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This work was carried out under the Industrial PhD program of Innovation Fund Denmark, which provided
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This dissertation is written as a monograph, yet parts of the research work carried out in the Industrial PhD
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Abstract
Offshore Windfarms (OWFs) will dominate the energy generation across the globe by 2050. The ten-fold
increase in offshore wind over the last decade has primarily been driven by two factors: Firstly, the decrease
in its Levelized Cost of Energy (LCOE) from 180 to less than 40 e

MWh in this period, due to optimization of
the entire value chain; secondly, the development of large-scale OWFs farther from the shore. In order to
keep up with the targets of 2050, further reduction in LCOE is needed. This can be done by making use
of the intermittent nature and low capacity factors of the wind to optimally design and utilize the OWF
transmission system. In this thesis, novel methodologies and investment decision tools are developed for
operation and planning of the OWF export system and its HV components on the basis of Dynamic Thermal
Rating (DTR) concept.

Debottlenecking of the OWF export system has revealed that there are inherent thermal pinch-points that
need to be resolved for methodical DTR-based design and operation. For this purpose efficient thermal
estimation of critical HV components in real-time is possible using empirically derived, differential equations
based Thermo-Electric Equivalent (TEE) models. In this thesis, state-of-the-art TEE models (particularly for
cables and transformers) are investigated and modified for linear optimization. This is complemented by
evaluation of their performance under actual operating conditions from test case OWFs around the globe.
Further analysis has revealed that the time-variant physical attributes of the HV components, along with the
respective environmental conditions dictate their thermodynamic behavior. Therefore, data analytics and
Machine Learning (ML) have been used to develop, test and benchmark statistical tools for thermal estimation
and dynamic condition monitoring of these components. The proposed ML-based methods, ranging between
semi-physical grey-box and non-physical black-box models, offer unique advantages due to their self-learning
nature, which includes identification of information not readily visible to operators due to abundance of data.
Furthermore, these models are found to improve the performance of the conventional TEE models and can
potentially be used for real-time condition monitoring in the offshore environment.

DTR-based optimal utilization of OWF transformers is given keen attention in this thesis. The analysis of ten
test case OWF transformers has revealed that the potential for their optimal utilization is considerable and
state-of-the-art thermo-chemical ageing models can be used for this purpose. Therefore, an enhanced DTR
methodology for transformer utilization has been developed for a novel optimization problem that facilitates
large-scale integration of offshore windfarms by minimizing the energy dispatch cost in the day-ahead market.
By testing the methodology on actual generation and load patterns of West-Denmark, the dynamic lifetime
based utilization of transformer is found to delay the grid reinforcement costs by facilitating the integration
of large-scale OWFs in wind-dominated power systems. The proposed framework accounts for common
risk-aversion standards without compromising on system reliability demands.

Finally, cost-effective DTR-based design optimization of HV components in the OWF export system during
the planning phase is addressed in the last part of the thesis. The unique uncertainty challenges due to
stochastic nature of wind speed profile, wind turbine availability and contingency of components over the
entire OWF lifetime are addressed by probabilistic weighing of operational scenarios. Novel investment
decision support tools, (one iterative and one two-stage stochastic optimization model developed over the
course of this project), account for variation in energy losses and possibility of curtailment, while ensuring
reliable system operation. By validating the developed methodologies for a test case OWF off the east coast
of UK, the potential for improvement in business case, while balancing the threat of poor transmission
efficiency, is successfully demonstrated. All in all, the analysis presented in this thesis shows that DTR can
have significant positive impacts on the design and operation of OWF export systems.
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Resumé på Dansk
Offshore vindmølleparker (OWFs) er på vej til at være den førende energiproduktion over hele kloden inden
2050. Tidoblingen i antal parker i løbet af det sidste årti har primært været drevet af to faktorer: For det første et
fald i energiomkostningerne (levelized cost of energy - LCOE) i denne periode fra 180 til mindre end 40e/MWh
på grund af optimering af hele værdikæden og for det andet udvikling af store vindmølleparker længere væk
fra kysten. For at opfylde målene for 2050 er der behov for yderligere reduktion i LCOE. Dette kan gøres
ved at udnytte vindens intermitterende natur og lave kapacitetsfaktorer til optimalt at designe og udnytte
offshore-transmissionssystemet. I denne afhandling udvikles nye metoder og værktøjer til at understøtte
investeringsbeslutninger til drift og planlægning af eksportsystemet og dets højspændingskomponenter på
basis af Dynamic Thermal Rating (DTR) konceptet.

En undersøgelse af eksportsystemet har afsløret termiske flaskehalse, der skal fjernes for systematisk at kunne
anvende DTR-baseret design og drift. Til dette formål er effektiv termisk estimering af kritiske højspænd-
ingskomponenter i realtid en mulighed, som foretages ved hjælp af empirisk afledte differentialligninger
baseret på termoelektriske (TEE) modeller. I denne afhandling undersøges moderne TEE-modeller for især
kabler og transformere, som modificeres til lineær optimering. Dette suppleres med evaluering af deres
ydeevne under faktiske driftsforhold fra vindmølleparker over hele kloden. Yderligere analyser har afsløret, at
tidsvariationen af højspændingskomponenternes fysiske egenskaber sammen med de respektive ydre forhold
er afgørende for deres termodynamiske opførsel. Derfor er dataanalyse og maskinlæring (ML) blevet brugt til
at udvikle, teste og benchmarke statistiske værktøjer til termisk estimering og dynamisk tilstandsovervågning
af disse komponenter. De foreslåede ML-baserede metoder spænder fra semi-fysiske grey-box til ikke-fysiske
black-box modeller. Modellerne tilbyder unikke fordele på grund af deres selvlærende natur, som inkluderer
identifikation af information, der ikke er så synlig for operatører på grund af dataoverflod. Desuden har
disse modeller vist sig at forbedre ydeevnen for de konventionelle TEE-modeller og kan potentielt bruges til
realtidsovervågning i offshore-installationer.

DTR-baseret optimal udnyttelse af offshore-transformere spiller en vigtig rolle i denne afhandling. Analysen
af ti testtransformere har afsløret, at potentialet for deres optimale udnyttelse er betydeligt, og at avancerede
termokemiske ældningsmodeller kan bruges til dette formål. Derfor er der blevet udviklet en forbedret
DTR-metode til transformatorudnyttelse i forbindelse med en ny optimeringsopgave, som letter storskala-
integration af OWFs ved at minimere dispatch-omkostningerne på det daglige energimarked. Ved at teste
metoden på faktiske produktions- og belastningsmønstre i Vestdanmark viser det sig, at den dynamiske
levetidsbaserede udnyttelse af transformere forsinker omkostninger til netforstærkning ved integration af
store vindmølleparker i vinddominerede elsystemer. Den foreslåede metode tager højde for almindelige
standarder for risikoaversion uden at gå på kompromis med kravene til systemets pålidelighed.

I den sidste del af afhandlingen behandles omkostningseffektiv DTR-baseret designoptimering af OWF HV-
komponenter i planlægningsfasen. De unikke usikkerhedsudfordringer på grund af vindhastighedsprofilens
stokastiske karakter, tilgængelighed af vindmøller og komponenter i hele vindmølleparkens levetid løses
ved probabilistisk vægtning af driftsscenarier. Nye værktøjer til at understøtte investeringsbeslutninger (en
iterativ og en to-trins stokastisk optimeringsmodel udviklet i løbet af dette projekt) tager højde for variation
i energitab og mulighed for dets begrænsning, samtidig med at der sikres pålidelig systemdrift. Ved at
validere de udviklede metoder på en test case, en vindmøllepark ud for Storbritanniens østkyst, demonstreres
potentialet for forbedring af forretningsmodellen, samtidigt med at der sikres balance med risikoen for
ringe transmissionseffektivitet. Alt i alt viser analysen præsenteret i denne afhandling, at DTR kan have en
signifikant positiv indvirkning på design og drift af vindmølleparkers eksportsystemer.
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Nomenclature
Note: The main notation used in this dissertation is

stated below. Additional symbols are defined
where needed.

Acronyms:

ACF Auto Correlation Function

ANN Artificial Neural Network

ARIMA Auto-Regressive Integrated Moving Avg.

ARX Auto-Regressive eXogenous

BB2 Burbo Bank 2 Offshore Windfarm

BKR Borkrum Riffgrund Offshore Windfarm

CAPEX Capital Expenditures

CCF Common Cause Failures

CDF Cumulative Density Function

CfD Contract for Difference

CIGRE Int. Council on Large Electric Systems

DCOPF Direct Current Optimal Power Flow

DOB Depth of Burrial

DP Degree of Polymerization, no unit

DTMC Discrete Time Markov Chain

DTR Dynamic Thermal Rating

DTR+ Enhanced Dynamic Thermal Rating

DTS Distributed Temperature Sensing

DTU Technical University of Denmark

EL Expected Lifetime

FAT Factory Acceptance Test

FiT Feed-in Tariffs

GLM Generalized Linear Model

GOW Gode Wind Offshore Windfarm

HDD Horizontal Directional Drilling

HST Hot Spot Temperature

HVAC High Voltage Alternating Current

HVDC High Voltage Direct Current

IEC International Electrotechnical Commission

IEEE Institute of Electrical & Electronic Engr.

iid Independent and identically distributed

LCOE Levelised Cost of Energy

LL Loss of Life

MILP Mixed Integer Linear Program

MIQCP Mixed Integer Quadratically Constrained
Program

ML Machine Learning

MTTF Mean Time To Failure

MTTR Mean Time To Repair

NCCF No Common Cause Failures

NMSE Normalized Mean Square Error

NPV Net Present Value [e]

ODAF Directed Oil Forced Air Forced

ODE Ordinary Differential Equation

OFAF Non directed Oil Forced Air Forced

ONAF Oil Natural Air Forced

ONAN Oil Natural Air Natural

OnSS Onshore Substation

OPEX Operational Expenditures

OSS Offshore Substation

OWF Offshore Windfarm

PACF Partial Auto Correlation Function

PCA Principal Component Analysis

PCC Point of Common Coupling

PDF Probability Density Function

PTDF Power Transfer Distribution Matrix

RBD Reliability Block Diagram

RCS Reactive Compensation Station

ReLU Rectified Linear Unit

ROW Race Bank Offshore Windfarm

SCETM Single Core Equivalent Thermal (TEE) Model

SS State Space
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SSE Sum of Squared Errors

STR Static Thermal Rating

TEE Thermoelectric Equivalent

TOT Top Oil Temperature

TSO Transmission System Operator

TUP Thermally Upgraded Paper

WOW Walney Offshore Windfarm

WT Wind Turbine

WTG Wind Turbine Generator

XLPE Cross-Linked Poly-Ethylene

Parameters (Constants and Inputs):

B Admittance matrix

M PTDF matrix

∆t Operational time step, [hour]

∆ϑhst
rated Rated HST rise over ϑtot, [◦C]

∆ϑtot
rated Rated TOT rise over ϑamb, [◦C]

z Power flow through branch, [pu]

γ Power purchase agreement price, [e/MWh]

κ Forecast function (local trend)

Λ, Υ Failure & repair rates for components, [hr−1]

λc
s Loss factors for cable screen & armour, [pu]

λrated Rated trafo loss of life, [hr]

µAW
av

Avg. windfarm availability, [pu]

ν, µ Empirically derived cooling coefficients for
oil and winding, [pu]

ϑ Emergency temperature limit, [◦C]

ϑ Cyclic temperature limit, [◦C]

ΠWF Design lifetime of windfarm, [years]

πs Probability of each scenario, [pu]

ψ Function for WTG availability, [pu]

ρsoil Thermal soil resistivity, [m◦C/W]

σ Standard deviation

τw WTG availability duration, [hour]

τ0 Thermal time constant - oil, [hour]

τh Thermal time constant - wdg, [hour]

εt White noise signal

$soil Soil specific heat, [m◦C/W]

ϑamb
t Ambient temperatures, [◦C]

ϑsea
t Seabed temperatures, [◦C]

A Pre-exponential factor, [1/hour]

ASF
t Scaling factor for export system [pu]

AW
t A

c
t OWF & transmission circuit availability

ak, bk Thermal coefficients for cables and trafos

c Cost of components & relevant energy dis-
patch, [e/unit, e/km, e/tonne, e/MWh]

Csoil Thermal capacitance for soil, [J/m◦C]

Cth Thermal capacitance of trafo, [Wh/◦C]

Cx Thermal capacitance for cable, [J/m◦C]

e Empirical coefficients for trafo scaling

Ecurt Total curtailed energy, [MWh]

Edel Total energy delivered, [MWh/yr]

Eloss Total energy loss in export system, [MWh]

Ea Min. activation energy for reaction, [kJ/mol]

g Cost coefficients for cables

i Discount rate for NPV calculation, [pu]

Ic
Q k Reactive component of cable current, [A]

Lc Length of subsea export cable, [m]

m Mass of relevant components, [tonne]

n Number of components

nH Number of hidden layers (ANN)

ntest Number of test observations

ntrain Number of training observations

P load
t Hourly demand in test system, [pu]

Pw
t OWF power generation, [pu]

pj,l qj,l Slope and intercepts for linear approx.

r Resistance of components at temp. limits, [Ω]

Rg Ideal gas constant, [J/(mol.K)]

S Component rating, [MVA, MW, MVAr]

Tsoil Thermal resistance for soil, [m◦C/W]

Tx Thermal resistance for cable, [m◦C/W]

ut, Ut Input signal (train & test)

x
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V oil pu Actual oil viscosity w.r.t. rated TOT, [pu]

Vll Line to line voltage of export system, [kV]

W trf,cu,e
rated Ratio of transformer rated load losses to no-

load losses, [pu]

W trf
rated Transformer total rated losses, [W]

Wd Dielectric losses in cables, [W]

Wnl No load loss in transformers, [W]

yt, Yt Measured signal for training

Z trf Representative trafo parameter in Table 8.1

P State transition matrix

Decision Variables and Outputs:

w, w′ Weighing parameters (ARX & ANN)

χ Forgetting factor for ML models

∆λt Trafo ageing acceleration factor, [hr]

λy Transformer loss of life - yearly (LL), [hr]

τp Estimated time constant (ODE), [hour]

ϑcond
t Cable conductor temp. rise over ϑsea [◦C]

ϑdts
t Cable DTS meas. or estimation, [◦C]

ϑhdd
t Cable HDD temperature, [◦C]

ϑhstW Weighted average HST, [◦C]

ϑhst
t Transformer hot spot temperature, [◦C]

ϑserv
t Cable serving temp. rise over ϑsea, [◦C]

ϑtot
t Transformer top oil temperature, [◦C]

ŷt Estimated signal by ML model

C0 Investment costs = f
(
ntur, Cfix, C

exp
k

)
, [Me]

IP t Component load current (active), [A]

It Component load current, [A]

Kp Estimated gain (ODE)

ntur Number of wind turbines

P conv
t Hourly conv. gen in test system, [pu]

P cut
t Hourly power curtailed from OWF, [MW]

P
gen
t Hourly power generated by the OWF, [MW]

P
inj
t Hourly power injected to the grid, [MW]

POSS
t Hourly OSS input power, [pu]

P sh
t Hourly load shed in test system, [pu]

Pw
t Hourly wind gen in test system, [pu]

R Total revenue over OWF lifetime, [Me]

W
exp
t Export system losses, [W]

W a
t , W s

t Cable losses (armour, screen), [W/m]

W cond
t Cable conductor losses, [W/m]

W trf
t,ϑhst Temperature dependent transformer load

losses, [pu]

Wt Losses in components, [W]

Superscripts (Components & Test Cases):

pu Per-unit representation

c Cables and circuits

conv Conventional generators

SR Shunt Reactors

trf Transformers

tur Wind Turbines

Subscripts (Sets & Indices):

α ∈ A Set of branches

β ∈ B Set of buses

g ∈ G Set of conventional generators

j ∈ J Set of tangent lines for losses approximation

k ∈ K Set of candidate design cases (Opt. case: kopt)

l ∈ L Set of tangent lines for ageing approximation

s ∈ S Set of scenarios

t ∈ T Set of hours in each year

w ∈ W Set of windfarms

y ∈ Y Set of years in windfarm lifetime ΠWF [yr]

base Base design cases

opt Optimal design cases

xi
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CHAPTER1
Introduction

1.1 Motivation

Over the last decade, the cumulative installed capacity of offshore wind energy has increased ten-fold across
the globe as the overall capacity crossed the 23 GW mark in 2019 [1], as shown in Fig. 1.1. This growth is
expected to accelerate even further as per the recently announced plans of governments and energy ministries
in UK [2], Japan [3], US [4] and the ambitious 450 GW offshore windfarm target in 2050 by the EU [5].

Figure 1.1: Annual installed capacity and cumulative installation capacity of offshore wind energy across the globe between
2009 and 2019 [1].

Until now, the development of major Offshore Windfarm (OWF) projects has primarily been facilitated
by energy price support set by the auctioned Contract for Difference (CfD) allowing the energy produced
by OWFs to be sold at the strike price of the project which is usually higher than the spot-market price.
Alternatively, fixed government subsidies in the form of Feed-in Tariffs (FiT), which allow premium payments
for capped annual energy production have further eased the development of OWFs. Some of the relevant
projects, along with their subsidies and CfD strike prices, are provided in Fig. 1.2. The process for energy price
stimulation allowed OWF projects to become attractive investment opportunities for developers. However,
the strike prices have been driven down significantly from 195 e

MWh for the 402 MW Dudgeon windfarm
which was commissioned in 2017 to 45 e

MWh for the 1200 MW Doggerbank Creyke Beck A to be completed in
2025 [6]. The plummet in strike price and the exponential growth of OWF integration has been expedited by
the decrease in Levelized Cost Of Energy (LCOE) from 180 to less than 40 e

MWh over the last decade [1]. As a
result, intense price competition has flourished in the markets which has prompted both the manufacturers
and developers to optimize the entire value chain [7]. Nevertheless, there is need to drive down the LCOE for
offshore wind further in order to keep it competitive to alternative/conventional energy sources and to meet
the large scale integration goals set by countries around the world.

One source of economic optimization for OWFs that remained relatively unexplored prior to this project
is the utilization of intermittent nature of the wind to design and operate the electrical components of the
OWF transmission network. As a result of intermittent generation, the annual capacity factor for offshore
wind ranges between 38-46 %, which is also demonstrated by the load duration curves for a number of OWF
projects in UK in Fig. 1.3. On average, all the OWFs in UK produced more than 90% of their rated capacities
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Figure 1.2: Trend for change in energy price support for offshore windfarms considering subsidy (FiT) excluding grid
connection costs and auctioned CfD including grid connection costs. Zero subsidy projects to be built in the near future are
also mentioned. Source: [6]

only 5% or less of the time since their respective commissioning dates. This number includes the influence of
availability of wind turbines which are prone to mechanical failures and frequent maintenance activities [8, 9].

Figure 1.3: Load duration curves for offshore windfarms in UK. The data has been used since the full-commissioning dates
of the respective OWF or from January 2009 onward (whichever is more recent). For the cumulative curve representing all
windfarms, last 5 year data has been used. Data obtained from [10]

Conventionally, the HV components in OWFs are designed conservatively such that the overall transmission
capacity of the OWF is larger than or exactly equal to its production capacity. This is because Static Thermal
Rating (STR) principles are predominantly used for the HV electrical equipment which prevents these
components from being operated beyond their nameplate capacities at any given time. The alternative
operating mechanism of Dynamic Thermal Rating (DTR) can be used to utilize the cyclic operational limits by
pushing more power through these components under favorable ambient conditions and by tracking the
historic load and thermal profiles of the components. DTR-based operation and design depends significantly
on the thermodynamic performance of the HV equipment, which is usually slower to respond to load
variation. As an example, the thermal time constants for 3-core XLPE insulated HV cables range up to few
days, which means that steady-state operation at the rated load would be needed continuously for weeks to
reach the thermal limits of these cables. Therefore, if STR-based loading mechanism is used for the cables
installed in OWFs, the respective thermal limits will ideally never be reached. The influence of high thermal
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time constants is demonstrated in Fig. 1.4, where simple moving average calculations are made for long-term
wind speed and power production profiles for a test case OWF. The moving average curve for cable load
does not touch the 100% mark even once during the 15-year observation period, which indicates the need for
improvement in component design and operational practices. Moreover, the HV electrical equipment are
known to last ≥40 years, while the OWFs are designed for an operational lifetime of 25-30 years. As a result,
these components are bound to have ≥10 years of useful residual life at the time of OWF decommissioning.
Hence, by considering all of these factors, the utilization and design of major HV components of the OWF
transmission system can be improved significantly.

Figure 1.4: Assessment of influence of thermal time constants on load variation due to intermittent nature of wind
production in offshore windfarms for a test case OWF in UK. Left: 7-day moving average window is used for 15-year wind
speed profile of the test site. Right: Same moving average window is used on the hourly production to assess the thermal
development in OWF cables.

The HV transmission system is known to contribute extensively to the overall Capital Expenditures (CAPEX)
of the OWF projects as it accounts for up to 43 % of the overall investment [11] and has similar financial impact
as the overall wind turbine package (incl. foundation costs). As more and more large-scale OWFs are built
further from the shore, the potential to utilize the variable nature of wind for optimum sizing and operation
of the transmission components to further decrease the LCOE escalates as well [12]. However, DTR-based
design and operation can negatively influence the system losses and availability which can truncate the
profitability over the OWF lifetime in the process [13–15]. Therefore, a balance needs to be maintained to
identify the optimal solution that maximizes the Net Present Value (NPV) of the project. Besides the need for
DTR-based design and operation of HV equipment in the transmission network, OWF projects offer unique
challenges because of difficulty in accessibility and logistical support in the offshore environment. Therefore,
smart condition monitoring of the critical components using the data available from commonly installed
thermal monitoring equipment is critical for sustainable employment of DTR methodologies.

All of the attributes mentioned above serve as the motivation for this PhD project, with focus on the
optimization of electrical transmission network for large-scale OWF projects.

1.2 Scope and Background of the Industrial PhD Project
The Industrial PhD project has been focused on the HV export system of the OWF, which is responsible for
transmitting the collected wind energy from the offshore substation in the sea to the onshore substation on
land and then to the connected grid. The layout of the HVAC-based transmission system along with the scope
of the PhD project are highlighted in Fig. 1.5. This layout is further elaborated in detail in Chapter 2.

Figure 1.5: HVAC-based transmission system layout for offshore windfarms and scope of the PhD project.
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The transmission technology that the PhD project focuses on is HVAC-based. However, the established
concepts and the developed methods are easily extendable to the HVDC transmission technology as well.
In order to refine the scope of the PhD project further, breakdown of the export system CAPEX has been
provided in Fig. 1.6 for a number of offshore windfarms in UK. This simplified analysis shows that offshore
substations (including foundation and civil works) and the offshore section of the export cables (including
installation and commissioning) constitute the major costs of the OWF export system. Therefore, optimal
design and utilization of the electrical components relevant to these subsystems should supposedly have the
highest influence on the overall business case.

Figure 1.6: Breakdown of capital expenditures for transmission system of a number of commissioned offshore windfarms
in UK [6]

Over the last decade, a number of publications have surfaced that present and analyse a number of techniques
to optimize the design and utilization of the electrical network of the offshore windfarms [14, 16–26], which
effectively address the efficiency of the electrical infrastructure, along with the investment costs and operational
expenses. These publications are predominantly focused on the optimization of the cable routing and layout
of the array cable network [16–20], while the rest of the OWF transmission network (HV export system)
has been discussed in only a handful of the published research work. A substantial portion of this work
has centred around optimization of HVAC submarine cables without the application of DTR [14, 21–23],
while DTR has been used for cable design optimization in [24–26]. While on the contrary, the potential of
optimizing the remaining HV components and systemic application of DTR on the complete export system is
completely unexplored [12]. Furthermore, iterative coupling is predominantly used in defining the windfarm
size and the ratings of HV transmission system components [22]. DTR-based optimization of transformer is
given keen attention in this thesis, because these components are commonly over-dimensioned, are critical
for security of supply, can outlive the OWF by tens of years, influence the business considerably and unlike
cables, have not been addressed in the literature.

Even though, application of DTR for optimal utilization of transmission system components has been
discussed in the literature [27], the application of this principle for OWFs during the design phase has been
left untouched. This is because the uncertainty in wind generation profile over the OWF lifetime is a challenge,
while the possible contingency of the system due to longer repair times and high capacity factors introduce
reliability challenges [12, 17]. A number of probability-based methods ranging from analytical techniques [28]
to Monte Carlo simulations [14, 17, 29] can be used to address these challenges. However, a balance needs
to be maintained between problem complexity and computational efficiency for the design and utilization
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problems. The state-of-the-art and the extensive literature review performed over the course of this project
have been presented through out the thesis in the relevant sections.

1.3 Research Questions

Based on the scope of the PhD project, following research questions have been drawn up:

[Q1] What are the inherent thermal bottlenecks in the OWF export system and how can DTR facilitate
resolution of major pinch-points?

[Q2] Can DTR be employed for operational and design optimization problems for offshore windfarms by
using state-of-the-art thermal models for critical HV export system components? What modifications
should be made to these models to make them fit for the relevant applications?

[Q3] How and why should machine learning and data analytics be used for dynamic thermal estimation and
condition monitoring of OWF export system components? Is it possible to extract physical, operational
insights about the components from the semi-physical grey-box and empirical black-box models?

[Q4] Is there a need to optimize the utilization of critical export system components by using DTR and/or
by tracking their thermal and thermo-chemical ageing for reliable operation of the existing offshore
windfarms? Can DTR facilitate the integration of OWFs in the transmission grid with minimal
infrastructural investments?

[Q5] How can DTR be used to optimize the design of the complete OWF export system or its critical
components over its entire lifetime, while accounting for uncertainty in generation and system
availability/contingency?

[Q6] What are the economic and technical considerations needed for DTR-based design optimization of OWF
export system? How can variables like efficiency of transmission, possibility of energy curtailment and
reliability of design be used for economic optimization of offshore windfarm design based on DTR?

1.4 Contributions

The main contributions of the PhD project have been enumerated below:

(A) Comprehensive thermal assessment for identifying major bottlenecks in the HVAC-based export system
for offshore windfarms considering energy availability, with focus on components and sub-components
in offshore substations and export cable sections.

(B) Reformulation and validation of the relevant state-of-the-art thermoelectric models to prevent non-
convexity of the developed optimization problems. The simplified models are based on:

i) Temperature dynamics of transformer oil and winding under natural and forced cooling.

ii) Data-driven parameter estimation and consolidation of thermoelectric nodes across cable cross-
section.

(C) Development of data analytics based semi-physical grey-box and black-box models for dynamic thermal
estimation of transformers and subsea export cables to account for variation in design and operational
characteristics across portfolio projects. This is followed by validation and comparison of the developed
models on actual offshore windfarm data and lab test setup.

(D) Evaluation of the potential condition-monitoring applications of the developed machine learning
models including variation in surrounding characteristics along the subsea cable route and operating
conditions of wind turbine transformers.
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(E) Development and application of an iterative methodology for design and utilization of offshore
windfarm transformers based on its cumulative loss-of-life. Two different approaches are used:

i) For operational and design optimization problems, standard Arrhenius reaction rate model is
linearized.

ii) For iterative design problems, ageing models based on degree of polymerization are evaluated
and benchmarked for accurate thermo-chemical decomposition considerations of cellulose-based
insulation paper over the windfarm lifetime. The choice of end-of-life criterion and proposal of
moisture/oxygen variation is performed on the basis of this analysis.

(F) Assessment of utilization of transformers from multiple actual OWFs under varying load conditions to
recognize the potential for DTR-based optimal operation across portfolio projects and optimal design of
pipeline projects.

(G) Development, testing and application of techniques for modeling of uncertainty in wind energy
production and system availability over the OWF lifetime by adopting sophisticated trend analysis
mechanisms. Following methods are utilized:

i) Stochastic ARIMA processes that account for daily and yearly seasonalities to model long-term
time series for wind speed.

ii) Probabilistic discrete-time Markov chain processes for stochastic availability of wind turbines and
contingency of export system circuits/components.

(H) Formulation, testing and application of an iterative technique for optimization of NPV and Transmission
LCOE for offshore windfarms based on transformer DTR and thermo-chemical ageing, while accounting
for contingency, system losses and possible curtailment over the OWF lifetime.

(I) Formulation and application of a lossy DC Optimal Power Flow (DCOPF) algorithm based on a
Mixed Integer Quadratic Constrained Program (MIQCP) convex optimization problem that facilitates
large-scale integration of offshore windfarms in the day-ahead market and allows deferring grid
reinforcement costs by using DTR and lifetime-based transformer utilization. The problem is tested for
actual load, weather and generation data from west-Denmark.

(J) Development, testing and application of an investment decision support tool for OWF sizing and export
system design. This tool is based on a two-stage Mixed Integer Linear Program (MILP) stochastic
optimization problem which uses DTR and thermal coordination of the relevant HV export system
components for the optimization of windfarm business-case over the OWF lifetime, while accounting
for load-dependent losses, energy curtailment and system reliability.

1.5 List of Publications

The work presented in this dissertation has been disseminated in a number of journal publication which are
included in the Appendix. The relevant journal publications are listed below:

[Pub. J1] S. H. H.Kazmi, T. Laneryd, K. Giannikas, S. F. Ahrenfeldt, T. H. Olesen, T. S. Sørensen and J. Holbøll,
"Cost optimized dynamic design of offshore windfarm transformers with reliability and contingency
considerations", International Journal of Electrical Power and Energy Systems Dec 2020.

[Pub. J2] S. H. H.Kazmi, N. Viafora, B. C. Pal, T. S. Sørensen, T. H. Olesen and J. Holbøll, "Offshore Windfarm
Design Optimization using Dynamic Rating for Transmission Components", submitted to IEEE
Transactions on Power Systems, Nov 2020.

The scientific papers presented in a number of international conferences to publish the work presented in this
thesis are enumerated below. These papers are also attached in the Appendix.
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[Pub. C1] S. H. H.Kazmi, T. H. Olesen, T. S. Sørensen and J. Holbøll, "Thermoelectric Modelling and Optimization
of Offshore Windfarm Export Systems - State of the Art", IEEE Global Power, Energy and Communication
Conference (GPECOM), Nevsehir, Turkey, July 2019.

[Pub. C2] S. H. H.Kazmi, T. H. Olesen, T. S. Sørensen and J. Holbøll, "Dynamic Thermoelectric Modelling of
Oil-Filled Transformers for Optimized Integration of Wind Power in Distribution Networks", Paper
1744, 25th International Conference on Electricity Distribution (CIRED), Madrid, Spain, June 2019.

[Pub. C3] S. H. H.Kazmi, T. H. Olesen, T. S. Sørensen and J. Holbøll, "Dynamic Thermoelectric Modelling
of Oil-filled Power Transformers for Optimization of Offshore Windfarm Export Systems", CIGRE
Symposium, Aalborg, Denmark, June 2019.

[Pub. C4] N. Viafora, S. H. H. Kazmi, T. H. Olesen, T. S. Sørensen and J. Holbøll, "Load Dispatch optimization
using Dynamic Rating and Optimal Lifetime Utilization of Transformers," IEEE PES PowerTech,
Milan, Italy, July 2019.

[Pub. C5] S. H. H.Kazmi, T. H. Olesen, T. S. Sørensen and J. Holbøll, "Machine Learning based Temperature
Forecast of Offshore Windfarm Export Cables", B1-109 CIGRE, Paris, France, Aug 2020.

[Pub. C6] S. H. H.Kazmi, T. H. Olesen, T. S. Sørensen and J. Holbøll, "Thermal Analysis and Debottlenecking of
HVAC Export Cables for Offshore Windfarms", Accepted (awaiting presentation), 3rd CIGRE South
East European Regional Council Conference, Vienna, Austria, Nov 2021.

[Pub. C7] S. H. H.Kazmi, T. H. Olesen, T. S. Sørensen and J. Holbøll, "Machine Learning based Dynamic Thermal
Modelling of Offshore Wind Turbine Transformers", Accepted (awaiting presentation), 41st CIGRE
Symposium, Ljubljana, Slovenia, Jun 2021.

Other publications that have also been prepared during the course of the Industrial PhD project, but have been
omitted because they are not directly related to the primary objective of the thesis, or because the scientific
information has been partially covered in the remaining papers.

[Pub. D1] N. Viafora, K. Morozovska, S. H. H. Kazmi, T. Laneryd, P. Hilber and J. Holbøll, "Day-ahead dispatch
optimization with dynamic thermal rating of transformers and overhead lines", (2019) Electric Power
Systems Research, Special Issue on Dynamic Rating 171, pp. 194-208.

[Pub. D2] S. H. H. Kazmi, "Real-time Dynamic Rating and Condition Monitoring of Offshore Windfarm Export
Systems", Poster Presentation, XIII International Conference on Electrical Machines (ICEM), Alexandroupoli,
Greece, Sep 2018.

[Pub. D3] K. Morozovska, S. H. H. Kazmi, F. Hajeforosh, P. Hilber and J. Holbøll, "Net Present Value Optimization
of Onshore Windfarm Design with Dynamically Rated Transformers", Working Journal Paper.

1.6 Thesis Structure
The rest of the PhD thesis has been divided into five parts. In order to draw an intelligible and transparent
structure, the distribution of research questions, original contributions and relevant publications of the project
is provided in Table 1.1 for the respective parts.

Table 1.1: Distribution of research questions, original contributions and relevant publications across Parts I-V
of the dissertation.

Part Research
Question Contribution Publication

I - - -
II Q1 - Q3 A - D C1 , C5 - C7
III Q2 , Q4 E - F , I C2 - C4
IV Q2 , Q5 - Q6 G - H , J J1 - J2
V - - -
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The contents of Parts II - V are briefly elaborated below:

− Part II: This part consists of chapters 2 and 3. The analysis is kicked-off in Chapter 2, where the
layout and inherent thermal bottlenecks of the OWF export system are presented. The state-of-the-art
dynamic thermal models using empirical differential equations based methods are discussed and then
simplified for linear optimization applications. Furthermore, this chapter validates the DTR models for
intermittent loading of components from multiple OWFs across the globe and provides the necessary
background for discussion in the remaining chapters. Afterwards, the need for data-driven thermal
estimation models for OWF components is elaborated in Chapter 3, which provides an exhaustive
classification of relevant machine learning models used in this project. The difference in structure,
estimation of parameters and key advantages of these models are highlighted, which is followed by
validation and benchmarking of these models on measured temperature data from the relevant OWF
components. The chapter finally touches upon the dynamic condition monitoring applications of these
modern grey-box and black-box models for semi-physical estimation of HV export cable surroundings
and thermal estimation of wind turbine transformers.

− Part III: This part deals with optimal utilization of offshore windfarm transformers in the operational
frame work and it consists of chapters 4, 5 and 6. Firstly, in Chapter 4 the thermal and thermo-
chemical ageing of transformers using Arrhenius reaction rate and degree of polymerization models
are benchmarked and their performance has been evaluated under different operating circumstances.
Secondly, in Chapter 5, the shortlisted ageing models are used to identify the potential for DTR-based
optimal utilization of OWF transformers using actual test case windfarms. Finally in Chapter 6,
a dynamic ageing based utilization principle for a DCOPF algorithm is developed and tested for
day-ahead dispatch optimization of IEEE 24-bus network by mapping the actual generation, load and
wind production data from the transmission system of west-Denmark. The proposed technique is found
to ease large-scale integration of offshore windfarms in the network by delaying grid-reinforcement
costs.

− Part IV: This part of the thesis presents the optimization of export system components during the
design and planning phase of offshore windfarms and it comprises of chapters 7, 8 and 9. In Chapter
7, methodologies for generation of set of scenarios are presented which are necessary to account for
uncertainty in wind generation and system availability over the windfarm lifetime. In rest of the
chapters, two techniques are developed and tested for economic optimization of actual test case offshore
windfarm design which use DTR for rating of critical HV components of the export system. The first
model (presented in Chapter 8) is an iterative algorithm, while the second model (presented in Chapter
9) is a two-stage stochastic optimization problem for investment decision support during the OWF
planning phase. The developed methods are found to improve the business case considerably even
after consideration of system losses and possible energy curtailment during contingency.

− Part V: The final part, comprising of Chapter 10, presents conclusions and outlines future research
directions for the project. Furthermore, answers to the research questions and prospects of the developed
methodologies are also discussed in this part.
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This part has been split into two chapters: Debottlenecking & Dynamic Thermal Modeling of OWF
Transmission System and Dynamic Condition Monitoring using Data Analytics. The details for this split
are presented below.

It has been shown so far that the transmission system contributes extensively to the Capital Expenses (CAPEX)
of the Offshore Windfarm (OWF) projects, with the highest investment costs being driven by the export cables
and offshore/onshore substations. In order to identify the exact contributions of the relevant HV components
and their performance under Dynamic Thermal Rating (DTR) based operation and design, it is important
to distinguish the inherent thermal pinch points in the OWF export system. Afterwards, thermal modeling
of the identified bottlenecks needs to be performed for real-time thermal estimation under dynamic load
conditions. This is discussed in detail in Chapter 2

The thermodynamic behavior of these components is not only dependent on their physical attributes which
are time-variant, but are also usually influenced by parameters that vary with environmental conditions. As
an example, the thermal development of a test case OWF export cable is shown for its entire route over the
period of 8 days in Fig. 1.7. The conventional thermal estimation mechanisms offer limited adaptability, while
the data-analytics based machine learning algorithms, presented in Chapter 3, can potentially resolve these
issues.

Figure 1.7: Variation of cable temperature over eight days along the entire length. The length is shown with respect to the
onshore substation for the test windfarm. The thermal behavior is consistent along the route.
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CHAPTER2
Debottlenecking & Dynamic
Thermal Modeling of OWF

Transmission System
In order to employ dynamic rating on OWF export system components, it is critical to understand the
system layout, design practices and inherent bottlenecks. In this project, HVAC-based transmission system is
focused upon, but the concepts are extendable to HVDC technology as well. This chapter unfolds the export
system and presents the state-of-the-art thermal models to be used for dynamic thermal estimation of the
critical HV components. The discussion is focused on parameterization, benchmarking and modifications of
the identified differential equations based Thermoelectric Equivalent (TEE) models, which is followed by
validation of these models on actual test case windfarm components. The relevant non-linear, non-convex
TEE models are simplified in this chapter to make them fit for linear optimization problems developed in the
remaining chapters. A significant portion of this work has been presented in publications [Pub. C1], [Pub.
C2] and [Pub. C6] by the author.

2.1 HVAC-based Offshore Windfarm Export System - Layout and Description

The energy produced by Offshore Windfarms (OWFs) is conventionally transmitted to the onshore grid
using HVAC technology. The system responsible for this can be split into two subsystems: collection and
transmission. The collection system gathers the energy from Wind Turbines (WTs) using a meshed network of
subsea array cables and transfers it to the offshore substation(s); while the transmission system, also referred
to as OWF export system in this project, is responsible for voltage step-up and transmission to the onshore
grid. This project focuses primarily on the latter system.

As shown in Fig. 2.1(a) with two parallel circuits, the OWF export system usually consists of three types of
substations: One or more Offshore Substations (OSS) close to the turbines, Onshore Substation (OnSS) on
land serving as the interface between OWF and onshore transmission grid, and lastly, Reactive Compensation
Station (RCS) close to the midpoint of the export cables. Even though HVAC technology is feasible for
transmission up to 70 km length for large offshore windfarms, the intermediate shunt reactors placed in the
RCS help increase the transmission distance. The exact number of substations for each type depend upon
the location and size of OWFs, as governed by local design regulations and redundancy requirements. The
OSS primarily consists of HV equipment which include oil-filled power transformers, HV/MV Switchgear
(commonly gas-insulated), equipment for dynamic compensation, LV systems etc. While the OnSS commonly
comprises of a range of additional HV components (incl. harmonic filters, static and variable compensation
equipment etc.) which are necessary to fulfill grid-code requirements at the Point of Common Coupling
(PCC). This is shown in Fig. 2.1(b) for a single-circuit OWF transmission system. It is important to clarify that
system designers commonly employ multiple parallel circuits to improve system reliability and availability,
but a balance has to be made between Capital Expenses (CAPEX), expected Operational Expenses (OPEX)
and foreseen revenue during the design phase.
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Figure 2.1: Simplified layout of offshore windfarms with focus on the HV export system. (a) Layout of onshore, reactor
and offshore substations for export system with two parallel circuits. (b) Topology for connection of HV components in a
typical circuit of HVAC-based export system.

One of the test case OWFs used in this project is Anholt windfarm located off the east coast of Jylland
(Denmark) in the Kattegat sea. This 400 MW windfarm consisting of 111 3.6 MW turbines was jointly
developed by Orsted and Energinet. The exact distribution of work scope for the two parties and the
transmission system layout for Anholt are provided in Fig. 2.2. The export system topology for Anholt is
unique as it comprises of three parallel transformers for the single-circuit transmission system, as compared to
the other test-case OWFs studied in this project which usually consist of two parallel transformers per circuit.

Figure 2.2: Layout for Anholt offshore windfarm in Denmark. (a) Location, wind turbine layout and onshore connection
points for the windfarm [30]. (b) Layout of the HV export system and ownership/commissioning boundaries between
Orsted and Energinet

2.2 Debottlenecking of HVAC-based OWF export system

It is important to identify the constraining HV components in the OWF export system for effective dynamic
rating based design and operation. At the same time, it is critical to determine components that are either not
affected by or have minimal influence under dynamic load conditions [31]. The business case for offshore
windfarm export system design considers two system availability aspects: time and energy availability. Time
availability determines the ability of the OWF export system to stay connected to the onshore PCC at all times
without necessarily transmitting all the produced energy, while energy availability represents the ability to
transmit the entire production capacity of the windfarm at all times. The first parameter allows compliance
with local system operator regulations, while the latter influences the business case and revenue accumulation
over the OWF lifetime. Simplified reliability block diagrams for a single-circuit OWF export system from Fig.
2.1(b) are provided for both time and energy availability considerations in Fig. 2.3. Under existing design
mechanisms, all the export system components have to be available at all times for maximum energy transfer,
whereas redundant components can be out-of-operation for certain duration for the system to comply with
time availability requirements. The OWF export system components are classified into two categories in this
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Section 2.2 Debottlenecking of HVAC-based OWF export system

section because of their varying influence on energy transmission under dynamic load. Reliability diagrams
and the relevance of highlighted blocks of Fig. 2.3 are further elaborated in the respective sub-sections.

Figure 2.3: Simplified reliability block diagrams for each parallel circuit of the overall offshore windfarm HV export system
from the perspectives of time and energy availability.

2.2.1 Substation Components

Even though HV export cables are known to be the primary bottlenecks in OWF export system because of
the associated capital investment, some of the substation components can be just as important for system
optimization during contingencies and planned/unplanned maintenance activities. Referring to Fig. 2.3, the
system will fulfill the requirements of time availability if either of the two OSS transformers is available,
but not for energy availability. In case of failure of any one of the these components, the export system
will not be able to transmit the entire windfarm capacity and OSS transformers would become the primary
system bottleneck. This is currently resolved by using over-sized transformers, such that overall transformer
capacity is 120-140% of the windfarm’s rated production. Such a practice allows the system operators to
push up to 70% of the windfarm rated capacity during one transformer contingency scenario. However,
under normal operation this extra transformation potential is left unused. Since transformers are the heaviest
components on OSS, like the one in Fig. 2.4, its rating should be optimized to drive down CAPEX related to
OSS foundation. Last but not the least, thermal time constants for transformers are considerably lower than
cables which makes their thermal development to be more susceptible to load changes. Therefore, careful
considerations are to be made if Dynamic Thermal Rating (DTR) is used for transformer operational and
design optimization.

Unlike OSS transformers, shunt reactors located in the RCS are rarely the system bottlenecks under current
design standards. However, the influence of their weight on RCS foundation costs and the direct dependence
of their rating on the chosen cable design make them ideal for consideration in this study.

Figure 2.4: Offshore substation at Anholt windfarm in Denmark [30]

On the other hand, the need for optimization of ratings for OnSS transformers, OnSS/OSS switch gears and
dynamic compensation equipment (harmonic filters, static compensators, variable reactors etc.) located
in the onshore and offshore substations is found to be less critical for this project. The reason behind this
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assessment is three-folds: Firstly, dynamic compensation components are mostly responsible for power
quality at PCC and their respective locations over the entire range of dynamic load conditions with or without
DTR considerations, which leaves less room for thermal design optimization. Secondly the influence of OnSS
equipment’s ratings on CAPEX and OPEX is minimal due to moderate weight-dependent foundation costs and
ease of access to the substation. Lastly, the recorded experience for switch gears and compensation equipment
suggests that load-dependent ageing accounts for only 10.3 % to 14.5 % failures for these components [32, 33];
which when combined with the difficulty to actively control their load and the inability to effectively assess
the influence of temperature variation on loss of dielectric strength makes them less relevant for DTR-based
design optimization in this project [34, 35].

2.2.2 Export Cable System

As mentioned earlier, export cables are the most expensive components of the OWF export system which
is why they are designed close to the thermal limits. The associated CAPEX investment and the difficulty
to identify and localize load-dependent thermal stress in cables means that the system operators are extra
cautious during load management over the OWF lifetime by operating these cables conservatively. In
conjunction, all of these factors make HV export cables the predominant bottlenecks in the OWF export
system and thereby the primary candidates for Dynamic Thermal Rating (DTR) based design and operation
in this project.

Temperature sensors like thermo-couples, PT-100 etc. can be used for temperature estimation for points along
the export cable route point, but precision issues with these technique can potentially miss localized hotspot
development [36].Therefore, real-time thermal monitoring of offshore windfarm cables can conventionally be
performed using Distributed Temperature Sensing (DTS) equipment which uses fibre-optic cables (embedded
in the HV cable or placed nearby) as linear sensors to obtain a continuous temporal variation of the
cable temperature profile along the entire route [37]. This is considerably better than point-wise spectrum
measurement equipment as the latest equipment can accurately measure (±1◦C) with precision of up to 1 m,
even for long cables (>70 km) [38] [39].

Besides being the major constraint in OWF transmission system, export cable system has inherent thermal
bottlenecks which are not only influenced by seasonal variation of intermittent wind generation, sedimentation,
ambient seabed temperature but are also highly dependent upon the cable installation and commissioning
procedures [40]. In Fig. 2.5, maximum annual DTS measurements for the entire export cable route of an
offshore windfarm in the UK have been provided for two different years, such that 0km mark represents the
onshore substation entry point, while the OSS is located near the 47km mark. For the test case OWF location,
2016 was relatively colder than 2014 as the annual average ambient temperature was 2.6 ◦C lower. More
importantly, the intermittent wind generation in 2016 did not sustain long enough compared to 2014 thereby
resulting in lower DTS measurements. Detailed explanation of this graph is provided later in this section, but
two key observations are made here: hotspot detection can be performed using long-term DTS measurements
and symmetric behavior of each point along the cable route is comprehensible.

In Fig. 2.6, standard layout of OWF export cables is provided, which consists of one 3-core Cross-Linked
Poly-Ethylene (XLPE) insulated subsea cable between the OSS platform and the shore where a transition
joint connects it to three 1-core XLPE insulated underground cables installed in ducts all the way to the OnSS.
Before the termination of cable armor at the entrance of OSS platform hang-off, the export cable is passed
through the J-tube and the Cable Protection System (CPS). CPS is responsible to maintain appropriate bending
radius and to prevent additional mechanical stress on the export cable during commissioning, installation and
operational lifetime [41]. The shallow burial depth in the sea quickly increases as the subsea cable approaches
the sea defense wall to be passed through the Horizontal Directional Drilling (HDD) pipe. Hence, based on
the observations of Fig. 2.5 and the distinctive laying conditions of Fig. 2.6, the OWF export cable can be
divided into five sections: J-tube, CPS, Offshore (subsea, directly buried), HDD and Onshore (underground,
buried in ducts).
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Figure 2.5: Maximum measured temperatures in years 2014 and 2016 for the export cable of the test case windfarm. Top:
Measurements along the entire export cable length. Bottom: Closer look of different sections of interest

Figure 2.6: Overview of the main sections and sub-components for the HVAC-based export cable system in offshore
windfarms.

The cable installation and commissioning conditions are considerably different in the sections mentioned
above. As a result the temperature gradient and thermal time constants vary significantly along the export
cable route. This is demonstrated further for the individual sections below:

• J-tube Cable Section

J-tubes are commonly used in OWFs to provide the additional protection to the export cables from
waves and tides. The three main segments of J-tubes incl. air, water and hang-off (termination for
armour) are shown in Fig. 2.7 along with the DTS measurements for the respective section in test case
OWF for a hot day in Summer 2014. Cable in the air segment is the hottest because of its exposure to
the solar radiation and poor thermal dissipation characteristics compared to water. The temperature is
observed to be highest in the middle of the air segment compared to the boundaries close to the water
and OSS hang-off. This is due to the highest temperature gradient because of the longitudinal heat-flow
at the boundaries [42]. This behavior is consistent during the daytime, which makes the J-tube air
section one of the primary pinch-points along the export cable route, as shown in Fig. 2.5 earlier.
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Figure 2.7: Left: Typical layout of the J-tube cable section [42]. Right: Temperature distribution in subsections of the test
windfarm J-tube using DTS measurements

• Onshore and HDD Cable Sections

The 1-core cables used in the Onshore section are not lined with optical-fibre cable, which is instead
placed in a duct outside the cable carrying pipes. The DTS measurements are consistently lower for
this section and a considerable offset needs to be added to obtain accurate conductor temperatures.
On the other hand, onshore cables are laid in a relatively stable environment and are not designed
as conservatively because of availability of large cable cross-sections by manufacturers at reasonable
costs as compared to 3-core subsea cables [41]. Therefore onshore cable sections are seldom known to
be the thermal pinch-points; in fact, the DTS data compiled for all the OWF projects in this study has
not found the onshore section to be bottlenecks in any of the observed cases. The low and stable DTS
measurements of onshore section are also demonstrated in Fig. 2.8 for another testcase windfarm off

the west coast of UK.

Between the onshore transition joint and the offshore section, the HDD section provides mechanical and
environmental protection to the 3-core armored cable up to 1 km length. The significant burial depth in
this section combined with high ambient temperatures and migration of soil moisture particularly in
summer makes HDD environment to be thermally strenuous for cables [41]. The thermal pinch-points
are resolved by using material like bentonite clay to fill up the HDD pipe due to its superior thermal
dissipation qualities and by using cable with higher cross-sections in this segment [37]. Even with these
provisions, HDD still returns high DTS measurements as shown in Fig. 2.8 for a hot summer day.

Figure 2.8: Temperature distribution in different sections of the test windfarm’s export cable for a particular instant in 2014.

• Offshore Cable Section

The longest cable section uses 3-core, armored cable which is buried directly in the seabed at the depth
of 1 to 3 metres. The composition of the seabed material has a significant influence on cable’s rating and
its thermal performance in this section, as it varies considerably along the offshore cable route affecting
the thermal resistivity and capacity of the cable surroundings. The variation in geological properties
of seabed for an OWF cable in Denmark and its influence on the DTS measurements along the cable
route are provided in Fig. 2.9. The sudden drop in observations near the 28 km mark can be explained
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by transition from soft mud (clay) to gravel as the thermal resistivity ρsoil of clay (0.56-2.5 m◦C/W) is
significantly higher than gravel (0.33-0.55 m◦C/W) [43]. On the other hand, the volumetric specific heat
capacity of soil $soil is similar for sand (1.09 to 3.04 ×106 J/◦C m3) and soft mud (1.48 to 3.54 ×106 J/◦C
m3) as it depends on material porosity and vary with moisture content. Furthermore, natural offshore
phenomena like sedimentation and seabed movement due to storms, sand wave migration, scouring etc.
can change the cable burial depth over time. Therefore, new pinch-points may arise at local offshore
segments due to change in thermal behavior over time.

