a priori knowledge about x1 the correct conclusion is derived, namely that the

observed positive shift in x̂1 could only have been caused by a positive shift in x2.

C.5 Case Study: The Triple Tank Process

The methods presented in the previous sections are applied on the triple tank

process (TTP) in this section. The TTP - a multivariate, nonlinear process - is a

variant of the quadruple tank process [64]. A schematic drawing of the TTP is

given in Fig. C.10. The liquid supplying the upper tanks is transported from a large

sump by the means of two gear pumps. Liquid flows out from the bottom of each
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Figure C.9: Causal paths obtained from abiding to the confliction rule. Crosses indicate path

invalidation due to a priori knowledge. Weight connections are positive.
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tank, with the liquid from the upper right tank first supplying the lower tank before

sequentially flowing returning to the sump. The level of each tank is monitored

with a voltage-based level measurement device. The objective is to control the

liquid levels in the upper left and lower right tanks. The set of nonlinear differential

equations describing the evolution of the liquid level of each tank are derived by

applying mass balances and Bernouilli’s law:

dh1

dt
=− a1

A1

√
2gh1 +

1
2

k1

A1
v1(1+η1)

dh2

dt
=− a2

A2

√
2gh2 +

1
2

k1

A2
v1(1+η1)+

k2

A2
v2(1+η2)

dh3

dt
=− a3

A3

√
2gh3 +

a2

A3

√
2gh2

(C.17)

where Ai is the cross-section of tank i and ai is the cross-section of its outlet hole. The

liquid level of tank i is hi and g is acceleration due to gravity. The voltage applied

to pump i is vi and the corresponding flow is kivi(1+ηi), where ηi ∈ R is zero mean

Gaussian noise emitted from pump i. The system is measured and actuated discretely

with a sample time of Ts. The measured level signals at sample k are:

yi[k] = kchi[k]+wi[k] (C.18)

𝒓𝟏

𝒆𝟏

𝒉𝟏 𝒉𝟐

𝒉𝟑

𝒚𝟑

𝒚𝟏

𝒗𝟏 𝒗𝟐

𝒓𝟐

𝒚𝟐

𝐾2𝐾1

- Signal flow- Liquid flow

𝒆𝟐

+ - +-

Figure C.10: A schematic of the TTP illustrating the connectivity of the tanks and location of

the pumps, dual valves, and the level measurement devices. Included are the decentralized

feedback loops.
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where wi[k] ∈R is zero mean measurement noise with Gaussian distribution for level

signal i. For decentralized control, the error terms are:

e1[k] = r1[k]− y1[k]

e2[k] = r2[k]− y3[k]
(C.19)

where r1[k] and r2[k] are reference signals for level signals y1[k] and y3[k], respectively.

The error terms are minimized by a discrete PI controller. The closed loop control

laws for the process inputs are:

Ki : vi[k] = KPei[k]+KI

k

∑
j=1

ei[ j]Ts (C.20)

Here KP and KI denote the proportional and integral gains, respectively, of the PI

controller. Monte Carlo simulations were performed on the TTP in order to generate

data sets that exhibited nonlinear correlations between its process variables. The

data sets were used to train, validate, and test an AE model that monitored the

process. The uncertain parameters were the reference signals r1 and r2. Values

for r1 and r2 were sampled from two independent uniform distributions. Process,

controller, and noise parameters are listed Table C.3 [64].

Since probing a sparse AE may reveal the steady state interaction between process

variables, it is relevant to determine them a priori for validation purposes. Fig. C.11

displays a time series plot from inducing independent step changes in the reference

variables r1 and r2. The plots demonstrate that: (a) a step change in r1 induces

a dynamic change in the steady state values of y1, v1, and v2, while the steady

state values of y2 and y3 remain unaffected except for a dynamic change that dies

out; and (b) a step change in r2 induces a transient change in the steady state

values of y2, y3, and v2 whilst having no influence on y1 and v1. The correlation sets

C1 = {r1,y1,v1,v2} and C2 = {r2,y2,y3,v2} are determined from the plots.

Table C.3: List of Parameters

Process param. Noise param.

A1,A3 28 cm2 ηi N (0,0.1)

A2 32 cm2 wi N (0,0.0005)

a1,a3 0.071 cm2

a2 0.057 cm2

kc 1 V/cm Controller param.

k1 3.33 cm3/Vs Ts 10

k2 3.35 cm3/Vs KP 20

g 981 cm/s2 KI 0.25
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C.5.1 AE Training and process discovery

The TTP is simulated with random step changes occurring every 200 time steps

in reference signals r1 and r2. The training set Xt (consisting of 300,000 time

steps) and the validation set Xv (consisting of 30,000 time steps) are sampled to

train and validate an AE. Fig. C.12 illustrates the AE obtained from minimizing

the loss function in Eq. (C.11) and following the aforementioned pruning strategy.

The pruning parameters were s f = 0.9, si = 0.7, t0 = 5000, ∆t = 400, and n = 300.

The tangent hyperbolic function was applied at the hidden layers of the AE. The

network is partitioned into two separate subnetworks in Fig. C.13 to clarify the

interconnectivity of the AE; each subnetwork shows the propagation of the inputs

to the reconstructions through a single latent variable in Z. The subnetworks

reveal the process variable relationships, with subnetwork A comprising variables of

(a)

(b)

Figure C.11: Time series of simulated process variables where (a) r2 is changed whilst r1 is

held fixed and (b) r1 is changed whilst r2 is held fixed. Red lines indicate the references for

the measurement.
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Figure C.12: Illustration of trained AE. Biases have been excluded from the illustration.

correlation set C1 and subnetwork B comprising variables of set C2 with the exception

of v2. These results indicate that, given the training parameters, information of

variable v2 is not required to perform an accurate reconstruction of r̂2, ŷ1, and ŷ2 but

that information about variables r2, y2, and y3 is required to perform an accurate

reconstruction of v̂2. This has the property that changes in the signal characteristics

of v2 due to a fault will not smear to r̂2, ŷ1, and ŷ2, despite them being in the same

control loop.

A monitoring control limit is determined from the SPE of validation set Xv and

setting the false alarm rate α = 0.01 in Eq. (C.14), implying that a false alarm

occurs every 100 samples. Fig. C.14 displays the SPE from propagating the first

800 samples of Xv through the AE. The SPE increases immediately when a reference

change occurs before returning underneath the control limit. The sharp increases

occur because the AE, being a static LP model, only learns about the steady-state

nature of the TTP. Reference changes induce temporary dynamics in the TTP which

the AE has difficulty processing.
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Figure C.13: Partitioning of trained AE, showing variable interaction. Biases have been

excluded from the illustration.
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C.5.2 Fault diagnosis

Two fault sets X f ,1 and X f ,2 were generated by simulating the TTP with a bias

in sensors 2 and 1, respectively. Each bias was introduced after 100 time steps via

an additive fault; y2[k] = kch2[k]+w2[k]+ f1 for X f ,1 and y1[k] = kch1[k]+w1[k]+ f2

for X f ,2. Like with Xt and Xv, random step changes in r1 and r2 occurred every 200

time steps. The influence of faults on the signal characteristics of TTP variables are

determined prior to diagnosis so that results from fault propagation analysis can be

verified. Fig. C.15 displays the time series of the first 200 samples of X f ,1, and X f ,2.

Table C.4 summarizes the shifts of each signal after a fault is introduced. Since the

AE performs steady state analysis, the results expected from analysis of X f ,1 and X f ,2

are: (a) Fault f1 induces a negative shift in y3; and (b) fault f2 induces a positive

shift in v1 and a negative shift in v2. The faults also demonstrate different complexity

[148]; f1 is a simple fault that occurs at sensor 2 and its effect is not propagated into

other variables, whereas f2 is a complex fault that occurs at sensor 1 but its effects

propagates to the two gear pumps.

Contribution plots from propagating X f ,1 through the AE are displayed in Fig.

C.16. The fault f1 is detected after its onset at sample t f when the SPE crosses its

control limit. Simultaneously, the contribution plots indicate a negative shift in

r̂2, a negative shift in v̂2, a positive shift in ŷ2, and a negative shift in ŷ3. These

variables encompass subnetwork A in Fig. C.13. The causal paths derived from

individually backpropagating each of the four observations through subnetwork A

are summarized in Table C.5. Causal path 3 conflicts with causal paths 1, 2, and

4, since there is a dispute about the drifts of r2 and y3, and is thus considered a

valid reasoning path. Causal paths 1, 2, and 4 compliment each other with respect

to the drifts of r2, y2, and y3 and are thus combined into a valid reasoning path.

The derived reasoning paths are presented in Table C.6 and visualized in Fig. C.17.

Given the a priori knowledge that the characteristics of open loop reference signal r2

cannot be influenced by a fault, the implications of reasoning path 1 , i.e., that the

observed positive shift in ŷ2 is caused by a positive drift in r2 and y3, is invalid. By

Figure C.14: SPE of validation set and the control limit.
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the process of elimination, reasoning path 2 is the only viable explanation for the

detected fault, i.e., that it could only have been induced by a negative process drift

in y2. This conclusion coincides with the observed steady-state influences of fault f1

presented in Table C.4.

The same approach to diagnosis is applied to the contribution plots in Fig. C.18

obtained by propagating X f ,2 through the AE. The fault is detected when the SPE

crosses its control limit at the onset of fault f2 at time t f , and the individual linear

contribution plots reveal a positive shift in r̂1, a negative shift in v̂1, a positive shift

in v̂2, and a positive shift in ŷ1. These variables are encompassed by subnetwork B

(Fig. C.13). Causal paths derived by backpropagating each of the four observations

through subnetwork B are presented in Table C.7. By considering causal path com-

pliments and conflicts, two reasoning paths are derived, with the former comprising

causal paths 1 and 4 and the latter paths 2 and 3. The reasoning paths are presented

in Table C.8 and their propogation is visualized in Fig. C.19. Since it is known a

(a)

(b)

Figure C.15: Influence of fault at time t f on (left) measurements and (right) control inputs.

Red lines indicate the references for the measurements.
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Table C.4: Influence of faults on variables with - denoting no influence, ∆ denoting a

temporary change that dies out, ↑ denoting a permanent positive drift in the steady state

value, and ↓ denoting a negative drift.

Fault r1 r2 v1 v2 y1 y2 y3

Fault 1 - - - - - ↓ -

Fault 2 - - ↑ ↓ ∆ ∆ ∆

priori that the characteristic of open loop reference signal r1 is insensitive to faults,

reasoning path 2 is an invalid explanation of the fault. Reasoning path 1 is left as the

only viable explanation for the detected fault, i.e., that it was caused by a positive

drift in v1 and a negative drift in v2. This conclusion correspond with the observed

influences of fault f3 presented in Table C.4.

