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Abstract

We propose four different estimators that take into account the autocorrelation structure
when reconciling forecasts in a temporal hierarchy. Combining forecasts from multiple tempo-
ral aggregation levels exploits information differences and mitigates model uncertainty, while
reconciliation ensures a unified prediction that supports aligned decisions at different horizons.
In previous studies, weights assigned to the forecasts were given by the structure of the hierar-
chy or the forecast error variances without considering potential autocorrelation in the forecast
errors. Our first estimator considers the autocovariance matrix within each aggregation level.
Since this can be difficult to estimate, we propose a second estimator that blends autocorrela-
tion and variance information, but only requires estimation of the first-order autocorrelation
coefficient at each aggregation level. Our third and fourth estimators facilitate information
sharing between aggregation levels using robust estimates of the cross-correlation matrix and
its inverse. We compare the proposed estimators in a simulation study and demonstrate their
usefulness through an application to short-term electricity load forecasting in four price areas
in Sweden. We find that by taking account of auto- and cross-covariances when reconciling
forecasts, accuracy can be significantly improved uniformly across all frequencies and areas.

Keywords: Forecasting; Forecast combination; Temporal Aggregation; Autocorrelation;
Reconciliation.

1 Introduction

Temporal aggregation has been studied since the seminal work by Amemiya and Wu (1972) and
Tiao (1972) (see Silvestrini and Veredas, 2008, for a literature review). Different temporal aggre-
gations can reveal important information about the underlying data-generating process. When
temporal aggregation is applied to a time series, it can strengthen or attenuate different features.
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University of Denmark, Asmussens Allé, Building 303B, 2800 Kgs. Lyngby, Denmark.
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Nonoverlapping temporal aggregation is a filter of high-frequency components. At an aggregate
view, low frequency components, such as trend and cycle, will dominate. The opposite is true for
disaggregate data, where short-term seasonality may be visible. Hence, temporal aggregation can
be seen as a tool to better understand and model the data at hand.

Kourentzes et al. (2014) and Petropoulos and Kourentzes (2015) showed that combining fore-
casts from multiple aggregation levels can lead to improvements in forecast accuracy, while over-
coming the need to select a single optimal level. The greatest improvements typically occur at the
highest level of a hierarchy, where information from lower levels—i.e., higher-resolution data—is
aggregated up (Athanasopoulos et al., 2011; Rostami-Tabar et al., 2013; Kourentzes et al., 2014;
Athanasopoulos et al., 2017).

Temporal hierarchies for forecasting, as introduced by Athanasopoulos et al. (2017), can be
constructed for any time series by means of nonoverlapping temporal aggregation. Rather than
attempting to build one complex model that captures all temporal attributes (see, e.g., Ghysels
et al., 2004; Livera et al., 2011; Nystrup et al., 2017; Sedoc et al., 2018), using temporal hierarchies
forecasts for different horizons can be made with different (simple) methods. Since these forecasts
are produced by different approaches and are based on different information, they will most likely
not be coherent. This incoherency can lead to decisions that are not aligned, or even conflicting.
Optimal decision making requires coherent forecasts; thus, reconciliation is necessary. In the
framework proposed by Athanasopoulos et al. (2017), forecasts constructed at different aggregation
levels can be combined to yield temporally reconciled, accurate, and robust forecasts, independently
of forecasting models.

1.1 Related work

Traditionally, either top-down or bottom-up approaches are used to produce forecasts for a hierar-
chy. According to the former, forecasts are generated for the time series at the top level and then
disaggregated down all the way to the bottom level, while for the latter forecasts are generated at
the very bottom level and then aggregated up. Such approaches ensure that forecasts add up across
a hierarchy. The advantages and disadvantages of these traditional approaches are not comple-
mentary. The top-down approach requires forecasts for only one time series at the very aggregate
level; however, aggregation implies a large loss of information, and it is challenging to disaggregate
the forecasts down the hierarchy (see Gross and Sohl, 1990; Athanasopoulos et al., 2009, for a
summary of top-down approaches). By contrast, bottom up implies no loss of information; but it
requires many and possibly very noisy time series to be forecast.

Hyndman et al. (2011) formulated the forecast reconciliation problem for a structural hierarchy
as a linear regression model. In order to circumvent the problem of estimating the covariance of the
base forecasts, they proposed the use of the ordinary least-squares (OLS) estimator for computing
reconciled forecasts. Hyndman et al. (2016) suggested using weighted least squares (WLS), taking
account of the variances on the diagonal of the covariance matrix but ignoring the offdiagonal
covariances. Later, Wickramasuriya et al. (2019) considered the generalized least-squares (GLS)
estimator and found the incorporation of correlation information into the reconciliation procedure
to be beneficial for forecast accuracy, when combined with a simple shrinkage estimator.

Van Erven and Cugliari (2015) proposed a game-theoretically optimal reconciliation method
that guarantees that the total weighted quadratic error of the reconciled forecasts is never greater
than that of the base forecasts. Their approach is fundamentally different in that they formulate the
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forecast reconciliation problem as an optimization problem rather than a regression model. Their
formulation included only a diagonal weight matrix and, thus, no information sharing between the
base forecasts. Van Erven and Cugliari (2015) proved that the reconciled forecasts are guaranteed
to be at least as good as the base forecasts for any loss function that is based on a Bregman
divergence. Wickramasuriya et al. (2019) reiterated the proof for their reconciliation method.

A crucial reason for this improvement is that the implied combination mitigates model uncer-
tainty. Forecast combination is widely regarded as beneficial, leading to a reduction of forecast
error variance (see, e.g., Clemen, 1989; Timmermann, 2006; Hall and Mitchell, 2007). Ways to
best combine forecasts have been widely investigated, resulting in various sophisticated weighting
methods; yet, simple approaches, such as the unweighted average, are often found to perform as
well as more sophisticated methods (Timmermann, 2006).

Taieb et al. (2017a,b) considered reconciliation of density forecasts, as opposed to point fore-
casts. Their algorithm does not require distributional assumptions and imposes dependencies
between forecast distributions using samples from the empirical copulas. Following van Erven and
Cugliari (2015), they used the reconciliation approach to produce load forecasts for individual
electricity consumers at the bottom to the total grid at the top of a structural hierarchy. Gamaku-
mara et al. (2018) showed in a simulation study how a projection derived from the estimator of
Wickramasuriya et al. (2019) can be applied to reconcile probabilistic forecasts. Jeon et al. (2018)
proposed a cross-validation approach for selecting the reconciliation weights applied to probabilistic
wind-power forecasts.

Temporally aggregated time series can be represented as a hierarchical time series. As a conse-
quence, Athanasopoulos et al. (2017) showed that it is possible to use the reconciliation framework
proposed by Hyndman et al. (2011) to produce coherent forecasts. They considered three diagonal
estimators as approximations to the sample covariance matrix. By construction, these estimators
share the property that they ignore any autocorrelation in the forecast errors. In most cases the
simplest of the three, which is based purely on the structure of the hierarchy and requires no
estimation of forecast errors, performed as well as the more complicated ones.

The work of Athanasopoulos et al. (2017) was extended by Taieb (2017), who considered load
forecasting for individual households. He introduced regularization terms in order to obtain sparse
and smooth adjustments that satisfy the aggregation constraints and minimize forecast errors. Im-
posing sparsity means that some base forecasts remain unaffected by the adjustments. Smoothness
provides additional regularization by exploiting the fact that adjustments are applied to consecu-
tive observations of a time series. The reconciled forecasts can be found by solving a sparse fused
LASSO (least absolute shrinkage and selection operator) problem (Tibshirani et al., 2005).

In two successive articles, Yang et al. (2017a,b) applied a structural and temporal hierarchy,
respectively, for reconciling solar-power forecasts. In the structural case, they followed Wickrama-
suriya et al. (2019) by considering both diagonal and nondiagonal, regularized and nonregularized
covariance estimators. The largest forecast accuracy improvements occurred when including cor-
relations in the reconciliation process. In the temporal case, they followed Athanasopoulos et al.
(2017) by considering only diagonal estimators, thus disregarding potential information in the
autocorrelation structure. Zhang and Dong (2018) documented the benefit from taking into ac-
count correlations when reconciling short-term wind-power forecasts across several wind farms in
a structural hierarchy. Finally, Kourentzes and Athanasopoulos (2019) proposed a cross-temporal
reconciliation approach for generating coherent forecasts across both geographical divisions and
planning horizons for tourist flows in Australia.
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1.2 Contribution

Given the well-documented benefits to incorporating correlation information when reconciling fore-
casts in a structural hierarchy (Yang et al., 2017a; Zhang and Dong, 2018; Wickramasuriya et al.,
2019), we propose an estimator that considers the full autocovariance matrix within each aggre-
gation level when reconciling forecasts in a temporal hierarchy. With the purpose of temporal
aggregation being to exploit important information in a time series at different frequencies, it does
not make sense to disregard the potentially most important information, namely its autocorrelation
structure; at least not when there is enough data available that it can be estimated with reasonable
precision. This is often the case in high-frequency settings. Hence, it should be possible to improve
accuracy by considering autocorrelation information when reconciling forecasts.

Even with high-frequency data available, it can be difficult to estimate the autocovariance
matrix without assuming that it has some special form (see, e.g., Bien et al., 2016). Therefore, we
propose a second estimator that blends autocorrelation and variance information, but only requires
estimation of the first-order autocorrelation coefficient at each aggregation level. This estimator is
based on decomposing the autocovariance matrix into two diagonal variance matrices and a block-
diagonal autocorrelation matrix that imposes a first-order Markov process on the reconciliation
errors.

