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Abstract

This article presents a method for generalized shape optimization of time-harmonic vibroacoustic problems.
The modeling approach utilizes an immersed boundary cut element method in conjunction with a level set
representation of the geometry. The cut element method utilizes a fixed background mesh, a dimensionless
contrast parameter and an integration scheme to realize complex geometries and obtain accurate physical
solutions to the governing problem. The design parameterization is obtained using a nodal level set de-
scription, directly linked to the mathematical design variables, and the gradients of the objective and the
constraints are obtained with the discrete adjoint approach. The framework is applied to the optimization
of three 2D examples. A study on the effect of initial guess for the proposed optimization procedure is
presented on a benchmark example of the design of an acoustic partitioner. Further optimization examples
include design of a wave splitter to realize prescribed frequency dependent directivity for emitted acoustic
waves and a suspension structure design to improve the performance of a simplified 2D model of a hearing
instrument. The results demonstrate that, even though the final topology is strongly dictated by the initial
design, modifying the shape allows for a significant improvement of the system behavior.

Keywords: Vibroacoustics, Cut finite elements, Immersed boundary methods, Level set methods, Shape
optimization

1. Introduction

Topology optimization has become a widely uti-
lized tool in the design of engineering products since
its introduction in the late 1980’s [1, 2]. Essen-
tially the optimization process seeks to minimize a
given objective function by distributing material in
a certain design domain. Primarily it has been uti-
lized in the design of elastic structures to realize stiff
but lightweight designs [3]. Nowadays, the scope of
application areas of topology optimization is ever
widening and includes different physics, e.g., com-
putational fluid dynamics (CFD) [4, 5] and acous-
tics [6, 7]. To allow for maximum design freedom,
and to ensure differentiability of the parameteri-
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zation enabling the use of gradient based optimiz-
ers, density based topology optimization is a pop-
ular choice. In this method the material distribu-
tion problem is relaxed and the material proper-
ties are interpolated between solid and void phases.
However, issues regarding the physical interpreta-
tion of the gray areas (material realizations between
solid and void phases) under certain conditions re-
main a problem, e.g., regarding design dependent
pressure loads [8] where it could be hard to iden-
tify the design boundary due to the presence of
intermediate phases. Although advanced projec-
tion methods and filtering approaches have been de-
veloped to eliminate intermediate density elements
[9, 10, 11, 12], these methods at best provide a crisp
stair-case boundary description. Furthermore, in
multi-physics optimization cases, a clear and ex-
act interface description is crucial for the physics
that are coupled through a boundary, since gener-
ally such strongly coupled physics exhibit a high
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degree of sensitivity to small design variations, e.g.,
fluid-solid interactions. This behaviour makes the
utilization of density based topology optimization a
challenge due to its ”pixelated” interface represen-
tation. In certain cases, such as for strongly coupled
acoustic-mechanical systems, the presence of un-
wanted intermediate phases in the final design may
contribute strongly to the end performance. Here,
the post-processing step of converting the pixel de-
sign data to a body fitted mesh, may lead to loss
of features in the optimized design. The effect can
be that the removal of these artificial gray elements
causes disappearance of resonance peaks, shifts in
resonance peaks and leads to dramatic changes in
the overall dynamic response when evaluated with
a body-fitted mesh arrangement [13].

As an alternative to density based methods, level
set type methods [14, 15, 16, 17] also allow for al-
most free form design evolution superior to pure
shape optimization, in the sense that avoiding self-
intersecting surfaces, enforcing curvature control,
etc. are much simpler to handle by level set meth-
ods. For a given design iteration, boundary de-
scription is typically given from the zero level con-
tour of the level set function. In terms of model-
ing the physics, ersatz material models (well known
in density based topology optimization) may be
used [18, 19]. Here, the geometry description given
from the level set function is mapped to piece-
wise constant density elements and the interface is
realized by interpolated gray elements. This ap-
proach exhibits challenges in modeling similar to
density based methods due to the interface rep-
resentation. To preserve well-defined boundaries
throughout the optimization, body fitted meshes
are also commonly used to capture the physics [20].
However, this approach requires a re-meshing step
between every design cycle. The application of
body fitted meshes provides a structure that is well
described with a clear boundary description. Hence
the method is inherently suitable for design prob-
lems which show a high degree of sensitivity to the
description of boundaries, e.g., resonators and scat-
terers as often encountered in vibroacoustic design
problems. The application to optimization of cou-
pled acoustic-structural systems with body fitted
meshes can be found in the works of [21, 22, 23].
For modeling of crisp and well-defined boundaries,
instead of utilizing re-meshing strategies, immersed
boundary methods such as CutFEM and X-FEM
[24, 25, 26] have also shown great promise. These
methods facilitate the modeling of complex geome-

tries that do not conform to the fixed background
mesh. Utilization of a fixed mesh for the model-
ing and optimization avoids the costly operation of
re-meshing the evolving interface at each design it-
eration. Moreover, these modeling approaches also
avoid possible numerical noise on the sensitivities
[27] that may arise due to re-meshing procedures
and interpolations between the background opti-
mization mesh and the fitted mesh. Recently, the
CutFEM method is utilized in the work [28] for the
level set based shape optimization of a 2D acoustic
horn.

For optimization, the shape evolution of the
boundary in the classical level set approach, al-
though several variants of the method exist, is based
on the solution of a Hamilton Jacobi type equa-
tion (or a reaction-diffusion type equation) which
uses the shape sensitivity of the design boundary
to move the interface. Different from the classical
level sets, this paper utilizes the so-called explicit
or parametric level set method for the optimization
process [29, 30]. In this approach, the level set field
is not required to be a signed distance function as in
the classical approach. Instead a scalar valued de-
scription, much like density based methods, is used.
The level set values are directly tied to the mathe-
matical design variables through a sequence of filter
operations, which allows the method to facilitate
design updates with the use of standard nonlinear
programming tools instead of solving the Hamil-
ton Jacobi equation to propagate the design bound-
ary. This also increases the generality of the op-
timization approach by allowing a straightforward
inclusion of multiple constraints and different opti-
mization formulations such as min-max problems.
The explicit level set method along with X-FEM
and CutFEM have been utilized for structural op-
timization in the work of [31, 32] and multi-physics
frameworks such as [33, 34]. Since the design is
evolved from the interface, usually shape optimiza-
tion based on level sets exhibits strong dependence
on the initial configuration. To allow for holes to
appear during the design iterations, either topo-
logical derivatives [35] or hole insertion algorithms
which evaluate the design for a suitable criteria to
insert holes [36] can be used. For a thorough com-
parison of topology optimization formulations with
density, level set, and evolutionary-based methods
for vibroacoustic problems, we refer to the recent
review paper [13].

In this work we present a novel crisp interface,
fixed background mesh, explicit level set based,
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generalized shape optimization method for time-
harmonic coupled acoustic-structural systems. We
remark that other approaches based on explicit
level set design representations, often are denoted
as level based topology optimization methods, e.g.
[30]. However, we argue that any boundary evolv-
ing design methodology without a hole insertion
and/or a material seeding scheme, presents less de-
sign freedom than that of the classical density based
topology optimization, and hence motivates the dis-
tinguishment. However, in our case the benefits of
an exact and accurate boundary representation mo-
tivate the use of a boundary evolving method. That
is, for many multi-physical problems, including vi-
broacoustics, an accurate representation of the cou-
pling interface is paramount to properly model the
physics [37]. To this end, a cut element method
is used for discretizing the multi-physical PDE and
the chosen approach can to some extent be viewed
as a special case of either of the following methods:
CutFEM [25] without stabilization, XFEM with-
out enrichments [38] or the Finite Cell method [39].
In this work we adopt the cut element approach to
shape and topology optimization as proposed in [40]
and extend it to include acoustic-structural cou-
pling. In a related (and parallel) publication the
same approach is applied to transient vibroacoustic
problems [41]. The paper is organized as follows:
The level set design parametrization is described in
section 2. Section 3 describes the governing equa-
tions along with detailed implementation aspects of
the utilized cut element method. Sensitivity anal-
ysis regarding the utilized discrete adjoint method
is described in section 4. Finally, in section 5 the
developed framework for the shape optimization of
vibroacoustics systems is demonstrated with three
2D examples.

