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Abstract This report consists of two parts. In the first a spectral tensor model
of neutral atmospheric surface layer turbulence is developed. The model is validated
trough comparison with second order turbulence statistics from the Great Belt Coherence
Experiment, the Lammefjords Experiment and wind tunnel data from Danish Maritime
Institute. Based on the spectral tensor an efficient and simple algorithm for simulation
of three-dimensional wind fields is generated. The simulation is well suited for load
calculation on bridges, wind turbines and other engineering structures. The spectral
tensor is also used to estimate errors in momentum flux measurements close to the ground
due to displacement of the sensors of vertical and horizontal velocity fluctuations.

In the second part mathematical tools are developed to determine how long a time
series of a turbulent signal must be to estimate covariances and higher order moments
with a specified statistical significance. Both systematic and random errors are treated.
It is demonstrated theoretically, as well as experimentally with aircraft data from the
convective boundary layer over the ocean and over land, that if the time series are
assumed to be Gaussian the random errors are underestimated. A skewed model process
gives better estimates of the random error. The tools are used in the convective boundary
layer to show that the systematic flux and flux gradient errors can be important if fluxes
are calculated from a set of several short flight legs or if the vertical velocity and scalar
time series are high-pass filtered.

This thesis is submitted to the University of Aalborg in partial fulfillment of the
requirements for the PhD-degree.
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General introduction

This thesis consists of two parts. The first is focused on the properties of atmospheric
turbulence of importance for load calculation on engineering structures. This accom-
plished by modeling of the so-called spectral tensor, i.e., the 3 by 3 covariance matrix
of Fourier components of the three components of the velocity field. From this tensor
the one point spectra and two point cross spectra can be derived. The second part is
concentrated on the statistics of fluxes, variances and higher order moments measured
in the atmosphere. The theory can be used to decide how long a time series must be to
estimate moments of a turbulent quantity with a specified statistical error.

Most of the material in this thesis appears as articles accepted for publication in
Journal of Fluid Mechanics, J. Atm. Ocean. Tech. and J. Geophys. Res.

Part I is divided into two parts. In Part TA T model the spatial structure of atmospheric
surface layer turbulence at high wind speeds. I found the the basic idea of the model
reading Townsend’s The Structure of Turbulent Shear Flow (1976): When wind speeds
are high the buoyancy forces will be small (neutral stratification) and shear dominates
the flow. The interaction of shear and turbulence is then modeled by the linearized (i.e.
the Reynolds stress terms are neglected) Navier-Stokes equation without any buoyancy
term. In the atmosphere the eddies that buffet engineering structures are generally much
larger than the viscous scales, so molecular viscosity is also neglected in the linearized
Navier—Stokes equation. To simplify the mathematics the atmospheric surface layer wind
profile is assumed to be approximately linear. This approximate equation of fluid motion
is assumed to describe how turbulence is distorted or how ‘eddies’ are stretched by the
shear (for a mental picture of this, see figure IA.2a & b on page 18).

At some instant, however, the stretched eddies will break up into smaller and presum-
ably more isotropic eddies. These events cannot be described by the linearized equation
so we have to use our intuition to model what is going on. I imagine that a particular
eddy is stretched by the linear shear until it breaks up and ceases to exist. It is difficult
to give a precise definition of an eddy and the concept of eddy lifetime may seem even
more hazy. In the inertial subrange, however, it is possible from dimensional arguments
to associate a time scale (‘eddy lifetime’, 7(k)) to a particular eddy size (or inverse wave
number, k71). Outside the inertial subrange, i.e. at larger scales, the dependence of
lifetime on size becomes less obvious and different alternatives must be considered (see
figure IA.3 on page 19).

The simplified Navier-Stokes equation gives the time evolution of the spectral com-
ponent ®;; as a function of wavevector k and time ¢. As initial conditions I choose the
isotropic von Karman tensor, described by a length scale L and the spectral multiplier in
the inertial subrange ae3. The solution of the simplified fluid equations is combined with
the consideration about eddy lifetime and the initial conditions to postulate a stationary
spectral tensor for neutral surface layer turbulence as

‘I’ij = (I)ij (k, T(I’C)) . (IABZ)

This means that small eddies with short lifetime are hardly distorted by the (mean) shear
and are well described by the isotropic von Kdrmén tensor, while larger eddies with longer
lifetimes will become stretched and anisotropic, because their lifetime is comparable to
or larger than the inverse shear rate. Some (among them Leif Kristensen, Risg and Larry
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Cornmann, NCAR) have suggested as an improvement to (IA.3.2) to time average the
time dependent solution in order to get a stationary solution. This could for example be
done by assuming a scale dependent turbulent viscosity. Since the linearization already
is crude, 1 do not think such a refinement would improve the mode] significantly, but it
is left to be tested.