Figure 2.9: Top: Seabed surface geology of the offshore cable section for an offshore windfarm. Bottom: Cable temperature
distribution (based on DTS measurements) for the same windfarm at an instant in time

2.3 Dynamic Thermal Modeling of HV Components
2.3.1 Thermal Modeling of Oil-filled Power Transformers
Transformer loadability depends directly upon two critical temperatures: Hot Spot Temperature (HST)
and Top Oil Temperature (TOT) [44] [45]. Dynamic loadability of transformers for debottlenecking and
optimization of OWF transmission system can be performed by real-time estimation of these temperatures.
However, the thermodynamic behavior of transformers is considerably more complicated to design than
cables [31]. During design phase, models based on computational fluid dynamics and thermo-hydraulic
network are used extensively for dynamic thermal estimation of transformers [46]. But the complexity to
design these models and the associated computational stress make them irrelevant for real-time operational
and long-term design optimization applications. Therefore empirically derived TEE models are used in this
project.

State-of-the-Art for Transformer TEE Modeling

The state-of-the-art is extensively presented in publication [Pub. C1]; whereas, only the relevant literature is
briefly reviewed here. The analogy between thermodynamic principles and charge/discharge mechanism of
RC circuit was originally introduced by Montsinger as the Exponential Law for temperature development in
electrical machines [47]. This formulation has since been formalized into the existing structure presented as
differential models in IEEE C57.91 [45], IEC 60076-7 [44], TEE models by Swift in [48], Tang in [49], Susa in [50]
and many more. The experiments carried out in [51] and [52] facilitated the development of these empirical
models which were later experimentally validated in [53–57]. The industry-wide accepted IEEE/IEC model
of [44, 45] has improved significantly since 1990s by identification of error sources [58], accurate estimation
of parameters [59] and application of statistical tools for restructuring [60]. Introduction of load-dependent
losses and temperature-variant oil viscosity in Susa model [61] not just makes it unique and more reliable
[62–64], but also offers a distinctive balance between design simplicity and accuracy [46]. Most of the recently
proposed models explore data-analytics based designs with neural networks and fuzzy logic methods in the
front [60, 65–68].
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Relevant Models Considered in this Project

The dissipation of heat from winding to oil and oil tank to surrounding air is responsible for development
of transformer HST and TOT respectively. The simplistic schematic for energy flow in transformers and
fundamental TEE circuits for TOT and HST calculation are provided in Fig. 2.10. Two models are primarily
considered in this project owing to their acceptance across the industry, flexibility of application and accuracy
of estimation. As per IEEE C57.91 [45], transformer TOT and HST can be determined using (2.1), while the
models by Susa et al. in [50, 61] are slightly more complicated as shown in (2.2).

Figure 2.10: Schematic for heat dissipation in oil-filled power transformers from tank to surrounding air (a) and winding to
oil (b). Thermoelectric model for top-oil temperature (c) and hot-spot temperature (d).
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where ϑtot and ϑhst represent the calculated top oil and hot spot temperatures respectively [◦C]; which are
both dependent on per-unit transformer load I trf, pu, calculated as ratio between real-time and rated HV side

currents in [A]
(

Itrf

Itrf
rated

)
. The time-variant, HST-dependent losses W trf, pu

t,ϑhst and ratio between rated load and

no-load losses W trf,cu,e, pu
rated are both expressed in [pu]. The temperature rises at rated load of 1 pu, i.e. ∆ϑtot

rated

representing TOT rise over ambient temperature ϑamb and ∆ϑhst
rated representing HST rise over TOT are both

presented in [◦C]. The thermal time constants for oil τ0 and winding τh [hr] are found to be dependent on
the thermal capacitance of oil Cth,oil and winding Cth,wdg respectively, while the time-variant, temperature-
dependent viscosity of oil V pu is calculated in [pu]. Finally, ν and µ are dimensionless, empirically derived
exponents which depend upon transformer’s cooling mode. Some of these parameters require real-time
calculation and are elaborated further in the next section.

Comparison and Parameterization of the Considered Models

The variation in viscosity of transformer oil with temperature has considerable influence on its thermodynamic
behavior [51]. The transformer oil is known to operate frequently within the temperature range of 40 to 100
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◦C, while the fluctuation in oil viscosity is extreme at temperatures lower than 10 ◦C [44], which is why its
influence is often ignored in the prevalent TEE models [45] [48] [49]. The variation in remaining physical
properties of oil including conductivity, density, specific heat and volumetric expansion coefficient is rather
trivial over the entire temperature range as compared to the kinematic viscosity [69]. This, when combined
with the higher probability of low oil temperature operation for offshore windfarm transformers due to
frequent exposure to sub-zero ambient temperatures, make it critical for OWF transformers’ dynamic thermal
estimation. The influence of oil viscosity variation on the convective cooling process is rightly introduced in
the Susa model while ignored in the IEEE C57.91 model. The oil viscosity V pu in (2.2) is the ratio between
actual oil viscosity V oil at time t and oil viscosity at rated TOT rise V oil

rated, as mentioned in (2.3).
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Similarly, the inclusion of HST-dependent losses W trf, pu
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Both the TEE models in (2.1) and (2.2) follow the same structure:

Temperature Change = f(Heat-In)− f(Heat-Out) (2.5)

where, the term Heat-In is driven by the time varying load (and losses) as it is responsible for generating heat
in the transformer tank, while the Heat-Out term is dependent on the difference in temperature between
source and sink and models the convective process responsible for cooling during normal load operation.
Even though, the structure is similar, there are distinctive differences between the two models. Firstly, the
empirically-derived, convective-cooling exponents ν and µ are placed on the Heat-Out term in the Susa
model which seems to be more accurate thermodynamically, in contrast to the IEEE model. The models attain
a similar formation if these constants are set to 1, but diverge significantly in their original form. Secondly,
the values for these exponents as defined by the respective models in Table 2.1 are fairly different.

Table 2.1: Empirical Constants for the considered TEE Models [45] [61]. On load represents circulating oil
condition, while cold start means oil is not circulating at the start of loading interval.

Transformer
Cooling
Mode

IEEE
C57.91

Susa
Cold Start On load

ν µ ν µ ν µ
Oil Natural Air Natural (ONAN) 0.8 0.8 1 0.33 0.8 0.67
Oil Natural Air Forced (ONAF) 0.9 0.8 0.67 0.33 0.83 0.67
Oil Forced Air Forced (OFAF) 0.9 0.8 0.67 0.33 0.83 0.67
Oil Directed Air Forced (ODAF) 1.0 1.0 0.67 0.33 0.83 0.67

Despite the differences, the two models have one common feature: they depend excessively on the parameters
obtained through transformer heat-run tests performed during the Factory Acceptance Tests (FATs). Therefore,
unavailability of any of these design parameters or any non-conformance of test protocols from the standards
would poorly influence the transformer thermal estimation. Furthermore, the variation of these parameters
with transformer age (e.g. degradation of cooler efficiency, accumulation of oil by-product deposits in
transformer tanks etc.) can influence the estimation accuracy over the transformer life. One of these
parameters is the transformer oil’s thermal time constant τ0 [h] calculated using (2.6), whereCth is the thermal
capacitance of transformer tank [Wh/◦C] which can be calculated using the long form of (2.7) [45] or can be

21



Chapter 2. Debottlenecking & Dynamic Thermal Modeling of OWF Transmission System

accurately estimated using the short form of (2.7), if relevant parameters are unavailable [50]. The masses of
winding, iron core, metallic parts and oil represented by m are used, while the remaining parameters are
described in Table 2.2. It has been observed that τ0 can range between 1 and 3.5 hours for large and small
transformers respectively, and has the tendency to change over operational lifetime.

τ0 = Cth

(
∆ϑtot

rated

W trf
rated

)
(2.6)

Cth = cwdgmwdg + cfemfe + cmpmmp +Ooilcoilmoil ≈ 0.48moil (2.7)

Table 2.2: Constants for determining thermal time constant for oil [50]

Symbol Description Value Unit

cwdg
Specific heat capacity of winding (Copper) 0.11 [Wh/kg◦ C]
Specific heat capacity of winding (Aluminum) 0.25 [Wh/kg ◦C]

cfe Specific heat capacity of Iron core 0.13 [Wh/kg ◦C]
cmp Specific heat capacity of tank and metal parts 0.13 [Wh/kg ◦C]
coil Specific heat capacity of oil 0.51 [Wh/kg ◦C]

Ooil
Correction factor for oil (ONAF, ONAN, OFAF) 0.86 -
Correction factor for oil (ODAF) 1.0 -

The first-order ordinary differential equations of IEEE model in (2.1) are converted into discrete form using

Backward Euler rule
dxt
dt

= xt − xt−1

∆t [70]. The resulting equations are provided in (2.8), where ∆t is the
time resolution. Alternatively, Forward Euler rule is preferred by the author to solve the Susa model of (2.2)
and the results are provided in (2.9). It is important to note that the presence of temperature-dependent
and time variant parameters (V pu and W trf, pu) in the Susa model makes it non-linear and computationally
stressful, particularly for optimization problems formulated in Chapters 6 and 9.
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Validation of the Considered TEE Models for Dynamic Load in Offshore Windfarms

The intermittent nature of offshore windfarm generation results in unique dynamic load for OWF transformers.
Therefore performance of the considered models needs to be evaluated under different circumstances. The
validation is performed for two test cases: a) 6.8 MVA, 0.69/34 kV, Dyn11, OFAF-cooled transformer located
in the nacelle of a wind turbine 42 km off the east coast of UK. b) 140 MVA, 33/220 kV, ONAF-cooled export
system transformer located in the OSS of the Anholt windfarm in Denmark, as shown in OWF layout of 2.2.
The difference in cooling modes and construction of the two test case transformers makes the validation
exhaustive for applications considered in this project. One year of operational data for 2017 has been used as
inputs for both the transformers, which include 10-minute samples for transformer load and ambient/nacelle
temperatures. It is important to note that only the measured TOT has been used for validation purposes
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because HST measurements are not available for any of the transformers considered in this project. Further
information about the test cases are available in publications [Pub. C2] and [Pub. C3].

The validation results for the WT and OSS transformers are provided in Fig. 2.11 and 2.12 respectively for
the months of January and July 2017 only to emulate the considerable difference in ambient conditions and
production patterns, and to keep the elaboration intelligible. By reviewing the temporal evolution of the
temperatures, it is perceivable that for both the test cases, the measured TOT is often close to or below the
TOT calculated by the Susa model, which makes the Susa model slightly conservative due to its incorporation
of temperature-dependent losses. As anticipated, the accuracy of the Susa model is higher at low ambient
temperatures due to accurate modeling of oil viscosity variation. On the other hand, IEEE C57.91 model offers
acceptable accuracy for both the test cases but often ends up underestimating the TOT and HST rise, which
can lead to increased thermal stress if necessary precautions are not taken. The models are benchmarked
using Normalized Mean Square Error (Chapter 3), which results in Susa model outperforming the IEEE model
by 5 % and 3.5 % for the WT and OSS transformers respectively over the entire year.

Mention the validation for Lab transformer and other WTG transformers using ML etc.

Figure 2.11: Validation of TEE models for the WT transformer in a UK OWF for a week in winter (left) and summer (right)
2017. Top: Load current in pu; Middle: Measured ambient temperature and TOT along with TOT calculated using Susa
and IEEE model; Bottom: Measured ambient temperature and TOT along with HST calculated using Susa and IEEE model

Simplification of Transformer TEE models for Optimization

The TEE models considered for transformers are not suitable for the optimization problems developed in this
project. Therefore further simplifications are needed to prevent non-convexity of the proposed optimization
frameworks. The non-linearity arises due to the non-integer exponents ν and µ in both the models, but the
presence of time variant, temperature-dependent parameters in the Susa model of (2.9) makes it specifically
unfit for the problems in Chapters 6 and 8. Hence, despite the limitations of IEEE C57.91 model’s accuracy,
the formulation in (2.8) is simplified to achieve the models in (2.10) by making two approximations:

• The cooling mode for future transformer design is considered to be ODAF, which allows the exponents
ν and µ to be set to 1, as per Table 2.1.

• The problems developed in this project deal with hourly operational time constraints. Since the thermal
time constant of winding for HST estimation τh is in the range of 6 to 10 minutes [54], the ultimate

23



Chapter 2. Debottlenecking & Dynamic Thermal Modeling of OWF Transmission System

Figure 2.12: Validation of TEE models for the OSS transformer in Anholt windfarm for a month in winter (left) and summer
(right) 2017. Top: Load current in pu; Middle: Measured ambient temperature and TOT along with TOT calculated using
Susa and IEEE model; Bottom: Measured ambient temperature and calculated HST using Susa and IEEE models

steady-state HST rise (shown by the factor ∆ϑhst
rated I

trf, pu2
) would be reached by the end of each hourly

interval. This approximation is validated in Fig. 2.13 for the OWF OSS transformer from previous
section, where a step response of HST rise (∆ϑhst = ϑhst−ϑtot) to change in load current I trf is compared
to the steady-state rated HST rise in (2.10). The minimal difference between the two temperatures at the
end of the 60-minute mark and the slight conservative estimation of the steady-state approximation
irrespective of TOT and ambient temperatures are perceivable, which have also been verified for
different transformers and hourly load variations. It must be mentioned that the thermal time constant
for oil τ0 can range between 60 to 200 minutes, which is why oil’s thermal dynamic behavior over the
hourly operational scale needs to accounted for.

Simplified IEEE C57.91 =

ϑ
tot
t = b1ϑ

amb
t + b2

(
Itrf

t

Itrf
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)2
+ b3ϑ
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t−1 + b4
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t = ϑtot
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(
Itrf

t
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)2 (2.10)

where,

b1 = ∆t
τ0 + ∆t (2.11)

b2 = b1
W trf,cu,e, pu
rated ∆ϑtot

rated

(W trf,cu,e, pu
rated + 1)

(2.12)

b3 = 1− b1 (2.13)

b4 = b1
∆ϑtot

rated

(W trf,cu,e, pu
rated + 1)

(2.14)
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Figure 2.13: HST rise over TOT for a step change in load current I trf. ∆ϑhst
t is estimated using (2.8), while ∆ϑhst

rated
is

calculated using the steady state approximation in (2.10).

2.3.2 Thermal Modeling of HV Export Cables

Like transformers, the loadability of export cables is defined by the operating temperature of insulation. The
temperature is often limited to 90 C for XLPE insulated cables exposed to cyclic load conditions to prevent
deterioration of cable’s mechanical and dielectric strengths [71]. It is possible to calculate the continuous
loadability of the cables by accurately modeling the thermodynamic behavior under different operating
conditions like the Real Time Thermal Rating (RTTR) tool [72].

As mentioned earlier, the 1-core cables used in the underground section are not designed conservatively and
are hardly ever the thermal pinch-points in the export system. Therefore, dynamic thermal modeling of rest
of the export cable sections is focused upon in this work, all of which use 3-core, Separate Lead (SL) type,
armored, subsea cables like the one shown in Fig. 2.14. Single core equivalent thermoelectric models are used
in this project, the reasons for which are provided in the sections below.

Figure 2.14: Cross section of the three-core XLPE insulated subsea cable - not to scale

State-of-the-Art for TEE Modeling for OWF export cables

Like transformers, the state-of-the-art for thermoelectric modeling of cables is reviewed extensively in
publication [Pub. C1]. For steady state thermal rating calculations, internationally accepted IEC 60287-2
[73, 74] provides a range of analytical models. These methods are further complemented by the models for
cyclic dynamic load conditions with emergency limits presented in IEC 60853 [71], which should be sufficient
for standard cable installations and operation.

For the sake of commercial competitiveness, cable manufacturers and consultants have employed unique
thermal modeling methods with minimal publicly available information [75–78]. For 3-core SL-type armored
cables, the substantial research done in the field of single-core equivalent modeling over the years can be split
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into three categories: Finite element models, Laplace transformation models relying on exponential integrals
[71] [79–81] and Differential models relating physics to dynamic temperature rise [71, 74, 82, 83], the latter
two qualifying as TEE models. The differential models are inherently similar in structure and mostly differ in
parameter estimation techniques which can significantly influence the performance under long and short
transients [84]. The assumptions of one-dimensional problem (no longitudinal heat flow) and symmetric
nature of single-core equivalence for three-core cables have been challenged recently [85]. Furthermore, the
model neglects the influence of cyclic load on thermal properties of the back-fill material [25, 86], but their
simplicity of design, computational efficiency and fair accuracy are strongly favored [83]. The calculation of
thermal parameters and thermal loss factors can be done using standard estimations [71, 74, 82, 87], which
can result in overestimation of armor losses [13, 88] and a conservative design.

Non-conventional installation and commissioning practices for offshore windfarms, as discussed earlier, need
more considerations. Some recent publications discuss implications of these practices including installation
in high depths [89], shallow troughs [90], non-uniform surroundings of subsea [40, 41, 43] and underground
cables [91]. For J-tubes and HDD, standard techniques for dynamic thermal modeling do not exist. However,
efforts have been made over the years to address the complex three dimensional heat flow environment
of J-tubes. These publications range from older empirical models of 1988 [81] which adopted the generic
analytical methods for cable risers from 1983 [92] to new improvements in heat transfer coefficients in 1996
[93] and more recent work dealing with quasi-3D model for accounting of longitudinal heat flow [42] and
accurate estimation of conduction, convection and radiation phenomena. The inclusion of variation in
physical attributes for installations in free air [94] and without backfill [95] are also relevant for this project.

Approach for TEE Modeling of 3-core Subsea Cables

The three cable sections under consideration (incl. Offshore, J-tubes and HDD) differ considerably in
installation practices. Therefore, it is easier to simplify the TEE model by splitting it into cable and installation
blocks, as shown in Fig. 2.15. The directly buried cable in offshore section is exposed to the soil, but the
HDD filling medium means that there needs to be an intermediate block for the HDD section. On the other
hand, the constraining subsection of J-tube is exposed to ambient air temperature. Hence, by starting from
the ambient sea ϑsea and air ϑamb temperatures, it is possible to find intermediate temperatures at the cable
serving ϑserv and HDD surface ϑhdd, which can then lead to calculation of cable conductor temperature ϑcond.

TEE	Model
for	3-core	

Armored	Cable

TEE	Model
for	Soil	

(Direct	Burial)

TEE	Model
for	3-core	

Armored	Cable

TEE	Model
for	
Jtube

TEE	Model
for	3-core	

Armored	Cable

TEE	Model
for	HDD

TEE	Model
for	Soil

(a)	Offshore	Section (b)	Jtube	Section

(c)	HDD	Section

Figure 2.15: Block diagrams for thermoelectric modeling network of the cable sections under consideration

For grey-box in Fig. 2.15, the single core equivalent TEE model from [71] [82] relevant for dynamic thermal
estimation of 3-core cables is presented in Fig. 2.16. The longitudinal heat flow along the cable is neglected
even from the hotspots, which makes the problem one-dimensional. It is possible to calculate ϑcond and ϑserv,
which represent cable conductor and serving temperature rise over ambient seabed temperature respectively,
using this model. There are four sources of heat in the model: load-dependent and time-variant ohmic
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conductor losses W cond [W/m]; constant 3-phase dielectric losses Wd [W/m], which are distributed dependent
on cable insulation’s design; screen losses W s and armor losses W a. The latter two losses are both load
dependent and time variant; and therefore, can be calculated by scaling W cond. The dimensionless scaling
factors λs and λa for calculation of W s and W a are defined as per IEC 60287 [73], out of which W a are
potentially overestimated [88], but the resulting cable design and operation is found to be conservative, which
is acceptable for this project. The thermal parameters including capacitance [J/m◦C] and resistance T1, T2 and
T3 [m◦C/W] are treated as constants depending on cable construction and calculated using the formulation in
IEC 60287-2 [74]. The three phase conductor losses are calculated as W cond = 3Ic2

r′ cac where Ic represents
time-variant cable load current [A] and r′ cac represents conductor AC resistance [Ω/m] accounting for skin and
proximity effects [96].

Figure 2.16: Single core equivalent TEE model for 3-core armored cables [71] [82]

The TEE models for the remaining blocks in Fig. 2.15 are readily available in the publications cited in the
state-of-the-art review earlier. Efforts are not made to improve the models for J-tube and HDD sections
because these sections are relatively small and there are alternate methods to optimize the cable ratings. For
the longest cable section with directly buried cables in the offshore, the classical approach presented in CIGRE
Elektra 143 [97] is used which employs concentric cylinders of soil surrounding the cable. The number of
cylinders need to be optimized for calculation efficiency, with the outer-most and inner-most cylinders being
exposed to the ambient seabed temperature and cable serving temperature respectively. For each cylinder,
the thermal capacitance Csoil and resistance Tsoil of the soil are calculated using (2.15)-(2.16). The parameters
Dsoil,inner and Dsoil,outer representing the inner and outer diameter of each cylinder are to be defined in
advance to balance the computational accuracy with required speed of calculation. The remaining parameters
can be treated as constants at this stage with thermal resistivity of soil ρsoil set to 0.7 m◦C/W for saturated soil
and volumetric specific heat capacity of soil $soil set to 2.5× 106 J/◦C m3 for saturated and 1.8× 106 J/◦C m3

for non-saturated soils. It will later be shown in Chapter 3 that the direct exposure of offshore cable section to
the sea in some regions due to dynamic tidal movements, while increased burial depth in the other makes the
surrounding of the offshore section of the export cable diverse in nature, which is further influenced by the
presence of terrains with composition of mud, sand, silt and rocky soil. Therefore accurate parameterization
of Tsoil and Csoil will be possible using data-analytics based models.

Csoil = π

4$soil

(
D2
soil,outer −D2

soil,inner

)
(2.15)

Tsoil = 1
2π ρsoil ln

(
D2
soil,outer

D2
soil,inner

)
(2.16)

Simplified Lumped Model

The TEE model discussed so far is difficult to design and solve as it is highly non-linear and exceedingly
dependent on the cable construction parameters. Simplifications are needed to make the models fit for the
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linear optimization problems presented in Chapters 6 and 8. Therefore, a simplified lumped parameter model
for calculation of cable conductor and serving temperature rise over ambient seabed temperature is proposed
and validated in this section. The lumped parameter model presented in Fig. 2.17 merges the losses and the
thermal parameters (incl. capacitance and resistance) of the model in Fig. 2.16, such that the total cable losses
W tot c [W/m] are simply the sum of W cond, W a, W s and Wd, as shown in (2.17). However, the lumped thermal
capacitance Cx and resistance Tx are dependent on cable design and are determined by training the simplified
model over a synthetic dataset using the principles described in Chapter 3 and Publication [Pub. C5]. The
model shown in Fig. 2.17 is relevant for the offshore section only, but can easily be extended to HDD and
J-tube sections as well. The temporal development of ϑcond and ϑserv can be calculated using (2.18) and (2.19).

Figure 2.17: Simplified lumped 1-core equivalent TEE model for the 3-core subsea cables directly buried (offshore section)

W tot c
t = W c

d + 3(1 + λa + λs)Ic2
t r
′ c
ac (2.17)

τ ′x
dϑserv

t

dt
= Tsoil
Tx + Tsoil

ϑcond
t − ϑserv

t (2.18)

τx
dϑcond

t

dt
= TxW

tot
t + ϑserv

t − ϑcond
t (2.19)

where the time constants are calculated in seconds using the expressions τx = TxCx and τ ′x = TxTsoil
Tx + Tsoil

Csoil.

This simplified lumped parameter model is conservative in nature as compared to the complex model of Fig.
2.16 as the losses are collectively referred to the conductor. Furthermore, conservatism of design is ensured by
using constant values for conductor resistance r′ cac at 90 ◦C. The models are solved using Backward Euler
technique and the results are provided in (2.20) and (2.21), where ∆t is the time-step and ϑt−1 represents the
calculated temperature at the previous time-step.

ϑserv
t = a1ϑ

serv
t−1 + a2ϑ

cond
t (2.20)

ϑcond
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[
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where the constant coefficients a are calculated as:

a1 = τ ′x
τ ′x + ∆t (2.22)

a2 = Tsoil
Tx + Tsoil

(
∆t

τ ′x + ∆t

)
(2.23)

a3 = 1
1− a2

∆t
τx+∆t

(2.24)

a4 = a3
τx

τx + ∆t (2.25)

a5 = a1a3
∆t

τx + ∆t (2.26)

a6 = a3Tx
∆t

τx + ∆t (2.27)

The model has been validated by comparing its performance to the complex TEE model of Fig. 2.16. Referring
to Fig. 2.18, similar cyclic load profiles are generated for two XLPE insulated cables with copper conductor of
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different cross-sections. By scaling the load profiles to maximum current carrying capacities of the respective
cables, similar thermal stress is exerted. It is seen that the conductor temperature estimated by the simplified
model follows the complex model curve closely, but still results in overestimation. This can be due to the
additional conservatism added to the design by resistance estimation at max operating temperature and by
loss concentration to the conductor. The models are found to be acceptable due to the cautious nature needed
for design and operation of OWF export cables. The tests have been repeated for a range of XLPE cables with
Aluminum and Copper conductors with similar accuracies.

Figure 2.18: Performance comparison of simplified and complex TEE models for 220 kV subsea, XLPE-insulated, Copper
cables under cyclic load. Left: 800 mm2, Right: 1200 mm2

Comments on Thermal Ageing and Limits of HV XLPE Cables

As discussed earlier, the loadability of HV cables is defined by the temperature of the insulating material [73].
For XLPE insulated cables, this limit is agreed to be set to 90 ◦C by manufacturers and international standards.
This limit prevents deterioration of the dielectric and mechanical strength of the cable insulation and preserves
its life [87]. The temperature-dependent properties of XLPE-insulated cables including specific heat, thermal
resistivity, electrical resistivity, dielectric strength, tensile strength, electrical breakdown strength and tan
delta losses have been investigated critically in the literature. Due to the limitation of available knowledge on
the subject and the considerable CAPEX related to HV cables, the emergency and cyclic thermal limits for
cables are not explored in this thesis. Instead, the design optimization tools developed in this project simply
limit the conductor temperature to 90 ◦C.

2.3.3 Shunt Reactor Modeling

As discussed in Sec. 2.1, offshore windfarms that are further from the shore (> 80 km) and use HVAC
technology for transmission often require additional reactive compensation near the middle point of the
export cable. For this purpose, fixed HV shunt reactors located in the Reactive Compensation Station (RCS)
are frequently used which are expensive to build [11]. The system is conventionally designed that 50 % of
the compensation for export cables is performed by these shunt reactors, while dynamic compensation is
performed from the OSS and OnSS ends of the cable. Hence, it is safe to assume stable system voltage for the
export cable which results in static operation of these shunt reactors with constant reactive compensation
load. The rating of RCS shunt reactors depends upon the export cable rating, as shown in (2.28)-(2.29).

Ic
Q k = 1

4

(
2πfQ′ ck Lc Vll√

3

)
× 10−3 (2.28)

SSR
k = 2

(√
3VllIc

Q k

)
(2.29)

where Q′ c is the capacitance [µ F/m] of the export cable design and Ic
Q is the peak charging current at the OSS,

OnSS and RCS ends of the export cable. Vll and f are transmission system voltage [kV] and frequency [Hz];
Lc is the length of export cable [m] and SSR represents the rating of RCS shunt reactor [kVA] for design case k.
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CHAPTER3
Dynamic Condition Monitoring

using Data Analytics
Over the last decade, the dramatic increase in computational capacity and data availability combined with
monumental development in data analytics has prompted revolutionary applications across miscellaneous
scientific fields, including image recognition [98], cognition in medical science [99] [100], natural language
processing [101] etc.

Condition monitoring of HV transmission equipment exposed to dynamic rating operation requires estimation
of critical temperatures in real-time. The first-principle TEE models discussed in Chapter 2 are difficult
to develop as they require extensive knowledge about the component’s mechanical and electrical design,
along with accurate modeling of multiple heat transfer mechanisms. As an example, the 3-dimensional heat
flow in J-tubes [42], elaborative design of cable-joints [82] and comprehensive information about the HDD
backfill material etc. will be needed to solve the underlying equations resulting in both design complexity
and computational stress. This is further complicated by the varying operational environment due to
sedimentation and seabed movement for cables [40] or oil byproduct deposits in transformer tanks [56].
Self-learning, data-driven Machine Learning (ML) models can potentially solve these problems while offering
more flexibility in operation with higher computational efficiency and better accuracy, owing to their adaptive
nature [102]. Furthermore, monitoring of HV components generates extremely large datasets that can reveal
underlying patterns and trends to ML-based models only, and can easily be overlooked by system operators
or unintelligent monitoring algorithms [103]. The data generated by a typical offshore export cable section is
manifested in Fig. 3.1, where 1.26 Million data points are needed to represent 35 days of operation.

Figure 3.1: DTS measurements for 70 km long offshore cable section for a test case windfarm in UK. 1.26 Million data points
are generated for 35 days of operation.

In this chapter, the third research question is answered such that dynamic thermal estimation models are
developed, tested and applied for transformers and cables in offshore windfarms. Furthermore, the physical
insights provided by some of the relevant models are used for dynamic condition monitoring of these
components. The principal focus of this work revolves around empirical models due to their adaptive nature.
As shown in the structure of the chapter provided in Fig. 3.2, the methodology behind the data-driven ML
models is followed by validation of these models by applying them on actual test cases. These test cases
include long and short term thermal prediction of export cables for Burbo Bank 2 (BB2) windfarm, validation
for lab and wind turbine transformers. Finally, the potential application of these models are highlighted. A
significant portion of this work has been presented in Publications [Pub. C5] and [Pub. C7] by the author.
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Figure 3.2: Structure of Chapter 3 and information flow to determine data-analytics based dynamic condition monitoring

3.1 Methodology of Data-Driven Modeling Approach
Data-driven ML models fit for approximation of time series data are considerably more complex than the
well-established prevalent techniques [104, 105]. In order to build models for systems with dynamic responses,
the core principles of system identification are used [106] [107]. The physical insights and knowledge about the
dynamic thermal modeling of components have been utilized to correlate inputs, outputs and everything in
between [108], [109]. Due to the computational stress posed by non-linear partial differential equations [110]
[111] in combination with the complexity of their design [112], the underlying set of equations are linearized
and necessary assumptions are made to obtain Ordinary Differential Equations (ODEs), where possible.

The prediction accuracy for the models developed in this project is evaluated by calculating the Normalized
Mean Square Error (NMSE). This is shown in (3.1), where yt and ŷt are the measured and predicted values
respectively and σ is the standard deviation. The normalization of Mean Square Error (MSE) by variance σ2

offers a distinctive advantage for using NMSE as a benchmarking parameter, which is complemented by
NMSE’s simplistic interpretation [102]. This is true because the NMSE (%) can range between −inf and 100;
where 100 means a perfect fit, while 0 corresponds to a constant signal equivalent to the mean µyt . Hence any
model within the range 0 to 100 would perform better than a constant mean model [113]. More importantly,
the evaluation criteria in this project also covers simplicity of design, flexibility of application and physical
interpretability. The latter two parameters deal with application aspects such that flexibility means that the
models can be used under varying operating circumstances, for e.g. thermal estimation of cables’ HDD,
offshore and J-tube sections; while physical interpretation means that the model parameters can be used for
identifying the operating characteristics and circumstances. This is further discussed in Section 3.3.

NMSE = 100
(

1− MSE

σ2

)
= 100

(
1− ‖yt − ŷt‖

2

‖yt − µyt ‖2

)
(3.1)

3.1.1 Classification of ML Models
The experiential nature of empirical models in combination with their computational efficiency and adaptability
to varying operational circumstances make them ideal for data-analytics applications [102]. Depending upon
the amount of physical insight needed for system design and how this knowledge blends with the empirically
observed information, these models can be classified into different shades of grey, as shown in Fig. 3.3.

Empirical
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White-box
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Grey-box	
Models

Black-box
Models

TEE SS ODE Short-term
Pred. ARX ANN
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Linear	Models

Non-
Linear

Semi-
Physical
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Figure 3.3: Classification of Empirical models with focus on data-analytics based models
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White-box models can be constructed entirely based on prior system knowledge. For these models, the
physical parameters and underlying equations are either perfectly known or can be accurately estimated, like
the TEE models of Chapter 2. On the opposite end of the spectrum, system knowledge is either not available or
not used for Black-box models. The Black-box models considered in this project are mostly regression-based
and are selected based on their flexible structure and proven track record for identical applications [105, 114].
For systems where limited structural insights are available but parameters have the tendency to change over
time, Grey-box models can be effectively used. These models require the user to define the basic problem
framework, while the inconclusive parameters are determined by data-analytics [106]. Further classification
of Grey-box models reveals that model structure can either be built on physical grounds alone (closer to
white-box) or can be developed by trying-and-testing certain linear/non-linear combinations of the available
data signals (semi-physical, black-box character) [115].

This is why, both the Black-box and Grey-box models need to be trained before the models are ready for
predictions. The mechanism for training and testing of data-driven models is summarized in Fig. 3.4 using
the test case of thermal estimation of cables and transformers in offshore windfarms. It can be seen that
the variables used as input data remain the same during training and testing periods, for e.g. component
load (It) and ambient temperatures (ϑsea

t , ϑamb
t ); but prediction variables, including cable and transformer

temperatures (ϑc
t, ϑtot

t , ϑhst
t ) are only used for training the models. The measured prediction variables can later

be used to check models’ test accuracy and for benchmarking these models. All the relevant Black-box and
Grey-box models that are considered in this project are discussed in detail in the following section, whereas
the mechanism to determine the critical attributes of the respective models will be provided in Section 3.2.

	Data	Analytics
	based
	Model

Predetermined
Parameters

Training	Inputs	
		

Training	Meas.
		

Estimated
Parameters

	Data	Analytics
	based
	Model

Test	Inputs
		

Predictions

Training	Phase Testing	Phase

Figure 3.4: Training and testing mechanism of data-analytics based Grey-box and Black-box models. The test case of
thermal estimation of cables and transformers is used for elaboration.

3.1.2 Description of Models

For dynamic rating based operation and design of HV components, it is imperative to be able to monitor
and estimate the temporal development of critical temperatures over long and short periods. The relevant
data-analytics based models shortlisted after extensive review and reconfigured as per the requirements of
this project are discussed below. In these models, the signals ut ∈ R and yt ∈ R represent the input (load) and
output (temperature) signals respectively.

Short-term Prediction Models

Short-term prediction of critical component temperatures is important for real-time applications in the
operational domain. Three regression-based, linear, black-box models are found to be relevant in this project
for their computational efficiency, accuracy and design simplicity as they do not require any additional inputs
besides the measured temperatures. Moreover, the influence of seasonal variation on wind energy production
and ambient conditions is not critical for design of these models.

• General Linear Model (GLM): This model can be expressed using a number of formulations which
depend upon the available inputs and the required applications. The following model is based on the
simplest form of linear regression:
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ŷt = c0 + c1t+ εt (3.2)

where t is time step, ŷt is the predicted response variable for each step, c0 and c1 are the parameters
and εt is white noise, expressed using a sequence of mutually Independent and Identically Distributed
(IID) random variables with zero mean value. GLM has not been implemented in this report due to its
ineffectiveness for such applications [104], but it is still mentioned for effective comprehension of the
models that follow.

• Exponential Smoothing Model: Unlike GLM, this model allows the most recent observations to
influence the predictions more than the past ones by using a forgetting factor χ (s.t. 0 < χ < 1). A
simple first-order exponential smoothing model is provided in (3.3).

ŷt = (1− χ) yt−1 + χ ˆyt−1 + εt (3.3)

where the factor 1 − χ is also called the smoothing constant as it defines the weight for the latest
available observation, the influence of which diminishes over time depending on the chosen value of χ.
The inherent drawback of this model is it can reliably perform one-step prediction only because it is
a locally constant mean model. The l-step prediction formula ( ˆyt+l|t = ˆyt|t) suggests that any future
forecast will be the last one-step estimate, if further observations are not available.

• Local Linear Trend Model: This method combines the properties of the previous two models by
forgetting the old observations of GLM in an exponential manner. The formulation is provided in (3.4).

yt+q = κT (q) e+ εt+q (3.4)

where κ(q) = [κ1(q), ..., κp(q)]T represents the vector for known forecast functions, while e =
[e1, ..., ep]T is the parameter vector and p is the order of approximation for observation instant q.
The forecast functions are fixed for the problem type, and can be determined using transition matrices
in [104]. The parameters e are to be recursively estimated after each time step or as soon as a new
observation is available, which has been done using Weighted Least Square (WLS) approach. This is
governed by (3.5), where Sum of Squared Errors SSE(e; t) is calculated using (3.6) [113].

êt = arg mine SSE(e; t) (3.5)

SSE(e; t) =
t−1∑
q=0

χq
[
yt−q − κT (−q)e

]2
, 0 < χ < 1 (3.6)

where a suitable forgetting factor χ is to be chosen for optimal results. Theorem 3.3 from [104] has
been used to solve the WLS problem, and the results are provided in (3.7) - (3.9). Afterwards, l−step
prediction can be performed using (3.10).

êt = F−1
t ht (3.7)

F−1
t =

t−1∑
q=0

χq
[
κ(−q)κT (−q)

]
(3.8)

ht =
t−1∑
q=0

χq [κ(−q)yt−q] (3.9)

ˆyt+l|t = κT (l) êt (3.10)
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Ordinary Differential Equation (ODE) Model

This grey-box model is semi-physical in nature which means that the limited physical knowledge about the
system can be transformed into useful insights by trying and testing a number of linear/non-linear combinations
of differential equations [70]. For dynamic thermal estimation of main HV components including cables
and transformers, the model structures identified in (2.21) and (2.1) are a good starting point, and can be
approximated using the first-order differential equation of (3.11) [116].

τp
dyt
dt

+ yt = Kp ut−τd (3.11)

where yt is the measured response variable which is to be predicted (relevant temperature ϑ in this case) and
ut are the available inputs (Load and ambient temperature in this case). The model parameters including
gain Kp, time constant τp and dead-time τd are to be estimated by training the model. The transfer function is
found by applying Laplace transformation, as shown in (3.12)-(3.13). For dynamic thermal modeling, the
parameter τd is irrelevant and therefore not investigated further [117].

s τpY (s) + Y (s) = Kp U(s)e−sτd (3.12)

G(s) = Y (s)
U(s) = Kp

s τp + 1e
−s τd (3.13)

State Space (SS) Model

For the relevant applications in this project, the single input single output State Space (SS) model with order nss

has been used. Unlike ODE model, this physical Grey-box model requires extensive system information as it
represents a high-order linear physical system with nss first order differential equations [115], and has the
following discrete form:

ẋt = Axt +But +Kεt (3.14)

yt = Cxt +Dut + εt (3.15)

where the state vector xt with order (nss × 1), the output matrix C with order (1 × nss) and the direct
transition (feed-through) matrix D with order (1× 1) are uniquely identified during system definition. While
the state matrix A with order (nss × nss), input matrix B with order (nss × 1) and state disturbance matrix K
with order (nss × nss) are to be estimated by the model. In this configuration, the process noise Kεt is used
to interpret the disturbance due to variation in ambient conditions of the component which is unpredictable
in nature and thereby modelled as a random process [118]. One key assumption in this formulation is the
time-invariance of parameters A and B, while experience suggests that these parameters can change over
longer periods of time (due to sedimentation and sea-bed movement of offshore cables or oil byproduct
deposits in transformer tanks). However, this formulation can also be used to detect these changes for
improved condition monitoring of these components.

Auto-Regressive eXogenous (ARX) Model

This regression-based linear Black-box model uses the underlying assumption that a combination of random
processes can be used to represent a system. Referring to (3.16), the linear combination of previously predicted
values and stochastic inputs is used for future predictions [119].

ŷt = w ˆyt−ny + w′ ut−nu + εt (3.16)

where the predicted output ŷt is dependent on a linear combination of historic approximations ˆyt−ny =
[ ˆyt−1, ˆyt−2, ... ˆyt−ny ]T which are weighed linearly by the parameters w = [w1, w2, ...wny ]. Similarly, the
influence of input sequence ut−nu = [ut, ut−1, ...ut−nu ]T is weighed by w′ = [w′0, w′1, ...w′nu ]. The optimal
parameters w and w′ are estimated by training the model over a sequence of available inputs and outputs,
while the model order (ny, nu) is predetermined to balance prediction accuracy with computational stress.
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Artificial Neural Network (ANN) Model

The models discussed so far are inherently linear, contrary to the thermodynamic behavior of the HV
components in focus [112]. Artificial Neural Network (ANN) are regression-based, non-linear, black-box
models which use similar inputs as the ARX model, but offer more flexibility than all the preceding models
[120]. This is true because instead of using weighted-linear combinations, the variables are allowed to pass
through three different layers of ANN (input, hidden and output layers) with non-linear cross-combinations.
For input and output layers with nI and no neurons, the ANN simply maps the input to output, as shown in
(3.17). This property makes ANN suitable for non-linear multidimensional regressive applications [108].

f : Rn
I

−→ Rn
o

(3.17)

A feed-forward ANN formulation consisting of one input layer, one output layer and nH hidden layers, as
shown in Fig. 3.5, has been used in this project. Input layer represents the input data, intermediate hidden
layers performs computation, while the output layer produces results. Each arrow represents the weight
w, while each node in the hidden layer represents a variable H formed by the application of a non-linear
activation function h(). One key property that the figure doesn’t show are the bias nodes (w0j) which act like
regression intercepts or bias, but they are present for each layer in the ANN. The discussion so far has been
summarized in (3.18)-(3.21) for the input/outputs layers and first/last hidden layers. The number of hidden
layers nH , along with the activation function and the number of neurons in the input (nI ), output (no) and
the individual hidden (nl) layers are design choices. This degree of freedom means that the performance
of the model depends hugely on its chosen structure, and ANN has the tendency to overfit the data if not
supervised. For a more detailed introduction to neural networks, the readers are directed to [102, 105, 120].

Input : Uj = uj (3.18)

Hidden Layer 1 : H1, j = h

w(0)
0j U0 +

nI∑
i=1

Uiw
(0)
ij

 (3.19)

Hidden Layer nH : HnH , j = h

w(nH−1)
0j HnH−1, 0 +

nl∑
i=1

HnH−1, i w
(nH−1)
ij

 (3.20)

Output Layer : Y = h

wo0HnH , 0 +
nl∑
i=1

HnH , i w
o
i

 (3.21)

Input	Layer Hidden	Layers

Output
	Layer

1 2

Figure 3.5: Illustration of the feed-forward Artificial Neural Network model with nI neurons in input layer (U ), nH hidden
layers (H) and 1 neuron in output layer (Y ). The number of neurons in each hidden layer are fixed to nl for illustration.
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3.2 Dynamic Thermal Estimation of Cables and Transformers in OWF

In this project, data-driven Machine Learning (ML) models have primarily been used for DTR estimation
of transformers and cables. Since these models can only be used for estimation of recorded temperatures,
TOT measurements (ϑtot

t ) for transformers and fibre-optics DTS measurements (ϑdts
t ) for HV export cables

are used as estimated outputs yt or Y , instead of HST (ϑhst
t ) and conductor (ϑcond

t ) temperatures. For input
ut, heat generated due to losses drive temperature development in the components; therefore, both load
current square I2

t and losses Wt can be used equivalently with similar results. Additional inputs of ambient
(ϑamb
t ) and seabed (ϑsea

t ) temperatures are not used in this formulation due to lack of availability of consistent
data. Alternatively, these inputs are modelled as known disturbances where needed. Each of the models
considered in this work is supposed to go through two steps before it is fit for temperature approximation:
evaluation of predetermined parameters during model setup and estimation of remaining parameters by
training over a range of available data.

Model setup step is considerably different for grey and black box models. The availability of physical insights
is used to define the predetermined parameters such that they fit the grey-box process as much as possible,
while a compromise between model’s computational efficiency and accuracy is desired for in the latter. This
is substantiated in Table 3.1, where the physics-based ODE and SS models are parameterized to reflect the
order of differential equations driving component thermodynamics in (2.21) and (2.1) [117]. The higher order
chosen for SS model was determined by testing upto 6th order using trial and error approach in [121] which
provided minimal improvement in prediction accuracy beyond the 3rd order derivative for state xt. The
matrix D prevents direct transfer of input ut to the temperature measurements.

Black-box models for long-term estimation, including ARX and ANN, are designed by testing over a range of
parameters and selecting the lowest possible order which results in acceptable error. For both transformers
and cables, same order of data available for prediction (ny = 10 and nu = 8) is used for both the ARX
and ANN models, but the number of hidden layers (nH ) is different in ANN for each application with 8
nodes being suitable for the last hidden layer for transformers. All of these estimations can be handled
automatically by the System Identification Toolbox in Matlab [121], using the principles in [106] [107]. The
number of back-propagation epochs defines the number of times the training data is allowed to pass through
the ANN model for parameter estimation. Considering the applications of the ANN model in this project,
a non-linear ramp function called Rectified Linear Unit (ReLU) has been used as the activation function
h(x) = max(x, 0), because it can limit the minimum value which is critical for thermal estimation of HV
components. Hence, it is observed that ANN offers a much larger range of design choices compared to linear
regression, which start from the number of hidden layers to number of nodes per layer and goes all the way
to epochs, batch size and activation functions. This makes ANN suitable for prediction of complex non-liner
models, especially when exact relationship is not known beforehand, but consequently results in higher
computational time and stress along with its tendency to overfit the data.

Moving on to short-term prediction models, forgetting factor χ of 0.2 is used for Exponential Smoothing
model which allows the highest weight (smoothing factor of 0.8) to be allotted to the most recent observation;
whereas, for the Local Trend Model, this factor is to be optimized by testing for minimum SSE in (3.6) over the
range of 0 < χ < 1. This is demonstrated in Fig. 3.6 for BB2 export cable’s J-tube section’s thermal estimation,
which gives optimal fit for χ = 0.67. Both the variation of SSE with χ and exponential reduction in weight of
observations further from the most recent one for optimal χ are provided in Fig 3.6.

The second step that deals with the estimation of remaining parameters, mentioned in the right-most column
of Table 3.1, is trickier to deal with because regression-based (specially non-linear) models have the tendency
to overfit the available data by adapting to noise and features specific to the training data, which fails as soon
as new data becomes available [[122]]. One possible simplification that could be made is employment of
Principal Component Analysis (PCA) which reduces the problem dimensions, but the applicability of this
method on time-series data doesn’t sit well with computational complexity and stress. Therefore, for the
long-term prediction models, the available data series are split into training and testing sets following the
cross-validation mechanism in [102]. For the training data set, the loss function in (3.22) is minimized by
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Figure 3.6: Left: Optimization of forgetting factorχ for Local Linear Trend model for BB2 J-tube. Right: Exponential
reduction in weights of observations BB2 J-tube (0 means latest observation, 20 is the oldest in the given window)

adjusting the model parameters, where ntrain represent the number of training observations, while ŷt and yt
are the predicted and measured observations respectively.

L.F. = 1
ntrain

ntrain∑
t=1

(ŷt − yt)2 (3.22)

Table 3.1: Elaboration of predetermined and estimated parameters for the considered ML models

Models Predetermined	Parameters

ODE Order	of	
model	=	1

SS

	

ARX

Model	Order Weighing	Parameters

	

Exponential	
Smoothing

Forgetting	Factor:

Local	
Trend

Forecast	Function:

Estimated	Parameters

Gain:

Time	Constant:

Coefficient	Matrices

-

Forgetting	Factor:

Forecast	parameters:

Approx.	order:

ANN

Activation	func.

no.	of	inputs:												10	+	8	+	1

no.	of	H	layers	:								2	/	3	

no.	of	nodes	:												5	+	20	+	8

back-prop	epochs:				50	/	60
	

Weighing	Parameters

*	Relevant	for	WTG	Transformers											*	Relevant	for	HV	Export	Cables

3.2.1 Validation of Models for Cable Thermal Estimation

In order to validate the applicability of the data-driven models for thermal estimation of HV cables, 220kV
XLPE insulated export cable for 258 MW Burbo Bank Extension (BB2) which is 25 km off the west coast of UK
has been used as test case. The total export cable length is 35.6 km and is divided in to HDD, J-tube, Offshore
and Onshore sections as discussed in Chapter 2. The cable used along the route not only differs in rating
(718-1080 A, 1000-1200 sq.mm), but the design is different as well (3-core for subsea and 3x1-core for land). In
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total 27.5 days of DTS measurements are used with 30-min sampling rate, out of which 16.5 days of data has
been reserved for training while the remaining 11 days for testing as per the 60-40 principle [123]. As shown
in Fig. 3.7, the long-term prediction models have access to both the load (Current Ic) and ϑdts measurements
during the training phase; whereas, only the temporal Ic information is provided to the models for testing.
The predicted temperature ˆϑdts is then compared with the measured ϑdts represented by dashed-lines in Fig.
3.7 for validation. This entire process is repeated for each of the cable sections, therefore each model type
is trained and tested four times to accurately model the difference in behavior of the respective sections. A
quick view at the data reveals that the temperature varies more frequently for J-tube, while Onshore and
HDD appears to have the largest thermal time constants.

Figure 3.7: Training and test data for Burbo Bank 2 OWF export cable test case. Left: Cable current (Ic). Right: Temperature
(ϑdts) for different cable sections (dashed lines represent test data which will only be used for validation and benchmarking)

Long-Term Prediction Models

The training and testing results for long-term prediction models are split for the four sections under focus.
Fig. 3.8 - Fig. 3.11 present the performance of all the models for HDD, J-tube, Offshore and Onshore sections
respectively. The grey-box and black-box models are fundamentally different, as the physics-based ODE
and SS models treat the estimation mechanism as a process and do not care for long-term history of the
measurements. While the ARX and ANN models solve the problem by statistically relying on historic load
and temperature, as both the black-box models use the same order of 10 for ϑdts measurements. Hence, with
30-min sampling rate, these models can see upto 5-hours of historic DTS data which is considerably lower
than the thermal time constants for the HDD and offshore sections of export cables (refer Chapter 2).

Table 3.2 provides the goodness-of-fit based on NMSE for all the test cases including testing and training
periods. Unlike generalization error, the reason to include training fit results is to test the consistency in
predictions and to check if the models overfit the training data or not. The highest variation between training
and test results are found for ANN models which is expected because the degree of freedom offered by this
model along with its non-linear characteristics can result in overfitting. However, it is possible to improve the
performance of both the black-box models by tuning the parameters further (hyper-parameters in this case).
Both the physics-based models perform well with SS resulting in better fit, higher consistency and greater
flexibility which is also very important for this application. All of these models are expected to perform even
better as more and more data becomes available for training and testing, with the exception of ANN due to
its tendency to overfit.

Table 3.2: Goodness-of-fit results for long-term prediction Machine Learning (ML) models based on NMSE.
100 means perfect fit and 0 means inappropriate for prediction. The performance during training and test
periods for all the cable sections for Burbo Bank 2 OWF test case is provided.

Long-term
Pred.

Models

Cable Section
HDD J-tube Offshore Onshore

Train Test Train Test Train Test Train Test
ODE 82.4 62.4 80.1 78.2 74.8 63.8 77.6 67.9

SS 90.2 88.5 88.7 82.5 92.5 90.8 84.8 83.6
ARX 70.2 68.8 79.9 78.2 85.5 82.3 68.2 62.4
ANN 59.5 41.5 64.4 44.4 69.9 38.1 52.9 31.8
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Figure 3.8: Machine learning based ϑdts forecast results for the HDD section of BB2 OWF test cases. All the long-term
prediction models are presented. Training and test results are highlighted separately.
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Figure 3.9: Machine learning based ϑdts forecast results for the J-tube section of BB2 OWF test cases. All the long-term
prediction models are presented. Training and test results are highlighted separately.
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Figure 3.10: Machine learning based ϑdts forecast results for the offshore section of BB2 OWF test cases. All the long-term
prediction models are presented. Training and test results are highlighted separately.
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Figure 3.11: Machine learning based ϑdts forecast results for the onshore section of BB2 OWF test cases. All the long-term
prediction models are presented. Training and test results are highlighted separately.

Short-Term Prediction Models

In contrast to long-term prediction models, these models have access to all the past measurements up until
the time of prediction. In this test case, 24-step (12-hour ahead) predictions are performed by using real-time
measurements represented by blue-dashed lines in Fig. 3.12. Hence, the prediction for July 08 (15:00) will
be based on all the ϑdts measurements until July 08 (03:00). The entire process repeats as more observations
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become available and this goes on for the entire duration. The prediction results for exponential smoothing
and local linear trend models provided in Fig. 3.12 indicate that local trend model outperforms the smoothing
model because the forgetting factor χ is optimized and due to its effectiveness for multi-step ahead predictions.
However both the models are considerably better than constant-mean model. The performance of these
models can further be improved if models are transformed to use Ic and ϑsea as inputs.