C.6 Discussion

Since the LP model in this paper is a static AE, diagnosis performs poorly when

process variable samples contain temporal information. Reference changes (which

induce dynamic process behavior) cause the SPE signal of Fig. C.14 to exceed its

control limit, generating false alarms and hampering diagnosis. The process must

reach steady-state to confirm that a false alarm has occurred, visualized by the

Figure C.16: Contribution plots of X f ,1.
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Table C.5: Causal paths of f1.

Causal path r̂2 v̂2 ŷ2 ŷ3 r2 y2 y3

1 ↓ × ↓ ↓
2 ↓ ↓ ↓ ↓
3 ↑ ↑ × ↑
4 ↓ ↓ ↓ ×

Table C.6: Reasoning paths of f1.

Reasoning path r̂2 v̂2 ŷ2 ŷ3 r2 y2 y3

1 ↑ ↑ ↑
2 ↓ ↓ ↓ ↓

SPE returning to below the control limit. This behavior is explained by reference

to Fig. C.20. Transient samples, i.e., samples whose variance are primarily a

result of reference changes, and steady-state samples, i.e., samples whose variance

are explained by noise, of original variables (y1,v1) from validation set Xv are

displayed in a scatter plot. Of interest are the reconstructed variables (ŷ1, v̂1) residing

along the principal axis of variance from the AE in Fig. C.12; the principal axis

of a conventional PCA model is included to demonstrate the superiority of an

AE at capturing the nonlinear steady-state correlation between the data. Data
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Figure C.17: Illustration of reasoning paths of f1.
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sampled during a transient phase is further away from the principal axis, i.e., its

reconstruction, thereby generating a large SPE per Eq. (C.13).

The effect of reference changes is also observable in Figs. C.16 and C.18;

contributions, with r1− r̂1 and y1− ŷ1 in particular, abruptly fluctuate about the

origin at the onset of a reference change such their interpretation, i.e., whether

variable x̂new,i has shifted positively or negatively, changes. Like with Fig. C.14, the

process must reach steady-state before the plots are evaluated for shifts in x̂new,i.

This is especially undesirable since the process exists in a faulty state and a quick

diagnosis is required.

Figs. C.16 and C.18 indicate that the magnitude of steady-state contributions vary

as a result of reference changes. This is explained by reference to Fig. C.20. Included

are select samples for (y1,v1) and (ŷ1, v̂1) from X f ,2. Here, the mean contribution

Cy1,1 is larger in magnitude than Cy1,2. This is observable in the plot of y1− ŷ1 in Fig.

C.18, as the average contribution shifts towards the origin from samples [501-600] to

samples [701-800]. Varying contributions occur because the nonlinear steady-state

trend between y1 and v1 is explained by a nonlinear principal axis of variance. Since

the AE minimizes the loss of information between (y1,v1) and (ŷ1, v̂1), it learns a

projection whose direction varies with the nonlinear correlation of the nominal data,

causing the magnitude of the contributions to vary as well. This exemplifies the

limitation of magnitude-based contribution analysis, as varying contributions may

Figure C.18: Contribution plots of X f ,2.
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Table C.7: Causal paths of f2.

Causal path r̂1 v̂1 v̂2 ŷ1 r1 v1 v2 y1

1 ↑ × ↑ ↓ ↑
2 ↓ ↓ × ↑ ↓
3 ↑ ↓ ↓ × ↓
4 ↑ ↑ ↑ ↓ ×

Table C.8: Reasoning paths of f2.

Reasoning path r̂1 v̂1 v̂2 ŷ1 r1 v1 v2 y1

1 ↑ ↑ ↑ ↓
2 ↓ ↑ ↓ ↓

yield different diagnosis for the same fault.

The limitation of this paper is that the examples are simple. Each produced

two reasoning paths with one invalidated with a priori knowledge, resulting with a

correct diagnosis. It is suspected that one may obtain more than two reasoning paths

for larger systems and that it may be impossible invalidate some of them. However,

one will still obtain a list of viable process variable drifts that explain the fault. This

is an improvement over relying solely on magnitude-based contribution analysis.

It is important to remember that results from statistical fault diagnosis do not
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Figure C.19: Illustration of reasoning paths of f2.
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Figure C.20: Scatter plot of v1 and y1 of the validation set Xv as well as select samples from

X f ,2.

provide a cause of a fault, especially for complex faults. They can, however, form a

basis for proposing a probable cause by an expert system. For example, the complex

fault f2 originates at sensor y1 but its influence propagates to pump signals v1 and

v2. However, this does not mean that there is something wrong with the pumps. An

expert system is needed to decipher the cause of the isolated shifts of signals v1 and

v2.

C.7 Conclusion

In this paper, a sparse AE for detection and isolation of abnormal process variable

drifts is presented. In the proposed method, a static LP model is trained to perform

data compression of dynamic process data. The naïve elastic net regularization

penalty is introduced in the training scheme to shrink redundant interconnecting

weights. A pruning algorithm then periodically removes (forcing to zero) less salient

connections, ultimately producing a sparse network. Zeroing out irrelevant connec-

tions provides better interpretability of the network; correlated process variables

are grouped together when projected to the latent space, leading to the discovery of
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process knowledge.

Graph properties of the sparse AE are derived to give insight into its fault isolation

capabilities. Since the activation function and final interconnectivity of hidden nodes

is known, it is possible to predict the influence of abnormal process drifts in a subset

of process variables on the drift in the reconstruction of remaining variables. When

a fault is detected, matching between observed reconstruction drifts with prior

predictions is performed to isolate the process variables that contain fault signatures.
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Abstract:

An autoencoder (AE) is considered a nonlinear generalization of principal component

analysis. An AE is a type of feedforward neural network configured for feature

extraction that identifies nonlinear correlations among variables. From this, AEs

are used for condition monitoring of nonlinear processes: a process is considered

to be operating under abnormal conditions if the features of new process variable

observations are inconsistent with the features of nominal observations. Reports in

the process monitoring literature are unclear in regards to the selection of model

complexity for identifying nonlinear correlations of a complex process variable space.

The common approach is to include several hidden layers that gradually reduce

the original variable space, while other reports propose AEs without any hidden

layers. These configurations render an AE unable to perform feature extraction, thus

reducing its performance at process monitoring. In this paper, an AE is trained to

perform feature extraction for nonlinearly correlated data sets. The objective is to

seek a principal curve, which is a smooth one-dimensional curve that passes through

the middle of an m-dimensional variable space, providing a nonlinear joint summary

of the variables. Three examples are provided to illustrate the use of AEs to identify

principal curves. Results show that an AE successfully reduces dimensionality and

provides a descriptive principal curve only if the AE includes additional hidden layers

with dimensions larger than the original variable space.

*Corresponding author. E-mail: asdah@elektro.dtu.dk
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D.1 Introduction

The task of extracting statistical information from process variables is an integral

component of statistical process monitoring (SPM). Several techniques for obtaining

salient information from variables have been proposed in the literature [129], but of

interest in this paper is feature extraction: a mathematical procedure for dimension-

ality reduction that consists of deriving low-dimensional quantities intended to be

informative about a high-dimensional variable vector. Feature extraction facilitates

anomaly detection [19]. By comparing the features of new observations to those of a

reference data set, abnormal observations are identified if their features deviate from

the reference set’s features. This technique translates to SPM where the reference set

consists of historical process data sampled from a process operating under nominal

conditions [91].

It is a common occurrence that process variables are correlated with one another.

For example, control and measurements signals are correlated via an input-output

relationship between actuators and process states. Several sensors may monitor

the same physical property, and different measured properties may be related

to one another via a physical law. As pointed out by Kramer: “The superficial
dimensionality of process data, or the number of individual observations constituting

one measurement vector, is often greater than its intrinsic dimensionality, the number

of independent variables underlying the significant non-random variations in the

observations” [72]. Fundamentally, feature extraction exploits variable correlations

to derive informative features. SPM based on feature extraction thus consists of

querying whether correlations of new process variable observations coincide with

those established by a feature extraction model.

In principle, feature extraction methods obtain a set of principal variables with

a dimensionality-reducing transformation of the original variables. Ideally, the

dimensionality of the reduced representation should correspond to the intrinsic

dimensionality of the data. The optimal linear transformation is given by principal

component analysis (PCA) [63]. Features embedded in the linear subspace are

derived via an orthogonal vector transformation of the original variables. The

transformation given by PCA preserves information if variables are sampled from

a multivariate distribution that satisfies the assumption of normality. PCA has

demonstrated success in the monitoring of linear processes, primarily due to its

simplistic nature. Independent component analysis (ICA) may be applied if the

normality assumption is not met [53]. ICA was mainly designed for blind-source

separation, which is the task of determining independent source features from a

set of multivariate non-normal distributed variables that are a linear mixture of the
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sources [126]. ICA thus finds a transformation that linearly decomposes the original

variables into a set of mutually independent feature components. ICA sees great

success to process monitoring when the source of significant variation in process

variables is unknown and cannot be attributed to common cause variation [83],

[84].

Nonlinear feature extraction methods have been proposed for addressing non-

linear variable correlations. Kernel PCA (KPCA) maps the original variable space

to a higher-dimensional space with a nonlinear kernel function [82], [119], [100].

Feature extraction is achieved by performing PCA in the higher-dimensional space.

Autoencoders (AEs) are neural networks configured for feature extraction [50], [45],

[46]. An AE employs a basis function approach to solve a nonlinear optimization

function; it learns a transformation of the original variables to a reduced space with

the constraint that the original variables can be reconstructed from the reduced

space with minimal loss of information.

A compelling trait of AEs is the flexibility in varying their model complexity. An

AE may comprise multiple hidden layers with varying dimensions, as well as employ

different nonlinear activation functions at its network neurons. As a matter of fact,

an AE given certain optimization constraints can uncover the transformations of

other feature extraction techniques frequently employed for process monitoring. For

instance, an AE composed of linear hidden layers will yield a feature extraction

mapping that corresponds to the subspace projection obtained from PCA [7]. An AE

augmented with the additional constraint that the latent variables within its feature

space are as independent as possible will optimize its transformations that are then

equivalent to ICA [67]. Le at al. [76] show than an AE can learn an optimal kernel

function that offers superior feature extraction performance than KPCA.

Reports in the literature are unclear in regards to the number and dimension of

hidden layers needed for monitoring nonlinear processes. Kramer [72] reported in

1991 that AEs may require hidden layers with dimensions larger than the original

variable space, i.e., an expanding layer, when performing feature extraction for

complex nonlinear variable distributions. Despite Kramer’s findings, reports in

the process monitoring literature tend to propose AEs configured to constrict the

original variable space without higher-dimensional hidden layers [86], [61], [141].

Some reports propose AEs lacking hidden layers altogether, such as in the works

of Cheng et al. [22]. In their work, an AE underperformed at extracting features

from a parabolic data distribution. To improve modelling performance, the AE was

augmented with additional functionalities present in variational AEs and recurrent

neural networks, which significantly increased its implementation complexity. It

begs the question whether the original problem, that is, extracting features from a
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parabolic data set, could be solved by simply including a hidden layer that expanded

upon the original variable space.