with some parameters to be determined from experimental data. The shape of 7(k), the
eddy lifetime as a function of size, is fixed but this function has to be multiplied by a
dimensionless parameter I'. Secondly, a turbulence length scale I, determines the initial
isotropic von Kérman turbulence, and finally the parameter act is the spectral multiplier
in the inertia] subrange. The three parameters I', I and ae? are obtained by fitting the
model to the spectral measured in one point. This is done for the Great Belt Coherence
Experiment in figure IA.7 (page 29), the Lammefjord Experiment in figure IA.10 (page
33) and for a boundary layer wind tunne] in figure IB.10 (Page 65). Once the parameters
are extracted the two point statistics, such ag coherences and phases, are predicted as
shown on figure IA.8 for the Great Belt (page 30) and on figures IB.14 — 16 for the wind
tunnel measurements (p. 70 - 72).

again is larger than that of the vertical fluctuations. Finally, the correlation between lon-
gitudinal and vertical fluctuations is negative as it should be in the surface layer. The
ratios of all these statistics depend only on I', not on L or asg, and I’ can be adjusted
to fit the ratios well.

The analysis so far has been focused on the shear. Julian Hunt, as editor of Journal
of Fluid Mechanics, was uncomfortable with the absence of the surface/ground in the
model. One can argue that the scale I is dictated by the presence of the ground, but

complications shadow the gain (see §IA.B.2). Hunt and L. Kristensen gave independently
of each other the fruitfy] suggestion to try different lifetime models outside the inertial
subrange where I in the first version of the paper (= Part IA) simply extrapolated the
inertial subrange lifetimes to smaller wavenumbers.

Part IA originated in an attempt to understand the data obtained in the Great Belt
Coherence Experiment (Mann, Kristensen & Courtney, 1991). The tensor model of Kris-
tensen et al. (1989) was first invoked. They postulate a simple spectral tensor assuming
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the symmetry group (IA.2.15) and simple k = |k| dependencies of some functions de-
scribing the tensor. From the tensor model Kristensen et al. (1989) demonstrate an
analytic relation between models of the one point spectra and the tensor. Each of the
three one-point spectra (longitudinal, transversal and vertical) is determined by three
parameters, which are found from observations. Although having some success for the u-
and v-coherences it appeared immediately that the w-coherence was very badly modeled.
Several attempts were done to improve the model. More parameters were introduced in
the one point spectral models so they matched the measurements perfectly. However,
the cross-spectrum between u and w had to be zero because of the assumed symmetries
and the coherences were still not satisfactorily predicted. I also tried some axisymmet-
ric tensor models (Chandrasekhar 1950) but it soon appeared that not symmetries, but
the rudimentary dynamics as presented in Part IA could model the spatial structure of
sheared turbulence.

Once the spectral tensor models of Part IA proved useful in predicting the spatial
structure from the Great Belt measurements it was tested on the Lammefjord Experi-
ment (Courtney 1988, LAMEX). LAMEX was ideally suited for validation of the models
because it had nine anemometers in a plane perpendicular to the prevailing wind di-
rection. This comparison (see §IA.4.5) shows that for some second order statistics the
blocking by the surface may be important.

The models in Part IA naturally leads to the three applications presented in Part IB.
The first application pursues the simple idea of simulating a stochastic process from its
spectrum assuming Gaussianity. An example of the resulting fields is shown in figure IB.4
on page 57 where ‘eddies’ are stretch in the direction of the mean wind field and tilted by
the shear. Engineers at the Test Station for Wind Turbines at Risg are now beginning
to use the simulation for load calculations on wind turbines. To test the simulation they
have compared wind fluctuations measured at the leading edge of a rotating blade to
the simulation with good results (Kretz et al. 1994). In the future I hope to apply the
simulation to the design of bridges in cooperation with Danish Maritime Institute.

The second application in Part IB is a part of a project, still in the stage of measuring
and data analyzing, about flux measurements, both scalar and momentum, with displaced
sensors. When the sensors of vertical velocity and the scalar or horizontal velocity are
not co-located one cannot be sure that the eddy-correlation technique gives the right
fluxes. I make predictions about the momentum flux attenuation or enhancement due
to u- and w-sensor not being co-located. The corrections are only relevant close to the
ground.

The last application shows that the tensor describes the turbulence in the new, wide
boundary layer wind tunnel at Danish Maritime Institute well. This is useful when
predicting the loads on full-scale bridges from wind tunnel model measurements.