Short Term Pred. Models

Jul 02 Jul 09 Jul 16 Jul 23 Jul 30
2017   

15

20

25

dt
s  (

o
C

)

HDD

Jul 02 Jul 09 Jul 16 Jul 23 Jul 30
2017   

10

15

20

25

30

dt
s  (

o
C

)

Jtube

DTS meas.
Expo
LL

Jul 02 Jul 09 Jul 16 Jul 23 Jul 30
2017   

15

20

25

dt
s  (

o
C

)

Offshore

Jul 02 Jul 09 Jul 16 Jul 23 Jul 30
2017   

19

20

21

22
dt

s  (
o
C

)

Onshore

Figure 3.12: Machine learning based ϑdts forecast results for all the sections of BB2 OWF test cases. THe relevant short-term
prediction models (Exponential smoothing - red, Local Linear Trend - black) are presented.

3.2.2 Thermal Validation for Lab Transformer

Hot spot temperature measurements are usually not available for OWF transformers, therefore validation of
transformer TEE model from Chapter 2 and data-driven machine learning models is performed for the test
transformer setup in Fig. 3.13 (a) at the DTU HV PowerLab. Controlled heat run tests have been performed
on the test transformer (manufactured 1990) which was formerly operated in a distribution network. The
transformer cooling mechanism along with its electrical and mechanical design, provided in Table 3.3 imply
that the results of the heat run test can easily be scaled to offshore windfarm transformers.

Table 3.3: Specifications for Test transformer in DTU PowerLab

Parameter Value
Rating 630 kVA
Voltage 0.4/10 kV ± 5%

Vector Group Dyn11
Percentage Impedance 5 %

Frequency 50 Hz
Oil weight 460 kg

Winding Time Constant 6 min
Rated no-load/full-load losses 586/5064 W

Cooling mode ONAN

In order to assess the thermal development in the transformer winding, core and tank during the heat run test,
the oil was drained and the active part was removed (Fig. 3.13 b). Multiple Type-K thermocouple temperature
sensors were installed at different positions inside and outside the transformer tank for temperature
measurement, as shown in Fig. 3.13 (c). In total 6 sensors (T1-T6) were placed for TOT measurement (2 at the
top of each phase winding), whereas the uncertainty in HST measurement was addressed by installing 7
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sensors (H1-H7) close to the top of the LV and HV windings. The position of these sensors have been chosen
based on experience and manufacturer’s recommendations, which is why the majority of the sensors are
located at the middle phase. The sensors T2 and H3 were later chosen for thermal validation of TOT and
HST measurements respectively, Fig. 3.13 (d) (c). Furthermore, average values from multiple sensors placed
around the lab transformer have been used to measure the ambient temperature, which was also provided
as input to the relevant test models. To ensure the relevance of this exercise for dynamic rating of offshore
windfarm transformers with intermittent loading, two different load profiles for the lab transformer heat
run test have been chosen such that one profile stays within the transformer rated capacity, while the other
pushes up to 1.4 pu rated current through the transformer HV winding.

Figure 3.13: (a) Lab transformer energization setup for heat run test viewed from the LV side. (b) Active part of the lab
transformer after oil drainage and before sensors’ placement. (c) Position of TOT sensors T1-T3 (T4-T6 on the opposite
sides) and HST sensors H1-H7 (except H4). (d) (e) Closeup of sensors T2 and H3 (these sensors are later chosen for thermal
validation). (f) Thermal image of lab transformer during sustained overload (1.4 p.u) at 2.5 hour mark.

The measured TOT (T2) and HST (H3) when compared with the temperatures calculated using different
TEE (Susa and IEEE) and Machine Learning (ML) models, as shown in Fig. 3.14 and 3.15, exhibit consistent
behavior. The TEE models offer higher accuracy for both the load profiles, with the Susa model being the
most accurate. The trends and peaks align for the measured and calculated values with maximum error
of 2 ◦C. The consistent error could have been resolved by parameterizing the TEE model again for this old
transformer because it has recently been refurbished, which may have affected some of the parameters in
Table 3.3, but this was beyond the scope of this work. The intermittence of load prevent the temperatures
to stabilize at a certain value, which is also observed in offshore windfarm transformers. The accuracy of
the simulated temperatures proves that the tested model is reliable enough to be employed for intermittent
dynamic load profiles of offshore windfarm transformers.

The entire dataset has been used for training the ML models and only long-term prediction models are
considered for this application. Due to limited data-points, physics-based models (SS and ODE) do not perform
efficiently in these tests; while the non-linear black-box ANN model fits the HST and TOT measurements
quite well for both the load profiles. This is expected because the latter model can replicate the measurements
by virtue of its inherent degree-of-freedom, but it is important to review these results under untrained
environment before definite conclusions are made. Interestingly, the thermal image of the transformer after a
sustained overload of 1.4 pu for 2.5 hours, as shown in Fig. 3.13 (f), provides an indicative concentration of
high temperature in the top region of the transformer tank. The maximum temperature of 80.6 ◦C in Fig. 3.13
(f) is in coherence with TOT measurement at 2.5 hour mark in Fig. 3.15.
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Figure 3.14: Comparison of calculated transformer temperatures (ϑtot and ϑhst) using TEE models from Susa [50], IEEE [45]
and ML models with the measured values for the 630 kVA lab transformer for rated load condition (≤ 1pu).
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Figure 3.15: Comparison of calculated transformer temperatures (ϑtot and ϑhst) using TEE models from Susa [50], IEEE [45]
and ML models with the measured values for the 630 kVA lab transformer for dynamic high load condition (≥ 1pu).

3.2.3 Thermal Estimation of Wind Turbine Transformers

With the development of large-scale OWFs over the last decade, the number of Wind Turbine Generators
(WTGs) per windfarm has increased significantly and it is observed that the recently built large-scale OWFs
have as many as 200 WTGs. With each WTG consisting of at least one transformer, effective condition
monitoring of these transformers has become arduous. This argument along with the lack of availability
of consistent temperature data for offshore windfarm transmission transformers compelled the author to
validate the developed machine learning models for WTG transformers. Ten different WTG transformers of
similar size (7 MVA) and similar construction features from four OWF sites in UK and DK have been used.
All of these transformers are located in the nacelle of the WTG and the temporal nacelle temperature has
been used as ambient input for the relevant ML models, along with the transformer load information in
real-time. 10-min sampled data for TOT (ϑtot) over the range of 2 to 3 years has been used for the tested WTG
transformers. Two distinctive test approaches have been used, which are discussed in the following sections.

Train and Test on the same WTG Transformer

As the name suggests, the data from each WTG transformer is trained and tested on itself. Therefore, 10
models are trained for each of the considered model types for long-term prediction (ODE, ARX, ANN and
SS), resulting in a total of 40 models. Moreover, the same 60-40 principle is used as per which 60% of the
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Section 3.2 Dynamic Thermal Estimation of Cables and Transformers in OWF

available two-year ϑtot, I trf and ϑamb data is used for training and rest for testing. The results for two WTG
transformers are provided in Fig. 3.16 and 3.17 for a small sample size of the actual data. In contrast to the lab
transformer setup, the performance of physics-based models is found to be considerably better than their
black-box counterparts as the scale and quality of available data increases.
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Figure 3.16: Thermal estimation results for WTG 1 transformer by training and testing on its own recorded ϑtot using 2
years of available data. All the long-term prediction models are presented for a 30-day window out of 730 days for ease of
elaboration. Training and test results are highlighted separately.
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Figure 3.17: Thermal estimation results for WTG 2 transformer by training and testing on its own recorded ϑtot using 2
years of available data. All the long-term prediction models are presented for a 30-day window out of 730 days for ease of
elaboration. Training and test results are highlighted separately.

The tested models are benchmarked using box-plots in Fig. 3.18 as per the NMSE parameters. Both the
physics based models (SS and ODE) are not only considerably more accurate but also result in more consistent
results. The linear black-box ARX models offer acceptable accuracy but can be improved by varying the
model parameters. On the other hand, ANN models are least accurate but the consistency of estimation is
similar for train and test data.
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Figure 3.18: Boxplots for NMSE distribution when 10 WTG transformers are trained and tested on their own recorded ϑtot

3.3 Potential Applications of Data Driven Models

The models developed in this project can potentially be used for widescale applications in OWFs. These
applications can range from improved cable system design and operation to transformation in predictive,
preventive and condition-based maintenance of oil-filled components. Some of the applications explored in
the project are presented below.

3.3.1 Apprehension of Cable Surroundings

As explained in Chapter 2, export cable’s sections (incl. J-tube, HDD, Offshore etc.) exhibit different thermal
behavior. The rationale behind these differences and the physics-based thermal modeling of these sections
have been explored extensively in literature and are still being investigated [38, 40–42, 83]. The grey-box ODE
ML model presented in this project can be a potential solution to this puzzle. By reviewing the estimated
thermal time constant τp in ODE model for the entire BB2 cable, as shown in Fig. 3.19, the rapid thermal
response of J-tubes (due to lowest τp distribution) compared to the remaining two sections is confirmed.

Figure 3.19: Normalized distribution of time constant τp for HDD, offshore and J-tube sections for BB2 export cable test
case. The time constants were estimated with the ODE model.

The diverse nature of the offshore cable section has been discussed in detail in Section 2.2.2. By virtue of
this diversity, the gain Kp and time constant τp parameters of the ODE model vary considerably along the
offshore route. The temporal variation of ϑdts at four different locations along the test case cable’s route with
extreme estimated values of these parameters are provided in Fig. 3.20.

Figure 3.20: Measured temporal variation of ϑdts for 4 points along the offshore cable section with extreme values of τp
(left), Kp (right). The parameters τp and Kp were estimated by training the ODE model over the 145-hour window of
available data. The influence of these parameters on the test case OWF cable’s temperature variation is expected.
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The four test points High τp (15.9 hr), Low τp (1.7 hr), High Kp (0.25 ◦C/W) and Low Kp (0.06 ◦C/W) behave
considerably different under the same load and ambient condition variation. Hence, it can be deduced that
hidden information regarding the cable route can be gathered efficiently and any unexpected changes to this
information can be identified by continuous training of physics-based ML models over a long period [117].
The observation so far has further been confirmed by performing sensitivity analysis of soil’s resistivity ρsoil
and specific heat $soil for the ODE model parameters in Fig. 3.21. The inherent direct relation of thermal
time constant with thermal resistance and capacitance (τ = TC), (2.15) and (2.16) is accurately demonstrated,
while the influence on gain Kp requires more elaboration [124]. Furthermore, unsupervised machine learning
algorithms like clustering and classification can be used to identify troublesome sections along the offshore
section’s route.

Figure 3.21: Estimated parameters for ODE model Kp and τp, versus soil resistivity (left) and soil specific heat (right). The
parameters were estimated with the process model from synthetic data

One more important application of data-driven cable monitoring has been explored in the sub-project [124].
The feasibility to determine the offshore cable’s burial depth along the entire route has been performed. The
subsea cable burial depth, shown in Fig. 3.22, is not only different along the cable route but it also tends to
change over time. As part of the sub-project, effective estimation of variation in this depth over longer periods
due to sea-bed movement and sedimentation has been successfully demonstrated using linear regression
models (less accurate) and non-linear ANN models (acceptable accuracy). This is shown in Fig. 3.23 for
a synthetic dataset. Hence, by combining the properties of physics-based grey-box models for parameter
estimation and black-box models for correlating these parameters with physical attributes, ML-based models
can potentially revolutionize offshore cable monitoring.

Figure 3.22: Depth of burial for two parallel subsea cables from a cross-sectional viewpoint. The soil resistivity and thermal
capacity are identified to vary with location.
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Figure 3.23: Predicted and measured depth of burial for HV export cables using synthetic dataset [124]. Top: burial depth
estimation model is trained using linear regression. Bottom: burial depth estimation model is trained using ANN.

3.3.2 Monitoring of Offshore Wind Turbine Transformers

As the number of WTGs in OWFs increase, effective monitoring of transformers in these WTGs becomes
more challenging. The large scale thermal monitoring data generated by these transformers has been used
for a novel approach, which examines the potential for cross-application of the data analytics based models.
This is done by training a model over the entire dataset for each WTG transformer and then testing it for
the remaining transformers. Therefore, in total, 10 models are trained for each model type and each of
these models are tested 9 times (90 tests per model type). The boxplots for benchmarking results in Fig.
3.24 confirms that the ODE, SS and ARX models can be used to stipulate thermal development of a large
population of transformers by training the models over a smaller sample size of these transformers. The
temperature plots in Fig. 3.25 presents one of these instances where Train WTG represents the training results
for all the ML models, while the test results other than Train WTG are presented in the remaining three plots.
All the models except ANN seem to perform appropriately which further proves the point that the tested
formulation of ANN tends to overfit the training data. This demonstration can have wide-scale applications
in condition monitoring of transformers.

Figure 3.24: Boxplots for NMSE distribution when each of the 10 WTG transformers is trained on its own recorded ϑtot and
tested on the remaining 9 WTG transformers. In total, 90 models are tested, 10 are trained.
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Figure 3.25: Thermal estimation results for the case where a WTG transformer is trained on its own recorded ϑtot and tested
on three different WTG transformers using 2 years of available data. All the long-term prediction models are presented for
a 15-day window out of 730 days for ease of elaboration.
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Key Takeaways from Part II
In Part II, the foundation for thermal monitoring and estimation of critical HV components in the OWF export
system has been established. The debottlenecking of the OWF export system has shown that OSS transformers
and different subsections of the HV cables (incl. J-tubes, HDD and offshore/subsea) are the major thermal
bottlenecks. Even though HV cables are conservatively designed and are known to be the primary thermal
bottlenecks, the low thermal time constants of transformers can make them thermal pinch-points under
fluctuating loads, which is the case for OWFs. The discussion in Chapter 2 has shown that the state-of-the-art
TEE models can be used for dynamic thermal estimation of transformers and cables, but these models need to
be modified to make them fit for the optimization problems presented later in the thesis. The validation of the
simplified models on test case windfarm components and lab investigations has shown that the performance
is acceptable. The utilization of data analytics and machine learning is uniquely addressed in Chapter 3, where
two grey-box and multiple black-box models are tested for short-term and long-term thermal estimation of
the relevant HV components. The first-order Ordinary Differential Equation (ODE) model and simplified
SS model prove that the combination of physics with statistical estimation in grey-box models is the best
way forward as it allows the developers to retrieve control of the model structure. On the other hand, the
black-box models are found to over-fit the training data, particularly the non-linear Artificial Neural Network
(ANN) models. The final applications of these machine learning models has shown that dynamic condition
monitoring of the OWF export system and WTG transformers can be improved significantly if long-term data
is available for these components. The results are published in [Pub. C1], [Pub. C5], [Pub. C6] and [Pub.
C7].
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PART III - DYNAMIC THERMAL AGEING BASED

OPTIMAL TRANSFORMER UTILIZATION
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The discussion in Part II concluded that HV export cables account for the highest contributions to the Capital
Expenditures (CAPEX) of Offshore Windfarm (OWF) export systems. It was further concluded that there is
limited recorded experience of cable operation beyond designated thermal limits (90 ◦C for XLPE) and limited
literature on thermo-chemical ageing beyond these limits. All of these arguments have compelled the OWF
designers to optimize the cable design, while the operators are obliged to use these cables conservatively even
with Dynamic Thermal Rating (DTR) operation. On the other hand, transformers are critical for operation,
designed for contingency, have lower CAPEX footprint and offer more room for operational optimization
under current design practices. Furthermore, the thermo-chemical ageing models for transformers under
cyclic load and contrasting ambient conditions are also well-recorded.

Under Static Thermal Rating (STR) based operational philosophy, transformers can be operated between
1-1.3 pu of their nameplate ratings under continuous and cyclic loading conditions [45]. Instead of limiting
transformer current, DTR allows manipulation of transformer thermal capacity for optimal loading under
favorable ambient and load conditions. For oil-filled power transformers, the thermal capacity is defined
by the maximum allowable stress on materials close to the hot-spot and top-oil temperature regions. The
thermal stress is regulated by complying with the limits defined by international standards IEEE C57.91 [45]
and IEC 60076-7 [44]. The HST limits defined by these standards are summarized in Table 3.4 for large power
transformers (>100 MVA) with Kraft-based Thermally Upgraded Paper (TUP) insulation under different
dynamic load conditions beyond the rated capacity. These dynamic load limits are applicable to transformers
with lower thermal class insulation materials and low temperature rise requirements specified in IEC 60076-2
[125]

Table 3.4: Thermal limits for large power transformers with thermally upgraded Kraft paper [45] [44]

Normal Cyclic
Loading

Emergency Loading
(long-term)

Emergency Loading
( <30 min )

Hot Spot
Temp. 120 ◦C 140 ◦C 160 / 180 ◦C

Top Oil
Temp. 105 ◦C 115 ◦C 115 / 110 ◦C

Unlike HV cables, thermal time constants for transformers range between several minutes and few hours.
This implies that for short-term operational loading, transformer DTR can not be performed a priori as
historical loading patterns, thermo-chemical decomposition and environmental circumstances need to be
taken into account. In this part of the thesis, research questions (B) and (D) are resolved as DTR and
dynamic thermal ageing based utilization of transformers is examined. Part III starts off by presenting
and evaluating transformer ageing models (Chapter 4), which is followed by assessment of potential of
employing DTR-based optimal utilization on actual power transformers tested across ten different offshore
windfarms (Chapter 5). Finally a novel transformer utilization technique is proposed, tested and applied
using a multi-period lossy-DCOPF algorithm for day-ahead energy dispatch optimization for the transmission
network of west-Denmark (Chapter 6). The methods developed in this chapter are tested on the meshed
transmission network instead of the conventional radial OWF export system to allow active load balance and
to ease large-scale integration of OWFs in future networks without the need for additional grid-reinforcements.
The contributions of these chapters are elaborated in detail in publications [Pub. C2], [Pub. C3] and [Pub.
C4] by the author.
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CHAPTER4
Load-dependent Thermal Ageing
of Oil-filled Power Transformers

The application of dynamic rating on power transformers results in additional thermal stress particularly
in the top region of the tank. As a result it can be deduced that for load-dependent ageing, the influence
of mechanical, electrical and environmental stresses can be ignored and the process of multi-factor ageing
involving the catalytic behavior of these stresses on the overall thermal ageing mechanism can be neglected
[126] [127].

4.1 Background and Literature Review
The HV electrical insulation in oil-filled power transformers along with the mechanical substructure for
winding support is made up of liquid impregnated cellulose materials like Kraft. Mineral oils have traditionally
been used for paper impregnation and heat dissipation in the transformer tank [128]. Therefore, extensive
state-of-the-art research exists for thermal ageing of mineral oil and paper systems, as numerous theories are
postulated on chemical degradation mechanism and the driving kinetics [129–131]. The advent of natural and
synthetic oil over the last few decades suggests that further investigation is needed to develop ageing models
for generic oil-impregnated cellulose systems. This project, however, focuses on the long-established mineral
oil and Kraft paper system only, with emphasis on TUP whose equivalent hot-spot design temperature is 110
◦C.

Historically, hot spot temperature has been known to drive the ageing of paper insulation, as defined initially
by the golden thumb rule presented by Montsinger in 1930, that every 6-10 degree rise in HST reduces the
transformer life to half [132]. However, state-of-the-art research suggests that the degradation of Kraft paper is
mainly influenced by temperature, water, oxygen and acids, as the main processes that drive the degradation
mechanism are hydrolysis, oxidation and pyrolysis [44]. As all of these processes occur simultaneously, the
ageing process is highly non-linear which makes the classic Arrhenius reaction model the primary candidate
for ageing assessment of transformers [133]. The influence of these parameters primarily temperature, water
and oxygen has been investigated extensively in the literature [129, 134, 135]. Non thermally upgraded Kraft
paper are more prone to ageing acceleration due to moisture infusion compared to the thermally upgraded
paper as the ageing rate doubles for each percent rise in moisture for non-TUP while minimal affects are seen
for TUP. On the other hand, the influence of oxygen in oil is found to have similar influence on the ageing of
TUP and non-TUP, as the ageing is accelerated by two to three times for both the papers in proportion to rise
in diffused oxygen in transformer oil.

The residual mechanical strength (also called tensile strength) of the insulation paper is key in defining its
residual lifetime, which strongly depends upon the length of cellulose molecules. Degree of Polymerization
(DP), representing the average number of saccharide rings in these molecules, are commonly used to determine
the mechanical strength, as it ranges from 1200 for new material (1000 for new transformer because of drying
and other pre-commissioning processes) to 200 (20% tensile strength) over the transformer lifetime. The DP
value decreases with the chain scission process which breaks the cellulose molecules under thermal stress,
thereby reducing the mechanical strength.

The first-order differential kinetic model, originally proposed by Emsley in [133], reformulates the Arrhenius
reaction rate theory to account for decrement in paper’s DP. Several recent studies by Gilbert and Jalbert [136–
138] have shown the experimental values obtained by Emsley, Lundgaard, Daniel and others [130, 139–142]
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need to be tracked by using a pseudo-zero kinetic model that allows reduction of scission rate with time.
This DP-based model which is also presented in the next section relies heavily on two factors: Activation
energy Ea and pre-exponential factor A. The experimental results recorded in [134, 135, 139] recommend
using constant Ea of 111 kJ/mol which has been backed by future work in [130, 140, 141, 143, 144] under
constant oxygen conditions, but most of these publications [130, 136, 145] also discovered the variation of
Ea with oxygen. Furthermore, the difference of temperature dependent degradation was later described in
[130, 142, 145]. The reduction of influence of hydrolysis and relevance of oxidation on TUP’s ageing is backed
by the latest findings in [146, 147].

4.2 Thermal Ageing Models for Kraft Paper Insulation

The models considered in this project are classified in to two categories: Basic Arrhenius reaction based model
and degree of polymerization based models. These model are elaborated in detail below.

4.2.1 Basic Arrhenius Reaction Rate Model

The ageing of transformers using basic Arrhenius reaction rate theory is customized in IEEE C57.91 [45] to
calculate transformer ageing. In this model, thermal stress from HST location is assumed to drive the ageing
of cellulose-based insulation paper, thereby defining the transformer lifetime. Transformer’s cumulative
Loss-of-Life (LL) λ in period t0 − t is determined using (4.2), where the ageing acceleration factor ∆λ (also
called relative ageing rate) is calculated using (4.1) where ϑhst represents temporal development of hot-spot
temperature, while rated HST ϑhst

rated depends on the type of insulation paper. Non thermally upgraded Kraft
paper ϑhst

rated = 98◦C and thermally upgraded Kraft paper (TUP) ϑhst
rated = 110◦C are commonly used in the

industry. For TUP, the variation of ageing acceleration factor ∆λ with respect to HST is provided in Fig, 4.1.

∆λt = e

(
15000

ϑhst
rated + 273

−
15000

ϑhst
t + 273

)
(4.1)

λt =
∫ t

t0

∆λτ dτ (4.2)

Figure 4.1: Variation of ageing acceleration factor ∆λ with respect to HST ϑhst for thermally upgraded Kraft insulation
paper
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4.2.2 Consideration of Chemical Decomposition using Degree of Polymerization based

Models

The basic Arrhenius reaction based method from IEEE C57.91 does not model the impacts of oxygen
development in transformer oil and residual moisture content in the insulation paper. As discussed
earlier, the catalytic behavior of moisture in combination with the active reagent oxygen can accelerate the
chemical decomposition of the cellulose-based insulation paper due to heat from HST. Since the Degree of
Polymerization (DP) can represent the retained tensile strength of these papers, DP-based models are used in
this project for applications where accurate considerations for transformer ageing are required and when the
computational stress is not a challenge. The variation in insulation’s DP can be calculated by reformulating
the Arrhenius reaction rate theory using a first-order process, as shown in (4.3). It must be mentioned that
experts suggest that this equation gives conservative estimates on transformer ageing [131].

1
DPt

− 1
DPt0

= A e

−Ea
Rg[ϑhst

t + 273] t (4.3)

where the DP values at start and end of the interval t0 − t are given by DPt0 and DPt, while Rg represents the
ideal gas constant valued as 8.314 J/(mol K). The two important parameters that are found to be dependent on
the chemical decomposition of insulation paper and transformer oil include pre-exponential factor A [1/hour]
and activation energy Ea [kJ/mol], which represents the minimum energy needed to start the decomposition
reaction. As discussed in the literature review, the variation of content of oxygen in oil (defined as volumetric
parts per million - ppm) and content of moisture in the paper (defined as percentage mass) has considerable
influence on the evolution of these parameters for TUP and non-TUP insulation over the transformer lifetime.
Results from the most relevant state-of-the-art experiments [44, 130, 139–141] are summarized in Table 4.1.
For the Monash model from 2012 [140] [141], the development of A with paper moisture variation under
different oxygen concentration in oil is fitted to polynomial curves which have been reproduced in Fig. 4.2.
One important point to note is that the IEC 60076-7 Annex A model [44] adopts the proposal by Lundgaard in
[128].

Table 4.1: Comparison of parameters dependent on insulation material and decomposition process from
state-of-the-art DP-based ageing models [44, 130, 139–141] refined using experimental data for thermally
upgraded and non-upgraded Kraft Paper. Activation energy (Ea) is in kJ/mol. Pre-exponential acceleration
factor (A) is in 1/hour

Paper
Type Model

Activation Energy Ea
[kJ/mol]

Preexponential Factor A
[1/hour]

Low O2 High O2 Low H20,
Low O2

1.5% H20,
Low O2

3.5% H20,
Low O2

Low H20,
High O2

Non Thermally
Upgraded

Kraft Paper

Emsley (2000) [139] 111 1.07 ×108 3.5 ×108 35 ×108 2.0 ×108

Lundgaard (2004) [130] 111 2.0 ×108 6.2 ×108 21 ×108 8.3 ×108

Monash (2012) [140, 141] 111 1.42 ×108 6.8 ×108 see Fig. 4.2 9.33 ×108

IEC 60076-7 Annex A
(2018) [44] 128 89 4.1 ×1010 1.5 ×1011 4.5 ×1011 4.6 ×105

Thermally
Upgraded

Kraft Paper

Emsley (2000) [139] 111 3.65 ×107 - - -

Lundgaard (2004) [130] 111 6.7 ×107 1.1 ×108 2.6 ×108 3.5 ×108

Monash (2012) [140], [141] 111 6.92 ×107 2.61 ×108 see Fig. 4.2 4.29 ×108

IEC 60076-7 Annex A
(2018) [44] 86 82 1.6 ×104 3.0 ×104 6.1 ×104 3.2 ×104
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Figure 4.2: Variation in the pre-exponential factor A with change in oxygen and water content. These values are calculated
using the fitted polynomial curves of [148]

The first three models that calculate values for A using the same activation energy Ea irrespective of oxygen
content in oil are found to be in agreement with each other. This is shown for low oxygen level circumstances
in Fig. 4.3 for Emsley [139], Lundgaard [130] and Monash [140] models. The polynomial curve fitted to these
observations in order to make the calculations more generic is also provided. Hence, this analysis reveals that
these models can be used interchangeably with acceptable degree of agreement, which is why the discussion
from this point onward will use the Monash model as the representative of this group of models.

Figure 4.3: Under low oxygen levels, the variation in A with paper moisture content is compared for Emsley [139],
Lundgaard [130] and Monash [140] models which are based on activation energy of 111 kJ/mol. The polynomial curve
providing the best fit for the observed data is also shown.

4.3 Comparison and Sensitivity Analysis of the Considered Models

The discussion so far reveals that the models considered for analysing load-dependent thermal ageing of
oil-filled power transformers in this project can be classified as: Basic Arrhenius reaction based IEEE C57.91
model [45], DP-based Monash model [130, 139, 140] and DP-based IEC 60076-7 Annex A model [44]. In
order to compare the acceleration of transformer ageing for these models under different thermal operating
conditions, transformer’s Expected Lifetime (EL) is calculated using (4.4)-(4.5).

ELIEEE = 150000
8760×∆λ(ϑhst) [years] (4.4)

ELDP = −

1
DPstart

− 1
DPend

A × 24 × 365 e

Ea
Rg (ϑhst + 273) [years] (4.5)
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where EL is calculated in years, the hot spot temperature [◦C], ideal gas constant Rg and the HST-dependent
ageing acceleration factor ∆λ(ϑhst) are treated as constants, while Ea and A are considered to be dependent
on oxygen and moisture contents. For the IEEE model, 20% retained tensile strength for the cellulose-based
insulation paper is considered to be the transformer end-of-life which translates to the numerator of 150000
hours in (4.4). For the DP-based models, DP value at the time of transformer’s first energization (DPstart) can
simply be set to 1000, but the difference in opinion of technical experts [44] [128] [131] for end-of-life criterion
with 20% and 30% retained tensile strength for Kraft paper suggests that DPend can either be set to 200 or
300. Therefore, the sensitivity of the three models are assessed by varying some of these parameters in the
discussion below.

• Sensitivity to the end-of-life criterion: The influence of using DPend of 200 and 300 on the expected
transformer lifetime predicted by the two DP-based models is shown in Fig. 4.4 for a range of continuous
HST operation under low oxygen and moisture conditions. The analysis for both the thermally upgraded
ϑhst
rated = 110◦C (right) and non-upgradedϑhst

rated = 98◦C (left) Kraft-based insulation papers is presented
in the figure. As expected, both the DP-based models show similar behavior with logarithmic change in
EL for the two end-of-life criteria. Higher activation energy Ea and lower pre-exponential factor A for
the IEC 60076-7 Annex A model results in more conservative results, which is why this model with 20%
retained tensile strength criteria will be used for the further analysis in Chapter 8.

Figure 4.4: Influence of different end-of-life criterion with retained tensile strength of 30 % (DPend = 300) and 20 % (DPend =
200) for the DP-based models by Monash [140] and IEC 60076-7 Annex A [44]. Left: Non-thermally upgraded Kraft paper.
Right: Thermally upgraded Kraft paper. Test case with low oxygen (≤ 7000 ppm) and moisture (0.5-1%) is presented. The
basic Arrhenius model from IEEE C57.91 is also presented for comparison

• Sensitivity to the oxygen and moisture contents: Since the two main parameters of DP-based models
Ea and A depend primarily upon the moisture content in paper and oxygen saturation in oil, the
influence of varying these parameters on EL calculation by IEC 60076-7 Annex A model is presented in
Fig. 4.5. It is observed that the increase in oxygen and moisture contents can decrease the expected
lifetime considerably even if the transformer stays within the normal cyclic HST thresholds. However,
under normal conditions of low moisture (0.5-1%) and low oxygen (≤ 7000 ppm) the calculated EL
is as expected and is found to be in agreement with the IEEE C57.91 model which suggests that both
these models can be used if normal operating conditions are expected. Readers are reminded that
uncharacteristically high oxygen (≥ 7000 ppm) and moisture (≥ 2%) represent serious quality issues in
transformer manufacturing and maintenance, which is beyond the scope of work done in this project.
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Figure 4.5: Sensitivity of transformer expected lifetime to Moisture and Oxygen variation for the IEC 60076-7 Annex A
(Lundgaard) model. Left: constant moisture (1%) and varying oxygen. Right: constant oxygen (low) and varying moisture.
The basic Arrhenius model from IEEE C57.91 is also presented for comparison

The discussion so far has shown that the IEEE C57.91 model continuously returns less conservative results
at low temperatures but the required conservatism is achieved at higher HST, which means that the basic
Arrhenius based model can be used when the transformers are expected to operate continuously at higher
temperatures. This gives the simplified model a distinctive edge over the considered DP-based models,
especially for applications where simplicity of design and high computational efficiency are desired. Therefore,
the optimization problems developed in this project use the basic Arrhenius model based on IEEE C57.91 for
tracking transformer lifetime utilization.
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CHAPTER5
Potential for Dynamic Rating

Operation for OWF Transformers
Over the course of this project, it has been deduced that transformers in offshore windfarms are over-
dimensioned. In this section, the extent of this over-sizing is investigated by studying the load and lifetime
utilization of ten different power transformers installed on OSS platforms, in the WTG nacelles and in the
base of WTG towers. The OWF projects included in this study are mostly located in the North Sea in Europe
and on the west coast of UK. For detailed design assessment, the test case of Anholt windfarm (Denmark)
also presented in publication [Pub. C3] has been used, the details for which were provided in Section 2.1.
Similar results are elaborated in detail for WTG transformers in publication [Pub. C2].

5.1 Assessment of Transformer Loading in OWFs

As introduced in Chapter 1, the intermittent nature of wind generation means that electrical components in
OWF export system are seldom loaded to their nameplate capacity. This, when combined with the over-sizing
of these components, implies that a significant portion of the OWF transmission capacity is unutilized. Anholt
windfarm is an exception to this design methodology as three 140 MVA, 225/33 kV, YNd11, ONAN cooled
OSS transformers with thermally upgraded kraft paper insulation are used to transmit the generation from
the 400 MW rated windfarm shown in Fig. 2.2, which makes the total transformer capacity of 420 MVA. It is
important to note that if conventional design practices for transformer rating were used, the total transformer
capacity would have been 500 MVA with each transformer rated at 167 MVA.

Referring to Fig. 5.1, it can be deduced that even with the strict design practices, the OSS transformer in
Anholt is underutilized. The histograms for transformer load and critical temperatures for 2017, which
look like the probability density function of Beta distribution with uniform parameters, suggest that over
the course of an entire year the transformer does not reach its rated capacity of load current (1 pu) and
temperatures (normal cyclic limits in Table 3.4). The temperatures are calculated using the Susa model from
(2.9) and the calculations have already been validated in Section 2.3.1. The utilization of transformer lifetime
(λ) is calculated using the basic Arrhenius reaction rate model from IEEE C57.91 [45] because of the expected
low-moisture, low-oxygen conditions due to strict regulations for design quality, operation and condition
monitoring. The discussion in IEEE C57.91 suggests that under constant operation at rated ϑhst (110 ◦C for
TUP), the expected design lifetime ELrated of transformers should be 17.12 years (150000 hours). Under ideal
conditions, OWF transformers should last 25 years of windfarm lifetime which translates to rated yearly loss
of life λy,rated of 0.685 years (17.12/25). The analysis in Fig. 5.1(d) reveals that the Anholt OSS transformer
lost close to 23 days (0.063 years) of its life λy in 2017, which is significantly lower than λy,rated of 0.685 years.
Hence, there is substantial room to employ dynamic rating and optimize the utilization of Anholt offshore
windfarm’s OSS transformers.

In order to validate the relevance of this analysis across offshore windfarms located in different regions with
contrasting wind production and ambient condition patterns, the process is repeated for 9 more transformers
for yearly observations and the results are compiled in Fig. 5.2. Besides Anholt, OSS transformers from the
following offshore windfarms are used: 367 MW Walney (WOW) and 348 MW Burbo Bank (BBW) off the
west coast of UK, 573 MW Race Bank (ROW) off the east coast of UK and 582 MW Gode Wind in the German

59



Chapter 5. Potential for Dynamic Rating Operation for OWF Transformers

(a)

0 0.2 0.4 0.6 0.8 1
Itrf (pu)

0

0.05

0.1

0.15

Pr
ob

. D
en

si
ty

Itrf (pu)

(b)

20 40 60 80 100
hst ( °C)

0

0.02

0.04

0.06

Pr
ob

. D
en

si
ty tot

hst

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2017   

0

50

100

 (
°  C

)

(c)

hst

amb

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2017   

0

10

20

30

  (
D

ay
s)

(d)

Trafo Loss Of Life

Figure 5.1: Utilization of OSS transformer in Anholt offshore windfarm in 2017. (a) Histogram for transformer load current
in pu. (b) Histograms for transformer top-oil and hot-spot temperatures. (c) Temporal development of ambient and
hot-spot temperature. (d) transformer loss-of-life calculated using thermal ageing formula from IEEE C57.91

sector of the North Sea. Furthermore, wind turbine transformers from OWFs in the Netherlands, UK and
Germany for WTGs rated between 3.6 - 8 MW are also used. The box-plots for HST suggest that none of the
examined transformers reached the rated design HST of 110 ◦C for the observed yearly duration, and are
found to be far from crossing the normal cyclic load limit of 120 ◦C from [125]. The per-unit yearly loss of
transformer life with respect to the rated yearly lifetime utilization λy/λy,rated has also been presented in the
figure and found to be considerably below the rated 1 pu mark for all the test case transformers.

Figure 5.2: Assessment of loading for the 10 test case transformers using box-plots for year-round distribution of calculated
hotspot temperatures (blue) and per-unit yearly loss of transformer life λy/λy,rated (black). The dashed lines represent
thermal design and cyclic load limits for ϑhst

5.2 Influence of OWF Expansion on Optimal Transformer Utilization

Based on the discussion so far, power transformers are significantly underutilized in offshore windfarms.
Therefore, an attempt has been made to inspect how much extra energy can these test case transformers
push, if optimal yearly lifetime utilization is desired. This exercise is relevant as the findings can allow
operators to maximize energy transmission by using dynamic rating during contingency and other demanding
conditions, given that the remaining export system components can withstand the additional load during
n-1 contingencies. For this purpose, the recorded instantaneous wind energy generation for all the test case
windfarms has been scaled by an up-scaling factor ’U’ for the entire year.
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The influence of up-scaling Anholt windfarm OSS transformer’s load on its temporal HST development for a
short period in summer has been provided in Fig. 5.3. In order to find the optimal up-scaling factor, two
considerations are made: Firstly, the cumulative yearly loss-of-life λy is calculated and secondly a probability
function ψhst to prevent violation of long-term emergency loading limits of Table 3.4 is used. The parameter
ψhst returns the value of 1 if the calculated temperatures ϑtot and ϑhst do not violate the respective thermal
limits for more than 2 hours, while it is zero if the limits are violated for more than 25 percent of the overall
simulated time period. This prevents the adverse ageing impacts due to extensive bubbling and acidic
formations at ϑhst ≥ 140◦C. The detailed results for the Anholt test case are provided in Fig. 5.4. It can be
seen that the optimal up-scaling factor lies near the 1.52 mark, and even though the lifetime utilization λy is
not exactly equal to λy,rated at this point, further load up-scaling results in reduction of the probability factor
ψhst. The expected λrated parameter is calculated as 0.685t in the lifetime utilization plots of Fig. 5.3(c).
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Figure 5.3: Up-scaling power generation in Anholt windfarm. Left: Up-scaled transformer load for three days in summer
2017. Right: Calculated hot-spot temperature for different up-scaling factors for the same period.

These calculations are repeated for the remaining test case transformers and the parameters for the optimal
up-scaling results for the individual transformers are provided in Fig. 5.5. The HST box-plots for the
respective optimal results show a uniform spread up to the emergency thermal limits as dynamic rating
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Figure 5.4: Influence of up-scaling wind generation on utilization of Anholt OSS transformer in 2017 (a) per-unit yearly loss
of transformer life and probability function to prevent violation of emergency thermal limits of [44]. (b) Histograms for
year-round HST distribution for different up-scaling factors. (c) Thermal lifetime utilization for increased wind generation.
’U’ represents the up-scaling factor of wind generation in pu with actual generation in 2017 as base.
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is used in day-to-day operations. The per-unit yearly loss of transformer life λy/λy,rated is around 0.9 for
all the test case transformers and the respective wind farm load can optimally be up-scaled by up to 50 %.
The analysis has confirmed that OWF transformers are under-utilized and a novel methodology based on
combination of dynamic rating and optimal lifetime utilization can potentially be developed to optimize the
operation of these components.

Figure 5.5: Assessment of loading for the 10 test case transformers after up-scaling the respective windfarm load to the
optimal value. Box-plots for year-round distribution of calculated hotspot temperatures (blue), per-unit yearly loss of
transformer life (black), value of optimal up-scaling for the respective test case transformer (orange). The dashed lines
represent thermal design and long-term emergency load limits for ϑhst
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CHAPTER6
Optimal Transformer Utilization

based on DTR & Dynamic
Ageing Principle

As discussed earlier, DTR allows better utilization of transformers as compared to STR. It has also been shown
that if the operational thermal limits under DTR operation are changed from normal limits to long-term
emergency cyclic limits of Table 3.4, the transformers can be even better utilized [149–151]. However,
such an operational methodology can not ensure reliable transformer operation as historic transformer
utilization and real-time accelerated ageing under higher thermal stress are not tracked. Furthermore, it
has also been shown that OSS and WTG transformers in the offshore windfarms are over-dimensioned and
significantly underutilized. This means that at the time of windfarm decommissioning, usually after 25-35
years of operation, there will be significant residual life for transformers. Therefore, an improved transformer
utilization technique, termed as Enhanced Dynamic Thermal Rating (DTR+), has been proposed in this project
which can potentially resolve these issues.

It must be mentioned that residual transformer lifetime after 35 years of operation is not necessarily a problem
in the conventional transmission systems as the Transmission System Operators (TSOs) continue to use these
transformers with increased condition monitoring. However, for OWF applications with limited asset life
(25-30 years design lifetime), a transformer design optimization procedure that can reduce the abundant
residual life at the time of OWF decommissioning can influence the business case and the Levelized Cost
of Energy (LCOE) for offshore wind significantly. This is further clarified in Chapter 8. On the other hand,
smart transformer utilization based on the proposed methodology can allow the system planners and TSOs
to defer investments in case of large-scale rapid integration of renewable energy sources as a trade-off against
truncated transformer lifetime. This application has been demonstrated successfully in the discussion below.

6.1 Overview and Background of the Proposed Methodology

The methodology proposed in this section redefines the hourly thermal limits for transformer operation
in real-time by evaluating its consumed thermal lifetime λ until that instant. These thermal limits ensure
that the transformer is optimally utilized, while complying with the ageing rate defined in IEEE C57.91 [45].
The methodology is graphically demonstrated in Fig. 6.1 for an oil-filled power transformer with thermally
upgraded Kraft insulation paper, which can withstand 110 ◦C of continuous HST operation.

The transformer in Fig. 6.1 is assumed to operate continuously at ϑhst = 98 ◦C until time t0, which is a
fairly conservative assumption compared to the operating HST of OWF transformers discussed earlier. This
translates to a constant relative ageing rate (or ageing acceleration factor) of ∆λ = 0.282, represented by the
black line’s slope. The utilized transformer lifetime at this stage would be λA = 0.282t0, which is far lower
than the design utilization λD , as shown in the figure. The transformer would continue to be underutilized
and the difference λD − λA would increase further if this loading strategy persists. On the other hand, if the
conventional DTR strategy is used for rest of the transformer design life which operates the transformer close
to the design HST limit of 110 ◦C more often, the utilization would improve but there would still be significant
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residual lifetime at the time of decommissioning, as shown in Fig. 6.1(a). The proposed methodology resolves
this issue by considering both the temperature and ageing dynamics at the same time for the DTR+ strategy.
Referring to Fig. 6.1(b), it is perceivable that instead of using ϑhst limit of 110 ◦C for the period t0− t1, optimal
transformer utilization would have been achieved if ϑhst = 122◦C which results in ∆λ = 3.29 and allows the
blue line to touch the red dashed line representing the rated transformer lifetime utilization within the given
operation period. As a result of this dynamic thermal setting, the operator can load the transformer higher
under contingency, grid congestion and other demanding situations.

Figure 6.1: Methodology for optimal transformer utilization. (a) Conventional approach for DTR: Fixed HST limit (ϑhst =

110 C). (b) Proposed enhanced DTR+ approach: Variable HST limit dependent on utilized lifetime λ (ϑhst = 140 C).

6.1.1 Problem Overview and Schematic Description

A dynamic DC Optimal Power Flow (DCOPF) problem with multi-period formulation is developed to test the
concept presented above. The problem optimizes the cost of energy dispatch over a 24-hour period in a power
system for the day-ahead market. The mechanism of the day-ahead market clearance are demonstrated in
Fig. 6.2, along with the schematic for the proposed problem framework. The 24-hour schedule for day ’d’ in
this market is usually cleared around mid-day the day before (’d-1’) [152]. The optimization problem uses
static, dynamic and enhanced dynamic rating mechanisms for the preselected bottleneck transformers to
minimize the cost of energy dispatch by maximizing the utilization of energy from low-cost wind resources
and unlocking the flexibility potential of the transmission network.

The power system considered in this problem is divided into following sets: conventional generators (G),
wind farms (W), buses (B) and branches (A) with number of elements |G|, |W|, |B| and |A|, respectively. The
last set for branches include the overhead transmission lines, cables and transformers in the network. All the
overhead lines and cables are statically rated, whereas only a subset of transformers is to be considered for
DTR. These transformers are to be preselected based on debottlenecking of the considered system if further
windfarms are installed in one specific region of the system. Hence, the transformer subsets are identified as
ASTR, ADTR and ADTR+

for STR, DTR and DTR+ test cases. The results are benchmarked by comparing the
change in performance of the algorithm for DTR and DTR+ with respect to the STR test case.

The optimal scheduling problem primarily includes unit commitment from conventional generation P conv
g,t for

source ∀g ∈ G and intermittent renewable energy Pw,t from wind resource ∀w ∈ W . Moreover, possible load
shedding P sh

β,t at bus ∀β ∈ B that might be needed under extreme conditions is also considered. The forecast

for load demand P̂ load
β,t for each bus and average wind generation P̂ av

w,t for day ’d’ are to be made available
before the time of market clearance the day before (’d-1’). System parameters and ratings of transmission
components are needed as well. It is known that besides the integration of large-scale distributed renewable
energy sources, the load forecasting models can lead to uncertainty in unit commitment [153]. However, this
formulation does not account for uncertainties in load and wind forecasts, but these can easily be added by
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using the principles discussed in [154] [155]. It must be mentioned that the discussion in Chapter 9 presents
decision-support tools which accurately account for uncertainty during the design phase.
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Figure 6.2: Overview of the day-ahead market and schematic representation of the developed methodology.

6.1.2 Common Formulations and Prerequisite Information

The formulation of the proposed problem has a number of substructures and designs that have either been
originally developed or adapted from different studies during this project. Among these substructures,
the most important ones include the utilization of piecewise linearized ageing model for transformers, the
inclusion of power losses in a DCOPF problem based on an iterative process and simplification of non-linear
TEE models to quadratic inequality constraints for keeping the optimization problem convex. The mechanism
behind each of these contributions are briefly described in this section before the actual framework for the
optimization problem is provided.

• Power Flow and Load Calculations: In this study, DC approximation of the full AC power flow
equations is adopted. A Power Transfer Distribution Factor matrix (PTDF) M is used to model the
flow of active power on each branch in A [156]. This approach neutralizes the need for introduction
of bus voltage angles in the decision variables set. The relation between power injected at each bus
and power flow in the respective branches can be linearly related by using the constant coefficients
of matrix M = BαB−1

β , such that M ∈ R|A|×|B|, while Bα and Bβ are the branch admittance and
bus admittance matrices respectively. Finally, the per-unit temporal power flow zα,t on each line
α is calculated using (6.1), where Mα is the α − th row of matrix M and P

inj
t is the column vector

representing temporal power injection at each bus in pu. The per-unit transformer load I trf, pu
α,t on

branch α depends on the respective transformer size Strf
α , as shown in (6.2). This is true because if

smaller transformers are used or if the transformers are derated (as done in this formulation to create
bottlenecks in the system), the power flow zα,t in the respective branch needs to be scaled with respect
to the base system rating Sbase.

zα,t = MαP
inj
t (6.1)

I trf, pu
α,t = zα,t

Sbase

Strf
α

(6.2)

The nodal power injection at bus β can then be written in its extensive form

P
inj
β,t = P conv

g,t + Pw,t −
(
P load
β,t − P sh

β,t +W bus
β,t

)
(6.3)

where P conv
g,t and Pw,t represent conventional and wind power generation; P load

β,t and P sh
β,t represent net

load demand and possible load shedding; while W bus
β,t expresses nodal power losses. The last term is

65



Chapter 6. Optimal Transformer Utilization based on DTR & Dynamic Ageing Principle

used to identify the branch power losses W that are dissipated on transmission lines and transformers,
which are expressed in terms of additional load demand W bus

t at each bus. This is explained further
below.

• Losses Estimation: In DCOPF problems, estimation of losses is rather abstruse which is why it is
explored extensively in the literature. The method developed in this project uses quadratic inequality
constraints to estimate branch power losses W and models them as additional load demand on the
individual busses W bus

t in the system. The overarching concept is based on the considerations of [157],
where the losses in branch α are divided between the sending and receiving buses equally. A loss
allocation matrix Y ∈ R|B|×|A| is used for this purpose whose (β,α) component is defined in (6.4).
Consequently, W bus

t is then calculated as W bus
β,t = Y βW , where Y β is the β − th row of Y .

Y (β, α) =

{
0.5 if line α is connected to bus β

0 otherwise
(6.4)

As a result of congestion in the test transmission network which can produce negative locational
marginal prices, the method presented in [157] has the tendency to introduce additional fictitious
losses leading to inaccurate conservative loss estimation [158] [159]. Therefore, in order to resolve this
issue while preserving the convexity of the proposed optimization problem under the consideration
of quadratic power losses, the iterative process of [157] is bounded at each step. This upper bound is
lowered at each iteration if the losses are overestimated. The step-by-step process is explained below:

1. The maximum power flow in the respective branch and its resistance r are used to set the upper
bound for power losses Wmax which is complemented by a tolerance δ to ensure convergence.

Wmax
(1) = rzmax2

(6.5)

2. The DCOPF problem of (6.12) is solved and the resulting power flows z(k) and losses W(k) are
obtained for the k-th iteration.

3. The difference between the estimated and the actual losses are calculated and compared to the
tolerance δ. If the difference is within the tolerance, the solution is accepted, otherwise the Step 4
is considered.

∆W(k) = W(k) − rz2
(k) (6.6)

4. If the solution is not produced in Step 3, Wmax is updated with the power flow at iteration k and
an additional margin ε is added. Afterwards, Steps 2 and 3 are repeated.

Wmax
(k+1) = rz2

(k) + ε (6.7)

Hence, the iterative process can guarantee a unique solution, which is achieved by a gradual reduction
of size of the feasible region for branch losses. A graphical representation of the iterative algorithm is
given in Fig. 6.3 where different shades of gray indicate the gradual restriction of the feasible domain.
The method needs to be tested comprehensively over different test cases to assess the generality of its
application.
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Figure 6.3: Graphical representation of the iterative approach to approximate quadratic power losses by iteratively reducing
the feasible region

• Dynamic Thermal Estimation of Transformers: As discussed in Chapter 2, DTR modeling of trans-
formers in hourly operational time frames is difficult not just due to the temporal coupling of ϑtot and
ϑhst, but also because the dynamic behavior of transformer top-oil spans across multiple hours. This
means that for accurate DTR modeling, influence of historic transformer load and ambient conditions
are to be accounted for and steady state estimation of ϑtot and ϑhst is not possible unless empirical
assumptions are made. Fortunately, the work-arounds discussed in Section 2.3.1 for hourly operational
time-frame are valid for this application, particularly because the candidate transformers for DTR and
DTR + considerations are identified to be the system constraints and therefore operated at ODAF cooling
mode continuously. The resulting simplified equations for TOT and HST estimation from Section 2.3.1
are repeated in (6.8)-(6.9).

ϑtot
t = b1ϑ

amb
t + b2

(
I trf, pu
t

)2 + b3ϑ
tot
t−1 + b4 (6.8)

ϑhst
t = ϑtot

t + ∆ϑhst
rated

(
I trf, pu
t

)2
(6.9)

• Resolution of Non-linear Constraints for Ageing Dynamics: In order to keep the optimization
problem convex, the non-linearities that arise due to the exponential relation in the HST-dependent
transformer ageing model by IEEE C57.91 as shown in (4.1)-(4.2) need to be resolved. Hence a set
of linear inequality constraints are used for the estimation of ageing acceleration factor ∆λ to form
a convex piece-wise linear approximation in the base DCOPF problem of (6.12). This formulation is
shown in (6.10), where the coefficients ml and ql represent the slope and intercept values for the l-th
tangent line belonging to the set L. Hence, by using this technique the real-time transformer HST ϑhst

t

can be linearly related to the corresponding incremental lifetime utilization ∆λt, as shown in Fig. 6.4.
For cumulative lifetime utilization λt can then be calculated using (6.11).