An important component to AE-based anomaly detection is training the network

to learn the correlations of nominal process variables. In this paper, a study is

performed on the significance of the hidden layers of an AE. More specifically, the

number and size of hidden layers were varied to analyze their effects on an AE’s

performance at extracting features from nonlinear data sets. Three two-dimensional

data sets are provided for the analysis. The key result in this study was that complex

data sets can be reduced to lower dimensions as long as the AE includes hidden

layers that expand the dimension of the original variables space. Consequently, an

AE employed for process monitoring will observe improved performance in anomaly

detection since it will have learned an appropriate representation of nominal process

variable correlations.

The organization of the paper is as follows. Principal curves, which are one-

dimensional curves that summarize the joint distribution of multivariate variables,

are discussed in section 2. Section 3 provides a description of latent projection

and AEs. The concept behind transforming an original variable vector to a higher

dimensional space in order to improve the fitting of numerical models is presented in

section 4. Section 5 demonstrates the effects of AE model complexity on its ability to

perform feature extraction. More specifically, the effects of including hidden network

layers that expand the original variable space are investigated. The last two sections

provide a discussion and conclusion of the results.

D.2 Principal Curves

Consider a data set consisting of n observations of m variables. It is sometimes

the case that one wishes to summarize the joint statistical characteristics exhibited by

the data. For example, linear regression models the relationship between dependent

and independent variables. In certain situations, one may not have a preference

for which variables are labelled as dependent and independent (such as in image

analysis) but would still like to summarize their joint characteristics. An alternative

is to seek a q-dimensional principal manifold that summarizes an m-dimensional

variable space, where q < m [47]. The chosen dimension q depends on the desired

summary.

This paper directs its focus on one-dimensional principal manifolds called prin-

cipal curves. A principal curve is a smooth, one-dimensional curve that traverses

through the center of an m dimensional variable space. Its shape provides a nonlin-

ear summary of the data by minimizing the sum of squared deviations in all of the
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variables to the curve. The curve is a vector f(λ ) of m functions of a single variable

λ . These functions are called the coordinate functions. λ parameterizes the curve

and provides a total ordering along it. Let x ∈ Rm be a continuous random vector.

The curve f is called a principal curve of x if

E(x|λf(x) = λ ) = f(λ ) (D.1)

where the projection index λf : Rm→ R1 is defined as

λf = sup
λ

{λ : ||x− f(λ )||= inf
µ
||x− f(µ)||} (D.2)

The projection index λf(x) is the value of λ for which f(λ ) is closest to x. Fig. D.1

illustrates the definition of a principal curve in two dimensions. Here, f(λ ) is a

principal curve if it passes through a series of projections that minimize the sum of

squared deviations of samples that project there orthogonally to f(λ ). Naturally, f(λ )
is purely an estimation of the principal curve that summarizes the distribution of x.

Its approximation will further resemble its theoretical counterpart as more samples

are drawn from x.

The definition of a principal curve does not imply that each sample x has a unique

projection index λf(x). It is plausible that a single point f(λ ) is shared by multiple

x1

x2

f(λ )

xi

x j

λf(xi) = λf(xj)

Samples
Projection points

Figure D.1: Principal curve f that summarizes a given set of samples. The points xi and x j

share a projection point. Their projection vectors are a scaled version of the other.
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observations. This is illustrated in Fig. D.1 where 96 observations are summarized

by a principal curve consisting of 24 projections. Each projection point is the average

of, and thus shared by, four observations. Multiple samples residing on the same

projection vector is attributed to noise and other common cause variations occurring

in the direction of the projection vector.

D.3 Latent Projection and Autoencoders

Latent projection techniques reduce the dimension of a variable space to a smaller

set of latent variables that retain principal information about the original variables.

The procedure is formulated as a machine learning problem. Initially, n observations

of the variable vector x ∈ Rm×1 are sampled to produce the reference data matrix

X ∈ Rm×n. An optimal data reduction transformation to the latent space Z ∈ Rn×q is

sought for. The learning criteria is that the latent representation Z retains essential

information about the original set X.

Formulating the requirement for Z to retain information about X is difficult if

no a priori knowledge about the statistical properties of the original variable space

exists. Therefore, the latent projection technique is augmented with a data expansion

procedure; the reduced space Z is used to reconstruct the original variable space

X̂ ∈Rn×m. Combining the data reduction and expansion learning problems promotes

an LP model to learn a transformation for Z that retains essential information

required to reproduce the original variable space [50]. Data compression and de-

compression are selected to minimize the loss of information represented by the

average squared prediction error:

L (X, X̂) =
1
n

∣∣∣∣X− X̂
∣∣∣∣2 (D.3)

An autoencoder is a type of artificial neural network that learns latent representa-

tions for a data set [18]. The simplest form of an AE is a multilayered, feedforward,

non-recurrent neural network, illustrated in Fig. D.2. The encoder part corresponds

to the compression of X to Z and the decoder part corresponds to the subsequent

expansion of Z to X̂. The encoder and decoder transformations are generated with a

nonlinear basis function approach. The network is composed of several vectors of

nodes, known as network layers. With the exception of the input layer, each layer is

a component wise nonlinear function of a linear transformation of its previous layer.
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The encoder maps the input X ∈ Rm×n to the latent variables Z ∈ Rq×n:

Ei =

σ e
1 (W

e
1X+be

1) , for i = 1

σ e
i (We

i Ei−1 +be
i ) , else

Z = σ
z (WzEN +bz)

(D.4)

where i ∈ Z : i ∈ [1,N]. We
1 is the weight matrix between the input layer and the first

encoder layer. We
i is the weight matrix between layers i−1 and i, be is the bias at

layer i, and σ e
i is the component wise activation function at layer i. Wz, bz, and

σ z are defined similarly for the latent layer. The decoder maps the latent variables

Z ∈ Rq×n to the input reconstruction X̂ ∈ Rm×n:

D j =

σd
1
(
Wd

1Z+bd
1
)
, for j = 1

σd
j

(
Wd

j D j−1 +bd
j

)
, else

X̂ = σ
x̂ (Wx̂DM +bx̂)

(D.5)

where j ∈ Z : j ∈ [1,M]. Wd
1 is the weight matrix between the latent layer and the

first decoder layer. Wd
j is the weight matrix between layers j− 1 and j, bd is the

bias at layer j, and σd
j is the component wise activation function at layer j. Wx̂,

bx̂, and σ x̂ are defined similarly for the output layer. The modifiable parameters

We
i ,be

i ,Wz,bz,Wd
j ,bd

j ,Wx̂, and bx̂ are optimized with respect to minimizing the loss

function in Eq. (D.3) via stochastic gradient descent [99].

The AE estimates a principal curve of a data set by setting the dimension of its

latent layer q = 1 (thus Z , z1) [32], [92]. Minimization of Eq. (D.3) generates

the projection points x̂ that minimize the sum of squared deviations of observations

𝑬1 𝑬𝑁

𝒁

𝑿

𝑫𝑀𝑫1

෡𝑿

Encoder ℰ Decoder 𝒟

Encoded
representation

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

Figure D.2: Illustration of an autoencoder.
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for x that project there. The projection points are summarized by a projection

curve parameterized by f(z1) that is an estimate for the theoretical principal curve

f(λ ). The requirement for orthagonal projections is met implicitly by Eq. (D.3) as

orthagonal projections tend to minimize Eq. (D.3). However, as will be shown later,

this depends on the complexity of the LP model.

D.4 Transforming variables to a higher dimensional space

It is sometimes the case that a model is not suitable for modeling a particular

data set. This occurs when the basis of the method does not satisfy the complexity

of the data. Consider the data sets X1 and X2 shown in Fig. D.3(a). The discrepancy

between the two sets is explained by the radius of the circles they form centred at

the origin. The task is to find a hyperplane, i.e., a one-dimensional straight line, that

linearly classifies the data points. It is evident that a linear basis for the classifier

is insufficient - the nonlinear complexity of the data prohibits the existence of of

a straight line that separates it. Therefore, in the data’s current form, a nonlinear

decision boundary is required to partition the data. In such a situation, mapping

the data to a higher dimensional space produces new features that enhance model

performance. Fig. D.3(b) displays the data mapped to a three-dimensional space.

The z axis corresponds to the distance of data points to the origin in the xy plane,

i.e., the radius of the circles formed by the data. The disparity between X1 and X2

is revealed by the z axis, such that a hyperplane that separates X1 and X2 is easily

found. In the example above, it is impossible for a linear classifier to separate X1 and

X2 in the original space. However, mapping the data to a three-dimensional space

produces clusters in the data that can be better separated than in the original space -

the data has been augmented but the approach to classification remains unchanged.

It is reiterated that although the data is augmented with a third variable z, the basis

of the classifier remains linear.

Mapping the predictors of a model to a higher dimensional space prior to fitting

the model forms the basis of Kernel methods [120]. They are a class of algorithms

that turn a linear model into a nonlinear model by mapping its predictors with

a nonlinear kernel function. In the example in Fig. D.3(b), a kernel function is

used to compute z. The motive for using kernel methods is that expanding the

original variable space makes it possible for variable relations, that were impossible

to model in the original variable space, to be modeled in the higher dimensional

space. A similar functionality is attained with FNNs by including hidden layers

whose dimensions are larger than the input layer. In such a configuration, the

expanding FNN can learn a transformation to a higher dimensional space that aids
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in its ultimate modeling task. It is noted that the Kernel method is considered as

a separate method that augments the original machine learning task, while a FNN

employing a hidden layer that expands the original variable space does not change

its formulation.

An expanding AE is an AE with a hidden layer in its encoder and decoder parts

whose dimension is larger than the original variable space. An example of an

expanding AE with a 7-9-3-2-3-9-7 configuration is shown in Fig. D.4(b). Kramer

[72] reported that a condensing AE, that is, an AE that lacks an expanding layer,

is incapable of modeling certain data distributions describing complex, nonlinear

one dimensional manifolds such as a circle. Kramer showed that accptable model

performance required the inclusion of expanding hidden layers. The works of

Scholz et al. [117], [116] further demonstrate the need for expanding AEs for one

dimensional manifolds existing in higher order spaces, such as a circle or a helix.

Regardless of their depth, AEs, and possibly all forms of neural networks, often

require layers wider than the input space to handle data with certain topological

properties, such as links, intersections, or sampled from a multivalued function

[102], [112].

Although the need for AEs to include expanding layers was proclaimed in the 90s

and early 2000s, reports in the process monitoring literature are unclear regarding

this requirement. One approach is to include no additional hidden layers, thereby

configuring an AE to consist of an original variable layer, a latent layer, and a

reconstruction layer [86], [61], [141]. Fig. D.4(c) shows such an AE. Although

(a) (b)

Figure D.3: Scatter plot of (a) data sets X1 and X2 and (b) mapping of the data to a

three-dimensional space with z = x2 + y2.
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this configuration is reportedly sufficient for feature extraction of nonlinear process

variables, it begs the question of whether the process is ultimately nonlinear since

Bourlard and Kamp [13] show that AEs lacking hidden layers learn linear PCA-like

projections. The cause for this is that neuron activations can remain in the linear

regions of nonlinear activation functions such as the sigmoid or tangent hyperbolic.