In order to facilitate information sharing between aggregation levels, we propose a third es-
timator that uses the graphical LASSO (GLASSO) for estimating a sparse representation of the
inverse cross-correlation matrix across aggregation levels (Banerjee et al., 2008; Friedman et al.,
2008). This estimator overcomes the problem of inverting a potentially singular cross-covariance
matrix and is robust to noise and high dimensionality due to the imposed sparsity.

Our fourth proposal is a Stein-type shrinkage estimator of the cross-correlation matrix (Ledoit
and Wolf, 2004; Schäfer and Strimmer, 2005), similar to the estimator Wickramasuriya et al. (2019)
proposed for a structural hierarchy. This estimator is simpler to implement and shares most of the
beneficial properties of the GLASSO estimator.

We document the usefulness of the proposed estimators through an application to short-term
electricity load forecasting in four price areas in Sweden. We do not consider advanced forecasting
techniques, nor include explanatory variables such as weather data (see, e.g., Fan and Hyndman,
2012; Clements et al., 2016), rather we only use exponential-smoothing methods to generate base
forecasts. We show that incorporating information about the auto- and cross-correlation structure
significantly improves forecast accuracy, both compared to traditional approaches and compared
to the diagonal estimators proposed by Athanasopoulos et al. (2017). Improvements in forecast
accuracy are in several cases greatest out of sample where the accuracy of the base forecasts, on
average, is lower. In other words, reconciliation increases robustness by increasing accuracy the
most when needed the most.

To better understand the differences and advantages of the proposed estimators, we compare
their performance in a simulation study. We simulate data from a model similar to those used for
load forecasting. The simulation study shows that the best performing estimator depends on the
length of the sample available for estimation. Even when very limited data is available compared
to the dimension of the temporal hierarchy, forecast accuracy can be improved by considering
autocorrelation and dependencies between aggregation levels.

The article is organized as follows. In Section 2, we outline the forecast reconciliation problem
and its relation to ordinary, weighted, and generalized least-squares estimation. In Section 3, we
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propose four different estimators for taking account of the autocorrelation structure. Results from
the application to short-term load forecasting are presented in Section 4. The simulation study
is presented in Section 5. We discuss the results and their importance to operational research in
Section 6 before concluding in Section 7.

2 Forecast reconciliation

2.1 Temporal hierarchies

Given n individual base forecasts stacked in a column vector ŷ ∈ Rn, where ŷ1 is a forecast of the
aggregate, we want to find reconciled forecasts ỹ ∈ Rn, which are coherent, so that

∑n
i=2 ỹi = ỹ1.

For example, ŷ2, . . . , ŷn could be sales forecasts for n − 1 individual stores and ŷ1 the aggregate
sales forecast for the entire chain of stores. This is an example of a structural hierarchy.

Annual

H1

Q1 Q2

H2

Q3 Q4

Figure 1: Temporal hierarchy for quarterly se-
ries.

The framework can easily be extended to
multiple aggregation levels. In a temporal hier-
archy, for example, quarterly forecasts should
reconcile to half-year forecasts, which should
reconcile to annual forecasts, as illustrated in
Figure 1. This is most easily done by intro-
ducing a summation matrix S, which for the
hierarchy illustrated in Figure 1 would be

S =



1 1 1 1

1 1 0 0

0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

It is even possible to have several different forecasts for each quarter, year, etc.
In general, there are k ∈ {k1, . . . , kK} aggregation levels, where k is a factor of m, with k1 = m,

kK = 1, and m/k is the number of observations at aggregation level k. The summation matrix is
given by

S =


Im/k1

⊗ 1k1

...
Im/kK

⊗ 1kK

 , (1)

where ⊗ denotes the Kronecker product, Im/k is an identity matrix of order m/k, and 1k is an
k-vector of ones. For example, the hierarchy illustrated in Figure 1 has aggregation levels k1 = 4,
k2 = 2, and k3 = 1 with m = 4 and n = 7.

By introducing a matrix
G =

[
0m×(n−m)

∣∣ Im] (2)

of order m× n that extracts the m bottom-level forecasts, the reconciliation constraint(s) can be
written as

ỹ = SGỹ. (3)
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Reconciliation is needed when base forecasts ŷ do not satisfy this constraint.

2.2 Optimal reconciliation

Van Erven and Cugliari (2015) proposed to formulate the forecast reconciliation problem as

minimize
∥∥W 1/2 (ỹ − ŷ)

∥∥2
2

subject to ỹ = SGỹ,
(4)

where ỹ ∈ Rn is the variable; the parameter W ∈ Rn×n
++ is a diagonal matrix with weights wi

along its diagonal; S ∈ Rn×m and G ∈ Rm×n are constant matrices given by the structure of the
hierarchy; and ‖y‖2 =

(∑n
i=1 y

2
i

)1/2 denotes the `2 norm of a vector y ∈ Rn of dimension n.
The squared error is the most common choice of loss function. The reconciled forecasts are

optimal in that the base forecasts are adjusted by the least amount (in the sense of least squares)
so that these become coherent. Formulation (4) is a convex optimization problem that can readily
be solved (Boyd and Vandenberghe, 2004).

2.3 Relation to generalized least squares

Hyndman et al. (2011) and Athanasopoulos et al. (2017) formulated the structural and temporal
reconciliation problems, respectively, as linear regression models. The reconciled forecasts can be
found using the generalized least-squares estimate:

minimize (ỹ − ŷ)
T

Σ−1 (ỹ − ŷ)

subject to ỹ = SGỹ,
(5)

where ỹ ∈ Rn is the variable and the parameter Σ ∈ Rn×n
++ is the covariance matrix for the

coherency errors ε = ỹ− ŷ, which are assumed to be multivariate Gaussian and unbiased, i.e., have
zero mean.

If Σ were known, the solution to (5) would be given by the GLS estimator

ỹ = S
(
ST Σ−1S

)−1
ST Σ−1ŷ. (6)

When the summation matrix S is very large, it can be faster to solve the optimization problem
(5) than to evaluate the closed-form solution (6) (Boyd and Vandenberghe, 2004). Hyndman
et al. (2016) showed how the computations required to evaluate (6) can be handled efficiently by
exploiting the sparse structure of the summation matrix. Wickramasuriya et al. (2019) derived an
alternative representation that is significantly less demanding in terms of computation.

The close correspondence between (4) and (5) is evident, as the two coincide when Σ−1 = W .
This provides a benchmark for selecting the weights. In formulation (5), the precision matrix Σ−1

is used to scale deviations from the base forecasts; hence, it is often referred to as a weight matrix.
It is more expensive to adjust base forecasts with a higher precision. Another option is to select
weights based on prior knowledge about the precision or importance of the base forecasts. The
machine-learning approach would be to run a number of tests to find the combination of weights
that gives the best (in-sample) result.

Hyndman et al. (2011) and van Erven and Cugliari (2015) argued for selecting uniform weights
to increase the importance of forecasting the aggregate. The unweighted case Σ = I corresponds
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to ordinary least-squares estimation. Unweighted implies that each aggregation level is assigned
the same total weight; however, due to the different scales of the various levels, this means that
OLS emphasizes the highest aggregation levels.

Wickramasuriya et al. (2019) showed that, in general, Σ is not known and is not identifiable.
By minimizing the variances of the reconciled forecast errors, they proposed an estimator which
results in unbiased reconciled forecasts given by the GLS estimator (6), but with a different co-
variance matrix. To distinguish it from the GLS estimator, they referred to this as minimum trace
reconciliation. As a proxy for the unidentifiable covariance matrix for the coherency errors, they
provided theoretical justification for using the covariance matrix for the reconciled forecast errors
e = y − ỹ. Although it does not suffer from a lack of identifiability, it can still be challenging to
estimate. Wickramasuriya et al. (2019) proposed different estimators based on the in-sample base
forecast errors.

2.4 Weighted least-squares estimators

Athanasopoulos et al. (2017) proposed three diagonal estimators Λ of increasing simplicity that
approximate Σ. For the temporal hierarchy illustrated in Figure 1, the three estimators are

Λstruc = diag (4, 2, 2, 1, 1, 1, 1) ,

Λsvar = diag
(
σ2

A, σ
2
H, σ

2
H, σ

2
Q, σ

2
Q, σ

2
Q, σ

2
Q
)
,

Λhvar = diag
(
σ2

A, σ
2
H1
, σ2

H2
, σ2

Q1
, σ2

Q2
, σ2

Q3
, σ2

Q4

)
.

By definition, these ignore correlations across and within aggregation levels and lead to alter-
native weighted least-squares estimators. They referred to the simplest of the three estimators as
structural scaling. As base forecast errors at each level of a temporal hierarchy are associated with
a single time series, they argued that it is reasonable to assume that the variances at each level
are approximately equal. Assuming that the variance of each bottom-level base forecast error is
σ2 and that the errors are uncorrelated between nodes, they set Σ = σ2Λstruc, where Λstruc is a
diagonal matrix with each element containing the number of forecasts errors contributing to that
aggregation level:

Λstruc = diag (S1m) .

This estimator has several desirable properties. First, it depends only on the seasonal period
m of the most disaggregated observations and is independent of both data and forecasting model.
Second, it permits forecasts which originate from any forecasting method or even predictions from
human experts that are not described by a formal model, since no estimation of the variance of the
forecast errors is needed. In their empirical evaluation, Athanasopoulos et al. (2017) found that
structural scaling often performed at least as well as the more complicated estimators.