2. Geometry description

2.1. Level set method

Throughout this work a scalar valued (level set)
function s̄(x) of the following form is utilized to
define the regions occupied by the structure and
the acoustic domains:

s̄(x) > 0, x ∈ Ωs (structural domain)

s̄(x) = 0, x ∈ Γas (interface) (1)

s̄(x) < 0, x ∈ Ωa (acoustic domain)

The utilization of the above function provides
a simple approach to capture complex geometries

with a natural way of tracking the interface between
two physical domains. Here, the structural domains
are embedded within the positive valued regions of
the level set function whereas the acoustic domains
are defined with the negative valued regions. The
acoustic-structure interface Γas is always captured
clearly from the zero iso-curve which carries impor-
tance in terms of the modeling of physics that are
strongly coupled through the interface. Figure 1 il-
lustrates an example of employing a scalar valued
function to describe a design topology of embedded
acoustic and structural domains. Contrary to clas-
sical level set methods, the chosen parametric level
set representation is not based on a signed distance
function, but instead the level set field is bound
in the interval s̄(x) ∈ {0, 1}. This choice will be
further explained and motivated in the upcoming
section.

2.2. Level set parametrization

For parametrization we define a set of design vari-
ables s = {s1, s2, · · · , sn}T and link these to the
physical level set field s̄ that describes the geome-
tries of the coupled system. The design variables
are defined on the nodal points of a fixed grid.
We define s within the range of 0 ≤ si ≤ 1 for
the following reason. First, this bound allows the
utilization of gradient based optimizers in a simi-
lar manner as for standard density based topology
optimization. Although the bounds on the design
variables can be chosen in arbitrary ranges, their
role is to introduce a scale on the design sensitiv-
ities which effects the course of the optimization.
That is, the bounds together with the convolution
filter presented next, impose an upper bound on
the gradient of the level set field. This leads to the
second reason for introducing the bounds, which is
that by linking the bounds on the physical level set
field to the size of the elements in the background
mesh, it is possible to achieve a numerically sta-
ble optimization process. The reader is referred to
Coffin and Maute [42] and Andreasen et. al. [40]
for a detailed discussion of this choice. Hence, the
mathematical design variables are first mapped to
the bounds corresponding to half the element size
−0.5he ≤ s̃i ≤ 0.5he, where s̃i = (hesi) − 0.5he.
Next, in order to ensure regularity on the optimized
designs and to impose the upper bound on the level
set gradient, as well as to extend the region of in-
fluence of the otherwise localized sensitivities, the
mapped design variables s̃ are smoothed before ex-
tracting the zero-level contour. For this operation,
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Ωa

Ωs

Γas
s̄(x) = 0

s̄(x) > 0

s̄(x) < 0

(a) (b)

(c)

Figure 1: The level set function and its embedding physical domain: (a) the regions that are implicitly defined based on the
values of the level set function are illustrated, (b) shows the utilized finite element mesh along with the realized structure from
the zero iso-curve of the level set function, (c) interface is realized with straight lines across elements.

the following pde-type filter [43] is employed:

− r2∇2s̄+ s̄ = s̃ (2)

To ensure a stable solution of the above pde-type
filter irrespective of the given filter size r, a cell cen-
tered finite volume method is employed for the dis-
cretization of Eq. 2. Remark, if the filter equation
was solved using standard Galerkin finite elements,
a lower bound for the radius exists for which smaller
choices of r would lead to violations of the input
variable bounds. Due to the cell centered finite vol-
ume approach, the nodal mapped variables s̃ are in-
terpolated to cell centers, i.e., s̃c where subscript c
denotes discrete variables defined on the cell center.
Similiarly, after calculating the solution of the pde
filter, the cell centered level set values s̄c are inter-
polated back to nodes of the element and describe
the geometry that is used in the analysis, i.e., s̄. We
remark, that interpolating between cell centers and
nodal points provide an additional intrinsic filter
effect which smoothens the boundaries even when
using a filter radius r = 0. Similar approaches to
parametrize a level set function have been used in
the literature, e.g., by using radial basis functions
or convolution type filtering [44, 45]. It is noted
that usage of such parametrizations, including the
parameterization used for this work, does not en-
sure minimum feature sizes as it does in density

based topology optimization. Hence, the only no-
ticeable difference in the chosen design parametriza-
tion compared to [40], is that the present work does
not include a minimum feature size control. This is
deemed reasonable as the focus of this work is on
the proposed modelling approach for the optimiza-
tio of strongly coupled vibroacoustic problems, and
not specific engineering design problems with given
manufacturing constraints.

In this work, the same mesh is used to discretize
the level set function and for the finite element anal-
ysis. Figure 1(b) illustrates the coupling boundary
Γas between acoustic and structural domains inter-
secting finite element edges. The modeling of the
non-conforming boundaries on a fixed mesh is done
using an immersed boundary cut element method
[40]. Instead of re-meshing the interface, the bound-
ary representation is obtained through a special in-
tegration scheme for the elements that are cut by
zero contour of the physical level set field. The
non-conforming boundary is represented by straight
lines (2D) across elements (Fig. 1(c)) as the level
set function is discretized by linear shape functions.
It should be noted that the chosen design parame-
terization does not prohibit sub-element features by
construction, i.e. double cuts are possible. How-
ever, our numerical experiments have shown that
double cuts do not constitute a significant prob-
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lem in the sense that they do not occur as long as
a fine enough mesh is used to describe the geome-
try. That is, our numerical experiments have shown
that as long as the underlying finite element mesh
is fine enough to accurately resolve the structural
vibrations, i.e. the wavelength, we have not seen
any instances of double cuts. However, it should be
emphasized that this rule-of-thumb is a heuristic
and cannot guaranty suppression of double cuts in
general. This could, however, be guarantied by in-
cluding length-scale control as done in e.g. [12, 40]
The only major numerical issue concerning the pro-
posed modelling of cut elements arise when a non-
conforming boundary intersects exactly or in very
close proximity to a background mesh node. This
issue occurs when a nodal level set value is close to
a zero isocurve (|s̄i| < he10−8, where he is the ele-
ment edge length). The problem is here that such
a configuration leads to vanishing sensitivities (see
Appendix A for details) which must be avoided in
order to obtain a numerically stable optimization
process. To counter this potential numerical issue,
we employ the following simple trick [33]. That is,
if a nodal level set value is found to be too close to
the zero level, the design variable is set to a fixed
value of s̄i = he10−8. This approach increases the
stability of the parameterization and results in a
negligible perturbation of the level set value in the
direction of the solid without effecting the course of
optimization.

3. Analysis

3.1. Governing equations

In this section, the governing equations for the
structural displacements and the acoustic pressure
are introduced. In order to allow the design to
evolve in the defined domain Ω, both fields (acoustic
pressure and structural displacements) are solved
in the entire computational domain (Ω = Ωs ∪
Ωa). The structural response is governed by the
time-harmonic elasticity equations (without body
forces):

∇Tσσσ + ω2ρsu = 0 in Ω (3)

u = u0 on Γsd (4)

nTs σσσ = f on Γsn (5)

nTs σσσ = pna on Γas (6)

Here, u is the displacement vector, σσσ is the Cauchy
stress vector defined as σσσ = CCC (Es, ν) ε, where CCC

and εεε =
[
∂u1

∂x ,
∂u2

∂y ,
∂u1

∂y + ∂u2

∂x

]T
denote the consti-

tutive matrix for plane stress and the strain vector,
respectively. The radial frequency is denoted by
ω, ρs is the density of the solid, Es is the Young’s
modulus and ν is the Poisson’s ratio. The time-
harmonic traction force is given by the amplitude
vector f . The normal vector ns is defined at the
coupling interface Γas and is directed from the solid
domain towards the acoustic domain, likewise na
is the normal vector pointing outwards from the
acoustic domain.

The Dirichlet and Neumann boundary conditions
employed in the system are listed from Eqs. 4 to
6 and are defined at the boundaries Γsd and Γsn,
respectively. The coupling between acoustic and
solid domains is provided through Eq. 6 where the
pressure fluctuations in the acoustic domain act as
a pressure load to the solid through the interface
Γas. In the fictitious domains (in Ωa for displace-
ments), void phase is realized by changing the ma-
terial properties of the solid (section 3.2) to a small
number similar to density methods.

