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SeaGrassDetect: A novel method for detection of seagrass from
unlabelled under water videos

Sayantan Sengupta®, Bjarne Kjeer Ersbgll, Anders Stockmarr

Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs.
Lyngby 2800, Denmark

Abstract

Benthic vegetation is arguably one of the most important indicators of the state of marine
environment. Assessment of the status of eelgrass (Zostera marina) is commonly done
using various remote sensing methods such as aerial photography or satellite images. These
methods often fail to capture the true scenario beneath the surface of the water if the
water is turbid or the satellite image is masked by cloud cover which makes it impossible
to see beneath them. As a second line of defense, researchers have used under water videos
(obtained either with scuba,snorkel or other visual observations) to assess the ground truth.
Lots of man-hours are spent browsing through many hours of video data manually by an
expert and assessing the status (presence/absence) which is a very common practice. Here
we propose two methods for detection of eelgrass (presence/absence) from under water videos
obtained from Roskilde Fjord in Denmark. We extend these methods to show that it can be
used as a proxy to estimate coverage of eelgrass in a given area which match well with an
expert’s estimation. The benefit of using this method is that it is objective, less biased, cost
efficient, robust to noisy environment, does not require pixel-level annotated ground truth
images and can be used on existing video transects. This method can also detect rare errors
from domain expert’s visual estimation.

Keywords: ecological monitoring; coverage estimation; seagrass detection; ecological
indicators; vegetation mapping; ground truth.

1. Introduction

Any study on assessment of marine ecosystems includes measuring the status of various
ecological indicators which determines the state of the environment. The seagrass are im-
portant habitats in coastal ecosystems. It helps in carbon sequestration [I]. It also provides
protection and nurseries for juvenile fishes and contributes to sediment stabilisation. Eel-
grass(Zostera Marina), a kind of seagrass that grows in the sea bed has been considered one
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of the most important ecological indicators [2]. The role of seagrass is often compared to
that of a forest [3]. Seagrass among other benthic vegetation in the coastal marine ecosys-
tem are under tremendous human pressure [4] and according to The International Union
for Conservation of Nature (IUCN) Red list of Threatened species (www.iucnredlist.org),
eelgrass is decreasing. If no precautions are taken, fish and sea products are estimated to
reduce dramatically by the middle of 21st century [5] and all the world’s oceans are said to
be affected [6]. In northern temperate ecosystems, eelgrass is the dominant seagrass and in
many areas constitutes the only rooted vegetation in soft sediments and constitute a key
organism both in terms of ecosystem functioning and as indicator for environmental assess-
ment and management of marine ecosystems. According to studies only 5-10% of the world’s
seafloor is mapped [7]. Due to it’s vulnerability to anthropogeneic pressures, seagrass is used
as an indicator of ecosystem health and state in many environmental regulations such as the
European WFD [§]. There is a need to map the benthic vegetation in a easy and robust way
to be able to assess the full impact of human exploitation of nature as well as continuous
monitoring of the seabed to evaluate the positive steps taken to replenish the seagrass.

Monitoring of seagrass is inherently difficult due to large patchiness. Traditional meth-
ods are to assess the depth limit [9], biomass cover [I0], etc. But these methods are
time consuming, subjective and associated with large uncertainty due to diver-specific vari-
ations [II]. Other approaches include remote sensing methods like satellite images or aerial
photography [12]. But remote sensing methods are also prone to errors when satellite im-
ages are masked by cloud cover and the turbidity of water prevent visibility of vegetation
cover beneath the surface of the water. Due to this researchers have also traditionally relied
on under water video transects and scuba divers as ground truth to assess the status of
seagrass. Many studies such as [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], has used
either videos, scuba divers or remote operating vehicles(ROV) to assess ground truth for
different species of seagrass. [23] has reviewed 91 seagrass related studies which comprise
58 journal articles, 20 conference proceedings, 7 technical notes, 2 books, 3 Ph.D theses of
which 52 studies have used scuba divers, video transects as method for ground truthing.
Ground truthing is usually done by visual inspection of the videos by an expert, who keeps
a track of the presence/absence or coverage of eelgrass along with the location(gps coordi-
nates), time, height from the ground and other measured quantities, which is a very tedious
task. Lot of person hours are spent on this exercise. It would save lot of time, if this whole
process of detecting grass from videos be automatized. Also this process includes an element
of expert judgement and can never be fully unbiased. Multiple experts may not agree on
the same precision of estimated coverage from the video transects as no scientific standards
are established. Therefore, our aim was to investigate if the assessment of traditional diver
transects could be improved through automated image analysis, allowing larger areas to be
covered without the time-consuming and error-prone post-analysis of video inspection by
domain experts.