The second estimator proposed by Athanasopoulos et al. (2017) is referred to as series variance
scaling. This estimator includes separate variance estimates for each aggregation level. That is, it
assumes homogeneous error variance within a level, but not across levels. They argued that this is
a reasonable assumption given that base forecast errors within the same aggregation level are for
the same time series. Their proposal was to use the variances of the one-step-ahead forecast errors
for each aggregation level, which are easily calculated. This tends to underestimate the variances
of the lower levels, where forecasts are made multiple steps ahead. Generally, the further out in
time a forecast is made, the more uncertain it is (see, e.g., Hyndman et al., 2008, Chapter 6.2). Our
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proposal is to use pooled estimates of the multi-step-ahead forecast error variances. For example,
σ2

Q is a pooled estimate of σ2
Q1

, σ2
Q2

, σ2
Q3

, and σ2
Q4

.
The third estimator proposed by Athanasopoulos et al. (2017) includes separate variance esti-

mates for each base forecast. This estimator is referred to as hierarchy variance scaling. For the
same reason as before, we differ from Athanasopoulos et al. (2017) by arguing that σ2

Q4
should be

the variance of the errors when, at the end of each year, forecasting the fourth quarter next year,
rather than the variance of one-step-ahead forecast errors for the fourth quarter.

3 Accounting for autocorrelation

3.1 Autocovariance scaling

In a temporal hierarchy, WLS corresponds to ignoring autocorrelation. As the purpose of temporal
aggregation is to exploit important information about a time series at different frequencies, we
argue that potential information in the autocorrelation structure should be included. Therefore,
we extend the ideas of Wickramasuriya et al. (2019) to a temporal hierarchy by proposing four
different estimators of the cross-covariance matrix based on the in-sample base forecast errors.

Our first proposal is to estimate the full autocovariance matrix within each aggregation level,
while ignoring correlations between aggregation levels. We refer to this estimator as autocovariance
scaling. For example, for the temporal hierarchy illustrated in Figure 1, the estimator is

Σacov =



σ2
A 0 0 0 0 0 0

0 σ2
H1

σ2
H1,H2

0 0 0 0

0 σ2
H1,H2

σ2
H2

0 0 0 0

0 0 0 σ2
Q1

σ2
Q1,Q2

σ2
Q1,Q3

σ2
Q1,Q4

0 0 0 σ2
Q1,Q2

σ2
Q2

σ2
Q2,Q3

σ2
Q2,Q4

0 0 0 σ2
Q1,Q3

σ2
Q2,Q3

σ2
Q3

σ2
Q3,Q4

0 0 0 σ2
Q1,Q4

σ2
Q2,Q4

σ2
Q3,Q4

σ2
Q4


.

3.2 Markov scaling

In high-dimensional hierarchies, even with high-frequency data available, it can be difficult to
estimate the autocovariance matrix within each aggregation level without assuming that it has
some special form. Therefore, we also propose an estimator that blends autocorrelation and vari-
ance information, but only requires estimation of the first-order autocorrelation coefficient at each
aggregation level. The estimator is based on decomposing the autocovariance matrix into two di-
agonal variance matrices Λ and a block-diagonal autocorrelation matrix that imposes a first-order
autoregressive structure on the reconciliation errors.

We refer to this estimator as either structural, series, or hierarchy Markov scaling, depending
on which diagonal variance matrix is used. For example, for the temporal hierarchy illustrated in
Figure 1, the series Markov estimator is
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ΣseMarkov = Λ1/2
svar



1 0 0 0 0 0 0

0 1 ρH 0 0 0 0

0 ρH 1 0 0 0 0

0 0 0 1 ρQ ρ2Q ρ3Q
0 0 0 ρQ 1 ρQ ρ2Q
0 0 0 ρ2Q ρQ 1 ρQ

0 0 0 ρ3Q ρ2Q ρQ 1


Λ1/2

svar.

If the models used to generate the base forecasts were perfect, then there would not be any
residual autocorrelation. This is seldom the case in practical applications when forecasting multiple
steps ahead. Yet, if the residual autocorrelation structure is complex and, for example, features
seasonality, then it is probably worthwhile revisiting the model before considering forecast recon-
ciliation. Thus, it seems reasonable to assume that the reconciliation errors can be approximated
by a first-order Markov process.

3.3 Inverse cross-correlation estimation using GLASSO

A higher-order autoregressive structure can be imposed by considering the inverse of the auto-
correlation matrix—i.e., the partial autocorrelation—which has a very simple structure for au-
toregressive processes (Madsen, 2008, Chapter 5). After all, we only need to estimate the inverse
in order to solve (5). Our third proposal is to estimate a sparse representation of the inverse
cross-correlation matrix using the graphical LASSO (Banerjee et al., 2008; Friedman et al., 2008).
Because the LASSO penalty is sensitive to the scale of variables, we estimate the inverse cross-
correlation rather than the inverse cross-covariance matrix to avoid problems caused by the inherent
heteroscedasticity.

We refer to this estimator as either series or hierarchy GLASSO scaling, depending on which
diagonal variance matrix is used. It will become clear from the discussion in Section 4.4 why we
do not introduce a structural version of this estimator. With the series variances the estimator is

Σ−1sGLASSO = Λ−1/2svar ΘΛ−1/2svar ,

where the inverse cross-correlation matrix Θ is found by maximizing the penalized Gaussian log-
likelihood

log det Θ− tr (RΘ)− λ
∑
i6=j

|Θij | . (7)

We follow Yuan and Lin (2007) by omitting the diagonal elements from the penalty. The parameter
R is the empirical cross-correlation matrix and λ ≥ 0 is a regularization parameter that controls
the degree of sparsity in the solution.

For large values of λ, GLASSO scaling is equivalent to scaling by the diagonal variance matrix.
When λ = 0 and Λ = Λhvar, it is equivalent to scaling by the sample cross-covariance matrix,
which can be difficult to estimate, depending on the number of observations available. There exist
several specialized algorithms for finding the solution to the maximization problem (7); however,
the problem is convex and can be solved using standard software for convex optimization, such as
CVXPY (Diamond and Boyd, 2016; Akshay Agrawal and Boyd, 2018).

The GLASSO estimator has several beneficial properties. First, it overcomes the problem of
inverting a potentially singular cross-covariance matrix. Second, it is robust to noise and high
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dimensionality due to the imposed sparsity. Third, contrary to autocovariance and Markov scal-
ing, this estimator allows for information sharing between aggregation levels by accounting for
correlations between forecast errors from different aggregation levels. For example, the forecast
errors for Q1 and Q2 should reasonably be correlated with the forecast error for H1.

3.4 Cross-correlation shrinkage

Wickramasuriya et al. (2019) obtained good results by using a Stein-type shrinkage estimator of
the sample covariance matrix (Ledoit and Wolf, 2004; Schäfer and Strimmer, 2005) when recon-
ciling forecasts in a structural hierarchy. In a similar vein, our final proposal is to consider a
shrinkage estimator. We consider a shrinkage estimator of the cross-correlation rather than the
cross-covariance matrix to avoid problems with heteroscedasticity.

The estimator is based on decomposing the cross-covariance matrix into two diagonal variance
matrices Λ and a cross-correlation matrix Rshrink. We refer to this estimator as either series
or hierarchy shrinkage scaling, depending on which diagonal variance matrix is used. With the
hierarchy variances the estimator is

Σhshrink = Λ
1/2
hvarRshrinkΛ

1/2
hvar,

where the shrinkage estimator of the cross-correlation matrix is

Rshrink = (1− λ)R+ λIn. (8)

R is the empirical cross-correlation matrix and 0 ≤ λ ≤ 1 is a regularization parameter that
controls the degree of shrinkage towards the identity matrix.

When λ = 1, shrinkage scaling is equivalent to scaling by the diagonal variance matrix. When
λ = 0 and Λ = Λhvar, it is equivalent to scaling by the sample cross-covariance matrix.

The shrinkage estimator has the same beneficial properties as the GLASSO estimator. The
difference is that the GLASSO estimator tries to achieve sparsity in the partial cross-correlation
structure, whereas the shrinkage estimator shrinks all cross-correlations uniformly toward zero.
The shrinkage estimator is simpler to implement; but if the partial cross-correlation structure is in
fact sparse, then the GLASSO estimator should produce better results.

4 Empirical results

4.1 Load forecasting

Automated short-term load forecasting is needed for efficient operation of power systems and to
support transactions by participants in deregulated electricity markets (Hahn et al., 2009). For
day-ahead prediction, a weather-based model is typically used. Weather-based models are less
important for intraday horizons, as weather variables tend to change relatively smoothly over
short intervals of time. Moreover, weather forecasts are sometimes not available or only available
with a delay. This prompts consideration of modeling approaches that use only historical load data
(Taylor, 2010, 2012).

In short-term load forecasting, the seasonal Holt–Winters exponential smoothing is a common
choice for modeling seasonality (Taylor, 2003; Gould et al., 2008; Taylor, 2010; Livera et al., 2011;
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Taylor, 2012). Holt–Winters exponential smoothing was extended by Taylor (2003) to accom-
modate intraday and intraweek cycles in intraday data. It is well-suited for electricity-demand
forecasting, as demand has both daily and weekly seasonalities.

Letting p1 and p2 denote the periods of the two seasons, the additive double-seasonal exponen-
tial smoothing method from Taylor (2012) can be presented as the following state-space model:

yt = lt−1 + s
(1)
t−p1

+ s
(2)
t−p2

+ φet−1 + εt, (9a)

et = yt −
(
lt−1 + s

(1)
t−p1

+ s
(2)
t−p2

)
, (9b)

lt = lt−1 + αet, (9c)

s
(1)
t = s

(1)
t−p1

+ γ1et, (9d)

s
(2)
t = s

(2)
t−p2

+ γ2et, (9e)

where εt ∼ N
(
0, σ2

)
and σ2 is a constant variance; yt is the load; lt and s

(1)
t are the state variables

for the level and intraday cycle, respectively; s(2)t is the state variable for the intraweek cycle
remaining after s(1)t is removed; α, γ1, and γ2 are smoothing parameters; and the term involving
φ is an autoregressive adjustment for first-order residual autocorrelation. Taylor (2010) found
that the inclusion of this term greatly improves forecast accuracy. The method assumes the same
intraday cycle for all days of the week and does not include a trend component, as short-term
electricity demand mostly does not have a trend.

