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Abstract We present a matheuristic, an integer programming based heuristic, for the Liner Shipping
Network Design Problem. The liner Shipping Network Design Problem is to find a set of container shipping
routes defining a capacitated network on which a set of demands can be transported. The cargo transports
make extensive use of transshipments between services. The services have weekly frequency. The weekly
frequency is an industry standard as liner shipping companies publish a set of scheduled services to their
customers. The heuristic applies a greedy construction heuristic, where the liner shipping network is split
into routes solving a multiple quadratic knapsack problem. The construction heuristic is combined with
an improvement heuristic with a neighborhood defined as a mixed integer program. The mixed integer
program optimizes the removal and insertion of several port calls on a liner shipping service. The objective
function is based on evaluation functions for revenue and transshipment of cargo along with in/decrease of
vessel- and operational cost for the current solution. The evaluation functions may be used by heuristics in
general to evaluate changes to a network design without solving the underlying large scale multicommodity
flow problem. Computational results are reported for the benchmark suite LINER-LIB 2012 and are the
first results reported for a strict weekly frequency. The heuristic minimizes the operational cost and
computational results are able to find profitable transportation networks for four out of six cases (12/18
instances). The heuristic shows overall good performance and is able to find profitable solutions within a
very competitive execution time. The matheuristic is also evaluated as a decision support tool, where the
initial solution is an existing network and optimization is allowed for a subset of the services considering
the flow in the entire network. Results are promising for this approach.

Keywords: liner shipping, matheuristic, mathematical programming, network design
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113 5.1. Introduction

ROUTES SERVICES

West Coast of North America - Asia 68
East Coast of North America - Asia 22
North America - Northern Europe 17
North America - Mediterranean 20
Asia - North Europe 35
Asia - Mediterranean 40
North America - East Coast of South America 8
North America - West Coast of South America 16
North America - North Coast of South America 26
Europe - East Coast of South America 10
Europe - West Coast of South America 8
Europe - North Coast of South America 10
Asia - East Coast of South America 8
Asia - West Coast of South America 13
South Africa - Europe 5
South Africa - North America 2
South Africa - Asia 19
West Africa - Europe 37
West Africa - North America 3
West Africa - Asia 18

Total 385

Table 5.1: Worldwide services from WSC (2011). Notes: Services may be counted on more than one
route. ”Asia” includes Australia and New Zealand. Source: ComPair Data World Liner Supply Report
Summary, October 1, 2010; Drewry, Container Forecast Q3 2010; Drewry, Container Forecast Q4 2010.

5.1 Introduction

Liner shipping is the mass transit system of the ocean ways with regular scheduled services of
varying capacity between geographical regions. A service is a sequence of port calls sailed by
a number of vessels with a designated capacity. It is common for the industry to call every
port on a service every week, which is achieved by the deployed vessels sailing exactly one week
apart. Liner shipping and containerized transportation of goods over sea is a key component in
todays supply chains. Approximately 400 liner shipping services are operated by a vessel fleet
of close to 6000 container vessels (WSC (2011)). The services are distributed on regional areas
as seen in Table 5.1. The liner shipping industry transports about 60% of the goods measured
by value transported internationally by sea (WSC (2011)). The significance and magnitude of
the liner shipping network makes the network design an important transportation problem. The
network has high fixed asset costs in terms of the container vessels deployed and hence capacity
utilization and network efficiency is crucial to a competitive liner shipping operation. At the
same time maritime transport is accountable for an estimated 2.7% of the worlds CO2 emissions,
whereof 25% is attributable to container ships alone (WSC, 2009). Fuel cost is the largest variable
cost of operating a liner shipping network (Stopford, 2009). Performing optimization on the
liner shipping network can have a huge impact on the trade of liner shipping as maximizing the
revenue while considering variable operational cost may ensure a better capacity utilization in the
network. Improved capacity utilization will increase profit for liner shipping companies, and give
competitive freight rates for global goods. In due time optimization may target reducing the speed
of the container fleet to decrease the CO2 emissions from liner shipping in general as seen in the
case of tramp shipping (Fagerholt et al., 2009).
The liner shipping network design problem (LSNDP) is to construct a set of non-simple cyclic

services to form a capacitated network for the transport of containerized cargo. The network design
maximises the revenue of container transport considering the cost of vessels deployed to services,
overall fuel consumption, port call costs and cargo handling costs. Literature on the LSNDP is

1Conference paper published in proceedings of LOGMS 2012 (2012)
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quite scarce (Brouer et al., 2012) compared to related maritime shipping transportation problems,
but a surge in publications over recent years show increased interest in the LSNDP. The works of
Agarwal and Ergun (2008); Alvarez (2009); Reinhardt and Pisinger (2011); Plum (2010); Brouer
et al. (2012) reveal that the liner shipping network design problem is a very complex optimization
problem, where current mathematical formulations and state-of-the-art exact solution methods
cannot scale to realistic sized problem instances at the time of writing. One heuristic approach
has been applied to large scale instances in (Alvarez, 2009; Brouer et al., 2012). A core concept
in liner shipping is the transshipment of containers. More than 50% of cargoes are transported
on more than one service from origin to destination. This means that we can model the LSNDP
with an underlying multicommodity flow problem (MCF). Alvarez (2009) identifies the excessive
time used for solving the MCF to evaluate a given network configuration as a bottleneck in local
search methods. As a result, within reasonable computation time the tabu search by Brouer et al.
(2012) only performs a limited search of the solution space of large scale instances.

In this paper, we present a matheuristic for solving the LSNDP. Matheuristics are an emerging
field within optimization and are defined as methods exploiting the synergies of mathematical
programming and metaheuristics (Maniezzo et al., 2009). The domain is wide and includes the use
of mathematical programming techniques in a heuristic variant as well as deploying mathematical
programming methods within a metaheuristic framework (Maniezzo et al., 2009). In the present
paper we use mathematical programming to explore our neighborhood defined as the solution space
of a mixed integer program designed to capture the complex interaction of the cargo allocation
between routes.

One of the first approaches of using this technique was Franceschi et al. (2006) for the Distance-
Constrained Capacitated Vehicle Routing Problem. The method has also been explored for the
Split Delivery Vehicle Routing Problem by Chen et al. (2007), the Split Delivery Vehicle Routing
Problem with minimum delivery amounts by Gulczynski et al. (2010), by Archetti et al. (2010)
for the The Split Delivery Capacitated Team Orienteering Problem and lately in Gulczynski et al.
(2011) for the Periodic Vehicle Routing Problem. In all cases the matheuristic solution method
combining local search with an integer program as neighborhood has proven very successful com-
pared to other state-of-the-art heuristics.

In the present paper we exploit this technique in a metaheuristic framework for the LSNDP.
We make four main contributions: We present a construction heuristic for the LSNDP by trans-
forming the problem into an instance of the multiple quadratic knapsack problem. Secondly, an
improvement heuristic is applied to the solution of the construction heuristic. The improvement
heuristic is a large neighborhood search defined as a mixed integer program inserting and removing
port calls from a single service. Thirdly, the heuristic makes use of estimation functions for the
change in a large MCF, in order to avoid the bottleneck of solving a large scale MCF. Once moves
are applied to a service the neighborhood of subsequent services is based on an optimal solution of
the MCF in order to decrease the error of the evaluation functions. The MCF is resolved using an
advanced warm start basis and column generation, decreasing solution times significantly. Lastly,
we present computational results using the matheuristic to solve instances of the benchmark suite
LINER-LIB 2012. The results are the first results for the benchmark suite enforcing a strict weekly
frequency for all services. The implementation is quite fast in solving the instances and is able to
improve the constructed initial solution with 60-400% yielding profitable networks for tvelwe out
of eighteen solved instances. Additionally a single test case has been constructed to evaluate the
matheuristic as a decision support tool, where the initial solution is an existing network and we
allow optimization of a subset of the services considering the flow in the entire network. Results
are promising for this approach.