∆λt = max
l
{mlϑ

hst
t + ql} (6.10)

λt = λt−1 + ∆λt (6.11)

67



Chapter 6. Optimal Transformer Utilization based on DTR & Dynamic Ageing Principle

Figure 6.4: Piecewise linear approximation of non-linear exponential function for transformer lifetime utilization dependent
on hot-spot temperature with L = 30 cuts

6.2 Formulation of the Multi-Period DCOPF Problem

6.2.1 Proposed Framework

The proposed optimization problem is a multi-period DCOPF problem for the day-ahead market whose
objective is to minimize the total cost of generation over the period T . The framework for the developed
multi-period DCOPF problem is provided in (6.12). The total cost of conventional generation C conv, wind
generation C W

t and possible load shedding C sh
t along with all the constraints that follow have to hold ∀t ∈ T .

The first three sets of constraints are relevant for all the test cases, while the last three constraints will only
be applicable to the individual test cases for STR, DTR and DTR+ which are to be run independently for
benchmarking the results. In short, the problem is solved three times: first by considering STR operation
of the chosen transformer subset in ASTR, then for DTR of the subset ADTR and finally for enhanced DTR
operation of ADTR +

. All the remaining parameters and conditions are kept the same for these test cases.

In the proposed methodology, the linear objective function is complemented by a set of standard equality
and inequality constraints. By using the multi-period structure, the incorporation of transformer’s temporal
temperature development which includes conic quadratic inequality constraints is accurately accounted for.
The Matlab-based CVX [160] is used in this project to model the optimization problem using Mosek.

min
Ξ

∑
t∈T

(
C conv
t + CW

t + Csh
t

)
(6.12a)

s.t. (6.14), Power Balance, ∀g,∀w,∀β, ∀t

(6.15)− (6.19), Generational & Operational Limits, ∀g,∀α

(6.20), Losses approximation, ∀α,∀t

(6.21), Load Limits (for STR only), ∀α ∈ ASTR, ∀t

(6.22)− (6.23), Thermal dynamics (for DTR only) , ∀α ∈ ADTR, ∀t

(6.24)− (6.26), Ageing and Thermal dynamics (for DTR+ only) , ∀α ∈ ADTR+

,∀t

where Ξ is the list of decision variables. The sections below provide detailed description of these variables
along with the associated constraints.
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6.2.2 Objective Function

The objective function to minimize the overall cost of energy dispatch over a 24-hour period in the day-ahead
market is provided in (6.13).

min
Ξ

∑
t∈T

(∑
g∈G

cgP
conv
g,t +

∑
w∈W

cwPw,t +
∑
β∈B

c sh
β P

sh
β,t

)
(6.13)

where the set of decision variables Ξ = [P conv
g,t , P sh

β,t, Pw,t,Wα,t] for each time step t represents the scheduled
conventional generator’s output for every generator, possible load to be shed for every bus, and dispatched
wind power Pw,t for every wind farm respectively. Lastly, an auxiliary decision variable is used to model the
power losses in the branches Wα,t, as shown earlier. The parameters cg , cw and csh respectively represent
the cost of dispatching conventional generation, cost of wind energy dispatch and the cost of preemptive
corrective load shedding actions. These parameters are treated as constants in this project, but can be treated
as variable to model the unit commitment problem more accurately which was not the goal here.

6.2.3 Definition of Constraints

Constraints for Power Balance

The constraint in (6.14) ensures power balance in the system for each individual hour in the 24-hour period of
the day-ahead dispatch market. It is important to mention that the parameter W bus

β,t is a design feature of this
problem and models the branch losses as additional load, as explained earlier.∑

g∈G

P conv
g,t +

∑
w∈W

Pw,t −
∑
β∈B

(P load
β,t − P sh

β,t +W bus
β,t ) = 0, ∀t ∈ T (6.14)

Constraints for Generational & Operational Limits

The constraints (6.15) - (6.16) ensure that the generational limits for the conventional generator and the
available production capacity of the windfarms are not violated. The modeling of the wind power available
at each bus P av

w is explained in Section 6.3. The decision variable Pw is key here as the amount of wind to be
dispatched out of the total P av

w would depend upon the load demand and grid congestions because of lack of
consideration of flexible load, storage or cross-border transmission in the considered problem. This optimally
dispatched Pw will be determined by the optimization problem.

P conv
g ≤ P conv

g,t ≤ P conv
g , ∀g ∈ G, ∀t ∈ T (6.15)

0 ≤ Pw,t ≤ P av
w , ∀w ∈ W, ∀t ∈ T (6.16)

Similarly, the constraint (6.17) allows compliance with the ramping capabilities of the conventional generators.
The power flow in each branch is limited within the rated capacity by the constraint (6.18), while the amount
of load to be shed at each bus is constrained to the actual load of that bus by (6.19). The sign of line power
flow z represents the direction of power flow between buses.

−∆P conv
g ≤ P conv

g,t − P conv
g,t−1 ≤ ∆P conv

g , ∀g ∈ G, ∀t ∈ T (6.17)

−z ≤ zα,t ≤ z, ∀α ∈ A, ∀t ∈ T (6.18)

0 ≤ P sh
β,t≤ P load

β,t , ∀β ∈ B, ∀t ∈ T (6.19)
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Constraint for Losses Approximation

The approximation of losses is performed according to the principle explained earlier. The power losses
in each branch are bounded by (6.20). The lower bound is modeled correctly by quadratic representation
using resistance of the respective branch rα; whereas the upper bound is uniquely modelled to prevent the
inclusion of fictitious losses in the network.

rαz2
α,t ≤Wα,t ≤Wmax

(k) , ∀α ∈ A, ∀t ∈ T (6.20)

Additional Constraint for the STR Test Case

This additional constraint is valid for the subsetASTR of transformers that are statically rated as the maximum
transformer load in the corresponding branch α is limited to the rated capacity of 1 pu, as shown in (6.21).

− 1 ≤ I trf, pu
α,t ≤ 1, ∀α ∈ ASTR, ∀t ∈ T (6.21)

Additional constraints for the DTR Test Case

For the test case where the identified transformer is to be dynamically rated as per conventional methods, the
limits for top-oil and hot-spot temperatures represented by ϑtot and ϑhst are set below the normal cyclic limits
of Table 3.4, as shown in (6.22)-(6.23). These limits are chosen to be 100 and 110 ◦C for ϑtot and ϑhst respectively
in this section in order to comply with the conventional design practices at all times. The estimation of these
temperatures are performed using the quadratic inequality constraints of (6.8)-(6.9) which keep the resulting
optimization problem convex.

ϑtot
α,t ≤ ϑtot, ∀α ∈ ADTR, ∀t ∈ T (6.22)

ϑhst
α,t ≤ ϑhst, ∀α ∈ ADTR, ∀t ∈ T (6.23)

Additional constraints for the DTR+ Test Case

The third and final loading strategy has been originally proposed in this project. This technique not only takes
into account the thermal dynamic behavior of the transformer, but its ageing rate as well. The constraints
(6.24) and (6.25) make use of the long-term emergency limits of Table 3.4 by setting the limits ϑtot and ϑhst to
115 and 140 ◦C respectively, which are significantly higher than the normal cyclic limits in consideration to
accelerated ageing at high temperatures. As a result, the transformer ageing is expected to be much higher
in this method. Therefore, the constraint (6.26) is added to the problem which ensures that the lifetime
utilization of the transformer at all operational hours stays below the design limit set by IEEE C57.91 in [45].
The parameter ∆λ represents the desired maximum ageing rate which is set to ’1’ in this study. The parameter
t is used as a time counter during the simulation.

ϑtot
α,t ≤ ϑtot, ∀α ∈ ADTR+

, ∀t ∈ T (6.24)

ϑhst
α,t ≤ ϑhst, ∀α ∈ ADTR+

, ∀t ∈ T (6.25)

λα,t ≤ λα,t−1 + ∆λ t, ∀α ∈ ADTR+

, ∀t ∈ T (6.26)

The ultimate outcome of this approach is that the transformer utilization can be accelerated when needed,
depending on its historic load profile and operating conditions. As soon as the upper boundary of transformer
lifetime utilization is reached, the conventional settings for DTR are followed as the binding constraint
switches from following HST to cumulative utilization lifetime λt.
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6.3 Test Case of the West-Denmark Transmission System with Increased Offshore

Wind Generation
For demonstration of the effectiveness of the proposed methodology, the IEEE RTS-24 bus network of [161]
has been modified. The main modifications made to the system include: addition of increased offshore wind
power generation, application of actual load and generation patterns from the transmission network of West
Denmark (DK1) and application of dynamic rating on selected transformer in the network. These alterations
are elaborated in detail below.

Additional offshore wind generation units are strategically added to Bus 16, 21 and 23 of the test case IEEE
RTS-24 bus network, shown in Fig. 6.5. One of the reasons for these placements is the existing concentration of
the load demand in the lower region of the network which suggests that for optimal utilization of additional
wind generation, long distance transmission would be needed resulting in system congestions and additional
strain on the components in the middle section of the network. This also complies with the developments
foreseen in the Danish transmission network with more and more offshore windfarms being planned near
the west coast and concentration of load in the east. Preemptive power flow simulations suggest that the
transformer between Bus 3 and 24 (original rating 250 MVA) can be a bottleneck in the system. In addition
to this, three transformer ratings of 200, 175 and 150 MVA are tested to increase the thermal stress on the
selected transformers; the DTR modeling parameters for which are provided in Table 6.1. Therefore, DTR
will have to be used for integration of additional OWF generation to the lower half of the system. It must be
mentioned that the operational constraints of the system which can limit the load of the chosen bottleneck
transformer including protection settings, ratings of switchgear components etc. are ignored in this study.

Figure 6.5: IEEE RTS 24-bus system modified with increased wind generation, bottleneck transformer and load demand
scaling [161]

Table 6.1: Parameters for DTR modeling of test case transformers.

Parameter Symbol Unit Test Case Transformers
200 MVA 175 MVA 150 MVA

Rated Load Losses W trf,cu
rated [kW] 411.8 394.2 367.7

Rated No-Load Losses W trf,e
rated [kW] 72.9 68.8 69.1

Rated HST Rise ∆ϑhst
rated [ ◦ C] 38.3 36.6 37.7

Rated TOT Rise ∆ϑtot
rated [ ◦ C] 20.3 21.1 20.4

Thermal Capacitance C trf
th [kWh/◦C] 59.6 56.1 53.3

Thermal Time Constant (wdg.) τh [min] 7 6.75 7.6
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In order to improve the practical applicability of the test results, the actual patterns of load demand and
generation from the DK1 system in Denmark are used for the years 2014, 2015 and 2016. Moreover, historical
wind generation from DK1 for the same period has been used to demonstrate the behavior of a power system
with increased penetration of wind generation. The aggregate wind generation in West Denmark is shown
in Fig. 6.6 as a function of average windspeed across the DK1 region for the three years. The fitted PW

has been used to convert the time series for wind speed (and direction) to the wind power production for
the entire duration. The procedure has originally been developed in [162] which is based on the mesoscale
down-scaling method presented in [163] and utilized by the authors in [Pub. C4] and [Pub. J1]. Lastly, the
actual ambient temperature time series ϑamb

t from the DK1 has been used for DTR calculation to account for
the correlation between mean wind speed and ϑamb

t .

Figure 6.6: Overall wind power production in the transmission network of West Denmark (DK1) for the considered 3-year
period. The wind speed and average wind production PW are shown as a scatter plot (blue); while the fitted function
demonstrates average spatio-temporal power curve to represent the correlation of wind speed and PW (red) [[Pub. D1]]

Finally, the actual load demand is increased for each day by 25 % during the peak load interval in order to
take the possible changes in network utilization over the next decade into account. This is shown in Fig. 6.7.
The utilization of additional wind generation has to be met by some additional load and the need to employ
DTR on the selected components is further enhanced by this step.

Figure 6.7: Linear scaling of DK1 load during peak hours to increase the stress on cyclic loading of transformer

6.4 Performance Evaluation under Actual Conditions

The DCOPF problem developed using a multi-period formulation has been solved in a 24-hour moving
window for 3 years (2014, 2015 and 2016). The three loading strategies are used: STR with rated transformer
load limits, DTR with conventional ϑhst = 110◦C limit, DTR+ with ϑhst = 140◦C limit along with the optimal
lifetime utilization constraint. Prior to running the test cases, the transformer is assumed to have been
operated for 3 years and assumed to have lost half of its lifetime during that period (λ0 = 1.5 years), which is
a conservative presumption based on the recorded operational experience as discussed earlier. The results
for the 175 MVA transformer test case are discussed in detail below, while the outcomes for all the tested
transformer sizes are compared in Section 6.4.2.
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6.4.1 Transformer Utilization and System Performance

The utilization of transformers is significantly different for the three test cases. Referring to the histograms
in Fig. 6.8, it can be seen that the 175 MVA transformer operates more often around ϑhst = 115◦C for
the proposed test case of DTR+, while the conventional DTR operation results in frequent operation at
ϑhst = 110◦C limit over the 3-year simulated period. Under STR conditions, the transformer is found to be
significantly underutilized even though it is the main system bottleneck. These observations are further
demonstrated by plotting the cumulative transformer lifetime utilization in Fig. 6.9. The STR test case causes
insignificant ageing over the simulated period because the consistent operation at low HST is coupled with
the exponential ageing rate relation. This is found to be in compliance with the conventional conservative
practices of transformer utilization. Whereas, under the DTR+ operation strategy, the transformer is pushed
to its design limit curve within the first year and it continues to operate in a fashion that uses the available
lifetime at disposal. The conventional DTR methodology is found to be better than STR, but still results in
significant unconsumed transformer life, as originally expected.

Figure 6.8: Histograms for the normalized probability distribution for 3-years simulation of transformer HST and load for
the STR DTR and DTR+ loading strategies

Figure 6.9: Cumulative lifetime utilization of the bottleneck transformer over the 3-year period for the STR, DTR and DTR+

loading strategies

The three-day period with high wind production is considered in Fig 6.10 to present the transformer load
along with its corresponding HST. The favorable ambient conditions suggest that under STR operation, the
transformer HST is well below the design limits. These limits are pushed by the DTR+ strategy when the load
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demand is high during the day and the high offshore wind energy production in the upper region needs to be
transmitted to fulfill this demand due to its commercial and sustainable merits. Furthermore the evaluation of
transformer and system losses for the STR, DTR and DTR+ loading strategies are also presented in the figure,
where the system and transformer losses are found to be highest for the proposed methodology. Hence, as
expected, additional losses are created in the system when grid congestions are relieved using DTR and DTR+

as a result of additional power flows across the grid.

Figure 6.10: Evaluation of transformer utilization and system losses for the STR, DTR and DTR+ loading strategies with
focus on three days of operation. Left: Transformer load (%) and hot-spot temperature. Right: Losses (%) in bottleneck
transformer and the overall system.

6.4.2 Energy Dispatch and Wind Integration
The plots in Fig. 6.11 are crucial for this study. Firstly, the dispatched wind energy (PW) is compared for the
STR, DTR and DTR+ test cases and the total available wind energy generation in the system. It is seen that the
conventional STR operation results in lowest utilization of the available wind energy for the entire duration
compared to the other test cases. DTR and DTR+ often result in similar wind energy dispatch, with DTR+

(represented by green line) taking the lead during certain periods. Similarly, the figure also presents total load
injection for the system along with conventional power generation schedule for the three test cases. STR is
found to allocate the highest share of conventional generation, with DTR+ being the lowest.

The overall results compiled in Table 6.2 present the complete picture where utilization of wind energy,
reduction in cost of energy dispatch and the increase in transformer utilization are presented for a 1-year
simulation period with respect to the figures for the STR loading strategy. DTR+ consistently results in
the highest utilization of wind energy which is also reflected in the lowest cost of energy dispatch while
accounting for the additional system losses. Smaller the transformer size, higher the potential to improve
system performance. Hence, it is observed that despite the increase in system losses, the overall economic
benefits outweigh the negatives as proven by the multi-period DCOPF problem. The reduction in dispatch
cost by up to 11.5% is significant and can potentially motivate the system operator to integrate more low-cost
renewable generation, while deferring the grid reinforcement costs.

Table 6.2: Assessment of results with respect to the STR test case after 1 year of simulations. Increase in
wind energy utilization, decrease in energy dispatch cost in the day-ahead market & increase in transformer
lifetime utilization.

Transformer Size
(MVA)

Wind Utilization
(%)

Cost Reduction
(%)

Used Lifetime
(%)

DTR DTR+ DTR DTR+ DTR DTR+

150 +8.9 +10.2 -10.1 -11.5 +41.5 +166
175 +7.1 +9.1 -8.1 -8.8 +31.1 +166
200 +6.2 +8.1 -6.4 -7.1 +24.2 +166
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Figure 6.11: Influence of the STR, DTR and DTR + loading strategies on energy dispatch for one-week of operation. Top:
Temporal variation of total wind generation available and dispatched under the three tested methodologies. Bottom:
Contribution of conventional generation in load fulfillment (no load shedding observed).

6.4.3 Final Deductions

It has been shown that the transformer operation and utilization, while staying within the operational security
limits set by IEEE and IEC standards of [45] [44], can potentially unlock the hidden capacity of the transmission
system. While delaying the grid reinforcement and infrastructure upgrade costs, the higher utilization of
transformers based on enhanced DTR can be matched with the high load periods during the day to maximize
wind and renewable integration. The two potential pitfalls of the utilitarian methodology, which include
unreliable transformer operation and higher system losses, are not found to constitute major problems in the
proposed formulation. This technique can be used in synergy with the algorithms developed as part of this
project and proposed in publication [D1]. The utilization of dynamic network rating, i.e. simultaneously
employing coordinated DTR on multiple system components incl. transformers and overhead lines, is proven
to make the most optimal use of the system in publication [D1].
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Key Takeaways from Part III
The discussion in Part III has shown that power transformers in offshore windfarms are over-dimensioned and
the optimal utilization needs to be performed by employment of DTR. For this purpose, the extensive review of
load-dependent thermal ageing of transformers is performed in Chapter 4, where basic Arrhenius reaction rate
models are compared with the extensively explored DP-based thermo-chemical ageing models. In Chapter 5,
the utilization and loading of ten test case transformers from a number of portfolio OWF projects across the
globe are compared with the expected rated ageing. The analysis shows that the windfarms can be expanded
by 40 to 50 % for the transformer utilization to match the rated ageing. Hence, based on this investigation,
the novel optimization problem developed in chapter 6 introduces the Enhanced Dynamic Thermal Rating
(DTR+) principle that generates adaptive thermal limits for each operational duration depending on the
utilized transformer lifetime. The developed lossy dynamic DC Optimal Power Flow (DCOPF) methodology
is then adjusted to accommodate the day-ahead energy dispatch optimization in the IEEE 24-bus RTS network
with increased offshore wind generation and load/generation patterns replicating the actual readings from
west-Denmark. The findings of this study has shown that DTR+ based optimal transformer utilization can
facilitate large scale integration of OWFs and delay the investments related to required grid infrastructure
improvements. The costs for power losses are modeled as additional load demand, therefore indirect costs
are included only. The efficiency of networks is to be maintained by the system operations, which would
require additional ad hoc measures. In conclusion, the investigation has shown that for OWFs in particular,
DTR can improve export system utilization during contingency and allow operators to maximize power
transmission in case of failures etc. The DTR+ methodology presented in Publication [Pub. C4] has been
extended in [Pub. D1] to incorporate dynamic rating on multiple system components at the same time, also
termed as dynamic network rating.
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The discussion so far has shown that the major HV components in the Offshore Windfarm (OWF) export
system, like the one in Fig. 6.12, are over-dimensioned. For portfolio projects, optimal utilization of these
components can be performed under certain circumstances. However, the potential to improve the OWF
business case by using Dynamic Thermal Rating (DTR) based design of these components during the planning
phase of OWFs is considerable for the pipeline projects. Part IV of the PhD thesis deals with this subject, while
accounting for uncertainty in wind generation over the OWF lifetime and reliability of system availability for
the same period, the mechanism for which is explained in Chapter 7.

Figure 6.12: Simplified layout of an OWF HV export system with one radial circuit. The highlighted components are to be
optimally designed.

The design optimization of OWF array cable system has been presented extensively in [16–20], but limited
work has been done on DTR-based export cable design [24–26]. One of the techniques presented in [164] uses
a step-load profile generated via long-term assessment of wind generation profile, like the one shown in Fig
6.13. The step-load profile represents the worst-case load that the export cable experiences over the OWF
lifetime and the thermal estimation suggests the maximum continuous duration the load can be sustained to
ensure compliance with cable thermal limits.

Figure 6.13: Cable sizing methodology for offshore windfarms based on step-load profile [164]. Left: Load duration curves
for three test case windfarms in UK. Right: Step-load profile for HDD, Onshore and Offshore cable sections along with load
duration curve (blue dots) for one of the test case windfarms.

However, little to no work addressing the optimization of the remaining OWF export system components
including transformers, reactors etc. is available in the literature. Furthermore, the systemic approach to
export system optimization by using electro-thermal coordination of all the relevant HV components in the
export system has not been addressed either. In this part, DTR-based design optimization of transformers to
match the operational lifetime of windfarms has been addressed in Chapter 8, which is followed by design
optimization of the entire system in Chapter 9. The work is presented in publications [Pub. J1] and [Pub. J2]
by the author.
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CHAPTER7
Scenario Generation for

Uncertainty and Reliability
Considerations

In order to design the OWF export system on the basis of DTR operation under intermittent wind generation,
it is important to consider the uncertainty of wind speed and production profile over the entire OWF lifetime.
Furthermore, the reliability of such a design has to be ensured by considering availability and contingency of
the relevant components that generate and transmit the energy to the grid. Both these considerations not only
ensure that the designed ratings for critical export system components (cables, transformers, reactors etc.) can
outlast the OWF lifetime, but are also needed to assess the influence of the design on energy availability and
system efficiency. In this project multiple OWF lifetime scenarios are generated for the OWF test site’s wind
speed profile, time series for availability of wind turbines AW

t [pu] and time series for availability Ac
t [pu] and

load-scaling ASF
t [pu] of export system components. The steps for scenario generation and the intermediate

power after each step are set forth in Fig. 7.1, which is followed by a detailed elaboration of the individual
blocks.

Stochastic	
ARIMA	
Model

Windfarm	Power
Curve

Windfarm	
Availability Onshore	

Grid

Export	System	
Availability		

Historic	Windspeed	
Profile	(Site	Data)

Windspeed	Predictions
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Power	gen.	Predictions
	over	OWF	lifetime

Power	gen.	i/p	to	OSS
	over	OWF	lifetime

Power	injected	to	grid
	over	OWF	lifetime

Figure 7.1: Block representation of scenario generation process from historic site data to power injection time series.

7.1 Modeling of Wind Speed using Stochastic ARIMA Process

Modeling of wind power for offshore windfarms has conventionally been done using stochastic Auto
Regressive Integrated Moving Average (ARIMA) models [25] [165] [166], where long-term historic wind speed
profiles for the site under consideration are used to identify the underlying physical processes. These models
take into account non-stationarity and have proven to be more efficient and generic to design compared to
discrete time Markov processes of [167] [168]. Therefore in this project ARIMA modeling is used to generate
long-term wind speed time series for the test case windfarms.

The long-term hourly wind speed site data for an offshore windfarm site off the east coast of UK has been
obtained from [169]. Since the 14-year data is found to have an inherent trend, the procedure defined in
[170] has been used for identifying the model of non-stationary time series. First of all, the raw time series is
transformed to remove the underlying long-term trend (> 1 year) by using differencing operation, and the
resulting data is plotted in Fig. 7.2 along with the monthly average to further ensure that no long-term trends
exist in the data. Afterwards, following steps are followed to fit the correct ARIMA model:
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• Stationarity Test: In order to make sure that the statistical properties of the detrended time series
for wind speed are independent of time in the long-term (>1 year), stationarity tests are performed
including kpss and adf [104]. All of these tests combined with the visual inspection performed earlier
indicate stationarity over long-term.
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Figure 7.2: Hourly wind speed data for an offshore windfarm location off the east coast of UK [169]. Outliers, missing data
and long-term trend in the data have been removed. Monthly average values are also plotted.

• Seasonal Differencing: Referring to the monthly average plot in Fig. 7.2, there is a clear yearly seasonal
trend that needs to be removed. This is further confirmed by plotting the Auto Correlation Function
(ACF) of the original time series in Fig. 7.3 for lags spanning across multiple years. Following long-term
seasonal lags (hours) are identified: 2200 (quarterly) and 8760 (yearly), which are further analysed by
splitting the yearly trend in 4 seasons: Winter (December-February), Spring (March-May), Summer
(June-August) and Autumn (September-November). A closer look at the data also reveals a daily trend
at lower lags (24-hours) which is not shown in the figure. Both these seasonal trends are removed
through differencing, and the resulting ACF and Partial ACF values are plotted in Fig. 7.3 for the data
without seasons. PACF plot has not changed (as expected), but the seasonality from the ACF plot has
definitely been removed. This data is found to be fit for ARIMA model fitting.

Figure 7.3: Auto Correlation Function (ACF) plots for long-term and Partial ACF plots for short term. Left: Original
de-trended data. Right: Data after yearly and daily seasons are removed.
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• ARIMA Model Fitting: Since the seasonal trends for lags 24 hours have been removed, ARIMA model
fitting for the remaining data is performed by observing the ACF and PACF at lower lags. In this project,
the forecast model in R [171] has been used and ARIMA (2,0,2) for the lower lags is found to result in
optimal fit.

• Residual Analysis: In this step the difference between actual and fitted values (residuals) are analysed
to check if any underlying pattern exists. This is a standard process in ARIMA model fitting, and
several methods are used to ensure the quality of the fit as shown in Fig. 7.4. Visual inspection of the
scatter plot reveals that the residuals are random in nature and found to be independent and identically
distributed. This is further confirmed by the normal distribution analysis, the QQ plot of residuals, sign
tests [172] and Ljung box test [104]. Furthermore, the ACF and PACF plots for lower lags do not reveal
any irregular spikes or missing peaks. Therefore, the model deduced in the previous step is found to be
good enough for wind speed forecast for the selected OWF site.

Figure 7.4: Residual analysis of the fitted ARIMA model to the long-term wind speed data. The analysis includes scatter
plots, distribution fit, Normal QQ plot along with Auto Correlation and Partial Auto Correlation analysis plots.

• Wind Speed Profile Predictions: The fitted ARIMA model can be used to generate stochastic scenarios
of wind speed profile. Three scenarios are simulated in Fig. 7.5 for 15-year each, while a small sample
size of the simulations is provided for ease of observation. The histograms shed more light on the
likeliness of similarity on the overall distribution of the wind speeds, while the scatter plot determine
the temporal variation.
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Figure 7.5: Simulated scenarios of 15 year wind speed time series for the test site. Histograms on wind speed distribution
for each scenario at the top. A small sample of the simulated data is plotted in the bottom figure.
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7.2 Stochastic Modeling of Wind Farm Availability

The hourly power generated by the OWF which needs to be transmitted to the shore depends not only
on the wind profile but also on the number of wind turbines available for operation for that given hour.
Since, WTGs are susceptible to failure and maintenance activities due to continuous mechanical stress, it is
important to account for WTG down time [8]. Furthermore, WTGs are frequently operated higher than their
rated capacities by using the recently introduced power-boost function which resolves wake effect and other
phenomena that restrict energy production under certain wind characteristics [173].

The prediction of hourly WTG availability over the OWF lifetime can be difficult to model due to the presence
of innumerable influential parameters. In this project a simplistic statistical WTG availability technique is
developed which combines simple distribution functions to simulate multiple scenarios for the time series of
availability factor AW

t,s [pu], as shown in (7.1). Firstly, two normally distributed functions (Nact and Nout)
are used to generate random numbers to respectively represent the actual expected availability of windfarm
and the unexpected outliers which may arise due to natural events and other anomalies leading to common
failures. Both the normal distribution functions are averaged around the mean availability of wind turbines
µAW

av
, but with varying standard deviations (σact and σout). Afterwards, a random number generator is used

to generate X which is limited between 0 and 1. A special function ψ depending on the random number
X is used to activate the normal distribution functions, such that the first function (actual) represents 95%
of the samples, while the outliers are limited to 5%. Hence, by using this hourly WTG availability AW

t,s in
cooperation with the hourly OWF generated wind power PW

t,s [MW] is simulated using ARIMA model and
the OWF power curve, it is possible to calculate the power at the entrance of the OSS (P gen

t,s or P oss
t,s ), as shown

in (7.2).

AW
t,s(τw) ∼ψ (0 ≤ X(τW) < 0.95) · Nact,s(µAW

av
, σ2

act)+

ψ (0.95 ≤ X(τw) ≤ 1.0) · Nout,s(µAW
av
, σ2

out)
(7.1)

s.t.

{X ∈ R | 0 ≤ X ≤ 1.0}

{ψ(z) = 1 | z = true}

{ψ(z) = 0 | z = false}

AW
min ≤ Nact,s(µAW

av
, σ2

act) ≤ AW
max

0 ≤ Nout,s(µAW
av
, σ2

out) ≤ AW
max

σ2
out = 5σ2

act

P
gen
t,s = AW

t,s · PW
t,s (7.2)

where each availability valueAW
t,s is held for a roll-over period τWTG (set to 24 hours) as it defines the duration

for how long a given number of WTGs will be available as it is influenced by wind turbine repair rate and
other factors. The variance of outliers σ2

out are set to be five times higher than the variance of actual windfarm
availability σ2

act to reproduce the WTG availability figures in [8], while the mean availability µAW
av

can be set
to 96% based on practical experience reported in [174]. The upper and lower bounds for the distribution
functionsNact andNout are defined by AW

max and AW
min respectively. The former term is set higher than 100%

(105 % for this test case [173]) as it accounts for power-boost characteristics for the WTG, while the lower bound
is predefined to comply with the maintenance targets of the OWF operator [9]. The simulation results for one
of the scenarios realized using this formulation is shown in Fig. 7.6.
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Figure 7.6: Simulation of one of the scenarios for availability of OWF turbines AW
t,s (horizontal axis) over the OWF design

lifetime of 30 years using a histogram and a box-plot. The simulations are based on (7.1)

7.3 Contingency Assessment for HV Export System using Stochastic Markov Process

The assessment of export system’s reliability and contingency is crucial for OWF design, particularly for
components located off the shore because of inherent nuisances like accessibility issues leading to longer
repair times [12]. As the capacity factor demand for offshore projects increase, the availability characteristics
are bound to become even more critical [17]. A number of probabilistic methods are available in the literature
that can be used to model the stochastic nature of export system’s availability over the OWF lifetime. These
methods can rely on analytical techniques [28] or Monte Carlo simulations [14, 17, 29]. However, the
applicability of these techniques depends heavily on the problem to be solved as the computational stress on
the design optimization problem can be challenging.

The transmission of power generated by offshore windfarms is dependent on the availability of the HV export
system. As already discussed, the export system commonly consists of more than one parallel radial circuits
interlinked at the offshore and onshore substation points. These interlinks allow diversion and redistribution
of power in case one or more parallel circuit components face contingency. Hence, it can simply be assumed
that for an export system equipped with nc parallel radial circuits, the power generated by the OWF P gen

t is

equally divided between all circuits

(
P

gen
t

nc

)
under normal operating circumstances. The number of available

circuits reduce during contingency, which would require redivision of the load to maximize energy transfer
during these abnormal circumstances. Two important time-variant parameters are introduced in this project
to scale the load of components in HV export system at all operational hours: Ac

t (number of available circuits
at time t) and ASF

t (load scaling factor at time t).

Discrete Time Markov Chain (DTMC) models are found to be most appropriate for design applications
and contingency simulations in this project. The progression of the export system between normal and
contingency operation has been modelled using the state transition principle based on DTMC’s probabilistic
determination approach [28] using the reliability indices like Mean Time To Failure (MTTF) [hour] and Mean
Time To Repair (MTTR) [hour]. At any given instant, each radial circuit in the export system (or any of its
relevant HV components) is assumed to be either available (UP state) or unavailable due to failure, planned
maintenance etc. (DOWN state). The simplified transitional process of the circuit between UP and DOWN
states has been presented in Fig. 7.7, where the failure rate Λ [1/hr] and repair rate Υ [1/hr] are calculated as

1
MTTF

and
1

MTTR
respectively . In the state transition diagram, the arrows represent the probability of the

system to move from the existing state to the other state within the time interval ∆t [12, 175]. This is also
shown in the State Transition Matrix P in Fig 7.7, where the diagonal elements represent the probability of
staying in the respective state in period ∆t and off-diagonal elements in each row indicate the probability of
jumping from that state to the respective state of the column [176].
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UP

DOWN

State	Transition	
Diagram

State	Transition	
Matrix	P

Figure 7.7: State transition diagram and matrix P for a two-state system governing the probabilistic discrete time Markov
chain process.

The principle for a one-circuit, two-state system in Fig. 7.7 needs to be extended to a system with nc parallel
circuits. The total Markov states for this system can be 2n

c
if Common Cause Failures (CCF) due to natural

events etc. are considered and nc + 1 for No Common Cause Failure (NCCF) considerations. Therefore a
generic state transition diagram is presented in Fig. 7.8 (common cause failures are not considered). In total,
the considered system has nc + 1 possible states, each state represented by a circle. The value inside the circle
represents the number of available circuits Ac in the respective state as it ranges from nc (normal operation)
to 0 (all parallel circuits failure). The probability of transition between matrices, represented by arrows, is
governed by the same failure and repair rates but are scaled to account for the number of available circuits
that can possibly fail or be repaired in the time step. Hence, it is concluded that if the relevant information
(incl. reliability indices and number of parallel circuits) is available in the design phase, it can be possible to
simulate probabilistic scenarios of system availability over the OWF lifetime.

Figure 7.8: State transition diagram for a system with nc parallel radial circuits using Discrete Time Markov Chain (DTMC)
process. Each circle represents a state, values inside the circle present the number of available circuits Ac in that state, while
arrows represent the probability of transition between the respective states in time step ∆t.

7.3.1 Consideration of System Design Concepts: n-1 and non contingent designs

Offshore windfarm developers and electrical system designers generally use two design concepts: n-1
contingent and non-contingent. The former approach allows normal system operation even when one of the
system (or its sub-components) is out of operation, while the latter behaves normally only when all the
systems and their sub-components are fully (or partially) available. The discussion can be simplified by
dividing the possible Markov states in to three categories: Normal (system and components are loaded within
their name plate ratings), Abnormal (dynamic rating is necessary beyond nameplate rating to maximize
power transmission) and Fail (no power flow possible because all critical components/circuits are out of
operation). This can be illustrated in Fig. 7.9 for NCCF considerations for a system with three parallel radial
circuits (nc = 3) and 4 possible operating states: 3UP (all circuits in operation), 2UP (one circuit failure), 1UP
(two circuits failure) and 0UP (all circuits or critical sub-component failure). The two design concepts are
shown to provide different degrees of freedom for the normal and abnormal system operation.
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Figure 7.9: Classification of Markov states for normal, abnormal and fail operation for n-1 contingent and non-contingent
design concepts using a system with three parallel radial circuits. Common cause failures are not considered.

The concept has been generalized in Table 7.1 for considerations of NCCF and CCF. It is conceivable that n-1
contingent design generally allows higher number of states in normal operation as the system is designed
to withstand one failure. The availability of energy, also perceived as the capability of the export system
to transmit the rated generation capacity of the OWF, during abnormal system operation is dependent on
employment of dynamic rating as the components will have to be loaded beyond their respective nameplate
ratings. Hence, as the transition between system normal, abnormal and fail states are simulated over time
using the DTMC principle, the parameter ASF

t allows the scaling of load for the individual components to
ensure maximum power transfer under all operating circumstances. This concept is elaborated further for the
individual test cases in Sections 8 and 9.

Table 7.1: Classification of Markov states and design concepts for a system with nc parallel radial circuits and
sub-components.

No. of States in the Considered Design Concepts Energy
Availability

Load Scaling
Factor ASF

tName n− 1 Contingent Design Non Contingent Design
CCF NCCF CCF NCCF w/o DTR DTR (DTR)

Normal 1 + nc 2 1 1 Full * Full Rated (≤ 1)
Abnormal 2n

c
− (nc + 2) (nc + 1)− 3 2n

c
− 2 (nc + 1)− 2 Partial Full o Increased (≥ 1)

Fail 1 1 1 1 Nil Nil No Load (0)
CCF - Considering common cause failures and limited repair resources
NCCF - Not considering common cause failures and repair resources are not limited
* Full energy available unless curtailment needed due to extreme ambient conditions or thermal limitations
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CHAPTER8
Cost-optimized Dynamic Design

of Offshore Windfarm
Transformers

The discussion in Chapter 5 has shown that offshore windfarm transformers, particularly the ones located in
the OSS, are over-dimensioned and under-utilized. Since, it is not always possible to control the utilization
of these transformers due to the intermittent nature of the wind, the hypothesis that OWFs should be
over-planted or OSS transformer ratings should be optimally reduced is tested in this section. However, this
optimal reduction based on DTR has to account for not only reliability of design and uncertainty of operation,
but the overall economic impacts on the OWF business (incl. OPEX, CAPEX and possible revenue loss) must
be considered. The findings of this section are based on the methodology and results presented in publication
[Pub. J1] by the author.

8.1 Problem Development and Overview of the Test Case

For the purpose of using a real-life test case, a 1200 MW offshore windfarm in the North Sea is used as
inspiration, whose export system layout is provided in 8.1. The export system consists of two parallel circuits
with two 66/220 kV offshore transformers per circuit spread across two OSS. The export cables and other
relevant HV equipment in the export system are assumed to be over-dimensioned to allow the debottlenecking
problem remain relevant for the OSS transformers during all the considered operating circumstances. The
test case windfarm is designed for 30 years (ΠWF = 30), while the available wind speed [169], ambient
temperature[177], substation modeling [178] and power curve data are elaborated in publication [Pub. J1].

Figure 8.1: Simplified export system layout for the 1200 MW test case offshore windfarm.

In order to assess the commercial influence of OSS transformer optimization, the complete economic picture
is painted using Net Present Value (NPV) assessment. If the transformer size is changed from the base case
(k, base) to any of the smaller size in design case k ∈ K, the NPV will either increase (positive business case),
decrease (negative business case) or stay the same (neutral business case) with respect to the base design. This
is shown in NPVk = NPVk,base + ∆NPVk, where ∆NPVk [M e] represents the change in NPV for design
case k with respect to base design and can be calculated using (8.1). The equation shows that OSS transformer
size reduction will have two major influences: CAPEX reduction at year ’0’ (∆Ck) [e] and Revenue change
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(∆Rk) [e] over the windfarm lifetime ΠWF (years), as OPEX is assumed to remain constant irrespective
of transformer size. For each design case, the reduction in CAPEX is driven primarily by decrement in
cost of transformers ∆C trf

k [e] and reduction in cost of OSS and foundations ∆Coss
k [M e] due to change in

overall OSS weight. On the other hand, revenue over the OWF lifetime will change because of variation in
load-dependent transformer losses ∆W trf

t,k [MW] and possible curtailment due to bottlenecks P cut
t,k [MW],

which are scaled using the discount factor i and the price at which energy is sold γ [e/MWh]. It is perceivable
that only the parameters in the revenue term are dependent on time t ∈ T , year y ∈ Y and the simulated
scenario s ∈ S (averaged using probability of each scenario πs). The CAPEX terms are only dependent on the
transformer size and therefore do not vary over the OWF lifetime.

∆NPVk = ∆C trf
k + ∆Coss

k −
∑
s∈S

πs∆Rs,k ∀k ∈ K (8.1)

∆Rs,k =
ΠWF∑
y=1

γ

(1 + i)y

8760∑
t=1

(
P cut
t,y,s,k + ∆W trf

t,y,s,k

)
∀k ∈ K (8.2)

For this particular test case, the discount rate of 6.75% [179], and γ of 44.99 e/MWh are used. These values
are based on the strike price of the 1.2 GW Doggerbank Creyke Beck A as per the latest Contract for Differences
(CfD) auction results [1]. The two terms in CAPEX need more explanation:

• OSS Cost Reduction ∆Coss
k (e): As the transformer weight and footprint reduces, so does the overall

steel needed to build the offshore substation. This reduction can cause the overall foundation costs to
decrease substantially because transformers are the heaviest components on the OSS. Therefore ∆Coss

k

can be calculated empirically by using the reduction in transformer mass ∆mtrf
k [tonne] as governed by

the relation ∆Coss
k ∼ 2 cossntrf

(
∆mtrf

k

)
, where coss represents the weight dependent cost of OSS [e/tonne]

and ntrf represent the number of transformers in the OSS. This relationship is perceivable because a unit
change in transformer weight is complemented by the same change in steel weight [11]

• Reduction in Transformer Cost ∆C trf
k (e): Smaller transformers are cheaper to procure due to savings

in raw material costs, so total transformer cost savings become ∆C trf
k = ntrf∆ctrf

k , where ctrf is the cost
reduction of each transformer. However, the reduction in these costs is not linear and it is difficult
to model the exact values. For this project, the relationship from [180] is used which derives the
transformer scaling relation by fixing four critical parameters: magnetic flux density, frequency of
operation, basic insulation level and current density, whereas the dimensions of the core including the
cross-section of the winding are allowed to vary with transformer rating. The relationship is provided
in (8.3), where the transformer rating for the base design case Strf

k,base [MVA] and for the design case
under consideration Strf

k [MVA] are used to derive the relevant parameter Z. These parameters are
summarized in Table 8.1, where the exponential e for the respective parameters are also mentioned.

∆Z trf
k = Z trf

k,base

[
1−

(
Strf
k

Strf
k,base

)e]
(8.3)

Table 8.1: Scaling exponents for (8.3) for oil-filled HV power transformers [180]

Symbol
for Z trf

Transformer
Parameter

Value of
Exponent e

mtrf Mass 3/4
ctrf Cost 3/4

W trf, cu
rated Load loss (rated) 4/5

W trf, e
rated No-load loss (rated) 4/5
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8.2 Formulation of the Iterative Algorithm for Optimal Transformer Design

The optimization of OSS transformer rating in offshore windfarms can be efficiently performed by using the
novel algorithm of Fig 8.2. The overall framework is simple as it consists of four major blocks: Available data,
reliability, DTR and output (post processing and economic evaluation). The main idea is that for the test case
windfarm, the relevant transformer ratings should be tested by loading them over the entire OWF lifetime
and assessing their loss of life and economic influence by the end of windfarm lifetime. The transformer
rating that presents the best business case while complying with the lifetime requirements of the windfarm is
chosen to be the optimal design case. The individual blocks are explained in detail below:

• Scenario Generation: The first two blocks are part of the scenario generation steps to account for
uncertainty and reliability considerations. Long-term available site data for wind speed and ambient
temperature are used to fit the ARIMA models identified in Section 7.1. This step allows simulation of
likely windfarm generation patterns by using the OWF power curve and the fitted ARIMA models.
For this test case, the same 14 year data is used to generate 100 scenarios of wind speed and ambient
temperature profiles for 1.2 GW windfarm over its lifetime (ΠWF) of 30 years. The uncertainty of
availability of WTGs in the test case OWF are modeled as per the principle described in Section 7.2.
Finally, the hourly load of transformer needs to be adjusted in case of contingency. These contingency
scenarios are simulated over the entire OWF lifetime by using the DTMC-based principle developed
in Section 7.3. Each scenario of wind generation PW

t is associated with one scenario of wind turbine
availability (AW

t ) and one scenario of DTMC-based load scaling factor due to contingency (ASF
t ), which

means 100 realizations of transformer load for the given test case are tested over the entire OWF
lifetime. One of the extreme scenarios of contingency will be explained in detail in Section 8.2.1, while
10 worst-case scenarios are elaborated in Publication [Pub. J1].

• Transformer DTR and Lifetime Utilization: The third block is responsible for calculating the trans-
former thermal stress and ageing over the course of OWF lifetime. This block is expanded in Fig.
8.3, where two sub-blocks can be seen: Thermal estimation block to calculate and monitor critical
transformer temperatures and lifetime assessment block to assess chemical decomposition of the
transformer insulation. The critical transformer temperatures for top-oil (TOT) and hot-spot (HST) are
calculated using the Susa model from (2.9). These calculations are repeated for each scenario s ∈ S and
for all the design case transformer ratings k ∈ K. Management of transformer load and possible energy
curtailment are also performed by this block, in case the long-term emergency thermal limits of Table
3.4 are violated by the calculated TOT and HST.

The calculation of transformer’s thermal ageing with respect to the temporal load variation is performed
using the DP-based models presented in Section 4.2.2 because they allow for consideration of thermo-
chemical decomposition. Transformer lifetime utilization (LL) is calculated using the IEC 60076-7 Annex
A (2018) model because of its relative conservative results and compliance with the major state-of-the-art
models. Another reason to use the IEC 60076-7 Annex A model by Lundgaard over other models is
the utilization of different activation energies Ea for low and high Oxygen conditions, which directly
influences the expected lifetime calculations using DP, as shown in (4.5). For the developed framework,
the cumulative loss of transformer life over the windfarm lifetime LLΠWF [%] is calculated by summing
the yearly loss-of-life LLy [%] as formulated in (8.4). Loss-of-life in a particular year depends upon
the expected life for that year ELy [years] which is normally known to be a function of the hot-spot
temperature only. However, in this formulation ELy is expected to change every year as it depends
on two important factors: Firstly, the transformer load for that year which drives its HST ϑhst and
secondly, the chemical decomposition (oxygen and moisture contents) for that year which drive the
yearly values for activation energy Ea y and pre-exponential factor Ay . Based on extensive literature
review of transformer post-mortem analysis and reliability statistics [181], conservative assumptions
are made for yearly development of oxygen and moisture over the OWF lifetime. According to these
assumptions, the oxygen content in oil increases linearly from 2000 to 7000 ppm, while moisture content
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block for the developed methodology

in the insulation increases from 0.5% to 3% in the same manner over the OWF lifetime ΠWF. More test
cases for oxygen and moisture development are tested in 8.3.4. Finally, another important proposal in
this formulation is the use of weighted yearly HST ϑhstW

y for ELy calculation because the hourly ϑhst
t

varies continuously throughout the year, and utilization of a mean value for HST does not result in
appropriate ageing impact. Hence, by using the exponential factors, (8.6) allows calculation of ϑhstW

y

which can accurately model the overall transformer ageing in the respective year. Lastly, it should be
noted that the end-of-life criterion of DPstart = 1000 and DPend = 200 is used.

LLΠWF =
ΠWF∑
y=1

LLy =
ΠWF∑
y=1

1
ELy

[years]
[years] × 100 [%] (8.4)

ELy = −

1
1000 −

1
200

Ay × 24 × 365 e

Ea y

Rg (ϑhstW
y + 273) [years] (8.5)

ϑhstW
y = 1

− Rg
Ea y

ln

8760∑
t=1

e
−

Ea y

Rg[ϑhst
t + 273]

8760

− 273 [◦C] (8.6)

• Output Block: The final block is responsible for compiling the results from economic and lifetime
assessment. The values for CAPEX, revenue loss due to curtailment and losses over the OWF lifetime
and transformer’s yearly loss-of-life are stored, while the appropriate test case that results in the best
business is taken forward. It must be mentioned that the variation in transformer rating and winding
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temperature results in the change in load and no-load losses, which are modelled using the parameters
in Table 8.1 and the principles elaborated in Publication [Pub. J2].

8.2.1 Overview of Simulated Scenarios

Offshore windfarm design is an iterative process, particularly when optimization of cost and system design is
desired. The developed mechanism takes care of the large degree of uncertainty through scenario generation
of wind speed, windfarm availability and transformer contingency. The examples for the first two have been
provided in the respective sections before, but the DTMC-based simulation of transformer availability is
dependent on the system topology. Furthermore, the two design concepts of n-1 contingency and non-contingent
designs require distinctive elaboration of this step.

For this purpose, the transformer reliability survey from [181] has been used to obtain reliability indices
for large power transformers in OWFs. The recorded indices including MTTF of 25 years are made more
conservative for this design because DTR-based operation tend to load the transformers more rigorously
thereby increase the probability of downtime. Hence, MTTR of 10 years (failure rate Λ = 0.1 fail/year) [12] and
MTTR of 73 days (repair rate Υ = 5 repairs/year) are conservatively used in this analysis. The four parallel
transformers in the test case export system of Fig. 8.1 can have 5 possible states: 4UP, 3UP, 2UP, 1UP and 0UP,
if NCCF considerations are used with unlimited repair resources as shown in Table 7.1. The resulting state
transition matrix P is provided in (8.7) where ∆t = 1 hour (1/8760 years), while Fig. 8.4 graphically presents
the probability of transition between these states for both the design concepts. It should be mentioned that
these probabilities are so low that the chances of having more than one failure at a given instant are extremely
low [17].

P =


1− 4Λ(∆t) 4Λ(∆t) 0 0 0

Υ(∆t) 1− (Υ + 3Λ)(∆t) 3Λ(∆t) 0 0
0 2Υ(∆t) 1− (2Υ + 2Λ)(∆t) 2Λ(∆t) 0
0 0 3Υ(∆t) 1− (3Υ + Λ)(∆t) Λ(∆t)
0 0 0 4Υ(∆t) 1− 4Υ(∆t)

 (8.7)

Figure 8.4: DTMC-based state transition diagram and probability of transition between states for the four transformer
OWF test case. Classification of states in Normal, Abnormal and Fail states for the two design concepts.

It is important to consider that for the 1200 MW test case windfarm with four transformers, the n-1
contingency design would employ a base transformer size of 400 MVA, while the non contingent design would
conventionally use 300 MVA transformers. The scaling of transformer load to ensure maximum energy
availability of these design concepts will be considerably different. The main differences are highlighted in
Table 8.2, including the need for possible energy curtailment and change in transformer losses.
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Table 8.2: Influence of design concepts on load scaling for different system states for the four-transformer
export system. The explanation for influence of possible curtailment and losses are also provided.

n-1 Contingent Design Concept Non-Contingent Design Concept

State Load Scaling
Factor ASF

Total Power
Curtailment
and Losses

State Load Scaling
Factor ASF

Total Power
Curtailment
and LossesName Description Name Description

4 UP Low load 0.75 P cut
t = 0

Wt<Wrated
4 UP Rated load 1.0 P cut

t = 0
Wt ≤Wrated

3 UP n-1 contingency
(rated load) 1.0 P cut

t = 0
Wt ≤Wrated

3 UP n-1 contingency
(high load) 1.33 P cut

t and Wt

calc. by simulation

2 UP 2 transformers share
total load 1.5 P cut

t and Wt

calc. by simulation 2 UP 2 transformers share
total load 2.0 P cut

t and Wt

calc. by simulation

1 UP 1 transformer supplies
total load 3.0 P cut

t and Wt

calc. by simulation 1 UP 1 transformer supplies
total load 4.0 P cut

t and Wt

calc. by simulation

0 UP All transformers
offload 0 P cut

t = P
gen
t

Wt = 0 0 UP All transformers
offload 0 P cut

t = P
gen
t

Wt = 0

Out of the 100 simulated scenarios, one of the extreme scenarios (with high thermal stress over the entire OWF
life and largest number of simulated contingencies) is shown in Fig. 8.5 for the first 15 years of operation. It
can be seen that the system reaches the state 3UP (one transformer failure) quite often and even results in 2
simultaneous transformer failures (2UP) for a short duration in Year 8. Furthermore, the distribution of power
at different stages of generation and transmission over the entire OWF lifetime is provided using histograms
in Fig. 8.6 for the same extreme scenario. The maximum possible generation is multiplied by temporal WTG
availability AW

t to obtain the power entering the OSS. The transformer load over the OWF life for the two
design concepts is considerably different as the 300 MVA transformers for non-contingent design is found to
experience higher load stress compared to the 400 MVA transformers for n-1 contingent design, as expected.

Figure 8.5: Time series for states reached in the first 15
years of simulation for the worst case scenario out of 100
simulated scenarios. A singular 2 transformer failure state
(2UP) is briefly observed around the Year8 mark.