4.2 Data

Figure 2: Map showing the situation in the
Nordic region. Sweden is divided into four elec-
tricity price areas: Malmö (SE4), Stockholm
(SE3), Sundsvall (SE2) and Luleå (SE1). Nor-
way currently has five price areas. Denmark is
split into Eastern and Western Denmark. Fin-
land, Estonia, Lithuania, and Latvia are undi-
vided.

We consider hourly load data for 2016 and
2017 from Nord Pool.1 Nord Pool Spot is the
power market for Sweden, Norway, Denmark,
Finland, Estonia, Latvia, and Lithuania. The
day-ahead market is an auction, where power
is traded for delivery each hour of the next day.
The Nord Pool markets are divided into several
bidding areas, as shown in Figure 2. We con-
sider the load in GWh in the four Swedish areas
SE1–SE4. We do not apply a log transforma-
tion to the load data, as it is custom to do,
because it would ruin the summation property
of the hierarchy. We use data from 2016 for in-
sample training, with the first two weeks being
used for initialization, and data from 2017 for
out-of-sample testing.

Figure 3 shows the autocorrelation func-
tions (ACFs) for three different frequencies of
the load data for the Swedish areas in 2016.
Across all frequencies and areas, the load data
is strongly autocorrelated. In Figure 3a, the

1https://www.nordpoolgroup.com/historical-market-data/
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ACFs for the daily load reveal a clear weekly pattern, which is much stronger for SE4 than SE1.
In Figure 3b, the ACFs for the six-hourly load display both a daily and weekly variation. Once
again, the magnitude of the seasonal variation follows the order of the areas with both seasons
being significantly more pronounced in SE4 compared to SE1. The daily and weekly cycles are
also evident from Figure 3c, although the weekly cycle is less pronounced at the hourly frequency.

4.3 Base forecasts

We model the entire temporal hierarchy from the daily frequency at the top to the hourly frequency
at the bottom. With aggregation levels k = 24, 12, 8, 6, 4, 3, 2, 1, the total dimension of the
hierarchy is 60.

Base forecasts at the daily frequency are generated based on exponential smoothing with a
weekly seasonality using the automatic forecasting procedure implemented by Hyndman and Khan-
dakar (2008). If multiple years of data were available for estimation, the models could be extended
to accommodate yearly seasonality. Forecasts at all frequencies are generated using the additive
double-seasonal exponential smoothing method from Taylor (2012). All model parameters are fit-
ted by minimizing the mean squared error of the in-sample one-step-ahead forecasts using the data
from 2016.

We focus on squared errors to be consistent with the objective function in (5). Table 1 shows
the root mean squared error

RMSE =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2, (10)

the root mean squared scaled error

RMSSE =
RMSE√

1
T−m/k

∑T
t=m/k+1

(
yt − yt−m/k

)2 , (11)

where m/k is the sampling frequency per day, and the root mean squared percentage error

RMSPE = 100

√√√√ 1

T

T∑
t=1

(
yt − ŷt
yt

)2

(12)

for base forecasts of one-day-ahead power consumption in the Swedish areas at the different data
frequencies. At the daily frequency, this corresponds to one-step-ahead forecasts, whereas at the
hourly frequency, it corresponds to 24-steps-ahead forecasts, respectively, once per day at the end
of each day. For example, at the hourly frequency the RMSE is an average across the 24 steps
each day across all days in the sample.

The RMSE is much larger for SE3 compared to the other areas, because consumption in this
area is larger. The RMSSE and RMSPE are better suited for comparing the forecast accuracy
for the different areas, since they have the advantage of being scale-independent. The RMSPE is
easier to interpret than the RMSSE, but can only be applied to time series that do not overlap
with zero. The RMSSE is significantly lower in SE3 and SE4 compared to SE1 and SE2.

Looking at the RMSPE, it is evident that load forecasts for SE3 are more accurate, relatively
speaking, compared to the other areas. This is true both in and out of sample. The RMSPE
for SE3 is relatively similar across the different data frequencies, whereas it doubles, for example
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Figure 3: Autocorrelation functions for three frequencies of load data for Swedish areas in 2016.
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In sample (2016) Out of sample (2017)
SE1 SE2 SE3 SE4 SE1 SE2 SE3 SE4

Daily
RMSE 1.12 2.34 8.77 2.89 1.21 2.58 9.66 3.33
RMSSE 0.86 0.86 0.56 0.53 0.90 0.89 0.61 0.59
RMSPE 4.17 4.95 3.61 4.27 4.32 5.39 3.97 4.92
Twelve-hourly
RMSE 0.56 1.17 4.02 1.40 0.56 1.21 3.90 1.46
RMSSE 0.72 0.70 0.48 0.48 0.70 0.73 0.46 0.48
RMSPE 4.32 4.99 3.28 4.14 4.16 5.07 3.22 4.44
Eight-hourly
RMSE 0.44 0.88 3.02 1.05 0.44 0.98 3.15 1.13
RMSSE 0.78 0.73 0.52 0.51 0.76 0.83 0.54 0.53
RMSPE 5.05 5.75 3.72 4.68 4.85 6.06 3.83 5.03
Six-hourly
RMSE 0.36 0.72 2.51 0.85 0.33 0.78 2.62 0.93
RMSSE 0.78 0.74 0.54 0.52 0.72 0.82 0.56 0.56
RMSPE 5.64 6.18 4.07 5.08 4.94 6.39 4.20 5.47
Four-hourly
RMSE 0.25 0.51 1.88 0.62 0.24 0.54 1.92 0.68
RMSSE 0.76 0.76 0.61 0.57 0.73 0.82 0.62 0.61
RMSPE 5.85 6.56 4.49 5.48 5.34 6.62 4.56 5.92
Three-hourly
RMSE 0.19 0.40 1.44 0.50 0.19 0.41 1.48 0.55
RMSSE 0.75 0.75 0.61 0.59 0.72 0.80 0.62 0.64
RMSPE 6.05 6.69 4.58 5.80 5.61 6.73 4.70 6.27
Two-hourly
RMSE 0.14 0.27 0.93 0.33 0.14 0.27 0.96 0.36
RMSSE 0.77 0.75 0.59 0.57 0.72 0.77 0.60 0.62
RMSPE 6.66 6.98 4.48 5.74 6.11 6.94 4.62 6.24
Hourly
RMSE 0.09 0.14 0.46 0.16 0.08 0.14 0.44 0.16
RMSSE 0.84 0.75 0.58 0.54 0.75 0.76 0.55 0.56
RMSPE 8.31 7.46 4.52 5.62 7.39 7.43 4.37 5.94

Table 1: In- and out-of-sample RMSE, RMSSE, and RMSPE for base forecasts of one-day-ahead
power consumption in Swedish areas at different data frequencies.
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In sample (2016) Out of sample (2017)
SE1 SE2 SE3 SE4 Average SE1 SE2 SE3 SE4 Average

Bottom up 18 2 4 0 6 4 −4 −4 −4 −2
Identity −3 −4 −8 −8 −6 −1 −4 −6 −6 −4
Structural −5 −5 −7 −7 −6 −5 −5 −6 −6 −6
Series variance −3 −3 −4 −5 −4 −5 −5 −5 −5 −5
Hierarchy variance −3 −5 −9 −9 −6 −6 −7 −9 −9 −8
Structural Markov −6 −7 −12 −11 −9 −5 −7 −10 −9 −8
Series Markov −6 −6 −10 −10 −8 −6 −7 −10 −9 −8
Hierarchy Markov −7 −9 −23 −20 −15 −8 −11 −21 −19 −15
Autocovariance −11 −12 −26 −23 −18 −10 −14 −25 −22 −18
Series GLASSO −31 −25 −28 −32 −29 −30 −26 −27 −30 −28
Series shrinkage −30 −27 −31 −34 −30 −29 −28 −29 −33 −30
Cross-covariance −39 −38 −57 −53 −47 −35 −41 −53 −48 −44

Table 2: In- and out-of-sample average percentage difference in RMSE between reconciled and
base forecasts of one-day-ahead power consumption in Swedish areas across the aggregation levels.
The last columns show the average across the price areas.

in SE1, when going from the daily to the hourly frequency. It is important to emphasize that
this does not mean that the one-day-ahead forecasts based on hourly data are worse than those
based on daily data, as it will become evident from the next tables. The RMSPE increases when
moving down the hierarchy from the daily level toward the hourly level, with the exception of the
twelve-hourly frequency, where base forecasts, in most cases, are more accurate than at the daily
level, relatively speaking.

4.4 Reconciled forecasts

We follow Athanasopoulos et al. (2017) and the recommendation of Hyndman and Koehler (2006)
by considering the relative root mean squared error

RRMSE =
RMSE

RMSEbase − 1 (13)

when comparing the accuracy of reconciled and base forecasts. A negative entry shows a percentage
decrease in RMSE relative to the base forecast, i.e., improved accuracy.

The results for all price areas and aggregation levels are shown in Appendix A, where the
two-sided Diebold–Mariano test (Diebold and Mariano, 1995) with the modification suggested by
Harvey et al. (1997) is used to compare the accuracy of the reconciled and base forecasts. Most
of the differences in accuracy are statistically significant at the 0.01 level. In all areas, the best
performing approach is to scale by the full cross-covariance matrix. In Appendix B, we compare
forecasts using the relative root mean squared percentage error (RRMSPE) and obtain similar
results. The difference between the RRMSE and the RRMSPE is never more than a few percentage
points.

