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Abstract 12 
High resolution regional climate models are needed to understand how climate change will impact extreme 13 
precipitation. Current state-of-the-art climate models are Convection Permitting Models (CPMs) at kilometre 14 
scale grid-spacing. CPMs are often used together with convective parameterised Regional Climate Models 15 
(RCMs) due to high computational costs of CPMs. This study compares the representation of extreme 16 
precipitation events between a 12km resolution RCM and a 2.2km resolution CPM. Precipitation events are 17 
tracked in both models, and extreme events, identified by peak intensity, are analysed in a Northern European 18 
case area. Extreme event tracks show large differences in both location and movement patterns between the 19 
CPM and RCM. This indicates that different event types are sampled in the two models, with differences 20 
extending to much larger scales. We visualise event-development using area-intensity evolution diagrams. This 21 
reveals that for the 100 most extreme events, the RCM data is likely dominated by physically implausible 22 
events, so called ‘grid-point storms’, with unrealistically high intensities. For the 1,000 and 10,000 most 23 
extreme events, intensities are higher for CPM events, while areas are larger for RCM extreme events. Sampling 24 
extreme events by season shows that differences between RCM and CPM in intensity and area in the top 100 25 
extreme events are largest in autumn and winter, while for the top 1,000 and top 10,000 events differences are 26 
largest in summer. Overall this study indicates that extreme precipitation projections from traditional coarse 27 
resolution RCMs need to be used with caution, due to the possible influence of grid-point storms.  28 

1. Introduction 29 
Climate change is likely to impact the magnitude and frequency of extreme precipitation (IPCC 2012). With a 30 
warmer climate, the atmosphere is able to hold more moisture, which is expected to increase the intensity of 31 
extreme precipitation events (Trenberth et al. 2003). This is well aligned with findings from previous studies, 32 
which have found an increase in the intensity of extreme precipitation events (Christensen and Christensen 33 
2003; Kendon et al. 2014; Prein et al. 2017c). Less certain is it how climate change will impact the frequency 34 
and duration of extreme precipitation events, as many factors are controlling these, including large-scale 35 
circulation patterns (Trenberth et al. 2003). Information on future extreme precipitation is needed to adapt to 36 
climate change, including building resilient cities and minimising flood risk, and to inform mitigation decisions 37 
(Semadeni-Davies et al. 2008; Urich and Rauch 2014; Rosenzweig et al. 2019).  38 

Climate models are the main tool to project and understand changes in future climate, including extreme 39 
precipitation (Frei et al. 2006), with the scale at which changes occur being of great importance. Extreme 40 
precipitation at small temporal and spatial scales can have major impacts on society and cause pluvial flooding 41 
(Archer and Fowler 2015; Thorndahl et al. 2017). Due to the importance of short-duration rainfall extremes and 42 
the scale on which the processes leading to extreme precipitation occur, very high resolution climate models are 43 
needed to provide reliable future projections (Kendon et al. 2012; Ban et al. 2014; Chan et al. 2014b; Sunyer et 44 
al. 2017).  45 

Regional changes in extreme precipitation can be inferred from three types of climate models; high resolution 46 
Global Circulation Models (GCMs) with grid-spacing ~50km or less, Regional Climate Models (RCMs) with a 47 
grid-spacing of ~10-50 km, with examples down to 5km (Lucas-Picher et al. 2012), and Convection-Permitting 48 
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Models (CPMs) with a grid-spacing <5km. While CPMs are also regional climate models, in the sense that they 49 
span a limited area domain, they also differ from traditional RCMs by resolving convection explicitly as 50 
outlined below. Throughout this study we use the terminology RCM to describe coarser resolution regional 51 
models and CPM to describe higher resolution convection-permitting models. Both RCMs and CPMs are 52 
currently used together, as there is often limited availability of CPM datasets and high computational costs 53 
associated with running CPMs (Rummukainen 2010; Prein et al. 2015). As convective precipitation has a spatial 54 
scale smaller than the RCM grid scale, a convective parameterisation scheme is needed, which aims to represent 55 
the average effects of convection on the model grid. In contrast, CPMs represent convection explicitly, often 56 
using no convective parameterisation scheme, due to the very high resolution (e.g. Kendon et al. 2012). In 57 
particular, deep convective parameterisation is typically not used in CPMs, whilst the use of shallow convection 58 
parameterisation varies between studies (Kendon et al. 2017). Several studies have found that the CPMs perform 59 
better than RCMs in terms of the diurnal cycle of rainfall and the intensity, frequency and duration of sub-daily 60 
extreme precipitation (Kendon et al. 2012; Prein et al. 2013; Chan et al. 2014c, b; Ban et al. 2014). Extreme 61 
precipitation simulated in some RCMs has also been shown to be impacted by grid-point storms, which are 62 
physically implausible events that occur when the scale of convection approaches the model grid-scale and the 63 
assumptions of the convective parameterisation break down (Chan et al. 2014b). RCMs with a grid-scale of 64 
approximately 10km are within the so-called “grey-zone”, where the assumptions underlying the convective 65 
parameterisation become invalid (Molinari and Dudek 1992). We note, however, RCMs using scale-aware 66 
convective schemes designed to operate in the grey zone would not be expected to have grid-point storms 67 
(Kendon et al. 2021). 68 

A tracking algorithm can provide information on the characteristics and evolution of precipitation events, which 69 
is extremely valuable in assessing the underlying processes for rainfall generation; yet few studies have applied 70 
tracking algorithms to long continuous CPM simulations (Caine et al. 2013; Prein et al. 2017b, a; Purr et al. 71 
2019; Li et al. 2020; Caillaud et al. 2021). Prein et al. (2017a) found an increase in both the intensity and size of 72 
future mesoscale convective systems (MCS) over North America analysing a CPM, indicating a doubling in the 73 
risk of flooding. While Caine et al. (2013), Prein et al. (2017b), Purr et al. (2019), Li et al. (2020) and Caillaud 74 
et al. (2021) analysed how well precipitation events are simulated in CPMs compared to observations, none of 75 
the studies compared results from the analysed CPMs with RCM simulations. Few studies to date have applied 76 
tracking algorithms to both CPMs and RCMs to identify differences in extreme precipitation event 77 
characteristics and evolution across model resolution (Crook et al. 2019). 78 