Figure 8.6: Power at different stages along the
export system for the worst case scenario of
Fig. 8.5 over the OWF lifetime. Top: Sim-
ulated wind power (max gen possible) and
power after availability of WTGs (power at
OSS). Bottom: Transformer loading for the
two design concepts.

8.3 Evaluation of the Proposed Framework and Sensitivity Analysis
All the necessary inputs and test case parameters have been defined. In order to run the analysis, a dedicated
test machine (i7-9850H 2.6 GHz with 6 cores, 64 GB RAM and 64-bit Windows 10 OS) has been used which
performed the complete end-to-end simulations in 5.5 hours. The results from this assessment are summarized
below.
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8.3.1 Thermal Assessment During Critical Periods

The developed algorithm curtails load when the emergency loading limits of Table 3.4 for HST or TOT
are violated. For the worst case scenario of Fig 8.5, transformer load and thermal development for one
transformer contingency (3UP) event of Year 13 is shown for the base transformer sizes in Fig. 8.7. As
one of the transformer fails in August and November, the additional load is passed through the remaining
transformers which result in higher HST and TOT during these periods. However, even during this period
the thermal stress is far from the defined limits and no curtailment is seen for n-1 contingent design. For the n-1
contingent design with 300 MVA base transformer rating, some curtailment is needed during the contingency
in November because HST touches the 140 ◦C limit. The transformer load and temperature development
during the high thermal stress period of 2UP state is provided in the Appendix. The overall HST distribution
for different transformer sizes over the OWF lifetime for the n-1 contingent is provided in histograms of Fig.
8.8.

Figure 8.7: Transformer load and thermal performance during one transformer failure (3UP) state in Year 13 for the scenario
in Fig. 8.5. Top: transformer load, curtailed power for the base and optimal transformer rating cases. Thermal development
for base (middle) and optimal (bottom) ratings.

Figure 8.8: Distribution of HST over for 30 years of simulated operation for different transformer ratings for the test case
OWF. Only n-1 contingent design case is presented.

8.3.2 Transformer Lifetime Utilization for Size Optimization

Fig. 8.9 provides the cumulative lifetime utilization of different transformer ratings over the OWF operational
life of 30 years for the worst case scenario. Highest thermal stress resulting in highest weighted average HST
(HSTw), highest DP reduction and highest lifetime utilization is observed in 2 different years over the entire
lifetime. These years coincide with long-contingency periods and are found to make use of transformer DTR
efficiently. Referring to Fig. 8.10, HSTw and cumulative LL at the end of OWF life are analysed for different
transformer sizes for the two design concepts. Based on this analysis it can be concluded that transformer
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size reduction to 70% of the base capacity is possible for the n-1 contingent design and up to 90% for the
non-contingent design case.

Figure 8.9: Assessment of transformer lifetime utilization over 30 years of operation for the chosen worst case scenario for
different transformer ratings. Top: Yearly weighted HST, Middle: Yearly change in degree of polymerization. Bottom:
Cumulative yearly loss-of-life (100 % means transformer should be discarded).

Figure 8.10: Influence of transformer size reduction on utilization for the two design concepts. Top: weighted hot spot
temperature over 30 years of operation. Bottom: cumulative loss-of-life after 30 years of operation.

8.3.3 Economic Evaluation for Optimal Transformer Rating

The analysis so far has revealed that the transformer rating can be reduced significantly while complying
with OWF’s lifetime requirements. However, a business case assessment is still needed which accounts for
revenue loss due to additional losses and possible energy curtailment. Therefore total energy curtailment

Ecurt, k =
∑
t∈T

P cut
t,k

P
gen
t

, losses Eloss, k =
∑
t∈T

W
exp
t,k

P
gen
t

and total energy delivered Edel, k in (8.8) for each transformer

rating k ∈ K are plotted in 8.11 for the two design concepts, along with the change in NPV (∆NPV) for the
worst case scenario out of the 100 scenarios. For the given test case under worst-case scenario, the total NPV
increase can optimally be around 5 Me if transformer size is reduced to 85% of its base rating for the n-1
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contingency case which exhibits a positive business case upto 65% of the base rating. The non-contingent design
results in minor reduction as both losses and energy curtailment increase dramatically below 85% transformer
capacity of its base rating. On average, the 100 scenarios result in NPV increment of 7.6 Me at 75% of the base
size for the n-1 contingent design concept and 1.5 Me at 85% of the base size for the other.

Edel, k =
ΠWF∑
y=1

8760∑
t=1

(
P

gen
t,y − P cut

t,y,k +W
exp
t,y,k

P
gen
t,y

)
∀k ∈ K (8.8)

Figure 8.11: Transformer size reduction impact on cumulative energy curtailment Ecurt, energy losses Eloss, cumulative
delivered energy Ecurt and change in NPV over the OWF lifetime for the two design concepts. Per unit valuation is used
for conventional n-1 contingent design concept transformer size (400 MVA) as base.

8.3.4 Sensitivity to Oxygen and Moisture Variation over Transformer Lifetime

The development of oxygen and moisture over the transformer operational life has been defined conservatively
for the simulations so far. Under poor quality standards, the chemical decomposition will be worse as both
oxygen and moisture content may vary considerably more than the conservative assumptions, as previously
shown in Fig. 4.5. To generalize the applicability of this methodology and assess its sensitivity to different
manufacturing standards in the algorithm of Fig. 8.3, two additional test cases of oxygen and moisture
development besides the originally tested ’Conservative’ case are defined in Table 8.3.

Table 8.3: Three test cases for development of oxygen (in oil) and moisture (in paper) over 30 years of
transformer operation.

Scenario Moisture (%) Oxygen (ppm)
Initial Final Initial Final

Conservative 0.5 3 2000 7000
High Moisture 2 5 2000 7000
High Oxygen 0.5 3 20000 40000

The average expected transformer lifetime for the simulated scenarios are compiled in Fig. 8.12 for the high
oxygen, high moisture and the originally tested conventional test case. As expected, the influence of oxygen
content in oil on thermal ageing of transformer insulation paper is found to be more extravagant than the
influence of high moisture in paper. The conservative test case results in expected lifetime of more than 30
years for all the shown transformer sizes, but the remaining two cases the room for transformer optimization
is minimum as minor change in size results in sudden drop in the expected lifetime.
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Figure 8.12: Expected transformer lifetime for the n-1 contingent design concept for the three test cases (conservative, high
moisture, high oxygen) for different transformer ratings.

8.3.5 Sensitivity to OWF Capacity Factor and Ambient Temperature

The developed methodology is found to be driven by the loading characteristics of the transformer and its
ambient circumstances. Therefore, the entire process is repeated for two more actual test case windfarms
(OWF A and OWF B) located in substantially different environments at the opposite ends of the globe. The
15 years of site data available for OWF A shows consistently low ambient temperature and low capacity
factor 41.4% (meaning wind generation is less consistent), while OWF B with 12 years of available site data
shows much higher ambient temperature distribution and consistent generation with high capacity factor of
48.7%. The distribution of ambient temperatures for the two test sites are provided in Fig. 8.13.

Figure 8.13: Histograms for ambient temperature distribution for OWF A (left) and OWF B (right)

For OWF A (Low ambient temp and less consistent P gen), both the generation and temperature profiles are
found to be more favorable for transformer optimization than OWF B (High ambient temp and consistent
P gen). This is shown in Fig. 8.14, where the respective transformers are found to last more than 40 years of
operation under the worst scenario, even if the base size for OWF A is decreased by 27.8 % (180 to 130 MVA),
while OWF B shows the potential of 14% reduction from the base size only (360 to 310 MVA). The business
case assessment performed in Fig. 8.15 using the same cost of wind energy shows that despite being much
smaller in size, OWF A achieves a higher NPV increase than OWF B if the OSS transformer ratings for the
respective windfarms is changed to the identified optimal size. This assessment proves that the developed
methodology is susceptible to site characteristics and individual assessment should be performed for each for
identifying its OSS transformers’ optimal size reduction potential.
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Figure 8.14: Transformer cumulative lifetime utilization
after 40 years of operation using different OSS transformer
ratings for OWF A (top) and OWF B (bottom)

Figure 8.15: NPV change after 30 years of production
using different OSS transformer ratings for OWF A (top)
and OWF B (bottom)
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CHAPTER9
Export System Design

Optimization using a DTR-based,
Multi-Stage, Stochastic

Investment Decision Tool
The problems and algorithms presented so far have focused on optimization of OSS transformer rating
primarily because over the course of this project it was deduced that offshore substations offer the largest
room for cost-effective optimization. On the other hand, the topics of DTR-based optimal sizing and design of
HV export cables for OWFs have been addressed in detail in the literature [24–26]. Based on this discussion,
the missing piece of the puzzle would be dynamic optimization of the entire export system by using DTR for
network analysis. In this section, a comprehensive two-stage optimization framework has been developed
which uses DTR for design of all the major HV components of OWF export system and can be used as an
investment decision tool for OWF sizing. Detailed description of the developed tool and the analysis of the
identified test case are discussed in detail in this section, which is based on the publication [Pub. J3] by the
author.

9.1 Problem Overview and Schematic Description

The two-stage stochastic optimization problem proposed in this project optimizes the design of offshore
windfarm export system using dynamic rating and electro-thermal coordination of all the relevant HV
components. The goal of the proposed methodology is to use DTR-based operation to find the optimal
windfarm size and design ratings of export system components that result in highest NPV, while accounting
for CAPEX at year ’0’ and operating costs due to higher losses and possible curtailment over the entire
windfarm lifetime. Reliability and uncertainty considerations are key features of this problem. The overview
of the novel framework is shown using the schematic representation of Fig. 9.1, which is based on the
following four basic steps:

• Step 1: Pre-selection of relevant candidate design cases K. These design cases include unique
combinations of transformer, shunt reactor and export cable ratings which are chosen based on the
windfarm size window, topology of the export system and other predefined parameters.

• Step 2: Generation of hourly scenarios S for uncertainty and reliability considerations. This step
is necessary to generate the load profile for individual components in the OWF export system over
the entire lifetime. It accounts for stochasticity of the OWF site’s wind speed using ARIMA-based
trend analysis of long-term historic site data (incl. wind speed and direction profiles) from Section 7.1.
Furthermore, temporal stochastic availability of turbines in the windfarm (Section 7.2) and availability
of HV components in the export system (Section 7.3) are also accounted for as possible failures and
contingency conditions are pre-simulated based on component reliability indices Λ and Υ [1/hr]. In
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contrast to the discussion in the previous section, these indices are to be calculated for the entire export
system circuit. Hence individual values for subsea cables, transformers and shunt reactors connected in
series are used as shown in (9.1) and (9.2) [175].

Λ = Λc + Λtrf + ΛSR (9.1)

Υ = Υc + Υtrf + ΥSR (9.2)

• Step 3: Solution of the two-stage optimization problem over the OWF lifetime. This step is solved
separately for all the pre-selected design cases. All the decision variables are stored, while only the two
main decision variables including NPV and windfarm size (represented by number of WTGs ntur) are
considered for the next step.

• Step 4: Selection of the optimal design case. Out of all the pre-selected design cases, the one which
results in highest NPV is selected.

The first two steps are responsible for generating the inputs for the optimization problem, which are shown
by the grey dotted lines in Fig. 9.1. Hence, as a result of these steps, component costs, ratings and thermal
parameters for each design case along with multiple scenarios of OWF site’s temporal wind speed and
availability over the entire OWF lifetime are readily available for the optimization framework. Since, the
ratings for HV components are commonly available in discrete steps, design iterations can be used to shortlist
relevant design cases in step 1, which can thereby reduce the number of times step 3 is to be run.

The optimization problem in step 3 maximizes the windfarm’s business case over its lifetime for each of the
pre-selected design case, as defined by the objective function. The term ’Cost’, which includes all the CAPEX
figures for year ’0’, is assumed to be dependent on design case k ∈ K and independent of the generation and
availability realizations in scenario s ∈ S . The ’Revenue’ term on the other hand is dependent on both k and s.
Besides the investment decision support, the decision variables in the upper level (Stage 1) define the degree
of freedom for energy injection over the windfarm design lifetime by determining the optimal wind farm size
ntur; whereas yearly utilization of the transformer thermal lifetime is also addressed at this level. On the other
hand, the lower level (Stage 1) is responsible for operational scenarios and hourly constraints. The decision
variables at this level include component load, critical temperatures of the components, component ageing,
system losses and possible energy curtailment.
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Select	
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Figure 9.1: Schematic description of the optimization strategy for the novel investment decision support tool for dynamic
rating based design of the OWF export system HV components
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9.2 Formulation of the DTR-based, Two-Stage Stochastic Optimization Model

9.2.1 Proposed Framework

The novel stochastic optimization problem is compactly formulated in (9.3), where the objective function
is followed by the relevant constraints. The problem consists of two-stages: the first stage provides the
investment decision support by determining the optimal number of wind turbines ntur for the respective
design case, while each of the hourly operational scenarios is modelled in the second stage using the index t.
The objective function maximizes the NPV for each design case k as it includes a term for investment/costs at
year ’0’ C0 and a term for revenue over windfarm lifetime Rs associated with the probability πs. The first
term is dependent on the design case under consideration k, while the latter term depends not only on k, but
also on the energy sold to the grid in each scenario s. The problem is developed as a Mixed-Integer Linear
Programming model (MILP), as the quadratic and non-linear constraints are resolved using linear inequalities.
The model is implemented in MATLAB using the YALMIP toolbox [182] for the high-level problem structure,
while GUROBI solver [183] is used for solving the mixed-integer convex optimization problem.

max
Ξ

(
NPVk = −C0 k +

∑
s∈S

πsRs, k

)
(9.3a)

s.t. (9.7), Wind farm size,

(9.8)− (9.12), Power balance and component load, ∀s, ∀t

(9.16)− (9.17), Losses approximation, ∀s, ∀t, ∀j

(9.24)− (9.26), Thermal dynamics, ∀s, ∀t

(9.27)− (9.28), Ageing dynamics, ∀s,∀t, ∀l,∀y

where the decision variables are compiled as a list in Ξ. These variables are described together with the
associated constraints in the discussion that follows.

9.2.2 Objective Function

The objective function in (9.3) consists of two main terms. The first term models the total investment cost of the
OWF at year ’0’. This cost can further be broken down into three sub-costs: cost of all wind turbines nturctur,
cost of export system C

exp
k and fixed costs Cfix covering all the remaining cost functions (incl. development

expenses, balance of plant, commissioning, decommissioning etc.), as shown in (9.4). Cexp
k is dependent on

the preselected design case, while the fixed costs can be assumed to be constant for all the design cases as
these are not influenced by minor changes in OWF size and transmission system. On the other hand, since
ntur is the only decision variable in C0 and it defines the size of OWF (plus the power flow in the operational
time frame), the output of the optimization problem directly affects the investment decision support.

C0 = nturctur + C
exp
k + Cfix (9.4)

C
exp
k = ncLccc

k + ntrfctrf
k + nSRcSR

k +

2coss (ntrfmtrf
k + nSRmSR

k

) (9.5)

where the superscripts for turbines (tur), cables (c), transformers (trf) and shunt reactors (SR) are used to
classify the number of respective components n and cost functions c [e] (with the exception of cable costs cc

[e/km] and weight-dependent costs of OSS/RCS coss [e/tonne]). Length of cable circuit Lc is used to scale the
cable costs cc, while respective component masses m [tonnes] are used to scale coss, which are used to model
the total weight-dependent foundation costs for substations.

The second term in the objective function, modelled with Rs, represents the overall revenue stream for each
scenario, as shown in (9.6). This revenue is directly dependent on the total yearly injected energy

∑
P inj over
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the OWF lifetime ΠWF = length (Y) and it is scaled using the yearly weighted factors for NPV calculation,
where the windfarm lifetime ΠWF is presented in years.

Rs =
∑
y∈Y

γ

(1 + i)y
∑
t∈T

P
inj
t,s (9.6)

where the energy selling price γ [e/MWh] is assumed to be constant over the OWF lifetime, but can be
modeled to follow the spot-price market if needed. The discount rate i is used in per-unit, while the respective
scenario’s injected hourly powerP inj

t,s [MW] is the decision variable of the developed problem. In this approach,
the computational efforts are preserved by assuming that the yearly revenues which are dependent on the
total energy sold to the grid are repeated every year over the OWF lifetime. However, this can easily be
remodelled if the right computational resources are available.

9.2.3 Definition of Constraints

Constraints for Wind Farm Size

The number of turbines ntur, which is a decision variable in the first stage, determines the size of the windfarm.
This variable is limited between the minimum ntur and maximum ntur number of turbines that can be installed
in the project.

ntur ≤ ntur ≤ ntur (9.7)

Constraints for Power Balance and Component Load

The power balance in the system for each operational hour is ensured by the constraints (9.8) - (9.9), while the
hourly generated wind energy P gen

t,s [MW] from the OWF is calculated as a function of the realized Availability
of wind turbines Aw

t,s for each scenario [pu] and the realized per-unit OWF generation profile Pw
t,s for the

respective scenario.

P
gen
t,s − P

cut
t,s −Ac

t,s

(
W c
t,s + 2W trf

t,s +W SR)− P inj
t,s = 0 (9.8)

0 ≤ P cut
t,s ≤ P

gen
t,s (9.9)

P
gen
t,s = Aw

t,sP
w
t,sS

turntur (9.10)

where the hourly power curtailed P cut
t,s and injected P inj

t,s are decision variables calculated in MW. While the
hourly load dependent losses [MW] for transformers, cables and shunt reactors, represented byW c

t,s,W trf
t,s and

W SR
t,s respectively, are also the decision variables. The remaining parameters including number of available

circuits for each operational hour in each scenario Ac
t,s [pu] (to consider contingency of the export system

components) and the rating of WTG Stur [MW] are predefined during the scenario generation and pre-design
phases respectively.

For each scenario, the calculation of hourly load current for cables Ic
t,s and transformers HV side I trf

t,s in [A] is
performed using the Kirchhoff’s current law, as shown in (9.11)-(9.12). The Strf

rated and I trf
rated representing

transformer MVA rating and rated HV-side current [A] respectively are known for each design case, while
the line-to-line voltage of the transmission system Vll is defined in advance. It must be mentioned that this
formulation only presents the DTR design mechanism, therefore neither Ic

t,s nor I trf
t,s is constrained here. It

must be mentioned that this formulation only works when there is at least one circuit available Ac ≥ 1, which
is the most probable scenario for systems with low failure probabilities [14].

Ic
P t,s = 1

Ac
t,s

(P gen
t,s − P cut

t,s )
√

3Vll
(9.11)

I trf
t,s = 1

2Ac
t,s

(P gen
t,s − P cut

t,s )
Strf
rated

I trf
rated (9.12)
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Losses Approximation using Linear Inequality Constraints

The losses are quadratically related to the load current. In order to evaluate the losses over the entire length
of HV export cables, (2.17) is used and total cable losses over the entire length Lc are simply calculated as
W c
t,s = W tot c

t,s L
c, where W tot c

t,s are losses per unit length [W/m], as explained in Section 2.3.2. However, as
discussed in Section 2.3.3, the cable current Ic is not only dependent on the load but it also varies along the
cable length due to capacitive charging. For the topologies considered in this project, the capacitive charging
current peaks at the offshore, onshore and reactive compensation substations. The load dependent current
component Ic

P t,s [A] is time-variant and depends on the realized scenario, while the peak charging current
Ic

Q [A] is treated as constant for each design case as it depends on the capacitance of the cable design. For
estimation of cable losses, utilization of peak charging current Ic

Q can overestimate these losses by up to 100
% [96]. Therefore the formulation of second approximation proposed in [13] is used in this project, and the
resulting equation is provided in (9.13). In this formulation, the total cable resistance over the entire length rc

is calculated conservatively at 90 ◦C using (9.14), the dielectric losses W c
d [W/m] are cable design dependent,

while the armor and screen loss factors (λa and λs) are treated as constants

W c
t,s = 3rc

(
Ic2

P t,s + 1
2I

c2
Q

)
+W c

dL
c (9.13)

rc = (1 + λa + λs)r′ cacLc (9.14)

The losses in OSS transformers, on the other hand, are calculated by the HV side referred current I trf
t,s [A] in

(9.15). In this formulation, the design-dependent transformer winding resistance referred to the HV side rtrf

[Ω] is treated as constant and defined conservatively at 110 ◦C, while the design-dependent no load losses
W trf
nl [W] are time-invariant as well. The losses in shunt reactors are calculated in the same manner.

W trf
t,s = 3rtrfI trf2

t,s +W trf
nl (9.15)

The discussion so far reveals that the quadratic relation between losses need to be simplified to prevent the
MILP problem from becoming mixed-integer quadratic constrained. Therefore, convexity and linearity of the
problem is preserved by using piecewise linear approximation of losses with respect to the currents. The
losses W c,W trf are expressed as sets of j ∈ J linear inequality constraints related to currents Ic and I trf with
slope p and intercept q in (9.16)-(9.19), where the intercept term qj is responsible to account for no-load losses.
This process has been explained in detail in Section 6.1.2.

W c
t,s ≥ pc

jI
c
P t,s + qc

j (9.16)

W trf
t,s ≥ ptrf

j I
trf
t,s + qtrf

j (9.17)

qc
j = qc

j0 + 3
2I

c2
Q r

c +W c
dL

c (9.18)

qtrf
j = qtrf

j0 +W trf
nl (9.19)

Constraints for Thermal Dynamics of Components

The development of cable conductor temperature ϑc
t,s and transformer hot-spot ϑhst

t,s and top-oil temperatures
ϑtot
t,s over each operational hour is calculated by reformulating (2.20)-(2.21) and (2.10), as shown in (9.20)-(9.23).

The reformulation is key because it makes use of the losses calculated in (9.13) and (9.15) to remove the
quadratic current constraints from these equations. In this way the thermodynamic constraints for both
cables and transformers are linearized and the limits for these critical temperature constraints are defined in
(9.24)-(9.26), where ϑsea is the nominal sea-bed temperature.

The limits are defined such that overall cable temperature rise is limited conservatively to ϑc = 90◦C, while
the emergency loading limits from Table 3.4 are used for transformers with ϑtop = 115◦C and ϑhst = 140◦C.
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ϑserv
t,s = a1ϑ

serv
t−1,s + a2ϑ

c
t,s (9.20)

ϑc
t,s = 1

a3

(
a4ϑ

c
t−1,s + a5ϑ

serv
t−1,s + a6

LcW
c
t,s

)
(9.21)

ϑtot
t,s = b1

(
W trf
t,s −W trf

nl

3rtrfI trf2
rated

)
+ b2ϑ

amb
t,s + b3ϑ

tot
t−1,s + b4 (9.22)

ϑhst
t,s = ϑtot

t,s + ϑhr

(
W trf
t,s −W trf

nl

3rtrfI trf2
rated

)
(9.23)

ϑc
t,s ≤ ϑc − ϑsea (9.24)

ϑ
top
t,s ≤ ϑtop (9.25)

ϑhst
t,s ≤ ϑhst (9.26)

Constraints for Ageing Dynamics of Transformers

Building upon the formulation of DTR+ design mechanism of Section 6, the reliability of transformer design is
ensured by tracking and limiting the overall transformer lifetime utilization. This is done by constraining the
yearly cumulative loss-of-life λy,s for each of the simulated scenario to rated value of λ = 8760× 17.12/ΠWF,
as shown in (9.28). The design lifetime of the OWF ΠWF [yr] and rated design lifetime of the transformer
(17.12 years) at constant ϑhst

rated as per [45] are used here. As discussed earlier in Section 6.1.2, the convexity of
the problem is preserved by linearizing the exponential function for transformer ageing calculation in (4.1) by
using sets of l ∈ L linear inequality constraints with slope p and intercept q, as shown in (9.27).

∆λt,s ≥ plϑhst
t,s + ql (9.27)

λy,s =
∑
t∈T

∆λt,s ≤ λ (9.28)

9.3 Test Case of a Large OWF with Three Parallel Circuits
In order to demonstrate the applicability of the proposed methodology, the design of an actual windfarm off

the east coast of UK has been used, as shown in Fig. 9.2. There are three interlinked parallel circuits in the
test case OWF, with each circuit comprising of one 100 km long 3-core XLPE insulated subsea cable with
copper conductor and two parallel 66/220 kV transformers. For reactive compensation at the midpoint of
the export cable, one three-phase shunt reactor is placed in the Reactive Compensation Station (RCS) per
circuit. Hence, the total components in the considered export system spread across three OSS and one RCS
are ntrf = 6, nSR = 3 and nc = 3. The design lifetime of this test case is set to ΠWF = 30 years. For uncertainty
and reliability induction, a total S = 30 scenarios with unique time series of Pw, WT availability Aw and
number of available export circuits Ac

t have been simulated using the principles of Section 7 for duration of
T = 8760 hr (1 year) each.

Figure 9.2: Simplified HV export system layout for the 1200 MW test case offshore windfarm (excl. Onhore Substation)
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9.3.1 Constraints for Base Case with STR (BaseSTR)

The developed algorithm uses coordinated DTR for all the relevant HV components in the export system. In
order to benchmark the results with respect to conventional practices based on Static Thermal Rating (STR),
the base test case has been run with STR and the results are compiled in BaseSTR. The constraints in (9.3) have
to be updated for the BaseSTR test case. The main changes include discarding constraints (9.24)-(9.28) because
neither component thermal dynamics nor ageing dynamics are relevant for STR operation. On the other hand,
some additional constraints are introduced, as shown in (9.29)-(9.31). The windfarm size for the BaseSTR is
rated to its original size of 1197 MW (ntur

base = 171, Stur = 7 MW), while the components are rated as 250 MVA
OSS transformers and 1600 mm2 cables and the load I in (9.11)-(9.12) are constrained to 1 pu.

ntur
k = ntur

base ∀k ∈ KBaseSTR (9.29)

Ic
t,s,k ≤ Ic

rated ∀k ∈ KBaseSTR , ∀s ∈ S, ∀t ∈ T (9.30)

I trf
t,s,k ≤ I trf

rated ∀k ∈ KBaseSTR , ∀s ∈ S, ∀t ∈ T (9.31)

9.3.2 Pre-selected Design Cases for DTR Test Cases

For the DTR methodology in (9.3), a total of 20 candidate design cases (5 transformer ratings and 4 cable sizes)
are considered, the relevant parameters for which are provided in Table 9.1. This analysis is performed by
considering the configuration of network, base OWF size and availability of components by manufacturers.
Each design case consists of a unique combination of cable and transformer rating, and the 20 candidate
designs are classified asK = {Trafo [MVA], Cable [mm2]} are considered: {T250, C1600}, {T250, C1400}... {T150,
C1000}. For all the DTR test cases, ntur is limited between 143 (1001 MW) and 200 (1400 MW). The mentioned
OWF ratings do not include the power-boost function, which is considered during the scenario generation
process of Section 7.

Table 9.1: Relevant parameters for selected sizes of HV components for candidate design cases

Component Parameter Design Cases

Transformer
Strf
rated [MVA] 250 225 200 175 150
rtrf at 110C [Ω] 1.64 2.49 2.98 3.65 4.12
W trf
nl [kW] 74.14 67.33 61.42 55.63 49.18

Cable

Cond. Size [mm2] 1600 1400 1200 1000 -
Sc
rated (STR) [MVA] 417 404 387 370 -
Ic
rated (STR) [A] 1095 1060 1016.5 971 -
r′ cac at 90C [µΩ/m] 16.02 17.31 19.11 21.18 -
Qc [µF/km] 0.214 0.201 0.190 0.178 -

Shunt Reactor SSR
rated [MVAr] 165 152 143 135 -

9.3.3 Cost Functions and Relevant Predefined Parameters

The relevant economic parameters are defined as per the latest information available in the literature. The
latest CfDstrike price of the 1.2 GW Doggerbank Creyke Beck A offshore windfarm (γ = 44.9 [e/MWh]) has
been used, while the discount rate i is set to 6.75% [1]. The cost for XLPE insulated subsea cables is calculated
using (9.33), where nominal voltage dependent coefficients are found to be g1 = 1.991× 106, g2 = 0.5× 106

and g3 =
√

33.16× 220
1× 106 for the 220 kV cable design with Copper conductor [16]. The cost and mass of the

oil-filled components (transformer and shunt reactors) are derived empirically, as shown in Section 8 and (8.3)
earlier. This is driven by (9.32) for large power transformers, such that Z is replaced by the relevant parameter
(c or m) [180]. All of the remaining cost parameters which include ctur, coss and Cfix are derived from [11].

Z trf,SR
k = Zbase

(
Strf,SR
rated,k

Strf,SR
base

)3/4

(9.32)

cc
k = Lc

(
g1 + g2 e

g3I
c2
rated,k

)
(9.33)
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9.4 Performance Evaluation using Economic and Efficiency Analysis

In order to highlight the benefits of the proposed methodology, the optimization problem is first allowed to
run for the {T250, C1600} design case with STR constraints and the results are recorded in BaseSTR. Afterwards,
the originally proposed optimization framework is solved for all the 20 design cases in K, as specified in
Table 9.1. Out of these DTR test cases, the first design is similar to the BaseSTR case ({T250, C1600}), which is
why this design case is referred to as BaseDTR from this point onward. BaseDTR design case implies using the
same infrastructure as the base case and applies DTR to optimize utilization of components over the OWF
lifetime while optimizing the OWF size. Out of the 20 design cases, the design case that results in the highest
NPV is termed as ’Optimal’ in the discussion that follows.

9.4.1 Economic Assessment and Efficiency of Transmission

First and foremost, the Optimal design case is identified by calculating the NPV for the 20 design cases.
The results are recorded in Fig. 9.3, where the change in NPV with respect to the BaseSTR test case
(∆NPVk = NPVk −NPVBaseSTR ) is recorded, along with the optimal number of turbines ntur for each design
case. The results reveal that by merely considering DTR for the same infrastructure, the NPV increases by 327
Me for BaseDTR, while the optimal ntur are set to their max value of 200 compared to 171 for BaseSTR. It is
further shown in Fig. 9.3 that the design case {T200, C1400} (Optimal) results in the highest NPV increase,
which is 51 Me higher than BaseDTR. The Optimal design case employs 191 turbines, but still gives out the
best business case. It is important to mention that a number of tested design cases result in negative NPV
change (which suggests a poor business case compared to BaseSTR), because of higher energy losses and
higher curtailment needed due to transmission bottlenecks.

Figure 9.3: Final results of the optimization problem for all the shortlisted design cases K. Left: Change in NPV (∆NPV)

with respect to BaseSTR design case. Right: Optimal number of turbines. Values for four different design cases are

mentioned for elaboration, with special mention to the Optimal design case {T200, C1400} marked with *

The results are further compiled in Table 9.2, where the following three parameters are recorded for the
BaseSTR, BaseDTR and Optimal design cases: Levelized Cost of Energy (LCOE) [ e

MWh ], loss of transformer life
(LL) over the OWF lifetime [%] and efficiency of energy transfer (η) [%] representing the ratio between total
injected and generated energy over the OWF lifetime. The last parameter accounts for energy losses and
curtailment for the three design cases. It can be seen that even though the Optimal case has lower η than
BaseDTR, it still results in the lowest LCOE. This is observed because the energy not delivered over the OWF
lifetime is weighed yearly using the discount factor and also because the lower investment cost of Optimal
case, due to reduction in export system costs and total turbine costs, outweighs the energy delivered over the
OWF lifetime. Finally, it is shown that the transformer is utilized at a much better rate for the Optimal design
case compared to the other two cases.
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Table 9.2: Parameters for economic and efficiency assessment for BaseSTR, BaseDTR and Optimal design cases

Parameter Design Case
Label Unit Formula BaseSTR BaseDTR Optimal

LCOE [ e
MWh ]

Co(1 + i)y∑
y∈Y

πs
∑
s∈S

∑
t∈T

P
inj
t,s

32.62 30.45 29.56

η [%]

∑
y∈Y

∑
s∈S

∑
t∈T

P
inj
t,s∑

y∈Y

∑
s∈S

∑
t∈T

P
gen
t,s

97.15 98.61 98.13

LL [%]

∑
y∈Y

πs
∑
s∈S

λy,s

8760 ΠWF 4.25 9.5 72.5

9.4.2 Evaluation of DTR and Component Utilization during Contingency

As mentioned earlier, the emergency cyclic limits of 140 ◦C for ϑhst [45] and normal cyclic limits of 90 ◦C for
ϑc [71] are used in this study. The overall temperature recorded for BaseSTR, BaseDTR and Optimal design
cases are compiled in Fig. 9.4 using histograms for two scenarios: with contingency and without contingency.
Contingency means that one or more circuits of the export system are simulated to be unavailable for
certain periods over the OWF lifetime. It can be seen that both the cables and transformers operate closer to
their respective thermal limits more often for the Optimal case compared to the BaseSTR and BaseDTR cases.
Moreover, the thermal stress is even higher for both BaseDTR and Optimal design cases for the scenario with
simulated contingency, as the components are utilized to their limits in order to maximize the energy transfer
during contingency.

Figure 9.4: Histograms for critical temperatures for transformer (ϑhst) and Cable ϑc (incl. seabed temp. ϑsea) for two
scenarios in S (with & without contingency). The results for BaseSTR, BaseDTR and Optimal design cases are provided for
simulated period of 30 years.

The optimal yearly loss-of-life (LL) for transformers λ [Days] is recorded in Fig. 9.5 for one of the simulated
scenarios in S for BaseSTR, BaseDTR, Optimal design cases. Furthermore, results for the ’Non-Optimal’ design
case {T175, C1600} which leads to maximum transformer utilization are also provided for comparison. It can
be seen that during contingency, the number of available circuits reduce to 2 for a limited duration, during
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which the Optimal transformer lifetime is utilized extraordinarily compared to the BaseSTR and BaseDTR cases.
This is performed by the optimization problem to maximize the energy transfer during contingency. It must
be mentioned that for the entire duration, the thermal limits of all the relevant components are not violated.

Figure 9.5: Number of available circuitsAc and cumulative loss-of-life (days) for transformer for a scenario with contingency.

9.4.3 Power Balance and Component Load during Contingency
The load current for cable Ic and power curtailment P cut are recorded in Fig. 9.6 for a short duration before
and after the contingency event for the scenario mentioned above. As the number of available circuits reduces
to 2, the available export cables are loaded beyond their rated capacity for the BaseDTR and Optimal cases
only, while additional energy needs to be curtailed for the BaseSTR case. A closer look at the figure reveals that
some curtailment is needed around the 155th day for the Optimal and BaseDTR cases because ϑc and ϑhst reach
their respective limits, as shown in Fig. 9.7.

Figure 9.6: Difference in loading for BaseSTR, BaseDTR and Optimal design cases during contingency as the number of
available circuits Ac decreases from 3 to 2 around day 150. Bottom: load curtailment (Pcut [pu] with Pgen as base) for these
design cases due to thermal bottlenecks.

Figure 9.7: Development of critical temperature for transformer ϑhst (left) and cable ϑc (incl. seabed temp. ϑsea) for the
same period and scenario as Fig. 9.6 for BaseSTR, BaseDTR and Optimal design cases (incl. respective thermal limits).
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Key Takeaways from Part IV
In Part IV, it has been shown that the optimization of design of critical HV components in the OWF export
system can be facilitated by employment of DTR in the planning phase. The utilization of stochastic
Auto Regressive Integrated Moving Average (ARIMA) processes and probabilistic DTMC principles allow
consideration of uncertainty due to intermittent wind generation and system availability/contingency
respectively, as shown in Chapter 7. These techniques are used to deploy multiple operational scenarios
over the OWF lifetime, which ensure reliability of system design. The iterative technique for optimization
of transformer rating presented in Chapter 8 has proven to be cost-effective even when revenue loss due to
increase in temperature-dependent transformer losses and energy curtailment are considered. The test case of
a large offshore windfarm off the east coast of UK has shown that this iterative technique can increase the Net
Present Value (NPV) by a few million e. On the other hand, the two-stage stochastic optimization problem
presented in Chapter 9 uses DTR for optimization of the entire OWF export system. This novel methodology
resolves the hourly operational constraints in the first stage, while the constraints related to windfarm sizing
and overall energy injection are handled in the second stage. The convexity of the optimization problem is
maintained by mathematical manipulation of the non-linear functions and the problem is designed to account
for uncertainty, losses and curtailment. The test case of large OWF has shown that the developed methodology
can increase the business case by 10s and 100s of Me for large-scale offshore windfarms. The iterative
technique is presented in Publication [Pub. J1], while the stochastic optimization problem is published in
[Pub. J2]
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CHAPTER10
Conclusion and Future Work

The discussion spread across parts I to IV and chapters 1 to 9 has extensively explained the values created
during the Industrial PhD project. The last chapter compiles the analysis and findings presented so far. The
chapter is structured as follows: the general comments and concluding remarks for the thesis are summarized
in Section 10.1, the research questions drafted for the PhD project in Chapter 1 are briefly answered in Section
10.2 and finally the future research direction stemming from the outcome of this thesis are touched upon in
Section 10.3

10.1 General Comments

The decarbonization targets for 2050 set by nations across the globe would not be accomplished without the
development of large-scale Offshore Windfarms (OWFs). These targets hinge on continuous reduction in
OWF’s Levelized Cost of Energy (LCOE) which has already been squeezed significantly by optimization
of the entire value chain by developers and manufacturers alike. In this PhD thesis, it has been shown that
the utilization of Dynamic Thermal Rating (DTR) for design and operation of the OWF transmission system
and its HV components can further facilitate this process substantially. The thesis presents the work from
a windfarm developer’s standpoint and has been structured in a way that all the relevant condition and
thermal monitoring tools are presented initially. Afterwards, the developed methodologies are bifurcated
into the following aspects: Firstly, the operational framework which addresses the DTR-based utilization of
critical OWF transmission components. Secondly, the design framework which optimizes the design of the
OWF transmission system components during the planning phase.

In conclusion, the results accomplished in this thesis suggest that the intermittent nature of the wind and
the favorable ambient conditions in the offshore environment allow effective application of DTR in OWFs.
The utilization of portfolio projects and the design of pipeline projects are positively influenced in terms of
reliability and cost-effectiveness by the employment of DTR. The novel operational and design methodologies
presented in this thesis are not only technically feasible, but are also carefully developed for practical
considerations of the offshore projects. The applications of machine learning, data analytics and modern
optimization tools demonstrated in this project compel the developers and operators to evolve their traditional
processes with the available technologies.

10.2 Answers to the Research Questions

[Q1] What are the inherent thermal bottlenecks in the Offshore Windfarm (OWF) export system and how can Dynamic
Thermal Rating (DTR) facilitate resolution of major pinch-points?

As per the discussion in Chapter 2 and Publication [Pub. C6], there are two categories of thermal
bottlenecks in the OWF export system. Power transformers located in the Offshore Substation (OSS)
and sub-sections of the export cables (particularly J-tubes, HDD and subsea/offshore sections) can be
thermally limiting under certain operating conditions, which include system/component contingency,
sustained wind generation for long periods etc. These bottlenecks arise due to low thermal time
constants, susceptibility to load variation and variable environmental circumstances. Referring to the
discussion in Publication [Pub. J2], the resolution of relevant bottlenecks can be performed by taking a
systemic approach and by using electro-thermal coordination for all the components when application
of DTR is considered. Finally, it has been shown that effective debottlenecking is possible by employing
DTR on transformers and offshore/subsea section of the export cables only.
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[Q2] Can DTR be employed for operational and design optimization problems for offshore windfarms by using
state-of-the-art thermal models for critical HV export system components? What modifications should be made to
these models to make them fit for the relevant applications?

The discussion in Chapter 2 and Publication [Pub. C1] suggests that state-of-the-art differential equations
based non-linear Thermo-electric Equivalent (TEE) models are more suitable for the applications
considered in this thesis due to their empirical nature, adaptability to varying operating circumstances
and balance between accuracy and efficient computation. However, for the DTR-based novel operational
and design optimization problems proposed in Chapters 6 and 8 respectively, the identified models
require following modifications to ensure convexity of solution and low computational stress: data-
driven parameter estimation for consolidated export cable models (shown in Publication [Pub. C5])
and continuous forced cooling operation for transformer winding and oil (shown in Publication [Pub.
C4]). Nevertheless, for the novel iterative techniques presented in Publications [Pub. J1], [Pub. C2]
and [Pub. C3], the chosen models can be used in their true form.

[Q3] How and why should machine learning and data analytics be used for dynamic thermal estimation and condition
monitoring of OWF export system components? Is it possible to extract physical, operational insights about the
components from the semi-physical grey-box and empirical black-box models?

It has been demonstrated that the empirical TEE models do not account for the time-variant physical
attributes of the HV components and they require detailed insights regarding the design/operational
circumstances. The discussion in Chapter 3 has shown that a series of novel self-learning grey-box and
black-box Machine Learning (ML) models can efficiently perform thermal estimation of HV cables and
transformers. The difference in thermal time constants and uniquely varying environmental conditions
of transformers (Publication [Pub. C7]) and all the subsections of the export cables ([Pub. C5]) are
efficiently analysed by the semi-physical Ordinary Differential Equation (ODE) models, physical State
Space (SS) models and black-box Auto Regressive eXogenous (ARX) models. The non-linear black-box
Artificial Neural Network (ANN) models are found to over-fit the training data in most cases, but the
discussion has touched upon the means to fix these issues. These results are based on long-term thermal
measurements of relevant components from multiple OWFs around the globe, along with experimental
measurements acquired from transformers in the DTU HV lab. The combination of semi-physical ODE
models and flexible ANN models allow extraction of physical insights for the test cases. On one hand,
information related to subsea cable surroundings is accurately extricated; while on the other, real-time
thermal condition monitoring of multiple wind turbine transformers is performed by training and
testing on different test case turbines.

[Q4] Is there a need to optimize the utilization of critical export system components by using DTR and/or by tracking
their thermal and thermo-chemical ageing for reliable operation of the existing offshore windfarms? Can DTR
facilitate the integration of OWFs in the transmission grid with minimal infrastructural investments?

For optimal utilization, OSS transformers are given keen attention in this thesis, because these
components are found to be over-dimensioned across all the analysed portfolio projects, as shown in the
discussion in Chapter 5 and Publications [Pub. C2] and [Pub. C3]. Furthermore, OSS transformers are
critical for security of supply, can outlive the OWF by tens of years, have considerable economic impacts
and unlike cables, have not been addressed in the literature. In order to employ emergency thermal limits
for DTR-based transformer utilization, it is found to be critical to use Degree of Polymerization (DP)
thermo-chemical ageing models for cellulose-based insulation paper. DP-based models are extensively
analysed and benchmarked in Chapter 4 for sensitivity to end-of-life criterion and moisture/oxygen
decomposition. The novel methodology that proposes linearized Arrhenius reaction based thermal
ageing model for dynamic transformer utilization in real-time has shown successful results in Chapter
6 and Publication [Pub. C4]. The methodology is tested via a unique lossy-DCOPF algorithm for a
quadratically-constrained day-ahead energy dispatch optimization problem, by mapping the actual
generation, load and wind production data from the transmission system of west-Denmark. The results
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prove that the concept can ease large-scale integration of offshore windfarms in the network, while
delaying grid-reinforcement costs. The concept is further extended to employment of DTR on multiple
components (including transformers and overhead lines) across the test network, and the results are
found to improve even further if systemic DTR is used as shown in Publication [Pub. D1].

[Q5] How can DTR be used to optimize the design of the complete OWF export system or its critical components over
its entire lifetime, while accounting for uncertainty in generation and system availability/contingency?

It has been deduced over the course of this study that in order to optimize the design of the complete
export system for OWFs, employment of DTR needs to be considered during the planning phase for all
the critical thermal bottlenecks simultaneously. The discussion in Chapter 9 and Publication [Pub. J2]
has presented a novel two-stage stochastic design optimization problem based on mixed-integer linear
programming that uses electro-thermal coordination of the components that are the major thermal
pinch-points in the OWF export system. On the other hand, when systemic design optimization is not
needed (for e.g. in cases where cable rating design is subject to local regulations or when developers use
established techniques for cable rating optimization), the ratings of transformers located in the offshore
substations can be optimized using the iterative framework presented in Chapter 8 and Publication [Pub.
J1]. Design optimization problems are found to face unique challenges due to operational uncertainty
over the OWF lifetime. In order to account for the uncertainty in hourly system/component load due to
stochasticity of possible contingencies and for the uncertainty in hourly generation due to the stochastic
nature of the wind and availability of wind turbines, the concepts in Chapter 7 and Publications [Pub.
J1] and [Pub. J2] use probabilistic scenario generation principles. These principles are developed
using non-linear stochastic trend analysis models like ARIMA processes that account for daily and
yearly seasonalities to model long-term time series for wind wind generation and probabilistic discrete
time Markov processes for component availability. Furthermore, the reliability of design is ensured by
considering conservative operational and thermo-chemical ageing assumptions. All of the developed
methodologies have been employed for design optimization of actual test case windfarms, while
considering their operation over the entire OWF lifetime.

[Q6] What are the economic and technical considerations needed for DTR-based design optimization of OWF export
system? How can variables like efficiency of transmission, possibility of energy curtailment and reliability of
design be used for economic optimization of offshore windfarm design based on DTR?

The optimized ratings of OWF export system components obtained using the design optimization
problems developed in this study are found to have extensive economic impacts on the OWF operation.
The reduction in component size results in higher losses as the components operate closer to their
thermal limits for sustained periods. The economic losses due to reduction in temperature-dependent
transmission efficiency have been accounted for by using Net Present Value (NPV) assessment at
the operational time-frame over the course of entire OWF lifetime. Furthermore, the thermal and
ageing constraints can enforce energy curtailment to prevent over-utilization of components. The
novel investment decision support tools (one iterative and one two-stage stochastic optimization model
developed in this project) account for the revenue loss due to energy losses and curtailment, while
ensuring reliability of design. The optimal design case is selected based on the overall positive influence
on the economics (i.e. when the savings made in investments outweigh the discounted revenue loss
over the OWF lifetime). The cost-effectiveness of the developed methodologies has been demonstrated
in this thesis using actual large-scale test case windfarms. All of this is presented in Publications [Pub.
J1] and [Pub. J2].

10.3 Future Research Directions

The following points can be addressed in the future research work to be performed in this field:
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[R1] The analysis in this thesis has been focused on High Voltage AC technology for the OWF transmission
system. The development of large-scale offshore windfarms further from the shore using High Voltage
DC (HVDC) transmission technology is becoming more prevalent. The results of this thesis should be
just as relevant for HVDC, if not more, as it offers better transmission system control. However, the
additional thermal stress on components due to increased power-electronics based control should be
addressed in the future.

[R2] Besides the employment of HVDC, it is also foreseen that the development of more OWFs (plus energy
islands) and efforts to improve cross-border trading will eventually result in the development of offshore
grids. These grids would experience continuous evolution as more renewable energy sources need to
be connected over time. DTR will facilitate the deferral of grid reinforcements in such cases and will be
even more relevant compared to the radial circuits analysed in this thesis. Furthermore, the integration
of OWF with other renewable technologies (incl. solar, hydrogen, onshore windfarms etc.) should be
performed for these grids.

[R3] The utilization of machine learning in assessment of cable surroundings (incl. burial depth estimation
of subsea cable) is found to be technically feasible in this thesis. However, further efforts are needed to
develop tools that utilize a combination of semi-physical, grey-box models and empirical black-box
models for these assessments.

[R4] The non-linear machine learning tools developed in this project (particularly artificial neural networks)
tend to over-fit the training data. These tools are extremely adaptable and efforts should be made to
improve their performance before these tools are used for other applications.

[R5] The DTR-based stochastic optimization tools developed in this project for design and operation of OWF
export system should be extended to include the following:

i) OWF collection system (meshed and radial) consisting of MV/HV array cables (incl. cable routing
and optimal layout)

ii) Secondary HV components in the OWF export system (incl. power converters, switchgear
sub-components etc.)

iii) Transmission grid beyond the point of common coupling to employ dynamic network rating, as
shown in Publication [Pub. D1]. The inclusion of wide-area monitoring, high-resolution numerical
weather prediction across the network etc. should be analysed for this application.
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Appendix - Additional plots for
the n-1 contingent design

For further demonstration of the iterative design optimization of OWF transformers in Chapter 8, this appendix
presents the output of the optimization tool for the extreme case of multiple transformer contingency, as
discussed in Section 8.3.1. Out of the two design concepts, the base n-1 contingent design results in zero
energy curtailment during the worst case scenario of 2 simultaneous transformer failures (n-2 contingency)
in year 8 as shown in Figure 1. But some curtailment is observed if the transformer size is reduced to the
optimal rating because HST has to be limited to the 140 C limit [45] [44]. On the other hand, Figure 2 reveals
that the non-contingent design concept results in some curtailment for both the base and optimal ratings
during n-2 contingency situation.

Figure 1: Assessment of n-1 contingent design during n-2 contingency. Top: transformer load and power curtailment (base
and optimal rating). Middle: thermal performance for base rating. Bottom: thermal performance for optimal rating

Figure 2: Assessment of non-contingent design during n-2 contingency. Top: transformer load and power curtailment (base
and optimal rating). Middle: thermal performance for base rating. Bottom: thermal performance for optimal rating
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Abstract—The foreseen development of large-scale Offshore
Windfarms (OWFs) further from the shore dictates that the
OWF transmission system must be optimally designed based
on Dynamic Thermal Rating (DTR) in order to fully utilize
the intermittent nature of the wind and to keep the offshore
wind cost-competitive. In this paper, a comprehensive, DTR-
based, two-stage stochastic model is presented, which has been
developed for investment decision support for OWF size and
HVAC transmission systems. Complex DTR models for all the
critical HV components are made fit for the mixed-integer linear
programming problem, while accounting for the stochasticity in
wind generation and component availability. The main decisions
incorporate the discrete size of OWFs, HV subsea export cable
cross-sections and ratings for transformers and shunt reactors.
For validation, an actual testcase OWF off the east coast of UK
has been used. Results indicate that DTR-based iterative design of
OWF and its transmission components can significantly improve
the business case, even though transmission efficiency and energy
delivered are not maximum for the optimal design case.

Index Terms—Dynamic thermal rating, offshore windfarms,
stochastic design optimization, HVAC transmission, reliability.

NOMENCLATURE

A. Sets (Indices) and Components (Superscipts)

j ∈ J Set of tangent lines for losses approximation
k ∈ K Set of candidate design cases (Opt. case: kopt)
l ∈ L Set of tangent lines for ageing approximation
s ∈ S Set of scenarios
t ∈ T Set of hours in each year
y ∈ Y Set of years in windfarm lifetime ΠWF [yr]
base, opt Base and optimal design cases
tur Wind Turbines (WTs)
c Cables and circuits
trf Transformers
SR Shunt Reactors

B. Parameters and Inputs

ak, bk Thermal coefficients for cables and transformers
Aw
t,s A

c
t,s OWF & transmission circuit availability

ck Cost of components [e/unit, e/km, e/tonne]
Cx,k Csoil Thermal capacitance for cable & soil [J/m◦C]
gk Cost coefficients for cables
Ic
Q k Reactive component of cable current [A]
Lc Length of subsea export cable [m]
mk Mass of relevant components [tonne]
n Number of components
pj,l qj,l slope and intercepts for linear approx.
Pw
t,s OWF power generation [pu]

rk Resistance of components at temp. limits [Ω]
Sk Rated power of components [MVA, MW, MVAr]
Tx,k Tsoil Thermal resistance for cable & soil [m◦C/W]
Wd,kWnl,k Dielectric & noload loss in cables & trafos [W]
i Discount rate for NPV calculation [pu]
γ Power purchase agreement price [e/MWh]
Λ, Υ Failure & repair rates for components [hr−1]
λc
s λ

c
a Loss factors for cable screen and armouring [pu]

ϑamb
t,s ϑsea

t,s Ambient and seabed temperatures [◦C]

C. Decision variables

C0 Investment costs = f
(
ntur, Cfix, Cexp

k

)
[Me]

It,s IP t,s Component load current apparent and active [A]
ntur Number of wind turbines
P gen
t,s Hourly power generated by the OWF [MW]
P cut
t,s P

inj
t,s Hourly power curtailed & injected to grid [MW]

Rs Total revenue over OWF lifetime [Me]
Wt,s Losses in components [W]
ϑserv
t,s ϑcond

t,s Cable serving & cond. temp. rise over ϑsea [◦C]
ϑtop
t,s ϑ

hst
t,s Transformer top oil & hot spot temp. [◦C]

λy,s Transformer loss of life - yearly (LL) [hr]

I. INTRODUCTION

The growth in offshore wind has been expedited exponen-
tially by decreasing the Levelised Cost Of Energy (LCOE)
from 180 to less than 40 e

MWh over the last decade [1]. This
has resulted in intense price competition in the markets and has
prompted developers and manufacturers alike to optimize the
entire value chain [2]. The electrical infrastructure for Offshore
Wind Farms (OWFs) usually consist of two systems: the
collection system interconnecting Wind Turbines (WTs) with
Offshore Substations (OSSs) and the HV transmission system
responsible for energy transfer from OSS to the onshore
station. Conventionally, the number of WTs and ratings of
HV transmission components are coupled iteratively during
the OWF design phase [3]. With the development of large-
scale OWFs further from the shore, the potential to optimize
the transmission components escalates as well. Utilization of
Dynamic Thermal Rating (DTR) for the dimensioning of these
components and optimization of the OWF size based on this
design can drive down the LCOE further.