Table 2 summarizes the average percentage difference in RMSE between reconciled and base
forecast for each price area and across price areas in and out of sample. The in- and out-of-sample
results are very similar. The largest improvements in accuracy are achieved for SE3 and SE4.

Table 3 summarizes the out-of-sample average percentage difference in RMSE between recon-
ciled and base forecast for each aggregation level and across aggregation levels. The daily forecasts
improve the most, while the smallest improvements are at the hourly and twelve-hourly levels. At
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Out of sample (2017)
24 12 8 6 4 3 2 1 Average

Bottom up −10 14 1 −2 −6 −7 −4 0 −2
Identity −16 9 −2 −4 −7 −8 −5 0 −4
Structural −16 8 −3 −6 −9 −10 −7 −2 −6
Series variance −14 9 −3 −6 −9 −9 −7 −2 −5
Hierarchy variance −17 5 −6 −8 −11 −12 −9 −4 −8
Structural Markov −19 5 −6 −8 −10 −11 −8 −4 −8
Series Markov −18 5 −6 −8 −11 −11 −9 −4 −8
Hierarchy Markov −28 −5 −14 −15 −17 −17 −15 −10 −15
Autocovariance −30 −8 −16 −18 −20 −20 −17 −13 −18
Series GLASSO −46 −20 −28 −28 −29 −29 −26 −20 −28
Series shrinkage −47 −22 −29 −30 −31 −30 −27 −21 −30
Cross-covariance −61 −38 −45 −44 −45 −44 −41 −35 −44

Table 3: Average out-of-sample percentage difference in RMSE between reconciled and base
forecasts of one-day-ahead power consumption in Swedish areas for each aggregation level. The
last column shows the average across the aggregation levels.

the twelve-hourly level, reconciled forecasts are only more accurate than the base forecasts when
accounting for both variance differences and autocorrelation.

Bottom up The bottom-up approach, where forecasts made at the hourly frequency are ag-
gregated to all other levels, in general, is not very successful, though it improves out-of-sample
forecasts in some areas at certain frequencies. We did also consider the middle-out and top-down
approaches, but decided to omit the results in order to save space since they are worse than those
using bottom up.

Identity scaling The OLS approach leads to significant improvements of the daily base forecasts
in all areas, but mixed results at the other aggregation levels. This makes sense given that Hyndman
et al. (2011) and van Erven and Cugliari (2015) argued for selecting uniform weights to increase
the importance of forecasting the aggregate.

Structural scaling Structural scaling, where the variance is assumed to be proportional to the
number of forecast errors contributing to each aggregation level, leads to slightly better results
than identity scaling.

Variance scaling Scaling by the estimated pooled multi-step-ahead variance at each aggregation
level of the series in most cases yields slightly worse results than structural scaling. The results
for hierarchy variance scaling—i.e., scaling by the nonpooled variances at each aggregation level of
the hierarchy—are slightly better than series variance and structural scaling.

Markov scaling Hierarchy Markov scaling improves accuracy compared to hierarchy variance
scaling in nearly all cases, which is also reflected in the average improvement in RMSE of 15%.
In most cases it is better than structural and series Markov scaling, especially for SE3 and SE4,
and it is never worse. On average, structural and series Markov scaling is only slightly better than
OLS and WLS. Besides its simplicity, the advantage of structural scaling compared to series and
hierarchy variance scaling is that it does not misestimate the aggregated forecast error variance
by failing to account for autocorrelation. When accounting explicitly for autocorrelation, it is
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important to adequately capture the ratio between the forecast error variances within and across
aggregation levels.

Autocovariance scaling Autocovariance scaling improves forecast accuracy uniformly across all
frequencies and areas, and compared to all of the previous approaches. The simpler approaches have
all struggled to improve accuracy at the twelve-hourly level. The average improvement in RMSE
of 18% both in and out of sample is only slightly better than that of hierarchy Markov scaling. The
large improvements that can be obtained using hierarchy Markov scaling or autocovariance scaling
compared to OLS and WLS show the value of accounting for autocorrelation when reconciling
forecasts.

GLASSO scaling The regularization parameter in (7) is found by doing a grid search over the
values λ = 0, 10−5, 10−4, . . . , 10−1 and comparing the average in-sample improvement in RMSE.
With the series variances the optimal value is λ = 0.01, while for the hierarchy variances the
optimal value is λ = 0. This indicates that a year of hourly observations is sufficient to estimate
the cross-covariance matrix without any need for regularization, as will be further discussed in
the following sections. In Table 5, results are shown for series GLASSO scaling, while hierarchy
GLASSO scaling is equivalent to cross-covariance scaling. Even though it is suboptimal to use the
same regularization parameter for all price areas, this increases robustness of the results. The 28%
average improvement in out-of-sample RMSE is a substantial improvement over autocovariance
scaling.

Shrinkage scaling The regularization parameter in (8) is found by doing a grid search over the
values λ = 0, 0.01, 0.02, . . . , 1 and comparing the average in-sample improvement in RMSE. With
the series variances the optimal value is λ = 0.05, while for the hierarchy variances the optimal
value is λ = 0, i.e., no regularization. In Table 5, results are shown for series shrinkage scaling,
while hierarchy shrinkage scaling is equivalent to cross-covariance scaling. The results using series
shrinkage are very similar to those using series GLASSO scaling.

Cross-covariance scaling Scaling by the full cross-covariance matrix is the best performing
approach in all areas and across all aggregation levels. The greatest improvements in RMSE are at
the daily level, where they range from 52% to 68%. The average improvement in RMSE is 44% out
of sample, with the greatest improvements occurring in SE3 and SE4. In several cases improvements
in forecast accuracy are greater out of sample compared to in sample, which shows the robustness
of the reconciliation approach. The significant improvement that is achieved using cross-covariance
scaling compared to autocovariance scaling emphasizes the importance of capturing dependencies
between forecast errors from different aggregation levels.

5 Simulation study

5.1 Setup

To better understand the differences and advantages of the proposed estimators, we compare their
performance in a simulation study. We simulate data from the same double-seasonal exponen-
tial smoothing model (9) that was used for load forecasting with constant variance σ2 = 0.004;
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Length of training samples in weeks
2 4 13 52

Bottom up 16 [−21; 83] −13 [−33; 22] −15 [−33; 11] −7 [−25; 20]
Identity −12 [−27; 14] −6 [−21; 15] −9 [−21; 5] −13 [−24; 0]
Structural −18 [−27; 1] −20 [−27;−10] −18 [−25;−8] −16 [−22;−4]
Series variance −14 [−31; 19] −24 [−35;−10] −20 [−30;−4] −13 [−24; 3]
Hierarchy variance −17 [−32; 11] −26 [−36;−14] −22 [−30;−9] −15 [−23; 0]
Structural Markov −23 [−37;−6] −18 [−29;−2] −17 [−26;−6] −18 [−25;−8]
Series Markov −26 [−38;−7] −26 [−34;−15] −22 [−30;−12] −19 [−26;−6]
Hierarchy Markov −26 [−40;−8] −26 [−36;−14] −24 [−32;−14] −21 [−28;−10]
Autocovariance 13× 103

[
100; 11× 104

]
−29 [−41;−17] −26 [−35;−15] −23 [−31;−13]

Series GLASSO −19 [−44; 29] −42 [−57;−22] −50 [−61;−33] −49 [−63;−31]
Hierarchy GLASSO −19 [−44; 21] −42 [−59;−17] −52 [−65;−34] −55 [−67;−36]
Series shrinkage −20 [−45; 24] −43 [−57;−24] −51 [−61;−36] −51 [−63;−33]
Hierarchy shrinkage −21 [−44; 17] −41 [−59;−17] −52 [−65;−35] −55 [−67;−38]
Cross-covariance 19× 102

[
34; 59× 102

]
11× 102

[
8; 64× 102

]
−53 [−69;−29] −62 [−74;−41]

Table 4: Average percentage difference in RMSSE between reconciled and base forecasts across
aggregation levels and across the seven-day test period. The numbers in square brackets are the
2.5% and 97.5% quantiles, respectively, for the 1,000 repetitions for each sample length.

smoothing parameters α = 0.14, γ1 = 0.03, and γ2 = 0.08; and autoregressive parameter φ = 0.5.
These are the parameters values that were estimated for SE1.

For each series, after a burn-in period of 500 observations, we simulate 3, 5, 14, or 53 weeks of
hourly observations using the initial values that were estimated for SE1. We discard the first 500
samples to avoid dependency on the initial values. In all cases, the last seven days are withheld
as test set. Using the remaining samples as training data, we compare the performance of the
estimators when forecasting one-day ahead for seven days. We repeat this process 1,000 times for
each sample length.

5.2 Results

Table 4 shows the average percentage difference in RMSSE between reconciled and one-day-ahead
base forecasts across aggregation levels and across the seven-day test period. We consider RMSSE
rather than RMSE or RMSPE, because the scale of the simulated series varies and in some cases
the simulated series overlap with zero. The numbers in square brackets are the 2.5% and 97.5%
quantiles, respectively. For GLASSO scaling results are shown for λ = 0.01 and for shrinkage
scaling results are shown for λ = 0.05. These are the same values that were used in Section 4.4.
Although it is suboptimal to use the same regularization parameters for all sample lengths, this
increases robustness of the results.