With the increasing popularity of machine learning in the past few years, this kind
of problem, which falls in the domain of Computer Vision can now be efficiently tack-
led saving both time and commercial resources for the ecological researchers. Training
a machine learning model requires labelled training data. [24] manually labelled a small
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dataset(less than 200 images) to train a Support Vector Machine(SVM) and Artificial Neu-
ral Networks(ANN) to predict presence/absence of posidonia meadows from Autonomous
underwater vehicles(AUV) and ROV. [25] has also used underwater vehicles to evaluate
bottom coverage descriptors for assessing the good ecological status of seagrass meadows.
However, to the author’s knowledge, an autonomous detection and mapping of seagrass has
not yet been achieved. [26] divide the images in small patches and classify each patch as
seagrass or background. [27], [28] and [24] also follow a patch classification approach to
segment images. [27] also use a pixel refinement method as post processing step to get bet-
ter results than pure patch based classification. Due to the lack of availability of standard
labelled seagrass images in public domain, there have been limited use of machine learning
models on seagrass detection tasks. [29] in 2018 published the first publicly available pixel
annotated seagrass dataset captured from an AUV at different depths and trained a Con-
volutional Neural Network(CNN) model to segment seagrass images. Using the dataset of
[29], [30] trained different deep learning architectures, including the DeepLabv3Plus network
and compared their results. In 2018 [31] came out with a method which use Visual Geomet-
ric Group network(VGGNet) as the encoder and a Fully Convolutional Network(FCN-8) as
decoder plus skip connections to segment seagrass images collected from an Autonomous
underwater vehicles(AUV). There exists concern regarding the annotation of ground-truth
data of [29], which was done relatively roughly with certain inaccuracies using polygons [30].
In reality, the seagrass areas are defined by the fine leaves of the plants. This also raises
doubts and uncertainity about the correctness of the labelling process as inaccurate labelling
have significant negative effect on the metrics.

In this paper, we propose a novel method using an edge detection based approach as a
feature extractor to discriminate between regions with eelgrass and no eelgrass without any
need of labelled seagrass images. This will bypass the need of domain expert’s requirement
to estimate coverage or status of seagrass manually. Line detection is a classic technique that
has been widely used in many areas like agriculture for task related to detection of crop rows
[32], Optical Character Recognition(OCR) for detecting characters[33] and Biometrics[34].
We propose two methods, one which involves fusion of predictions obtained from two in-
dividual features to distinguish eelgrass frames from no eelgrass frames and another using
a Gaussian mixture model to cluster video frames of eelgrass from no eelgrass. The meth-
ods also give a way to quantify the subjectivity involved in eelgrass estimation through the
threshold. We extended this model further from presence/absence modelling to a proxy for
coverage estimation in a given area and show that it follows the domain expert’s estimation
very well. It even detects and rectify rare human error from the domain expert, which makes
it truly a robust tool for eelgrass detection. This method can also be extended to detect
other species of seagrass or vegetation that has sharp edges (posidonia oceania meadows).

2. Materials and Methods

2.1. Field site

The data used for this research is obtained from Roskilde Fjord in Denmark. Roskilde
Fjord is a 40-km long and narrow micro-tidal estuary forming four major basins. It is 10 km
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Figure 1: The study site have been zoomed in to show the path traced by the diver of all the video transects.
One of them have been further zoomed in.

wide and has a surface area of 122 km?, a volume of (360 x 10°m?) and a mean depth of 3
m [35]. The water temperature vary from 0°C in the winter to 22°C in the summer. There is
a strong hydraulic effect from the outer boundary where strong western wind events are able
to create water levels of up to 170 cm above mean sea level, although the tidal range only
is + 10 cm. There are several small freshwater inputs along the estuary. A large freshwater
source in the inner part is absent which is unusual compared with many estuaries. Water
residence is 90 days during maximum winter runoff [36]. Roskilde Fjord is connected to the
estuary Isefjorden and through a narrow strait to the Kattegat forming the Baltic Sea/North
Sea transition zone.

2.2. Data Description

We used the video transects that were recorded as part of the national monitoring pro-
gram: NOVANA [37]. A scuba diver with a camera attached to his head was towed by
a boat. The videos were recorded on different areas in the fjord (Figure [1]), and other
measurements such as co-ordinates, time, date, height from the bottom were measured and
embedded in the video. The diver mostly maintained a height of 1 m from the seabed.
A total of 14 video transects were recorded with an average length of 17 minutes each,
specifications of which are given in Table [I]

The videos has been recorded at different times of the day over the period of 2 days.
As can be seen from the Figure [2] the colour of the environment change very much based
on the spatial location as well as the time of the day. Also can be seen in Figure [2| the
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Compression .mpg

Frame width 720
Frame height 576
Frame rate 25 fps

Data rate 10000 kbps
Total bit rate | 10256 kbps

Table 1: Video specifications of the transects

Figure 2: Snapshots of the environment at different times

presence of Noisy objects in the form of wires of the recording device, hand movement of the
diver and also the embedded texts on the top half of the video. Two separate approaches,
feature fusion and probabilistic clustering are used to detect eelgrass and will be discussed
in details. To extract embedded information (location, timestamp, depth, date) from the
video transects, a neural network has been used which gives a 98% accuracy on the text
recognition and this will not be discussed in details.