Over the years, several publications [3]–[14] have been
presented for OWF design optimization addressing the electri-
cal infrastructure’s efficiency and costs related to investment
and operation. A vast majority of these publications focus on
layout and array cable routing optimization for the collection
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system alone [4]–[8], whereas only a handful of research has
been done on transmission system with most publications
focused only on the HVAC submarine cables optimization
without DTR [3], [9]–[11] and with DTR [12]–[14]. The
potential of cost reduction by optimization of remaining com-
ponents [15] and by employing DTR on the entire system
altogether is completely unexplored [16], [17].

In contrast to Static Thermal Rating (STR), accurate and
computationally efficient thermal models are needed for DTR-
based design. Empirically derived Thermo-Electric Equivalent
(TEE) models fit this profile to a large extent. For oil-filled
components, the first-order differential models from [18], [19]
can be made fit for linear estimation [16], [20] for intermittent
dynamic offshore wind generation [15]. Contrarily, single-
core equivalent TEE models for three-core HVAC subsea
cables in [21]–[23] are complicated to design [24], but can
be transformed to account for effective losses in long cables
[25], [26] and backfill soil’s thermal parameter variation [27].

OWF transmission system’s contingency and reliability as-
sessment is a critical step during the design phase owing
to longer repair times and increasing capacity factors [5],
[17]. The stochastic nature of system’s availability can be
addressed by using probability-based methods relying on an-
alytical techniques [28] or Monte Carlo simulations [5], [10],
[29]. The computational stress of these techniques for design
optimization is a challenge that needs to be resolved.

In this paper, a comprehensive model for investment de-
cision support for OWF size and HVAC-based transmission
system design is proposed. This two-stage stochastic model
uses DTR for optimal utilization of HV components over the
windfarm lifetime and has three fundamental characteristics:
business case assessment (incl. investment cost and weighted
revenue loss due to energy not served), reliability of operation
and transmission efficiency. Besides the investment decision
parameters, the model determines the optimal OWF size and
optimal design case incl. ratings of subsea export cables,
power transformers and shunt reactors. The main contributions
of this work include: a) Development and validation of a
simplified TEE model for subsea cables which is fit for linear
optimization. b) Employment of linearized dynamic lifetime
utilization of transformer for OWF design. c) Inclusion of
contingency scenarios for OWF export system based on Monte
Carlo simulations. d) Proposal of a two-stage stochastic
model for business-case optimization of OWF design by using
DTR on the entire HV transmission network accounting for
load-dependent losses, curtailment and reliability over OWF
lifetime. e) Finally, new research direction in DTR-based
transmission system optimization of OWFs.

Remaining paper is structured as follows. Overview of the
methodology is given in Sec. II, followed by presentation and
validation of DTR models for the relevant transmission com-
ponents in Sec. III. The novelty of the proposed optimization
methodology is elaborated in detail in Sec. IV. Sec. V presents
the test case OWF, its design cases and economic assumptions,
while the relevance of the proposed problem is demonstrated
in Sec. VI. Finally, the paper is concluded in Sec. VII.

II. OVERVIEW OF THE PROPOSED FRAMEWORK

The novel methodology proposed in this paper follows four
basic steps, as shown in Fig. 1. The first two steps generate
inputs for the optimization problem. First of all, depending
on windfarm topology and other predefined factors, a num-
ber of potential design cases K with unique combinations
of transformer and cable ratings are preselected. Therefore,
component costs, ratings and thermal parameters for each
design case are readily available for the optimization frame-
work. Secondly, in order to ensure the reliability of design,
stochasticity of wind speed and temporal availability of WTs
and transmission system is accounted for through scenario
generation. A set of S scenarios for hourly wind power
generation profile [pu] over windfarm lifetime are generated by
performing ARIMA-based trend analysis of long-term historic
site data (incl. windspeed and direction profiles). Possible
failures and contingency conditions are also pre-simulated in
this step which are based on component reliability indices.

In step 3, for each design case the optimization problem
maximizes the business case over OWF lifetime and deter-
mines the respective optimal number of wind turbines ntur. The
two-level problem deals with operational scenarios and hourly
constraints (incl. component loading, temperatures, ageing,
losses and possible curtailment) at the lower level; whereas, the
upper level manages yearly energy injection and component
lifetime utilization over the windfarm lifetime. Finally, the
component ratings and optimal ntur for the best design case
kopt resulting in maximum NPV are chosen in step 4.

Power	Balance
Losses
Curtailment

Thermal	&	Ageing
Analysis

(STR/DTR)

Select	
optimal
design

case	with	
max	NPV	

Preselect
candidate

design	cases	

Stage	2		
Hourly	operational	constraints

Stage	1	
Yearly	constraints

Energy	
Injection

Comp.	Lifetime
Utilization

Objective	Function

Step	3	-	Run	opt.	problem	over	WF	Lifetime	
for	all	design	cases	individually

Ratings
Parameters
Costs

Step	1

Step	4

Generate
Scenarios

Step	2

Power	gen.	
Profile	[pu]
Component
Availability

No.	of	WTGs
NPV

Fig. 1. Proposed framework for the novel optimization strategy

III. DYNAMIC RATING MODELS OF HV COMPONENTS

As shown in Fig. 2, the HVAC OWF export system is
equipped with nc interlinked parallel circuits consisting of 3-
core subsea cables, two parallel transformers in the OSS, with
optional shunt reactors in the middle for long cables.

A. Cable Thermal Modeling

As per existing industrial practices, the conductor tempera-
ture is limited to 90 ◦C for XLPE insulated cables to ensure
acceptably low rate of thermal ageing over their lifetime [13].
Therefore estimation of conductor temperature is critical for
optimal utilization of HV Cables. The complex TEE model
presented in Fig. 3 can be used to calculate the temperature
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Fig. 2. Typical layout for a large OWF HV export system with three circuits

rise over seabed temperature for cable conductor and serving
represented by ϑcond and ϑserv respectively [21] [22]. The
distributed 3-phase dielectric losses W c

d [W/m] are treated as
constants as they depend upon voltage, cable construction and
design properties. The remaining sources of heat generation
in cables W cond (Ohmic conductor losses = 3Ic2r′ c

ac [W/m]),
W s (screen losses) and W a (armor losses) are load dependent
and time variant, where Ic represents cable load current [A]
and r′ c

ac represents conductor AC resistance [Ω/m] accounting
for skin and proximity effects [25]. Ws and Wa are calculated
by scaling the conductor losses W cond with factors λc

s and λc
a

which are cable construction dependent and can be treated as
constants in this study. The thermal resistances T1, T2 and T3

[m◦C/W] and capacitances [J/m◦C] are treated as constants.
This model has potential shortcomings for 3-core cables in
offshore windfarm applications due to single core equivalency
assumptions [23] and negligence of cyclic load influence
on thermal properties of the back-fill material [27]. But the
compromise between computational speed and accuracy makes
it ideal for this methodology [13] [22].

In order to make the TEE model fit for optimization, a sim-
plified model is proposed in this paper. The simplified model
shown in Fig. 3 (bottom) uses lumped-parameter approach to
merge the losses, thermal capacitances and thermal resistances
for conductor, insulation, serving etc. The total losses W tot c

are simply the sum of all the losses per length referred to the
conductor, calculated using (1); whereas the remaining lumped
parameters Tx and Cx are obtained by training the simplified
model over synthetic data for each cable type and fitting

Fig. 3. Single core equivalent TEE models for 3-core subsea cables. Top:
Complex model [21] [22], Bottom: Simplified lumped model including soil.

the parameters for optimal approximation [24]. The temporal
development of ϑserv and ϑcond representing temperature rise
over ambient seabed temperature for cable conductor and
serving respectively can be calculated using (2) and (3).

W tot c
t = W c

d + 3(1 + λc
a + λc

s)I
c2
t r
′ c
ac (1)

τ ′x
dϑserv

t

dt
=

Tsoil
Tx + Tsoil

ϑcond
t − ϑserv

t (2)

τx
dϑcond

t

dt
= TxW

tot
t + ϑserv

t − ϑcond
t (3)

where the time constants in seconds are determined as:
τx = TxCx and τ ′x = TxTsoil

Tx+Tsoil
Csoil. The thermal resistance

Tsoil and capacitance Csoil for soil are to be made available
beforehand. The lumped-parameter model is inherently conser-
vative for conductor temperature estimation than the complex
TEE model, because the losses are collectively referred to
the conductor. The cautiousness is further ensured by using
conductor resistance r′ c

ac values at 90 ◦C. After applying
Backward Euler approximation with fixed time step ∆t, the
temperatures can be estimated using (4) and (5):

ϑserv
t = a1ϑ

serv
t−1 + a2ϑ

cond
t (4)

ϑcond
t =

1

a3

[
a4ϑ

cond
t−1 + a5ϑ

serv
t−1 + a6W

tot c
t

]
(5)

where the thermal coefficients a are calculated as:

a1 =
τ ′x

τ ′x + ∆t
, a2 =

Tsoil
Tx + Tsoil

(
∆t

τ ′x + ∆t

)
(6)

a3 =
1

1− a2
∆t

τx+∆t

, a4 = a3
τx

τx + ∆t

a5 = a1a3
∆t

τx + ∆t
, a6 = a3Tx

∆t

τx + ∆t

In Fig. 4, the performance of the proposed TEE model based
on the simplified lumped-parameter approach is compared to
the complex TEE model. Two XLPE insulated cables with
Copper conductor 800 mm2 and 1200 mm2 are subjected to
similar cyclic loads scaled to the maximum current carrying
capacities of the respective cables. The simplified model is
observed to be more conservative than the complex one, and
the accuracy of estimation is found to be acceptable for the
lumped-parameter approach. These tests have been carried out
for a variety of Aluminum and Copper conductor cables for
varying sizes with similar results.

Fig. 4. Comparison of simplified and complex TEE models for conductor
temperature estimation using 220 kV subsea, XLPE-insulated, Copper cables
under cyclic load current Ic as test cases. Left: 800 mm2, Right: 1200 mm2
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B. Transformer Thermal and Lifetime Modeling

The rating of transformers is optimized by not only ac-
counting for thermal dynamics, but also the ageing rate
of transformer insulation. The critical Top Oil Temperature
(TOT) and Hot Spot Temperature (HST) are estimated using
the linearized version of the non-linear differential equations
from the industry-wide accepted IEEE C57.91 models [18] for
hourly load and forced cooling conditions [20], as shown in (7)
and (8). These simplifications keep the optimization problem
convex without loss of accuracy [16].

ϑtop
t = b1

(
I trf
t

I trf
rated

)2

+ b2ϑ
amb
t + b3ϑ

top
t−1 + b4 (7)

ϑhst
t = ϑtop

t + ϑhr

(
I trf
t

I trf
rated

)2

(8)

where ϑamb, ϑtop and ϑhst represent ambient temperature,
TOT and HST respectively in ◦C. Both the temperatures
are dependent on per-unit transformer load calculated using
rated and real-time HV side currents I trf

rated and I trf [A]
respectively, while ϑhr [◦C] is the rated HST rise over TOT
for rated load and coefficients b are constants depending on
transformer construction [16] [20]. For optimal utilization
of the transformer, the lifetime model based on Arrhenius
reaction rate theory is used to track the transformer loss of
life over the windfarm lifetime [19], as shown in (9). In this
formulation, λτ represents the cumulative Loss-of-Life LL
[hours] in time duration τ [hours] using the development of
hot-spot temperature ϑhst.

λτ =

∫ τ

0

∆λt dt =

∫ τ

0

e

(
15000

373
−

15000

ϑhst
t + 273

)

dt (9)

C. Shunt Reactor Modeling

Offshore windfarms located > 80 km off the sea coast may
require additional reactive compensation to ensure effective
transmission if HVAC transmission is used. So even though,
50 % of this compensation is performed at the two ends of
the cable in the OSS and Onshore Substation (OnSS), an
additional substation might be needed near the midpoint of the
offshore cable section called Reactive Compensation Station
(RCS), as shown in Fig. 2. Each cable design case k ∈ K will
influence the rating of 3-phase shunt reactors placed in RCS
as it is dependent on cable charging current. This is shown
in (10) and (11) for the assumption of uniform compensation
from each end and stable voltage operation.

Ic
Q =

1

4

(
2πfQ′ cLc Vll√

3

)
× 103 (10)

SSR = 2
(√

3VllI
c
Q

)
(11)

where Ic
Q is the peak charging current at the OSS, OnSS and

RCS ends of the export cable [A] and Q′ c is the capacitance
[µ F/m], both of which vary with cable design case k. Vll and
f are transmission system voltage [kV] and frequency [Hz];
Lc is the length of the export cable [m] and SSR represents
the rating of RCS shunt reactor [kVA].

D. Power Losses Approximation

For export cables, losses for the whole cable are simply
evaluated as W c = W tot cLc. But cable current Ic varies
not only with load (Ic

P) but also along the cable length due
to charging. As discussed earlier, the charging current peaks
only at the OSS, OnSS and RCS ends of the cable. This peak
current Ic

Q can result in overestimation of losses by up to 100%
[25], which is corrected using the approximation 2 from [26].
This is shown in (12) where rc is the total resistance of the
export cable calculated conservatively at 90 ◦C using (13).

W c
t = 3rc

(
Ic2

P t +
1

2
Ic2

Q

)
+W c

dL
c (12)

rc = (1 + λc
a + λc

s)r
′ c
acL

c (13)

Similarly for OSS transformers, losses can be calculated
using (14), where I trf refers to HV side current [A]. The total
winding resistance rtrf [Ω] is referred to the HV side and
W trf
nl represent constant no load losses [W], both of which can

be readily available for each design case during OWF design
phase. For conservatism, constant rtrf values are used at 110
◦C.

W trf
t = 3rtrfI trf2

t +W trf
nl (14)

IV. PROPOSED METHODOLOGY

The objective of the proposed problem is to maximise the
expected net present value of the wind farm by considering
the underlying uncertainty in the wind availability and the
dynamic thermal behavior of HV components.

A. Scenario Generation

For each scenario s in S, time series of wind power pro-
duction Pw is simulated using the methodology in [30] based
on ARIMA models. This approach accounts for the double-
bounded nature of wind power time series by introducing
a limiter that prevents the simulated power to exceed the
nominal values [13]. This methodology is complemented in
this paper by considering a time series of WT availability
Aw [17] and number of available export circuits Ac at every
instant, calculated using reliability indices Mean Time To
Failure (MTTF) and Mean Time To Repair (MTTR).

For an OWF export system equipped with nc parallel
radial circuits, the load is equally divided between all circuits
under normal operation state. During contingency, the number
of available circuits (Ac) reduce and the load has to be
scaled accordingly to ensure maximum transmission. In this
formulation, a Discrete Time Markov Chain (DTMC) model is
used for contingency simulation, which dictates the transition
between one system state to another by taking a probabilistic
determination approach [28].

In Fig. 5, the state transition diagram is provided for the
OWF export system without consideration of common cause
failures. The system can have nc + 1 possible states in total,
and the number of available circuits Ac in each state can
range from nc (normal operation) to 0 (all parallel circuits
failure). For constant failure and repair rates Λ (1/MTTF)
and Υ (1/MTTR), the probability that a component will fail
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Fig. 5. DTMC state transition diagram for a system with nc parallel radial
circuits. Each circle represents a state, values inside the circle present the
number of available circuits Ac in the respective state; while arrows represent
transition probability in each simulation step.

within time-step ∆t is determined using the factor Λ∆t; while
the probability of repair of a failed equipment in this period
is governed by Υ∆t. Reliability indices Λ and Υ of the
circuit [1/hr] are obtained by using the individual values for
subsea cables, transformers and shunt reactors connected in
series, as shown in (15) and (16) [31]. Even with two parallel
transformers per circuit, redundancy is not assumed in order
to add conservatism in design.

Λ = Λc + Λtrf + ΛSR (15)

Υ = Υc + Υtrf + ΥSR (16)

B. Problem formulation

The methodology is formulated as a two-stage stochastic
problem, where the first stage considers the investment deci-
sion, i.e., the optimal number of wind turbines for a given
design case, and the second stage models each scenario in an
hourly operational time-frame indexed with t. The objective
function includes a cost term C0, depending on the design case
under consideration, and a revenue term Rs with an associated
probability πs, which depends on the energy sold to the grid
in each scenario s. The problem is compactly formulated as:

max
Ξ

(
−C0 +

∑

s∈S
πsRs

)
(17a)

s.t. (21), Wind farm size,
(22)− (23), Power Balance, ∀s,∀t
(25)− (28), Load & Losses approx., ∀s,∀t,∀j
(35)− (37), Thermal dynamics, ∀s,∀t
(38)− (39), Aging dynamics, ∀s,∀t,∀y

where Ξ is the list of decision variables which are described
together with the associated constraints in the following.

1) Objective Function: The first term in the objective func-
tion models the initial investment cost of the windfarm. The
formulation in (18) considers three elements: cost of turbines,
cost of HV export system Cexp depending on preselected
design case k and fixed costs Cfix which are not influenced
by minor changes in OWF size and transmission system.

C0 = nturctur + Cexp
k + Cfix (18)

Cexp
k = ncLccc

k + ntrfctrf
k + nSRcSR

k +

2coss (ntrfmtrf
k + nSRmSR

k

) (19)

where the integer values n represent number of turbines
(tur), cables (c), transformers (trf) and shunt reactors (SR);
c represents cost functions for each component in e, except
cable costs cc [e/km] and weight dependent costs of OSS/RCS
coss [e/tonne] which are linked with transmission system
length Lc and component masses m [tonnes] respectively.
Consequently the influence of varying oil-filled components
rating on foundation costs of substations are also accounted
for. The sole decision variable in C0 is the number of turbines
ntur, which sets the size of the wind farm and affects the power
flow on the export system in the operational frame-work. The
revenue stream in each scenario is modelled with Rs, which
considers yearly values depending on yearly injected energy∑
P inj

Rs =
∑

y∈Y

γ

(1 + i)y

∑

t∈T
P inj
t,s (20)

where i is the discount factor, γ is the price at which energy
is sold [e/MWh] and P inj

t,s is the power [MW] injected in
each hour for each scenario. The approach in the proposed
methodology assumes that yearly revenues generated from
selling the energy to the grid are repeated every year.

2) Wind Farm Size: The size of the wind farm for each
design case is limited by the first-stage decision variable ntur

with constraint in (21), where ntur and ntur model min and
max number of turbines that can be installed, respectively.

ntur ≤ ntur ≤ ntur (21)

3) Power Balance: For each operational hour, contingen-
cies in (22) - (23) ensure power balance in the system, while
(24) determines the generated power for each scenario of WT
availability Aw [pu] and OWF generation profile Pw [pu].

P gen
t,s − P cut

t,s −Ac
t,s

(
W c
t,s − 2W trf

t,s −W SR)− P inj
t,s = 0 (22)

0 ≤ P cut
t,s ≤ P gen

t,s (23)

P gen
t,s = Aw

t,sP
w
t,sS

turntur (24)

where P gen, P cut and P inj represent hourly generated, curtailed
and injected powers [MW], while W identifies load-dependent
hourly MW losses in each component. The rating of WT Stur

[MW] and hourly availability of circuits Ac [pu] are predefined
during pre-design and scenario generation phases respectively.

4) Component Load and Losses Approximation: The hourly
load current for cables Ic and transformers HV side I trf in
[A] are determined using (25)-(26), where Vll is the line-
to-line transmission system voltage, while Strf

rated and I trf
rated

represent transformer MVA rating and rated HV-side current
[A] respectively. The currents are not constrained in this
formulation for DTR operation.

Ic
P t,s =

1

Ac
t,s

(P gen
t,s − P cut

t,s )√
3Vll

(25)

I trf
t,s =

1

2Ac
t,s

(P gen
t,s − P cut

t,s )

Strf
rated

I trf
rated (26)

Referring to (12) and (14), component losses are modelled
with piece-wise linear approximation method after expressing
the currents Ic and I trf as sets of j linear inequality constraints
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with slope p and intercept q in (27)-(30), as shown in Fig. 6.
The intercept term qj also accounts for no-load losses.

W c
t,s ≥ pc

jI
c
P t,s + qc

j (27)

W trf
t,s ≥ ptrf

j I
trf
t,s + qtrf

j (28)

qc
j = qc

j0 +
3

2
Ic2
Q r

c +W c
dL

c (29)

qtrf
j = qtrf

j0 +W trf
nl (30)

5) Thermal Dynamics: Reformulation of (4)-(5), gives tem-
poral development of cable conductor temperature rise in (31)-
(32); while (7)-(8) are combined with (14) to determine trans-
former critical temperatures linearly in (33)-(34). The limits
on these quantities are enforced with the set of constraints in
(35)-(37), where ϑsea is the nominal sea-bed temperature. ϑc is
conservatively limited to 90 ◦C, while incautious emergency
loading limits of 115 and 140 ◦C are used for transformer ϑtop

and ϑhst respectively [18].

ϑserv
t,s = a1ϑ

serv
t−1,s + a2ϑ

c
t,s (31)

ϑc
t,s =

1

a3

(
a4ϑ

c
t−1,s + a5ϑ

serv
t−1,s +

a6

LcW
c
t,s

)
(32)

ϑtop
t,s = b1

(
W trf
t,s −W trf

nl

3rtrfI trf2
rated

)
+ b2ϑ

amb
t,s + b3ϑ

top
t−1,s + b4 (33)

ϑhst
t,s = ϑtop

t,s + ϑhr

(
W trf
t,s −W trf

nl

3rtrfI trf2
rated

)
(34)

ϑc
t,s ≤ ϑc − ϑsea

t,s (35)

ϑtop
t,s ≤ ϑtop (36)

ϑhst
t,s ≤ ϑhst (37)

6) Aging Dynamics: The reliability of transformer design
is further ensured by limiting its lifetime utilization. To keep
the optimization problem convex, the exponential function in
(9) is linearized piece-wise in (38), as shown in Fig. 6. The
cumulative yearly LL is limited to λ = 8760 × 17.12/ΠWF,
where ΠWF is the OWF design lifetime [yr] and 17.12 is the
rated transformer life in years at constant ϑhst

rated as per [18].

∆λt,s ≥ plϑhst
t,s + ql (38)

λy,s =
∑

t∈T
∆λt,s ≤ λ (39)

Fig. 6. Piecewise approximation of non-linear functions. Left: Square function
for losses with J = 15 cuts for 100 km long 1600 mm2 Cu cable. Right:
Exponential function for transformer life with L = 30 cuts

V. TEST CASE OWF TRANSMISSION SYSTEM

An actual windfarm off the east coast of UK has been
used as inspiration. The test case OWF export system consists
of three interlinked parallel circuits, like the one in Fig. 2.
Each circuit comprises of 2 parallel 66/220 kV transformers
(ntrf = 6) and one 100 km long 3-core XLPE subsea cable
with Copper conductor (nc = 3). Reactive compensation is
performed at the mid-point of the cable by three 3-phase shunt
reactors (nSR = 3). In total, there are three OSS and one RCS,
while the design lifetime (ΠWF) of 30 years is considered.
A total of S = 30 scenarios of Pw, WT availability Aw

and number of available export circuits Ac
t are simulated for

duration of T = 8760 hr (1 year) each.
For benchmarking, the optimization algorithm has been run

with STR and compared with the results for DTR to assess
the improvement in business case due to dynamic rating. For
base test case with STR, called BaseSTR, constraints for OWF
Size (21), Thermal and Ageing Dynamics (35)-(39) are not
relevant. Instead the windfarm is rated at 1197 MW (ntur

base =
171, Stur = 7 MW) with 250 MVA OSS transformers and
1600 mm2 cables and the load I in (25)-(26) are constrained
to 1 pu. For all the DTR test cases, ntur is limited between
143 and 200; where as the pre-selection of candidate designs
considering the network configuration, base OWF size and
manufacturer availability is performed. There are 5 transformer
and 4 cable sizes that are found to be appropriate, as shown
in Table I. Therefore, 20 candidate design cases K = {Trafo
[MVA], Cable [mm2]} are considered: {T250, C1600}, {T250,
C1400}... {T150, C1000}. All the parameters necessary for
test case simulation, with the exception of thermal coefficients,
are provided in Table I.

TABLE I
SHORTLISTED COMPONENT SIZES FOR CANDIDATE DESIGN CASES

Component Parameter Design Cases

Transformer
Strf
rated [MVA] 250 225 200 175 150
rtrf at 110C [Ω] 1.64 2.49 2.98 3.65 4.12
W trf
nl [kW] 74.14 67.33 61.42 55.63 49.18

Cable

Cond. Size [mm2] 1600 1400 1200 1000 -
Sc
rated (STR) [MVA] 417 404 387 370 -
Ic
rated (STR) [A] 1095 1060 1016.5 971 -
r′ c
ac at 90C [µΩ/m] 16.02 17.31 19.11 21.18 -
Qc [µF/km] 0.214 0.201 0.190 0.178 -

Shunt Reactor SSR
rated [MVAr] 165 152 143 135 -

As per the latest auction results, discount rate i = 6.75%
and γ = 44.9 [e/MWh] are used similar to the strike price
of the 1.2 GW Doggerbank Creyke Beck A [1]. For all the
design cases, the cost and mass of oil-filled components can be
empirically derived using (40) [15], such that Z is replaced by
the relevant parameter (c or m). Similarly for XLPE insulated
subsea cables with Cu conductor, the cost can be calculated
using (41), where coefficients g1, g2 and g3 are dependent on
nominal voltage of the cable [4]. Remaining cost parameters
incl. ctur, coss and Cfix are obtained from [32].

Z trf,SR
k = Zbase

(
Strf,SR
rated,k

Strf,SR
base

)3/4

(40)

cc
k = Lc

(
g1 + g2 e

g3I
c2

rated,k

)
(41)
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VI. RESULTS AND DISCUSSION

A. Economic Analysis

In order to benchmark the results, design case {T250,
C1600} from Table I with STR (BaseSTR) is used for reference.
The optimization problem is then solved separately for all
the 20 design cases in K with DTR. In Fig. 7, the optimal
number of wind turbines ntur and the change in optimal NPV
for each design case with respect to BaseSTR are provided.
For the test case windfarm, the business case has significantly
improved by the mere application of DTR. For design case
{T250, C1600} with DTR (BaseDTR), NPV increases by 327
Me by installing 200 turbines compared to 171 for BaseSTR
case and by reducing power curtailment during contingency,
as shown by efficiency of design (η) in Table II.

The highest NPV increase is observed for the {T200,
C1400} design case (Optimal), which is 51 Me higher than
(BaseDTR) and employs 191 turbines. Referring to η in Table
II, the Optimal case results in slightly higher curtailment
than (BaseDTR) during contingency, but the savings in initial
investment outweigh the revenue losses, which also results in
lowest LCOE [ e

MWh ] for the Optimal case. Similarly, the OSS
transformer is severely underutilized by the end of windfarm
lifetime for the two Base cases, as compared to the transformer
lifetime utilization LL [%] for the Optimal case.

B. Dynamic Rating and Component Utilization

DTR allows ϑhst to be limited to emergency cyclic limits of
140 ◦C [18] and ϑc to 90 ◦C [21]. The histograms provided
in Fig. 8 for the Base {T250, C1600} and Optimal {T200,
C1400} cases suggest that both the transformers and the cables
operate close to the respective thermal limits more often for
the Optimal case. Furthermore, for the scenario with simulated
contingency, the thermal stress is higher for both the Base and

Fig. 7. Results of the opt. problem for all the design cases in K. Change in
optimal NPV (∆NPV) is provided with respect to BaseSTR for each case

TABLE II
ECONOMIC AND EFFICIENCY RESULT PARAMETERS

Parameter Design Case
Label Unit Formula BaseSTR BaseDTR Optimal
LCOE [ e

MWh ] Co(1+i)y
∑

y∈Y
πs

∑
s∈S

∑
t∈T

P
inj
t,s

32.62 30.45 29.56

η [%]

∑
y∈Y

∑
s∈S

∑
t∈T

P
inj
t,s

∑
y∈Y

∑
s∈S

∑
t∈T

P
gen
t,s

97.15 98.61 98.13

LL [%]

∑
y∈Y

πs
∑

s∈S
λy,s

8760 ΠWF 1.25 3.5 62

Fig. 8. Histograms for transformer HST ϑhst and cable conductor temperature
ϑc (incl. seabed temp. ϑsea) for two scenarios in S (with & without
contingency) for Base{T250, C1600} & Opt.{T200, C1400} cases

Fig. 9. System availability Ac and transformer loss-of-life LL (days) for
scenario with contingency.

Optimal cases because component utilization is stretched to the
limits to ensure maximum energy transfer during contingency.

In Fig. 9, the optimal transformer loss-of-life LL for one
of the simulated scenarios in S with contingency are provided
for different design cases in K. As the available circuits Ac

reduce to 2 around the 150th day, the additional thermal stress
due to increased loading results in higher LL. This is most
significant for the Optimal case, while minor for BaseDTR.
The Non-Optimal case of {T175, C1600} results in optimal
LL in this scenario as it is closest to the rated value by the
year-end, but doesn’t provide the best business case.

C. Power Balance and Component Load during Contingency

For the scenario discussed above, the cable load current and
power curtailment are provided in Fig. 10. As Ac reduces to 2,
Ic goes beyond the rated 1 pu value regularly for the BaseDTR
and Optimal cases, while power needs to be curtailed for the
BaseSTR case. Around the 155-day mark, some curtailment is
also needed for the Optimal and BaseDTR cases because ϑc

and ϑhst reach their respective limits, as shown in Fig. 11.

VII. CONCLUSION

A comprehensive, Dynamic Thermal Rating (DTR) based,
two-stage stochastic model has been put forward in this paper,
which can be used as investment decision support for OWF
design and HVAC-based transmission system optimization.
The two-stage problem resolves investment decision by defin-
ing optimal windfarm size in the first stage and DTR-based
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Fig. 10. Scenario with contingency. Top: system availability Ac and load
current Ic. Bottom: curtailed power Pcut [pu] with Pgen as base.

Fig. 11. Transformer HST ϑhst and cable conductor temperature ϑc (incl.
seabed temp. ϑsea) in contingency scenario for Base{T250, C1600} &
Opt.{T200, C1400} cases. Respective thermal limits are also mentioned.

component ratings with the inclusion of scenarios of stochas-
ticity in wind generation and transmission system reliability
in the second stage. The proposed lumped TEE model for HV
subsea cables is proven to be fit for linear optimization with
acceptable accuracy. The application of the proposed meth-
odology on an actual test case windfarm indicates that mere
application of DTR during operation increases the business
case significantly which is further improved by DTR-based
design. This engineering model can be used as a decision tool
for design optimization and planning of large OWFs and their
transmission systems, as it is generic enough to be expanded
to different topologies of HVAC-based OWF transmission.
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Abstract— With recent developments and cost reduction, 

offshore windfarms are set to lead the energy markets of the 

west by 2030. This development can further be accelerated if the 

wind intensive periods can be utilized efficiently by optimizing 

the limited network capacity and if the energy output is 

increased during contingency outages. Therefore, dynamic 

rating operation of components that are primary system 

bottlenecks becomes crucial. This paper identifies potential 

bottlenecks in offshore windfarm export systems and provides 

an extensive state-of-the-art review of dynamic thermoelectric 

models which are applicable for real-time loadability assessment 

of the identified components. The loadability of these 

components is directly dependent on their thermal state, which 

is evaluated based on analytical solutions of the dynamic 

thermoelectric model, including the complicated heat transfer 

and temperature development phenomena in the identified 

components. Moreover, potential risks of using these models for 

offshore windfarm applications are also identified. 

Keywords— Dynamic thermal rating, cable, thermoelectric 

modelling, offshore windfarm, renewable integration, transformer 

I. INTRODUCTION  

Wind energy is a major contributor to the annual 
electricity generation in Denmark [1] and it is projected to 
increase even further by 2030 [2] in order to keep up with the 
targets defined by the Danish Government’s ‘Energy 
Agreement’ of 2018 [3]. A sizable portion of this increment is 
bound to be delivered by Offshore Wind Power Plants 
(OWPPs). But bottlenecks in OWPPs export systems and the 
system improvement costs related to resolving these 
bottlenecks are major barriers to this prognosis [4], [5]. 

Some bottlenecks can be removed and the unused potential 
of some of the major components of OWPP export systems 
can be exploited by switching to Dynamic Thermal Rating 
(DTR) instead of using static rating based on conservative 
assumptions including continuous full load, high solar 
radiation, and fixed ambient temperatures [6]. The majority of 
publications on DTR so far have focused on overhead lines 
(OHLs), including extensive thermal modeling, inclusion of 
weather forecasts [7], [8] and innovative real-time sag 
measurement [9] to effectively increase the dynamic rating 
based operation. However, OHLs do not play such an 
influential role in the debottlenecking of offshore windfarms.  

Therefore, the attention must shift to all the remaining 
components which include transformers, subsea and 
underground cables, shunt reactors, HV filters, compensators, 
MV/HV switchgears, CTs, VTs, Circuit Breakers etc. These 
components can be prioritized based on their impacts on 
system’s loadability and bottlenecks. Utilization of real-time 
monitoring techniques can contribute to raise the possible 
loading of some of these components above the static limit 
99% of the time. Similarly, a handful of publications claim 
that the conservative static limits can be exceeded by 30% of 
the limit about 90% of the time using the DTR principle [10]. 

The characteristic loadability of underground cables is 
typically based on the international standard IEC 60287 [11] 
and the cyclic ampacity is based on IEC 60853 [12] along with 
certain recent CIGRE publications discussing the optimization 
of these standard models using Distributed Temperature 
Sensing (DTS) and Real Time Thermal Rating [10], [13]. This 
provides sufficient information for HV cables, but little to no 
work has been done for rest of the identified components.  

The dynamic loading guides for power transformers 
disseminated by IEEE [14] and IEC [15] have evolved since 
the early 1990’s and these guides are still subjects of 
development, whereas the CIGRE Brochure 659 [16] provides 
an extensive overview on the topic. The integration of 
distributed generation in existing electrical infrastructure has 
shifted the focus towards short term dynamic rating of 
transformers as well, which can be used for OWPP export 
system optimization and debottlenecking [17], [18].  

The measurement of critical temperatures variation with 
load in HV/MV cables and oil-filled transformers using fibre-
optic sensors like DTS is often costly and even unavailable. 
Moreover, these solutions are not perfect for real-world 
applications because the sensors may not be able to locate 
hotspots or may not determine the exact conductor or winding 
temperature. Therefore, dynamic thermal estimation of these 
components is performed using thermal modeling techniques, 
predominantly based either on the Finite Element Method 
(FEM) and Computational Fluid Dynamic (CFD) [16], [19] or 
on Thermoelectric Equivalent (TEE) circuits representing the 
heat flow equations using the thermoelectric analogy [20]. 
The accuracy of CFD and FEE modelling is higher than the 
latter approach and these can also allow determination of 
complete temperature distribution under the assumption that 
all thermal parameters are known. But the advantages offered 
by TEE models like the simplicity of design, easy availability 
of input parameters, minimal computational requirements and 
the adaptability for components with different construction 
and design features make the TEE modelling technique an 
ideal tool for optimized dynamic operation [11], [21]. 

This paper reviews the state-of-the-art for thermoelectric 
modelling and dynamic rating of two major components of the 
OWPP export system: HV/MV cables and transformers. The 
potential issues and risks involved in using the prominent 
methods for dynamic modeling of these components in 
windfarm applications are also discussed. The remaining 
paper is organized as follows: Initially, section 2 unfolds the 
simplified transmission system for OWPPs and identifies the 
critical components that cause constrictions in the system. 
Later, sections 3 and 4 present state-of-the-art for dynamic 
thermoelectric modeling of transformers and cables 
respectively. The state-of-the-art includes a review of 
recommended loading guides by IEC, IEEE and CIGRE, 
along with some prominent publications discussing 
conventional and advanced models. 



II. OPTIMIZATION OF OWPP EXPORT SYSTEMS  

The Offshore Wind Power Plant (OWPP) export system 
based on HVAC technology, as identified in Fig.1, has an 
offshore substation close to the wind turbines and an onshore 
substation on land which serves as an interface between the 
export system and the transmission grid. Whereas the number 
of reactor substations depends upon the windfarm’s distance 
from the shore. This system consists of a number of HV 
components ranging from HV/MV cables and transformers to 
Shunt Reactors, HV filters, Gas Insulated Switchgears (GIS) 
and compensators (incl. STATCOM, FACTS, SVC etc.).  

The long export cables (underground and subsea) are used 
rather conservatively because of the associated capital 
investment and are known to be the primary bottlenecks in this 
system. On the other hand, the system bottleneck can often 
move to the main transformers during contingency or 
planned/unplanned maintenance. Moreover, both these 
components are often over-dimensioned and consequently 
underutilized [22]. Therefore, optimized utilization of these 2 
components using dynamic rating beyond their design limits 
for certain periods becomes crucial for optimization of OWPP 
export system. Publications discussing the utilization of 
unused potential of components including reactors, HV filters 
and GIS are rare, primarily because this is seldom a problem 
in today’s system. Based on this analysis, this paper focuses 
only on thermal estimation of transformers and cables for 
offshore windfarm transmission systems.  

 

 
Fig. 1.   Simplified layout for offshore windfarm export system 

III. THERMOELECTRIC MODELLING OF TRANSFORMERS 

The loading capability of a transformer is directly 
dependent on its Hot Spot (HST) and Top Oil (TOT) 
temperatures [14], [23]-[24]. In order to optimize the electrical 
export systems of offshore windfarms with transformers as 
one of the bottlenecks, real-time estimation of HST and TOT 
to calculate their dynamic loadability is a cost-effective 
solution. However, the estimation of these temperatures in oil-
filled transformers is difficult as compared to cables because 
of the complicated heat transfer phenomenon [25].  

The Thermoelectric Equivalent (TEE) methodology uses 
the analogy between principles of thermodynamics and 
charge/discharge mechanism of the RC-circuit, which makes 
it easier to grasp for electrical engineers [26]. The structures 
of almost all the differential equations-based TEE models 
discussed in this paper are directly or indirectly inspired by the 
circuit of Fig. 2 based on (1), which was originally coined in 
[27], [28] for temperature development in electrical machines 
and is also known as the Exponential Law.  

 
𝑞 = 𝐶𝑡ℎ

𝑑𝜃′

𝑑𝑡
+  

𝜃′ − 𝜃 

𝑅𝑡ℎ
 

(1) 

Here q represents the heat generated by losses (analogous 
to current), 𝜃′ − 𝜃 is the temperature difference (analogous to 
voltage), while 𝐶𝑡ℎ and 𝑅𝑡ℎ are the thermal capacitance and 

thermal resistance (analogous to electrical capacitance and 
resistance) and t represents the time. The TEE circuit of Fig. 2 
can be used to estimate both the TOT and HST for 
transformers by substituting the relevant variables with the 
parameters of Table I, as originally suggested by Swift in [26]. 
Where qfe and qwdg represent iron and winding copper losses; 
𝜗 tot , 𝜗 hst and 𝜗 amb are the top-oil, hot-spot and ambient 
temperatures respectively; Rth oil-air and Rth wdg-oil are non-linear 
oil-to-air and winding-to-oil thermal resistances; Cth oil and Cth 

wdg represent the thermal capacitance for oil and winding.      

 
Fig. 2.   Generic thermoelectric equivalence circuit for transformer 

temperature estimation (Hot-Spot and Top-Oil) [26] 

TABLE I.  PARAMETERS FOR TOT AND HST ESTIMATION (FIG. 2) 

Variable TOT HST 

q qfe + qwdg qwdg 

θ' 𝜗tot 𝜗hst 

Rth Rth oil-air Rth wdg-oil 

Cth Cth oil Cth wdg 

θ 𝜗amb 𝜗tot 

A. Historical Development of Transformer TEE Models  

The TEE models presented in renowned loading guides 

by IEC and IEEE have certain limitations. Therefore, over the 

years numerous publications can be found offering 

simplifications, clarifications and recommendations for 

improvement of these guides. Some of the prominent ones 

along with the international loading guides are mentioned. 

1) IEEE C57.91 Loading Guide [14], [29]–[31]: 

The industry-wide accepted loading guides of IEEE [14], 

[29]-[31] have evolved significantly over the last 3 decades. 

These guides utilize the exponential law of (1) or its 

approximation to calculate the final TOT and HST rise. The 

ultimate temperature rise is estimated using the principle that 

the generated heat q is dissipated through conduction, 

convection and radiation. Whereas, the Poisseulle’s law of 

flow is applicable with the assumption that there is minimal 

turbulence in the oil ducts, as suggested by Montsinger in 

[32]. Consequently, the impact of transformer cooling modes 

is considered. A number of publications prove that these 

models perform inadequately for low 𝜗amb, and the calculated 

temperature rise is vulnerable to transients and load changes, 

which is extremely important for windfarm applications 

because of wind energy’s intermittent nature [33]-[35].  

2) IEC Loading Guides [15], [20], [23]: 

The former IEC loading guide 60354 [15] and its 

improvements 60076 [23]-[24] propose 2 different methods: 

differential and exponential. The former is the same as IEEE 

C57.91; while the latter, exponential-based, is only suitable 

for step-load change and is dependent on arbitrarily obtained 

parameters. This uncertainty is resolved by a number of 

publications discussing extension, parameter estimation and 

experimental elaboration for the exponential model of IEC 

60076-7 [36]-[38]. However, the dependence of this model 

on transformer construction-specific parameters obtainable 



only through prolonged heat-run tests makes it impractical for 

widescale OWPP optimization. 

3) Swift et al. [26], [39] (2001): 

The simplified description of the thermal-electrical 

analogy based on the convective heat transfer and its 

application to determine a transformer’s HST and TOT are 

discussed in this model. Like the differential models of 

loading guides, it is essentially based on Fig. 2, i.e. it assumes 

the conditions for lumped capacitance, but it distinctively 

introduces two different circuits for heat transfer: winding-to-

oil and oil-to-air. The impact of cooling mode is also 

addressed differently. The reasons for its limited accuracy are 

addressed in [40] and [41]. 

4) Susa et al. [33]-[34], [42]-[43] (2013) 

The time delay between TOT and HST rise, as measured 

and quantified in [25], results in HST which is higher than the 

one calculated by IEC loading guides. The model in [33] 

builds upon the discussion of Swift’s model and incorporates 

the impact of temperature change on the thermal 

characteristics of transformer oil in TOT and HST 

calculations, thereby increasing the accuracy of calculations 

during transient states. The model focuses on the non-

linearity of the thermal resistance and primarily includes oil 

viscosity changes and loss variations with temperature, and it 

is further improved in [34] and [42]. 

5) Djamali [17], [18] (2017) 

The model calculates the TOT for indoor distribution 

transformers and extends the findings of Swift and Susa by 

further addressing the heat transfer due to conduction, 

radiation and ventilation in the transformer room. Therefore, 

the transformer’s loadability can be estimated using the 

room’s ventilation temperature. Transformers in offshore 

platforms can be placed indoors with controlled temperature, 

therefore the analysis seems practically viable. 

6) Josue [44] (2012) 

Like Susa, this model modifies the IEC 60076-7 loading 

guides by investigating the variation of transformer oil 

viscosity with temperature, along with the dependence of 

winding losses on temperature. The oil temperature is 

equated to the HST to determine the change in its viscosity 

and simulate the extreme condition. 

7) Miscellaneous Models 

Besides the models mentioned above, there are many 

models that suggest improvements to the loading guides. For 

example, [45] investigates the influence of weather 

conditions (including wind speed and solar radiation) on 

transformer’s TOT, [37] extends these models for smaller 

transformers, while [38] assesses a transformer’s overload 

capability by estimating standardized error in TOT 

calculation but uses the design information of the transformer 

to estimate the heat transfer modes in it. On the other hand, 

[46] offers a unique perspective of identifying the sources of 

errors in dynamic modeling of transformers. 

8) Machine Learning based Models 

With the increasing computing capacity, the use of 

machine learning to effectively calculate the TOT and HST 

of transformers has also been discussed from time and again. 

Tang et al. in [47], [48] take the inspiration from artificial 

neural networks to use a genetic algorithm for identification 

of global solutions to estimate thermal parameters Rth and Cth. 

The model also incorporates the impact of cooler states 

(on/off) prior to parameter estimation. Similarly, [49] uses the 

same approach for cast-resin dry-type transformers. Other 

methods range from neural networks [50] to neuro-fuzzy ones 

[51]. Moreover, the practicality of using evolving fuzzy 

networks is also evaluated [52]. However, the application of 

such models would require ample training data, which is 

unfortunately not readily available in today’s power systems. 

B. Structural Evaluation of Selected Models 

The evaluation of TOT and HST estimation for 3 main 

differential equations-based TEE models is performed. The 

loading guides models, originally presented as exponential 

solutions in [24], [29], are converted into the respective 

differential equations to maintain structural homogeneity.  

1) Loading Guides IEC and IEEE [24], [29] 

𝜏0  
𝑑𝜗𝑡𝑜𝑡

𝑑𝑡
 = ∆𝜗𝑜𝑟 (

𝐾(𝑡)2 𝑅 + 1

 𝑅 + 1
)

𝑛

 − [𝜗𝑡𝑜𝑡(𝑡) −  𝜗𝑎𝑚𝑏(𝑡) ] (2) 

𝜏ℎ  
𝑑𝜗ℎ𝑠𝑡

𝑑𝑡
 =  ∆𝜗ℎ𝑟 𝐾(𝑡)2𝑚 −  [𝜗ℎ𝑠𝑡(𝑡) − 𝜗𝑡𝑜𝑡(𝑡)]  (3) 

2) Swift et al. [26], [39] 
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1
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1
𝑛 (4) 
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𝑑𝜗ℎ𝑠𝑡
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1
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1
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3) Susa et al. [33], [34] 

𝜏0  
𝑑𝜗𝑡𝑜𝑡

𝑑𝑡
 =  ∆𝜗𝑜𝑟 (

𝐾(𝑡)2 𝑅 + 1

 𝑅 + 1
) − (
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𝜗ℎ𝑠𝑡(𝑡) −  𝜗𝑡𝑜𝑡(𝑡)

[𝜇𝑝𝑢(𝑡) ∆𝜗ℎ𝑟]
1−𝑚′)

1/𝑚′
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Where 𝜗𝑎𝑚𝑏  is the ambient temperature (oC);  K is the 

transformer load current in p.u. with rated load current as 

base; 𝜗𝑡𝑜𝑡 and 𝜗ℎ𝑠𝑡 are the calculated Top Oil and Hot Spot 

Temperatures respectively, expressed in oC; R is the ratio of 

load losses to no-load losses at rated load; ∆𝜗𝑜𝑟 is the TOT 

rise over ambient temperature 𝜗𝑎𝑚𝑏  at rated load (oC), while 

∆𝜗ℎ𝑟 is the rated HST rise over TOT for rated load of 1 pu. 

The estimation of 𝜇𝑝𝑢 (temperature dependent oil viscosity 

in pu) and 𝑃𝑝𝑢(𝜗ℎ𝑠𝑡) (variation of load losses with HST in pu) 

can be performed using [33], [34]. The empirically derived 

exponents n, m, n’ and m’ have been extensively researched 

for almost a century and the values vary with the transformer 

cooling mode (i.e. ONAN, ONAF etc.), the mass distribution 

of transformer components [30] and oil flow type (i.e. the 

presence or absence of turbulence in oil flow) [25], the values 

for which are provided in Table II [24], [34].  

The thermal time constants for oil 𝜏0 and winding 𝜏ℎ are 

usually obtained using the heat run test, but 𝜏0 can also be 

estimated using slightly differing methods. The IEEE guides 

[29], [30] use manufacturer-defined rated losses and ∆𝜗𝑜𝑟 for 

ODAF cooling (n, m = 1) but require additional manipulation 

for (n < 1). Similarly, IEC 60076-2 [20] uses real-time load-

dependent temperature rise, while IEC 60076-7 [24] 

recommends using the average oil temperature rise instead. It 



must also be mentioned that IEC 60076-7 recommends the 

use of a correction factor (<1) for oil time constants to 

compensate for the mismatch between the time constants for 

top oil and average oil in ONAN and ONAF transformers, as 

scrutinized by Nordman et al. in [25]. All of these techniques 

require detail information regarding the mass and material of  

different transformer components (winding, oil, core etc.). 

Referring to (2) – (7), it can be concluded that the basic 

structure of the 3 selected models is similar. The first-order 

non-linear differential equations have 3 basic terms: Rate of 

temperature change on the left-hand side, Heating-term 

which is dependent on load losses and Cooling-term which is 

dependent on relevant temperature difference. The inclusion 

of oil viscosity in Susa (6)-(7) is accurately reflected in the 

cooling-term.  The major difference in the 3 models is the 

location of empirical constants. The models from loading 

guides (2)-(3) and Swift (4)-(5) distinctively place these 

constants on the heat-in term, while the Susa model does 

otherwise, which appears to be thermodynamically accurate. 

TABLE II.  EMPIRICAL CONSTANTS FOR IEEE [29], SWIFT [26] 

AND SUSA [34] MODELS 

Transformer Cooling Mode 
IEEE C57.91 Susa et al. a 

n m n' m' 

Oil Natural Air Natural (ONAN) 0.8 0.8 0.8 0.67 

Oil Natural Air Forced (ONAF) 0.9 0.8 0.83 0.67 

Oil Forced Air Forced (OFAF) 0.9 0.8 0.83 0.67 

Oil Directed Air Forced (ODAF) 1.0 1.0 0.83 0.67 
a. Values for onload condition (circulating oil) with external cooling are provided 

C. Discussion regarding DTR of Transformers in OWPP 

The models presented earlier have some inherent 

limitations for OWPP application. IEEE and IEC loading 

guides have accuracy limitations, Swift models perform 

inadequately when forced convection is used for cooling, 

whereas the complexity of the other methods make them less 

suitable for real-time dynamic rating applications.  

The various sources for harmonics amplification in 

OWPPs including long HVAC cables, power electronic 

converters etc. [53] can increase the lifetime reduction 

phenomena in transformers for rated load. Therefore because 

of increased losses, load reduction becomes necessary [29], 

[54]. Hence, the incorporation of these losses in transformer 

DTR modelling is compulsory for accurate HST and TOT 

determination. Similarly, the transformer oil viscosity can 

vary significantly with temperature and this variation 

depends on the type of oil used and the variation is maximum 

for low ambient temperatures, which is common in OWPP 

applications [55]. The development of TOT and HST is 

therefore influenced by the type of transformer oil because 

viscosity affects the flow patterns and convective cooling. 

IV. CABLES LOADABILITY & THERMOELECTRIC MODELLING  

As already discussed, cables used to transmit energy from 
offshore substations to the onshore ones are known to be the 
primary bottlenecks in OWPP export systems. This is true 
primarily because the associated capital costs restrict the 
potential provision of multiple subsea cables. Therefore, 
optimized loadability of cables is extremely important for a 
good business case. Only HVAC cables are discussed here. 