With only two weeks of data available for estimation, autocovariance scaling leads to reconciled
forecasts that are 130 times worse than the base forecasts. The high figure itself is meaningless
and only serves as evidence of the sample size being insufficient for estimating the autocovariances.
With the total dimension of the temporal hierarchy being 60, a minimum of 455 observations,
equivalent to 19 days of hourly measurements, are needed in order to estimate the autocovariance
matrix within each aggregation level.2 In comparison, hierarchy Markov scaling only requires 67
observations, which explains why this estimator yields the largest improvements in RMSSE when
only two weeks of data is available. The GLASSO and shrinkage estimators perform somewhere
in between Markov scaling and the WLS estimators, but the confidence intervals are quite wide.

2The number of parameters in a covariance matrix of dimension n is n(n+1)
2

.
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In some cases the shrinkage estimators do very well, while in other cases they do much worse than
the simpler estimators.

With four weeks of data, the autocovariance matrix within each aggregation level can be esti-
mated with reasonable precision, which leads to slightly better results than Markov scaling. Four
weeks of hourly data is not enough to estimate the full cross-covariance matrix, which requires
at least 1830 observations, corresponding to about 11 weeks of hourly measurements. Yet, the
GLASSO and shrinkage estimators are able to significantly outperform autocovariance scaling by
facilitating information sharing between aggregation levels. This clearly shows their advantage
compared to the sample estimator.

With 13 weeks of hourly data available for estimation, cross-covariance scaling yields a similar
average improvement as the GLASSO and shrinkage estimators, although with a wider confidence
interval. This is enough data that forecast accuracy can be improved by more than 50% by
considering both auto- and cross-correlations. The advantage of information sharing leads to
improvements in RMSSE that are twice as large compared to only considering correlations within
aggregation levels.

When one year of hourly data is available for training, the results are fairly similar to those
presented in Section 4.4. Cross-covariance scaling yields the largest improvement in RMSSE, with
the GLASSO and shrinkage estimators not far behind. The amount of data available offsets the
advantages of the GLASSO and shrinkage estimators. Across the different lengths of training
samples, there does not appear to be any significant difference between GLASSO and shrinkage
scaling.

6 Discussion

Many real-life decision problems naturally involve multiple time horizons. For example, in energy
planning, production has to meet expected demand over the next hours, the next day, the next
week, and even longer horizons. It is often beneficial to take into account longer-term forecasts
when making short-term decisions to ensure that decisions made now do not have a negative impact
on future possibilities. Managers who have had to make decisions based on forecasts that were
not coherent will know the issues that this can cause. Optimal decision making requires coherent
forecasts, which is why reconciliation is needed.

As a specific example, consider a combined heat and power plant (CHP) that uses biomass
along with solar thermal collectors and heat pumps. Decisions related to the purchase of biomass
are established one–two years in advance; these contracts are decided based on long-term forecasts
of the heat load and solar thermal production. One–two months before the biomass is actually
consumed, its transportation has to be arranged—often from remote areas. Most CHP plants have
an accumulator tank that can store heat for up to four days. In the Nord Pool areas, the day-
ahead price of electricity depends on, i.a., the wind-power production relative to the load. If the
electricity price is low, it is beneficial to use heat pumps instead of biomass. On an even shorter
time scale, say with a 3–12-hour horizon, the optimal temperature level for the heat supply has to
be decided.

In the example of the CHP plant, if the sum of the short-term forecasts is not coherent with the
longer-term forecast, decisions related to the purchase of biomass become a choice between excess
supply or inability to meet demand. The benefit of using temporal hierarchies for reconciling
forecasts is the significant improvement in forecast accuracy that can be achieved. If forecast
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errors are correlated, it is important to describe the dependencies correctly in the reconciliation
process, since this can be of great importance to the outcome. The resulting forecasts, which
are both coherent and more accurate, are in a format that is already used by decision makers.
Substantially improved forecasts provide a possibility for making better decisions.

Our initial idea was to explore a cross-temporal hierarchy—similar to Kourentzes and Athana-
sopoulos (2019)—which, in addition to coherency across the various forecast frequencies, would
require the sum of forecasts for the four price areas to be coherent with aggregate forecasts. The
intention was to exploit information in the correlation between price areas to improve forecasts
in each of the areas. In our case of load forecasting, however, we found that autocorrelation was
much more important than including information about the structural correlation.

The improvement in forecast accuracy that can be achieved by considering autocorrelation
depends on the data-generating process. There has to be autocorrelation in the forecast errors,
which is often the case in practical applications when forecasting multiple steps ahead. In their
simulation study, Athanasopoulos et al. (2017) considered seasonal, first-order, integrated moving-
average processes. As the memory of a moving-average process is bounded by its order, this is a
case where there is no autocorrelation in the forecast errors.

The temporal resolution of the data is another factor to consider. Athanasopoulos et al. (2017)
applied hierarchies going from annual data at the top to monthly data at the bottom with a
dimension of 28. This means that at least 406 observations, corresponding to 34 years of monthly
observations, are needed in order to estimate all cross-correlations. It is certainly not always the
case that this much data is available for estimation.

In our case, only one quarter of hourly observations was needed in order to estimate the cross-
correlation matrix. However, even with hourly data, if forecasts are made more than one-day
ahead in time, the sample cross-correlation matrix quickly becomes infeasible to estimate. In
settings where limited data is available—or relevant due to stationarity concerns—compared to
the dimension of the temporal hierarchy, the Markov, GLASSO, and shrinkage estimators come
into their own, as evidenced by the simulation study in Section 5.

7 Conclusion

We proposed to consider forecast error autocorrelation when reconciling forecasts in a temporal hi-
erarchy. Our first proposal was to consider the autocovariance matrix within each aggregation level.
Even with high-frequency data available, these can be difficult to estimate. Thus, we proposed
a second estimator that blends autocorrelation and variance information in a Markov structure
that only requires estimation of the first-order autocorrelation coefficient at each aggregation level.
In order to facilitate information sharing between aggregation levels, we proposed a third estima-
tor that uses the GLASSO for estimating a sparse representation of the inverse cross-correlation
matrix across aggregation levels. Our fourth and final proposal was a shrinkage estimator of the
cross-correlation matrix.

We demonstrated the usefulness of the proposed estimators in a simulation study and through
an application to short-term load forecasting in four price areas in Sweden. The simulation study
showed that the best performing estimator depends on the length of the sample available for
estimation. Even in settings with very limited data compared to the dimension of the temporal
hierarchy, forecast accuracy could be improved by considering both auto- and cross-correlation.

By taking account of the autocorrelation structure when reconciling load forecasts, accuracy
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could be improved uniformly across all frequencies and areas. The most accurate forecasts were
obtained when capturing dependencies in forecast errors across aggregation levels, with improve-
ments in RMSE from 23% to 68% out of sample. We argued that the resulting coherent and
significantly more accurate forecasts are likely to yield better multi-horizon decisions.

The forecast reconciliation problem is fundamentally an optimization problem. Considering a
general and flexible formulation based on convex optimization would provide the flexibility nec-
essary to explore other loss functions than the squared error, to add regularization penalties, to
combine structural and temporal aggregation constraints in a cross-temporal hierarchy, or to relax
the aggregation constraints. All of which are matters that should be explored in future research,
but that it is hardly possible to do in the framework of linear regression.
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A RMSE results

In sample (2016) Out of sample (2017)
SE1 SE2 SE3 SE4 SE1 SE2 SE3 SE4

Daily
Bottom up 18∗∗ −4 2 −1 −9∗ −9∗∗ −11∗∗ −10∗∗

Identity −15∗∗ −16∗∗ −14∗∗ −14∗∗ −18∗∗ −14∗∗ −17∗∗ −15∗∗

Structural −14∗∗ −14∗∗ −10∗∗ −10∗∗ −21∗∗ −13∗∗ −15∗∗ −13∗∗

Series variance −9∗∗ −11∗ −6∗ −6 −20∗∗ −11∗∗ −13∗∗ −12∗∗

Hierarchy variance −10∗∗ −12∗ −11∗∗ −11∗∗ −21∗∗ −13∗∗ −18∗∗ −16∗∗

Structural Markov −17∗∗ −18∗∗ −17∗∗ −16∗∗ −22∗∗ −16∗∗ −20∗∗ −19∗∗

Series Markov −15∗∗ −16∗∗ −14∗∗ −13∗∗ −22∗∗ −15∗∗ −19∗∗ −17∗∗

Hierarchy Markov −17∗∗ −19∗∗ −30∗∗ −28∗∗ −24∗∗ −20∗∗ −34∗∗ −31∗∗

Autocovariance −20∗∗ −22∗∗ −33∗∗ −30∗∗ −27∗∗ −23∗∗ −37∗∗ −33∗∗

Series GLASSO −47∗∗ −40∗∗ −40∗∗ −43∗∗ −53∗∗ −42∗∗ −44∗∗ −46∗∗

Series shrinkage −46∗∗ −42∗∗ −43∗∗ −46∗∗ −51∗∗ −44∗∗ −46∗∗ −48∗∗

Cross-covariance −54∗∗ −52∗∗ −68∗∗ −64∗∗ −57∗∗ −57∗∗ −68∗∗ −63∗∗

Twelve-hourly
Bottom up 31∗∗ 13∗ 22∗∗ 13∗∗ 13∗∗ 8∗∗ 20∗∗ 13∗∗

Identity 3 3 6∗∗ 2 5∗∗ 6∗∗ 14∗∗ 9∗∗

Structural 2 2 8∗∗ 4 1 5∗ 15∗∗ 10∗∗

Series variance 5∗ 5 12∗∗ 7∗ 1 6∗ 17∗∗ 11∗∗

Hierarchy variance 4 4 6∗ 2 0 4 11∗∗ 6∗

Structural Markov −1 −1 2 −1 0 3 10∗∗ 5
Series Markov 0 1 4 0 −1 4 11∗∗ 6∗

Hierarchy Markov 1 −3 −12∗∗ −13∗∗ −3 −2 −5 −8∗∗

Autocovariance −5∗∗ −5∗ −15∗∗ −16∗∗ −6∗∗ −5∗∗ −9∗∗ −11∗∗

Series GLASSO −28∗∗ −19∗∗ −19∗∗ −27∗∗ −30∗∗ −17∗∗ −12∗∗ −21∗∗

Series shrinkage −27∗∗ −22∗∗ −23∗∗ −30∗∗ −29∗∗ −20∗∗ −16∗∗ −25∗∗

Cross-covariance −35∗∗ −32∗∗ −50∗∗ −48∗∗ −33∗∗ −36∗∗ −43∗∗ −40∗∗

Eight-hourly
Bottom up 19∗∗ 6 11∗∗ 6∗ 3 −6 3 3
Identity −3∗∗ −2 −2 −2∗ −3∗ −6∗∗ 0 0
Structural −5∗∗ −2 0 −1 −7∗∗ −8∗∗ 0 1
Series variance −2 0 3 1 −7∗∗ −8∗∗ 1 2
Hierarchy variance −3 −2 −2 −3∗ −8∗∗ −10∗∗ −4∗ −2∗