A second approach is include hidden network layers to assemble a deep AE, also

referred to as a stacked AE, that resembles the AE in Fig. D.4(a). In this configuration,

the original variable space is gradually compressed to the feature space, and then

gradually expanded to the reconstruction space. This effectively increases the

modelling capabilities of the AE by introducing additional modelling parameters.

However, Kramer [72] shows that, for certain nonlinear data distributions, adding

additional layers may not increase modelling capabilities unless the hidden layers

expand the original variable space.
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Figure D.4: Illustration of (a) an expanding AE, (b) a single-layer AE, and (c) a condensing

AE.
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D.5 Result

The effects of hidden layers on an AE’s performance at fitting a principal curve

for a two-dimensional variable distribution are analysed in this section.

D.5.1 Example 1: Parabolic distribution

Consider the following nonlinear process [134]:

t = U [−0.5,0.5]

q1 = t

q2 = t2

x1 = x1 +N (0,0.02)

x2 = x2 +N (0,0.02)

(D.6)

where t is the underlying variable of the process and x1 and x2 are the measure-

ments of the state variables q1 and q2. Furthermore, U [a,b] denotes the uniform

distribution in the range (a,b) and N (µ,σ2) the normal distribution with mean µ

and variance σ2. The process is sampled to produce the training set Xt (consisting

of 10,000 samples) and validation set Xv (consisting of 5,000 samples). Fig. D.5

shows the validation set Xv. The data may be summarized with a parabolic principal

curve. The implications of the process’s characterization in Eq. (D.6) are that (a)

the principal curve describes a nonlinear relationship between x1 and x2; and (b)

x1 is a multivalued variable along the curve since two values of x1 are associated

with a single value of x2. An AE was trained to perform feature extraction on Xt to

approximate the principal curve.

One approach to AE-based latent projection is to reduce the original variable

space to a smaller dimension without additional hidden layers. Fig. D.6(a) illustrates

the connectivity of a 2-1-2 AE produced when proceeding in this direction. Included

are the magnitudes of weights and biases obtained after optimizing the AE with

the training set Xt . The result is that the activation of latent variable z1 depends

solely on x1 since the weight between x2 and z1 is zero. Fig. D.6(b) plots the tangent

hyperbolic tanh(w ·x) with w=−0.45, i.e., the weight between x1 and z1. The interval

x ∈ [−0.5,0.5] encloses the random set t = U [−0.5,0.5]. Given the bounds of t and

the value of w, it can be seen that the activation of z1 remains relatively within the

linear region (dashed line) of the tangent hyperbolic. In fact, linear approximation

of tanh(w · x) along the interval x ∈ [−0.5,0.5] has a mean squared error (MSE) of

3.34e−7. Nonlinear capabilities of the network are not fully utilized, and the AE

reduces to a linear model since the layer between Z and X̂ is linear.
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(a) (b)

(c)

Figure D.5: Samples of (a) x1 and (b) x2 over the validation set Xv, as well as a (c) scatter

plot of the samples.

Fig. D.7 displays the sample-wise result of propagating Xv through the 2-1-2 AE.

Kramer [72] reports that to successfully reconstruct nonstochastic data sets from

a single factor, an AE must produce a latent variable z1 that is analogues to the

underlying variable t. This proposition is extended to stochastic data sets in this

paper, namely, that the mean activation of z1 must be analogues to the underlying

1

𝒁

𝑧1𝑥2

෡𝑿𝑿
𝑥1 ො𝑥1

ො𝑥2

1

(a) (b)

Figure D.6: (a) Illustration of the 2-1-2 AE and (b) plot of the tangent hyperbolic over (grey)

x ∈ [−6,6] and (black) x ∈ [−0.5,0.5].
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(a)

(b)

Figure D.7: From propagating validation set Xv through the 2-1-2 AE: (a) Activation of z1

over samples and (b) scatter plot of (grey) original data and (black) reconstructions for x1

and x2.

variable t. However, this remark is not supported by Fig. D.7. Despite the similarity

between z1 and t (estimation error MSE = 3.89e− 4 is caused by stochasticity in

the original variables x1 and x2), the AE performs an inaccurate reconstruction by

approximating the principal curve with a linear projection curve. The cause for this

is interpretable via the weight connections in Fig. D.6(a). The activation of z1 is

similar to t because the latent variable is solely dependent on the measurement x1

which, in turn, is equivalent to t with additional noise. The magnitude of the weight

connection between the unbiased reconstruction x̂1 and z1 is close to the inverse of

the weight between x1 and z1 (1/−0.45≈−2.23). Because z1 remains relatively in

the linear region of the tangent hyperbolic (Fig. D.6(b)), z1 and x̂1 are essentially a

copy of x1. The reconstruction x̂2 is independent of z1 (since the weight between the

two nodes is zero) and is determined entirely by its bias. Consequently, x̂2 is constant

over the validation set. In fact, the magnitude of its bias (0.08) is equivalent to the

expected value E(x2); the AE reconstructs x̂2 with the learned the mean of x2. The

results indicate that the AE priorities reconstructing the variable with the greatest

variance, namely x1, and reconstructs x2 with its mean.

As previously stated, Fig. D.6(b) indicates that the 2-1-2 AE reduces to a linear
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model. In fact, it is possible to show that the AE is an approximation of PCA. PCA is

a linear procedure with the following properties: (a) its projection curve is a straight

line when reducing data to a single factor t1; and (b) its projections are orthanormal.

Fig. D.8 shows the result of propagating the validation set Xv through a PCA model

built on the training set Xt . The activation of t1 is similar to that of z1. The projection

curve of the PCA model is similar to that of the 2-1-2 AE. The two models also have

the same SPE. These results support the findings of Baldi and Hornik [7], namely,

that an AE with insufficient hidden layers may reduce to a PCA model.

It is favorable that an AE’s nonlinear potential is utilized when reducing the

dimension of a nonlinear data set. This may be achieved by including hidden layers

that do not reduce the dimension of the original variable space but rather increase

or, at the very least, keep it constant. Fig. D.9 shows a 2-2-1-2-2 AE trained on

the training set Xt . This network has increased nonlinear processing capacity since

it employs additional nonlinear layers. All of the optimized weights are non-zero

in this configuration. Contrary to the AE in Fig. D.6, original variables are not

ignored which ensures that z1 is a function of both x1 and x2. Figs. D.10(a) and

D.10(b) show the activation of encoder nodes e1,1 and e1,2 over Xv. The plots indicate

(a)

(b)

Figure D.8: From propagating validation set Xv through the PCA model: (a) Activation of t1
over samples and (b) scatter plot of (grey) original data and (black) reconstructions for x1

and x2.
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Figure D.9: Illustration of the 2-2-1-2-2 AE.

that the encoder splits the parabola into two; node e1,1 becomes more active, i.e.,

absolute magnitude closer to 1 and further away from 0, as t→−0.5 whereas node

e1,2 becomes more active as t → 0.5. When the activation of these two nodes are

combined in the latent layer z1 (Fig. D.10(c)), the network performs well at fitting

the principal variable t (MSE = 3.75e−4). Note that in this AE configuration, the

MSE is a little larger than the MSE of the 2-1-2 configuration in Fig. D.7(a). This

is explained by the fact that, contrary to the 2-1-2 AE, the 2-2-1-2-2 AE retains the

nonlinear variable x2 along with x1 when processing z1, which (a) induces more

noise in z1 and (b) makes compression more challenging than taking a copy of x1.

Figs. D.10(d) and D.10(e) show the activation of decoder nodes d1,1 and d1,2

obtained by a nonlinear transformation of z1. Both nodes indicate a linear activation

with slight curvature. Node d1,1 becomes more active as t→ 0.5 and d1,2 becomes

more active as t →−0.5. Figs. D.10(f) and D.10(g) show the activation of recon-

structions x̂1 and x̂2, obtained from a linear transformation of the decoder layer.

The reconstructions are similar to the original variables x1 and x2 in Figs. D.5(a)

and D.5(b). It is possible to infer the shape of the reconstructions by looking at

the weights between layers D1 and X̂. Activation of x̂1 is obtained by adding the

activations of d1,1 and d1,2, which negates the observed curvatures to produce a line.

Activation of x̂2 is obtained by subtracting the activation of d1,2 from d1,1, equivalent

to flipping the curve of d1,1 and adding it to d1,2, to produce the parabolic shape of

x̂2.

Fig. D.10(h) shows a scatter plot of the original variables x1 and x2, reconstruc-

tions x̂1 and x̂2, as well as a few projection lines. The reconstruction provided by

the 2-2-1-2-2 AE is more accurate compared to the 2-1-2 AE; the SPE has been

reduced by a factor of 14.1. The projection curve resembles the principal curve

f(λ ), although the projections are not perfectly orthagonal. In fact, they are less

orthogonal compared to projections of the 2-1-2 AE (Fig. D.7(b)). In this case

however, it is apparent that the loss in orthogonality is well justified by the increased

goodness of fit for the principal curve.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure D.10: From propagating validation set Xv through the 2-2-1-2-2 AE: (a)-(g) Activation

of network neurons over samples and (h) scatter plot of (grey) original data and (black)

reconstructions for x1 and x2.
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D.5.2 Example 2: Circular distribution

Consider the following nonlinear process:

t = U [1.0π,2.0π]

q1 = sin(t)

q2 = cos(t)

x1 = x1 +N (0,0.05)

x2 = x2 +N (0,0.05)

(D.7)

The process is sampled to produce the training set Xt and validation set Xv, consisting

of 10,000 and 5,000 samples, respectively. The validation set Xv is shown in Fig. D.11.

The data is summarized by a principal curve taking the shape of a semi circle. Similar

to the principal curve of Eq. (D.6), it (a) describes a nonlinear relationship between

x1 and x2; and (b) depicts x1 as a multivalued variable. The principal curve in

Fig. D.11(c) exhibits greater curvature at the edges of the data set, adding complexity.

This is in part due to the nonlinear component contained in x1.

Fig. D.12 illustrates the weights of a 2-2-1-2-2 AE trained on the Xt . Figs. D.13(a)-

D.13(g) show the activation of each node over Xv. It can be seen that the activations

are very similar to that of Figs. D.10(a)-D.10(g) but with some differences. For

example, e1,1 and e1,2 both depict a parabolic activation but containing two-thirds

of a parabola instead of a half. The activation for d1,1 and d1,2 indicate a linear

activation that has additional curvature at its ends. The activation of reconstructions

x̂1 and x̂2 show that the AE provides a decent reconstruction with some discrepancies;

the ends of x̂1 are slightly curved compared to x1 and the ends of x̂2 have additional

curvature that is not present in x2. The net result is seen in Fig. D.13(h), namely,

that the AE approximates the half circle with a parabolic projection curve.