In this study we explore and quantify the differences in extreme event characteristics between a CPM and an 79 
RCM, from the UK Met Office, over a northern European region. We examine the difference in the tracked 80 
extreme events (consecutive rainfall areas with intensities above 1mm/hr) between the CPM and RCM and 81 
develop a new method to simplify area-intensity evolution in diagrams. This method enables us to represent the 82 
typical event evolution across many events with different durations and allows comparison of the representation 83 
of extreme events between models or different time periods. Due to the lack of high-resolution (temporal and 84 
spatial) gridded precipitation observations, it is not possible to provide an observational reference for event 85 
evolution and thus we focus on the differences between the models. In particular, E-OBS, ERA5, IMERG 86 
satellite data and radar products were all considered, but not used due to them being of too coarse resolution, not 87 
continuous and/or of low data quality over the study area.  88 

2. Methods 89 
2.1. Climate Model Data 90 
Two models are compared in their representation of extreme events, an RCM with a 12km horizontal resolution, 91 
referred to as “RCM12” and a CPM with a 2.2km grid spacing, referred to as “CPM2”. The RCM12 and CPM2 92 
are configurations of the Met Office Unified Model (UM), developed by the UK Met Office and are described 93 
further in Berthou et al. (2018). Key differences between the two models are as follows: 94 

- The RCM12 (UM version 10.3) is based on a climate version of the UM (Williams et al. 2018) and 95 
uses a convection parameterisation based on Gregory and Rowntree (1990). The RCM12 has a model 96 
time step of 4 minutes and uses a prognostic cloud fraction and condensate scheme (Wilson et al. 97 
2008).  98 
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- The CPM2 (UM version 10.1) is based on the operational UKV Met Office model for numerical 99 
weather predictions (Clark et al. 2016) and runs without any convection parameterisation (both shallow 100 
and deep are switched off). The CPM2 has a model time step of 1 minute and uses the diagnostic 101 
(Smith 1990) cloud scheme. The CPM2 includes prognostic graupel, which is a second category of ice 102 
that has higher fall speeds and is typically found in convective clouds (unlike the RCM12 which just 103 
has a single category of ice). The CPM2 uses a new blended boundary-layer parameterization (Boutle 104 
et al. 2014a, b). 105 

The RCM12 and CPM2 are in this analysis driven by the ERA-Interim reanalysis (Dee et al. 2011) and both 106 
models directly downscale the driving model, hence the CPM2 model is not nested in the RCM12. Both model 107 
simulations span a pan-European domain: the RCM12 and CPM2 model domains are shown in Fig. 1. For both 108 
models, precipitation output is available at hourly resolution. 10 years of data from 1999-2008 is analysed. All 109 
analyses are carried out with model output regridded to a common 12km grid (with mass conservation) for a 110 
direct comparison of results. Furthermore, all analyses are performed also for model output regridded to a 111 
common 25km grid, results from these analyses are found in Supplementary section 4. 112 

 113 
Fig. 1 Overview of data domain. Pink domain: 12km RCM12 data domain. Orange domain: 2.2 km CPM2 data domain. 114 
Blue domain: Domain where tracking of events has been done. Red box: Case area for this study. 115 

2.2. Tracking algorithm DYMECS 116 
The DYMECS tracking algorithm was applied to output from both models at 12km resolution to identify 117 
precipitation events and is described in detail in Stein et al. (2014). The algorithm was developed for UK radar 118 
and Met Office convection-permitting forecast model precipitation data and has subsequently been applied to 119 
climate model data by Crook et al. (2019). The algorithm was applied to rainfall fields within the common part 120 
of the dataset (Tracking Domain, Fig. 1), removing 90 grid points (12km resolution) from each side of the 121 
boundaries, still covering a large part of Europe. Events are defined as continuous rainfall fields above a certain 122 
threshold and labelled based on “local table method” (Haralick and Shapiro 1992). Here an intensity threshold 123 
of 1 mm/hour was used and with no areal threshold, allowing an event to be as small as one grid cell. Events are 124 
tracked between two consecutive images (t and t+1) by displacing tracked elements in time t into time t+1 using 125 
the velocity field 𝒱𝒱(t, t-1). The velocity field is based on windowed cross-correlations, dividing each image into 126 
18x18 grid box windows (Rinehart and Garvey 1978). Analysing the overlapping areas between the advected 127 
image of t and the image of t+1 tracks are identified using an overlap criterion of 0.6 (Stein et al. 2014). Settings 128 
for the algorithm are similar to the settings Crook et al. (2019) used for precipitation tracking, though with a 129 
slight adjustment of the size of the grid box window (18x18 instead of 20x20, to fit the number of grid points in 130 
the analysed domain). 131 

The tracking algorithm considers birth, death, splitting and merging of events. Splitting describes the situation 132 
where an event in time step t overlaps sufficiently with two events in time step t+1, hence the event splits into 133 
two events. When two events at time step t both overlap sufficiently with one event in time step t+1, the events 134 
are considered to have merged. In both splitting and merging, the event with the largest overlap keeps the 135 
original event ID, while a new event ID is given in case of splitting (Crook et al. 2019). Splitting and merging of 136 
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events are kept track of by marking which event IDs are linked to a given event ID. In this study, an event is 137 
defined by the period where it has the same ID in order not to account for the same part of an event twice.  138 

The following event specific variables are extracted from the tracking algorithm and used to quantify extreme 139 
precipitation from the two models: 140 