2.8. Feature fusion approach for eelgrass detection

2.3.1. Core idea of edge detection

An important physical feature about eelgrass is sharp edges. Our algorithm is based on
finding sharp edges or edge detection algorithms (as more commonly known in the domain
of computer vision). An edge point is defined as the region in the image, where there is a
significant gradient change(from white to black or vice versa). Then a contour of similar
connected edge points with similar gradient change constitutes a line. The algorithm finds
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all these connected regions as lines, which may vary in length. We have used a linear time
Line Segment detector (LSD) giving sub-pixel accurate results [38]. This algorithm works
on gray scale video frames by detecting number of edges of varying lengths in the video
frames.

2.3.2. Why this works for eelgrass detection?

On a video frame with eelgrass, the algorithm should detect lot of edges and in return
give more number of lines compared to a frame with no eelgrass, where we should ideally
get very less number of lines (as the flat sea bed has no objects with sharp edges apart from
eelgrass). Two quantities can be computed using this information: Number of lines and Total
length of lines from each video frames. This also implies that the total length of the lines
(cumulative sum of all the line length) in each frame with presence of eelgrass will be more
than frames with no eelgrass.

Nl -

(a) Rawframe wih Eel-grass
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(d) LSD algorithm applied to.

(c) Raw frame withoutklrEeI—grass

no Eel-grass frame

Figure 3: Effect of LSD algorithm on two different scenarios

We can choose to work with either of these features and define a suitable threshold. For
a random video frame, if we consider Total length of lines as a feature of importance, then
if the measured quantity is less than threshold, it is labelled as absence of eelgrass. It is
labelled as presence of eelgrass if the quantity is more than the threshold. From figure
we can see that counting the Number of lines or Total length of lines, we can find a suitable
decision boundary /threshold using visual inspection on frames with presence of eelgrass from
absence of eelgrass.



2.3.3. Efficient filtering of the temporal data

In Fig [, we have used one of the video transect, where we have shown the temporal
data of Number of lines recorded as the diver navigates. We can see lot of fluctuations or
spikes. These spikes are due to noisy objects, such as camera wires, hand movement of
the diver in front of the camera, etc. Any filtering techniques require a choice of window
size over which smoothing operation takes place. Instead of finding how many data points
constitutes the window size, we found a way to map the window size to physical distance
on the ground. To do this, we found the median distance between unique locations in each

Histogram Unsmoothed time domain information profile
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Figure 4: Summary of a video transect based on Number of lines(feature 1). Top left shows the histogram,
Top right shows the raw time profile. Bottom shows the smoothed version of the time profile.

transects. For the 14 video transects, they have four unique median values as 0.2m (3
transects), 0.3m (7 transects), 0.4m (3 transects) and 0.435m (1 transect). We have used
a physical distance of 7.5 meters on ground as the size of window, due to which the 17-35
data points are used in the filtering algorithm as window size. For eg. for a given transect
if the median distance between successive unique location is 0.2m, then to cover a physical
distance of 7.5m, window size is 37 samples. We have used Savitzky-Golay filter [39] with
varying window size of 17-35 data points and polynomial order of 1, as a smoothing function
to remove these noisy fluctuations. A threshold was chosen by visual inspection which best
classified the eelgrass frames from non-eelgrass. This threshold is 260 lines for the video
transect which is illustrated in Fig[d] As can be seen from the smoothed temporal profile, a
small bump (which is actually noise due to the camera going above the surface of the water
and captures non eelgrass objects) is greatly reduced from the unsmoothed temporal profile
by the smoothing operation.



2.3.4. Need for optimal combination of both features

Finding a suitable threshold independently for both the features (Number of lines and
Total length of lines) leads to different outcomes. On closer inspection of those video frames,
where the outcome from the independent features does not match, we found that there are
no clear pattern. We manually checked the video transects for most of the locations of
mismatched predicted frames (226 out 18727 unique location) and found out that number
of lines (feature 1) is performing slightly better than total length of the lines (feature 2),
although there was no clear indication of which feature works better. Each of them has it’s
own characteristics. From our analysis we found that Feature 2 ( Total length of lines) is more
sensitive to noise, but gives better prediction in eelgrass zones. Feature 1 (Number of lines)
has a tendency to underestimate (as perceived from visual inspection), but more robust in
noisy environment. Although these two features are correlated, as they are measured from
the same quantity (detected lines), but they also carry different information in predicting
presence/absence status of frames.