The outline of the paper is as follows. In Section 5.2 we review the literature on liner shipping
network design. Section 5.3 describes the individual components of our matheuristic. Section
5.4 presents the design of the complete algorithm for the matheuristic. Section 4.5 presents
computational results for the matheuristic for LSNDP using the benchmark suite LINER-LIB
2012 followed by a brief conclusion and perspectives for future work.
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5.2 Literature on the LSNDP

Brouer et al. (2012) give an introduction to the LSNDP focusing on mathematical modelling of
the business domain and the introduction of a benchmark suite of LSNDP problems.
Christiansen et al. (2004) review the field of operations research within shipping in general

and a good introduction to the LSNDP may be found in Christiansen et al. (2007). Recently,
Kjeldsen (2011) published a classification scheme for routing and scheduling problems within liner
shipping reviewing and classifying 24 references. The LSNDP was initially studied by Rana and
Vickson (1991) as a Mixed Integer Program (MIP) for a multiple container-ship problem without
transshipment and where vessels return to the origin node empty. Benders decomposition principle
divides the MIP into an integer network subproblem (INS) and a cargo allocation problem (CAS).
Results are reported for 10-20 ports and three vessels.
In recent literature several variants of the LSNDP have been presented. Fagerholt (2004) devel-

oped a model and solution method for a regional carrier along the Norwegian coast. The model
assumes the carrier loads at a single port and finds optimal routes of vessels to service the unload-
ing facilities. The problem may be dealt with as a VRP problem, given that a designated depot is
known and transhipments are not allowed. The solution method is based on complete enumeration
solved by a MIP solver. Similarly, Karlaftis et al. (2009) solved a problem for the region of the
Aegean sea using a genetic algorithm. These models do not deal with the important concept of
transhipments at multiple ports and the resulting interaction between different services.
The simultaneous ship scheduling and cargo routing problem (SSSCR) by Agarwal and Ergun

(2008) is based on a time-space network with each port represented on 7 consecutive weekdays.
This construction allows non-simple cycles with multiple visits to a port on different weekdays.
Computational results were reported for three different heuristics exploiting the separability of
solving the route generation problem and the MCF: a greedy cycle-generation heuristic, a column
generation based heuristic and a two-phase Benders decomposition algorithm. Results are reported
for 6, 10, 15 and 20 ports with up to 100 ships and 114 demands. The Benders decomposition
algorithm is the best performing heuristic of the three, but no optimality gap can be reported for
the solutions found as a standard branch-and-bound procedure is invoked for both the Benders,
and the column generation algorithm without a complete set of routings. An important limitation
of the SSSCR is that it allows transshipments at no cost.
Reinhardt and Pisinger (2011) presented the LSNDP for a multiple container ship problem with

separate routings for each vessel accounting for transshipment costs between routes. The model
allows pseudo-simple cycles, where multiple visits are allowed to one port on a service. A branch-
and-cut algorithm is applied to the problem and computational results are reported for 15 ports
and up to 6 vessels. Instances of up to 10 ports using 3 vessels are solved to optimality, but the
solutions for the larger test instances have a gap of up to 25%.
Alvarez (2009) presented the joint routing and fleet deployment model for the LSNDP. The

model accounts for transshipment costs and the option of laying up or forward leasing vessels not
in use. The model is separable into a service generating problem and a MCF. A service consists
of a port call sequence, a number of vessels deployed and an average sailing speed. The overall
objective is to maximise the revenue of cargo transported, while considering operational cost of
the fleet-, fuel-, transshipment-, and port call-cost. The model is the first to incorporate routings
with different speeds in order to optimize on the fuel consumption in the network. Exact solutions
are obtained for a six port instance using a MIP solver. Alvarez (2009) describes a tabu search
heuristic to solve the problem which is applied to a 120 port instance with a full demand matrix.
Recently, Meng and Wang (2011) presented a mixed integer programming model with the objec-

tives to select among a set of predefined candidate shipping routes, and to select ship deployment
to the chosen routes while considering the cargo allocation of full and empty containers regard-
ing the weekly frequency constraint. The model aims at providing decision support on existing
routes as well as user-defined candidate routes by minimizing the fixed cost of deployment and
the variable costs associated with full and empty containers. The model is solved using CPLEX
and numerical results are presented for 60 candidate shipping lines, eight vessel types and 600
commodities.
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Brouer et al. (2012) presents a reference model for the LSNDP similar to the model of Alvarez
(2009) accounting correctly for transshipments on butterfly routes. A heuristic column generator
generating routes using a MIP is used to solve the benchmark suite LINER-LIB 2012. The largest
instance solved contains 111 ports and 4000 demands.
In light of the literature published on the LSNDP exact solution methods are presently not

able to solve large scale instances to optimality. Heuristic methods published are often based on
route generation in a branch-and-bound framework with the exception of Alvarez (2009); Brouer
et al. (2012), where the overall framework is a local search with route generation as the underlying
method for producing a new candidate solution. The present paper aims at improving an existing
solution by modifying the current services with insertion and removals of port calls using a multiple
quadratic knapsack problem to create an initial solution and a simple method for generating new
services to diversify the search. To the best of our knowledge, it is the first heuristic presented
for LSNDP using a mixed integer program to define the neighborhood of insertions and removals.
The literature identifies a bottleneck in evaluating a candidate solution by solving a large scale
arc flow formulation of the MCF using a MIP solver. To increase performance of evaluation we
apply a novel method exploiting a warm started delayed column generation algorithm on a path
flow formulation of the MCF to evaluate a candidate solution.

5.3 A matheuristic for the liner shipping network design
problem

An instance of the liner shipping network design problem consists of:� A set of ports P .� A set of demands K, where each demand has an origin, Ok ∈ P , and a destination, Dk ∈ P .� A set of vessel classes A and a quantity of each vessel class Na. Each vessel v belongs to a
given vessel class a specifying its capacity Ca, minimum and maximum speed limits, bunker
consumption per nautical mile and a weekly sailing distanceW a

d . The weekly sailing distance
is based on the design speed of the vessel, where fuel consumption is optimized.� A distance table of the direct distance dpq between all pairs of ports p, q ∈ P .

A solution to the liner shipping network design problem is a set of services S. A service is a
cyclic route visiting a set of ports P ′ ⊆ P . The service may be non-simple. The rotation time is
the time needed to complete the cyclic route including a day for each port call en route for cargo
handling. Depending on the vessel class a a minimum (T a

min) and maximum (T a
max) rotation time

in weeks may be defined. It is common in liner shipping to offer a regular service with a weekly
frequency. The weekly frequency of port calls is obtained by deploying multiple vessels to a service
sailing one week apart. Let na

s be the number of vessels of vessel class a ∈ A deployed to service
s ∈ S to maintain a weekly frequency. A service carries a set of demands ks ⊆ K either by serving
both Ok and Dk or by serving either Ok or Dk and a designated transshipment port Gk valid for
transshipping demand k ∈ K.

5.3.1 Mathematical model

A reference model for the LSNDP is provided in Brouer et al. (2012). The variables of this
model are rotations defining a service with a vessel class a, the number of vessels deployed and a
speed. The rotations generated by the heuristic column generator in Brouer et al. (2012) have a
frequency corresponding to the number of vessels, the speed and the distance travelled allowing for
(bi)weekly frequencies for vessel classes below 1200 FFE and weekly frequencies for all remaining
vessel classes. Additionally this (bi)weekly frequency has a span of 5-7 days frequency for weekly
frequency and 10-14 days for bi-weekly frequency. In the work on the LSNDP the question of
weekly frequency is disputed as one research trend is towards a planning horizon introducing some
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flexibility on the frequency as in Alvarez (2009); Brouer et al. (2012); Reinhardt and Pisinger
(2011) whereas Agarwal and Ergun (2008); Plum (2010) enforce strict weekly frequency. In the
present paper we focus on a strict weekly frequency for all vessel classes, which gives a more
restricted solution space than in the heuristic presented in Brouer et al. (2012). However, the only
difference is in the solution space of the rotations and we adhere to the objective function and the
constraints of the reference model. The objective accounts for the daily running cost of vessels
deployed, the fuel consumption, canal costs and port call cost. A revenue is obtained for the cargo
transported and a penalty is incurred for cargo not transported. Finally, a cargo handling costs
for loading, unloading and transshipments is charged. Note that we are solving a minimization
problem, which means that a negative objective value represents a profit.