In Part II mathematical tools are developed to determine how long a time series of
a turbulent signal must be to estimate covariances and higher order moments with a
specified statistical significance. For a given averaging time 7' there is a systematic
difference between the true flux or moment and the ensemble average of the time means
of the same quantities. This difference, the systematic error, is a decreasing function of T
tending to zero for T' — oo. The variance of the time mean of the flux or moment, the so-
called error variance, represents the random scatter of individual realizations which, when
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T is much larger the integral time scale 7 of the time series, is also a decreasing function of
T. The tools developed here makes it possible to assess the minimum value of T necessary
to obtain systematic and random errors smaller than specified values. Assuming that the
time series are either Gaussian processes or skewed processes derived from a Gaussian,
both with exponential correlation functions, expressions for the systematic and random
errors are obtained. These expressions show that the systematic error and the error
variance in the limit of large T' are both inversely proportional to 7" which means that
the random error, i.e. the square root of the error variance, will in this limit be larger
than the systematic error. We demonstrate theoretically, as well as experimentally with
aircraft data from the convective boundary layer over the ocean and over land, that the
assumption that the time series are Gaussian leads to underestimation of the random
errors, while derived processes with more realistic skewnesses and kurtoses give better
estimates. For example, compared to the Gaussian process, one has to measure twice as
long for a time series with the typical skewness for scalars in the convective boundary
layer in order to obtain a specified random error of the variance measurement.

The project was started a long time ago by Donald H. Lenschow (NCAR) and Leif
Kristensen (Lenschow & Kristensen 1990) who conceived many of the basic ideas of Part
IIA. The Lenschow & Kristensen (1990) paper only gives an asymptotic analysis in the
sense that the length of the time series T' is assumed much larger than the integral scale
T of the time series, and they also assume the time series to be Gaussian. In addition,
they obtained a wrong result for the random error of the third order moment. My
contribution to the project is the non-asymptotic analysis, i.e. T is not assumed much
larger than 7, the general formulation of the asymptotic analysis (§IIA.A and §IIA.B)
and the investigation of the skewed processes. The data.analysis and the comparison
with theoretical expression were also carried out by me.

The paper ‘How long is long enough when measuring fluxes and other turbulence
statistics?’ (= Part ITA without the appendices) will appear in the august 1994 issue of
Journal of Atmospheric and Oceanic Technology. The appendices A and B (p. 100 and
102) appear in Lenschow, Mann & Kristensen (1993). Appendix C which concerns errors
of skewness and kurtosis, or normalized third- and fourth-order moments, of atmospheric
time series appears here for the first time.

Part IIB applies the results of Part ITA to airborne flux and flux gradient measurement
in the convective boundary layer. Part IIB has been provisionally accepted by Journal
of Geophysical Research. The systematic and random errors are estimated as functions
of the length of a flight leg or of the cut-off wave length of a high pass filter, which is
often used in analysis of airborne measurements.
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PART IA:
The spatial structure of neutral atmospheric
surface-layer turbulence

By JAKOB MANN
Risg National Laboratory, 4000 Roskilde, Denmark

(Accepted for publication in Journal of Fluid Mechanics)

Modelling of the complete second order structure of homogeneous, neutrally stratified
atmospheric boundary-layer turbulence, including spectra of all velocity components and
cross-spectra of any combination of velocity components at two arbitrarily chosen points,
is attempted. Two models based on Rapid Distortion Theory (RDT) are investigated.
Both models assume the velocity profile in the height interval of interest to be approx-
imately linear. The linearized Navier-Stokes equation together with considerations of
‘eddy’ lifetimes is then used to modify the spatial second order structure of the turbu-
lence. The second model differs from the first by modelling the blocking by the surface
in addition to the shear. The resulting models of the spectral velocity tensor contain
only three adjustable parameters: A length scale describing the size of the largest en-
ergy containing eddies, a non-dimensional number used in the parametrization of ‘eddy’
lifetime, and the third parameter is a measure of the energy dissipation.

Two atmospheric experiments both designed to investigate the spatial structure of
turbulence and both running for approximately one year are used to test and calibrate
the models. Even though the approximations leading to the models are very crude they
are capable of predicting well the two-point second order statistics such as cross-spectra,
coherences and phases, on the basis of measurements carried out at one point. The
two models give very similar predictions, the largest difference being in the coherences
involving vertical velocity fluctuations, where the blocking by the surface seems to have
a significant effect.

1. Introduction

Knowledge of the turbulent atmospheric wind field has become important in calcula-
tion of dynamic loads on some spatially extended structures, such as large bridges, towers
and wind turbines. For many of these structures the cross-spectra of wind fluctuations at
different points on the structure are paramount to the estimation of dynamic wind loads.
Under some simplifying circumstances the spectrum of the modal forces on the structure
can be written as weighted integrals of the cross-spectra. The weights include modal am-
plitude and drag or lift coefficients at different points of the structure (Davenport 1977).
For more complicated structures with moving parts or in case of non-linear structural
responses there is not a similarly simple relation between spectral characteristics of the
flow and the forces. However, also in these cases the cross-spectra are important for the
description of dynamic loads.