The acoustic pressure is governed by the scalar
Helmholtz equation:

∇T
(

1

ρa
∇p
)

+

(
ω2

Ka

)
p = 0 in Ω (7)

p = p0 on Γad (8)

nTa

(
1

ρa
∇p
)

= −ω2nTs u on Γas (9)

nTa

(
1

ρa
∇p
)

+ i
ω

ρaca
p = 2i

ω

ρaca
pin on Γar (10)

Here, p is the pressure, Ka = c2aρa is the acoustic
bulk modulus where the density and the speed of
sound in the acoustic medium are denoted by ρa
and ca, respectively. Eq. 10 is the boundary con-
dition on Γar describing plane wave radiation with
pin denoting the amplitude of an incoming plane
wave. The unit complex number is denoted with
i. The coupling boundary condition is given in Eq.
9 which represents the coupling to the acceleration
of the interface Γas. The Dirichlet boundary con-
dition for the Helmholtz equation is defined on the
boundary Γad and given in the Eq. 8. Similarly in
the fictitious domains (in Ωs for acoustic pressure,
section 3.2), material properties of a rigid phase are
assigned for the solution of the acoustic pressure.

The standard Galerkin procedure is utilized to
obtain the weak form of the above described vi-

5



broacoustic system, which is written as∫
Ω

δεεεTCCCεεε dΩ− ω2ρs

∫
Ω

δuTu dΩ (11)

−
∫

Γas

δuT pna dΓ =

∫
Γsn

δuT f dΓ

∫
Ω

(∇δp)T 1

ρa
∇p dΩ− ω2

∫
Ω

1

Ka
δp p dΩ (12)

− ω2

∫
Γas

δp nTa u dΓ + iω

∫
Γar

1

ρaca
δp p dΓ

= 2iω

∫
Γar

1

ρaca
δp pin dΓ

where, the test functions for the displacements and
the pressure are denoted by δu and δp, respectively,
and δεεε is the virtual strain. The computational do-
main is meshed with Q-4 elements and the continu-
ous variables u and p are approximated at the nodal
points by the corresponding isoparametric bilinear
shape functions:

u = Nuũ , εεε = Buũ , p = Npp̃ (13)

Here, Bu denotes the linear strain-displacement
matrix. Allowing the test functions to be approxi-
mated by the same shape functions as the continu-
ous variables, the discrete form can be written as:∫

Ω

BT
uCCCBu dΩ ũ− ω2

∫
Ω

ρsN
T
uNu dΩ ũ (14)

−
∫

Γas

NT
unaNp dΓ p̃ =

∫
Γsn

NT
u f dΓ

∫
Ω

(∇Np)
T 1

ρa
∇Np dΩ p̃− ω2

∫
Ω

1

Ka
NT
p Np dΩ p̃

− ω2

∫
Γas

NT
p nTaNu dΓ ũ (15)

+ iω

∫
Γar

1

ρaca
NT
p Np dΓ p̃

= 2iω

∫
Γar

1

ρaca
NT
p pin dΓ

The discrete approximations are denoted by the su-
perscript tilde as ũ and p̃, which is dropped in the
remaining of this paper for convenience. The dis-
cretized finite element matrices are then identified
from the discretized weak form as follows,

The structural system and coupling:

Ks =

∫
Ω

BT
uCCCBu dΩ, Ms =

∫
Ω

ρsN
T
uNu dΩ

(16)

S =

∫
Γas

NT
unaNp dΓ, f =

∫
Γsn

NT
u f dΓ (17)

The acoustic system:

Ka =

∫
Ωa

1

ρa
(∇Np)

T∇Np dΩ (18)

Ma =

∫
Ωa

1

Ka
NT
p Np dΩ (19)

Ca =

∫
Γar

1

ρaca
NT
p Np dΓ (20)

g = 2iω

∫
Γar

1

ρaca
NT
p pin dΓ (21)

The system of equations are written:[(
Ks − ω2Ms

)
−S

−ω2ST
(
Ka − ω2Ma + iωCa

)] [u
p

]
=

[
f
g

]
(22)

Here, the stiffness and the mass matrix of the
solid domain are denoted as Ks and Ms respec-
tively. Likewise, for the acoustic domain, Ka is the
stiffness matrix and Ma is the mass matrix. The
coupling matrix is denoted as S. The source vectors
f and g contain the contributions from the bound-
ary conditions.

The present implementation utilizes the PETSc
library [46, 47, 48] for its parallel data arrangement
and the parallel direct solver MUMPS [49, 50] for
the solution of the above discretized system (Eq.
22).

3.2. Implementation aspects of cut element method

To facilitate and ease the notation, an indicator
function is defined based on the nodal values of the
level set function. The indicator function identifies
each element in the computational domain as cut
(intersected by the interface) or uncut (s̄ > 0 or
s̄ < 0 for all nodes). Figure 2 illustrates the iden-
tification of cut elements based on the nodal level
set values. If an element is not intersected, further
marks are assigned which determine if an element
belongs to the acoustic (s̄ < 0 for all nodes) or the
solid (s̄ > 0 for all nodes) region. Different colored
elements in figure 2 imply different marks assigned
to each element to separate the physical domains.
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Ωs

Ωa Cut element

s̄i < 0

s̄i < 0s̄i < 0

s̄i > 0

Figure 2: The finite element mesh and the corresponding colors of the elements imply different marks to define the system.
The un-cut elements are shown here with white and grey colors. The red color indicates cut elements. An example of one of
the conditions to identify the cut elements based on the nodal level set values is also shown. The utilized cut element method
provides a linear description of the interface as shown with straight cuts in the illustration.

The integration on un-cut elements is carried out
following the usual Gaussian quadrature rule for
standard bilinear quadrilateral elements which is
written below for the structural stiffness matrix for
completeness. Note that the double summation has
been replaced by a single summation as this will
allow a unified scheme for both cut and un-cut ele-
ments.

Ks =

ng∑
i=1

BT
u (ξi, ηi)CCC(Es, ν)Bu(ξi, ηi)Wi||J(ξi, ηi)||

(23)

Where ng denotes the number of Gauss points,
||J(ξi, ηi)|| is the determinant of the Jacobian and
Wi is the standard weights for a Q-4 element
along with the set of Gauss points (ξi, ηi) =
(±1/

√
3,±1/

√
3).

The key feature to ensure the accurate modeling
of the governing physics is the integration of the
cut elements, illustrated by the red color in figure
2. The integration method followed in cut elements
is described in section 3.2.1. Finally, it is important
to note that all material parameters are spatially
dependent. This will be discussed in the model val-
idation example in section 3.3

3.2.1. Integration in cut elements

The core of the cut method is to properly map
integration points within a cut element from a sub-
triangulation to its parent quadrilateral element,
while at the same time keeping track of which face
each sub-triangle belongs to. To facilitate the sub-

element integration, the intersected element is sub-
divided into cells with a triangulation algorithm.
For this step, based on the nodal level set values
we utilize the marching squares algorithm [51] to
determine the coordinates of the edges of the in-
tersecting boundary. Afterwards the element is tri-
angulated from a generated look-up table, which
constitutes an easy step since the marching squares
algorithm describes how a unit cell can be inter-
sected with 6 unique cases and 1 ambiguous case
(double-cut configuration). The ambiguity for the
triangulation step is resolved by evaluating the level
set value at the center of the element. An example
of a cut element that is divided into multiple cells
can be seen in figure 3(a). After the sub-division,
each sub-triangle is assigned an indicator value de-
pending on which phase it belongs to, i.e. marked
by either Ωa or Ωs as illustrated in figure 3(a). This
is easily obtained by inspection of the nodal level
set values for the cut element.

The mapping of integration points from a sub-
triangles to quadrilaterals is illustrated in figures
3(b)-(c).

The local Gauss points of the triangle (ξξξT , ηηηT ) are
projected to global coordinates (xG,yG). The final
step is to map (xG,yG) to the reference quadrilat-
eral c.f. figure 3(c).

ξQ,i =
2 (xG,i −min(Px))

(max(Px)−min(Px))
− 1 (24)

ηQ,i =
2 (yG,i −min(Py))

(max(Py)−min(Py))
− 1 (25)

where, (Px,Py) corresponds to global nodal coordi-
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ξQ

ηQ

(c)

Ωa

x

y

(a)

Ωs

Ωa

Ωa

na

ξT

ηT
(b)

ξL

Figure 3: The sub-cell integration (in the structural part) (a) is the triangulated cut element with the corresponding physical
domains and the interface indicated with the blue colored line. (b) Iso-parametric linear triangle and line with the corresponding
Gauss points are shown in the local coordinates. (c) Illustrates the Gauss points of the triangle and the line which are mapped
to the reference domain of the parent element where the sub-integration is carried out.

nates of the quadrilateral element. The integration
weights of the sub-triangles are scaled by the area

ratio, i.e. WQ,i = WT,i

(
4VT

VQ

)
where VT and VQ

denote the area of the triangle and the quadrilat-
eral, respectively. The factor 4 is the area scaling in
local coordinates between a triangular and a quadri-
lateral element. Noted that the above mapping is
only valid for regular quad elements (rectangular)
and employed here for simplicity. Otherwise the
inverse problem needs to be solved for finding the
corresponding local coordinates.