5.3.2 Algorithmic overview

The matheuristic creates an initial solution using a greedy construction heuristic. The construction
heuristic returns a set of services, S, that are iteratively improved using a MIP for each service
to indicate a set of port insertions and removal of each individual service. The MIP returns a set
of moves and the resulting candidate solution is evaluated using a warm started delayed column
generation algorithm and a simulated annealing scheme decides whether the candidate is accepted.
This phase of the heuristic fine tunes a given solution. The composition of the set of services is
important in a high quality solution and we subsequently apply a local search on the composition
of the set of services S. Note that the reference model is defined as a minimization problem and
a negative objective value is a profitable network. An algorithmic overview is illustrated in figure
5.1.

5.3.3 Generating an initial solution using a greedy construction heuris-
tic

We obtain an initial solution to the LSNDP by constructing a set of services in which we place a set
of predefined port calls in order to transport the demand. The construction heuristic transforms
an instance of the LSNDP into an instance of the multiple quadratic knapsack problem, where a
service corresponds to a knapsack and the items are port calls. It is quadratic in the sense that
profit is obtained by adding port pairs to the services in order to transport demand.
The service set problem is based on a subdivision of the available fleet into a set of services

S constituted by subsets Sa ⊆ S according to vessel classes. It is desirable to have services of
varying duration within an interval [T a

min;T
a
max]. A random integer h ∈ [T a

min;T
a
max] is selected

and a service s with na
s = h of h weeks duration (an h-week rotation requires h vessels) is added

to the set of services S. Set v = Na. After creation of a new service s ∈ Sa, v is updated by
subtracting h from v. This process is repeated until v ≤ T a

max. If v ≥ T a
min the final service is

created with h = v ∈ [T a
min;T

a
max] otherwise we add h vessels to the previously created service s′

possibly exceeding T a
max. If n

a
s′ ≥ 2 ·T a

min we split the service into two services each with na
s = h/2.

After this procedure, a set of services S is defined, a vessel class a and a number of vessels na
s is

assigned to each service s. The subdivision of the fleet into services means that the initial solution
attempts to assign the entire fleet to services.
Next we define a set of port calls to place in the services. Each port can be defined as a main

port or an outport. The initial solution is limited to the creation of simple cycles. A port call
may be placed only once in each service, but in mp services. Outports have mp = 3, whereas main
ports have mp = 10. There is no constraint requiring all port calls placed in the set of services.
The profit of transporting a demand from port i ∈ P to j ∈ P is the revenue rk obtained by

the transport subtracted the loading and unloading cost (cil and ciu respectively) of the container
en route. A demand transported with no transshipments will have net revenue ρOkDk

= (rk −
cOk

l − cDk
u ) for one unit of k. As described in the introduction more than 50% of the demands

are transshipped resulting in a MCF. The multiple quadratic knapsack problem does not consider
this MCF, and in order to model transshipments the demand matrix is transformed such that
each demand is represented by a direct demand and a demand transshipped at a designated
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Figure 5.1: A flow chart of the matheuristic.

transhipment port Gk, where ρOkGk
= (12rk − cOk

l − cGk
u ) and ρGkDk

= (12rk − cGk

l − cDk
u ). This

is a simplifying assumption fixing a single transshipment port for each demand to incorporate
interaction between services in the construction heuristic. The subsequent improvement heuristic
will have no restrictions on transshipment facilities. A port call cost, cap, is associated with a port
call depending on the vessel class and a sailing cost is associated with each port pair, capq.

The construction heuristic is a greedy parallel insertion heuristic. The services are seeded with
a random number l ∈ {1; 3} of ports p ∈ P . The seeding is either by random or by selecting
a port p ∈ P and a transhipment port q ∈ P matched to p. The construction heuristic is
based on parallel insertion by a football teaming principle i.e. the services take turn at choosing
the next port to call. We apply parallel insertion in order to disperse the attractive port call
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combinations throughout the network. A greedy choice of the most revenue generating port call
is made between all feasible port calls with regards to route duration. Feasibility of a given port
call is estimated using best insertion in order to respect the weekly frequency constraint, requiring

the distance of a route Ds ≤ W
a(s)
d (n

a(s)
s − ( |Ps|

7 )), where |Ps| are the number of port calls in

service s, a(s) is the vessel class a ∈ A deployed to service s ∈ S. The number |Ps|
7 accounts for

the accumulated port stay of the service, where 24 hours are used in each port of call effectively
decreasing the time left for actually sailing a round trip. The actual routing with regards to
distance and capacity utilization is improved using a local search based on simulated annealing
and two-opt after assignment of port calls to services by the greedy construction heuristic. The
initial solution may have unplaced port calls and excess vessels for services s, where the distance

of a route allows this (Ds ≤ W
a(s)
d (n

a(s)
s − ( |Ps|

7 ) − 1)). Port calls as well as vessels may be
included in the solution of the subsequent improvement heuristic. Finally, we apply standard
column generation to the MCF of transporting the cargo on the resulting liner shipping network
of the initial solution. The solution of the MCF is used to calculate the estimation function values
of the improvement heuristic.

5.3.4 Improvement heuristic

Given a solution to the LSNDP x′ with services S′ serving demands K ′ ⊆ K we introduce an
integer program to estimate the effect of removing and adding port calls. We define:� P s is the set of nodes in the service s ∈ S′.� Ns ⊂ P \ P s is the set of neighbors of a service s ∈ S′ defined as nodes within a certain

geographical distance of nodes in P s.

We have the variables:� λi = 1 if item i ∈ P s is removed from service s ∈ S′, 0 otherwise.� γi = 1 if item i ∈ Ns is inserted in service s ∈ S′, 0 otherwise.� ωs ∈ Z+ an integer variable indicating the number of vessels service s is expanded with. ωs

can be negative if less vessels are needed after removal of a port call.

We want to make an integer program that removes and inserts port calls in S′, while considering
an estimation of the duration of each service (the fleet deployment) and an estimation of the
alternative flow of demands arising, when we remove/insert several port calls from/to S′. Routing
the cargo is a MCF, but we cannot afford to evaluate the MCF in its entirety and hence we make
some simplifying assumptions about rerouting the flow.

Estimation functions for the distance travelled by each service s ∈ S′

When inserting a port call the estimated distance increase is calculated by use of a best insertion
heuristic. For each service s ∈ S′ we calculate the distance increase ∆s

i for each i ∈ Ns. Likewise
we calculate the decrease of distance Γs

i for every i ∈ P s. For modelling the distance in-/decrease
of insertions/removals we define the following constants and sets:

∆s
i : estimated distance increase for inserting item i in service s ∈ S according to a best insertion
method.

Γs
i : estimated distance decrease for removing item i from service s ∈ S joining its predecessor
with its successor.

Es : set of edges used by the Hamiltonian cycle in service s ∈ S.

D(s) : current distance of the Hamiltonian cycle in service s ∈ S.
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Figure 5.2: The neighborhood consists of a combination of insertion and removal moves

Ma : number of undeployed vessels of class a in the current service set S′.

na
s : number of deployed vessels of class a to service s ∈ S′.

Ca
v : cost of deploying a vessel of type a ∈ A.

Estimation functions for the change in the multicommodity flow

Whenever a MIP is solved for some s ∈ S′ we estimate the effect on the flow in the network by
solving shortest path problems on the residual capacity of the network. The quality of the flow
solution depends on:

1. The number of transshipments performed overall in the network.

2. The capacity installed compared to the demand for flow.

We define the following estimation functions:

Θ(i) : estimated value of inserting a node i ∈ Ns in the best insertion position identified when
calculating the distance.

Υ(i) : estimated value of removing a node i ∈ P s.

Ψ(i) : estimated value of reinserting a node i ∈ P s by best insertion limited to insertions two
port calls away from the current position of i in s.