- Centroid Location [lat, lon, t]: Centroid of fitted box around event area for each time step. 141 
Parenthesis giving description and dimensions of variable. 142 

- Maximum Location [lat, lon, t]: Location of the single maximum intensity cell for each time step. 143 
- Maximum Intensity [mm/hr, t]: The maximum intensity of a single cell within the event for each 144 

time step. 145 
- Mean Intensity [mm/hr, t]: Average intensity over grid cells within the event (only grid cells with 146 

intensities above 1 mm/hr are considered) for each time step. 147 
- Peak Maximum Intensity [mm/hr]: Lifetime maximum intensity, based on the Maximum Intensity 148 

variable for each event. 149 
- Peak Mean Intensity [mm/hr]: Maximum mean intensity over the lifetime of each event, based on the 150 

Mean Intensity variable. 151 
- Area [number of grid cells, t]: Number of grid cells which are included in the event (only grid cells 152 

with intensities above 1 mm/hr are considered) for each time step. 153 
- Maximum Area [number of grid cells]: Lifetime maximum area for each event. 154 
- Box [lat min., lon min., n lat, n lon, t]: A rectangular box fitted around all grid cells (> 1 mm/hr) 155 

within the event at each time step [t]. The box is used only to identify the location of the event (used 156 
for merging of events, section 2.5), but not used in the tracking. The size and location of the box fitted 157 
around each event, is given by the bottom left corner [lat min, lon min] and size of the box [n lat, n 158 
lon]. 159 

2.3. Extreme Event Definition 160 
Extreme events are sampled from a Northern European case area in order to be able to compare seasonality and 161 
movement of sampled extremes without mixing up different climatic zones. The Northern European case area is 162 
defined between 12oW to 20oE and 49 to 60oN (see Fig. 1). An event is considered within the case area if its 163 
Maximum Location is inside the case area at any time within the lifetime of the event. These events are all kept. 164 
The entire lifetime of the event is then treated as an event within the case area despite the possibility that the 165 
Maximum Location at some time steps is outside the case area. Extreme events which start and end at the 166 
boundary of the tracking area are included, even though these may suffer from boundary artefacts impacting the 167 
event evolution at the beginning or end of their lifetime. This is done to maintain the best possible extreme 168 
distribution in the case area. 169 

Extreme events are sampled from the population of events within the case area for further analysis. Here, 170 
extreme events are defined based on their Peak Maximum Intensity (1-hour intensity) within the case area, and 171 
the 10,000 most intense events are sampled in three bins, Top 100 (rank 1-100), Top 1,000 (rank 1-1,000), and 172 
Top 10,000 (rank 1-10,000). Extreme events are furthermore sampled and analysed within each season.  173 

2.4. Event Characteristics 174 
Event characteristics are analysed for the Top 100 events in the RCM12 and CPM2 datasets considering four 175 
variables: Area, Maximum Intensity, Mean Intensity and Volume. To study the evolution in event characteristics 176 
for events with different lifetimes, the method proposed in Brisson et al. (2018) is used. Event lifetimes are 177 
normalised to a range between 0 and 1 and the event characteristic for each time step in the event is extracted. A 178 
second order polynomial is fitted to the event characteristic data for each of the Top 100 events. Brisson et al. 179 
(2018) also suggested a normalisation of the variables, introducing the term var’: 180 

𝑣𝑣𝑣𝑣𝑟𝑟𝑡𝑡′ =  
𝑣𝑣𝑣𝑣𝑟𝑟𝑡𝑡
𝑣𝑣𝑣𝑣𝑣𝑣�����

 181 

Where var is either Area, Maximum Intensity, Mean Intensity or Volume, vart is the variable at the given time 182 
step and 𝑣𝑣𝑣𝑣𝑣𝑣����� is the mean value of the variable for the given event. Results with no normalisation of the variables 183 



5 
 

(only normalisation of lifetime) are presented in section 3.3, while results with normalisation of the variables are 184 
presented in the Supplementary section 3. 185 

2.5. Merging of Events 186 
Merging of events is applied as a post processing step based on the results of the tracking algorithm. Events are 187 
merged if the Box around two or more events are spatially overlapping or within a distance of 48km (4 grid 188 
points) from each other at a single time step. Events are then merged for the entire lifetime of the events. The 189 
merged event is given the event ID of the event with highest Peak Maximum Intensity, and information from 190 
both events is merged. Area still only considers grid cells with intensities above 1mm/hr. Centroid Location is 191 
calculated based on the new Box fitted around the merged event. The merging is done recursively (due to 192 
updating of the Box around the merged event), until no further events are merged.  193 

2.6. Event Volume 194 
The total volume [m3] of rainfall associated with each event i, is defined as:  195 

Event volume𝑖𝑖 = �Mean Intensity𝑖𝑖,𝑡𝑡 ⋅ Area𝑖𝑖,𝑡𝑡

lifei

t=1

 196 

The Event volume is calculated over the course of the entire event period, t=1…life_i, defined as the period 197 
where the event has the same ID, disregarding splitting and merging with events of other IDs. For events within 198 
the case area the entire lifetime of the event is considered. The accumulated volume associated with events for a 199 
given area is defined as: 200 

Accumulated volume = � Event volume𝑖𝑖

nTracks

i=1

 201 

2.7. Simplified Event Evolution (SEE) 202 
Area-intensity evolution diagrams have been used to describe the life cycle of the events, as seen in the case 203 
from numerical weather predictions (Keat et al. 2019). In this study, we suggest a method to simplify the 204 
evolution diagram across event durations, making it possible to create an average event evolution across 205 
numerous events and therefore suitable in a climate context. Here the metric is used to describe event 206 
representation in the two models. From the tracking algorithm the Area, Maximum Intensity and Mean Intensity 207 
time series are used to visualise the evolution of an event (see Fig. 2 b,d). There are large variations in the event 208 
evolution between events and for longer lifetimes the event evolution can be more complex (shown in 209 
Supplementary section 1). In order to compare event evolutions across datasets, the evolution is simplified into 210 
four points (see Fig. 2 b,d):  211 