Risg-R~727(EN) 11
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For some structures the streamwise wind component of the turbulent flow is impor-
tant while for others the vertical velocity fluctuations give rise to loads. There may
even be structures where combinations of velocity fluctuations in different direction at
different points are of importance. It is therefore desirable to have a unified description
of the complete two-point second order structure of the turbulence, i.e. cross-spectra of
arbitrary wind components at two arbitrarily chosen points.

Many experiments have been carried out in order to measure the spectral characteris-
tics of the turbulence at the lowest ~ 100 meters of the atmosphere (Panofsky & Dutton
1984). Most reported observations concern one-point spectra and there is a general
agreement on the shapes of these, except at the lowest frequencies. In this paper we shall
investigate two models of the spectral velocity tensor, ®,;(k), for horizontally homoge-
neous, atmospheric surface-layer turbulence for neutral stratification, which prevails at
high wind speeds.

The basis of the models is rapid distortion theory (RDT), which implies a linearization
of the Navier-Stokes equation. The models combine RDT with considerations about
eddy lifetimes. The difference between the two models is that the latter in addition
to the effects of shear also tries to take into account the blocking by the surface by
inhomogeneous RDT (Hunt & Graham 1978; Gartshore et al. 1983; Lee & Hunt 1989)
(see figure 2). The first model which only regards a uniform shear is abbreviated Us,
the second US+B.

Due to the difficulties in solving the Navier-Stokes equation the physical and mathe-
matical approximations are quite crude. Therefore, the model has been calibrated and
checked with data from two large experiments. In the first, turbulence was measured
over water in connection with estimation of wind loads on what is going to be the
world’s largest suspension bridge (Mann, Kristensen & Courtney 1991; Larsen, 1992).
The second experiment investigated turbulence structure over a rural area in Denmark
in connection with wind loads on horizontal axis wind turbines (Courtney 1988).

In §2 we define the notation, discuss symmetries of different tensor models and briefly
describe the isotropic tensor with the von Kérmén energy spectrum on which the models
in §3 are based. Then in §3 we present the tensor models which have only three parame-
ters: A length scale, a constant connected to the ‘lifetime’ of the eddies, and a measure of
the energy dissipation. Finally, in §4, we compare the two models with data by adjusting
the three parameters to fit the one-point spectra and predicting the measured two-point
Cross-spectra.

2. Preliminaries
We present the basic definitions and notation together with some properties of the

isotropic tensor which are needed.
2.1. Definitions

The turbulent velocity field i(z) is assumed to be incompressible, and the fluctuations,
u(z) = a(x) — U(z), about the mean wind field, U(x), are, except for the model in §3.3,
homogeneous in space. Therefore the covariance tensor

Rij(r) = (ui(2)uj(z + 7)), (2.1)

12 Risp-R-727(EN)
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where ( ) denotes ensemble averaging, is only a function of the separation vector r.
From (2.1) it follows that

Rij(r) = Rji(—) (2.2)
For the components of the position vector in space, € = (21, z2, x3), we shall often use
(z,y,2) or (Az,Ay,Az) to denote position differences and for the components of the
velocity fluctuations, w = (u1,ug,us), we sometimes use (u,v,w). Some assumption of
homogeneity is unavoidable if we want the mathematics to be relatively simple. In this
paper we model the Fourier transform of (2.1), the spectral velocity tensor:

1
(2m)?
where [dr= [7_ [ [* dridrydrs. Denoting complex conjugation by *, we see that
(2.2) implies that ®;; = ®7,, i.e. the tensor is Hermitian.

Not only the Fourier transform of the covariance tensor is of interest but also the
Fourier transform of the velocity field itself. Since the stochastic velocity field is not
square integrable over all physical space we can represent the field in terms of a general-
ized stochastic Fourier-Stieltjes integral:

u(z) = / e *dZ(k) (2.4)

(k) = /Rij (r) exp(—ik - r)dr, (2.3)

where the integration is over all wave-number space (Batchelor 1953). From homogeneity
of the velocity fluctuations it follows that the stochastic vector field Z(k) has uncorrelated
increments, i.e. (dZ;(k')dZ; (k")) = 0 for k' # k". The process Z is connected to the
spectral tensor by

(d2; (k)dZ; (k)

dkydkodks
which is valid for infinitely small dk;i. The representation, (2.4), may also form the
basis for a numerical simulation of a turbulent wind field assuming the stochastic vector
field Z(k) to be Gaussian and to have independent increments. A good introduction to
the spectral tensor and its physical significance may be found in Tennekes and Lumley
(1972).
An alternative to the spectral tensor is the set of all cross-spectra

= &, (k) (2.5)

1 o0
Xij(k1, Ay, Az) = oy / R;;(z, Ay, Az)exp(—ik z)dz (2.6)
T Jeo

which contains the same information and which is most often used in practical applica-
tions, such as estimation of loads on structures. The connection between the components
of the spectral tensor and the cross-spectra is

Xij(klv Ay, AZ) = / @U(k) exp(i(kgAy + kgAZ))ko_ (27)

where [dk; = [Z_ [% dkodks (Lumley 1970, chap. 4).