2.3.5. Optimal combination strategy

In our method, we will be using both these features(Number of lines and Total length
of lines) and derive an optimal combination strategy to predict presence/absence status
of each frames. To do this, first the optimal threshold is found for the feature Number of
lines by visual inspection that gives the best prediction for all the video transects, which
is 260. Since this falls in the purview of unsupervised machine learning problem (since the
label: presence/absence of each frames are not known beforehand), the only evaluation of
the results is by visual inspection. Visual inspection is specially important in the regions
where there is a transition from present to absent or vice versa. Those regions were carefully
analysed to fine tune the threshold. Then prediction using the feature Total length of lines is
found for different threshold varying from 4000 to 7000. The optimal value of the threshold
of Total length of lines is chosen as 6300, as it gives the maximum match with the threshold
of Number of lines as 260. Using these two thresholds, we formulate a combination strategy
of the form:

Present ifA-JL 4 (1)) LEL >

where N.L : Number of Lines

Absent ifA- Sk 4 (1 - 2) - Lok <1

where T.L.L : Total length of Lines

Status =

To find the optimal value of A , we vary it from A = O(using just Total length of lines) to
A = 1(using just number of lines) at an interval of 0.02. This gives different weightage to
the features and our job is to find out this optimal weightage in a heuristic way, which shall
reflect the relative importance of each feature when making prediction, thus giving it more
flexibility on noisy environments. A confusion matrix (a small subset shown in Table
is formed in which contains the number of predicted mismatched frames between different
value of A. The idea is to find a region of lowest value of mismatched predicted frames
as well as low change of this value when A is perturbed. As the golden standards of the
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=|.52|.54|.56 | .58 | .6 | .62 | .64 | .66 | .68 | .7
521 0 2 5 12 120 | 26 | 28 | 35 | 40 | 47
.54 0 3 10 | 18] 24 | 26 | 33 | 38 | 45
.56 0 7 |15 21 | 23 | 30 | 35 |42
.58 0O | 8|14 | 16 | 23 | 28 | 35
.6 0| 6 8 15 | 20 | 27
.62 0 2 9 | 14 | 21
.64 0 7 ] 12 119
.66 0 5 |12
.68 0|7
7 0

Table 2: Variation in number mismatched predicted frames with A\. These are the number of frames out of
a total 18727 frames where the predictions mismatch. The diagonals are zero as comparing the same value
of A\ with each other will always give a perfect match.

predicted frames are not available, this is solely based on the fact that small changes will
be the expected consequence of an optimal A. This give a neighbourhood of optimal value
in the function space as the gradient tends to be very small.

We found two such regions from Table [2 as A = 0.52 and 0.62. On manual investigation
of the disagreed prediction status among these two possible values, A = 0.62 performed
better than A = 0.52 and thus chosen as the optimal value. A = 0.62 also performed way
better when compared to A = 0 and with A = 1, the performance was slightly better. This
way of choosing the optimal A is independent from domain expert’s label information.

2.4. Probabilistic clustering approach for eelgrass detection

2.4.1. Gaussian Mixture Model

GMM is one of the most powerful and popular technique for unsupervised learning task.
It is widely used in clustering of data [40] and has found use in many applications like Com-
puter vision [41], signal processing [42], biometrics [43], natural language processing [44], bio-
informatics [45] among many other field. The goal of the Gaussian mixture-model (GMM) is
to derive a distribution for an M-dimensional vector x € RM which we will write as p(z). We
wish this distribution to be potentially very flexible and a common strategy for obtaining
this in a tractable manner is to make p(z) be a combination of more simpler and tractable
elements. These tractable elements are multivariate normal densities. A normal distribution
is defined as the density:

1 2 /o 2
N(z|p, 0%) = ——e @H) /20
(|, o) e

where p1 € RM is the mean and o is M x M covariance matrix. M = 2 in our case as we have
two features. In GMM, we use normal distribution as a building block of more complicated



distribution: 4

Z K

plx) = plx,2) =Y plx|2)p(z) =Y mN (x|, Sr)
z=1 z=1 k=1

where z is the number of cluster as defined by the user. The above equation shows that the

density of the data can be expressed as weighted sum of many normal distributions. GMM

works by maximising the log-likelihood of the data, given by:

N N K
L(m,p, %) =log p(X|p, T, m) = > logp(ailp, S, 7) = > log[ D N (il Sr)]
i=1 i=1 k=1

In this case Z = 2 as we want to cluster the data in to 2 cluster, one where eelgrass is
present and the other where eelgrass is absent. The goal is to solve for the above optimisation
problem and estimate the three parameters namely p (mean), ¥ (covariance) and 7, (weight
of each cluster).To solve the above optimisation of the log-likelihood, a popular method
known as EM (Expectation maximisation) is used [46]. After the algorithm has converged
successfully, we can substitute the three estimated parameters back in the previous equation
to get the probability of each data point belonging to certain cluster. This kind of clustering
is also known as soft clustering due to the probabilistic nature of assigning clusters. In
comparison to hard clustering methods like K-means and hierarchical clustering algorithms
where the assignment of a data point to a cluster is binary and not probabilistic, GMM
provides more flexibility in the way data points are assigned to clusters.