1. Birth: Size and intensity when the event is first detected.  212 
2. Peak intensity: Size and intensity at the point where the event reaches its peak intensity. 213 
3. Maximum area: Size and intensity when the event reaches its largest size (defined as the horizontal 214 

area identified with the event [number of grid cells above threshold]).  215 
4. Death: Size and intensity at the last time step the event is detected.  216 

The simplified event evolution (SEE) is performed based on both Peak Maximum Intensity SEEmax (Fig. 2b) and 217 
Peak Mean Intensity SEEmean (Fig. 2d). Maximum Intensity is the maximum intensity of a single grid cell within 218 
the event for each time step, whereas Mean Intensity is the mean intensity for all grid cells included in the event 219 
for each time step. 220 

The median SEE is calculated to compare the event evolution between different ranks of extreme events or 221 
between models. First a simplified event evolution is fitted to each event in a sample of extreme events. Then a 222 
median event evolution figure is created by finding the median of each of the four points (1. birth, 2. peak 223 
intensity, 3. maximum area and 4. death) within the individual fitted simplified event evolution figures, both for 224 
intensity (y-axis) and area (x-axis).  225 
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 226 
Fig. 2 Event evolution over time an event in the CPM2 dataset (2002-06-19 14:00 – 2002-06-20 07:00). a: Storm track with 227 
indication of area of the event over time. c: Accumulated rainfall over the event duration (footprint). b: Event evolution over 228 
time in maximum intensity and area (dots indicate hourly time steps and colour indicate time proceeding), with simplified 229 
event evolution based on maximum intensity in black. d: Event evolution over time for mean intensity and area (dots 230 
indicate hourly time steps and colour indicate time proceeding), with simplified evolution for mean intensity in black. 231 

3. Results and Discussion 232 
3.1.  Sampled Extreme Events 233 
A total of 4,219,064 events were tracked in the RCM12 dataset and 6,456,733 events were tracked in the CPM2 234 
dataset for the entire tracking domain (see Fig. 1). Events which did not reach a larger area than 1 grid point 235 
were removed, resulting in 2,494,326 RCM12 and 4,333,758 CPM2 events. Of these, 701,475 events (28%) 236 
were located in the case area in the RCM12 dataset and 1,457,943 events (34%) in the CPM2 data (see Fig. 1, 237 
red box). This corresponds to approximately 192 events per day in the RCM12 dataset and 399 events per day in 238 
the CPM2 dataset. Due to the definition of events as consecutive rainfall areas, events in this study must be 239 
considered distinctly different from large scale rainfall descriptions such as storms. The difference in number of 240 
events between the two models is further discussed in Section 3.2. 241 

Ranks were chosen to sample extreme events, in order to accommodate the different number of tracked events 242 
between the two models. The 10,000 most intense events (based on the variable Peak Maximum Intensity) were 243 
sampled in three categories, Top 100 (rank 1-100), Top 1,000 (rank 1-1,000), and Top 10,000 (rank 1-10,000). 244 
Here an equal sample size is obtained between the two models, in the same way as sampling a specific number 245 
of events per year. Based on the pool of events from each of the two models, the Top 100, Top 1,000 and Top 246 
10,000 events correspond to percentiles ranging from 99.993-98.574 (Table 1). While the RCM12 dataset has 247 
largest maximum intensity for Top 100, the CPM2 dataset show larger intensity for Top 1,000 and Top 10,000.  248 

  249 
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Table 1 Percentile related to the sampled extreme events (>1mm/hr) and corresponding maximum intensities in mm/hr, after 250 
merging Top100 events. Maximum intensities represent the maximum intensity located inside the case area, lower ranked 251 
events can have higher intensities outside the case area. 252 

 CPM2  RCM12  
 Percentile Max intensity Percentile Max intensity 
  [mm/hr]  [mm/hr] 
1st - 61.5 - 116.5 
100th 99.993 37.2 99.985 40.3 
1,000th 99.931 25.2 99.857 23.3 
10,000th 99.314 13.6 98.574 10.2 

 253 

3.2. Merging of Events 254 
Due to the different representation of rainfall in the two models, the number of events in the two models is not 255 
expected to be the same. Furthermore some of the expected difference between models can be explained purely 256 
by the difference in resolution. When comparing the same RCM12 and CPM2 simulations as studied here 257 
against observations, Berthou et al. (2018) found no clear signal of a better performance of one of the two 258 
models in terms of mean daily and hourly precipitation. Both models showed areas of better and worse 259 
performance compared to the other over the analysed areas of the UK, Germany and Spain. Results here, 260 
showing a very different number of events between the models (2,494,326 events in the RCM12 vs. 4,333,758 261 
events in the CPM2), suggest a difference in how the tracking algorithm is able to define and track events in the 262 
two models. We note that this difference is not reduced when regridding to a coarser grid at 25km resolution 263 
(Supplementary section 4). Analysing periods with high intensity rainfall between the two models shows that 264 
rainfall is more scattered in the CPM2 dataset (see examples in Fig. 3). As the event definition in the tracking 265 
algorithm is based on a continuous area of rainfall (>1mm/hr), this can lead to splitting events, which by eye 266 
could be classified as the same event. Here tracking is done using precipitation, while outgoing longwave 267 
radiation (OLR) is another well used method for tracking and detection of especially MCSs (e.g. Morel and 268 
Senesi 2002; Crook et al. 2019). OLR is smoother in space which would be likely to reduce the difference in the 269 
number of tracked events between the two models, but OLR tracking gives problems with false alarms as OLR 270 
is not a direct measurement of precipitation. 271 