Graph topology

In order to estimate the change of the network flow a graph G = (V,E) defined by the residual
capacity is constructed, representing the solution x′ with services S′ and commodity allocation
K ′ mapped onto the network by solving the MCF on S′. Let:� |s| denote the number of unique ports in s and let |P s| = m denote the number of port calls

in a rotation rs for s, |P s| = m ≥ |s|.� rs be a rotation defined by the port sequence ps1, p
s
2, . . . , p

s
m.� Vp be the set of port vertices.



121 5.3. A matheuristic for the liner shipping network design problem� Vrs be a set of vertices representing the port call sequence ps1, p
s
2, . . . , p

s
m for rotation rs.� Vr =

⋃

s Vrs be the set of rotation vertices representing all port calls by all rotations.� V = Vp ∪ Vr be the set of vertices.� E = El ∪Ed ∪ Ev ∪ Et be the set of edges, where

1. El = {(p, v)|p ∈ Vp, v ∈ Vrs} is the set of load edges representing a departure from port
p to the rotation rs.

2. Ed = {(v, p)|v ∈ Vrs , p ∈ Vp} is the set of discharge edges representing an arrival at
port p from the rotation rs.

3. Et = {(v, u)|v ∈ Vrs , u ∈ Vrs′ } is the set of transshipment edges representing a trans-

shipment between rotations rs and rs
′

defined for every (v, u) where p(v) = p(u), where
p(w) denotes the physical port of the port call w.

4. Ev = {(v, u)|v, u ∈ Vrs , v = psh, u = ps((h+1)mod m)} is the set of voyage edges represent-

ing a voyage between two consecutive port calls in rs defined ∀ h ∈ {1, 2, . . . ,m}.� Ce be the capacity of edge e ∈ E, where Ce =∞ for e ∈ El ∪Ed ∪Et and Ce, e ∈ Ev be the
residual capacity of edge e after flow assignment of the MCF onto S′.� ce be the edge cost, where ce = 0, e ∈ Ev (as the cost is on the vessel) and let ce = cpl , e ∈ El

and ce = cpu, e ∈ Ed be the cargo handling cost of loading or unloading a container at
port p ∈ VP , where p is either the source or the target of the edge respectively. For the
transshipment edges ce = cpt , where p is the physical port of the port calls of the source and
the target of edge e.

An example of a hub and spoke network with one hub, C, and five spokes (A,B,D,E, F )
and 3 rotations is illustrated in Figure 5.3. The rotations are A → B → C → A (index 1),
C → A → C → D → C (index 2), F → E → C → F (index 3). Each rotation vertex has a
load and a discharge edge to the physical port and a voyage edge to the next port en route. A
demand from A to F transships at C using rotations 2 and 3: A → A2 → C2 → C3 → F3 → F
(edge colours green and blue in Figure 5.3) or using rotations with indices 1 and 3: A → A1 →
B1 → C1 → C3 → F3 → F (edge colours red and blue in Figure 5.3). The load/unload cost
and the transshipment cost is accounted for by the path cost. The load/unload is distinct from
the transhipment as some ports have a different(lower) cost for transshipment than for a load
combined with an unload. Note, that multiple visits to a port on a service results in multiple
vertices. To adhere to the reference model a single port is allowed to be called twice.

The estimated value of insertion - Θ(i)

When we insert a port call vertex is ∈ Ns with corresponding port vertex i ∈ Vp in the position
between nodes hs and ls the demands of the set Ki = {k ∈ K|i = Ok ∨ i = Dk} become eligible
for transport using service s ∈ S′. Solving a shortest path problem on G′ where V ′

rs ∪ {i
s}, and

E′
v = Ev \ {(hsls)} ∪ {(hsis), (isls)}, E′

l = El ∪ {(iis)}, E′
d = Ed ∪ {(isi)} will identify for each

k ∈ Ki whether there is an (improved) path for k in G′ in terms of transshipment costs (TC), the
increase of revenue in demand transported (RK) and the capacity available. The estimated value
Θ(i) should account for in-/decrease in transshipment cost, in-/decreased revenue of the flow, and
increase in port call cost: Θ(i) = TC(G′,Ki)− TC(G,Ki) +RK(G′)−RK(G)− csi .

The estimated value of removal - Υ(i)

When a port call vertex is ∈ P s is removed between nodes hs and ls, commodities of the set
Ki transported on s must be rerouted or omitted. Define Ks

i = {k ∈ Ki|k is transported on s}.
Υ(i) estimates rerouting Ks

i in the remaining network by solving a shortest path problem on
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A B C D E F

A1 B1 C1

C2

C2.2

D2

E3 F3C3

A2

Figure 5.3: Example network with 6 ports (A, B, C, D, E, F) and 3 rotations. C is the linking hub.
Continuous arcs are voyage edges Ev, whereas dotted arcs are load, discharge and transshipment edges
El

⋃

Ed

⋃

Et. Et are yellow to set them apart from load/unload edges. The red (A, A1, B1, C1, C)-and
green (A, A2, C2, C) paths are two distinct ways to travel from A to C. The blue (C, C3, F3, F) path is
the only path from C to F .

G′ = (Vrs \ {is}, Ev \ {(hsis), (isls)} ∪ {(hsls)}). G′ will identify for each k ∈ Ks
i whether there is

an alternative path in the network. The estimated value Υ(i) should account for the in-/decrease
in transshipment cost TC for each commodity k ∈ Ks

i rerouted in G′, and the decrease of revenue
flow RK for omitted cargo and the decrease in port call cost.
Υ(i) = TC(G′,Ki)− TC(G,Ki) +RK(G′)−RK(G)− csi .

Lock sets

The estimation functions are used to make a MIP for a single service with the remaining services
fixed. A solution to the MIP may result in several insertions and removals referred to as a move
in the following. The estimation functions are based on performing a particular move without
consideration of additional removals/insertions. In order to reduce the error of the estimation
functions we define lock sets of a move constraining insertions/removals on port calls related to a
move.
When inserting a port call i, a set of new commodities Ki may be transported. The origins

and destinations of k ∈ Ki should not be removed. The estimation function relies on the residual
capacity of the remaining network. Insertions before bottlenecks introduced by the routing of Ki

should be avoided. We define the set of Insertion locks on inserting i ∈ Ns as L(i+). L(i+) place
a lock on removal of origin/destination nodes (i ∈ P s) for k ∈ Ki, and lock on insertion of nodes
(i ∈ Ns) with best insertion position before bottlenecks introduced by routing Ki.
The total number of removals from a service is constrained to Fs. Fs is input by the user or

dependent on the number of port calls on a service. Fs should be small to reduce the error of the
distance decrease function Γs

i .

5.3.5 MIP formulation

The following MIP optimizes a single service and suggests a set of removals and insertions of port
calls. The function a(s) returns the vessel class assigned to service s.
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max
∑

i∈Ns

Θ(i)γi +
∑

i∈P s

Υ(i)λi − Ca(s)
v ωs (5.1)

subject to: D(s) +
∑

i∈Ns

∆s
iγi −

∑

i∈P s

Γs
iλi ≤

W
a(s)
d (na

s −
|Ps|+

∑

i∈Ns γi −
∑

i∈P s λi

7
+ ωs) (5.2)

ωs ≤Ma(s) (5.3)
∑

i∈P s

λi ≤ Fs (5.4)

∑

j∈L(i+)

γj + λj − 2|L(i+)|(1 − γi) ≤ 0 ∀i ∈ Ns (5.5)

λi ∈ {0, 1} ∀i ∈ P s (5.6)

γi ∈ {0, 1} ∀i ∈ Ns (5.7)

ωs ∈ Z (5.8)

Sets
P s The set of nodes in the service s.
Ns The set of neighbors of service s.
L(i+) Lock set of inserting i in s.
Constants

C
a(s)
v The weekly cost of a vessel from vessel class a assigned to service s.

Ma(s) The number of undeployed vessels of vessel class a assigned to service s in the current solution.

W
a(s)
d The weekly sailing distance of a vessel of class a at design speed.