A. Determination of HV/MV Cables Loadability for OWPP 

Like the remaining HV electrical components, the 
temperature of the insulating material defines the loadability 

of power cables [11]. Several cable manufactures propose 90 
oC to be the upper limit for the conductor temperature for 
Cross-Linked Poly-Ethylene (XLPE) insulated cables for 
cyclic load, in order to prevent the dielectric and mechanical 
strength of the cables from deterioration and to preserve 
cables’ life [12]. The dependence of XLPE cables’ properties 
on temperature and the impacts of thermal ageing have been 
critically investigated since the introduction of these cables 
more than 4 decades ago. These properties include thermal 
resistivity, specific heat, electrical breakdown strength under 
AC and impulse voltages, tensile strength, electrical 
resistivity, permittivity (dielectric strength) and loss factor 
(tan delta) [56]-[58]. The investigation results are documented 
in some prominent publications [59 – 63].  

The loadability of cables can either be defined for a 
permanent period (until end of life) called steady load (IEC 
60287) or for shorter duration called dynamic load. In both 
cases, the physical limitations of the cables are never violated. 
Dynamic loading (IEC 60853) ensures optimal utilization of 
cables and can usually be of two types: cyclic (daily load 
cycles) or emergency (short durations) [12], [63]-[64]. Even 
though, these loading limits are extremely useful in OWPP 
applications owing to wind energy’s intermittent nature, these 
are not readily used because of reasons already discussed.   

B. Dynamic Thermoelectric Modelling of HV/MV Cables 

As mentioned earlier, determination of OWPP cable HST 
for real-time DTR application is practically feasible only if 
appropriate thermoelectric models capable of performing 
online calculations of cable core or insulation temperature are 
used [65], which is not possible using IEC 60287 and 60853. 
An extensive literature review reveals that the major thermal 
models can be divided into three categories: FEM-based, 
Laplace transformation-based and Differential equation-based 
models, out of which only the last 2 models qualify as 
thermoelectric ones. It must also be mentioned that the exact 
implications of these methods are not documented well 
enough, essentially because different manufacturers and 
consultants employ these models in commercially available 
software such as [66]-[70]. Keeping the discussion aligned 
with Section 3, this section focuses particularly on Laplace 
and differential-based models. 

1) Laplace-based Models 
Laplace transformation-based methods (IEC 60853) 

utilize the exponential integrals to determine conductor 
temperature development during load change [58], [63]. The 
models proposed in [57], [71] use exponential integrals to 
evaluate the dynamic thermal response and take into account 
all external parameters (known and unknown) to accurately 
determine the cable’s loadability. 

2) Differential Equation based Models 
The models are also based on Fig. 2 [27] and follow the 

same principle as TEE modeling of transformers discussed in 
previous section. These models are established by dividing the 
subcomponents of cables (conductors, insulator, screens etc.)  
into thermal zones with respective thermal capacitance and 
resistance, which is essential when analysis is not based on 
exponential integrals and attainment factors [72]. Moreover, 
the ambient conditions and variation of thermal parameters of 
soil (or other medium) with temperature are also considered. 

The steady-state thermoelectric model of Fig. 3 for subsea 

cables, extracted from [11], [71] takes into account armor 

losses, which are crucial for subsea cables, but it is based on 



some simplified assumptions. The heat losses are represented 

by W (W/m), each node represents a temperature θ, while T 

and C are the thermal resistances and capacitances 

respectively. The subscripts definitions are critical: c, d, s and 

a represent the conductor, dielectric (insulation), screen and 

armor respectively. While 1, 2 and 3 are used to define the 

thermal parameters of dielectric, armor and surroundings 

respectively. The conductor temperature (θC) calculated 

using this model is given by (8). The sheath losses Ws and 

armor losses Wa can be calculated using the conductor losses 

Wc as λ1Wc and λ2Wc respectively. Where, sheath and armor 

loss factors λ1 and λ2 can either be obtained according to IEC 

60287 [11] or as per improvements in [71]. 
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1

𝐶1
 (𝑊𝐶 +

1
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∆𝜃𝐶 − ∆𝜃𝑆
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) 
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Equivalent to transformer TEE models, ∆θS in (8) is found 

using a similar equation. Some publications [73]-[74] claim 

improved performance and accuracy by combining the 

differential models for a cable’s internal parameterization and 

Fourier models for external. According to [75], machine 

learning and genetic algorithms are also suitable for the 

differential approach.  Moreover, the cable surroundings are 

divided into multiple loops for increased accuracy, but this 

approach can be computationally expensive. 
 

 
Fig. 3.   Single Core Cable Layout. (a) Cross-section.  (b) Thermal 

network for dynamic rating operation [52] 

C. Discussion regarding DTR of Cables in OWPP 

The information of ambient conditions including 
temperature, thermal properties etc. of the cable’s surrounding 
material (soil, water etc.) is used as inherent input to almost 
all the models discussed earlier, which makes it extremely 
critical [57], [71]. This information is either estimated, 
measured or both. Temperature measurements along cables 
are performed using PT100 sensors, thermocouples or optical-
fibres. But the length of offshore cables for OWPPs result in 
precision issues which may consequently miss the possible 
hotspot development [74]. Moreover, there can be inherent 
hot-spots in OWPP cable installations (E.g. J-tubes and 
landfills), which cause major bottlenecks. Also, the cable 
length creates significant complications (including 
harmonics) which must be accounted for in the thermoelectric 
models [75]. A number of advanced measurement and 
monitoring methods can be used to improve these models. 
These methods include Time-Domain Reflectometers, 
Distributed Temperature Sensing (DTS), Line Resonance 
Analysis (LIRA) and Distributed Acoustic Sensing (DAS). 

V. CONCLUSION 

A comprehensive study has been conducted on 
transmission system optimization for offshore windfarms. 
Transformers and cables are identified as the potential 
bottlenecks in the windfarm export system. The relevant 
thermoelectric modeling techniques proposed over the last 

few decades, which can be used to overcome the congestion 
challenges in the network based on dynamic thermal 
estimation have been mentioned. Some of these techniques are 
primarily based on industry-wide accepted IEEE and IEC 
loading guides. But the limitations of these models have been 
extensively worked out in several recent publications 
suggesting model improvements. All these techniques have 
been thoroughly reviewed in this paper and the potential risks 
for offshore windfarm applications have also been identified. 
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DYNAMIC THERMOELECTRIC MODELLING OF OIL-FILLED TRANSFORMERS FOR 

OPTIMIZED INTEGRATION OF WIND POWER IN DISTRIBUTION NETWORKS 

 

ABSTRACT 

Oil-filled power transformers are some of the most critical 

components in the distribution network. The grid upgrade 

cost along with congestion challenges associated with 

rapid increase in onshore wind energy integration in the 

distribution system can partly be resolved by dynamic 

loading of transformers. Distribution transformers can be 

dynamically rated if the temperatures, especially Top-Oil 

(TOT) and Hot-Spot (HST) temperatures, are accurately 

determined. This paper presents industry’s well-proven 

and established differential equations-based thermo-

electric models for transformers. The models are 

validated, and the performances are compared with the 

measured temperatures for a 6.8 MVA wind turbine 

transformer. Moreover, the thermal lifetime utilization of 

the test transformer is calculated based on its loading and 

ambient conditions history for the year 2017, using the 

recommendations of international loading guides. The 

annual thermal variations and lifetime utilization of test 

distribution transformer are assessed for an increase in 

wind energy production in 2017. Based on this analysis, 

further wind energy integration is facilitated by deferring 

grid expansion costs related to transformers 

I.  INTRODUCTION 

Wind energy is a major contributor to the annual electricity 

generation in Denmark and it is projected to increase even 

further by 2030 [1]. Windfarms on land have traditionally 

been connected to the power system through the 

distribution grids. The integration of wind energy in the 

distribution network is hindered by a number of 

challenges. Some of these challenges associated with grid 

congestion due to integration of this additional load in the 

existing grid can be resolved by dynamically rated 

operation of the components that are the usual bottlenecks 

in the system. Moreover, dynamic rating of these 

components can also improve the energy contribution 

during high-wind periods.  

Oil-filled transformers are not only used widely across the 

distribution networks, but also large wind turbines have 

dedicated transformers in the nacelle or in the tower base. 

The extensive presence of this component in the network, 

the absence of winding temperature monitoring systems 

and the capital investment related to transformers make it 

relevant to consider dynamic rating of transformers in the 

distribution network [2]. In order to load the transformers 

beyond the nameplate rating without violating their 

transient and steady-state thermal limits, comprehensive 

information of the temperatures critical for their operation 

is required. The high cost of the temperature monitoring 

equipment though makes it necessary to estimate/calculate 

these temperatures for distribution transformers. This 

paper focuses on the thermoelectric modeling and 

estimation of Top-Oil (TOT) and Hot-Spot (HST) 

temperatures of oil-immersed distribution transformers. 

The transformer loading guides IEEE C57.91 [3] and IEC 

60076-7 [4] present thermal models based on differential 

or exponential based functions. These models are 

relatively simpler to formulate as compared to more-

accurate, non-linear, differential-equations-based 

thermoelectric models of [5] [6] [7] [8], which provides the 

basis for their popularity, also in the distribution network 

applications [2] [9]. This publication provides the state-of-

the-art for these models and compares the physics and 

structure behind the formulation of differential-based 

models of [3] [6] [7]. Moreover, the grave dependence of 

these models on transformer parameters obtained through 

heat-run tests is also discussed. The TOT calculated 

through these differential-based models are then validated 

with the measured TOT for a 6.8 MVA Wind Turbine 

Generator (WTG) transformer based on its actual load and 

ambient condition history for 2017. The validation results 

are then presented for two different week-long periods 

with considerably different ambient and load conditions in 

winter and summer. The calculation of HST is then 

performed using the more accurate model. 

International loading guides [3] [4] discuss the impacts of 

varying HST on transformer paper insulation aging, 

critical for defining transformer lifetime. These guides also 

give out recommended thermal limits for TOT and HST 

for dynamic loading of distribution transformers. The 

present paper makes use of this analysis to assess the 

lifetime utilization of the test WTG transformer based on 

its loading history in 2017. Its annual utilization pattern is 

found to be noticeably similar to windfarm transformers or 

distribution transformers close to windfarms. Hence, the 

impacts of further wind energy integration on thermal 

aging of distribution transformers is tested by increasing 

the annual wind power injected in 2017 by 0 to 80% 

allowing identification of optimal transformer utilization. 

The remaining paper is structured as follows. The relevant 

thermoelectric models are presented in Section II. Section 

III discusses the phenomena of thermal aging. Section IV 

provides the details for test transformer and presents the 

case study, while the results are discussed in Section V. 

Section VI concludes the paper. 
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II. THERMOELECTRIC MODELLING OF 

OIL-FILLED TRANSFORMERS 

Oil-filled transformers can in principle be dynamically 

loaded if the Hot Spot Temperature (HST), which is 

critical for transformer operation, is accurately determined 

[10]. Since the physically available temperature in most 

cases is the Top Oil Temperature (TOT), both 

temperatures will be included in the model. Unfortunately, 

the complex heat transfer phenomenon for oil-filled 

transformers as compared to other power system 

components, which makes a correct temperature 

estimation challenging.  

A number of thermal models based on differential 

equations have been proposed throughout the years to 

simulate the dynamic thermal response of transformers 

under varying load, ambient and operating conditions. The 

models discussed in this section are popular in the industry 

because the variations in TOT and HST are effectively and 

accurately determined, while the design process is not as 

arduous [11]. Computational Fluid Dynamics (CFD) based 

models are reportedly more accurate for HST and TOT 

estimation but the complexity of design, requirement of 

detailed transformer construction information and 

computational extravagance make these impractical for 

wide-scale application in the distribution network because 

from a utility point of view, many of these details might 

not be available [12]. 

The well-established thermoelectric models presented in 

loading guides ANSI/IEEE C57.91 [3] and IEC 60076-7 

[4] are accepted throughout the industry. IEC 60076-7 [4] 

provides 2 alternate models for thermal estimation: 

exponential-equations-based which are suitable for step 

load change and differential-equations-based which can be 

applied to any arbitrary load and ambient temperature 

variations. The parameters that significantly influence the 

accuracy of these models are transformer specific and can 

only be determined using prolonged heat-run tests which 

makes them unfeasible for distribution system application 

[9]. Despite this fact, the estimation of model constants for 

dynamic rating of transformers in distribution networks 

using [4] have been actively explored [2] [9] [13].  

This paper focusses on the following two models for 

dynamic thermal modeling of distribution transformers: 

IEEE Claus 7 [3] and Susa [6] [7]. 

IEEE Clause 7 Model (C57.91) [3] 

The differential equations determining the development of 

transformer TOT and HST are provided in (1) and (2).  

 

𝜏0  
𝑑𝜗𝑡𝑜𝑡

𝑑𝑡
 = ∆𝜗𝑜𝑟 (

𝐾(𝑡)2 𝑅 + 1

 𝑅 + 1
)

𝑛

 − [𝜗𝑡𝑜𝑡(𝑡) −  𝜗𝑎𝑚𝑏(𝑡) ] (1) 

𝜏ℎ  
𝑑𝜗ℎ𝑠𝑡

𝑑𝑡
 =  ∆𝜗ℎ𝑟 𝐾(𝑡)2𝑚 −  [𝜗ℎ𝑠𝑡(𝑡) − 𝜗𝑡𝑜𝑡(𝑡)]  (2) 

𝜏0  =  𝐶𝑡ℎ  (
∆𝜗𝑜𝑟

𝑃𝑇
) (3) 

where 𝜗𝑎𝑚𝑏  is the ambient temperature (oC);  K is the 

transformer load current in p.u. with rated load current as 

base; 𝜗𝑡𝑜𝑡 and 𝜗ℎ𝑠𝑡 are the calculated Top Oil and Hot Spot 

Temperatures respectively, expressed in oC; R is the ratio 

of load losses to no-load losses at rated load; ∆𝜗𝑜𝑟 is the 

TOT rise over ambient temperature 𝜗𝑎𝑚𝑏  at rated load 

(oC), while ∆𝜗ℎ𝑟  is the rated HST rise over TOT for rated 

load of 1 pu. The thermal time constants (hour) for oil 𝜏0 

and winding 𝜏ℎ are usually obtained using the heat run test, 

but 𝜏0 can also be accurately determined using (3). Where, 

𝑃𝑇  is total losses at rated load (MW); Cth is thermal 

capacity of the oil (MWh/K) which can be approximated 

using methods suggested in [3] and [8] that require detail 

information regarding the mass and material of different 

transformer components (winding, oil, core etc.). 

 

The empirically derived exponents n and m vary with 

transformer cooling mode (ONAN, OFAF etc.). The non-

linear dependence of heat flow on temperature difference 

varies the convective cooling process and is therefore 

dependent on the cooling mode which also influences the 

thermal resistance and oil viscosity [5]. The empirical 

values of these exponents for different cooling modes, as 

suggested in [3] are given in Table I. 

 

Susa et al. Model [6] [7] [8] 

This model builds upon the fundamental thermoelectric 

model concepts for transformers proposed by Swift et al. 

in [5] and introduces the impact of temporal variation of 

oil viscosity and load losses with respect to temperature. 

The TOT and HST evolution with respect to load and 

ambient conditions are governed by the following first-

order, non-linear, multivariable, differential equations: 

 

𝜏0  
𝑑𝜗𝑡𝑜𝑡

𝑑𝑡
 =  ∆𝜗𝑜𝑟 (

𝐾(𝑡)2 𝑅 + 1

 𝑅 + 1
) − (

𝜗𝑡𝑜𝑡(𝑡) − 𝜗𝑎𝑚𝑏(𝑡)

[𝜇𝑝𝑢(𝑡) ∆𝜗ℎ𝑟]
1−𝑛′ )

1/𝑛′

  (4) 

𝜏ℎ  
𝑑𝜗ℎ𝑠𝑡

𝑑𝑡
 =  ∆𝜗ℎ𝑟 𝐾(𝑡)2 𝑃𝑝𝑢(𝜗ℎ𝑠𝑡) − (

𝜗ℎ𝑠𝑡(𝑡) −  𝜗𝑡𝑜𝑡(𝑡)

[𝜇𝑝𝑢(𝑡) ∆𝜗ℎ𝑟]
1−𝑚′)

1/𝑚′

 (5) 

Where all the symbols similar to IEEE C57.91 model 

represent the same quantities. The oil viscosity 𝜇𝑝𝑢 in pu 

is time variant and temperature dependent as it is the ratio 

between actual oil viscosity 𝜇𝑜 at time t and oil viscosity 

at rated TOT rise 𝜇𝑜𝑟, as mentioned in (6). The dependence 

of load losses on temperature is introduced by the term 

𝑃𝑝𝑢(𝜗ℎ𝑠𝑡), calculated using (7), which takes into account 

the temperature dependence of both the copper 𝑃𝑐𝑢,𝑝𝑢 and 

eddy losses 𝑃𝑒,𝑝𝑢 expressed in pu with 𝑃𝑇  as base. Finally, 

the empirical constants n’ and m’, representing the oil 

circulation mechanism inside the tank and heat dissipation 

through free or forced convection, are similarly obtained 

as for the IEEE model and tabulated in Table I. 
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𝜇𝑝𝑢(𝑡) =  
𝜇𝑜(𝑡)

𝜇𝑜𝑟
 = 𝑒

(
2797.3

𝜗𝑡𝑜𝑡(𝑡) + 273
 − 

2797.3
𝜗𝑎𝑚𝑏(𝑡)+ ∆𝜗𝑜𝑟 + 273

) 
 (6) 

𝑃𝑝𝑢(𝜗ℎ𝑠𝑡) =  𝑃𝑐𝑢,𝑝𝑢  (
235 +  𝜗ℎ𝑠𝑡(𝑡)

235 + ∆𝜗ℎ𝑟

)

+ 𝑃𝑒,𝑝𝑢 (
235 +  ∆𝜗ℎ𝑟

235 + 𝜗ℎ𝑠𝑡(𝑡)
)   

(7) 

Comparison of models  

Both the thermal estimation models seem to follow a 

similar pattern (Change in Temperature = Heat In – Heat 

Out). Heat-in is driven by the time variant load (resulting 

in losses) while heat-out is driven by the relevant 

temperature difference. The introduction of temperature 

dependent oil viscosity in the Susa et al. model effectively 

addresses the temperature-variant convective cooling 

property of the oil, which is complemented by the presence 

of temperature dependent load losses. But the distinct 

difference between the two models is the position of 

empirical exponents. In the IEEE model, these exponents 

are located at the heat-in section of the equation, while 

Susa et al. model puts these on the heat-out expression 

which is thermodynamically more accurate. It is observed 

that both the models obtain similar forms if the constants 

are set to 1 but differ significant otherwise. The 

dependence of each of these models on parameters 

obtained through the heat-run test is considerable, which 

can result in poor performance if the appropriate protocols 

are not followed during the temperature-rise test.    

III. THERMAL AGING & LIMITS FOR OIL-

FILLED TRANSFORMERS 

One of the key components defining the thermal lifetime 

of an oil-filled transformer is the lifetime of its paper 

insulation.  The location of HST, typically at or close to 

the top winding paper insulation, is known to have 

maximum thermal stress. Therefore, a transformer’s 

lifetime can be determined by tracking the HST which is 

crucial for its dynamic loading [10].  The loading guides 

ANSI/IEEE C57.91 [3] and IEC 60076-7 [4] utilize the 

Arrhenius reaction rate theory to determine thermal aging 

of the insulation. The aging acceleration factor 𝐹𝐴𝐴 

determining the relative aging rate of the transformer 

insulation is given by (8), while (9) determines the 

transformer loss of life 𝐿𝑂𝐿. 

 

𝐹𝐴𝐴(𝑡) =  𝑒
(

15000
𝜗ℎ,𝑎𝑟+273

 −  
15000

𝜗ℎ𝑠𝑡(𝑡)+273
)
 (8) 

𝐿𝑂𝐿(𝑡) =  ∫ 𝐹𝐴𝐴(𝜏)
𝑡

𝑡0

 𝑑𝜏 (9) 

The aging acceleration factor 𝐹𝐴𝐴 is unit-less and it not 

only depends upon the actual hot spot temperature (𝜗ℎ𝑠𝑡) 

in oC but also on 𝜗ℎ,𝑎𝑟  which is HST for designed lifetime 

of the insulation. The value of 𝜗ℎ,𝑎𝑟 is 110 oC for thermally 

upgraded paper insulation and 98 oC for non-upgraded 

paper.  𝐿𝑂𝐿 is the cumulative loss-of-life for the period 

between 𝑡0 and 𝑡, whose unit depends on the period 𝜏. 𝐿𝑂𝐿 

is expressed as days in this paper. It must be mentioned 

that the loss-of-life represents the aging of paper insulation 

only, which is the predominant aging phenomenon for 

transformers that have been in the field for < 20 years [14]. 

Other phenomena including residual moisture content in 

oil/paper, degradation products etc. and the respective 

aging impacts are not addressed in this paper. 

 

The thermal limits for distribution transformers specified 

in [3] [4] for different dynamic loading periods are 

summarized in Table II. The acceleration in chemical 

reactions and formation of gas bubbles beyond HST of 140 
oC can jeopardize the transformer dielectric strength [4]. 

Transformer manufacturers, however, recommend 

maximum continuous HST of 110 oC for thermally 

upgraded paper. Nevertheless, even this limit is hardly 

ever reached because of protection designs, favorable 

ambient conditions and conservative operation 

philosophies. 

TABLE II - THERMAL LIMITS FOR DISTRIBUTION 

TRANSFORMERS [3] [4]  

 
Normal Cyclic 

Loading 

Emergency 

Loading 

(long-term) 

Emergency 

Loading 

(<30 min) 

HST 120 oC 140 oC 140 oC 

TOT 105 oC 115 oC 110 oC 

IV. TRANSFORMER UTILIZATION & WIND 

ENERGY INTEGRATION - CASE STUDY 

The performance of the IEEE C57.91 and Susa et al. 

thermoelectric models is evaluated by comparing the TOT 

calculated using these models with the measured TOT for 

2 different weeks in 2017 with considerably different 

ambient conditions for a transformer unit with external 

cooling. The 6.8 MVA, 34 kV / 0.69 kV, Dyn11, OFAF 

cooled test transformer is a wind turbine transformer used 

to connect the Wind Turbine Generator (WTG) to the array 

cable system. The MVA and voltage ratings of the test 

transformer in supplement with the connection types and 

cooling methods allow the study to be suitable for 

distribution system transformers. HST is not used as a 

parameter for performance evaluation because of 

unavailability of HST measurements for test transformer. 

 

Wind energy generation has 2 distinguished features: 

intermittent-pattern and low-dispatch-cost. Therefore, 

actual loading and temperature patterns along with 

 
TABLE I - EMPIRICAL CONSTANTS FOR IEEE [3] AND SUSA [6] 

MODELS 

Transformer Cooling Mode 
IEEE C57.91 Susa et al. * 

n m n' m' 

Oil Natural Air Natural (ONAN) 0.8 0.8 0.8 0.67 

Oil Natural Air Forced (ONAF) 0.9 0.8 0.83 0.67 

Oil Forced Air Forced (OFAF) 0.9 0.8 0.83 0.67 

Oil Directed Air Forced (ODAF) 1.0 1.0 0.83 0.67 
* values for onload condition (circulating oil) with external cooling are provided 
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ambient condition history of the 6.8 MVA WTG 

transformer for the year 2017 with 10-minute sampling 

rate are used and the utilization of transformer over the 

year is evaluated. Windfarm transformers or distribution 

transformers close to windfarms would undoubtedly have 

a comparable loading pattern. The test case evaluates the 

impacts of increasing wind energy integration in the 

distribution network on transformer’s health without 

changing its size, by assessing the paper insulation’s loss-

of-life in 1 year. These impacts are emulated by upscaling 

the actual wind energy production in 2017 over the range 

of 0 to 80%. Two critical parameters are used to assess 

these impacts on transformers: transformer lifetime 

utilization (LOL) at the end of the year and the probability 

of violating the Cyclic and Emergency loading limits of 

Table II for Hot Spot Temperature. The later parameter is 

evaluated using the term ‘prob(HSTmax)’, which calculates 

the probability of 2 possibilities: how frequently the HST 

limit of 140 oC is crossed and for how long the cyclic and 

emergency limits are continuously sustained. The resulting 

value ranges between 0 and 1, where 0 suggests that the 

considered limits are never violated throughout the year 

and 1 represents the contrary extreme condition.    

V.  RESULTS & DISCUSSION 

Validation of Thermoelectric Models and 

Performance Evaluation 

The validation of IEEE Clause 7 (1) and Susa et al. (4) 

TOT thermoelectric models is performed for the test 

transformer for weeks 04 and 30 in 2017. The results 

including transformer load, TOT, HST and ambient 

temperature are plotted in Figures 1 and 2. It is perceivable 

that the temporal evolution of measured TOT is much 

closer to the TOT calculated using Susa et al. model as 

compared to the IEEE model. Also, the TOT calculated 

using Susa model is almost always slightly higher than the 

measured one, thereby resulting in a conservative 

estimation which would prevent transformer damage 

during dynamic loading. The Susa model also results in 

conservative estimations for HST as compared to IEEE, 

which is crucial for safe dynamic loading operation. The 

performances of the TOT models are compared by 

calculating the respective accumulated error (%) for the 

entire year with respect to the measured TOT. As 

anticipated, the accumulated error of Susa et al. model for 

TOT is 30.76% less than that of the IEEE model, which is 

also expected for the HST model. Consequently, the Susa 

et al. model is used for rest of the analysis related to HST 

in this paper. 

Thermal Utilization of WTG Transformer in 2017 

The load and temperature distribution of the test 

transformer for 2017 has been provided in Figure 3, along 

with lifetime utilization of the transformer calculated using 

(9). The WTG transformer is found to be slightly over-

dimensioned which is also usually the case for distribution 

transformers. Despite this, the transformer is often 

moderately loaded because of the intermittent nature of 

wind energy. Consequently, the TOT and HST 

distributions are also on the lower-side most of the time. 

As a result, the utilization of thermal lifetime for the test 

transformer is also well below its designed lifetime and 

thermally, the transformer loss-of-life is total of 13 days 

out of the 365-day period in 2017.   

Increase in wind energy integration 

The discussion so far has substantiated two attributes. 

Firstly, the test transformer exhibits similar utilization 

patterns as corresponding windfarm transformers or 

distribution transformers close to windfarms. Secondly, 

the traditional dimensioning criteria for wind energy 

transmission transformers results in significant under-

utilization. Therefore, the impact of further wind energy 

integration on the utilization of the same transformer in 

2017 is evaluated.  

 
Figure 1 - Validation results for week 04 (Winter) - 2017 

 

 
Figure 2 - Validation results for week 30 (Summer) - 2017 
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Referring to Figure 4(a), annual lifetime utilization 

increases substantially beyond the designed lifetime of 1 

pu for the test transformer, as the annual wind energy 

generation for the test WTG is increased by more than 50% 

in 2017, which is also verified for selected test cases in 

Figure 4(b). The HST starts violating the limits defined in 

Table II for annual wind generation increase of more than 

45%, for which the expression ‘1 - prob(HSTmax)’ reduces 

to a value less than 1. Hence, the thermal lifetime of the 

test transformer’s paper insulation, under the given 

constraints, would have been optimally utilized in 2017, if 

the annual wind generation capacity of the test WTG had 

been scaled to 1.45 pu. Based on this analysis, further wind 

energy integration is facilitated by deferring grid 

expansion costs related to transformers. 

VI.  CONCLUSION 

This paper presents the methods and results from dynamic 

thermal performance estimations. The industry’s well-

proven and established differential-equations-based 

thermoelectric models are presented and the physics 

behind the model formulation is compared. The validation 

process with the measured temperatures for a 6.8 MVA 

wind turbine transformer for the tested models proves the 

superiority of the Susa et al. model. The thermal lifetime 

utilization of the test transformer is calculated based on its 

loading and ambient conditions history for the year 2017, 

using the recommendations of IEC and IEEE loading 

guides. The annual thermal development and lifetime 

utilization of transformer suggests that the transformer can 

be optimally utilized by upscaling the wind energy 

production to 1.45 pu. Hence, grid expansion costs related 

to transformers can be deferred for further wind energy 

integration in the distribution network.  
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Figure 3 - Transformer utilization in 2017. (a, c) histogram and boxplot 

for load; (b, d) histogram and boxplot for Temperatures; (e) Calculated 

loss-of-life for test transformer insulation in 2017 

 

 
Figure 4 – Impacts of increase in wind energy integration on test 
transformer. (a) annual utilization in pu. (b) LOL for selected test cases. 

‘W’ represents the upscaling of wind generation (%) 
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SUMMARY 

Oil-filled power transformers are some of the most critical components of the electrical export system 

for Offshore Wind Power Plants (OWPPs). During contingency situations, dynamic loading of the 

export transformers becomes essential for debottlenecking and optimization of OWPPs, which is 

elaborated using a case study of Anholt offshore windfarm export system power transformers. Power 

transformers can be dynamically loaded if the temporal development of temperatures is known, 

especially Top-Oil (TOT) and Hot-Spot (HST) temperatures. Since the fibre-optic sensors for direct 

HST measurements are unavailable and the associated costs are high, these temperatures must be 

estimated using thermoelectric models based on differential-equations for real-time dynamic loading 

operation of transformers.  

 

The renowned and industry-wide accepted thermal model of IEEE loading guide C57.91 is presented in 

this paper, along with the recently established but well proven model by Susa et al. Both these models 

are validated using the instantaneous TOT measurements for one of the 140 MVA, 225kV/33 kV 

transformers in the Danish Anholt windfarm for the entire 2017 period.  The model that is found to 

perform better is then used for HST calculation for the transformer and the thermal aging of its paper 

insulation is assessed based on its loading and ambient conditions history for 2017. 

 

Furthermore, the thermal utilization and insulation loss-of-life (LOL) based on HST variation of the 

Anholt windfarm transformer is assessed for increased wind energy generation for 1 year. This is done 

by upscaling the actual instantaneous load of the test transformer for the entire period of 2017. The 

upscaling factor ‘W’ is varied over the range of 1.0 to 1.6 pu with the actual instantaneous wind 

generation in 2017 at Anholt as base. The results are then used to provide insights into transformer 

dimensioning for offshore windfarm applications and to assess whether the transformer allows further 

wind energy integration in the existing export system for the Anholt offshore windfarm. 
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1. INTRODUCTION 
 

Offshore Wind Power Plants (OWPPs) contributed a sizeable portion of the annual wind energy 

generation in Denmark in 2017 [1], which is projected to increase even further over the next two 

decades. Similar trend is observed in the energy outlook of global leaders (including UK, USA, Germany 

etc.). However, the bottlenecks in OWPP export systems and the grid upgrade costs associated with the 

available solutions for these constraints are potential barriers to this projection [2]. Oil-filled power 

transformers are core components of the OWPP export systems and can result in system bottlenecks. 

 

Direct Hot-Spot Temperature (HST) measurement of transformer winding using fibre-optic sensors has 

been investigated continually in recent times, but application of these methods for wide-scale thermal 

assessment of power transformers will only be possible in the distant future [3]. Therefore, estimation 

of transformer’s extremely important operational parameters Top-Oil (TOT) and Hot-Spot (HST) 

temperatures under varying load and ambient conditions can either be performed using accurate but 

complex-to-design Computational Fluid Dynamics and Thermal Hydraulic Network based models [4], 

or by differential equations-based thermoelectric models [5] [6] [7] [8], which are simpler to design and 

offer sufficient accuracy. Moreover, these models can adequately perform real-time thermal evaluation, 

making them suitable for wide-scale dynamic loading applications [9]. 

 

In this paper one of the Anholt offshore windfarm export transformers is used as the test case. 

Instantaneous TOT measurements of the transformer for the entire 2017 are used for validation of the 

selected thermo-electric models. The actual load and ambient conditions history of the transformer for 

2017 is used to assess the lifetime utilization of the paper insulation in this period. The moisture content 

of the test transformer insulation is found to be insignificant, therefore only the temperature and heat 

dependent aging of the transformer winding insulation is considered. Wind energy generation in 2017 

for Anholt is then increased by an upscaling factor in the range of 1.0 to 1.6 pu to identify optimal 

transformer utilization and to provide insights into transformer dimensioning for offshore windfarms. 

 

2. DEBOTTLENECKING AND OPTIMIZATION OF OWPP EXPORT SYSTEM 

USING CASE STUDY OF ANHOLT WINDFARM 
 

Offshore Wind Power Plants (OWPP) are often connected to the onshore grid using long HV cables. 

Depending on the distance from the shore, the OWPP export system based on HVAC technology can 

consist of two or more substations. The offshore substation, like the one shown for Anholt windfarm in 

Fig. 1, is located close to the wind turbines and its primary function is to collect the generated wind 

energy and step-up the voltage for transmission through HV export cables. Whereas, the onshore 

substation serves as the interface between the export system and the transmission system grid on land. 

The need for reactor substations depends on the length of the HVAC export cable. These substations 

house some or all of the following components: HV transformers, shunt reactors, HV filters, dynamic 

compensators (incl. STATCOM, FACTS, SVC etc.), HV/MV switchgears, LV systems etc.  

 
Figure 1 Offshore substation at Anholt windfarm [10] 

High-voltage export cables are known to be the primary bottlenecks in the OWPP export system. Hence, 

the underutilized potential of the OWPP export system, identified by simplified layout in Fig. 2, can 



3 

 

often be made use of, by switching to Dynamic Thermal Rating (DTR) for the export cables. However, 

both in the cases of contingency and no contingency, this approach may result in other components with 

short thermal time constants becoming the bottlenecks. The thermal time constants in oil-filled 

transformers are relatively short as compared to export cables, which when combined with the capital 

investment related to transformer dimensioning in the OWPP export system makes these components 

ideal candidates for DTR.   

 

 
Figure 2. Simplified layout of offshore windfarm’s electrical export system 

The 400 MW Anholt windfarm in the Kattegat sea, as shown in Fig. 3a, is connected to the transmission 

system on land with a submarine cable making landfall at the city of Grenå in Jutland (Jylland), 

Denmark. The 111 wind turbines, each rated 3.6 MW, along with the 33kV array cable system were 

commissioned by Ørsted, while the export system of the windfarm including the offshore substation was 

commissioned by the Danish TSO Energinet.dk [10], as shown in Fig. 3b. The 3 export transformers in 

the offshore substation are rated at 140 MVA each, which brings the total transformer capacity of the 

export system to 420 MVA. Therefore, during transformer contingency or during planned/unplanned 

maintenance, dynamic rating of the export transformers seems to be a logical option. For that reason, 

one of these 140 MVA, 225/33 kV, YNd11, ONAN cooled transformers is used for test cases in this 

paper. 

 

 
Figure 3 (a) : Location, wind turbine layout and connection for Anholt offshore windfarm [10].  

(b) : Export System layout and ownership boundaries for Anholt windfarm 

 

3. THERMOELECTRIC MODELS FOR OIL-FILLED POWER TRANSFORMERS 

AND VALIDATION FOR ANHOLT WINDFARM TEST CASE 
 

The thermal performance of a power transformer is extremely important to determine because it 

influences both the operational reliability and the thermal lifetime of the transformer [11] [3]. The Hot-

Spot (HST) and Top-Oil (TOT) temperatures can be approximated using differential-equations based 

thermoelectric models, despite the complex heat transfer phenomena in a transformer [12]. These 

models are simpler to design as compared to complex Computational Fluid Dynamics and Thermal 

Hydraulic Network based models [4]. Over the last few decades, a number of thermoelectric models 

have been proposed to emulate the impacts of varying load and ambient conditions on transformer TOT 

and HST. These models have been reviewed comprehensively in CIGRE Brochure 659 [13]. 

 

The differential-equation based thermoelectric models of international loading guides IEEE C57.91 [5] 

and IEC 60076-7 [6] are accepted throughout the industry. But these models are found to perform 

inadequately for low ambient temperature applications during continuously varying load conditions 
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[14]. In this paper, only the IEEE Clause 7 in C57.91 [5] and Susa et al. [7] [8] thermal models are 

discussed. 

 

3.1 - IEEE Clause 7 Model [5] 
According to the IEEE Loading Guide C57.91 (2011), the development of transformer TOT and HST 

can be determined using the differential equations of (1) and (2).  

 

𝜏0  
𝑑𝜗𝑡𝑜𝑡

𝑑𝑡
 = ∆𝜗𝑜𝑟 (

𝐾(𝑡)2 𝑅 + 1

 𝑅 + 1
)

𝑛

 −  [𝜗𝑡𝑜𝑡(𝑡) − 𝜗𝑎𝑚𝑏(𝑡) ] (1) 

𝜏ℎ  
𝑑𝜗ℎ𝑠𝑡

𝑑𝑡
 =  ∆𝜗ℎ𝑟 𝐾(𝑡)2𝑚 −  [𝜗ℎ𝑠𝑡(𝑡) −  𝜗𝑡𝑜𝑡(𝑡)]  (2) 

where 𝜗𝑡𝑜𝑡 and 𝜗ℎ𝑠𝑡 represent the calculated Top Oil and Hot Spot Temperatures respectively, expressed 

in oC. K is the transformer load current in p.u. with rated load current as base; R is the ratio of load losses 

to no-load losses at rated load; ∆𝜗𝑜𝑟 is the TOT rise over ambient temperature 𝜗𝑎𝑚𝑏 at rated load both 

expressed in oC, while ∆𝜗ℎ𝑟 is the rated HST rise over TOT for rated load of 1 pu. The thermal time 

constants (in hour) for oil 𝜏0 and winding 𝜏ℎ are usually obtained using the heat run test, but 𝜏0 can also 

be accurately determined using the approach explained in Section 3.3. 

 

The empirically derived exponents n and m are representative of the transformer cooling mode (ONAN, 

OFAF etc.). The convective cooling process is varied by the non-linear dependence of heat flow on 

temperature difference. Therefore, the change in temperature gradients for transformer oil and winding 

are dependent on the cooling mode which also influences the thermal resistance and oil viscosity [15]. 

The empirical values of these exponents for different cooling modes, as suggested in [5] are provided in 

Table I.  

 

3.2 - Susa et al. Model [7] [8]  
The model proposed by Susa, Lehtonen and Nordman in [7] and further developed in [8] builds upon 

the fundamental thermoelectric model concepts for transformers proposed by Swift et al. in [15] based 

on the earlier learnings from Nordman [16]. This thermoelectric model introduces the impact of 

temporal variation of two quantities with respect to temperature: oil viscosity and load losses. The TOT 

and HST evolution with respect to load and ambient conditions are governed by the following first-

order, non-linear, multivariable, differential equations: 

𝜏0  
𝑑𝜗𝑡𝑜𝑡

𝑑𝑡
 =  ∆𝜗𝑜𝑟 (

𝐾(𝑡)2 𝑅 + 1

 𝑅 + 1
) − (

𝜗𝑡𝑜𝑡(𝑡) − 𝜗𝑎𝑚𝑏(𝑡)

[𝜇𝑝𝑢(𝑡) ∆𝜗ℎ𝑟]
1−𝑛′ )

1/𝑛′

  
(3) 

𝜏ℎ  
𝑑𝜗ℎ𝑠𝑡

𝑑𝑡
 =  ∆𝜗ℎ𝑟  𝐾(𝑡)2 𝑃𝑝𝑢(𝜗ℎ𝑠𝑡) − (

𝜗ℎ𝑠𝑡(𝑡) −  𝜗𝑡𝑜𝑡(𝑡)

[𝜇𝑝𝑢(𝑡) ∆𝜗ℎ𝑟]
1−𝑚′)

1/𝑚′

 
(4) 

The structure of these equations is similar to the IEEE C57.91 models of (1) and (2). All the common 

symbols represent the same quantities. The oil viscosity 𝜇𝑝𝑢 (pu) is the ratio between actual oil viscosity 

𝜇𝑜 at time t and oil viscosity at rated TOT rise 𝜇𝑜𝑟, as mentioned in (5). This ratio is time variant and 

temperature dependent, which is a distinctive attribute in the Susa et al. model. Similarly, 𝑃𝑝𝑢(𝜗ℎ𝑠𝑡) 

presents the dependence of load losses on temperature, which are represented in pu with 𝑃𝑇 as base and 

can be calculated using (6). The dependence of both the copper 𝑃𝑐𝑢,𝑝𝑢 and eddy losses 𝑃𝑒,𝑝𝑢on HST are 

taken into account in these calculations. The empirical constants in the Susa et al. model n’ and m’ 

represent the oil circulation mechanism inside the tank and heat dissipation through free or forced 

convection, and the respective values are tabulated in Table I. 

𝜇𝑝𝑢(𝑡) =  
𝜇𝑜(𝑡)

𝜇𝑜𝑟

 = 𝑒
(

2797.3
𝜗𝑡𝑜𝑡(𝑡) + 273

 − 
2797.3

𝜗𝑎𝑚𝑏(𝑡)+ ∆𝜗𝑜𝑟 + 273
) 

 (5) 

𝑃𝑝𝑢(𝜗ℎ𝑠𝑡) =  𝑃𝑐𝑢,𝑝𝑢  (
235 +  𝜗ℎ𝑠𝑡(𝑡)

235 + ∆𝜗ℎ𝑟

) +  𝑃𝑒,𝑝𝑢 (
235 + ∆𝜗ℎ𝑟

235 +  𝜗ℎ𝑠𝑡(𝑡)
)   (6) 



5 

 

 

 

TABLE I - EMPIRICAL CONSTANTS FOR IEEE [5] AND SUSA [7] MODELS 

Transformer Cooling Mode 
IEEE C57.91 Susa et al. * 

n m n' m' 

Oil Natural Air Natural (ONAN) 0.8 0.8 0.8 0.67 

Oil Natural Air Forced (ONAF) 0.9 0.8 0.83 0.67 

Oil Forced Air Forced (OFAF) 0.9 0.8 0.83 0.67 

Oil Directed Air Forced (ODAF) 1.0 1.0 0.83 0.67 
             * values for onload condition (circulating oil) with external cooling are provided 

3.3 - Thermal Time Constant for Oil - 𝝉𝟎 

The thermal time constant for oil 𝜏0 can be calculated using (7) 

𝜏0  =  𝐶𝑡ℎ  (
∆𝜗𝑜𝑟

𝑃𝑇

) (7) 

𝐶𝑡ℎ  =  𝐶𝑤𝑑𝑔  𝑀𝑤𝑑𝑔 +  𝐶𝑓𝑒  𝑀𝑓𝑒 +  𝐶𝑚𝑝  𝑀𝑚𝑝 +  𝑂𝑜𝑖𝑙  𝐶𝑜𝑖𝑙  𝑀𝑜𝑖𝑙  ≈ 0.48 𝑀𝑜𝑖𝑙 (8) 

Which suggests that 𝜏0 (hour) is dependent on the rated TOT rise over ambient temperature - ∆𝜗𝑜𝑟, on 

total transformer losses at rated load 𝑃𝑇 (W) and on the thermal capacity of the oil Cth (Wh/ oC). The 

thermal capacity of oil can either be approximated using the method suggested in [5], which requires 

detailed transformer information or by using the simplified empirical formulation of [7] that requires 

only the mass of the oil. Both these formulations are provided in (8). Where,  𝑀𝑤𝑑𝑔,  𝑀𝑓𝑒 ,  𝑀𝑚𝑝 and 𝑀𝑜𝑖𝑙  

represent the weights of windings, iron core, tank (metal parts) and oil respectively in kilograms. The 

remaining terms are explained and the relevant values are provided in Table II. 

3.4 - Comparison of models  
The viscosity of transformer oil varies with temperature. This variation is extreme for temperatures 

lower than 10 oC and even though it is rather trivial for oil temperatures in the range of 40 to 100 oC, its 

variation is still most dominant in this temperature range when compared with the remaining physical 

properties of the oil including density, specific heat, thermal conductivity and expansion coefficients 

etc. [17].  Since the convective cooling capacity is directly dependent on viscosity, Susa rightly takes 

this into account for both the HST and TOT estimation, which is ignored by the IEEE C57.91 models. 

Similarly, the temperature dependence of load losses in the Susa et al. model increases the degree of 

accuracy to some extent. The thermoelectric models provided by IEEE in (1) and (2) and by Susa et al. 

in (3) and (4) are based on the following similar structure: 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐶ℎ𝑎𝑛𝑔𝑒 = 𝑓(𝐻𝑒𝑎𝑡 𝑖𝑛)    −     𝑓(𝐻𝑒𝑎𝑡 𝑜𝑢𝑡)  

The time varying load drives the Heat-In expression of the equation while the difference in relevant 

temperatures defines the Heat-Out process. Despite the similarity in structure, the convective cooling 

process is very different for the two models, which is due to the location of empirical constants. The 

empirically derived exponents n and m are placed with the load losses (Heat-In) in the IEEE model, 

while Susa et al. model puts these on the heat-out expression which is thermodynamically more accurate. 

It is observed that both the models obtain similar forms if the constants are set to 1 but differ significantly 

otherwise. Both these models depend heavily upon the transformer parameters that are obtained through 

heat-run tests. Therefore, the performance of both the models would be poor if appropriate protocols are 

not followed during the temperature-rise test or if any of the required parameters are not known.    

TABLE II - CONSTANTS FOR DETERMINING THERMAL TIME CONSTANT FOR OIL [5] 

Symbol Description Value Unit 

𝑪𝒘𝒅𝒈 Specific Heat Capacity of Winding (Copper) 0.11 Wh/kg oC 

Specific Heat Capacity of Winding (Aluminum) 0.25 Wh/kg oC 

𝑪𝒇𝒆 Specific Heat Capacity of Iron Core 0.13 Wh/kg oC 

𝑪𝒎𝒑 Specific Heat Capacity of Tank and Metal Parts 0.13 Wh/kg oC 

𝑪𝒐𝒊𝒍 Specific Heat Capacity of Oil 0.51 Wh/kg oC 
 

𝑶𝒐𝒊𝒍
 Correction factor for oil (ONAF, ONAN, OFAF) 0.86 - 

Correction factor for oil (ODAF) 1.0 - 

* Correction factors are based on the modeling performed in [8] and [16] 



6 

 

 

Despite the limitations in accuracy of the IEEE Clause 7 model, it is widely used because of its simplified 

formulation. The model can be linearized easily allowing implementation of optimization algorithms 

for wide-scale dynamic rating application, a task that would be challenging with Susa et al. model. 

 

3.5 – Validation Results for Anholt Export Transformer 

The validation of Top Oil Temperature calculated using the IEEE C57.91 model of (1) and (2) and Susa 

et al. model of (3) and (4) is performed with the measured TOT for the 140 MVA export transformer 

for Anholt windfarm. The calculated TOT is based on the test transformer’s recorded load and ambient 

temperature. Hot Spot temperatures are not used as the parameters for performance evaluation of these 

models because of unavailability of HST measurements for the test transformers. The validation results 

including transformer load, TOT, HST and ambient temperature are provided in Fig. 4 for the months 

of January and July in 2017 to emulate considerably different ambient conditions. It can be seen that the 

measured TOT is usually extremely close to the TOT calculated using Susa et al. model for both the test 

periods, with the green line often overlapping the red line. This accuracy is even more evident for low 

ambient temperatures of January as compared to the temperatures predicted by IEEE model, which is 

because of the correct approximation of oil viscosity variation with ambient temperature in the Susa 

model. During low load periods, the TOT calculated using Susa model remains slightly higher than the 

measured TOT. Therefore, transformer damage can be prevented due to conservative estimation during 

possible dynamic loading operation. The TOT calculated using IEEE model, on the other hand, almost 

always results in underestimation. The error between calculated and measured TOT accumulated over 

the entire 2017 is 53.3% higher for the IEEE model as compared to the Susa et al. model, therefore the 

rest of the analysis related to HST in this paper is performed using the Susa et al. model.  

 

 
Figure 4. (a): Validation results for January–2017. (b): Validation results for July-2017 

Top: Transformer load variation; Middle: Temperatures including Ambient, measured TOT and calculated TOT;        

Bottom: Temperatures including Ambient, Calculated HST (IEEE and Susa)  

 

4.  THERMAL AGING AND LIMITS FOR ANHOLT EXPORT TRANSFORMERS 
 

Unlike power transformers in the transmission system, windfarm export system transformers are 

responsible for the transmission of generated wind energy only. Therefore, the intermittent nature of the 

wind plays a huge role in the utilization of the test transformer. Hence, in order to assess the impact of 

wind generation patterns on thermal aging of transformer paper insulation in one year, the actual loading 

and ambient condition history of the 140 MVA windfarm transformers for the year 2017 with 1-minute 

sampling rate are used.  
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The degradation mechanism of cellulose, which is the principal component of transformer winding 

insulation, depends principally on three agents: water, oxygen and heat [5]. But since heat is dependent 

on transformer loading, while the transformer oil preservation system is responsible for both the 

insulation water and oxygen content, only the heat-dependent aging of the paper insulation is studied in 

this paper. This is further complemented by the fact that the studied transformer had been in operation 

for a relatively small time (<5 years), which is the case for most offshore windfarm transformers with 

maximum 25 years operation limit. This results in comparatively high insulation tensile strength 

retention by the end of transformer operation life. Moreover, the oxygen and water content are found to 

be insignificant for the test transformer. 

 

Dynamic loading of a transformer beyond its rated capacity results in thermal stress which is maximum 

at the HST location, typically close to the paper insulation at the top winding region. For the reasons 

explained above, instead of using the Degree of Polymerization (DP), the accelerated aging of paper due 

to HST thermal stress is directly evaluated to assess the transformer insulation’s loss-of-life (LOL) using 

(9) for thermally upgraded paper which is based on Arrhenius reaction rate theory [5] [6]. 

 

𝐿𝑂𝐿(𝑡) =   ∫ 𝑒
(

15000
110+273

 −  
15000

𝜗ℎ𝑠𝑡(𝜏)+273
)

𝑡

𝑡0

 𝑑𝜏 (9) 

The cumulative loss-of-life (𝐿𝑂𝐿) for the period between 𝑡0 and 𝑡 represents the aging of paper 

insulation only, which is the predominant aging phenomenon for transformers that have been in the field 

for less than 20 years [18]. Other phenomena including residual moisture content in oil/paper, 

degradation products etc. and the respective aging impacts are not addressed for the test transformer. 

 

The TOT and HST limits specified in international loading guides IEEE C57.91 [5] and IEC 60076-6 

[6] for large power transformers are summarized in Table III for different dynamic loading periods. The 

maximum continuous HST limit of 110 oC recommended by transformer manufacturers for thermally 

upgraded paper is hardly ever reached because of protection designs, favorable ambient conditions and 

conservative operation philosophies. The analysis in this paper limits the HST to 140 oC, as the dielectric 

strength of the transformer insulation is at severe risk at temperatures greater than 140 oC because of 

acceleration in chemical reactions in oil and formation of gas bubbles [6]. It must be noted that this limit 

can reduce significantly with increase in the moisture content, but for reasons explained above these 

impacts are not investigated further in this paper. 

 
TABLE III - THERMAL LIMITS FOR LARGE POWER TRANSFORMERS [5] [6]  

 
Normal Cyclic 

Loading 

Emergency 

Loading 

(long-term) 

Emergency 

Loading 

(<30 min) 

HST 120 oC 140 oC 160/180  oC 

TOT 105 oC 115 oC 115/110  oC 

 

Referring to Fig. 5, the test transformer at Anholt windfarm is found to be statically loaded below its 

rated capacity throughout 2017 resulting in maximum HST of less than 100 oC. Consequently, the 

thermal loss-of-life of the test transformer’s paper insulation is approximately 25 days in 2017 which is 

considerably less than the design LOL of 365 days, as shown in Fig. 6. 

 

 
Figure 5 Anholt windfarm transformer utilization in 2017. Histograms for transformer pu load (a) and temperatures (b)  
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Figure 6. Anholt windfarm transformer utilization in 2017. (a) Ambient Temp. and Calculated HST.  