 272 
Fig. 3 Footprint (accumulated rainfall) of periods with high intensity rainfall. (a) - (b) Event 1 from 18:30 10/08-2007 to 273 
18:30 11/08-2007 for RCM12 and CPM2 data respectively. (c) - (d) Event 2 from 05:30 19/09-2006 to 16:30 22/09-2006 for 274 
RCM12 and CPM2 data respectively. 275 

A scheme of merging events, as a post-processing step based on the tracking algorithm was tested on both 276 
model datasets. Events which at a certain time step were spatially very close to each other were merged with the 277 
aim of giving a better estimate of the number of independent events and reducing differences in the number of 278 
tracked events between the two models. However, the merging resulted in very large events and unrealistic 279 
event tracks due to rainfall often being spatially scattered over a large part of the domain. Therefore it was 280 
decided to only apply merging to events contributing to the sampled Top 100 set, in order to ensure that the 100 281 
most extreme events are not spatially overlapping or in close proximity and therefore cannot be considered the 282 
same event. The process of merging Top 100 events was done recursively until none of the selected 100 events 283 
could be further merged. A total of 14 Top 100 CPM2 events and 19 Top 100 RCM12 events were merged. 284 
After the merging the Top 100 CPM2 events consists of 89 independent days while the RCM12 Top 100 events 285 
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consists of 98 independent days1. The merging of the Top 100 events ensures a more similar sample of events 286 
are compared between the two models. While sampling by rank is expected to give a fairer comparison of 287 
extreme events between the CPM2 and RCM12, some CPM2-RCM12 differences might be explained by the 288 
fewer events tracked in the RCM12. This will be discussed in the following sections along with the results. 289 

3.3. Event Characteristics 290 
Evaluating the characteristics of the Top 100 most intense events by Area, Maximum Intensity, Mean Intensity 291 
and Volume shows that the two models represent the Top 100 extreme events very differently. The RCM12 Top 292 
100 extreme events have higher peak values for Area and Volume compared to the CPM2 Top 100 events, while 293 
the opposite is the case for Mean Intensity (Fig. 4). No large differences are seen in the evolution of Maximum 294 
Intensity for the Top 100 most intense events between the two models. The largest difference between the 295 
RCM12 and CPM2 events is seen when comparing the Area and Volume of the Top 100 most intense extreme 296 
events. Although we note that, if variables were normalised, no differences between the models would be 297 
detected (see Supplementary Fig. 6). This suggest that the difference is scaled with the mean value e.g. the 298 
difference in the Area variable between the RCM12 and CPM2 is due to the difference in mean Area over the 299 
lifetime of the events. Differences between CPM2 and RCM12 Top 100 events in Mean Intensity are more 300 
modest, but show higher Mean Intensity for CPM2 Top 100 throughout the lifetime of the events (Fig. 4c). The 301 
larger areas for RCM12 events is somewhat expected, and could be explained by the convective scheme 302 
smoothing out precipitation leading to fewer individual events (Fig. 4a). More surprising is it that the CPM2 303 
events do not have higher Maximum Intensity compared to the RCM12 events, despite the convective scheme 304 
and higher original grid point resolution (Fig. 4b). The total Volume for the RCM12 Top 100 events are higher 305 
than for the CPM2 Top 100 events, which can be seen to mainly be influenced by the large difference in event 306 
area between the two models (Fig. 4d). Comparing these results to those where tracking has been applied to data 307 
regridded to 25km shows only small differences (Supplementary Fig. 8). In particular, model differences in the 308 
evolution of event characteristics are in general the same for the 25km data, although with smaller differences in 309 
Area and Volume, compared to those seen in Fig. 4 for the 12km data. 310 

 311 
Fig. 4 Evolution of Area (a), Maximum Intensity (b), Mean Intensity (c) and Volume (d) for Top 100 most intense events in 312 
the CPM2 dataset (black) and RCM12 dataset (grey). Event durations are normalised. The 99% Confidence Interval (CI) are 313 
shown with dashed lines. 314 

 315 
 316 

                                                           

1 Unique days Top 1,000: 483 (CPM2), 582 (RCM12). Unique days Top 10,000: 1678 (CPM2), 2107 (RCM12).  
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3.4. Volume 317 
The Accumulated volume of all tracked events within the tracking domain (see Fig. 1) is approximately 11% 318 
higher in the CPM2 dataset than in the RCM12 dataset (Table 2). In contrast, for events within the Case area 319 
(Northern Europe – see Fig. 1) the total Accumulated volume is similar (only 2% larger in CPM2 dataset 320 
compared to the RCM12 dataset, Table 2). Considering only extreme events, the picture changes: the 321 
Accumulated volume for RCM12 extreme events is larger than for CPM2 extreme events, with increasing 322 
difference for more extreme events (Table 2). For Top 100 events, the Accumulated volume for the CPM2 323 
events is approximately 30% of the volume of RCM12 events (Table 2). The increasing difference in 324 
accumulated volume between the RCM12 and CPM2 for the most intense extreme events, suggests that this 325 
difference is not simply explained by the different number of tracked events between the two models. The same 326 
tendency is seen in the 25km data (Supplementary Table 2), although with smaller differences between RCM12 327 
and CPM2 events for the most severe extreme events. 328 

Table 2 Total volume accumulated for events in the CPM2 and RCM12 dataset (after removing single cell events). 329 
Definition of Tracking area and Case area are seen in Fig. 1. For all cases the entire lifetime of the event is considered in the 330 
total volume. 331 

Accumulated 
Volume 

CPM2 
[109 m3] 

RCM12 
[109 m3] 

Ratio 
[CPM2/RCM12] 

Entire tracking area 52,483 47,183 1.11 
Case area 22,332 21,894 1.02 
Top 10,000 5,342 8,659 0.62 
Top 1,000 1,013 2,616 0.39 
Top 100 199 637 0.31 