Fs number of removals allowed on each service
Variables
λi 1 iff i ∈ P s is removed from service s, 0 otherwise.
γi 1 if item i ∈ Ns is inserted in service s, 0 otherwise.
ωs ∈ Z+ The number of vessels service s is expanded with.
Functions
∆s

i Estimated distance increase if i is inserted in s.
Γs
i Estimated Distance decrease for removing item i from s.

Θ(i) The estimated value of inserting i in s.
Υ(j) The estimated value of removing j from s

Table 5.2: Overview of Sets, variables, and functions used in the MIP

The objective function (5.1) maximises the benefit obtained from removing and inserting several
port calls accounting for the estimated change of revenue, transshipment cost, port call cost and
fleet cost. The number of vessels needed to maintain weekly frequency on the service after inser-
tion/removal is estimated in Constraints (5.2) accounting for the duration of the port stay given
insertions/removals. Constraints (5.3) ensure that the solution does not exceed the available fleet
of vessels. The set of nodes that are affected by the insertion move are fixed by Constraints (5.5).
Constraints (5.4) ensure that we can only remove Fs nodes from the service.

To diversify the search using the MIP the geographical distance to the ports included in the
neighborhood Ns is increased for every iteration, where no improvement is found. As the ports on
a service are often geographically close to each other some ports in the service have neighboring
ports in common. For this reason the neighborhood size varies a lot for the service even when
increasing the geographical distance. The increase in geographical distance is inspired by Variable
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Neighborhood Search (VNS)(Mladenović and Hansen, 1997), where the neighborhood depth is
increased iteratively.

We introduce a number of taboos in each service to avoid cycling between solutions. This is to
ensure that ports inserted in the previous iteration cannot be removed in the subsequent MIP for
a specific service. Likewise, ports removed in the last iteration are not considered for reinsertion
in the following iteration.

5.3.6 Reinsertion neighborhood

It is important to be able to construct non-simple routes (butterfly rotations), that revisit a
single port twice. Butterfly routes are very important to utilize the capacity efficiently in a liner
shipping network. A reinsertion neighborhood is defined to construct butterfly routes by evaluating
reinsertion of port calls on every service in S. The reinsertion neighborhood loops through the
services in S and identifies the most promising port call to reinsert based upon a rating. The
method identifies every port call, where the outgoing voyage arc has no residual capacity. Each
of the candidate port calls on a service are rated based on the residual demand. A score of 1 is
obtained for each residual demand originating at the candidate port and an additional score is
obtained if the destination of the commodity is found on the service. The port obtains an additional
score of 3 if the port is a designated hub port. Based on the rating the port with the highest rating
is reinserted using the best insertion heuristic requiring the reinsertion to be a minimum of one
port call away from the original port call. The reinsertion is immediately evaluated and accepted
if it improves the objective value or increases the amount of cargo transported. An overview of
the reinsertion neighborhood is found in Algorithm 1

Algorithm 1 EvaluateReinsertion(S′, x′, K̃)

Require: A solution S of the LSNDP (S, K̃, x)

1: Ŝ ← S′

2: x̂← x′

3: for all s ∈ S′ do
4: Candidate← ∅
5: for all psi ∈ s do
6: if flow(psi , p

s
i+1)− Capacity(psi , p

s
i+1) = 0 then

7: Candidate← psi
8: ratingps

i
← AssignRating(K̃, psi , S)

9: end if
10: end for
11: if Candidate != ∅ then
12: R←MaxRating(Candidate)
13: S̄ ← ApplyReinsertion(R, s)
14: x̄← ∆MCF (S̄,K)
15: end if
16: if obj(x̄) ≤ obj(x′) ∨ trans(x̄) > trans(x′) then
17: x′ ← x̄
18: S′ ← S̄
19: K̃ = CalcResidualDemand(S′, x′)
20: end if
21: end for
22: return (S′, x′)
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5.3.7 Local search

The solution space of an instance of the LSNDP has several sub-neighborhoods that must be
considered in a search for a high quality solution. The main sub-neighborhoods are listed below:

1. The individual port calls on each service.

2. The selection of the butterfly port.

3. Transhipment points.

4. Deployment of a number of vessels to a service (i.e. the duration assigned)

5. Average speed of the vessels on a service.

6. The composition of the services.

7. The number of services in the solution.

8. Matching vessel classes to services.

The MIP and the reinsertion neighborhood target sub-neighborhood 1, 2, 3, and 4. In the
application of a move sub-neighborhood 5 is considered as well. An adjustment of the number of
vessels is performed relative to the feasibility and cost of assigning one less or one more vessel to
the service. If it is cheaper and feasible to add/subtract a vessel from a service, this optimization is
performed, when applying the move. This procedure also adjusts the speed of a service, although
the design speed will be the cheapest choice if it can be matched with the duration and the number
of vessels assigned to a service.
A weakness of the MIP neighborhood is that it is not able to adjust the number of services. The

number of services in the initial solution of the construction heuristic is not likely to be optimal.
At the same time the composition of services is not considered for example if two services are
roughly identical and therefore both underutilized with regards to their capacity.
Therefore, a local search is performed on the set of services after every fourth loop of the MIP

neighborhood application to the set of services.
The local search rates every service according to its average utilization of the capacity on all

voyage edges. In increasing order of utilization removing a service is evaluated. Up to two services
are removed using this procedure. The limitation is imposed to decrease the size of the move. The
residual demand is updated for the solution with services removed and a procedure to add new
services based on the residual demand is invoked. A single service is added for every vessel class
with undeployed vessels with the largest matching residual demand respecting feasibility of the
capacity and duration of serving the demand with the vessels available.
Lastly, the MIP sub-neighborhood cannot assign a different vessel class to a service for example a

service which is fully utilized and in general needs to be upgraded to a larger vessel class with more
capacity and likewise a service with a medium average utilization may become more profitable by
assigning a smaller vessel class to the service. In the current implementation we do not consider
swapping vessel classes between services although it would be very interesting to investigate the
performance of such a neighborhood. The neighborhood would require extensive analysis to find
good candidate services for swapping vessel classes and would involve reflowing the cargo upon
each swap to evaluate the move. It is hence not trivial to implement.

5.4 Algorithm

Algorithm 2 gives an overview of the matheuristic. The initial solution is constructed by the
greedy parallel insertion GreedyLSNDP (I) of an instance I in line 1. The initial solution does
not contain exact evaluation of the flow and hence we explicitly solve the resulting MCF in line
2. The problem MCF (S′,K) is solved using standard column generation to construct a graph of
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Algorithm 2 MatHeuristic(I)

Require: An Instance I of the LSNDP (S, P,A,D,K)

1: S′ ← GreedyLSNDP (I)
2: x′ ←MCF (S′,K)
3: iter← 0
4: temp← temp0
5: IMPROV E ← true
6: while (IMPROV E ∧ (temp > 0)) do
7: IMPROV E ← false
8: for all s ∈ S′ do
9: if obj(x′) ≤ obj(x̂) then

10: SaveBest(S′, x′)
11: end if
12: for all i ∈ Ns do
13: (L(i+),Θ(i))← CalcInsert(i, S′)
14: end for
15: for all i ∈ P s do
16: Υ(i)← CalcRemoval(i, S′)
17: end for
18: MIP ← constructMIP (s, P s, Ns,Θ,Υ,Ψ,

⋃

i∈Ns∪P s L(i+),
⋃

i∈P s L(i2))
19: M ← solve(MIP )
20: if M != ∅ then
21: S̄ ← ApplyMoves(M,L(is−), s)
22: x̄← ∆MCF (S′,K)
23: end if
24: if (obj(x̄) ≤ obj(x′)) ∨ (exp(obj(x

′)−obj(x̄)
temp ) > random [0, 1 [ ) then

25: x′ ← x̄
26: S′ ← S̄
27: IMPROV E ← true
28: end if
29: temp← temp · 0.95
30: end for
31: if iter mod 2 = 0 then
32: (S′, x′)← EvaluateReinsertion(S′, x′)
33: end if
34: if iter mod 5 = 0 then
35: S′ ← LocalSearch(S′, x′)
36: temp← temp ∗ 10
37: end if
38: end while
39: return (Ŝ, x̂)

the residual capacity and mapping the current flow to specific services. In every iteration of the
for loop the solution is evaluated according to the best found solution (line 9).