Model misfitting with small AEs becomes more apparent as the data sets become

more complex. Consider the following nonlinear process:

t = U [0.5π,2.0π]

q1 = sin(t)

q2 = cos(t)

x1 = x1 +N (0,0.05)

x2 = x2 +N (0,0.05)

(D.8)

The process is sampled to produce training set Xt and validation set Xv, consisting of

15,000 and 7,500 samples, respectively. The validation set Xv is shown in Fig. D.14.

The data is summarized by a principal curve taking the shape of a three-quarter of a

circle centered at the origin. Essentially, the data in Fig. D.11 has been extended by
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(a) (b)

(c)

Figure D.11: Samples of (a) x1 and (b) x2 over the validation set Xv, as well as a (c) scatter

plot of the samples.
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Figure D.12: Illustration of the 2-2-1-2-2 AE.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure D.13: From propagating validation set Xv through the 2-2-1-2-2 AE: (a)-(g) Activation

of network neurons over samples and (h) scatter plot of (grey) original data and (black)

reconstructions for x1 and x2.
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(a) (b)

(c)

Figure D.14: Samples of (a) x1 and (b) x2 over the validation set Xv, as well as a (c) scatter

plot of the samples.

one-quarter of a circle. This augmentation adds additional complexity, as x2 is now a

multivalued variable for x1 < 0.

Weights of a 2-2-1-2-2 AE optimized with the training set Xt are illustrated in

Fig. D.15. Weight connections between X and E1 indicate a level of weight disparity

in the encoding layer. The activation of layer E1 is dominated by the value of

x1, evident from the relatively large magnitude of connection between x1 and e1,1

compared to the remaining connections. This hints at a similar occurrence as in

Fig D.6(a), where the complexity of the network does not meet the complexity of

the data, so the AE compromises its functionality to satisfy the objective function.
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Figure D.15: Illustration of the 2-2-1-2-2 AE.

The effects of this are evident in the latent layer, illustrated by Fig. D.16(a). The

latent activation z1 is not summarized by a line over the validation set as the ends

of z1 curve away from the line. Also, z1 becomes more stochastic at the end of the

validation set. Fig. D.16(b) displays the scatter plot of the output of the AE. It can be

seen that, similar to Fig. D.13(h), the best the AE can do is approximate the principal

curve by a parabolla, generating many projections that are not orthagonal.

The dimension of the encoder and decoder hidden layers are now augmented

with an additional node. Fig. D.17 depicts a 2-3-1-3-2 AE trained on Xt . The figure

(a) (b)

Figure D.16: From propagating validation set Xv through the 2-2-1-2-2 AE: (a) Activation of

z1 over samples and (b) scatter plot of (grey) original data and (black) reconstructions for x1

and x2.



152
Paper D. Modelling Nonlinearly Correlated Process Variables with Expanding

Autoencoders

shows that the weights disparity between X and E1 has been reduced from Fig. D.15

by adding an extra node. However, minor weight disparity remains. For example, the

activation of e1,1 will be lesser than e1,2 and e1,3 due to smaller weights. Furthermore,

the activation of e1,1 is dominated by x1 since the weight between x2 and e1,1 is

minuscule (-0.02) compared to the weight between x1 and e1,1 (0.18). Regardless,

Fig. D.18(a) shows that the latent variable z1 of the 2-3-1-3-2 AE resembles the

underlying variable t more than z1 of the 2-2-1-2-2 AE (Fig. D.16(a)), evident by a

decrease in MSE. The output of the AE is visualized in Fig. D.18(b). Increasing the

dimension of the AE’s hidden layers produces a more accurate approximation for

the principal curve.

D.6 Discussion

Fig. D.7 indicates that a correspondence between the latent variable z1 and

the underlying parameter t is not an indicator for reconstruction accuracy, which

counters the claim made by Kramer [72]. In this paper, it is proposed that the

similarity between z1 and t1 is an indicator for (a) how similar the distribution of

observations is to the distribution of projections; and (b) the quality of consistent

ordering along the projection curve.

The measure for how similar the distribution of observations is to the distribution

of projections is demonstrated with Fig. D.19. This indicator corresponds to how

well the mean of z1 tracks t. Here, observations in Xv (the original validation set

sampled from Eq. (D.6)) are propagated through the 2-1-2 AE in Fig. D.19(a). The

weight between x1 and z1 is larger compared to the same weight in Fig. D.6(a),

causing the latent variable to exist in the nonlinear region of the tangent hyperbolic.

Consequently, the latent variable’s activation is less distributed at the edges of the

sample space and more distributed at its center. This effect propagates onto the

reconstruction space as the distribution of reconstructions x̂1 and x̂2 is dense at the

𝑒1,3

𝑧1

𝑬𝟏

−𝟎.𝟗𝟖
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𝑿
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ො𝑥2
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Figure D.17: Illustration of the 2-3-1-3-2 AE.
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(a) (b)

Figure D.18: From propagating validation set Xv through the 2-3-1-3-2 AE: (a) Activation of

z1 over samples and (b) scatter plot of (grey) original data and (black) reconstructions for x1

and x2.

edges of the sample space and sparse at its center (Fig. D.19(b)).

The presence of a varying distribution in z1 is observable in Fig. D.16. Here,

the activation of z1 remains relatively constant for the first few hundred samples.

This indicates that no variation in z1 is caused by the original variables x1 and x2.

However, Fig. D.16(b) shows that there is a significant variance in x1 for first few

hundred samples. Because z1 is relatively constant, the projections fall onto the same

region of the projection curve.

The quality of consistent ordering along a projection curve corresponds to fluctu-

ation in the latent variable z1 that is not explained by stochasticity in the original

variables x1 and x2. For instance, Fig. D.8(a) shows that the activation of z1 is noisy

over the validation set, yet Fig. D.8(b) shows that the projection points are ordered

along the projection curve. Hence the fluctuation in z1 is explained by stochasticity

in x1 and x2. Fig. D.20 shows the result of propagating Xv through the 2-1-2 AE in

Fig. D.20(a). The AE is equivalent to the AE in Fig. D.6(a) with the exception that z1

includes additional noise introduced by the random variable u = U [−1,1]. Naturally,

an AE with a stochastic neuron is not proposed in practice, but the purpose is to

analyse the effect of noise in z1 on projections. The mean activation of z1 is consistent
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Figure D.19: From propagating validation set Xv through the 2-1-2 network: (a) Activation

of z1 over samples and (b) scatter plot of (grey) original data and (black) reconstructions for

x1 and x2.

to that of Fig. D.7(a) but includes more noise. Because the distribution of z1 remains

uniform, the distribution of the reconstructions x̂1 and x̂2 remain uniform along the

projection curve. However, the unexplained variation in z1 induces a stochasticity in

the reconstructions such that x̂1 and x̂2 are less orderly along the curve. Hence for

this example, the quality of consistent ordering along the projection curve is low.

The presence of varying stochasticity in z1 is visible in Fig. D.16. Fig. D.16(a)

shows that the activation of z1 becomes more stochastic towards the end of the

validation set despite the level of noise in original variables x1 and x2 remaining

constant. Consequently, projections become less orderly and more inconsistent in

Fig. D.16(b) over the validation set. This occurs due to the optimized weights of the

2-2-1-2-2 AE in Fig. D.15.

It is proposed that these two measures, namely, how well the mean of z1 cor-

responds to t and how much the variance in z1 corresponds to the variance in the

original variables, provides an indication for the quality of orthogonal projections to

a projection curve.

The examples provided consisted of finding a principal curve for a two-dimensional

data set. The same concepts conveyed in this paper apply for finding a principal



D.6. Discussion 155

1

𝒁

𝑧1𝑥2

෡𝑿𝑿
𝑥1 ො𝑥1

ො𝑥2

1

𝑢

(a) (b)

(c)

Figure D.20: From propagating validation set Xv through the 2-1-2 network: (a) Activation

of z1 over samples and (b) scatter plot of (grey) original data and (black) reconstructions for

x1 and x2.

curve for any m-dimensional data set where m > 2. Furthermore, the definition of a

principal curve can be extended to two-dimensional surfaces and other q-dimensional

manifolds where q > 2 [47]. Estimating a higher-dimensional manifold requires

configuring an AE with q nodes in its latent layer. Regardless of the choice for m and

q, it is attested that an AE may require hidden layers with dimension larger than m

for certain nonlinear variable spaces.

Figs. D.10(h) and D.18(b) show that the projection curves do not provide a

precise estimate for the principal curves since the projection are not orthogonal. The

imprecision may be reduced by a combination of (a) including more hidden encoder

and decoder layers and (b) setting the dimension of hidden layers much larger than

the original variable space. This gives an AE increased model complexity, thereby

providing it with additional model parameters to precisely estimate a principal curve.

Fig D.21 show the result of propagating the validation set through an 2-8-8-8-1-8-

8-8-2 AE trained on the three-quarters training set; the large AE produces a more

precise estimate of a principal curve.



156
Paper D. Modelling Nonlinearly Correlated Process Variables with Expanding

Autoencoders

(a) (b)

Figure D.21: From propagating validation set Xv through a 2-8-8-8-1-8-8-8-2 AE: (a) Activa-

tion of z1 over samples and (b) scatter plot of (grey) original data and (black) reconstructions

for x1 and x2.

D.7 Conclusion

This paper investigates the effects of model complexity on the performance of

autoencoders. An analysis was conducted in terms of (a) an AEs ability to reproduce

a latent variable analogues to the underlying variable of a data set; and (b) an AEs

ability to estimate a principal curve that traverses through the center of a data set.

Three two-dimensional data sets were provided for the analysis. When displayed on

a two dimensional scatter plot, the variables of each data set exhibited a parabola, a

half circle, and three quarters of a circle, respectively.

The results demonstrate that the common approach to AE-based dimensionality

reduction, whereby no additional hidden layers are included, is insufficient for

accurate reconstruction of the provided data sets. An AE employing no additional

hidden layers is liable to reduce to a linear PCA model and ignore input variables.

In the context of the parabolic data set, it was necessary to include an additional

encoder and decoder layer with the same dimension as the original variable space

to allow for an accurate reconstruction. In the context of the half circle and three

quarters of a circle data sets, the results show that, although the AE included
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additional hidden layers with the same dimension as the original variable space,

the AE reconstructed each data set with a parabola. It was necessary to increase

the two-dimensional hidden layers to three dimensions to accurately reconstruct

the data. Collectively, the results show that it is possible to perform AE-based

feature extraction for complex nonlinear data sets without major reformulation of

the provided method but rather by simply including hidden layers with dimensions

larger than the original variable space. Consequently, an AE employed for process

monitoring will perform better at detecting process anomalies since it retains a

suitable depiction of nominal process variables correlation.

The results demonstrate that an AEs ability produce a latent variable analogues

to the underlying variable of a data set is not an indicator for reconstruction accuracy.