 332 

Considering all events in the case area, the contribution to the accumulated volume increases faster with 333 
maximum intensity in the CPM2 dataset compared to the RCM12 dataset (Fig. 5a), which is also seen for the 25 334 
km data (Supplementary Fig. 9). This shows that the most intense events sampled with the tracking algorithm 335 
contribute a smaller fraction of the total volume in the CPM2 dataset compared to the RCM12 dataset. As the 336 
CPM2 extreme events in general have smaller areas than the RCM12 events (Fig. 4a), this explains the lower 337 
total volume in the extreme events for the CPM2 compared to the RCM12 (Table 2). The 10,000 events with the 338 
highest maximum intensity represent a bit less than 40% of the total volume in the CPM2 dataset, while for the 339 
RCM12 dataset these events represents more than 55 % of the total volume in the dataset (Fig. 5b). 340 

 341 
Fig. 5 The contribution of events of increasing peak maximum intensity to the total accumulated volume (measured as the 342 
cumulative fraction) for all events (a) and for the 10,000 events with highest maximum intensity (b). Events are ranked by 343 
Peak Maximum Intensity. CPM2 dataset (black) and RCM12 dataset (grey). Marks indicate the rank 100, 1,000 and 10,000 344 
event for each of the datasets. 345 

 346 

 347 
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3.5. Storm Tracks 348 
Tracks of the extreme events in the Northern European case area (Fig. 1, red box) are very different between the 349 
CPM2 and RCM12 (see Fig. 6). In the CPM2 dataset, the extreme events mostly occur over central Europe and 350 
southern Scandinavia (a-c) and tend to have a south to north (northward: 315-45°) direction of motion 351 
(Supplementary Fig. 4). By contrast, many of the extreme events in the RCM12 are located over the Atlantic 352 
Ocean and the British Isles (Fig. 6d-f) with a west to east (eastward) moving direction (Supplementary Fig. 4). 353 
Focussing on the maximum location inside the case area (Fig. 6c and f), CPM2 extreme events are mostly in the 354 
eastern part, whilst there is additionally a cluster of events in the western part in the RCM12.  This indicates that 355 
some of the extreme events in the RCM12 are distinctly different from those in the CPM2. To understand these 356 
differences, the most intense extreme events in the CPM2 dataset are compared with tracks on the same day, 357 
with similar location and intensity, in the RCM12 dataset, and vice versa (see Supplementary section 2). From 358 
comparisons of tracks between the two models, we find: 359 

- Extreme events from one dataset are rarely replicated by the other dataset, indicating completely 360 
different sets of extreme events in the two models. 361 

- Long event tracks in the RCM12 extreme set seem to be replicated well by the CPM2, though with 362 
notably lower intensities, indicating that the RCM12 extreme set includes a group of events, which 363 
according to the CPM2 are not extreme due to lower intensities. 364 

- CPM2 extreme events are largely absent in the RCM12, with no tracks in the RCM12 with a similar 365 
location and intensity on that day. 366 

 367 
Fig. 6 Storm tracks of Top 100 (rank 1-100, (a), (d)) and Top 1,000 (rank 1-1,000 (b), (e)) most severe events within the 368 
Northern European Case area. CPM2 dataset (a)-(c) and RCM12 dataset (d)-(f). (c), (f): Location of the Peak Maximum 369 
Intensity within the case area for the selected Top 100 most severe events. Colours distinguish different event tracks, plotted 370 
by rank in reverse order: least intense plotted first (dark colours), most intense plotted last (light colours). Note: Only events 371 
which have high intensities within the case area are shown. 372 

If events were instead sampled by their Peak Maximum Area (sampling of spatially large, but not necessarily 373 
intense events), there would be no visible difference in storm tracks between the two models (results shown in 374 
Supplementary section 3). The storm tracks of the spatially largest events have a large density of tracks over the 375 
British Isles and an eastward direction in both models. These tracks have very similar characteristics (both in 376 
terms of location and movement direction) as the tracks for events with the highest Peak Maximum intensity in 377 
the RCM12. Nevertheless, there is little overlap in events sampled by Peak Maximum intensity and Peak 378 
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Maximum Area in the RCM12 dataset (4, 13 and 23 % for Top 100, Top 1,000 and Top 10,000), though this 379 
overlap is larger than in the CPM2 dataset (0, 3 and 14 % for Top 100, Top 1,000 and Top 10,000). The better 380 
agreement in location between models for the spatially largest events compared to the most intense events, and 381 
the larger overlap between large and intense events in the RCM12 dataset, suggest that the group of extreme 382 
intense events in the RCM12 not seen as intense by the CPM2 are large events. Analysing the size of the events 383 
in the western cluster in the RCM12 data shows that the events in this cluster are on average double the size of 384 
the events in the eastern cluster. One plausible explanation for this group of extreme events in the RCM12 data, 385 
could be that the high intensities come from grid-point storms, occurring within large area events, which is a 386 
well-known problem in some RCMs (Chan et al. 2014a).  387 

3.6. Seasonal Distribution 388 
The seasonal distribution in the occurrence of extreme events shows a different pattern between the CPM2 and 389 
RCM12 dataset, again with largest differences for the most severe extreme events (Fig. 7a). The CPM2 dataset 390 
shows an increasing ratio of summer events on considering more extreme events (i.e. moving from Top10,000 391 
to Top100, significant with a chi-square homogeneity test, p-value= 5.6 ⋅ 10−12) which is not found in the 392 
RCM12 dataset. While the sample of CPM2 extreme events are highly dominated by summer events, RCM12 393 
extreme events have a higher ratio of events from other seasons. Sampling extreme events by Maximum Area 394 
shows no difference in the seasonal distribution in occurrence between the CPM2 and RCM12 (see Fig. 7b). 395 
This confirms that similar events are sampled in the two models when selecting by Maximum Area, whereas 396 
this is not the case when selecting by Maximum Intensity. Analysing characteristics of MCSs over Europe, 397 
Morel and Senesi (2002) found a larger density of MCSs over land than sea, with a clear concentration in the 398 
eastern part of the case area. This suggests that the representation of tracking location is closer to observations in 399 
the CPM2 dataset compared to the RCM12. MCSs in Northern Europe were found to have the highest frequency 400 
between May and August (Morel and Senesi 2002) which is in agreement with the seasonal distribution in both 401 
models, although more apparent in the CPM2. Morel and Senesi (2002) define MCSs as events reaching an area 402 
above 10,000km2, while an areal threshold of 288km2 (excluding single cell events) is used in this study with no 403 
attempt to distinguish between MCSs and non-MCSs. Yet Top 100 extreme events still reach an average area of 404 
750 grid cells (108,000km2) for RCM12 events and 200 grid cells (28,000km2) for CPM2 events (Fig. 4). 405 