The improvement heuristic loops over the set of services S. The estimation functions and lock
sets for s are calculated in lines 12-17. The MIP (5.1)-(5.8) for s is constructed and solved in lines
18-19.

The solution is evaluated by resolving the new MCF in line 22. ∆MCF (S′,K) is a column gen-
eration algorithm for the MCF using a warm start basis. The basis consists of all commodities and
services not directly affected by the moves identified by the MIP. The algorithm ∆MCF (S′,K) is
expected to decrease solution times, but the performance will depend on the number of commodi-
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ties affected by the move and also the number of moves applied. If the solution is improved the
new solution is saved in line 24-26 before the next MIP is calculated for the following s ∈ S′. If the
solution is not improved a simulated annealing scheme is invoked, to accept worse solutions with
a decreasing probability as the search progresses in lines 24-27. The simulated annealing scheme
should help the algorithm escape from local minima. In every second loop over the set of services
S a reinsertion neighborhood is invoked in order to evaluate the construction of butterfly services
in line 32. In every fourth loop a local search is performed on the set of services evaluating the
removal of underutilized services and adding new services based on the residual demand and the
excess fleet (line 35). The algorithm terminates, when there is no improvement through a loop or
the temperature of the simulated annealing is zero. The best found solution is returned in line
39.

5.5 Computational Results

The matheuristic was tested on the benchmark suite LINER-LIB 2012 presented in Brouer et al.
(2012). Table 5.3 gives an overview of the instances, which may be found at http://www.or.man.dtu.dk/English/research/

Category Instance and description Ports Dmnds
Single hub instances Baltic Baltic sea with Bremerhaven as hub 12 22

WAF West Africa with Algeciras as hub to West African
ports

19 38

Multi hub instances Mediterranean Mediterranean with Algeciras, Tangier,
Gioia Tauro as hub

39 369

Trade lane instances Pacific (Asia-US West) 45 722
AsiaEurope Europe, Middle East and Far east regions 111 4000

World instances Small 47 Main ports worldwide identified by Maersk Line 47 1764
Large 197 ports - the majority of ports serviced directly
by Maersk Line

197 9630

Table 5.3: The instances of the benchmark suite with indication of the number of
ports and the number of distinct origin-destination pairs. The instances may be found at
http://www.or.man.dtu.dk/English/research/instances

The matheuristic is coded in C++ and run on a linux system with a Intel(R) Xeon(R) X5550
CPU at 2.67GHz and 24 GB RAM.
The following sections analyze the performance and the results of the algorithm. The first section

analyzes the execution time required to solve the MIP neighborhood with growing instance size
and the speed up of using delta column generation, when evaluating the neighborhood. The next
section describes the results seen in relation to the results presented in Brouer et al. (2012) because
our solution space is more restricted due to a required weekly frequency in the matheuristic for
LSNDP. This makes it difficult to compare results. The final section presents the computational
results for the benchmark suite LINER-LIB 2012 with a weekly frequency and discusses the results
obtained.

5.6 Performance of delta column generator and MIP neigh-

borhood

In this section the performance of solving the MIPs to decide on the moves made to each service
is evaluated. Secondly, the performance of evaluating a given solution for the flow transported
using a warm started delayed column generation algorithm to solve the underlying MCF problem
is presented.
In Table 5.4 the performance of the MIP neighborhoods are reported. The focus is on the

execution time of building the MIP in terms of calculating the estimation functions and solving
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the resulting MIP. The table shows that calculating the estimation functions and building the MIP
is very fast. At the same time the MIPs are very small and solved fast both for small, medium
and large cases. The growth in the neighborhoods is hence a linear growth with the number of
services that increase with the instance size. The aim of the heuristic was exactly to achieve a
linear growth in evaluating the neighborhood of services, such that it is fast to decide on the best
moves for each service with regards to inserting and removing a number of port calls for each
service considering the network flow as a whole.

Instance av. time build (sec.) av. time MIP (sec.) av. vars av. rows
Baltic 0.00012 0.00748 9.26 10.53
WAF 0.00036 0.00946 11.19 12.27

Mediterranean 0.00100 0.00972 19.32 19.81
Pacific 0.00390 0.00902 19.11 20.44

WorldSmall 0.01260 0.00600 17.41 18.72
AsiaEurope 0.02100 0.00820 19.93 21.33

Table 5.4: Av. time build: Time to build MIP (estimation functions), av. time MIP: Time to solve
MIP , av. vars: Average number of variables (binary),av. rows: average number of rows.

In Table 5.5 the performance of an average run of the delta column generator is reported.
The delta column generator is designed to exploit that inserting/removing a few port calls only
invalidate a small fraction of the current optimal basis for the network. Therefore, we are able
to reuse the optimal basis to a large extent. The table shows the time to solve the initial full
multicommodity flow problem and the subsequent columns show the average solution time for the
delta column generator as the maximal, minimum and average time throughout a single run of the
algorithm for each instance. The result show a speed up of a factor 2-10 on average for evaluating
a given solution with regards to the transported commodities and their transhipment costs.

Instance full sec. max sec. min sec. av. sec av. speedup max speedup
Baltic 0.0040 0.004 0.000 0.0015 2.67 –
WAF 0.0240 0.008 0.004 0.0045 5.33 6

Mediterranean 0.3760 0.050 0.016 0.0314 11.97 23
Pacific 3.6122 1.528 0.072 0.7178 5.03 50

WorldSmall 24.5400 12.316 0.024 2.7800 8.80 1022
AsiaEurope 147.9612 60.667 0.836 19.7500 7.49 177

Table 5.5: full sec.: Time to solve full lp, max sec.: maximum time for a warm start , min sec.: min
sec for a warm start, av. sec: average time for warm start. av. speedup is the solution time for solving
the full MCF divided by the av. seconds to solve the warm start. max speedup is the solution time for
the full MCF divided by the minimum seconds to solve the warm started solution.

5.7 Comparing results

The problem solved with the matheuristic for LSNDP uses the reference model presented in Brouer
et al. (2012) and adheres to the same set of general constraints and the same objective function.
However, the routes generated by the matheuristic are restricted to have strict weekly frequencies
for all vessel classes, whereas the heuristic column generator creates routes with both weekly and
even biweekly frequencies for vessel classes under 1200 FFE. The rotations are allowed to deviate
from a strict weekly frequency and may call as often as every five days for weekly frequencies.
Vessel classes below 1200 FFE are allowed to have biweekly frequencies deviating to call as often
as every ten days. This means that the network generated with the heuristic column generator
has a less restricted solution space and may deploy the capacity in a different manner than the
matheuristic for the LSNDP is able to. A direct comparison with the solutions and objective values
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for the heuristic column generator is not meaningful as the best solutions found are not feasible
solutions for the matheuristic. As a result the overall revenue obtained for the matheuristic and
the reference model with strict weekly frequencies are expected to be lower. Please note, that
we are solving a minimization problem and a negative objective value represents a profit. The
computational results presented here are the first results requiring strict weekly frequency using
a restricted version of the reference model to solve LINER-LIB 2012.

Instance Method Best Cost trans % Depl. % Time
Baltic Best weekly freq. −4.98 · 106 97.1 100 –
Baltic Best weekly freq. + matheuristic −6.78 · 106 96.76 88.88 4.46
Baltic MQKP+matheuristic (best) −8.60 · 106 97.23 88.89 2.05
Baltic MQKP+matheuristic (Avg.) −1.19 · 106 94.77 88.89 4.17
Pacific Best weekly freq. −6.64 · 106 96.80 98.10 –
Pacific Best weekly freq. + matheuristic −3.57 · 107 96.70 93.5 623.45
Pacific MQKP+matheuristic (best) 1.03 · 108 96.02 94.39 825.96
Pacific MQKP+matheuristic (Avg.) 1.91 · 108 84.18 87.47 567.84

Table 5.6: Comparing the heuristic column generators best solution for the Baltic and Pacific case with
an adjusted increased fleet to enforce strict weekly frequency. Instance denotes the instance. Method
describes, which initial solution is used, and whether the matheuristic is invoked. Best cost denotes the
best objective value found. When calculating with the construction heuristic as initial solution ten runs
were performed and the best as well as the average solution is reported. trans % denotes the percentage
of total cargo transported and Depl. % the percentage of the fleet deployed. Time denotes the CPU
time in seconds.