With the mapping complete, the integration can
now be carried out following the same rule as stated
in equation (23). The only difference is that ng
must be replaced by 3nsc where nsc is the num-
ber of sub-triangles in a cut element. Hence, the
same integration is carried out for all elements in
the mesh including the fictitious part.

The interface conditions specified at the im-
mersed boundary between acoustic and solid do-
mains are integrated similarly to the area contribu-
tions. This can be seen illustrated as the blue line
in figure 3(a) and corresponds to mapping the in-
tegration points of a one dimensional 2-node linear
shape function to the parent quadrilateral. This
process is shown in figure 3(b) and (c) and corre-
sponds to letting WQ,i = WL,i and replacing the
Jacobian with half the line length, yielding

S =

ng∑
i=1

NT
u (ξQ,i, ηQ,i)naNp(ξQ,i, ηQ,i)WQ,i l/2

(26)

where l is the length of the line segment. As with
the area integrals, the contributions from the cou-
pling boundary integration go to the dofs of the

parent element. Hence, only local operations are
needed for the proposed cut element method which
makes it highly suitable for parallel computations.

3.3. Modelling validation

This section presents a validation study for the
modelling of a coupled vibroacoustic system with
the implemented cut element method. The study
considers an acoustic duct as shown with the field
plot given in Figure 4(a) and a circle shaped elastic
body in the middle of the channel (Figure 4(b)).
The acoustic domain is considered to be air with
the speed of sound and the density taken as ca =
342 m/s and ρa = 1.21 kg/m3, respectively. The
solid domain is defined with the following material
properties: Es = 6 × 106 Pa, ρs = 1100 kg/m3

, ν = 0.49. Additionally, the solid domain uti-
lizes structural damping, i.e., Edamped = (1 +ηi)Es
where the loss factor is taken to be η = 0.1. The
coupled system is excited by an incoming acoustic
signal of Pin = 1 Pa with the frequency f = 2 kHz.
The open boundary at the outlet is modelled with
an absorbing boundary condition and hard-wall
condition is utilized for the acoustic pressure on
the top and the bottom boundaries of the chan-
nel. The structure in this setup is only excited due
to the coupling to the acoustic pressure.

The following fictitious material properties are
assigned for the vibroacoustic system:

Solid domain:

Kr =
Ka

α
, ρr =

ρa
α

(27)

Acoustic domain:

Ev = αEs, ρv = αρs (28)
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(a) (b)

Figure 4: Modelling validation study. (a) Figure showing the absolute pressure field in the considered acoustic duct along with
the comparative line plot and the relative error. (b) Figure shows the displacement magnitude field in the structure, the line
plot comparing the solution to the COMSOL calculation and the corresponding relative error. The dashed lines in field plots
indicate the locations where the cut element solutions are compared to the COMSOL calculations.

whereKr and ρr thus represent the acoustic proper-
ties of the solid and Ev and ρv the elastic properties
of the acoustic media. It is important to note that
the proposed full domain approach comes at the
cost of higher condition numbers for the system ma-
trix compared to that of a segregated analysis. But
as shown in Andreasen et.al. [40] for pure solids,
the condition numbers are not higher than for den-
sity based methods, and hence, do not constitute
a numerical problem. The inclusion of a contrast

parameter also means that the proposed fictitious
domain method avoids the use of e.g. ghost penal-
ties [52] to bound the condition number. This sums
to the following requirements for the dimensionless
contrast parameter α in Eqs. 27 and 28. The con-
trast parameter should be chosen small enough not
to sacrifice the computational accuracy due to the
presence of the fictitious domains, but also large
enough to ensure the conditioning of the resulting
system is kept at a reasonable level.
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Figure 4 compares the cut element solution of
the vibroacoustic system to a body-fitted (segre-
gated) solution obtained from the COMSOL Mul-
tiphysics software [53]. The field plots of the ab-
solute pressure and the displacement magnitude
(realized from the cut element solutions with the
dimensionless contrast parameter α = 10−8) are
shown in Figures 4(a)-(b). The locations of com-
parisons are highlighted on the field plots with bold
dashed lines. The close-up views of the mesh uti-
lized for the study can be seen in 4(b) where the
body-fitted mesh is realized with linear triangle
elements generated within the COMSOL software
and the cut element mesh is composed of regu-
lar quad elements. It is clearly seen from the re-
sponse curves presented in Figures 4(a)-(b) that the
present cut element approach successfully captures
the acoustic-mechanical interactions and exhibits a
very good agreement with the body fitted mesh so-
lutions. Furthermore, we investigate the relative er-
ror with respect to the body-fitted mesh solutions
with varying the dimensionless contrast parameter
α. For high values such as α = 10−2 the cut ele-
ment method exhibits increased errors both in the
absolute pressure and the displacement magnitude
calculations, but never exceeding a relative error of
10−3. Moreover, lowering the contrast parameter
below α = 10−8 does not improve the relative error
in the solution. This is attributed to the difference
in geometry representation and discretizations used
in the comparison study. For the remainder of this
work, a value of α = 10−8 is used as the contrast
parameter.

4. Design update - optimization problem

The constrained optimization problem is defined
in a general form as the following:

min
s

C (̄s,v(̄s)) (29)

s.t. r(̄s,v(̄s)) = Av − h = 0 (30)

gi ≤ 0 (31)

0 ≤ s ≤ 1 (32)

Here, C is the objective function, gi denotes a set
of inequalty constraints, s is the vector of design
variables that are bounded between 0 and 1. The
residual vector r is from the discretization of the
coupled linear elastic structure and the acoustic sys-
tem. Thus, v is the vector of state variables (dis-
placements and pressure), A is the discretized sys-
tem matrix and h is the source to the system. The

design variables s are updated from the solution of
the above optimization problem using the method
of moving asymptotes (MMA) algorithm [54] with a
parallel PETSc implementation from [55, 56]. The
MMA algorithm is utilized with asymptote param-
eters of 0.5, 0.7 and 1.2 which are the parameters
controlling the initial adaptation, decrease and in-
crease of the asymptotes. The MMA penalty pa-
rameter for the constraints is set to 1000 and the
relative move limit of 0.5% is used. For all exam-
ples the optimization procedure is terminated after
a fixed number of iterations (determined by numer-
ical experiments) after which the observed design
changes experienced are minimal. This choice of
stopping criteria is deemed reasonable as all exam-
ples presented are of the academic type. We remark
that other choices for termination could have been
employed, e.g. by requiring the change in physi-
cal level set is below a certain threshold [40], i.e.
that ||̄sk−1 − s̄k||∞ < ε, or by checking the actual
convergence of the KKT residual. A detailed de-
scription of the sensitivity analysis can been found
in Appendix A

5. Optimization of vibroacoustic systems

5.1. Benchmark problem - design of an acoustic
partitioner

This example investigates the benchmark prob-
lem of designing an optimized elastic structure
which acts as a partitioner in an acoustic chan-
nel. The example is taken from [57] in order to test
the presented formulation on a well studied bench-
mark problem. The partitioner serves to reduce
the transmitted acoustic pressure towards the out-
let. The objective of the optimization problem is
to minimize the absolute of the acoustic pressure in
the downstream region

C(p) =

∫
Ωobj

|p| dΩ (33)

The illustration of the computational domain
along with the boundary conditions are shown in
Figure 5, where the coupled system is excited with
an incoming pressure signal modeled as a plane
wave radiation boundary condition with an input
amplitude Pin = 1000 Pa. The top and bottom
walls are considered as hard wall for the acoustic
domain and fully clamped for the structural do-
main. The absorbing boundary condition models
an open boundary at the outlet. For the frequency
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of excitation, f = 1.0/π Hz is considered which is
considerably lower than the first natural frequency
of the system. The optimization problem is sub-
jected to a volume constraint of 65% of the design
domain and run for 200 design iterations. The en-
forcement of a volume constraint lower than the
employed percentage created issues of disconnec-
tivity in the thin sections of the structure during
optimization iterations. The main reason for this
behavior is that the optimization does not consider
a length scale. However, it has been found that by
increasing the mesh density the optimization can
achieve lower volume constraint levels without dis-
connectivity in the thin sections, this could be at-
tributed to increased design complexity due to finer
mesh. The material properties for the structural
and the acoustic media are listed in tables 1 and
2. It should be emphasized that the reason to use
rather unphysical values for the material properties
is to realize identical conditions as found in [57].
In the two forthcoming examples, we will revert to
realistic material properties.

p
o
u
t

p
in

Ωs
Ωa Ωa

C(p)

0.5 m 2 m2 m
1.6 m

1.6 m

2 m

u = 0

u = 0 n · ∇p = 0n · ∇p = 0

n · ∇p = 0 n · ∇p = 0

Figure 5: Schematic illustration of example 1 showing the
boundary conditions of the optimization problem. Gray
color shows the design domain, blue color illustrates the re-
gion where the objective function is evaluated.