Structural Markov −6∗∗ −4 −4∗∗ −5∗∗ −7∗∗ −9∗∗ −4∗∗ −3∗∗

Series Markov −6∗∗ −4 −3∗∗ −4∗∗ −8∗∗ −10∗∗ −4∗∗ −2∗∗

Hierarchy Markov −8∗∗ −7∗ −17∗∗ −16∗∗ −10∗∗ −15∗∗ −16∗∗ −13∗∗

Autocovariance −11∗∗ −9∗∗ −20∗∗ −18∗∗ −13∗∗ −17∗∗ −20∗∗ −16∗∗

Series GLASSO −33∗∗ −23∗∗ −22∗∗ −27∗∗ −35∗∗ −29∗∗ −22∗∗ −25∗∗

Series shrinkage −32∗∗ −25∗∗ −26∗∗ −31∗∗ −33∗∗ −31∗∗ −25∗∗ −28∗∗

Cross-covariance −41∗∗ −36∗∗ −54∗∗ −51∗∗ −41∗∗ −45∗∗ −51∗∗ −46∗∗

Six-hourly
Bottom up 14∗∗ 2 4 1 6∗∗ −8∗ −5 −3
Identity −3∗ −3 −7∗∗ −5∗∗ 2∗ −7∗∗ −7∗∗ −5∗∗

Structural −5∗∗ −5∗∗ −5∗∗ −5∗∗ −3∗∗ −9∗∗ −7∗∗ −5∗∗

Series variance −3∗ −3 −3 −3∗ −3∗ −9∗∗ −6∗∗ −4∗

Hierarchy variance −4∗ −5∗ −7∗∗ −7∗∗ −4∗∗ −11∗∗ −10∗∗ −8∗∗

Structural Markov −6∗∗ −6∗∗ −10∗∗ −9∗∗ −3∗∗ −10∗∗ −10∗∗ −8∗∗

Series Markov −6∗∗ −6∗∗ −9∗∗ −8∗∗ −4∗∗ −11∗∗ −10∗∗ −7∗∗

Hierarchy Markov −8∗∗ −9∗∗ −22∗∗ −18∗∗ −6∗∗ −15∗∗ −21∗∗ −18∗∗

Autocovariance −11∗∗ −12∗∗ −25∗∗ −21∗∗ −9∗∗ −18∗∗ −25∗∗ −21∗∗

Series GLASSO −33∗∗ −25∗∗ −25∗∗ −29∗∗ −30∗∗ −29∗∗ −26∗∗ −28∗∗

Series shrinkage −32∗∗ −27∗∗ −28∗∗ −32∗∗ −29∗∗ −31∗∗ −28∗∗ −31∗∗

Cross-covariance −42∗∗ −38∗∗ −56∗∗ −51∗∗ −35∗∗ −43∗∗ −52∗∗ −47∗∗

Table 5: In- and out-of-sample percentage difference in RMSE between reconciled and base
forecasts of one-day-ahead power consumption in Swedish areas for different data frequencies.
Differences that are statistically significant at the 0.05 and 0.01 level, as evaluated by the
Diebold–Mariano test (Diebold and Mariano, 1995), are marked with ∗ and ∗∗, respectively.
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In sample (2016) Out of sample (2017)
SE1 SE2 SE3 SE4 SE1 SE2 SE3 SE4

Four-hourly
Bottom up 15∗∗ −1 −5 −5 5∗ −7 −11∗∗ −10∗

Identity 0 −5∗∗ −14∗∗ −11∗∗ 2∗∗ −5∗ −13∗∗ −14∗∗

Structural −3∗∗ −6∗∗ −14∗∗ −11∗∗ −2∗∗ −8∗∗ −13∗∗ −11∗∗

Series variance −1 −5∗∗ −12∗∗ −9∗∗ −3∗∗ −8∗∗ −13∗∗ −10∗∗

Hierarchy variance −2 −7∗∗ −15∗∗ −13∗∗ −3∗∗ −10∗∗ −16∗∗ −14∗∗

Structural Markov −3∗∗ −8∗∗ −18∗∗ −14∗∗ −2∗∗ −9∗∗ −17∗∗ −14∗∗

Series Markov −4 −8∗∗ −17∗∗ −13∗∗ −4∗∗ −9∗∗ −16∗∗ −13∗∗

Hierarchy Markov −5∗∗ −11∗∗ −28∗∗ −23∗∗ −5∗∗ −14∗∗ −27∗∗ −22∗∗

Autocovariance −9∗∗ −13∗∗ −31∗∗ −25∗∗ −8∗∗ −16∗∗ −30∗∗ −25∗∗

Series GLASSO −28∗∗ −26∗∗ −32∗∗ −33∗∗ −27∗∗ −27∗∗ −31∗∗ −32∗∗

Series shrinkage −27∗∗ −27∗∗ −35∗∗ −35∗∗ −26∗∗ −29∗∗ −33∗∗ −34∗∗

Cross-covariance −38∗∗ −38∗∗ −59∗∗ −53∗∗ −34∗∗ −41∗∗ −55∗∗ −49∗∗

Three-hourly
Bottom up 15∗∗ −1 −6 −10∗∗ 5∗∗ −6 −13∗∗ −14∗∗

Identity 2 −4∗ −16∗∗ −15∗∗ 2∗ −4∗ −15∗∗ −15∗∗

Structural −1 −6∗∗ −15∗∗ −15∗∗ −2∗∗ −6∗∗ −15∗∗ −15∗∗

Series variance 0 −5∗∗ −12∗∗ −14∗∗ −2∗∗ −7∗∗ −14∗∗ −15∗∗

Hierarchy variance 0 −6∗∗ −16∗∗ −17∗∗ −3∗∗ −8∗∗ −18∗∗ −18∗∗

Structural Markov −1 −7∗∗ −19∗∗ −18∗∗ −1 −7∗∗ −18∗∗ −18∗∗

Series Markov −2∗ −7∗∗ −18∗∗ −17∗∗ −3∗∗ −7∗∗ −18∗∗ −17∗∗

Hierarchy Markov −3∗∗ −9∗∗ −29∗∗ −26∗∗ −4∗∗ −11∗∗ −28∗∗ −26∗∗

Autocovariance −7∗∗ −12∗∗ −31∗∗ −29∗∗ −7∗∗ −14∗∗ −31∗∗ −28∗∗

Series GLASSO −26∗∗ −25∗∗ −32∗∗ −35∗∗ −25∗∗ −25∗∗ −32∗∗ −35∗∗

Series shrinkage −24∗∗ −26∗∗ −35∗∗ −38∗∗ −24∗∗ −26∗∗ −34∗∗ −37∗∗

Cross-covariance −36∗∗ −37∗∗ −59∗∗ −55∗∗ −32∗∗ −39∗∗ −55∗∗ −51∗∗

Two-hourly
Bottom up 12∗∗ 0 −1 −6∗ 4∗∗ −2 −8∗∗ −10∗∗

Identity 0 −3 −10∗∗ −11∗∗ 3∗ −1 −10∗∗ −11∗∗

Structural −2∗∗ −5∗∗ −10∗∗ −11∗∗ −2∗ −3∗∗ −11∗∗ −11∗∗

Series variance −1∗∗ −4∗∗ −8∗∗ −10∗∗ −2∗∗ −4∗∗ −10∗∗ −11∗∗

Hierarchy variance −2∗∗ −5∗∗ −12∗∗ −13∗∗ −3∗∗ −5∗∗ −14∗∗ −14∗∗

Structural Markov −3∗ −6∗ −14∗∗ −15∗∗ −1 −4∗∗ −14∗∗ −14∗∗

Series Markov −3∗∗ −6∗∗ −13∗∗ −14∗∗ −3∗∗ −5∗∗ −14∗∗ −14∗∗

Hierarchy Markov −4∗∗ −9∗∗ −25∗∗ −23∗∗ −4∗∗ −8∗∗ −24∗∗ −22∗∗

Autocovariance −8∗∗ −11∗∗ −28∗∗ −25∗∗ −6∗∗ −11∗∗ −27∗∗ −25∗∗

Series GLASSO −24∗∗ −23∗∗ −28∗∗ −32∗∗ −22∗∗ −21∗∗ −28∗∗ −31∗∗

Series shrinkage −23∗∗ −24∗∗ −31∗∗ −34∗∗ −21∗∗ −23∗∗ −30∗∗ −34∗∗

Cross-covariance −34∗∗ −36∗∗ −57∗∗ −52∗∗ −29∗∗ −35∗∗ −53∗∗ −48∗∗

Hourly
Identity −8∗∗ −2 −8∗∗ −4∗ −1 2 −1 0
Structural −10∗∗ −4∗∗ −9∗∗ −5∗∗ −4∗∗ −1 −2 −1
Series variance −10∗∗ −4∗∗ −7∗∗ −4∗∗ −4∗∗ −1 −2 −1
Hierarchy variance −10∗∗ −4∗∗ −10∗∗ −8∗∗ −4∗∗ −2 −6∗∗ −6∗