Instead, it is proposed that the similarity provides an indication for the quality of

orthogonal reconstructions.
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Abstract:

Feature extraction methods employed for multivariate statistical process monitoring

(MSPM) detect abnormal events (faults) in multivariate processes by comparing the

correlation among new observations for process variables against the correlation

among historical observations; a fault is concluded to have occurred if the disparity is

significantly large. However, state-of-the-art feature extraction methods assume that

variables are not cross-correlated; hence a static approximation that fails to summa-

rize the dynamic variation among variables is provided for dynamic processes. In this

paper, a recurrent autoencoder (RAE) is proposed for dynamic feature extraction. A

regularized RAE is trained on historical process data sampled from a dynamic process

and subsequently employed to detect faults from new observations. Regularization

promotes a dynamic model structure that provides insight into the cross-correlation

among variables. The proposed method for fault detection is demonstrated with

a simulation of a linear and a nonlinear process. Performance of fault detection is

compared against that of a conventional dynamic principal components analysis

method.
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E.1 Introduction

Multivariate statistical process monitoring (MSPM) is the act of monitoring a

process with a statistical method that is independent of prior knowledge about the

process [91]. Instead, the condition of the process is monitored by evaluating the

multivariate statistical properties of new process observations and comparing them

against available historical process data [63]. MSPM is found applicable when a large

system consists of numerous, correlated process variables that may be summarized

by a few, intrinsic variables [72]. Fundamentally, methods for MSPM are based on

feature extraction: a numerical technique that exploits the correlation of a high-

dimensional variable space to derive low-dimensional quantities intended to be

informative about the original variables. Features are first extracted from a historical

process data set sampled from when a process operated under nominal conditions.

Process monitoring consists of comparing the features of new observations against

the features of the historical data set, usually represented by a monitoring statistic.

An anomaly, i.e., a fault, is concluded to have occurred if this monitoring statistic

exceeds a predefined threshold.

Several feature extraction-based MSPM methods have been proposed in the

literature. Principal component analysis (PCA) is a method for obtaining a lin-

ear transformation that projects data into a low-dimensional space [104]. The

coefficients of the transformation are such that an inverse transformation of the

projected data will reconstruct the original data with a minimum sum of squares

difference (residual). Process monitoring consists of evaluating the variance of the

projections and residual information of new process observations [63]. However,

acceptable performance of fault detection with PCA requires that variables follows

the assumption of multivariate normality. Independent component analysis (ICA)

is employed if the normality assumption is not met [126]. ICA attempts to find a

linear transformation that decomposes the non-Gaussian distributed variables into a

set of mutually independent features. Similar to PCA, the transformation is inverted

to reconstruct the original data for facilitating MSPM [84].

Both PCA and ICA are linear methods that perform poorly for nonlinear processes

where process variables are nonlinearly correlated. Kernel PCA (KPCA) was proposed

as a nonlinear extension of PCA [82], [119]. KPCA maps the original variable

space to a high-dimensional space with a nonlinear kernel function, and then

performs PCA in this high-dimensional space. Compared to other nonlinear methods,

KPCA does not involve a nonlinear optimization; it essentially requires only linear

algebra, making it relatively as simple as PCA. An example of a method requiring

nonlinear optimization are autoencoders (AEs) [50]. They are a class of neural
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networks configured for feature extraction. An AE contains a bottleneck layer that

constricts the original variable space to a lower dimension. Optimization consists of

learning (a) a nonlinear transformation to the bottleneck layer; and (b) a nonlinear

transformation back to the original high-dimensional space that reconstructs the

variables [18]. Although nonlinear optimization and the number of hyperparameters

involved make AEs harder to implement, reports in the literature show that AEs

can learn the transformations of PCA, ICA, and KPCA given certain optimization

constraints, which makes them highly versatile [7], [67], [76].

A deficiency among common feature extraction methods for MSPM is the lack

of focus on time dependence, i.e., the methods do not exploit any cross-correlation

existing between process variables. It is not uncommon for process variables to

be cross-correlated, and thus the inability of a static feature extraction method to

exploit it poses several problems. Since static feature extraction cannot unveil the

dynamic relationships existing between variables, the method may produce features

that are auto-correlated and possible cross-correlated, making it difficult to infer

the time-dependent relationship between variables from the model. Misleading

results such as false alarms might be generated due to variable transients induced by

disturbances and control input changes, since transients contain dynamic variations

that are nominal but may be interpreted as abnormal by a static model.

Ku et. al [75] propose a dynamic PCA method that augments the original process

variable vector with lagged versions of itself. Static PCA extract features from

the augmented (dynamic) variable vector that are a function of cross-correlated

process variables. The practice of constructing a dynamic variable vector may also

be performed with ICA, KPCA, and AEs to obtain a dynamic formulation of said

methods. However, this approach to dynamic feature extraction is not dynamic in

a traditional sense, since the resulting models do not contain any internal states

(memory). Rather, they mimic dynamic behavior by performing a simultaneous

computation on current and past observations. An issue one might also consider

is that the number of parameters required for a transformation of the dynamic

variable vector increases as the number of lags increase, which could make model

interpretation of the underlying cross-correlation structure difficult.

A recurrent neural network (RNN) is a neural network that includes internal

states. This allows it to exhibit temporal dynamic behaviour. RNNs are used for

sequential aplications such as time series prediction [27], speech recognition [43],

and natural language processing [89]. An RNN is configured for feature extraction

by including a bottleneck layer. Such an RNN is referred to as a recurrent AE (RAE).

RAEs are applied for encoding tasks such as speech spectrogram compression [145],

video game song compression [34], phrase representations for translation tasks
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[25], [122], and video compression [88]. More recently, RAEs have been applied

for abnormal event detection from videos [143] as well as nonlinear processes [22].

In this paper, an RAE is proposed for MSPM. The RAE is trained with a näive

elastic net regularization constraint and a denoising criterion to promote an inter-

pretable model structure. A comparison in terms of fault detection performance is

performed against DPCA-based MSPM of a linear system. Furthermore, a nonlinear

augmentation is introduced to the system to test the nonlinear capabilities of an RAE.

The key result of this study was that RAEs offers superior fault detection performance

compared to DPCA, and are capable of monitoring nonlinear processes.

The organization of the paper is as follows. Latent projection, which is a nu-

merical method for performing feature extraction, as well as DPCA and RAEs are

introduced in section 2. Section 3 presents the results from performing fault detec-

tion of a linear process and a nonlinear process. Section 4 provides a conclusion of

the study.

E.2 Latent projection

Latent projection is a numerical method for performing feature extraction. The

procedures consists of transforming a high-dimensional variable vector x ∈Rm×1 to a

smaller set of latent variables z ∈Rq×1 (with q < m) that retain principal information

about the original variables. The transformation is obtained via a machine learning

approach. Initially, n observations of x are sampled to produce the reference data

matrix X ∈ Rm×n. The objective is to seek a transformation to the latent space

Z ∈ Rq×n such that Z retains information about X.

E.2.1 Principal component analysis

PCA is a linear method for obtaining a transformation with the least information

loss. The procedure consists of finding a set of principal component scores ti = pᵀ
i x

for i ∈ Z : i ∈ [1,m] where (a) the column vectors pi form the orthonormal principal

component loading matrix P ∈ Rm×m; and (b) the first principal component score

t1 has maximum variance, the second principal component score t2 has the next

greatest variance, with additional scores up to m similarly defined. Provided that x
follows the multivariate normality assumption, the constraint that P is orthonormal

ensures that the scores ti are uncorrelated with (orthogonal to) one another. The

scores ti form the score vector t ∈ Rm×1, obtained via the transformation t = Pᵀx.

Because P is orthonormal, i.e., PPᵀ = PP−1 = I, where I is the identity matrix, x is

reproducible via the transformation x = Pt. The loading matrix P is obtained by
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solving for the eigenvectors of the covariance matrix ΣΣΣ of x:

ΣΣΣ = PΛΛΛPᵀ (E.1)

where ΛΛΛ is a non-negative real diagonal m×m matrix whose diagonal elements are

the corresponding eigenvalues. The diagonal entries λi of ΛΛΛ are the variances of the

scores ti. If ΣΣΣ is not known, then it may be estimated via ΣΣΣ = XᵀX/(n−1).
Latent projection is performed by identifying q PCs that explain most of the

variation in x. The remaining q−m PCs are associated with common cause variation.

To that effect, P is partitioned as follows:

P =
[

P̂ P̃
]
, P̂ ∈ Rm×q, P̃ ∈ Rm×(m−q) (E.2)

The variable vector x is then decomposed into the reconstruction vector x̂ and

residual vector x̃:

X = x̂+ x̃

= P̂z+ P̃z̃
(E.3)

where z = P̂ᵀx are the latent variables and z̃ = P̃ᵀx are the residual latent variables.

E.2.2 Dynamic principal component analysis

Consider the case that x consists of process variables sampled from a dynamic

system. For a dynamic system, it is reasonable to assume that the values of x[k] at

sample k depend on past values, i.e., they exhibit some degree of cross-correlation.

Performing PCA on x will construct a linear static model that will not reveal the exact

time-dependent relations between variables but rather a linear static approximation.

Ku et al. [75] propose a dynamic formulation of PCA called dynamic PCA (DPCA).

In a general case, the following historical variable vector for process variable i ∈ Z :
i ∈ [1,m] is defined:

xl
i [k] =

[
xi[k] xi[k−1] . . . xi[k− l]

]ᵀ
(E.4)

The dynamic process variable vector is:

x =
[
xl

1[k] xl
2[k] . . . xl

m[k]
]ᵀ

(E.5)

Performing latent projection follows the same procedure as performing latent projec-

tion with PCA.

E.2.3 Recurrent autoencdoers

A recurrent autoencoder (RAE) is a type of artificial neural network configured

for latent projection. An RAE consists of two parts, an encoder and a decoder.
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x1[k]
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x3[k]

x4[k]

x̂1[k−δ ]

x̂2[k−δ ]

x̂3[k−δ ]

x̂4[k−δ ]

Figure E.1: Illustration of a 4-8-8-2-8-8-4 RAE. The solid edges represent feedforward weight

connections, while dashed edges represent recurrent weight connections. Biases as well as

some recurrent weight connections are omitted to enhance image clarity.

The encoder maps the original variables x to the latent variables z. The decoder

reconstructs, i.e., estimates, the reconstructions x̂ with a transformation of z. The

RAE’s model parameters are optimized such that the difference between x and x̂ is

minimized. This ensures that z retains the salient information about x required to

reconstruct it.

A RAE contains an internal state (memory). This allows it to exhibit temporal

dynamic behavior when processing its input. This makes a RAE applicable for

performing latent projection when x consists of dynamic process variables. Figure E.1

shows an illustration of a RAE, along with labels to the encoder and decoder parts.