1 Other widely used ways to represent the velocity field are either as a Fourier series assuming
the field to obey cyclic boundary conditions on a box in space much larger than the scales of
interest (Townsend 1976), or assuming the velocity field to vanish outside a large box. The
mathematical differences of these approaches are not of interest here.

Risg-R-727(EN) 13
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FiGURE 1. Coordinate system with the linear shear profile (2.13) shown along the z-axis. The
vector v is the transversal component at the point (0,0) and w is the vertical component at (z, y)
of a turbulent velocity field. The vectors v’ and w’ are the same components after a rotation of
180° about the y-axis of the field.

Besides the cross-spectrum the coherence or spectral coherence

x5 (1, Ay, Az)? .
coh;;(ky, Ay, Az) = no sumimation 2.8
i ) Fi(k1)Fj(k1) ( ) (2:8)
where F;(k1) = xi:(k1,0,0) (no summation) is the one-point spectrum, is often reported
in the literature. Sometimes the coherence is defined as the square root of the expression
above. The phase, ¢;;, is defined as

Xij(k1, Ay, Az) =
and we note that from (2.7) and ®;; = @7, we get @;;(k1, Ay, Az) = —p;i(ky, — Ay, —Az).

According to the definitions used here the (co-)variances can be expressed as

(i) = (us(@)u; (@) = /

—o0

Xij (K1, Ay, Az)| exp (s (k1 , Ay, Az)) (no summation) (2.9)

[e0}

ij(lﬁ)dkl =/‘I’1J(k)dk (210)

With these conventions the (cross-)spectra xi;(k1) = x.;(k1,0,0) are often called two-
sided.

2.2. Symmetries

From symmetries of the spectral tensor it is possible to determine if some cross-spectra
are real, purely imaginary or zero. Furthermore, they can be exploited in the numerical
calculation of x;;(k1) from @,;(k).

We define the (second order) symmetry group of a turbulent field as the group of
reflections and rotations of the space which leaves the statistics of the turbulent field
unchanged. More precisely the symmetry group of a (stochastic) turbulent field is the
subgroup of transformations 7 in the group of all orthonormal transformations in R for
which the second order statistics of u;(z) are the same as T;;u;(Tx) (summation over
repeated indices is understood). For the covariance tensor this means that

Rij(r) = (ui(z)u;(z + 7))
14 Riss-R-727(EN)
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= (Tilul(Tw)Tjkuk(Tm + T'I‘)) = Tille(TT)Tjk (2.11)

for transformations in the symmetry group. Since the absolute value of the determinant
of T is one we get, using the definition (2.3), for the spectral tensor

8;(k) = Tu®uw (T k) Tk (2.12)

where T* is the adjoint of T (i.e. the transposed matrix).
For the models developed in §3 the mean wind field is assumed to be well represented
by a uniform shear with the flow in the z;-direction;

Ule) = (a(a)) = = e, (213

and the fluctuations are distorted by this shearf. The following symmetries apply to this
situation: Firstly, for both the US and US+B models, there must be left-right symmetry
(since we ignore the rotation of the of the Earth). Secondly, the US model is unaffected
by a rotation of 180° about the zs-axis and thus, ignoring the effect of gravity, the
fluctuating field has this symmetry. Therefore, the symmetry group for the US model
consists of four elements:

1 0 0 -1 0 0
o -1 0 |,lo 1 o0 |, (2.14)
0o 0 1 0o 0 -1

where / is the identity matrix. From the last element, —/, it follows from (2.12) and (2.3)
that @ is real and since it is Hermitian it is also symmetric. From the definition (2.6)
and (2.11) we get, using the third element of the symmetry group, that x.;(k1,y,0) is
purely imaginary for {i,5} = {1,2} or {2,3} and real otherwise. The case {7,j} = {2,3}
is shown in figure 1. The statistics of the turbulent field must be unchanged after a
rotation of 180° about the y-axis, i.e. {vw) = (v'w') or Roz(x,y,0) = —Raz(—z,y,0).
From this relation and (2.6) it follows that the cross-spectrum x23(k1, Ay,0) is purely
imaginary or equivalently that ¢23(k1, Ay,0) = £90°. An example of a measured phase
is shown in figure 9. Similarly, using the second element of the symmetry group one can
prove that x,;(k1,0, Az) is zero for {i,5} = {1,2} or {2,3}.