2.4.2. Felgrass detection using GMM

We have 18727 data points(unique locations), each measuring two features from the 14
video transects. First, the data is filtered suitably using the same filtering technique as
discussed in section [2.3.3] We apply GMM to cluster the data in 2 clusters. The mean and
the covariance is found and is shown in Figure[5] Each point in Figure [j]is a unique location
from the video transects. It can be seen that the model has captured the elongated spread
of the data. The two clusters are not well separated. Any data point in the scatter plot,
whose probability of being in cluster 1 is greater than being in cluster 0, will be labelled as
eelgrass present and probability of being in cluster 1 is less than being in cluster 0, will be
labelled as eelgrass absent. This effectively corresponds to a decision boundary where the
probability of eelgrass present is equal to probability of eelgrass absent which is equal to

50%.

3. Results

3.1. Comparison of feature fusion and probabilistic clustering approaches

Figure [6] shows the contours of different decision boundaries from the two different ap-
proaches on a scatter plot. Three linear decision boundaries (corresponding to the feature
fusion approach) and one non-linear decision boundary (corresponding to GMM) can be
seen. It is interesting to see that the decision boundaries from both these approaches are
not so far away from each other.

10



20000

15000

10000

5000

Figure 5: Two clusters are estimated using GMM in a scatter plot. The x-axis corresponds to Number of lines
and y-axis corresponds to Total length of lines. The red cluster (cluster 1) corresponds to region of eelgrass
and blue cluster (cluster 0) corresponds to region of no eelgrass. Corresponding mean and co-variances are
also drawn for each clusters.

The GMM has slightly lower threshold (using the 50% cut point) than the combination
strategy due to which it will tend to over-estimate some data points as eelgrass which the
other method classifies as non-eelgrass. It can also be seen that comparing the threshold
from individual features (Number of lines and Total length of lines) and the combination,
angular trend of the scatter plot is followed by the combination decision boundary. It has
already been discussed that A = 0.62 also performed better when compared to A = 0 and
with A\ = 1 by visually inspecting the video frames whose prediction does not match with
each other.

3.2. Comparison with Expert’s estimation

We have the diver’s evaluation from the above area of study from the SeaStatus Project
as ground truth to compare the performance of our method. The diver’s estimation is given
in the form of percentage coverage of eelgrass from a start point to an end point. The
presence/absence status of all unique location falling inside the range of a given area (from
diver’s estimation) were found and the number of Present and Absent frames were found.
We give the algorithm’s output as the ratio of Present frames to the total frames detected
inside a given start point and end point as given by the diver. It can also be thought of as
a proxy to percentage coverage. In Table [3| we have given a comparison of the algorithm’s
output for three different A. A = 0 corresponds to prediction using just Total length of Lines
and A = 1 corresponds to prediction using just Number of Lines.
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Decision boundary comparison of Gaussian Mixture Model and combination method
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Figure 6: Comparison of decision boundaries between GMM and feature fusion method. The red curve
corresponds to GMM decision boundary. Data point located on the left of the boundary is classified as
eelgrass absent.

It is divided in to two sections to divide between observations which match and does not
match with the expert’s estimation. It can be seen that in the top part of the table,
the algorithm’s prediction in terms of coverage matches decently well with the expert’s
estimation(which is given as a percentage coverage). It is interesting to observe that the
ratio of Present frames to total frames in a particular region can also be used as a proxy
for the coverage. All the area where the expert have estimated as either very less (0 — 20%)
or very high (80% — 100%), both the approaches, feature fusion and GMM predicts similar
estimates which shows that both the methods perform very well in dense and sparse region
of eelgrass. In less dense regions, the performance varies. The second row of the table has
the expert’s estimate as 50% coverage, which the feature fusion also validates as 12 Present
frames out of total 21 frames (12/21 = 57.1%) whereas the GMM estimates it to be 85%.
Similar close comparison can also be seen from other rows as well in the top part of the
table, except for the last observation in which the feature fusion is under-estimating the
coverage compared to GMM. X equal to 0.62 has a slight better performance than using just
either one of the features (A = 1 and A = 0). This is also intuitive from Figure [6| the GMM
over-estimate than the feature fusion due to lower threshold.
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H North(start) East(start) North(end) FEast(end) Expert A=0 A=062 A=1 GMM H
5542.649 1206.088 5542.656 1206.060 0% 0% 0% 0% 0%
5542.654 1206.006 5542.650 1205.985 50% 57.1% 57.1% 52.38% 85.7%
5542.649 1205.979 5542.645 1205.968 90% 100% 91.6% 75% 100%
5542.615 1205.932 5542.599 1205.916 0% 0% 0% 0% 0%
5541.713 1202.014 5541.729 1201.991 0% 0% 0% 0% 0%
5542.453 1200.592 5542.458 1200.598 95% 100% 100% 97.82% 100%
5542.440 1200.575 5542.445 1200.581 80% 100% 100% 100% 100%
5542.445 1200.581 5542.453 1200.592 5% 100% 100% 93.93% 100%
5542.42 1200.563 5542.428 1200.571 90% 59.45% 48% 55.4% 7%
5542.640 1205.959 5542.635 1205.954 0% 100% 100% 98.14% 100%
5542.393 1200.522 5542.398 1200.528 50% 0% 0% 0% 0%
5542.398 1200.528 5542.404 1200.537 70% 0% 0% 0% 0%

Table 3: Comparison with expert’s estimation. First two columns are the coordinates of starting point,
next two columns are the coordinates of the ending point. Next is the expert’s prediction of coverage in
percentage. The last four columns represent the ratio of number of PRESENT frames to Total frames in
that region for different values of A and GMM.