E [Pa] ν ρs [Kg/m3]

1000.0 0.3 15.0

Table 1: Material properties considered for the structure.

Discretization of the computational domain em-
ploys a structured mesh with an element size of

ca [m/s] ρa [Kg/m3]

1.0 1.0

Table 2: Material properties considered for the acoustic do-
main.

2 × 10−2 m. A radius of 3 element width is uti-
lized for filtering of the design variables.

With the given computational setup, the consid-
ered benchmark problem of designing the acous-
tic partitioner has previously resulted in a hour-
glass shape [57] for the elastic structure. In order
to achieve this, the optimization problem is solved
with several initial configurations and the effect of
the initial structure shape on the optimization pro-
cess is investigated.

The utilized initial designs and the subsequent
optimized designs with the individual performance
indicators can be seen in Figure 6. The best
performing design is demonstrated in Fig. 6(a)
which provides approximately 53% better perfor-
mance than the considered initial guess. The sec-
ond initial guess Fig. 6(b) considers 5 similarly
sized holes placed in the beam and in this case,
the performance increase of the end design is re-
duced to 48.6%. The third and the fourth initial
guesses (Fig. 6(c) and 6(d)) are constructed using
a cosine function from which the number and the
size of the holes can be controlled. The optimized
result from Fig. 6(c), although the worst objective
function value is obtained, still provides a compa-
rable 45.2% relative performance increase. The ini-
tial guess shown at Fig. 6(d) illustrates the effect of
increasing the freedom of topological changes dur-
ing the optimization iterations by starting the op-
timization with sufficiently high number of holes.
Although the end design evolves to a low quality
configuration, 68.2% relative increase in the perfor-
mance is observed. Here it is noted that, although
the optimizations (Fig. 6(a) to Fig. 6(c)) reach
identical topologies (one hole in the middle of the
structure) the shape of the end designs differs sig-
nificantly. This behavior signifies the strong de-
pendency on the initial guess for the optimization
procedure as well as the sensitivity of the problem
to shape changes at the interface. It is also worth
noting that the optimized design in Figure 6(d) con-
tains a free flying solid inclusion. This should gen-
erally be avoided, and can for example be alleviated
by adding a constraint as a lower bound of the first
eigenfrequency for the structural component or by
a constraint on the thermal compliance of the struc-
ture when heating with a body force [58].

The sound pressure level (SPL) contours of the
initial guess and the optimized design are shown
in Fig. 7. The lower sound pressure level towards
the outlet is clearly visible for the optimized de-
sign. This is achieved due to the response of the
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Initial Design:

End Design:

Obj. = 19.02 Pa Obj. = 19.97 Pa Obj. = 37.08 Pa Obj. = 62.13 Pa

Obj. = 8.94 Pa Obj. = 10.26 Pa Obj. = 20.33 Pa Obj. = 19.75 Pa

(a) (b) (c) (d)

Figure 6: Illustration of the effect of different initial configurations on the optimized design. The first row of figure shows the
different initial designs considered for the optimization problem with their calculated objective values (scaled with objective
area) and the second row are the subsequent end designs.

(a) (b)

Figure 7: Sound pressure level [dB] contours showing: (a) initial configuration, (b) optimized design.

optimized structure which exhibits vibrations that
are greatly reduced in the right arm in comparison
to the vibrations in the ”inlet” arm of the structure
(see figure 8). In this way the transmission of the
acoustic waves towards the outlet of the channel is
also reduced.

The objective function is evaluated for a range of
frequencies and the corresponding response is plot-

ted in Fig. 9(a). Optimization clearly results in
the minimization of the response at the optimiza-
tion frequency and reduced acoustic pressure at the
objective area until approximately 0.85 Hz.

Fig. 9(b) shows the iteration history for the ob-
jective function (normalized by its initial value) and
the volume constraint. Subsequent to the volume
constraint being satisfied, in the range of iteration
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(a) (b)

Figure 8: Displacement magnitude |u| [m] contours showing: (a) initial configuration, (b) optimized design.

numbers from 90 to 120, the structure undergoes a
noticeable change in shape, after which only small
local perturbations occurs.

5.2. Bidirectional wave splitter

This example utilizes the developed framework
for the design of a bidirectional wave splitter which
is considered to be more challenging than the
benchmark problem considered in the first exam-
ple. The boundary conditions along with the com-
putational domain are illustrated in figure 10. The
model consists of a dome shaped acoustic domain
which is sufficiently large to accommodate outgoing
acoustic waves and a structure which has a roller
boundary condition applied to the bottom and is
excited by a horizontal traction force. Bidirectional
wave splitters are used to create directivity of the
acoustic waves that are emitted from a vibrating
structure based on the frequency of excitation.

The optimization problem considers two equally
sized windows to tailor the acoustic waves which are
marked as Γ1 and Γ2 in the case description (Fig.
10). The objective of the optimization problem is
the ratio of the absolute of the acoustic pressure
and written for the considered two frequencies as:

C1 (ω1) =

∫
Γ2
|p|d Γ∫

Γ1
|p|dΓ

, C2 (ω2) =

∫
Γ1
|p|d Γ∫

Γ2
|p|dΓ

(34)

Here, C1 with the frequency of excitation ω1 cor-
responds to minimizing the absolute pressure of the
acoustic waves at the window Γ2 and maximizing

at the window Γ1 whereas C2 considers the oppo-
site for the second excitation frequency ω2. In or-
der to realize an optimization problem with equally
minimized multiple objective functions, we cast the
problem in a min-max formulation where the op-
timization considers the minimization of the maxi-
mum of the utilized objective functions.

min
s

max [CΓ1 (ω1) , CΓ2 (ω2)] (35)

s.t. r(̄s,v(̄s)) = Av − h = 0

0 ≤ s ≤ 1 (36)

As written above, the problem is not differentiable.
Thus, it is solved using the following bound formu-
lation [59]:

min
s, β

β (37)

s.t. r(̄s,v(̄s)) = Av − h = 0

CΓ1
(ω1) < β (38)

CΓ2
(ω2) < β (39)

0 ≤ s ≤ 1 (40)

Here, an additional variable β is introduced as the
upper bound. Instead of dealing with a multi ob-
jective function, the formulation only considers the
minimization of this upper bound while defining
the objective functions in Eq. 34 as constraints.
Since filling the design domain only with solid does
not form a trivial answer, the optimization problem
does not utilize a volume constraint on the struc-
ture.
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(a) (b)

Figure 9: (a) Frequency response of the objective function comparing the optimized design and the initial configuration, (b)
the iteration history of the objective function and the volume constraint.

Γ1

n · u = 0

fx = 400 Pa

2 m

n · ∇p = 0n · ∇p = 0

Γ2Ωa

Ωs

Air

Figure 10: Schematic illustration showing the boundary conditions of the optimization problem. Light gray color shows the
design domain whereas the darker gray is the initial design configuration. The outlet section is divided into two equal size
subsections marked as Γ1 and Γ2 which illustrates the locations where the objective function is evaluated and the acoustic
waves are focused.

E [Pa] ν ρs [Kg/m3] η

1× 109 0.45 1100.0 0.1

Table 3: Material properties considered for the structure.

The considered material properties for the struc-
ture are listed in table 3 where the loss factor η de-
notes the amount of structural damping (Edamped =
(1 + η i)E) utilized in the structure.

For the acoustic domain, air is considered as the
material and the corresponding acoustic properties
of air are written in table 4. The computational do-
main is discretized with a structured mesh having

ca [m/s] ρa [Kg/m3]

342.0 1.21

Table 4: Material properties considered for the acoustic do-
main.

an approximate element size of 1.0 × 10−2m. The
design domain (enclosed rectangular area, Fig. 10)
utilizes a regular grid whereas the rest of the do-
main employs mapped quad elements. Overall, the
computational mesh consists of 43, 000 elements.