 406 
Fig. 7 Seasonal occurrence of maximum intensity events (a) and maximum area events (b). Events sampled in CPM2 dataset 407 
in black and events sampled in RCM12 dataset in grey. 408 

3.7. Median Simplified Event Evolution 409 
When comparing the median Simplified Event Evolution (SEE) of the extremes for the RCM12 and CPM2, it is 410 
clear that the event evolutions between the two models are very different (see Fig. 8). For Top 100 SEEmax the 411 
RCM12 extreme events reach higher intensities than the CPM2 events, while for Top 1,000 the median Peak 412 
Maximum Intensity is almost similar between the two models (Fig. 8a). When including more events (e.g. Top 413 
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10,000) the CPM2 extreme events reach higher median Peak Maximum Intensity than the RCM12 events (Fig. 414 
8a). This somewhat surprising higher Peak Maximum Intensity in the RCM12 dataset for the most severe 415 
extreme events is most likely caused by grid-point storms. These grid-point storms often occur within large 416 
scale areas of heavy precipitation, where the convective parameterisation breaks down, resulting in intensities 417 
above 100 mm/hr and a very low parameterized convective rainfall fraction for one or a few grid cells compared 418 
to surrounding grid cells. These grid-point storms are a known problem in some RCMs, which operate at grid 419 
scales smaller than those for which the convective parameterisation scheme was designed (see e.g. Chan et al. 420 
(2014b)). Both in size and intensity it is clear that the Top 100 extreme events in the RCM12 data have a very 421 
different event evolution than the Top 100 extreme events in the CPM2 data. These differences between models, 422 
both in terms of shape and values, become smaller for the median SEEmax for Top 1,000 and Top 10,000 events. 423 
While the area is still larger for the RCM12 events, the Maximum Intensity becomes higher for the CPM2 424 
events (Fig. 8a). For Top 1,000 and Top 10,000 SEEmax the difference in area between the two models could 425 
reasonably be described by the difference in how rainfall is modelled between the two models (convection being 426 
parameterised or not) and by the difference in the original resolution of the models. The Top 100 SEEmax 427 
confirms that a large part of the extreme events in the RCM12 dataset are very large events, and that these are 428 
not found in the CPM2 dataset. Together with findings from section 3.5 and section 3.6, we deduce that the 429 
RCM12 is overestimating the Maximum Intensity of these very large events due to the presence of grid-point 430 
storms (supported by an analysis of the convective fraction of rainfall above 100mm/hr in RCM12 events, 431 
Supplementary section 5). Regridding data to 25 km shows similar intensities between models for Top 100 432 
SEEmax while higher intensities for CPM2 Top 1,000 and Top 10,000. Areal differences follow the pattern seen 433 
in the 12km data with much larger arears for RCM12 Top 100 SEEmax compared to CPM2 Top 100 SEEmax. 434 

 435 
Fig. 8 Simplified median evolution based on maximum intensity (a) and mean intensity (b). Data for both CPM2 (black 436 
triangles) and RCM12 (grey circles). Severe events sampled based on maximum 1-hour intensity, Top 100 (dashed line), 437 
Top 1,000 (dotted line) and Top 10,000 (solid line). 438 

For median SEEmean the CPM2 extreme events have higher Mean Intensities than the RCM12 events, for all 439 
percentiles (Fig. 8b). As CPM2 extreme events are approximately half the size of corresponding RCM12 440 
extreme events, the CPM2 extreme events can be characterised as small and intense compared to the RCM12 441 
extreme events. For the CPM2 Top 100 events, which by Maximum Intensity are less intense than RCM12 442 
events, the higher Mean Intensities indicate that the CPM2 events overall are more intense than the RCM12 443 
events, while the RCM12 events seem to have a more peaked intensity distribution (again consistent with these 444 
being associated with grid-points storms in some cases).   445 

For the seasonal median SEE the Top 100, Top 1,000 and Top 10,000 events for each season are sampled. 446 
Seasonal median SEEmax for Top 100 shows the largest difference between the RCM12 and CPM2 dataset for 447 
autumn and winter events (Fig. 9a,d). By contrast spring and summer events are less different for the Top 100 448 
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events (Fig. 9b,c). The same pattern is observed for the seasonal SEEmean for Top 100 events (Fig. 9e-h). For 449 
each seasons’ Top 100 events, the CPM2 exhibits lower intensity in the SEEmax compared to the RCM12, which 450 
corresponds well with the results found in Fig. 8a. Analysing seasonal SEEmax and SEEmean for Top 1,000 and 451 
Top 10,000 show the largest difference between datasets for summer events with higher intensities in the CPM2 452 
dataset and larger area in the RCM12 dataset (Fig. 9). Interestingly SEEmax winter events in Top 1,000 and Top 453 
10,000 have larger intensities in the RCM12 data than the CPM2 data, as opposed to the other seasons (Fig. 9a). 454 
The absence of the convective parameterisation scheme in the CPM2 is expected to result in a large difference 455 
in summer events between the two models, as it is in this season most convective events develop in the case 456 
area. The low winter intensities and small areas of the CPM2 compared to the RCM12 (mostly for Top 100 and 457 
Top 1,000) could indicate that the difference in rainfall modelling in the two models also plays a large role for 458 
winter events. 459 