It should be noted, that the third (and thereby also the last) element in the symmetry
group is in fact only approximately valid in the neutral atmospheric boundary layer since
the velocity profile is not linear but rather logarithmic because of the presence of the
surface of the Earth. We therefore expect a model based on this symmetry group only
to be valid for eddies of linear dimension smaller than the length over which the shear
changes appreciably. A theory based on a logarithmic profile would be too complicated
mathematically for us to deal with. (see Hunt et al. (1989) for an analysis of correlations
and length scales in this case.) As a compromise we introduce the US+B model in
§3.3 which also has uniform shear but breaks the 180° symmetry about the y-axis by
modelling the blocking by the surface.

Related to the non-linear velocity profile a non-zero skewness of the w-component
would also show that the 180° rotation about the y-axis is not a perfect symmetry.
Measurements of S,, = (w3> /o3 in the neutral surface layer from the Kansas experiment

t For neatness, we have here chosen U(o) = 0. We could have chosen, say, U(o) = Upey; it

is just a matter of defining of the origin of the z-axis. The theories presented in §3 (US) only
depend on the shear, not on the mean wind speed at the origin.
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gives values between 0.1 and 0.2 (Izumi 1971) with higher values to the unstable side
and lower values around zero to the stable side. We measure the skewness, S, to be
0.27 and —0.12 for the Great Belt Coherence Experiment (§4.2) and LAMEX (§4.5),
respectively. Large Eddy Simulations of the neutral boundary layer give small negative
skewnesses close to the surface (C.-H. Moeng, 1993, private communication), however, as
pointed out by Moeng, in the surface layer LES may not resolve the motions sufficiently
to predict the skewness. These limitations of LES have been discussed in Schmidt and
Schumann (1989).

The group of symmetries of azisymmetric turbulence is all rotations about the axis
of symmetry together with reflections in planes containing the axis and in the plane
perpendicular to the axis. A model of axisymmetric turbulence has been developed by
Chandrasekhar (1950) (also described in detail by Sreenivasan and Narasimha, 1978) and
if the axis is vertical it is thought to give a good representation of convective turbulence
without shear. However, vertical axisymmetry implies 02 = ¢ which is not observed for
atmospheric surface layer turbulence at high wind speeds.

Inspired by the axisymmetric tensor Kristensen et al. (1989) proposed a spectral tensor
model with the following symmetry group:

#1 0 0
0 +1 0 (2.15)
0 0 #1

By introducing 7 independent parameters defining various functions in their model Kris-
tensen et al. could fit Fy(k1), Fa(ky) and F3(k1), the measured one-point spectra of along
wind transversal and vertical wind fluctuations, respectively, fairly well and thereby alsc
giving the right proportions of the variances and the length scales of all three compo-
nents. The calculated coherences, however, generally overestimated the measured coher-
ences when the distance between the anemometers was not small compared to the height
above the surface. Furthermore, reflection in the horizontal plane which is an element in
(2.15) implies x13(k1,0,0) = 0 and ¢;1(k1,0, Az) = 0 which is not supported by data.

2.3. Taylor’s hypothesis

Usually Taylor’s hypothesis is used to convert measured time series into ‘space series’.
When the shear is zero the mean speed at all points in space is the same and the hy-
pothesis can be straightforwardly applied to interpret two-point time spectra as space
cross-spectra. When the shear is not zero, however, Taylor’s hypothesis is not so easily
applicable. Consequently it will be used heuristically as follows: Consider two points z
and xy with z; —x; perpendicular to U(x). Simultaneously measured time series @(x1, t)
and @(xzz,t) are interpreted as the wind field along two lines in space: @(x; — U,,t,0)
and @(xy — Upn,t,0), where U, = (U(x1) + U(xz2))/2. The more direct use of Taylor’s
hypothesis, i.e. interpreting the time series as @(x; ~ U(z;)t,0) and @(xze — U(x2)t, 0),
would obviously be wrong and it would violate the assumption of homogeneity.

2.4. The isotropic tensor with the von Kdrmdn spectrum

The symmetry group of isotropic turbulence is simply all rotations and reflections in R3.
As argued in §2.2 the spectral tensor may be assumed to be real and symmetric because
point reflection with respect to the origin, —/, is an element in the symmetry group.
In the theory of isotropic turbulence the mean field is assumed to be constant, i.e. no
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shear. Furthermore, if the flow is assumed to be incompressible the spectral tensor can
be written as
= %%7) (6:5K% — kik;) (2.16)
where E(k)dk is half the variance of the wind velocity fluctuations whose magnitude of
the wave vector is in the range (k, k + dk), as it can be seen by integrating ®;;(k) over
a spherical shell with constant k.