The initial configuration of the structure, with
which the optimization procedure is started, can be
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(a) Initial design and the resulted SPL contour for the fre-
quency 1.15 kHz. The objective value of the initial design,
C1 = 1.0.

(b) The optimized design showing the SPL contour for the
excitation frequency 1.15 kHz. The objective value of the end
design, C1 = 0.02129.

(c) Initial design and the resulted SPL contour for the fre-
quency 1.50 kHz. The objective value of the initial design,
C2 = 1.0

(d) The optimized design showing the SPL contour for the
excitation frequency 1.50 kHz. The objective value of the end
design, C2 = 0.02130.

Figure 11: Sound pressure level [dB] contours plotted for both optimization frequencies, comparing the initial design configu-
ration and the optimized design.

seen in figure 10 where it is illustrated with a darker
gray color in the design domain. The initial guess
is realized with the use of a cosine function which
allows to form a predefined number of holes in the
initial structure. The optimization utilizes a filter
width of 1 element. Two discrete frequencies of ex-
citation, i.e., 1.15 kHz and 1.50 kHz are considered
to tailor the acoustic waves and the optimization is
run for 600 design iterations.

The resulting optimized design for a bidirectional
wave splitter can be seen from figure 11. The plots
are colored with SPL contours which compare the
initial guess and the optimized design for the two
considered excitation frequencies. The optimized
design clearly achieves a directivity for the emitted
acoustic waves. For the first considered excitation
frequency 1.15 kHz the acoustic waves are focused
towards the left side of the dome, effectively mini-

mizing the acoustic pressure at the targeted window
Γ2. Shifting the excitation frequency to 1.50 kHz
creates the opposite effect and acoustic waves are
focused towards the right side of the dome. Due
to the interaction between the vibrating structure
and the surrounding air, a cancellation effect for
the acoustic waves occur towards the targeted win-
dows and strong outgoing waves are formed towards
the opposite sides of the dome. This behavior cre-
ates a division in the direction of the emitted waves
which can be controlled with varying the operating
frequency as illustrated in figures 11(b) and 11(d).

The objective values of the end design calculated
for the two considered excitation frequencies, C1
and C2 are very close to each other and the opti-
mized design realizes a 98% performance increase
when compared to the initial configuration.

Figure 12 plots the absolute pressure level at the
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(a) (b)

Γ2Γ1 Γ2Γ1

Figure 12: Absolute pressure values from the outer dome of the computational domain, (a) the excitation frequency 1.15 kHz,
(b) the excitation frequency 1.50 kHz.

(a)

Figure 13: Frequency response of absolute of the acoustic
pressure integrated at the two windows Γ1 and Γ2.

outlet of the computational domain where the di-
rectivity of the acoustic waves based on the excita-
tion frequency is shown. As it can be seen from the
figure, the acoustic waves are symmetrically emit-
ted by the initial structure, since the initial shape
of the vibrating structure has a vertical symmetry.
In the focused windows, the pressure of the acous-
tic waves has a comparable magnitude to the re-
sponse of the initial configuration. Since it is not
possible to create a 1 - 0 discrete switch for the
acoustic waves with the current setup, the response
of the optimized design exhibits small variations of
the acoustic pressure in the windows that are tar-
geted to be minimized for the considered frequen-
cies. Furthermore, the frequency response of the
absolute pressure integrated across the two win-
dows Γ1 and Γ2 is plotted in figure 13 and shows

that the behaviour is localized to the optimization
frequencies (f1 = 1.15 kHz, f2 = 1.50 kHz) resulting
in sharp dips in the frequency response near these
frequencies. Overall the design for the bidirectional
wave splitter performs effectively.

Figure 14 illustrates the deformations in the op-
timized structure which result in the directivity of
the outgoing acoustic waves. Figure 14(a) shows
the undeformed state from which it can be seen
that the optimization does in fact not change the
topology of the initial configuration and keeps the
initial number of holes. Instead, it is sufficient to
alter the shape of the structure to tailor the emit-
ted acoustic waves. Furthermore, the physical level
set field s̄ of the optimized design is shown in figure
15, which we note is representative for the examples
studied here. From this figure, one can see that the
spatial gradient of the level set field does not be-
come flat, and hence that the upper bound for the
gradient is sufficient to ensure a robust and stable
design procedure for the problems investigated in
this work.

The structure exhibits large amplitude vibrations
on the left middle section (Fig. 14(b)) with the ex-
citation frequency 1.15 kHz and the vibrations on
the left side of the optimized design are the main
contributor to form the outgoing waves which are
focused towards the window Γ1. The vibrations
of the right side of the optimized design generate
acoustic waves that mainly cancel out. The second
optimization frequency 1.5 kHz results in a response
that is shown in figure 14(c) where the interaction
between the vibrating structure and the acoustic

16



(a) (b) (c)

Figure 14: The optimized design where the deformed structures are colored with displacement magnitude |u| [m] , (a) unde-
formed structure, (b) deformed structure vibrating with the excitation frequency 1.15 kHz, (c) deformed structure vibrating
with the excitation frequency 1.50 kHz.

(a)

Figure 15: The physical level set field s̄ where the zero level
contour is highlighted to illustrate the resulted optimized
design.

domain successfully focuses the emitted waves to-
wards the window Γ2.

Overall, it is noted that the final topology is di-
rectly dictated by the initial design as was also seen
in the first example in section 5.1. However, it is

also noteworthy that only modifying the shape al-
lows for a significant change of the system behavior
as it is illustrated in this section with the design
of a bidirectional wave splitter. This justifies the
use of advanced shape optimization methods, such
as the explicit level set method, for tailoring the
vibroacoustic response of a complex system, which
will be further exploited in the final example.

5.3. 2D model of a hearing aid suspension system

The final example studies the use of the presented
method to a more application oriented optimiza-
tion case which concerns the feedback problem of a
hearing aid using a simplified model. The feedback
issues can occur through various ways in a hearing
aid and are experienced when the hearing aid mi-
crophone picks up unwanted sound and vibrations
from various sources. One contributor to feedback
is vibrations of the hearing instrument due to high
acoustic pressure levels. The vibrations are con-
verted to a microphone signal that may result in a
negative feedback loop.

A simplified 2D model of a hearing aid is illus-
trated in Fig. 16 where the model consists of two
bodies connected by a suspension structure. The
rest of the model contains an internal air channel
along with an acoustic cavity for the optimization
case A (Fig. 16(a)) and open boundaries which is
modeled with an absorbing boundary condition for
the optimization case B (Fig. 16(b)). The consid-

17



Zi=5(1+i) Pa·s/m

1.5 mm

ΩaAir

Ωs
Suspension

Ωs
Receiver

60 N
m

HI

Ωs

pin=1 Pa

Suspension

Ωs
n·u=0

n·∇p=0

1.5 mm

0.95 mm
1.375 mm

0.125 mm

0.75 mm

1.0 mm

HI total
mass =2 gr

0.25 mm

Zi=5(1+i) Pa·s/m

1.5 mm

ΩaAir

Ωs
Suspension

Ωs
Receiver

60 N
m

HI

Ωs

pin=1 Pa

Suspension

Ωs
n·u=0

n·∇p+ikp=0

1.5 mm

0.95 mm
1.375 mm

0.125 mm

0.75 mm

1.0 mm

HI total
mass =2 gr

0.25 mm

Γcon

(a) (b)

Figure 16: Schematic illustration of the optimization problem including the boundary conditions applied. Gray color shows the
design domain, light blue color is the region where the objective function is evaluated. The darker blue indicates the receiver
structure, the red color shows the symmetry line. (a) The optimization setup A, top and the back of the domain is hard wall,
(b) the optimization setup B where the top and the back of the domain is changed to absorbing b.c. and purple color is the
line where the constraint function is evaluated.

ered system is excited by an acoustic signal gener-
ated by the receiver (loudspeaker).

In a more complex setting, the internal channel
represents a tube that guides the sound produced
from the receiver into the ear canal. The current
model lacks the complexity of the tube and the in-
ternal channel is cut-off, the resistance to the in-
coming acoustic wave is taken into account with
the utilized specific impedance at the end of the
channel. The hearing instrument (HI) signifies the
rest of the mechanical components that surround
the internal channel, which in the current simplified
model is considered as an added mass to the sys-
tem. The density of the HI is calculated such that
the specified mass is derived and the rest of the
material properties are assigned to realize a near
rigid body behavior. The bottom of the HI is con-
strained in the vertical direction to avoid unrealistic
vibration modes.