The RAE is composed of several vectors of nodes, known as network layers. Each

node represents a time-varying real-valued activation. With the exception of the

input layer, each layer at sample k is a component wise nonlinear function of the sum

of (a) a linear transformation of its previous layer; and (b) a linear transformation

of its own layer at the previous sample k−1. The encoder maps the input x to the

latent variables z:

ei[k] =

σ e
1 (W

e
1x[k]+Re

1e1[k−1]+be
1) , for i = 1

σ e
i (We

i ei−1[k]+Re
i ei[k−1]+be

i ) , else

z[k] = σ
z (WzeN [k]+Rzz[k−1]+bz)

(E.6)

where i ∈ Z : i ∈ [1,N]. We
1 is the feedforward weight matrix between the input layer

and the first encoder layer. We
i is the feedforward weight matrix between layers i−1
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and i, Re
i is the recurrent weight matrix for layer i between samples k and k−1, be is

the bias at layer i, and σ e
i is the component wise activation function at layer i. Wz,

Rz, bz, and σ z are defined similarly for the latent layer. The decoder maps the latent

variables z to the reconstructions x̂:

d j[k] =

σd
1
(
Wd

1z[k]+Rd
1d1[k−1]+bd

1
)
, for j = 1

σd
j

(
Wd

j d j−1[k]+Rd
j d j[k−1]+bd

j

)
, else

x̂[k−δ ] = σ
x̂ (Wx̂dM[k]+bx̂)

(E.7)

where j ∈ Z : j ∈ [1,M]. Wd
1 is the feedforward weight matrix between the latent

layer and the first decoder layer. Wd
j is the feedforward weight matrix between

layers j−1 and j, Rd
j is the recurrent weight matrix for layer j between samples k

and k−1, bd is the bias at layer j, and σd
j is the component wise activation function

at layer j. Wx̂,bx̂, and σ x̂ are defined similarly for the output layer.

Note that unlike previous network layers, the reconstructions x̂ do not form any

recurrent weight connections with themselves. In addition, the RAE is configured to

reconstruct x̂ with a delay of δ time steps. In other words, the RAE reconstructs the

original variables at sample k−δ from the projection of the kth sample of x. The

motivation for this design is explained in section 2.5.

The modifiable parameters We
i , Re

i , be
i , Wz, bz, Wd

j , Rd
j , bd

j , Wx̂, and bx̂ are

optimized with a machine learning task. The parameters are initially randomized.

For a single training update, each sample x in the reference matrix X ∈ Rm×n is

corrupted by adding an uncorrelated noise vector x̃ = x+ e. The motive for this

is explained in section 2.6. The corrupted sample x̃[k] is propagated through the

RAE to produce the latent variable z[k] and δ -shifted reconstruction x̂[k−δ ], which

are gathered in the latent matrix Z ∈ Rq×n and the δ -shifted reconstruction matrix

X̂δ ∈ Rm×n, respectively. The following loss function is defined:

L (Xδ , X̂δ ) =
1
n

∣∣∣∣Xδ − X̂δ

∣∣∣∣2 (E.8)

where the δ -shifted reference matrix Xδ consists of the original, i.e., uncorrupted,

samples xδ [k] = x[k− δ ] that have been shifted by δ time steps. This is to ensure

that the rows of X̂δ and Xδ match. The RAE’s model parameters are optimized by

minimizing the loss calculated with Eq. (E.8) via stochastic gradient descent [99],

thereby finishing the training update. The process is repeated until Eq. (E.8) is

minimized satisfactorily.
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E.2.3.1 Regularization and network sparsity

Regularization prevents over-fitting of a neural network. One approach is to

augment the network’s optimization function with the näive elastic net weight decay

penalty. It is a regularization method that linearly combines the L1 and L2 penalties

of the LASSO and ridge methods [154]. The loss function in Eq. (E.8) becomes:

L (X, X̂,W) =
1
n

∣∣∣∣Xδ − X̂δ

∣∣∣∣2 +λ1 ||W||1 +λ2 ||W||22 (E.9)

where W = {We
i ,Re

i ,Wd
j ,Rd

j} is the collection of feed-forward and recurrent weight

matrices in the RAE, and λ1 and λ2 control the importance of the LASSO and ridge

regressions, respectively. Note that the biases in Eqs. (E.6) and (E.7) are not included

in regularization.

In addition to learning an optimal encoding/decoding transformation, minimiza-

tion of Eq. (E.9) will shrink redundant weights in the RAE to form a small number of

high-importance weight connections. Low-importance connections are pruned away

to produce a sparse network, thereby producing an interpretable variable grouping

effect.

E.2.4 Online process monitoring

Having built either a DPCA or RAE model on historical data X collected from a

process operating under nominal conditions, new observations xnew can be referenced

against this “in-control” model. The reconstructions x̂new are referenced against

the original observations to produce the residuals enew = xnew− x̂new. The squared

prediction error (SPE), otherwise known as the Q statistic, is computed to monitor

the quality of the residuals enew:

SPE =
m

∑
i=1

(xnew,i− x̂new,i)
2 (E.10)

An abnormal event whose response was not present in X will generate an increase

in the SPE. Assuming that the SPE follows a Chi-squared distribution, a control limit

is computed with the approximate value [12]:

CLSPEAE =
σ̄2

2µ̄
χ

2
(2µ̄2/σ̄2,α) (E.11)

where µ̄ and σ̄ are the sample mean and sample standard deviation of the SPE

and α is the false alarm rate, respectively. µ̄ and σ̄ may be estimated from the SPE

time series for a new historical data matrix Xv sampled from a nominal process. An

abnormal event is concluded to have occurred if the SPE exceeds its control limit,

signifying that the “in-control” model does not apply for the new observations.
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E.2.5 Motive for reconstruction delays

It is necessary to delay the sample-wise RAE reconstructions x̂i by δ time steps to

model cross-correlations between variables. Consider the following linear process:

t[k] ∈U (0,1)

x1[k] = t[k]+N (0,0.1)

x2[k] = t[k]+N (0,0.1)

x3[k] = t[k− τ]+N (0,0.1)

(E.12)

where U (a,b) denotes the uniform distribution in the range (a,b) and N (µ,σ2)

denotes the normal distribution with mean µ and variance σ2. Eq. (E.12) indicates

that x1[k] and x2[k] are correlated, while x1[k] and x2[k] are cross-correlated with

x3[k− τ] for the lag perimeter τ.

Consider the 3-4-1-4-3 RAE shown in Fig. E.2(a), where the reconstructions are

not delayed, i.e., δ = 0. The RAE is trained on data sampled from Eq. (E.12) with

τ = 1. The sparse structure of the RAE is a result of the pruning strategy. The figure

shows that the latent variable z1[k] is a function of x1[k] and x2[k] but not of x3[k].

This suggests that the encoder of the RAE does not identify the cross-correlation

between the variables when reducing their dimensionality. In fact, the RAE has

learned to estimate x̂1[k] based on the correlation between x1[k] and x2[k], since x̂3[k]

is a single-lagged function of z1[k]. The RAE does not perform its intended feature

extraction task and instead performs a regression on x3[k].

Fig. E.2(b) shows a 3-4-1-4-3 RAE where the reconstructions are delayed with

δ = 1. The network is trained with the same data as the RAE in Fig. E.2(a) along with

the pruning strategy. The recurrent weight connection in the encoder part of the RAE

indicates that z1[k] is a function of x1[k−1], x2[k−1], and x3[k]; the RAE has learned

to delay x1[k] and x2[k] by a single sample in order to identify the cross-correlation

between the variables. The figure shows that x̂1[k−1] and x̂2[k−1] are a zero-lagged

function of z1[k], while x̂3[k−1] is a single-lagged function of z1[k]. In effect, delaying

the reconstructions ensures that the RAE retains all of its original variables.

It is not a necessary requirement that the reconstruction delay δ is equivalent to

the lag parameter τ . Figure E.2(c) shows a 3-4-1-4-3 RAE where the reconstructions

are delayed with δ = 2. The network is trained with the same data as the RAEs in

figures E.2(a) and E.2(b). The RAE in figure E.2(c) has an identical structure as the

RAE in figure E.2(b) with the exception that the decoder in figure E.2(c) employs

an additional delay before reconstructing the variables. In other words, choosing

a larger δ will require more recurrent weight connections in order to perform the

reconstructions, though this will not alter the RAE structure required to model

variable cross-correlations.
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Figure E.2: Sparse connections of RAEs trained on data sampled from Eq. (E.12) where (a)

τ = 1 and δ = 0, (b) τ = 1 and δ = 1, (c) τ = 1 and δ = 1, (d) τ = 2 and δ = 2, (e) τ = 4

and δ = 7. Solid edges indicate a feed-forward weight connection. Dashed edges indicate a

recurrent weight connection. All network nodes employ linear activation functions.
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Figure E.2(d) shows a 3-4-1-4-3 RAE trained on data sampled from Eq. (E.12)

with τ = 2. The reconstructions are delayed with δ = 2. The figure shows that (a)

the encoder models the cross-correlation between variables by setting z1[k] as a

function of x1[k−2], x2[k−2], and x3[k]; and (b) the decoder reconstructs x̂1[k−2]
and x̂2[k−2] as a zero-lagged function of z1[k] and reconstructs x̂3[k−2] as a double-

lagged function of z1[k]. From a structural perspective, it can be seen that the RAE in

figure E.2(d) is very similar to the RAE in figure E.2(c), with differences between

the two being a result of the difference in τ.

The examples presented so far demonstrate that τ and δ play an important role

in the optimized weight structure of an RAE. For example, a large τ requires more

recurrent weight connections in the encoder in order to identify the cross-correlation

between variables. Similarly, a large δ requires more recurrent weight connections

in the decoder in order to appropriately delay the reconstructions. Ultimately, a large

RAE may be required for a system of few variables if the selection for τ and δ is large.

Fig. E.2(e) shows a 3-6-6-1-6-6-3 RAE with δ = 7 trained on data sampled from

Eq. (E.12) with τ = 4. The figure shows that increasing the dimension and number

of hidden layers is well justified by the number of recurrent weight connections

required to appropriately compute the latent variable z1[k] and reconstruct the

variables.

What constitutes as a “sufficiently large” RAE is up to the judgment of the analyst.

Fortunately, what the examples show is that one may propose an “abundantly large”

RAE. For instance, a 3-100-100-1-100-100-3 RAE with δ = 30 could instead be

proposed for the data used to train the RAE in Fig. E.2(e). Both RAEs would require

the same number of recurrent weight connections to compute z1[k], but the final

structural difference would be that the larger RAE will employ more recurrent weight

connections in order to delay the reconstructions. Training and analysis will be

more computationally expensive, but one will be certain that the RAE performs its

intended task and not run into the problems exemplified with Fig. E.2(a). However,

one drawback of a large δ is that it takes more samples for input variations to show

up at the reconstructions. This is unideal from a fault detection perspective, as it

will take δ time steps for the fault to be observable in the reconstruction.