3.3. Region where algorithm’s prediction and expert’s estimation does not match

The bottom part of the table seem to have a complete mismatch of the prediction from
the expert’s estimation of the coverage of eelgrass. For further investigation, the video
transects were inspected manually in the location/region of mismatch and some snapshots
are shown in Figure[7] Figure[7ja) and (b) are two selected frames from the region, where
the expert has estimated it as 0% coverage and our algorithm found it as a region of high
percentage of present frames of eelgrass. In this case, both of the algorithms are correct.
Figure [7(c) and (d) corresponds to the region where the expert estimated it as 50% coverage
of eelgrass, whereas the algorithm found it to be devoid of any eelgrass (0%), which is also
quite evident looking at Figure [7] Consulting with the domain expert, it was mutually
concluded that the first case(Figure [fj(a) and (b)) is not the correct estimation from the
expert’s end. It is possible for an expert to make few rare mistakes while labelling hundreds
of hours of such videos. For the second case (Figure [7[c) and (d)), it is possible that there
are some patches of eelgrass on the sides not captured on the video which is visible to the
diver. The diver has more information about the environment, which is one of the reason
why some prediction from the algorithm did not match the expert labels. It is possible,
looking at Figure (d) that an eelgrass patch is covered with a layer of organic matter due
to which the sharp edges of eelgrass is not detected through the camera. This is the only
limitation as this method predicts the status based on the sharp edges it detect.

4. Discussion

4.1. Previous studies and necessity of automation
There exist many methods of collecting ground truth of eelgrass coverage. These include
but not limited to videos, scuba diver, grab, aerial image, buoy and vegetation sampler.
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Figure 7: Snapshots of frames where expert’s estimation of coverage mismatch with algorithm prediction.(a)
and (b) are the snapshot of the regions from the first row of the bottom part of Table (c) and (d) are
the snapshot of regions from the second row of the bottom part of Table

[23] showed that underwater video and scuba diver are the most popular choice of collecting
ground truth. Many previous studies that has used underwater videos and scuba diver for
ground truth estimation of seagrass has been done manually by a domain expert. We did
not find many papers where the ground truth estimation process has been automated except
[47] and [29]. Seagrass can be broadly classified into 5 families with each one of them with
their own species. Some of the popular species of seagrass that has been studied extensively
are P.oceania, and Z.marina(eelgrass). [48] has used remotely operated vehicle(ROV) as
ground truth to map Z.marina. [49],[50] has used scuba as ground truth for Z.marina.

b1, [52], [B3l, [B4], [53], [56], [57], [58], has used video transects as ground truth to map
Z.marina. [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], has used either

scuba or videos as ground truth to map P.oceania. [71], has used scuba as ground truth to
map H.verticillata. [72], [73], [74], has used videos as ground truth to map P.sinuosa and
P.australis. [75] has used video and ROV as ground truth to map P.oceania. [76], [77], has
used scuba as ground truth to map Z.caulescence. [(8] have used AUV videos as ground
truth to map A.antartica. In all these different approaches of collecting and assessing ground
truth, it still remain a manual task requiring a domain expert. Moreover, these studies have
been carried out at different parts of the world with different domain experts and there
are no information available about the comparison and evaluation between different domain
expert’s estimation. Thus there exists a need to efficiently carry out the ground truthing
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process not only with respect to time, but also to provide a common framework which
quantifies the idea of presence of eelgrass. This paper attempts to address both the above
issues.

4.2. Prior assumptions

These methods have few assumptions. One of them is that there are no other kind of
benthic vegetation in this area of study (Roskilde fjord, Denmark) apart from eelgrass, after
confirming with the marine biologists. So any lines detected from the algorithm is assumed
to be a proxy for eelgrass disregarding the artefacts. The path taken by the diver to record
the transects will not affect the precision of the algorithm’s output. In this case, the diver
started off from the shore in a straight path until he encountered a dense patch of eelgrass.
Then he moved along the boundary of the eelgrass patch due to which we encountered many
video frames where there is a dense region of eelgrass covering half of a given video frame
and no eelgrass in the other half of the same video frame. The threshold of the algorithm was
tuned to label these regions as eelgrass present. It is important for the recording device to
be maintained at a distance of 1 to 2 meter above the seabed ideally for the current setting
of parameters of the model to work in other regions. For distance more that 2 meters from
the ground, the parameter estimates of the model needs to be recomputed along with a
new decision boundary. If the recording device is held quite high from the seabed, then
eelgrass will appear smaller and consequently less number of lines will be detected, which
will affect the choice of the threshold. This methodology can be extended to detect any
other vegetation (both marine and land) whose physical characteristics include sharp edges.