The purpose of the suspension structure, apart
from structural support, is to reduce the structural
vibrations caused by the acoustic wave coming from
the receiver. The shape of the suspension struc-
ture is allowed to change in order to decrease the
vibrations at the HI. The receiver and HI are not
included in the optimization domain hence their ini-
tial shapes do not change throughout the optimiza-
tion process.

E [Pa] ν ρs [Kg/m3] η

Suspension 6× 106 0.49 1100.0 0.1
Receiver 2× 1011 0.3 2.2× 104 0

Table 5: Material properties considered for the structure.

In a general sense the volume of the suspension
system does not have an importance for the perfor-
mance of the device, hence the optimization prob-
lem does not utilize a volume constraint. The ob-
jective function is the total vibration of the body
that represent the HI and written as:

C(u) =

∫
Ωs

|u| dΩ (41)

The material properties of the suspension and the
receiver structures are listed in table 5 and the uti-
lized acoustic properties of air are listed in table 4.
Structural damping is considered for the suspension
structure and modeled as an imaginary part of the
Young’s modulus Edamped = (1 + η i)E, where η is
the loss factor.

For the discretization of the computational do-
main illustrated in figure 16, a structured mesh
with an element size of 1.25 × 10−5m is utilized.
As a starting point to the analysis and optimiza-
tion of the suspension system, a benchmark de-
sign of a simple, yet relevant rectangular shape is
considered. In a realistic 3D setting, the bench-
mark design would correspond to a hollow cylinder
around the internal channel. The initial guess (Fig.
17(b)) to the optimization procedure is formed with
3 equally spaced semicircles on the top surface of a
rectangular shape which increases the surface area
of the initial configuration to provide more free-
dom for design change. The optimization is carried
out for 5 discrete frequencies, i.e., 5 kHz, 5.5 kHz,
6 kHz, 6.5 kHz and 7 kHz and run for 250 design it-
erations. The objective function is evaluated and
summed together with equal weights at each con-
sidered frequency. In order to have smooth bound-
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(a) (b) (c)

Figure 17: The optimization case A: displacement magnitude |u| [m] contours for the frequency 7 kHz showing: (a) benchmark
design, (b) initial guess for the optimization, (c) optimized design.

(a) (b) (c)

Figure 18: The optimization case A: sound pressure level [dB] contour for the frequency 7 kHz. (a) benchmark design, (b)
initial guess for the optimization, (c) optimized design.

aries throughout the iteration history in the design
domain, the optimization utilizes a filter radius of 4
elements, which is chosen since extensive numerical
experiments have shown this to be the best per-
forming for the considered case.

The results of optimization case A which does
not consider a constraint on the optimization prob-
lem can be seen in figure 17. The figure com-
pares three structures, namely the benchmark, ini-
tial guess and the optimized design of the suspen-
sion structure along with the receiver and HI body
which are colored with the displacement magnitude
contour. From the visual inspection of the displace-
ment contours (Fig. 17), which is plotted for a sin-
gle frequency of 7 kHz, the HI body clearly exhibits
a noticeable reduction in the vibration level with
the optimized shape of the suspension design. How-
ever, it is also seen that the reduced vibration level
of the HI is accompanied by an increased vibration
level at the suspension structure. The benchmark
design and initial guess exhibit similar behavior in
terms of the plotted displacements.

Figure 18 shows the sound pressure level (SPL)

for a single frequency of 7 kHz in the acoustic do-
main comparing both initial and optimized design
configurations along with the benchmark design.
From the contour lines it is seen that due to the
reduced vibrations, the HI body has an effect sim-
ilar to a hard wall (Fig. 18(b)) and the SPL con-
tours plotted for the benchmark design and initial
guess are very comparable. Here it is noted that,
the optimized design exhibits approximately 5 dB
higher SPL in the acoustic cavity above the suspen-
sion structure due to the increased vibration level
of this part.

The optimization case B (Fig. 16(b)) investi-
gates the effect of controlling the allowable acoustic
power that is emitted from the vibrating suspen-
sion structure. The main reason for studying this
case is that, the previously optimized design has
a significantly higher vibration level (Fig. 17(c))
at the suspension structure, which causes genera-
tion of high sound pressure levels (5 dB increase
for 7 kHz as shown in Fig. 18(c)) towards the back
of the hearing aid. Hence, in addition to the objec-
tive function Eq. 41, the time-averaged transported
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(a) (b) (c)

Figure 19: The optimization case B: displacement magnitude |u| [m] contours for the frequency 7 kHz showing: (a) benchmark
design, (b) initial guess for the optimization, (c) optimized design.

(a) (b) (c)

Figure 20: The optimization case B: sound pressure level [dB] contour for the frequency 7 kHz. (a) benchmark design, (b)
initial guess for the optimization, (c) optimized design.

power (intensity) through the specified line (shown
in the figure 16(b)) above the suspension structure
is controlled using a reference transported power.
Here it is noted that, in order to have a power
transportation in a time-averaged sense, the hard
wall boundary conditions of the top and the back
of the computational domain are changed to ab-
sorbing boundary condition for this example (Fig.
16(b)).

The normal component of the intensity is given
as [60]:

J =
1

2ρaω

∫
Γcon

<
(
−i p (nTa ∇p)

)
dΓ (42)

Here, p is the complex conjugate of the pressure
variable and i is the complex unit. The constraint
function for the transported power is then written
as

g(p) =

ωn∑
ω=ω1

J (ω)

β Jref
− 1 ≤ 0 (43)

Where Jref is the reference power value and cal-
culated as the sum of the transported power eval-

uated from the initial guess for all considered fre-
quencies. The parameter β controls the level of the
allowed power in the design and is set to β = 1
for the optimization. That is, the optimized de-
sign can only emit as much power as the initial
guess through the specified line in the domain. The
considered constraint is a function of a state vari-
able. Hence an additional adjoint equation is solved
for each optimization frequency during design iter-
ations in order to calculate the required gradients
of the constraint function.

The optimized structure for case B can be seen
from figure 19 where it is compared to the ini-
tial configuration and the benchmark design. The
plot is colored with displacement magnitude. Even
though the current problem includes an additional
constraint on the transported power, the vibrations
at HI mass are still effectively reduced with the op-
timized shape of the suspension structure. The op-
timized design has a similiar response to the one
obtained with the optimization case A. In order to
reduce the vibrations at the HI mass, the structure
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(a) (b)

Figure 21: Frequency response of the objective function (scaled with the objective area), vertical dashed lines are the discrete
frequencies of optimization, (a) response of case A (hard walls), (b) response corresponding to case B (absorbing BC’s).

(b)(a)

Figure 22: Frequency response of the acoustic power integrated at the line Γcon, vertical dashed lines are the discrete frequencies
of optimization, (a) full frequency sweep, (b) frequency range of optimization.

vibrates more at the suspension. However, for opti-
mization case B, the vibrations are reduced to sat-
isfy the constraint on the emitted acoustic power.

Figure 20 shows the sound pressure levels in the
acoustic domain for optimization case B. A visual
inspection reveals that the optimized design ex-
hibits slighty lower pressure levels towards the back
of the hearing aid and the SPL contours of both
structure (initial guess and benchmark) along with
the optimized design are indeed similar.

The optimized designs obtained from cases A and
B are investigated with a frequency response of the
objective function in figure 21. The frequency re-
sponses evaluate and compare the obtained designs
with each other along with the initial guess uti-
lized for the optimizations and the benchmark de-
sign. From figure 21 it can be seen that both op-

timized designs perform best for their own analy-
sis types, which validates the optimization results
for the purpose of a crosscheck study. In figure
21(a) (from optimization case A) the optimization
effectively results in the minimization of the res-
onance around 6 kHz and the optimized suspen-
sion structure performs very well. In case B (Fig.
21(b)), the optimized design also shifts the response
curve such that the resonance around 6 kHz is ef-
fectively minimized. For their respective boundary
condition setups, the optimized design from case
A exhibits reduced vibrations until approximately
11 kHz whereas optimization case B results in a re-
duction of the vibrations at HI mass until around
9 kHz. When the optimized design from case B is
run with setup A and vice versa, it is seen that the
designs perform differently. Still the reduction in
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vibrations at HI mass is apparent for both designs
even under conditions that they are not optimized
for. The benchmark design and the utilized initial
guess perform very close for the considered range
of frequencies and the considered boundary condi-
tion setups do not create significant change in the
behavior for these structures.