(b) Thermal loss-of-life of paper insulation 

 

5. INCREASE IN WIND ENERGY GENERATION FOR OPTIMAL 

TRANSFORMER UTILIZATION 
 

The discussion so far has established that, thermally, the unutilized potential of windfarm transformers 

is significant. Therefore, the test case assesses the thermal development of the Anholt windfarm export 

transformer for increased wind energy generation and evaluates the thermal loss-of-life (LOL) for 

transformer paper insulation in 1 year using the methodology explained in the previous section. The 

wind energy generation is increased by upscaling the actual instantaneous load of the test transformer 

for the entire period of 2017. The upscaling factor ‘W’ is varied over the range of 1.0 to 1.6 pu with 

actual instantaneous wind generation in 2017 at Anholt as base. Consequently, two different situations 

with similar repercussions are emulated. Firstly, in case of long-term transformer contingency (i.e. 

losing one of the three transformers for a period of 1 year), it is important to assess whether the remaining 

two transformers can take up the additional 0.5 pu load for short term without resulting in permanent 

damage to the transformer insulation due to accelerated thermal aging. This is however assessed with 

the assumptions that the remaining export system components (incl. bus couplers, bus bars, instrument 

transformers etc.) are dimensioned for n-1 contingency case to bear this additional load and the water 

and oxygen contamination of the insulation is controlled. Secondly, the assessment of thermal lifetime 

utilization of the test windfarm transformer for this additional load resembles the situation of offshore 

windfarm expansion, which can provide insights into transformer dimensioning for OWPP applications.  

 

These impacts are assessed by calculating two critical parameters for the test transformers. The first 

parameter is the cumulative loss-of-life (LOL) for transformer paper insulation at the end of the year, 

based on (9). Secondly, the probability of violating the Normal Cyclic and long-term Emergency loading 

limits of Table III for HST is evaluated by calculating the probability of two possibilities: how frequently 

the HST limit of 140 oC is crossed and for how long the limits are continuously sustained (i.e. whether 

the time limits for cyclic and long-term emergency HST limits are violated). The short-term emergency 

limits are not considered in this paper because of adverse effects of HST>140 oC. The calculated 

probability is represented by the expression ‘1 - prob(HSTmax)’, whose values ranges between 0 and 1, 

where 1 suggests that the limits are never violated throughout the year and 0 represents the contrary.    

 

The transformer loads and calculated HST for the test transformer are provided in Fig. 7 for different 

upscaling factors for 3 days in Summer 2017. Referring to Fig. 8(a), it is shown that for the given 

assumptions, the transformer paper insulation lifetime is optimally utilized without violating the thermal 

limits of Table III for the upscaling factor W of up to 1.52 pu. The thermal aging of paper insulation 

increases drastically beyond this point because HST starts violating the thermal limits (including 

bubbling temperature) more frequently and for longer periods resulting in ‘1 - prob(HSTmax)’ value of 

less than 1. This is also visible in Fig. 8(b) where HST never crosses the 140 oC limit for W = 1.5 pu. 

The thermal loss-of-life for the test transformer’s insulation is extremely close to designed LOL of 365 

days in 2017 for W between 1.5 and 1.52 pu, as shown in Fig. 8(c). Therefore, it is demonstrated that 

the test transformer could have taken up the additional 0.5 pu load throughout 2017 in case of 
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contingency of one of the export transformers. Based on this discussion it can be deduced that, thermally, 

the export transformers for Anholt windfarm can fulfill the n-1 contingency requirements for long 

periods and can comfortably allow further wind energy integration in the existing export system. 

 
Figure 7. (a) Transformer load (b) Calculated HST for different upscaling factors ‘W’ for 3 days in Summer 2017 

 

 
Figure 8. (a): Impact of Wind Generation Increase on Test Transformer. (b): Test Transformer’s Year-Round HST 

 Distribution for Increased Wind Generation. (c): Thermal Lifetime Utilization of Test Transformer for Increased Wind 

Generation. ‘W’ represents the upscaling factor of wind generation in pu with actual generation in 2017 as base.  

 

6. CONCLUSIONS 
 

The investigation has shown that the intermittent nature of the wind plays a considerable role in thermal 

utilization of offshore windfarm export transformers, which results in a significant unutilized potential. 

The thermal utilization is addressed using the loss-of-life of paper insulation due to hot-spot temperature 

only. This mechanism is known to be the dominant aging phenomena during early-years of transformer 

operation with functional oil preservation system. The analysis concludes that the intermittent nature of 

the wind has to be taken into account for transformer design and dimensioning for offshore windfarm 

applications. It is also shown using the case study of the Danish Anholt offshore windfarm that 

transformers can potentially be offshore transmission bottlenecks during contingency, but these 

bottlenecks can be resolved by prolonged dynamic rating operation beyond the transformer’s nameplate 

rating. This characteristic can also facilitate further wind energy integration in the existing export system 

for offshore windfarms. 
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Abstract—Power transformers are critical power system com-
ponents that are generally loaded conservatively, resulting in
marginal utilization of their designed lifetime. Dynamic Trans-
former Rating (DTR) increases the utilization of this asset by
limiting its Hot Spot Temperature (HST) rather than the per unit
load, thereby increasing available network capacity. However,
residual lifetime would still be unutilized according to current
dimensioning criteria and state-of-the-art lifetime aging models.
This paper proposes a novel methodology for DTR, where both
thermal and aging dynamics are accounted for in a multi-period
DCOPF formulation. Power losses are accounted for by means of
an iterative approach that preserves convexity of the optimization
problem. The proposed methodology leads to an optimal lifetime
utilization of transformers and favours the integration of wind
power generation. This novel DTR approach can be beneficial for
applications with limited asset lifetime like offshore windfarms
or for postponing grid reinforcements for short period of time.

Index Terms—DCOPF, dynamic transformer rating, lifetime
model, losses, wind power integration

I. INTRODUCTION

The integration of renewable-based energy sources, with
particular regard to wind power generation, can be hindered by
limitations in the thermal overload capability of the existing
network. Power transformers in transmission and distribution
systems are critical components that may constitute a bot-
tleneck as they are conservatively operated. Dynamic Trans-
former Rating (DTR) can help resolve these bottlenecks by
allowing the transformers to be loaded beyond their nameplate
rating according to the actual thermal state [1].

Loading guides [2] and [3] allow large power transformers
to be dynamically rated up to the Hot Spot Temperature (HST)
of 160 ◦C. However, the traditional operation philosophy and
protection design prevent transformers from being operated
beyond HST of 110 ◦C, which is rarely reached because of
favorable ambient conditions. Consequently, transformers are
distinctly underutilized and the remaining lifetime by the end
of designed period (usually 35-40 years) is significant. This
can heavily influence the business case for applications like
offshore windfarms, which are traditionally designed to oper-
ate for 25 years only. Moreover, optimal transformer utilization
can help increase the economic turnover and decrease the Cost
of Energy (CoE) for such applications.

Unlike offshore windfarms, transmission and distribution
utilities may keep old transformers in operation with in-
creased care and condition-based maintenance. In this case,
the increased network capacity provided by DTR can help to
defer investments for transmission system operators, which are
facing a large and rapid growth of renewable energy sources.

This paper builds upon a recent work in [4], where trans-
former loadability is directly accounted for in a multi-period
DC - Optimal Power Flow (DCOPF) algorithm. The novelty of
the proposed DTR approach consists in assessing the remain-
ing transformer lifetime using [2] and [3], based on historical
load and ambient conditions. Based on this assessment, the
solution of the DCOPF considers not only transformer thermal
dynamics, but aging rate and cumulative lifetime utilization as
well. This loading approach results in a controlled accelerated
aging but without breaching the designed lifetime limit. As a
result, the transformer is used more effectively compared to
common loadability practices as well as other DTR approaches
suggested in [5] and [6].

The IEEE RTS 24-bus network with additional wind genera-
tion [7] is used as a test system based on actual weather, load
and generation data from the Danish system. The presented
case study demonstrates the relevance of the method as a
means to improve the utilization of low-cost wind energy while
accounting for power losses in the transmission system. The
proposed methodology could also be incorporated in more de-
tailed cost-benefit analysis and grid expansion planning studies
due to its ability to account for transformers’ degradation
under variable conditions.

The remainder of the paper is organized as follows. The
DTR models from [2] are discussed in Section II. Section III
elaborates the thermal aging phenomena in transformer and
presents the novel DTR approach. The optimization problem
for day-ahead dispatch is formulated in Section IV. The case
study is presented in Section V, while the results are discussed
in Section VI. Section VII concludes the paper.

II. DYNAMIC TRANSFORMER RATING MODEL

Dynamic loading of transformers can be performed by
determining two critical temperatures: Top-Oil Temperature
(TOT) and Hot-Spot Temperature (HST). This estimation is
performed by using the ANSI/IEEE Clause 7 model [2],
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because of the well-established popularity in the industry and
mathematical suitability as compared to other models [3] [8].

These temperatures are calculated using the non-linear dif-
ferential equations (1) - (2) which require further simplification
to prevent non-convexity of the optimization problem [2].

τ0
dϑtop

dt
+ ϑtop = ϑamb + ϑor

(
I2trfR+ 1

R+ 1

)ν

(1)

τh
dϑhst

dt
+ ϑhst = ϑtop + ϑhr I

2μ
trf (2)

where τ0 and τh are the thermal time constants for oil and
winding respectively which are expressed in hours; ϑamb is the
ambient temperature in ◦C; ϑtop and ϑhst represent top-oil and
hot-spot temperatures respectively in ◦C; Itrf is the transformer
load current in p.u. with rated load current as base; R is ratio
of load losses to no-load losses at rated load; ϑor in ◦C is
the top-oil rise over ambient temperature ϑamb at rated load,
while ϑhr in ◦C is the rated HST rise over TOT for rated
load. The empirically derived exponents ν and μ represent
the impact of transformer cooling mode (ONAN, OFAF etc.)
on the change in thermal resistance and oil viscosity. The
constants have different values for different cooling modes,
which are provided in [2].

In order to keep the optimization problem convex, some
simplifications are made to the TOT and HST models of (1)
and (2). Firstly, the selected transformer is assumed to op-
erate continuously at Oil-Directed-Air-Forced (ODAF) mode,
allowing both the constants ν and μ to be set to 1, as in
the linearized model in [9]. Secondly, hot-spot temperature is
modelled in terms of its steady state value, since hourly values
are used in the optimization problem. Therefore it is assumed
that short term thermal transients would be extinguished within
one hour due to the small thermal time constant, as verified
by authors of [4]. As opposed to oil time constant τ0, which
is in the range of 60 to 90 minutes, winding time constant τh
is approximately 7-8 minutes. Resulting top-oil and hot-spot
temperature dynamics are modelled by means of linearized
IEEE thermal models shown in (3) and (4), respectively.

ϑtopt = K1I
2
trft +K2ϑambt +K3ϑtopt−1

+K4 (3)

ϑhstt = ϑtopt + ϑhrI
2
trft (4)

Top-oil temperature depends on the squared per unit load
I2trf, ambient temperature ϑamb and value of top-oil temper-
ature reached in the previous time step. This latter term is
responsible of coupling top-oil temperature values in time
thus reflecting the importance of considering recent loading
history for transformers. Lastly, Coefficients K are constants
that solely depend on transformer construction.

III. OPTIMAL LIFETIME EVALUATION OF TRANSFORMERS

A. Thermal Aging of Transformers

The limit for thermal capacity of a transformer is based
on the maximum allowable stress on relevant materials. These
limits are effectively explored and defined in [2] and [3]. The

TABLE I
TEMPERATURE LIMITS FOR TRANSFORMERS [2] [3]

Normal Cyclic
Load

Emergency Load
(long-term)

Emergency Load
( <30 min )

Hot Spot
Temp. 120 ◦C 140 ◦C 160 / 180 ◦C

Top Oil
Temp. 105 ◦C 115 ◦C 115 / 110 ◦C

thermal limits for power transformers greater than 100 MVA
rating are provided in Table I for different types of dynamic
loading beyond nameplate rating. However, the continuous
HST limit for designed transformer lifetime is 110 ◦C for ther-
mally upgraded paper. This temperature ceiling is scarcely ever
reached because of over-dimensioning, protection philosophies
and favorable ambient conditions. The thermal stress is known
to be maximum at HST location. The heat transfer from HST
serves as catalyst for chemical reactions, which accelerates
the aging of insulation paper [1]. The Arrhenius reaction rate
theory has been adapted in [2] to calculate the transformer
loss of life. The relative aging rate for a transformer, also
called aging acceleration factor Λ, with thermally upgraded
insulation paper is given by (5), while the transformer loss of
life is given by (6)

Λ(t) = e

(
15000

110 + 273
−

15000

ϑhst(t) + 273

)

(5)

λ(t) =

∫ t

t0

Λ(τ) dτ (6)

where Λ is unit-less and represents the aging acceleration
factor for reference HST of 110 ◦C for thermally upgraded
insulation paper; ϑhst(t) is the actual hot spot temperature in
◦C at time t; λ(t) represents the cumulative loss-of-life for
time period from t0 up to t and in this paper it is expressed in
years. Hence the lifetime utilization of transformer is directly
dependent on HST. It must be mentioned that the factor Λ
represents the thermal aging of paper insulation only and the
impacts of residual moisture content in paper and oil along
with other aging phenomena on transformer lifetime are not
assessed in this paper.

B. Dynamic Rating and Improved Lifetime Utilization

Static Transformer Rating (STR) limits continuous load
current to 1 pu for power transformers and cyclic load current
to 1.3 pu [2]- [3]. In contrast to this approach, DTR allows the
transformer to be loaded based on HST instead of the rated
capacity and thereby prevents this temperature from violating
the limits of Table I [5] - [6]. The methodology for DTR used
in this paper additionally evaluates the consumed lifetime λ
of a transformer and it sets the loadability accordingly.

Referring to Fig. 1, it is assumed that until time t0 the
transformer has continuously operated at HST of 98 ◦C. The
relative aging rate Λ is 0.282, which is represented by the slope
of black line in the figure. Consequently, the transformer loss-
of-life at this point would be λA = 0.282 t0. The difference
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Fig. 1. Methodology for optimal transformer utilization. (a) Fixed HST limit
of 110 C. (b) Utilized lifetime (λ) dependent HST limit (ϑhst,max = 140 C)

between designed loss-of-life λD for HST of 110 ◦C and
actual λ would continue to increase, if the transformer would
keep this loading strategy. DTR can prevent this difference
from increasing further by loading the transformer in a way
that keeps the HST closer to the design limit of 110 ◦C, as
shown in Fig. 1a. But even with this approach, the residual
transformer lifetime by the end of design life would be sig-
nificant.Therefore, the transformer loading strategy proposed
in this paper is meant to maximize component’s utilization by
considering not only temperature dynamics, but aging rate as
well. Fig. 1b illustrates the underlying concept of Enhanced
Dynamic Transformer Rating (DTR+).For the period between
t0 and t1, the limiting factor consists in the designed loss-of-
life λD, i.e. the red dashed line, rather than the maximum slope
associated with HST of 110. As a result, the upper temperature
limit is increased to 122◦C and the transformer could be
loaded even more, thus decresing the unitilized lifetime.

IV. PROBLEM FORMULATION

In this section the multi-period DCOPF is formulated, where
transformer thermal and aging dynamics are directly accounted
for along with transmission system losses. The proposed
contribution is based on piece-wise linearized transformer
aging functions that are incorporated into a DCOPF problem.
The same approach could be embedded equally in a ACOPF
framework for a more detailed approach.

A. Base DCOPF with quadratic losses

In the considered system the sets of buses, branches, con-
ventional generators and windfarms are indicated with N, L, G
and W, respectively. While the transformers subsets with STR,
DTR and DTR+ are identified with LSTR, LDTR and LDTR+ .

This study adopts a DC approximation of the full AC
power flow equations. The active power flow on each branch
is modelled by means of the Power Transfer Distribution
Factor matrix M . The matrix M ∈ R|L|×|N| expresses the
sensitivities of the power flow on each line with respect to
the nodal power injections, where the |·| operator indicates
the cardinality of the set. The power flow f� on branch � can
then be expressed as f� = M�P

inj, where M� is the �-th row

of matrix M and P inj represents a column vector of per unit
power injection at each bus in the system.

Branch power losses L that are dissipated on transmission
lines and transformers are expressed in terms of additional
load demand Lbus at each bus. Losses that occur on branch
� are equally divided between sending and receiving bus by
means of a loss allocation matrix Y ∈ R|N|×|L| whose (n,�)
component is defined in (7).

Y (n, �) =

{
0.5 if line � is connected to bus n

0 otherwise
(7)

The nodal power injection at bus n can then be written as

P inj
n = Pg + Pw −

(
Pn − P sh

n + Lbus
n

)
(8)

where Pg and Pw represent thermal and wind power genera-
tion; Pn and P sh

n represent net load demand and load shedding;
Lbus
n expresses nodal power losses where Lbus

n = YnL and Yn

is the n-th row of the loss allocation matrix.
In order to consider quadratic power losses in the DCOPF

while preserving its convexity, an iterative approach has been
implemented. This method is inspired by existing algorithms
in the literature that account for power losses by means of
quadratic inequality constraints [10]. However, as discussed
in [11], these approaches may introduce additional fictitious
losses in the presence of negative locational marginal prices
due to congestions in the transmission system. Therefore, the
iterative approach adopted in this study introduces an upper
bound for power losses which is lowered accordingly at each
iteration, should the losses be overestimated. The main steps
are:

1) Set the upper bound for power losses to the value
corresponding at the maximum power flow and set a
tolerance δ for the convergence.

Lmax
(1) = Rfmax2 (9)

2) Solve DCOPF (12) and obtain resulting power flows f(k)
and power losses L(k) for the k-th iteration.

3) Compute the difference between estimated losses and
actual losses for the resulting power flows.

ΔL(k) = L(k) −Rf2
(k) (10)

If ΔL(k) ≤ δ a solution is found, otherwise proceed to
next step.

4) Update the upper bound for power losses with the losses
corresponding to the power flows at step k, plus a small
margin ε. Then return to step 2.

Lmax
(k+1) = Rf2

(k) + ε (11)

This iterative approach allows to solve the DCOPF with a
quadratic representation of power losses while still preserving
the original convexity, which guarantees uniqueness of the
solution. This is achieved by gradually reducing the size of
the feasible region for branch losses.

The optimization problem in (12) is the base multi-period
DCOPF for a generic iteration (k), where losses are accounted
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for. The objective is to find the optimal 24-hours day-ahead
energy dispatch, which minimizes total generation cost over
the period T, where all constraints have to hold ∀t ∈ T. The
base lossy-DCOPF is formulated in a compact form in (12)
and it is solved in the matlab-based modeling system CVX
[12] using a Mosek academic license.

min
Ξ

∑

t∈T

⎛
⎝∑

g∈G

cgPg,t +
∑

w∈W

cwPw,t +
∑

n∈N

cshP sh
n,t

⎞
⎠

(12a)
s.t.∑

g∈G

Pg,t +
∑

w∈W

Pw,t −
∑

n∈N

(Pn,t − P sh
n,t + Lbus

n,t) = 0, (12b)

Pmin
g ≤ Pg,t ≤ Pmax

g ∀g ∈ G, (12c)

−ΔPmax
g ≤ Pg,t − Pg,t−1 ≤ ΔPmax

g ∀g ∈ G, (12d)

− fmax ≤ f�,t ≤ fmax ∀� ∈ L, (12e)

Rf2
�,t ≤ L�,t ≤ Lmax

(k) ∀� ∈ L, (12f)

0 ≤ Pw,t ≤ P av
w ∀w ∈ W, (12g)

0 ≤ P sh
n,t ≤ Pn ∀n ∈ N (12h)

where Ξ = [Pg,t, P
sh
n,t, Pw,t, L�,t] is the set of decision vari-

ables that for each time step t represent scheduled generator’s
output Pg,t, shed load P sh

n,t and dispatched wind power Pw,t

for every generator, bus and wind farm, respectively. Branch
power losses L�,t are modelled by means of an auxiliary
decision variable in conjunction with quadratic and linear
inequality constraints.

The objective function in (12a) consists of three terms: the
cost of dispatching conventional generators in the system over
period T considering linear generation cost functions; a small,
negligible cost for dispatching wind power in order to improve
convergence of the algorithm; the additional cost of preemptive
corrective actions such as load shedding. Constraint (12b)
enforces system day-ahead power balance for each hour in the
considered time period. Constraints (12c) and (12d) impose
operational limits on conventional generators in terms of their
power outputs and ramping capabilities, whereas branch power
flow are limited by constraints (12e). Branch power losses
are bounded by constraints (12f). The lower bound consists
in their correct quadratic representation, whereas the upper
one is necessary to avoid the introduction of fictitious losses.
This term is the sole to be iteratively reduced whenever power
losses do not lie close enough to the lower boundary in terms
of the chosen tolerance δ. Lastly, constraints (12g) and (12h)
impose physical limitations on the availability of wind power
generation at each bus and the amount of load that can be
shed, respectively. Available nodal wind power injections P av

w

is modelled as in [4], where time series of wind speed at
several locations in the Danish power system are converted
to wind power generation time series by means of a multi-
turbine wind power curve fitted on historical data. Decision
variable Pw in the optimization problem selects the available
amount to be dispatched depending on the load demand or the
presence of congestions in the grid.

B. Additional constraints for STR

In order to express the loading of the transformer on branch
�, the power flow f� is scaled accordingly with the ratio of
base system per unit power Sbase to the nameplate rating of the
transformer Strf

� . This scaling factor allows to show the loading
Itrf� defined in (13) relatively to the size of the transformer.

Itrf�,t = f�,t
Sbase

Strf
�

(13)

The subset LSTR of transformers that are statically rated can
then be represented in the base DCOPF (12) by introducing
additional constraints (14) that limit the power flow on the
corresponding branch � for all considered time periods.

−1 ≤ Itrf�,t ≤ 1, ∀� ∈ LSTR, ∀t ∈ T (14)

C. Additional constraints for DTR

The loading of transformers that are dynamically rated is
limited by operating hot-spot and top-oil temperatures rather
than per unit load. Top-oil and hot-spot temperature variations
are bounded by predefined values that ensure transformers are
used within their thermal capabilities, according to state-of-
the-art loading guidelines. As discussed in [4], ϑtop and ϑhst are
modelled by means of quadratic inequality constraints which
keep the resulting optimization problem a convex one. The
extensive form of such values is provided in expressions (3)
and (4) in Section II.

ϑtop�,t ≤ ϑmax
top ∀� ∈ LDTR, ∀t ∈ T (15)

ϑhst�,t ≤ ϑmax
hst ∀� ∈ LDTR, ∀t ∈ T (16)

Adding (15) and (16) to the base DCOPF formulation in (12)
will consider the effect of having transformers dynamically
rated during the 24-hours dispatch period.

D. Additional constraints for DTR+

The third loading strategy proposed in this paper takes into
account not only temperature dynamics, but also transformer
aging rate. This aspect is likely to play a role only in the
long term, but it provides indication of how the transformers
loading could be affected by cumulative lifetime consumption
during continued high temperature operation. In order to do so,
the exponential aging acceleration factor Λ defined in Section
III is included in the base DCOPF (12) by means of a set
of linear inequality constraints that form a convex piece-wise
linear approximation. Coefficients mi and qi in (17) are the
slope and intercept values of the i-th tangent line that forms
the approximation of Λ.

Δλt = max
i

{miϑhstt + qi} ≈ Λt (17)

The expression in (17) relates the transformer hot-spot operat-
ing temperature ϑhstt to the corresponding incremental lifetime
utilization Δλt. The cumulative lifetime utilization λt is then
evaluated in a discrete form in (18)

λt = λt−1 +Δλt (18)
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Fig. 2. Modified IEEE RTS 24-bus system [7]

As the transformer is dynamically rated considering lifetime
consumption as well, constraints (15) and (16) are added to
the base DCOPF (12) together with (19), where λ0 represents
the initial lifetime of the component, α the desired maximum
aging rate which in this study has been assumed 1 and t is
the time counter during the simulation.

λ�,t ≤ λ0 + αt ∀� ∈ LDTR+ , ∀t ∈ T (19)

Ultimately, this approach allows to set a higher temperature
limit on transformer operation as long as the designed lifetime
consumption limit is not reached. Once the upper boundary of
lifetime utilization is met, the binding constraint will switch
from hot-spot temperature to used cumulative lifetime, thus
limiting the operation of the component accordingly.

V. CASE STUDY

The IEEE RTS 24-bus network with additional wind gen-
eration from [7] has been adopted in this study with some
modifications. Referring to Fig. 2, wind generation is con-
centrated at Bus 16, 21 and 23, whereas different nameplate
ratings are considered for the transformer located between bus
3 and 24, namely 150, 175 and 200 MVA. The data used to
model transformer thermal dynamics is provided in [8].

The multi-period DCOPF problem of Section IV is solved
in a moving window of 24 hours for the 3-year period between
2014 and 2016. Different test cases compare the system and
transformer performance for STR, DTR with ϑmax

hst at 110 ◦C
and DTR+ with ϑmax

hst at 140 ◦C combined with optimal lifetime
utilization. The assumptions for the DTR+ test case are quite
conservative. The transformer is assumed to be in operation
for 3 years with DTR resulting in cumulative loss-of-life of
1.5 years, which is cautiously chosen based on operational
experience of large transformers.

Historical daily load profiles from the Danish power system
have been scaled accordingly with respect to the peak demand

in [7]. Total load demand is then increased by 25 percent
during the central hours of each day in order to account
for future network changes and to enhance the need for
DTR in the given system. Lastly, historical time series of
ambient temperature from the same system have been used
in the thermal rating algorithm for transformers. This allows
to take the weather correlation between wind speed and
ambient temperature into account. Such a correlation will be
reflected between the available wind power generation and the
loadability of transformers.

VI. RESULTS AND DISCUSSION

The analysis starts from considering the overall impact
of the tested loading strategies on the cumulative lifetime
utilization of a 175 MVA transformer, shown in the left part
of Fig. 3. It stands out as the STR approach practically does
not cause any significant aging over the entire 3-years period,
in agreement with conservative common loading practices.
As opposed to STR, DTR+ pushes the utilization of the
component to the designed limit in less than 1 year. Once the
maximum aging rate is met, the component will keep using
the available designed lifetime at disposal, according to the
proposed loading strategy presented in this paper.

The resulting aging profiles can be motivated by considering
a three-day period in Fig. 4, where transformer loading and
corresponding hot-spot temperatures are shown. As long as the
transformer load is limited in terms of its per unit nameplate
rating, the associated hot-spot temperature remains well below
the allowed operational limits due to favourable weather condi-
tions and dimensioning criteria. The resulting low HST profile
coupled with the exponential aging acceleration factor shown
in the right part of Fig. 3 will yield a close-to-zero aging rate
for STR. However, in this condition the transformer branch
constitutes a bottleneck in the grid, thus causing increased
dispatch costs for the system.

Moving the transformer limiting factor from the per unit
load to the hot-spot temperature by means of DTR allows
to significantly increase the power flow. This would help
releasing grid congestions and dispatching more wind power
generation from the buses where it is located, at a cost of

Fig. 3. Cumulative lifetime utilization over the 3-years period for different
loading strategies (left). Exponential aging acceleration factor and fitted linear
approximations (right).
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Fig. 4. Transformer hot-spot temperature (above) and transformer load
(below). Focus on three days for STR, DTR and DTR+

increasing the lifetime utilization of the component. This
mechanism is further enhanced by considering DTR+, which
allows the transformer hot spot temperature to be set even
higher, as long as the aging rate does not reach the predefined
limit, as shown in Fig. 3. Once the maximum aging rate
is reached, the constraint on lifetime utilization will prevent
the hot-spot temperature to reach the maximum value, thus
resulting in a lowered loading capability.

The operation beyond nameplate rating causes additional
power losses, not only in the component that is being dynam-
ically rated, but in the remainder of the system as well. This
aspect can be seen in Fig. 5, where transformer and system
losses are shown for the same 3-days period. Relieving grid
congestions by means of DTR or DTR+ will result in increased
power flows across the grid, which will in turn cause additional
system losses. Despite increasing system losses, the solution
of the multi-period DCOPF suggests that there would still be
economic benefits from the increased power flow in the grid,
as summarized in Table II, where losses are taken into account.

TABLE II
COST REDUCTION AND LIFETIME USE AFTER 1 YEAR COMPARED TO STR

Transformer Size
(MVA)

Cost Reduction
(%)

Used Lifetime
(%)

DTR DTR+ DTR DTR+

150 -10.1 -11.5 +41.5 +166
175 -8.1 -8.8 +31.1 +166
200 -6.4 -7.1 +24.2 +166

VII. CONCLUSION

This paper proposes a novel approach for optimal trans-
former lifetime utilization. This approach incorporates both
thermal and aging dynamics into a convex optimization prob-
lem based on a multi-period DCOPF, while accounting for
quadratic power losses in the system. The proposed algorithm
maximizes the transformer utilization ensuring that neither

Fig. 5. Total system losses (above) and transformer losses (below). Focus on
three days for STR, DTR and DTR+

thermal nor aging rate limits are violated during operation.
The results suggest that the proposed DTR algorithm reduces
the cost of load dispatch and yields a substantial increase in
network capacity. It is also observed that accounting for the
temperature-dependent aging rate can allow a better utilization
of the transformer designed lifetime. This aspect is likely to
improve the business case for applications with limited asset
lifetime like offshore windfarms. It could also be beneficial
for TSO which have to face rapid growth of renewable-based
generation and postpone the required grid reinforcements.
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Figure 5. DTS-based cable temperature variation over eight days along the entire length with respect 

to the onshore substation for the test windfarm. The thermal behavior is consistent along the route. 
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Figure 9. Top: Maximum measured temperatures in years 2014 and 2016 along the entire length for 

the test windfarm export cable. Bottom: Closer look of different sections of interest. 
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Abstract – Oil-filled power transformers are critical for nominal operation of Offshore Windfarms 

(OWFs), as these transformers are employed not only in the transmission system, but also in each Wind 

Turbine Generator (WTG). With the advent of large-scale OWFs comprising of more than 100 WTG 

transformers, effective thermal condition monitoring of these transformers has become a challenge. In 

this paper, a number of physical, semi-physical and non-physical empirical thermal models based on 

data analytics and Machine Learning (ML) are developed that are fit for dynamic thermal estimation of 

WTG transformers. Unlike conventional computational fluid dynamics and white box Thermo Electric 

Equivalent (TEE) models, the statistical approach to thermodynamic modeling of transformers is found 

to be less complex to design as it requires minimal system information and more flexibility. The 

physical insights based ML models (grey-box) are closer to conventional TEE models proposed by 

IEEE and prominent publications, but the remaining models can be built from scratch based on available 

data as they require little to no physical operational or design knowledge (black-box). The data driven 

ML models are trained and tested for a number of test cases in this paper. Firstly, controlled heat run 

tests performed on a 630 kVA lab transformer under dynamic load conditions are used to validate these 

models. But due to limitation of training data, the grey-box models which rely heavily on available 

system information and correct parameterization are found to underperform compared to white-box 

TEE and black-box neural network models. Afterwards, the available thermal and load monitoring data 

from ten actual offshore WTG transformers (6.8 – 7.2 MVA) located in the nacelle is used for durations 

up to 2 years. This long-term data is found to be sufficient for proper training of all the developed ML 

models. As a result, the physics-based ML models that use linear differential equation functions are 

found to be more consistent compared to the non-linear black-box models as the latter models have the 

tendency to overfit the data. This consistency remains even when the models are trained on one of the 

available WTG transformers and the trained models are later tested on completely different WTG 

transformers. Hence, it is shown that the application of data analytics and machine learning has a huge 

potential in widescale condition monitoring of transformers with similar constructional features, 

particularly for WTG transformers in large-scale offshore windfarms. 

 

 

 

Keywords: Dynamic thermal rating, Transformers, Wind turbine generators, Offshore windfarms, Hot 

spot temperature, Top oil temperature, Machine learning, Data analytics, Artificial neural network, 

Ordinary differential equations, Auto regression, State space models. 
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1 INTRODUCTION 

Thermal estimation of high voltage components is crucial for sustainable design and operation of transmission and 

distribution systems. Oil-filled HV components like transformers and reactors are particularly influenced by load-

dependent heating. Therefore, approximation of two quantities is of great importance: the measurable Top Oil 

Temperature (TOT) and the critical Hot Spot Temperature (HST), along with their variation with load and ambient 

conditions [1]. Oil-filled power transformers are crucial for the design and operation of Offshore Windfarms 

(OWFs), as each Wind Turbine Generator (WTG) includes a transformer. 

 

Accurate estimates of these transformer temperatures require detailed knowledge of geometry and loss distribution, 

and the nonlinear nature of fluid flow will tend to amplify any uncertainty in the parameters. Modelling techniques 

such as computational fluid dynamics and thermal hydraulic networks are widely used for steady state thermal 

assessment [2]. For dynamic, load-dependent thermal estimation, Thermo-Electric Equivalent (TEE) models are 

typically used, which require transformer construction information that is often unavailable and could potentially 

change over operation time. In this paper, it is shown that Machine Learning (ML) based dynamic thermal 

estimation of oil-filled components can resolve these challenges. 

 

Four flexible, adaptable, computationally efficient, self-learning models with completely different structures and 

formulations are developed and tested for dynamic thermal estimation of WTG transformers. The complexity of 

dynamic ML-based models for time series data, as described in [3] [4] is resolved using system identification 

principles of [5]. Some of the developed models utilize the available physical insights based on the principles 

explained in [6], while the computational stress of non-linearities are resolved using the suggestions of [7]. The 

models are validated for a 630 kVA lab transformer and 10 WTGs transformers rated between 6.8 and 7.2 MVA.  

 

2 DATA DRIVEN THERMAL MODELING OF WTG TRANSFORMERS   

This section provides detailed explanation behind the rationale for using Machine Learning (ML) based dynamic 

thermal models for WTG transformers, along with their methodological descriptions. 

2.1. MOTIVATION AND POTENTIAL 

Over the years, the size of offshore windfarm projects has increased dramatically. The typical layout of large 

OWFs with >100 WTGs, as shown in Fig. 1, determines the extent of operational and monitoring challenges for 

developers and operators. Furthermore, transformers in each OWF WTG generate large amounts of monitoring 

data that is difficult to manipulate and analyze with conventional methods. Therefore, in order to fully utilize the 

information hidden behind the thermal measurements of transformers to identify potential maintenance activities 

to be performed on these transformers, intelligent algorithms should be developed that are computationally 

efficient, have the ability to handle large bandwidth of data and can generate reliable results. The ML algorithms 

proposed in this paper can perform these tasks effectively.  

 
Figure 1. Left: Illustration of transmission system overview for offshore windfarms. Anholt Offshore collection 

system layout showing 111 WTGs connected within asymmetrical offshore 33 kV electrical infrastructure [8] 
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2.2. METHODOLOGY OF DESIGN 

The data-analytics based ML models presented in this paper undergo two phases for thermal estimation of power 

transformers. These phases are highlighted in Fig. 2 as Training and Testing, while the overall mechanism is also 

defined in the figure. During the Training phase, three different sets of inputs are made available to the relevant 

ML-based model: 

• The ‘predetermined parameters’ are a collection of constants that are predefined during the development 

of the model. Since data-analytics based models offer exceeding flexibility of design, these parameters 

allow the designer to determine the problem structure, model order and the relevant functions in advance. 

Understandably so, this step requires extensive information about the model framework to ensure efficient 

design. 

• The set of ‘training inputs’ are measured time-variant variables that should supposedly be available to the 

models at all times. For dynamic thermal modeling of transformers, load current (𝐼𝑡) and ambient 

temperature (𝜗𝑡
𝑎𝑚𝑏

) are used as training inputs in this paper. 

• The last set of inputs, called ‘training measurements’, consist of the signals that are to be predicted by the 

ML-based model. For thermal estimation of transformers, the top-oil (𝜗𝑡
𝑡𝑜𝑡

) and hot-spot (𝜗𝑡
ℎ𝑠𝑡

) 

temperatures are to be predicted. 

The relevant model uses these predetermined parameters and the considerably long duration of time-variant inputs 

to train itself. By the end of the training phase, the parameters that define the thermal characteristics of the 

transformers, termed as ‘estimated parameters’ in Fig. 2, are determined. Once the ML-based models are trained 

and the characteristic estimated parameters are defined, the Testing phase commences. This phase uses the time 

variant test inputs 𝐼𝑡 and 𝜗𝑡
𝑎𝑚𝑏

 to predict the temporal variation of the critical transformer temperatures 𝜗𝑡
𝑡𝑜𝑡

  and 

𝜗𝑡
ℎ𝑠𝑡

. It should be mentioned that the HST is not readily measured in WTG transformers, therefore TOT will be 

used for predictions and benchmarking of the developed models for offshore turbine transformers in this paper. 

 

 

 
Figure 2. Process followed during training and testing phase for ML-based dynamic thermal estimation models 

for WTG transformers.  

 
In order to benchmark the models formulated for this paper with regards to their prediction accuracy and to 

constitute the training convention, Normalized Mean Square Error (NMSE) is used. The calculation of Mean 

Squared Error (MSE) and NMSE are provided in (1) and (2) respectively, where 𝑦𝑡
𝑟𝑒𝑓 and 𝑦𝑡

𝑝𝑟𝑒𝑑  represent the 

measured and predicted values of the temperature at time t and 𝜇 represents the average. By normalizing MSE by 

variance 𝜎2, NMSE offers a unique advantage for generality of application [9]. Furthermore, as the NMSE in (2) 

ranges between negative infinity and 100, where 100 corresponds to a perfect fit and 0 represents the equivalency 

to a general mean model, it provides easier interpretability of results. This is true because the performance of the 

models with NMSE in the range of 0 to 100 is better than constant mean models [10]. Besides the utilization of 

prediction accuracy, the models formulated in this paper are also compared based on their design simplicity and 

application flexibility. 

 
𝑀𝑆𝐸 =  

1

𝑁
‖𝑦𝑡

𝑟𝑒𝑓 −  𝑦𝑡
𝑝𝑟𝑒𝑑  ‖

2
 

(1) 

 
𝑁𝑀𝑆𝐸 = 100 ( 1 −  

𝑀𝑆𝐸

𝜎2
) = 100 (1 −

‖𝑦𝑡
𝑟𝑒𝑓 −  𝑦𝑡

𝑝𝑟𝑒𝑑  ‖
2

‖𝑦𝑡
𝑟𝑒𝑓 −  𝜇 ‖2

) 
 
(2) 

 

2.3. CLASSIFICATION OF ML MODELS 

In this paper, empirical models for dynamic thermal estimation are preferred because the experiential and statistical 

character of the empirical models, when combined with their increased computational efficiency, higher 
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adaptability and design simplicity make them ideal for application of data analytics and machine learning [9]. 

Referring to Fig. 3, the models identified in this paper are briefly classified in to three shades of grey, depending 

on the model’s requirement of physical information about the system and how these required insights blend with 

the empirical observations.  

 

The white-box models have conventionally been proposed in the literature as Thermo Electric Equivalent (TEE) 

models. These linear and non-linear differential equations-based models not only require extensive knowledge 

about the system design and its thermodynamic behavior, but the estimation of physical parameters and the set of 

underlying equations is made in advance and cannot be changed during estimation. In this paper IEEE Clause 7 

model from IEEE 57.91 [1] and the Susa model from [11] are used as white-box TEE models because of their 

proven applicability for dynamically loaded WTG transformers [12]. 

 

On the other hand, the black-box models require minimal system information which make them ideal for 

applications where physical insights are either unavailable or too complicated to design, as demonstrated for 

similar applications in [4, 13]. Finally, the grey-box models combine the features of the remaining two, as these 

models use limited system insights to design the problem structure and can efficiently be used for application 

where the system parameters tend to change over time. Consequently, the system designer can define the problem 

structure based on known information, while the unknown parameters are determined using data-analytics [5]. 

Black-box and grey-box models along with their sub-groups are briefly explained in Table 1, but the readers are 

directed towards publications [14] and [15] for detailed information regarding problems’ structural formulations 

and parameter estimation. 

 

 
Figure 3 Empirical thermal estimation models classification with focus on grey-box and black-box machine 

learning models 

 
Table 1. Classification of the proposed machine learning models and their description 

Name Type Description 

 

ODE 

 

Grey-box 

The Ordinary Differential Equation (ODE) model is a continuous-time, semi-

physical model, for which first-order linear differential structure is used in this 

paper. Model coefficients can be tuned to accurately assess the temperature rise 

and thermal time constants for transformers. [16]. 

 

 

ARX 

 

Black-box 

(Trend-based) 

The statistical linear regression based Auto Regressive eXogenous (ARX) model 

uses a linear combination of previously predicted & measured values of critical 

transformer temperatures along with a stochastic term (noise) and a series of known 

inputs (load) [3]. The model order is predefined, while the coefficients are trained 

to fit the training data. 

 

ANN 

 

Black-box 

 

The classical Artificial Neural Network (ANN) model uses non-linear weighing of 

input signals [4]. The order of the model, number of layers, sub-layers and neurons 

have been chosen to optimize the complexity, solution time & accuracy. 

 

SS 

 

Grey-box 

The State Space (SS) model based on a set of first-order differential eqs. defines 

the system using state variables and is linear in nature [17]. This model is physics-

based and similar in operation to the process model. The higher the amount of 

available system information, the better the structure of these models can be 

constructed. 
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3 LAB TRANSFORMER SETUP AND RESULTS 

As mentioned earlier, WTG transformers in offshore windfarms do not have provisions to measure HST, which 

leaves only TOT for validation purposes. Therefore, the performance of data-driven ML-based models proposed 

in this paper are compared with the conventional white-box TEE models by using a test transformer setup in the 

DTU HV PowerLab, as specified in Table 2 The cooling mechanism of the test transformer (former distribution 

transformer manufactured in 1990), along with the electrical/mechanical design and the dynamic load applied 

during the controlled heat-run tests indicate that the results are easily scalable to offshore WTG transformers. 

 

Table 2. Specifications for 630 kVA Test transformer in DTU HV Power Lab 

Parameter Value 

Rating 630 kVA 

Voltage 0.4/10 kV ± 5% 

Vector Group Dyn11 

Percentage Impedance 5 % 

Frequency 50 Hz 

Oil Weight 460 kg 

Winding Time Constant 6 min 

Rated No-load/Full-load Losses 586/5064 W 

Cooling Mode ONAN 

 

For the test transformer setup in Fig. 4(a), by removing the active part of Fig. 4(b) after oil drainage, temperature 

sensors were placed in the right locations. Referring to Fig. 4(c), a total of 6 Type-K thermocouple temperature 

sensors (T1-T6) were placed for TOT measurements such that two sensors were used for either side of each phase 

winding. On the other hand, 7 sensors (H1-H7) located close to the top region of the windings were used for 

tracking HST variation over time. As per experience and manufacturer’s recommendations, a significant number 

of these sensors were placed on the middle phase. After initial investigations, sensors T2 and H3, shown in Fig.  

4(d) and 4(e), were found to provide accurate TOT and HST measurements respectively. The ambient temperature 

of surroundings was measured using the mathematical average of a number of Type-K sensors placed around and 

on the surface of the lab transformer. The relevance of the test setup for intermittently loaded WTG transformers 

in offshore windfarms with dynamic rating is ensured by subjecting the lab transformer to two different dynamic 

load profiles, one below the rated capacity and the other up to 1.4 pu of the lab transformer rating. 

 

 
Figure 4. (a) Energization setup for the lab test transformer (LV side). (b) Transformer’s active part ready for 

sensor placement. (c) Location of TOT sensors T1-T3 (T4-T6 on the opposite sides) and HST sensors H1-H7 

(except H4). (d) (e) Zoomed-in view of T2 and H3 sensors chosen for thermal validation. (f) Infrared thermal 

image of the test transformer for sustained overload (1.4 pu) at 2.5-hour mark 

 

The two load profiles and the resulting measurements for TOT (sensor T2) and HST (sensor H3) are provided in 

Fig. 5 Furthermore, the calculated temperature using the conventional white-box TEE models (Susa and IEEE) 

and the data-analytics ML-based models explained earlier are also provided in the figure. The performance is 
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found to be consistent for both the test load profiles, as white-box models outperform the ML-based models 

consistently, with the Susa model offering the highest accuracy. It is important to mention that the abundance of 

design and operational information available for the lab transformer allowed the white-box TEE models to be 

developed with high level of technical details, which contributed to the increased accuracy of their predictions. 

 

The ML-based models presented in this paper are trained over the entire dataset. Contrary to expectations, the 

physics-based grey-box models (ODE and SS) return below-par results, as these models fail to accurately predict 

the lab transformer’s TOT and HST for the two load profiles. On the other hand, linear black-box ARX model 

offers acceptable accuracy, while the non-linear ANN model provides the best-fit. The lack of data due to relatively 

shorter heat-run tests is found to be the problem for these results. In contrast to the remaining models, the inherent 

degree-of-freedom offered by the highly non-linear ANN model allows accurate replication of the measured 

temperatures, but this can lead to data overfitting and the results needs to be reviewed for untrained datasets and 

should be cross-validated before definite conclusions are made. One important point to note is the measured 

temperature in the thermal image of Fig. 4(f) at the 2.5 hour mark for the high load case is around 80.6 oC, which 

corresponds to the TOT measured at the same time in Fig. 5(c) and also indicates consistent concentration of high 

temperature in the top region of the transformer. 

 

 
Figure 5. Comparison of calculated TOT and HST using TEE models from Susa [11], IEEE [1] and ML models 

(Table 1) with the measured values for the 630 kVA lab transformer. (a)-(b):  load ≤ 1pu. (c)-(d): load > 1pu.    

4  TEST CASE WTG TRANSFORMERS IN OFFSHORE WINDFARMS 

In order to validate the four ML-based models proposed in this paper for wind turbine transformers in OWFs, ten 

different WTG transformers of similar rating (6.7 – 7.2 MVA) and same construction/installation characteristics 

(electrical/mechanical design, cooling modes, manufacturer, located in WTG Nacelle etc.) are used. These WTG 

transformers are spread across four offshore windfarm sites in UK and Denmark, while 10-minute sampled 

measurement data of up to 3 years is used for training and tested purposes. This data includes inputs which are 

readily available during both the training and test phase (incl. load and ambient nacelle temperature), while the 

TOT measurements are only used in training the models and then benchmarking the results by comparing the 

calculated temperatures with the measured ones.  

5 VALIDATION RESULTS AND POSSIBLE APPLICATIONS 

In this section, the validation results of the proposed ML-based models for dynamic thermal estimation of test case 

WTG transformers are provided. Furthermore, the possibilities of applying these modeling techniques for self-

monitoring of the test WTG transformers (train and test on the same transformer) and for cross-monitoring of these 

transformers (train on one transformer and test on remaining) are also presented. 
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5.1. TRAIN AND TEST ON THE SAME WTG TRANSFORMER 
In this approach, the ML-based models are trained and tested separately for each of the test WTG transformers. 

Hence, in total 10 models are trained for each of the four ML-based models (ODE, ARX, ANN and SS), thereby 

resulting in a total of 40 individually trained models. By using the 60-40 principle, 60% of the available 3-year 

(730 days) TOT measurements, load data and ambient temperature measurements are used for training the models, 

while the rest are used for predicting the TOT for validation purposes. In Fig. 6 and 7, the validation results of the 

four ML-based models are provided for two different WTGs for a short duration at the border of training and test 

intervals. The dark-orange line represents the predicted TOT measurements during the training phase, while the 

light-orange line represents the predictions for the test phase. It can be seen that for all the tested models except 

ANN, the prediction performance during the training and testing periods are generally similar. In contrast to the 

observations for lab transformers, the availability of long-term data from WTG transformers ensures that physics-

based ML models (ODE and SS) perform considerably better, while the ANN model is found to overfit the data 

due to its highly non-linear nature.  

 
Figure 6. Results for WTG 1 transformer when the ML models are trained and tested on its own measured TOT 

data. 2 years of data is used in total, but the results are presented for a 30-day window for elaboration purpose. 

 

 
Figure 7. Results for WTG 2 transformer when the ML models are trained and tested on its own measured TOT 

data. 2 years of data is used in total, but the results are presented for a 30-day window for elaboration purpose. 

 

Furthermore, the four ML-based models proposed in this paper are benchmarked using the NMSE results. These 

results are summarized in Fig. 8 using boxplots for the ten WTG test transformers which visualize the calculated 

TOT’s distribution and its skewness, along with the median values. It can be deduced that both the physics-based 
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models consistently result in highest accuracy (NMSE close to 100%), while the ANN models perform the worst. 

ARX models result in acceptable results which can further be improved by increasing the model order. For 

comparison, NMSE for Susa and IEEE models are found to lie in the range of 89-95% and 83-91% respectively. 

The unique consistency of physics-based ML models makes them fit for dynamic thermal estimation of WTG 

transformers, if considerable training data is available.  

 

 
Figure 8 Comparison of NMSE (%) results for the 4 developed ML model types using boxplots, when the 

models are trained and tested on the same WTG transformer (all 10 WTGs are trained and tested individually).  

5.2. TRAIN AND TEST ON DIFFERENT WTG TRANSFORMERS 

As further large-scale offshore windfarms are built farther from the shore, the number of WTGs in an OWF rise 

considerably. Some of the latest OWF projects are found to employ up to 200 WTGs. Since each WTG has a 

power transformer, effective thermal monitoring and condition-based maintenance of these transformers can lead 

to significant challenges for the system operators. Therefore, in this section, another approach has been proposed 

to assess the potential of cross-application of the developed models. 

 

The rationale behind this approach is to use the common thermodynamic design of WTG transformers that the 

data-analytics ML-based models can familiarize with by training over a limited set of sampled transformers. 

Hence, for this analysis, the developed ML-based models are trained for each of the 10 test WTG transformers 

separately. Afterwards, the trained models for each WTG transformer is tested on the 9 remaining test transformers. 

In total, a total of 90 tests are carried out for each model type. The results for one of these experiments are 

summarized in Fig. 9, where the four ML-based models are first trained on the complete 2-year data set of a certain 

WTG transformer and then tested on three different WTG transformers. It can be seen that all the developed 

models, with the exception of ANN model, predict the transformer TOT with acceptable accuracy under dynamic 

load conditions even though these models have not been trained on the respective test transformer. This is further 

demonstrated using the NMSE boxplots in Fig. 10, where ODE and SS models consistently predict the thermal 

development for training and testing on different WTG transformers. On the other hand, the developed framework 

for ANN model is not found to be fit for this application. Hence, it can be concluded that by using physics-based 

grey-box models, one can stipulate the thermal development of a large population of WTG transformers by training 

these models for a limited number of these transformers. The potential to employ these techniques for wide-scale 

monitoring of offshore windfarm transformers has been demonstrated in this section. 

 
Figure 9. Results of thermal estimation of WTG transformers when the ML models are trained for TOT 

measurements of one transformer and then tested on the data for three different WTG transformers of same 

characteristics. 2 years of data is used in total, but the results are presented for a 30-day window. 
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Fig. 10. Comparison of NMSE (%) results for the 4 developed ML model types using boxplots, when the models 

are trained on one transformer and tested on the remaining 9 WTG transformers (repeated for all transformers). 

6 CONCLUSION 
In this paper, it has been shown that application of Machine Learning (ML) and data analytics can provide 

significant value for effective thermal monitoring of Wind Turbine Generator (WTG) transformers in large-scale 

Offshore Windfarms (OWFs). The paper has presented a number of grey-box (physical/semi-physical) and black-

box (non-physical regression-based) models that are considerably different to design compared to the conventional 

Thermo Electric Equivalent (TEE) models. The proximity of grey-box models to physical insights of the 

transformer tank make them suitable to detect anomalies that are related to thermodynamic behavior of the 

transformer, while the flexibility and adaptability of black-box models allow the user to mold the models as per 

their individual needs. The widescale validation tests carried out on long-term monitoring data from ten different 

WTG transformers and controlled heat run tests on a lab transformer has shown that the performance of grey-box 

models is dependent on the amount of available data. Similarly, these models are found to be applicable in cases 

where thermal monitoring is performed on a limited set of WTG transformers, while the operators needs to 

determine the condition of all the transformers. Hence, the analysis has revealed that under the circumstances of 

limited design information and large-scale data production, data-driven ML models (particularly grey-box models) 

can facilitate and significantly improve the dynamic thermal estimation process for WTG transformers. 
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