In an attempt to compare the performance of the algorithms the best solutions from the Baltic
case and the Pacific case have been altered to respect a weekly frequency by increasing the number
of vessels in the fleet to meet this requirement. It is obvious, that the heuristic column genera-
tor could find different and possibly better solutions enforcing strict weekly frequency with the
increased fleet. There will be excess capacity on the routes with biweekly frequency, which for
the Baltic case is all vessel classes in the instance. In the Pacific case it represents half the vessel
classes and less than half the total number of vessels (36%).

The Baltic case has been chosen as a reference because it is a small case and the matheuristic
for LSNDP is relatively stable at finding good solutions for this instance, whereas the Pacific case
is more complex and less influenced by biweekly frequency. The revenues and the fleet available,
makes it hard to obtain a revenue and the matheuristic consistently performs poorly on this case.

The comparison takes the services from the best solution for the base case using the heuristic
column generator adjusting the number of vessels to meet a weekly frequency requirement (Best
weekly freq. in Table 5.6). They are used as initial solution and the matheuristic is able to improve
upon the solution in its subsequent optimization for both instances. These results are compared
against the same fleet using the construction heuristic. The matheuristic is able to find better
solutions using the construction heuristic as opposed to the generated solutions for the Baltic case,
but cannot compete on the Pacific case using the construction heuristic. In the Pacific case results
show great variance in the revenue obtained and it is clear that this case is very dependant on
the quality of the initial solution. The more complex instances have a solution space with many
sub-neighborhoods and it seems that the matheuristic gets trapped in a local minimum, where it
is not able to improve further or access more promising areas of the solution space. The results
are presented in Table 5.6.
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5.8 Algorithmic performance and results for LINER-LIB

2012

The results of testing the matheuristic on LINER-LIB 2012 is presented in Table 5.8. For each
instance ten replications with random seeds have been run. Randomness affects the initial solution
constructed by the MQKP method and also the simulated annealing scheme incorporated in the
subsequent improvement heuristic.
The algorithm has been set to terminate after the time limits imposed in Brouer et al. (2012)

as stated in Table 5.7.

Baltic WAF Mediterranean Pacific AsiaEurope WorldSmall
300 900 1200 3600 14400 10800

Table 5.7: Time limits imposed on each instance. the time is in CPU seconds.

The results are the first presented for a strict weekly frequency on rotations and the revenue
is generally lower than the results presented in Brouer et al. (2012) as expected due to different
frequency requirements. Results show a large deviation between the best found solutions and
the average solution for most cases. The heuristic is very dependant on the quality of the initial
solution, which deteriorates with instance size, as it is harder to get the right composition and
fleet deployment as instance sizes grow. Furthermore, the solution space is complex with many
sub-neighborhoods and the algorithm seems to get easily trapped in a local minimum. In the
Mediterranean case the fleet deployment is very low and there is rejected cargo. It seems that
the algorithm is not able to properly deploy the excess vessels to capture the residual demand.
In general the fleet deployment is high, meaning that requiring a weekly frequency may not give
sufficient capacity to transport the entire demand or the demands are not profitable to transport
given the fleet /service configuration. The algorithm is fast for all instances but the AsiaEurope
instance, which is the only one terminating due to the time limit imposed of 14400 seconds. The
log files indicate that the loop structure over the entire set of S as illustrated in Algorithm 2 is in
this case very time consuming and very little local search is performed within the time limit. The
loop structures seem to be restraining at least for this case and it would be an enhancement to
introduce an adaptive layer like the ones seen in ALNS algorithms (Pisinger and Ropke, 2007) to
make more frequent and instance specific swaps between the neighborhoods and the local search
procedure. Also a rating of the services to be optimized upon could be introduced as the MIP for
some services return no moves for implementation in several contiguous for loops.
Since the solution times are generally very low it would be possible to implement a restart

functionality with a new initial composition of services with a differing fleet deployment and
seeding, perhaps based on the best found solution. Additionally, it is possible to experiment with
additional neighborhoods and a more advanced local search procedure, than the one implemented.
Additional neighborhoods could target swapping vessel classes between rotations and perform
optimization of the port call sequence given the cargo allocated to the service. Speed optimization
could also be enhanced. A more advanced local search could be used, where several methods for
generating new services could be tested as this is a drawback of the current search especially for
the larger instances. Generating routings of very high quality as seen in Brouer et al. (2012) could
be implemented as there seems to be time for performing more advanced techniques for generating
new promising routings.

5.8.1 Alternative method for generating new services

The local search implemented is relatively simple as described in Section 5.3.7. The services are
rated based on the average utilization percentage of all individual voyages on the service. The
resulting solution of removing the lowest utilized services is evaluated and at most two services are
removed in each iteration. Subsequently new services are added based on the residual demand of
the solution with the services removed. The original method creates a single service for each vessel
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Instance Cost(180 days) Cost(weekly) imp% dep% trans% Time