Von Kérmén (1948) has suggested the following form of the energy spectrum

(Lk)*
(1+(Lk)2)%
where ¢ is the rate of viscous dissipation of specific turbulent kinetic energy and L is a

length scale. The empirical value of a is approximately 1.7. Using (2.7) to derive the
one-point spectra, we get

®,5(k)

who

E(k) = aeS L} (2.17)

Wi

9
Fl(kl) = 5—5(16 (218)

1
(L2 + k)7
and for the v- and w-spectra:
3 2 3072 4 8k? .
Fi(ky) = ———6a55 ————————}_T for 1 = 2,3. (2.19)
11 (L2 + kf) 3
All the one-point cross-spectra are zero.

The length scale, L, in the one-point spectra can be calculated from F;(0). In the
atmosphere, however, the spectra at the very lowest wavenumbers vary considerably due
to instationarity and large scale phenomena, which are not of interest here. A better
way of characterizing L is by the maximum of k; Fi(k1). Denoting the wavenumber at
maximum of ky Fi(k1) by 1/Lmax,: we get

_;_
Linax.1 = <§> L~ 0.816L (2.20)

and

2
Liaxi = ————L ~ 0.561L fori=2,3 2.21
ST (64 3V6)% (221)

so the maximum of k; F;(k;) occurs when k; is slightly larger than 1/L.
The variances can easily be calculated from either (2.17), (2.18) or (2.19) using (2.10):

9 AT (L

Who

a3 L3 ~0.688ae3 L3, (2.22)

All the co-variances are of course zero.

The advantage of the isotropic turbulence model is that it describes the spectra and
cross-spectra well for high frequencies or small distances compared to the length scale of
the turbulence. Furthermore, the cross-spectra can be calculated analytically in terms
of Bessel functions for the von Kdrman energy spectrum, (2.17), or even nore simply for
—% power law spectrum (Harris 1970; Kristensen & Jensen 1979).

The property of isotropic turbulence that the variances o2, o2
equal is not supported by data. In fact 02 /02 = 0.25 and 02 /02 ~ 0.5 — 0.7 depending

on the averaging time (usually ~ 10 min. for meteorological measurements). Isotropy
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y -

Uniform Shear (US)  Uniform Shear + Blocking (US+B)

FIGURE 2. Sketch of investigated models. (a): Both models are based on isotropic turbulence
with the von Kérmén energy spectrum (§2.4). (b): The effect of shear is modelled by rapid
distortion theory in §3.2. (c): In addition blocking by the surface is modelled by ‘inhomogeneous
rapid distortion theory’ (Lee & Hunt 1989) (see §3.3).

also implies that 13 must be zero which is certainly not the case at the lower frequencies
(see the dot-dashed line in figure 7).

3. The velocity tensor for shear flow

In this section we sketch the development of twe models of the spectral velocity tensor
for neutral atmospheric surface-layer turbulence. We have argued that by neglecting the
rotation of the Earth and the effect of gravity and by assuming a linear mean velocity
shear, the statistics of the flow has only the four elements of (2.14) as a symmetry
group. Our plan is to use RDT to estimate the effect of shear on the turbulence. RDT
gives an equation for the evolution or the ‘stretching’ of the spectral tensor. If the initial
conditions can be represented by the isotropic von Kdrmdn tensor, (2.16), with the energy
spectrum (2.17), then the tensor ®;;(k,t) will become more and more ‘anisotropic’ with
time.

The linearization implied by RDT is unrealistic, however; at some point (in time) the
stretched eddies will break up. We shall use this picture to make ®;;(k,¢) stationary, i.e.
not dependent on time. We postulate that eddies of linear dimension ~ |k|™! (or more
precisely the Fourier modes) are stretched by the shear over a time which is proportional
to their life time. The life time 7 is

(k) < e” 3k 3 (3.1)

pertaining, at least in the inertial subrange, to eddies with wave vector magnitude k = |k|
(Landau & Lifshitz 1987, §33).
The basic postulate of this paper is that the stationary spectral tensor

B.;(k) = By; (K, 7(k)) (3.2)

describes the surface layer turbulence well. The combination of RDT and scale dependent
eddy life times has previously been used by Derbyshire & Hunt (1993).
Maxey (1982) has described a similar model with the exception that the lifetime 7
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FiGure 3. Eddy lifetimes as functions of the magnitude of the wave vector. The lifetimes
given by (3.3) give the most realistic results.

was assumed to be constant for all wavevectors. (7dU/dz is called ‘the equilibrium value
of the effective distortion strain’ by Maxey (1982).) Maxey’s model gives a reasonable,
but not perfect, description of the ratios between o2, 02, 02 and (uw) for turbulent
shear flows. There are two grave drawbacks when the model of Maxey (1982) is used to
calculate spectra: )

(i) The uw-cross-spectrum in the inertial subrange decays as k;% whereas kl_% is
more physical (Wyngaard & Coté 1972).