4.3. Interpretation of GMM decision boundary

We presented two methods to detect the status (Present/Absent) of eelgrass from under
water video transects and extended this further to estimate the percentage coverage in a
given area. The feature fusion strategy requires the threshold of number of lines be chosen
by visual inspection. The probabilistic clustering approach use GMM to cluster the data into
two regions, thereby bypassing any human intervention during the process. The threshold of
the GMM is defined as the contour where the probability of a data point belonging to either
clusters have a specific value which could be 50% each. This value can be changed to favour
a certain cluster. For e.g, in a study where it is more important to assess dense eelgrass
regions in a region of dominant empty patches, the threshold could be set by contour where
probability of a data point belonging to Present cluster is 40% and Absent cluster is 60%.
This gives more weight to cluster of Present by including more data points in this cluster
due to lower threshold of the probability. This situation corresponds to the case where
finding any speck/patch of eelgrass is absolutely necessary, even at the cost of labelling
some non-eelgrass region as Present.

Setting this threshold for GMM is a way to add bias in the model as we prefer one cluster
over another. While the GMM method is tractable in the sense that it offers a framework
where a single value (the probability used to separate the clusters) need to be set, it is
also a method where the validity of this probability is harder to justify. When setting a
Present / Absent threshold, one may relate to the data and the likelihood that a specific
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threshold results in a sensible definition of Present, through information (visual and other)
from the data. The GMM model gives a different opportunity to verify the validity of the
parameter setting by comparing with the threshold obtained from the other method. This
can give insights on the meaning of Present (found from visual inspection) to a probabilistic
notion. It also give a choice to the researchers according to the varied scope of their study. It
is interesting to see from Figure [0}, the threshold chosen by visual inspection for the feature
(number of lines=260) is slightly higher than GMM decision boundary (probability of a
data point belonging to either clusters are equal i.e. 50% each). From our experiment, we
found that in order to match the coverage estimation with feature fusion method, the GMM
decision boundary should be set as 95% probability of each frame to be in Present cluster
and 5% of being in Absent cluster. This also illustrates our own inherent bias towards Absent
cluster. While choosing the threshold of number of lines, a data point (video frame) will be
labelled as Present only when it is quite certain, even at the cost of some doubtful Present
frames being put into Absent cluster.

4.4. Application of Line segment detection in other domains

We used a Line detection algorithm to extract relevant features. Line based features
are useful in many applications. There are different ways of detecting line features, the
most popular being using the Hough transform. They have been particularly useful in
precision agriculture [79], [80], [81],[82] in detecting crop lines and weed edges using the
Hough Transform and its variations such as the Randomized Hough Transform. The Hough
Transform is computationally heavy and slow and has seldom been used in real-time system
[32]. The line segment detector used in this paper is relatively fast and can be used on a real
time system. Our method of eelgrass detection will also work with forward facing cameras
mounted on a UAV and ROV, if maintained at a decent height from the sea bottom.

4.5. Effect of Noisy artefacts

The performance of the algorithm is slightly dependent of the noise introduced during the
recording (hand movements, wires and cables from the camera, e.t.c), which to some extent
affected the precision of the method due to falsely detected lines from non-eelgrass objects.
Although filtering eliminates noisy fluctuations to a great extent, still noisy objects will force
the threshold of the features (number of lines and total line length) to be set slightly higher
because more lines detected from artefacts on a Absent region will push the boundary so
that algorithm can classify it as Absent region. We increased the threshold of the feature 1
(number of lines) from 240 initially (which would have been the optimal) to 260 to account
for artefacts in some of the frames. It may explain estimation in one region where the feature
fusion method has lower value of the percentage coverage. This problem can be solved if a
video camera is towed /dragged by a boat without the need for a diver, which shall also be a
less expensive alternative for data collection. The video transects used for this method were
recorded on afternoon with decent lighting conditions. It is therefore hard to predict, how
efficient this method might be if tested on videos recorded under artificial lights in a night
time. Although we believe that if a domain expert can detect presence/absence from such
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videos by distinguishing sharp edges of eelgrass from the background, then the algorithm
would also perform well.