E.2.6 Motive for sample corruption

It is necessary to corrupt the training samples in the reference matrix X with

uncorrelated normally distributed noise in order to prevent a regularized RAE from

learning to reconstruct x̂ from a subset of the original variables x. Consider the
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following nonstochastic linear process:

t[k] ∈U (0,1)

x1[k] = t[k]

x2[k] = x1[k−2]

(E.13)

Eq. (E.13) states that x1[k] and x2[k− τ] are perfectly cross-correlated for the lag

parameter τ = 2. That is, knowing the value of one variable exactly predicts the

sample-lagged value of the other variable.

Consider the 2-4-1-4-2 RAE shown in Fig. E.3(a) where the reconstructions are

delayed with δ = 2. The RAE is trained on data sampled from Eq. (E.12). Its sparse

structure is a result of regularization. The figure shows that the latent variable z1[k]

is a function of x2[k] but not of x1[k]. This suggests that the encoder does not identify

the cross-correlation between the variables when performing feature extraction. As

a whole, the RAE has learned to reconstruct x̂1[k−2] from x2[k]. The cause for this

is weight regularization in Eq. (E.9); since x1 and x2 are perfectly cross-correlated,

an optimized RAE will shrink any redundant weights connecting x1 to z1 and simply

reconstruct x̂1[k−2] from x2[k].

Consider the following corrupted version x̃ of the original variables x:

x̃1[k] = x1[k]+N (0,0.2)

x̃2[k] = x2[k]+N (0,0.2)
(E.14)

x1[k]

x2[k]

x̂1[k−2]

x̂2[k−2]

(a)

x1[k]

x2[k]

x̂1[k−2]

x̂2[k−2]

(b)

Figure E.3: Sparse connections of RAEs trained on data sampled from Eq. (E.13) where

(a) inputs are uncorrupted and (b) inputs are corrupted. Dashed edges indicate a recurrent

weight connection. All network nodes employ linear activation functions.
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Eq. (E.14) reduces the correlation between the two variables by corrupting them

with uncorrelated noise. The act of corrupting the input of an RAE is referred to

as augmenting the RAE with a denoising criterion [130]. Vincent et. al [130] refer

the act of corrupting the input of an RAE as augmenting the RAE with a denoising
criterion. The denoising criterion is shown to guide the learning of useful higher level

representations. Consider the 2-4-1-4-2 RAE shown in Fig. E.3(b). The RAE is trained

on data sampled from Eq. (E.12) and (E.14), where the input is the corrupted x̃[k]
and the labels for the reconstructions in Eq. (E.9) are the original variables x[k−2].
The figure shows that z1 is a function of both x1 and x2. This suggests that the

denoising criterion guides the encoder to identify the cross-correlation between the

variables when reducing their dimensionality.

E.3 Case studies

Two case studies are presented in this section. The first case study is a linear

process from the literature. The second case study is a nonlinear augmentation of

the linear process.

E.3.1 Comparison between DPCA and RAE

Consider the following linear process presented by Ku et al. [75]:

z[k] =

[
0.118 −0.191
0.847 0.264

]
z[k−1]

+

[
1 2
3 −4

](
u[k−1]+

[
f

0

])
y[k] = z[k]+v[k]

(E.15)

where u is the correlated control input:

u[k] =

[
0.811 −0.226
0.477 0.415

]
u[k−1]

+

[
0.193 0.689
−0.320 −0.749

]
w[k−1]

(E.16)

Variable f is a process fault that induces a bias in the control input. The source

variable w and measurement noise v follow the following Gaussian distributions:

v ∈N (0,0.1), w ∈N (0,1) (E.17)

Both input u and output y are observable process variables but z and w are not.

Following the DPCA method, Ku et al. [75] define the following dynamic process
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variable vector:

x1 =



y1[k−0]
y1[k−1]
y2[k−0]
y2[k−1]
u1[k−0]
u1[k−1]
u2[k−0]
u2[k−1]


(E.18)

Vector x1 is sampled to produce the training set Xt
1 (consisting of 3000 samples),

validation set Xv
1 (consisting of 1000 samples), and fault set X f

1 (consisting of 1000

samples with a step change in f introduced at sample 50). The matrices Xt
1, Xv

1,

X f
1 are standardized with the mean and standard deviation of Xt

1. A DPCA model

is built for Xt
1. Five out of the eight available principal components are chosen as

instructed in [75].

Following the RAE method proposed in this paper, the following process variable

vector:

x2 =


y1[k−0]
y2[k−0]
u1[k−0]
u2[k−0]

 (E.19)

is defined. Vector x2 is sampled to produce the training set Xt
2 (consisting of 3000

samples), validation set Xv
2 (consisting of 1000 samples), and fault set X f

2 (consisting

of 1000 samples with a step change in f introduced at sample 50). The matrices Xt
2,

Xv
2, X f

2 are standardized with the mean and standard deviation of Xt
2. A 4-10-1-10-4

RAE is trained with Xt
2 with δ = 3. Linear activation functions are employed at each

layer.

Figure E.4(a) shows the structurally pruned 4-10-1-10-4 RAE that resulted from

optimizing it with Xt
2. Figure E.4(b) plots the training loss (TL) and validation loss

(VL) observed over the RAE’s training period. It is evident that the TL and VL observe

a difference that dissipates once the network is pruned and the näive elastic net

weight penalty is removed from the TL.

Figures E.5(a) and E.5(b) show a time series plot and histogram plot, respectively,

of the SPE obtained from propagating Xv
1 and X f

1 through the DPCA model. Figures

E.5(c) and E.5(d) show equivalent plots of the SPE obtained from propagating Xv
2

and X f
2 through the linear RAE model. The figures indicate that there is a larger

difference between nominal and abnormal samples for the RAE’s SPE compared to

the DPCA’s SPE. This indicates that the RAE’s SPE is more sensitive to the fault f .



E.3. Case studies 173

In other words, the RAE is more suitable for distinguishing between nominal and

abnormal observations and thus provides better fault detectability. Furthermore,

some abnormal samples when propagated through the DPCA produced an SPE with

a magnitude less than the 95% control limit (figs. E.5(a) and E.5(b)). This did not

occur for the RAE (figs. E.5(c) and E.5(d)). This indicates that the DPCA model

occasionally incorrectly classifies abnormal samples as nominal.
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(a)

 TL

 VL

1 22000

Training update

100
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10−2
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(b)

Figure E.4: (a) Resulting RAE, showing feedforward and recurrent weight connections. (b)

Evolution of loss terms.
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Figure E.5: SPE for (a),(b) the DPCA model and (c),(d) the linear RAE model. All plots

include a 95% control limit (dashed line) determined from their respective validation set.
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E.3.2 Comparison between linear RAE and nonlinear RAE

The process in Eq. (E.15) was made nonlinear by augmenting the influence of

the process inputs u on the process states z:

z[k] =

[
0.118 −0.191
0.847 0.264

]
z[k−1]

+

[
1 2
3 −4

](
u[k−1]+

[
f1

0

])2

y[k] = z[k]+v[k]

(E.20)

where u remains as the correlated control input defined in Eq. (E.16). The mea-

surement noise v and source variable w maintain their definitions in Eq. (E.17).

Following the RAE method proposed in this paper, the following process variable

vector:

x3 =


y1[k−0]
y2[k−0]
u1[k−0]
u2[k−0]

 (E.21)

is defined. Vector x3 is sampled to produce the training set Xt
3 (consisting of 3000

samples), validation set Xv
3 (consisting of 1000 samples), and fault set X f

3 (consisting

of 1000 samples with a step change in f introduced at sample 50). The matrices

Xt
3, Xv

3, X f
3 are standardized with the mean and standard deviation of Xt

3. Two

4-10-1-10-4 RAEs with δ = 3 are trained with Xt
3: a linear RAE employing the linear

activation function and a nonlinear RAE employing the tangent hyperbolic activation

function.

Figure E.6(a) shows a scatter plot of the samples u1[k− 1] and y2[k] from the

validation set Xv
3. It is evident from the figure that the cross-correlation between

u1[k− τ] and y2[k] is nonlinear for the lag parameter τ = 1. Figures E.6(b) and

Figures E.6(c) shows a scatter plot of the reconstructions û1[k− 1] and ŷ2[k] from

propagating Xv
3 through the linear RAE and nonlinear RAE, respectively. The figures

show that the linear RAE does not capture the nonlinear cross-correlation between

the variables while the nonlinear RAE does capture the nonlinear cross-correlation.

Figures E.7(a) and E.7(b) show a time series plot and histogram plot, respectively,

of the SPE obtained from propagating Xv
3 and X f

3 through the linear RAE model. Fig-

ures E.7(c) and E.7(d) show equivalent plots of the SPE obtained from propagating

Xv
3 and X f

3 through the nonlinear RAE model. The figures indicate that the linear

RAE’s SPE has greater variance compared to the nonlinear RAE’s SPE when nominal

samples are provided. This suggests that the linear RAE performs worse at modeling
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the nonlinear correlations exhibited by the training data, which consequently leads

to a larger 95% control limit. The linear RAE also performs poorly at processing

abnormal samples, evident from the fact that many abnormal samples produce an

SPE below the 95% control limit.

E.4 Conclusion

This paper introduces a RAE-based method for MSPM of dynamic processes. In

the proposed method, an RAE is trained to perform dynamic feature extraction of

process variables sampled from a dynamic process exhibiting nominal operating

conditions. The extracted features are then decoded to produce a sample-delayed

reconstruction of the original process variables. New observations are referenced
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Figure E.6: For the validation set Xv
3: (a) scatter plot of original variables, (b) scatter plot of

reconstructions from linear RAE, and (c) scatter plot of reconstructions for nonlinear RAE.
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Figure E.7: SPE for (a),(b) the linear RAE model and (c),(d) the nonlinear RAE model. All

plots include a 95% control limit (dashed line) determined from their respective validation

set.
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against the “in-control” model to detect abnormal events in the process. Recurrent

hidden network layers facilitate the discovery of cross-correlations between process

variables, permitting an RAE to distinguish well between input-induced and fault-

induced process variations.

The fault detection performance of a linear RAE was compared against that

of a linear model given by dynamic PCA. Both models were used to monitored a

linear process. DPCA extends PCA to account for cross-correlation by augmenting

the variable vector with time-lagged versions of itself. The results show that the

RAE-based model was more sensitive to a process fault compared to the DPCA-based

model. Furthermore, the DPCA-based model incorrectly inferred some abnormal

samples as nominal. This did not occur for the RAE-based model. Collectively, the

results indicate that an RAE-based approach to fault detection provides a definite

indication that an abnormal event has occurred in a dynamic process.

The performance of a nonlinear RAE was compared against that of a linear RAE

for the monitoring of a nonlinear process. The results show that the nonlinear

RAE performed better than the linear RAE at modeling the nonlinear correlations

exhibited by the process variables. Furthermore, the nonlinear RAE performed well

at distinguishing between nominal and abnormal samples.
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