Figure 22(a) plots the acoustic power and the fre-
quency range of optimization is zoomed for better
inspection (Fig. 22(b)). The constraint function,
which is utilized in the optimization case B, is sat-
isfied at the final design and it can be seen that,
in average, the optimized design emits the same
level of acoustic power for the considered frequen-
cies. As expected, the initial guess and the bench-
mark design emit very comparable levels of acoustic
power. The optimized design from case A produces
significantly higher acoustic power in the frequency
range of optimization. In a more complex setting
of a hearing aid, this could cause problems of high
pressure levels inside the device. The optimization
from case B also minimizes the resonance around
12 kHz by shifting it towards lower frequencies and
tailoring the response to satisfy the constraint on
the acoustic power in the optimization frequencies.
The peak of the shifted resonance is still at a fre-
quency higher than 10 kHz. With the optimized
design from case A however, the peak of the res-
onance is shifted to approximately 8.5 kHz which
results in the increased acoustic power in the con-
sidered range.

6. Conclusions

The article demonstrates the application of an
explicit level set based generalized shape optimiza-
tion method within the discrete adjoint approach
for time-harmonic coupled acoustic-structural sys-
tems. The shape optimization is facilitated on
a fixed mesh using an immersed boundary cut
element method. The method allows for mod-
elling complex geometries accurately without the
costly operation of re-meshing the interface, in-
stead of which an integration scheme is carried
out on cut elements. Thus, the methodology does
not change the DOF number of the system and is
easily accommodated in an existing parallel FEM
code structure. Straightforward inclusion of mul-
tiple constraints and different optimization formu-
lations such as min-max problems are achieved by
linking the proposed nodal level set description to
the mathematical design variables and utilizing the

method of moving asymptotes (MMA) algorithm
for the design updates. An initial guess study is
provided which considers a benchmark problem of
the design of an acoustic partitioner. Here, hour
glass shaped designs are achieved as previously ob-
served in the literature [13, 57]. The example also
demonstrates the sensitivity of the coupled vibroa-
coustic problem to shape changes at the interface
with a performance that differs significantly for sim-
ilar topologies with different shapes. The shape op-
timization for a bidirectional wave splitter is carried
out resulting in a remarkable directivity of the emit-
ted acoustic waves at two discrete frequencies. The
resulting optimized design does not change the ini-
tial number of holes in the structure and the system
behavior is significantly improved only with shape
changes justifying the use of the proposed shape
optimization method for tailoring the vibroacoustic
response of complex systems. Finally, an applica-
tion oriented optimization case is considered to im-
prove the performance of a simplified 2D model of
a hearing instrument. The shape of the suspension
structure around the internal channel is optimized
to reduce the structural vibrations caused by an in-
coming acoustic signal generated by the receiver.
The example also demonstrates how constraining
the acoustic intensity can be used to control the
vibration levels in the optimized suspension struc-
ture. The presented designs effectively reduce the
structural vibrations in the simplified hearing in-
strument model.

Future research will focus on combining density
based topology optimization for the generation of
good quality initial designs and on the extension to
3D to demonstrate the applicability of the method-
ology on industrial problems. Also, it should be
noted that hexahedral elements are prone to more
ambiguities when cuts are introduced than that
seen for the quadrilaterals. However, this can be
fully alleviated if using tetrahedral elements or, as
done in this work, by systematic testing of the phase
of the interior points.

7. Acknowledgements

The authors wish to thank Ester Creixell-
Mediante from Oticon for discussions regarding
hearing aid systems and for providing data for the
2D simplified hearing aid model.

22



Appendix A. Sensitivity analysis

In order to carry out the optimization process
with a gradient-based optimizer algorithm, the sen-
sitivity information of the objective function and
the constraints are needed. In this work, the dis-
crete adjoint method is utilized for the calculation
of sensitivities.

Firstly, the objective function C is augmented
with a set of Lagrange multipliers

L = C (̄s,v(̄s)) + λλλT r(̄s,v(̄s)) (A.1)

Here, the Lagrangian function is equal to the ob-
jective function for zero residuals, i.e., r(̄s,v(̄s)) =
Av− h. The derivative of the Lagrangian with re-
spect to the vector of level set variables s̄ is written
following the chain rule

dL
ds̄

=
∂C
∂s̄

+
∂C
∂v

∂v

∂s̄
+ λλλT

(
∂r

∂s̄
+
∂r

∂v

∂v

∂s̄

)
(A.2)

=
∂C
∂s̄

+ λλλT
∂r

∂s̄
+

(
∂C
∂v

+ λλλT
∂r

∂v

)
︸ ︷︷ ︸

∂v

∂s̄

In order to avoid the costly calculation of the
derivatives of the state, the Lagrange multiplier can
be chosen such that the underlined term vanishes.
Thus the adjoint equation is written as:

ATλλλ = −
(
∂C
∂v

)T
(A.3)

For complex state variables the source term of the
adjoint equation is calculated as the following [6]:

∂C
∂v

=
∂C
∂vr
− i

∂C
∂vi

(A.4)

Where the real and the imaginary parts of a com-
plex number are denoted by subscripts r and i, re-
spectively. After calculating the Lagrange variables
that satisfy the adjoint equation, the gradient is
evaluated as:

dC
ds̄

=
∂C
∂s̄

+ <
(
λλλT

∂A

∂s̄
u− ∂h

∂s̄

)
(A.5)

In the level set based cut element framework, the
design evolves from the zero contour of the level
set field. This implies that, the sensitivity infor-
mation is only available from the cut elements and
variation of design variables elsewhere do not effect
the state variables. Consequently, the above sensi-
tivity equation (Eq. A.5) is only evaluated at the

elements that are marked as cut. The parametriza-
tion thus results in very localized sensitivities. This
is the main reason behind the usage of filtering
techniques on design variables which essentially in-
creases the zone of influence of the design sensi-
tivities. We compute the partial derivatives of the
system matrix with respect to the level sets ∂A

∂s̄ us-
ing a simple central difference scheme. These are
computed on element level by by perturbing nodal
level set values with |s̄i|/105 and integrating the lo-
cal matrices with the modified cut configuration. If
the source h is also design dependent, the same fi-
nite difference procedure is applied to calculate ∂h

∂s̄ .
Analytical formulas for the sensitivities can be de-
rived, see e.g. Bernland et.al.[28], however, follow-
ing the conclusions of Sharma et.al.[61] we choose
the semi-discrete approach as this is computation-
ally more efficient and because it does not introduce
any noteworthy error.

To obtain the gradient with respect to the math-
ematical design variables s the following chain rule
is applied.

dC
ds

=
dC
ds̄

∂s̄

∂s̄c

∂s̄c

∂s̃c

∂s̃c

∂s̃

∂s̃

∂s
(A.6)

The chain rule is obtained by calculating the par-
tial derivatives of the operations which link the level
set to the mathematical design variables (described
in section 2.2) and applying them in reverse order.
All partial derivatives of the operations in the above
chain rule to calculate the needed gradient are de-
rived analytically.

The operators Ae and An are defined to linearly
interpolate from element centers to nodes and from
nodes to element centers, respectively. These oper-
ations are utilized as:

Aes̄c = s̄, Ans̃ = s̃c (A.7)

and the partial derivatives are written for complete-
ness

∂s̄

∂s̄c
= Ae,

∂s̃c

∂s̃
= An (A.8)

The term ∂s̃
∂s in Eq. A.6 is the partial derivative of

the linear mapping operation (s̃i = (hesi)− 0.5he)
of changing the bounds on the design variables and
it is realized as a diagonal matrix Am with constant
entries of he.

The pde filter equation introduced in Eq. 2 in
discrete form is written as:

Ds̄c = Ts̃c (A.9)
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The system matrix D is a symmetric matrix from
the finite volume discretization of the filter equation
and T is a diagonal matrix which holds element
volumes. The partial derivative ∂s̄c

∂s̃c
can then be

written as:

∂s̄c

∂s̃c
= D−1T (A.10)

Here, rather than forming the inverse of the matrix
D, the following system of equations are solved

D a = AT
e

dC
ds̄

(A.11)

After calculating the variables a that satisfy the
above equation, the gradient with respect to the
mathematical design variables is calculated as:

dC
ds

= Am

[
AT
n (T a)

]
(A.12)
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