 460 
Fig. 9 Simplified evolution based on maximum intensity (SEEmax, (a)-(d)) and mean intensity (SEEmean, (e)-(h)). (a), (e): 461 
winter events (DJF), (b), (f): spring events (MAM), (c), (g): summer events (JJA) and (d), (h): autumn events (SON). Top 462 
100, Top 1,000 and Top 10,000 within each season is shown with dashed, dotted and solid lines respectively. Data for both 463 
CPM2 (black triangles) and RCM12 (grey circles) are shown. 464 

4. Conclusion 465 
The difference in the representation of extreme events between an RCM12 and a CPM2 was analysed by 466 
applying a storm tracking algorithm to the two datasets. Extreme events in the Northern European case area 467 
were found to have very different storm tracks, both in terms of location of the tracks, location of the peak 468 
maximum intensity, and movement direction. The largest differences were found for the most severe extreme 469 
events, indicating completely different sets of extreme events between the two models. This corresponds well 470 
with a recent ensemble study of CPMs and RCMs, which found the greatest improvements in the performance 471 
of CPMs for heavy precipitation events (Ban et al. 2021). It is also consistent with earlier studies showing the 472 
improved representation of hourly precipitation extremes in CPMs, due to the improved representation of 473 
convection (Kendon et al. 2014). For the most intense RCM12 events, these were to a large extent captured in 474 
the CPM2 but with lower intensities, whilst the most intense CPM2 events were largely absent in the RCM12. 475 
The most intense events in RCM12 are considered unphysical, and likely due to grid point storms (Chan et al. 476 
2014c). Seasonal differences also illustrate the differences between the models. Here it was found that the 477 
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RCM12 data have a larger fraction of non-summer events in the extreme event set compared to the CPM2 data. 478 
These differences between models were not found when sampling events by maximum area, i.e. events that are 479 
spatially large but not necessarily intense. Analysing the coincidence of large and intense events showed a larger 480 
fraction of the events sampled as both intense and spatially large in the RCM12 dataset compared to the CPM2 481 
dataset. In summary, the extremes of the two models have low correspondence with each other. 482 

Analysing time series of area, volume, maximum intensity and mean intensity for the Top 100 most extreme 483 
events over the lifetime of the event, showed large differences between the models. Large differences in the area 484 
of the extreme events explained the model differences in event volume. The CPM2 produces a larger total 485 
volume of rainfall within the case area compared to the RCM12 due to higher mean intensities. In the RCM12, 486 
extreme events contribute proportionally more to the total volume than in the CPM2, due to their larger spatial 487 
size. These differences are again consistent with the expected different character of heavy rainfall in convection-488 
permitting models (which tends to be more intense, Ban et al. (2021)) compared to convection-parameterised 489 
models (where heavy rain events are not heavy enough, but tend to be too persistent and widespread, Kendon et 490 
al. (2012)). Crook et al. (2019) found an improved contribution to total rainfall volume from MCSs in 491 
convection-permitting simulations, compared to convection-parameterised simulations over West Africa.  492 

In this study we have developed a method of simplifying area-intensity diagrams to allow the typical event 493 
evolution to be visualised across many events with different durations. This makes the method suitable in a 494 
climate context and is valuable in assessing differences in the underlying processes. Using the median 495 
Simplified Event Evolution showed large differences between RCM12 and CPM2 extreme events. The 496 
differences were again largest for the most intense events (Top 100). The Top 100 RCM12 extreme events had 497 
higher maximum intensities and areas than CPM2 extreme events, and these events in the RCM12 dataset are 498 
likely to be influenced by grid-point storms. For less extreme indices, i.e., the Top 1,000 and Top 10,000 events, 499 
extreme events in the CPM2 data were more intense. In general, on the basis of the results here, we conclude 500 
that we should have low confidence in the most (Top 100) extreme precipitation events on hourly timescales in 501 
convection parameterised RCMs. 502 

Sampling extreme events by season showed the largest differences between models in autumn and winter for 503 
Top 100 events. For Top 1,000 and Top 10,000 large differences between models were found for summer 504 
events, which was expected due to the differences between the models in how convection is represented, and 505 
convection having greatest impact in this season. The large difference in winter extreme events was less 506 
expected, with lower intensities for the CPM2 events compared to the RCM12. This indicates that the difference 507 
in the representation of convection between models does not only affect events in summer. In addition to the 508 
representation of convection, the finer grid spacing of the CPM2 may allow it to better represent mesoscale 509 
structures within fronts, thereby impacting frontal events in winter. 510 

The analysis performed on coarser resolution data (regridding model data to 25 km resolution before tracking) 511 
did not explain differences in event track location and event evolution found between models in the 12km data. 512 
We conclude that the difference between the models in how they represent rainfall strongly influences the event 513 
characteristics reported here. 514 

While no suitable observational dataset was found to analyse the entire region for hourly data, comparing the 515 
location of storm tracks and their seasonal distribution against previous observational studies (Morel and Senesi 516 
2002) suggests a better performance of the CPM2 compared to the RCM12. This work emphasises the large 517 
difference in representation of extreme events between convection-permitting and convection-parameterised 518 
models. Using results from a tracking algorithm gives the advantage of analysing the difference in extreme 519 
precipitation from an event perspective, which is here explored with a simple visual method, the Simplified 520 
Event Evolution. The influence of grid-point storms in the RCM12 dataset shows that analysing and comparing 521 
extreme events from the RCM12 dataset should be treated with care. Overall there are indications that the 522 
CPM2 is more reliable in representing hourly extremes than the RCM12, based on previous studies comparing 523 
with observations. The methods used in this study could additionally be used to compare differences in the 524 
representation of extreme events between models in future projections. 525 

 526 
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