Baltic

Low
Best 3.11 · 106 124419 95.02 100.00 84.83 10.12

Average 1.19 · 107 476568 80.24 96.00 79.23 8.57

Base
Best −5.90 · 106 -236038 110.21 100.00 92.07 3.65

Average −7.32 · 105 -29261 101.66 100.00 89.92 4.06

High
Best −5.87 · 106 -234718 107.52 100.00 92.84 9.14

Average 1.78 · 106 71144 98.15 96.10 88.21 11.76

WAF

Low
Best −9.39 · 107 −3.76 · 106 221.03 100.00 90.15 13.22

Average −8.24 · 107 −3.30 · 106 198.82 96.67 84.84 10.89

Base
Best −1.28 · 108 −5.13 · 106 274.32 90.47 94.88 9.24

Average −1.14 · 108 −4.56 · 106 254.32 96.43 94.15 8.14

High
Best −1.31 · 108 −5.25 · 106 412.35 98.04 97.35 13.09

Average −1.02 · 108 −4.06 · 106 259.79 82.35 89.90 12.63

Mediterranean

Low
Best 6.05 · 107 2.42 · 106 42.67 78.26 81.20 155.78

Average 6.82 · 107 2.73 · 106 37.85 86.52 80.98 98.56

Base
Best 4.09 · 107 1.64 · 106 65.65 85.71 91.00 70.37

Average 5.36 · 107 2.14 · 106 49.16 80.00 84.87 77.26

High
Best 4.10 · 107 1.64 · 106 54.18 81.82 94.35 56.57

Average 4.78 · 107 1.91 · 106 59.29 73.94 85.32 91.95

Pacific

Low
Best 2.10 · 108 8.40 · 106 70.23 97.56 81.14 359.76

Average 2.92 · 108 1.17 · 107 61.20 92.56 79.29 368.39

Base
Best 4.36 · 107 1.74 · 106 90.65 100.00 93.44 651.85

Average 1.62 · 108 6.47 · 106 78.74 89.00 85.03 512.95

High
Best −4.26 · 107 −1.71 · 106 109.41 97.48 96.80 833.32

Average 1.20 · 107 4.80 · 105 96.92 90.92 93.20 838.74

WorldSmall

Low
Best −4.76 · 107 −1.90 · 106 101.98 99.02 83.63 5481.76

Average 6.93 · 107 2772230 93.09 97.30 79.84 5836.64

Base
Best −7.97 · 108 −3.19 · 107 178.36 95.82 91.83 8738.23

Average −4.39 · 108 −1.76 · 107 148.34 93.69 86.44 7881.96

High
Best −1.05 · 109 −4.18 · 107 433.05 94.64 92.89 4561.85

Average −5.77 · 108 −2.31 · 107 215.90 95.80 90.09 6735.87

AsiaEurope

Low
Best −4.45 · 107 −1.78 · 106 103.60 100.00 83.17 14405.00

Average 7.04 · 107 2815218 94.41 98.14 81.07 13962.74

Base
Best −3.07 · 108 −1.23 · 107 151.10 98.30 93.18 14426.60

Average −9.22 · 107 −3.69 · 106 112.17 95.17 86.42 14502.02

High
Best −5.03 · 108 −2.01 · 107 185.96 96.70 95.70 14569.40

Average −1.32 · 108 5288480 120.18 96.42 90.77 13836.17

Table 5.8: Overview of the results obtained for the benchmark suite LINER-LIB 2012 using the
matheuristic for LSNDP. The tests are based on ten runs with different random seeds. Instance is
the name of the instance, Best is the best solution found, Average is the average of all ten runs. Low
is the low capacitated case, Base is the medium capacitated case and High is the high capacity case.
Cost(180 days) is the objective value for a planning horizon of 180 days similar to Brouer et al. (2012),
whereas Cost(weekly) is the weekly cost/revenue of the network. Note that a negative value represents
a profitable network. imp% is the percentage improvement from the objective value of the initial solution
constructed by the MQKP construction heuristic, dep% is the percentage of the fleet deployed in terms
of number of vessels, trans% is the percentage of demand transported and Time is the CPU time in
seconds.

class targeting the largest residual demand in terms of the volume multiplied with the revenue
per unit. Feasibility of the generated service given the duration of transporting the demand and
the available number of vessels in the vessel class is considered in the method. The method is
denoted One Service Single Demand (OSSD). The approach creates very crude new services and
in particular for the large instances with extensive use of transhipments the new services are
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often removed in the subsequent local search as they have not evolved into a promising service.
An alternative method (MQKP) invokes the construction heuristic for the ports present in the
residual demand and the available fleet. We have tested the new method for the Baltic and the
WAF instance. Ten runs of each instance was performed with identical seeds, such that the
constructed solutions that are basis for the optimization are identical for both methods. Table
5.9 shows the average and best solutions found by each method. It can be seen that the more
advanced method constructing new services using the construction heuristic gives better results for
both instances on average. This means that introducing the MQKP method for larger instances
should be investigated as it might improve the search.

Instance Method Best cost (weekly) Average cost
Baltic OSSD -58165 245667
Baltic MQKP -41209 58601
WAF OSSD -4468130 -3843604
WAF MQKP -5128090 -4560574

Table 5.9: Average and Best weekly cost for two different methods of constructing a new service set
in the local search. The ten runs are performed with the same random seed such that the basis for the
optimization (the constructed solution)is identical for both methods.

5.9 The matheuristic as a decision support tool

The matheuristic can be used as a decision support tool for evaluating and altering a given network.
A given network can be used as initial solution and it is furthermore possible to assign a subset
of the services for optimization, while maintaining full knowledge of the capacity and flow in the
remaining network. The matheuristic will keep the remaining network fixed and only apply the
MIP neighborhood and local search to the designated subset of the services, while maintaining full
knowledge of the entire network. Network planners are often responsible for a particular trade or
geographic area and the method enables optimization of this designated part of the network. The
method has been tested on a single case from Maersk Line.
The case is constructed from a real network at Maersk Line. The original network satisfies

several constraints that are not incorporated in the matheuristic in its current form, such as several
capacity types (DRY, REEFER, High Cube etc.), transit time restrictions, cabotage restrictions,
and empty repositioning. Furthermore, the original network uses a larger set of vessel classes than
the constructed case. The original network has been modified to fit the input of the matheuristic,
which means that the capacity allocation has been set to match 6 vessel classes and demands
have been mapped to a single capacity type without transit time restrictions, cabotage rules and
empty repositioning. This means that the resulting case will be slightly overcapacitated and
fulfills several constraints not considered by the matheuristic. This makes the mapped case an
”easy optimization problem” compared to the real life case. Revenues have been constructed as
an upper bound of the revenues found in the WorldLarge instance from LINER-LIB 2012 and
therefore, the objective value of the optimization does not represent the real value of the network
in any way. Bearing these assumptions in mind, three cases have been constructed based on the
mapped case optimizing on 3, 8 and 10 services respectively. These tests were performed on a
regular desktop with an Intel(R) Core(TM)2 Duo CPU P9400 at 2.40GHz with 4 GB RAM.
The solutions calculated by the matheuristic are encouraging as there is a decent improvement

in the cost, which for all cases show a revenue. The improvement seems to be primarily due to
removing excess capacity looking at the deployment percentage (Depl.%). As a proof-of-concept
implementation it shows that the matheuristic is capable of optimizing upon a real sized network
with good results. It would be interesting to investigate an implementation fulfilling additional
real-life constraints and testing it on a larger variety of cases and scenarios. Possible scenarios
are adjustments to changes in demands and/or revenues, alternative fleet deployment and the
introduction of new/changed services, that may have effects in other parts of the network.
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Case |S| trans% Depl.% Cost Time
Base Case with no optimization 0/139 99.5 100.00 −5.67 · 108 140.59
Base Case - 3 services optimized 3/139 98.3 98.70 −5.73 · 108 1862.48
Base Case - 8 services optimized 8/139 99.3 94.48 −6.09 · 108 2385.66
Base Case - 10 services optimized 10/139 99.3 90.80 −6.28 · 108 2803.58

Table 5.10: Tests optimizing a partial network based on Maersk Line network. |S| denotes the number of
services optimized upon compared to the full number of services in the network. trans% is the percentage
transported of the total demand in units, Depl.% denotes the number of vessels deployed and Cost is
the objective value (Again we are minimizing and a negative number means a profit). Time denotes the
CPU time in seconds.

5.10 Conclusions

In this paper a matheuristic for the LSNDP has been presented using the reference model from
Brouer et al. (2012) with strict weekly frequencies for all services. The matheuristic consists of
a novel construction heuristic viewing the liner shipping network design problem as a specialized
variant of the multiple quadratic knapsack problem. The initial solution is then improved using an
integer program as neighborhood for each individual service considering insertion and removal of
port calls based on estimation functions. The estimation functions allows us to circumvent solving
a large scale multicommodity flow problem for evaluating a given candidate solution and may be
applied in other heuristics for liner shipping network design. To circumvent the multicommodity
flow a delta column generator is used to evaluate a candidate solution. The idea is to reuse
the optimal basis for all variables not invalidated by the implemented moves and restart delayed
column generation from here. A speedup of a factor 2-10 is achieved on average on the testbed
for the LINER-LIB 2012. The improvement heuristic is used in combination with a simple local
search based on a ruin-and-recreate principle, where vessels are freed by removing low utilized
services and the resulting excess vessels are redeployed to services targeting the residual demand
of a solution. Computational results are provided for the benchmark suite LINER-LIB 2012 and
are the first results enforcing strict weekly frequency. For twelve out of eighteen instances the
algorithm seems to be performing well making a reasonable profit. For two cases (five out of six
instances) the solutions are loss giving. Both cases have low or no profit using bi-weekly frequencies
in Brouer et al. (2012) indicating that the solution spaces of the test cases do not contain many
if any profitable solutions. The pacific case is profitable for bi-weekly frequency as seen in Brouer
et al. (2012). The average performance is poor compared to the best solutions found, which
indicates that the solution space is complex with many sub-neighborhoods and the matheuristic
gets trapped in a local minimum too easily. The heuristic is also highly dependent on the initial
solution and it may be worthwhile spending more time creating a good initial network by enhancing
the construction heuristic. Finally, the matheuristic has been tested as a decision support tool
with an existing liner shipping network as input only optimizing on a subset of the services in the
network. Three cases are have been evaluated based on a real-life inspired network. The real life
network contains additional constraints on the flow and hence is conceived as suboptimal for the
matheuristic as these constraints are not enforced in the optimization. As a results the solutions
from the optimized case may not be feasible in a real life network. Nevertheless, results are very
encouraging as the algorithm is able to improve on all three cases tested and may prove as a
valuable decision support tool for making incremental changes to a network and analyze different
scenarios during network configuration.
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