Structural Markov −10∗∗ −5∗ −13∗∗ −9∗∗ −4∗∗ −1 −6∗∗ −4∗

Series Markov −11∗∗ −5∗∗ −12∗∗ −8∗∗ −5∗∗ −2 −6∗∗ −4
Hierarchy Markov −11∗∗ −7∗∗ −23∗∗ −17∗∗ −5∗∗ −5∗ −17∗∗ −13∗∗

Autocovariance −14∗∗ −10∗∗ −26∗∗ −20∗∗ −7∗∗ −7∗∗ −20∗∗ −16∗∗

Series GLASSO −27∗∗ −21∗∗ −27∗∗ −27∗∗ −19∗∗ −18∗∗ −21∗∗ −23∗∗

Series shrinkage −26∗∗ −22∗∗ −29∗∗ −29∗∗ −18∗∗ −19∗∗ −23∗∗ −25∗∗

Cross-covariance −35∗∗ −33∗∗ −55∗∗ −48∗∗ −23∗∗ −30∗∗ −47∗∗ −41∗∗

Table 5: In- and out-of-sample percentage difference in RMSE between reconciled and base
forecasts of one-day-ahead power consumption in Swedish areas for different data frequencies.
Differences that are statistically significant at the 0.05 and 0.01 level, as evaluated by the
Diebold–Mariano test (Diebold and Mariano, 1995), are marked with ∗ and ∗∗, respectively.
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B RMSPE results

In sample (2016) Out of sample (2017)
SE1 SE2 SE3 SE4 SE1 SE2 SE3 SE4

Daily
Bottom up 21 −3 2 1 −5 −10 −10 −8
Identity −15 −16 −14 −13 −17 −16 −17 −15
Structural −14 −15 −10 −9 −20 −16 −16 −14
Series variance −8 −11 −6 −5 −19 −14 −13 −11
Hierarchy variance −9 −12 −11 −10 −20 −16 −18 −16
Structural Markov −17 −18 −17 −15 −21 −19 −21 −19
Series Markov −15 −16 −14 −13 −22 −18 −20 −17
Hierarchy Markov −16 −20 −28 −25 −24 −23 −33 −30
Autocovariance −20 −22 −32 −28 −26 −25 −36 −32
Series GLASSO −45 −41 −41 −43 −50 −44 −44 −46
Series shrinkage −44 −43 −44 −46 −49 −46 −46 −48
Cross-covariance −52 −52 −68 −64 −54 −58 −67 −62
Twelve-hourly
Bottom up 31 10 21 13 14 7 19 12
Identity 1 1 7 3 4 4 13 6
Structural −1 0 8 4 −1 2 13 6
Series variance 3 2 12 7 0 3 15 8
Hierarchy variance 3 1 6 2 −1 1 9 3
Structural Markov −3 −2 2 −2 −2 0 8 1
Series Markov −2 −2 4 0 −3 0 8 2
Hierarchy Markov −3 −5 −11 −12 −5 −6 −7 −10
Autocovariance −7 −8 −15 −15 −8 −8 −11 −13
Series GLASSO −27 −21 −22 −28 −31 −23 −17 −26
Series shrinkage −27 −24 −25 −32 −30 −25 −20 −29
Cross-covariance −34 −34 −51 −49 −33 −37 −45 −43
Eight-hourly
Bottom up 19 2 10 5 5 −4 3 4
Identity −3 −3 −1 −2 −2 −4 1 1
Structural −6 −5 −1 −2 −7 −8 −1 0
Series variance −3 −4 2 0 −7 −8 1 1
Hierarchy variance −4 −3 −6 −5 −8 −10 −4 −4
Structural Markov −7 −7 −5 −6 −7 −9 −4 −4
Series Markov −7 −7 −5 −5 −8 −10 −5 −4
Hierarchy Markov −9 −10 −18 −16 −10 −15 −17 −14
Autocovariance −13 −13 −21 −19 −13 −17 −21 −17
Series GLASSO −32 −25 −26 −30 −35 −31 −25 −27
Series shrinkage −31 −27 −29 −33 −34 −32 −27 −30
Cross-covariance −40 −37 −55 −52 −40 −44 −51 −46
Six-hourly
Bottom up 14 −1 3 0 7 −5 −3 −2
Identity −1 −3 −6 −4 2 −4 −5 −3
Structural −5 −6 −6 −5 −3 −8 −6 −5
Series variance −4 −6 −3 −4 −3 −9 −5 −4
Hierarchy variance −5 −7 −8 −9 −4 −11 −10 −8
Structural Markov −5 −7 −10 −9 −3 −9 −9 −7
Series Markov −6 −8 −9 −9 −4 −10 −10 −8
Hierarchy Markov −9 −11 −21 −19 −7 −16 −21 −18
Autocovariance −13 −14 −25 −22 −10 −18 −25 −20
Series GLASSO −33 −26 −27 −31 −31 −30 −27 −29
Series shrinkage −32 −28 −29 −33 −30 −32 −29 −31
Cross-covariance −41 −38 −56 −52 −35 −42 −52 −46

Table 6: In- and out-of-sample percentage difference in RMSPE between reconciled and base
forecasts of one-day-ahead power consumption in Swedish areas for different data frequencies.
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In sample (2016) Out of sample (2017)
SE1 SE2 SE3 SE4 SE1 SE2 SE3 SE4

Four-hourly
Bottom up 15 −2 −4 −4 7 −4 −9 −6
Identity 2 −3 −11 −8 3 −1 −9 −7
Structural −3 −6 −12 −9 −2 −6 −11 −9
Series variance −1 −6 −10 −8 −2 −7 −10 −8
Hierarchy variance −2 −7 −14 −12 −3 −9 −15 −12
Structural Markov −2 −6 −16 −12 −2 −6 −14 −11
Series Markov −3 −7 −15 −12 −3 −8 −15 −12
Hierarchy Markov −5 −11 −26 −21 −5 −13 −25 −20
Autocovariance −9 −13 −29 −24 −8 −15 −29 −23
Series GLASSO −27 −25 −32 −32 −27 −27 −31 −31
Series shrinkage −26 −26 −34 −35 −26 −29 −33 −33
Cross-covariance −36 −37 −58 −53 −33 −39 −54 −48
Three-hourly
Bottom up 16 0 −5 −8 6 −2 −10 −10
Identity 5 −1 −13 −11 3 1 −12 −10
Structural 1 −4 −13 −12 −1 −4 −13 −12
Series variance 1 −4 −11 −12 −2 −5 −12 −12
Hierarchy variance 0 −5 −15 −15 −2 −6 −16 −15
Structural Markov 1 −4 −16 −15 0 −3 −16 −14
Series Markov 0 −5 −16 −15 −2 −5 −16 −15
Hierarchy Markov −2 −8 −26 −24 −3 −10 −26 −23
Autocovariance −6 −11 −30 −27 −7 −13 −30 −26
Series GLASSO −24 −23 −32 −35 −25 −25 −31 −33
Series shrinkage −23 −24 −34 −37 −24 −26 −33 −35
Cross-covariance −34 −35 −58 −54 −31 −37 −54 −49
Two-hourly
Bottom up 13 0 −1 −4 5 0 −7 −7
Identity 3 0 −8 −8 3 2 −8 −7
Structural −1 −3 −9 −9 −1 −2 −10 −10
Series variance −1 −3 −7 −8 −2 −3 −9 −9
Hierarchy variance −1 −5 −12 −13 −2 −5 −14 −13
Structural Markov −1 −2 −13 −12 −1 −2 −13 −12
Series Markov −2 −5 −12 −12 −2 −4 −13 −12
Hierarchy Markov −3 −7 −23 −21 −3 −8 −23 −21
Autocovariance −7 −10 −26 −24 −7 −11 −27 −23
Series GLASSO −22 −21 −29 −32 −22 −22 −29 −30
Series shrinkage −22 −22 −31 −34 −21 −23 −31 −33
Cross-covariance −32 −34 −56 −52 −28 −34 −52 −47
Hourly
Identity −7 1 −7 −3 −1 3 −1 0
Structural −10 −3 −8 −5 −4 −2 −3 −3
Series variance −9 −3 −6 −4 −5 −2 −3 −3
Hierarchy variance −10 −4 −10 −8 −5 −3 −7 −6
Structural Markov −9 −2 −12 −8 −4 −1 −6 −5
Series Markov −10 −4 −11 −8 −5 −3 −7 −6
Hierarchy Markov −11 −6 −22 −17 −5 −6 −17 −14
Autocovariance −14 −9 −25 −20 −8 −9 −21 −17
Series GLASSO −26 −20 −27 −27 −19 −20 −23 −24
Series shrinkage −25 −21 −29 −30 −19 −21 −25 −26
Cross-covariance −34 −31 −54 −48 −23 −30 −47 −42

Table 6: In- and out-of-sample percentage difference in RMSPE between reconciled and base
forecasts of one-day-ahead power consumption in Swedish areas for different data frequencies.
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