4.6. Limitations

This method will not be useful to distinguish between different vegetation covers, both
having sharp edges. That would require tweaking the line segment detection algorithm
to match the expected length of a single blade of grass and the expected orientation to
distinguish between different sharp edged vegetation. A Gabor filter will be an ideal choice
for feature extraction instead of line segment detection in this case as it captures different
orientation much better. Although our methods are designed to predict present/absent
status looking at each video frames, it can very well be extended to be used as a proxy
for finding eelgrass coverage by computing the ratio of number of present frames to total
number of frames in a given area shown in Table [3| which match well with the domain
expert’s estimation. This has a certain limitation in terms of determining the true density
of the eelgrass patches. For example, consider two region in the estuary. The first region
has medium dense eelgrass uniformly spread through the area with some patch of low dense
region as well. The second region has extremely high density in one half and completely
no eelgrass in the other half. Computing the ratio of number of present frames to total
number of frames will lead to higher estimation of eelgrass in region 1 compared to region
2, as region 1 has more number of frames with present status even though the length of the
eelgrass and the density of eelgrass patch is lower in region 1 than in region 2. The choice
of threshold will determine how dense the patch of eelgrass should be to be labelled present.

Eelgrass cover estimation is a task that carries a certain subjectivity with it. Multiple
experts may have different precise estimation due to different perception and bias. Dense
regions and empty regions are easy to identify (by the expert as well as by the algorithm).
The regions with less dense and thin patches of coverage are the hardest challenge. The
feature fusion method not only gives flexibility to the user/scientist to adjust the threshold
based on the circumstances of the experiment (the way transects are recorded), but also
a common framework to quantify the bias through the value of threshold of the features
combined with visual inspection.

Another limitation of this algorithm is that the whole prediction of eelgrass is based on
what actually is visible in the video. It is like a small window looking in one direction in
the vast 3-dimensional space. The scene not captured by the video camera is not taken
into account while predicting the status of eelgrass presence. In that sense, a diver who
actually recorded the video will see the surrounding environment in more details and has
more information. This problem was encountered in our analysis where we found in some
of the regions, our algorithm is predicted lower values of the coverage compared with the
expert’s estimates. The possible explanation for this could be that the diver see eelgrass in
the sides which is not captured in the videos. One way to get around this problem is to
deploy a set of 3-4 cameras in different directions (forward, left, right and down) and do this
analysis using information obtained from all the videos.
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Figure 8: Short video showing the method detecting eelgrass in real time. Lot of lines can be seen to be
detected due to the high density of eelgrass in the region. Embedded information are also extracted using
a neural network.

5. Future Scope

The present/absent status obtained with this method can be used as a ground truth and
extrapolated on unknown regions of satellite images where no video transects are available.
On a satellite image, the transect location would appear as the few labelled pixels which
would provide information to extrapolate or propagate the label information to other areas.
Semi-supervised learning methods are useful tools to solve this problem and will be the main
part of our future work.

Another interesting problem arises about pseudo labelling of video frames. There are
concerns regarding the accuracy of labelled dataset from [29], which use coarse nature of
polygons to label seagrass regions in a video frame. Ideally the labelled seagrass areas in a
video frame should be represented with thin lines, which resembles the physical structure
of the seagrass more. Therefore, it would be interesting to see if the output of line segment
detection algorithm on raw video frames (Figure [3) could be used as a proxy labels to train
classifiers to detect and estimate coverage of seagrass without the requirement of manual
labelling of video frames. This also opens up many possibilities of using Transfer Learning
methods to use the prior knowledge of the trained model from dataset of [29], retrain on
our dataset and analyse if the prediction get any better than training a model from the
scratch [83],[84]. This methods would allow more data-sets of seagrass to be used to fine
tune models for better predictions in different scenarios. Ensemble methods [85] is another
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Figure 9: Short video showing the method working in real time in a no-eelgrass region. No significant lines
are detected due to which the frames are classified as no-eelgrass locations. Embedded information are also
extracted using a neural network.

interesting approach in which, instead of using the best classifier among many, it would be
more robust to combine all the models in a intelligent way such that it performs better than
the prediction of the best individual model.

Another major part of our future ongoing work is moving from presence/absence mod-
elling towards robust quantification of seagrass. Instead of just using the frequency of present
frames in a given area as a proxy for coverage estimation, we are looking into different prob-
abilistic methods to get a better estimate of coverage which can overcome the limitation
discussed before.

6. Conclusion

Here we presented two methods which detect eelgrass from underwater video transects.
We showed how our methods are robust to noise introduced during the recording of the
transects and how these methods can be extended nicely to be used as a proxy to find
the percentage coverage in a given area which matches very well with a domain expert’s
estimation of coverage. A big advantage of our methods is that, it reduces the cost and
complexity of conducting this kind of study anywhere as it does not require labelled video
frames to predict eelgrass regions. It also saves lot of person-hours for an expert to visually
inspect and assess many hours of videos to estimate the status of presence/absence. Eelgrass

19



detection is a subjective task that requires an expert judgement and the proposed methods
reduces that by objective quantification of eelgrass presence through a threshold. Experts
also make rare mistakes with this kind tedious task, which we also encountered during our
analysis and we showed how our methods detected and rectified the errors from domain
expert, which make these methods a robust tool free from human errors. Two demo videos
showing the algorithm in action are available and accompanies the electronic version of this
manuscript. Simply click on the [§]for a case where eelgrass is present. [J] corresponds to
the case with no eelgrass.
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