(ii) For typical values of the effective distortion strain the model predicts F,/Fy ~ 7
in the inertial subrange whereas it should be F,,/F,, = % (see figures 7 and 10).

The models presented here do not suffer from these shortcomings.

Several alternative expressions for the eddy lifetime outside the inertial subrange will
be discussed in §3.1. Only an outline of the derivation of the Uniform Shear model
(US) will be given in §3.2 since basic equations of rapid distortion theory has been given
elsewhere (Townsend 1976). The modification of the model by blocking by the surface
(US+B) is given in §3.3.

3.1. Eddy lifetimes
At scales larger than the inertial subrange (3.1) is not necessarily valid. We construct
an alternative model for the ‘eddy lifetime’ assuming that the destruction of an eddy with
size k~! is mainly due to eddies comparable to or smaller than k~!. The characteristic
velocity of these eddies may be expressed as ~ ([, E(p)dp)%, and we simply assume
the lifetime to be proportional to the size k! divided by this velocity:

oo -3
(k) o< k71 (/ E(p)dp)
Jk
1 2
~% 1174 o 2 k—3 for k — oo
o kB |:2F1 <3, o 33— (kL) )} oc{k_l e (3.3)
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where we have chosen E as the von Kdrman energy spectrum (2.17) and where 2 F} is
the hypergeometric function.

Another lifetime model which has the right asymptotic behavior for & — co is the
‘coherence-destroying diffusion time’ (Comte-Bellot & Corrsin 1971, eq. 99)

= -4
p(k) o< k72 [/ p"gE(p)dp}
k
1
2 417 7 )]k fork— oo
x k73 [QFl (3, 6 ) 3, (kL) ):I 6.8 {k_2 for k — 0 (34)

which was constructed as the square of the eddy size divided by a k-dependent ‘turbulent
viscosity’.
Further, the inverse ‘eddy-damping rate’

-1 k=% for k — oo
.3 k 2 - )
te(k) < (K*E(k)) ? x {k'E tor b — 0 (3.5)

is used in eddy-damped quasi-normal theories of turbulence as a characteristic non-linear
relaxation time (Lesieur 1987).

All lifetime models are shown in figure 3 normalized such that they coincide in the
inertial subrange. It turns out that 02 becomes infinite using (3.4) or (3.5), while (3.1)
and (3.3) give reasonable results. It also turns out that the spectra calculated from (3.3)
fit the data better than (3.1) for which reason (3.3) is used in the rest of this paper.
Some support for (3.3) may be found in Panofsky et al. (1982) who measured eddy
‘response times’ of eddies in the neutral atmospheric surface-layer. Also Kristensen and
Kirkegaard (1987) were in their theoretical model of the growth of a puff in a turbulent
fluid compelled to use (3.3) rather than (3.4) or (3.5).

It is convenient to write (3.3) as

w0 =r (g )'1 (kL)

o™

it

a oF (3.0 -] (3.6)

where I" is a parameter to be determined.

3.2. The Uniform Shear model

The flow field is decomposed into a mean and fluctuating part

u=U+u (3.7)

where U is given by (2.13). When appropriate we shall use the more general U;(z) =
x;0U;/dz;, where OU;/dz; is a constant tensor, instead of (2.13). The Navier-Stokes
equation for an incompressible fluid may be written as

8ﬂi - (‘Mi 1 8p 82ﬂi

===ty

s =
5 W Oz, p Ox; * dz;0z;’

(3.8)

assuming the kinematic viscosity v constant and neglecting gravity and the rotation of
the Earth. Upon elimination of the pressure by taking the divergence on both sides of
(3.8) and after decomposition in means and fluctuations according to (3.7) we drop the
non-linear and viscous terms and Fourier transform the resulting equation. Defining the

Caverae p vative’ ; Du; __ Qui Qui . Qui OUj Dy
average total derivative’ of the velocity as 3 = G + U5t = B + Tu gy 5,0 and
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interpreting the rate of change of wave number, dky/dt, by

dky, oU;

e :

dt T 9z, (3.9)
the Fourier representation of the average total derivative of the velocity field may be

written as

where we have implicitly defined D/Dt acting on a function of wavenumber and time.
Combining this expressions with linearized and Fourier transformed version of (3.8) we
get

—*—Ddzls(tk’t) = %[;]“{ i1 k }dzg(k t) (3.11)
which is the basic rapid distortion equation for shear flow. The differential equations (3.9)
and (3.11) are easily solved given the initial conditions k(0) = ko = (k1, k2, k30) and
dZ(ko,0). Instead of time, t, we shall use the non-dimensional time, 3, defined as

dU
8= dz (3.12)
First (3.9) is solved using the mean flow (2.13) giving
k(t) = (kl,kg, k3) where kg = kgo — ‘Bkl. (313)
The solution to (3.11) is then
10 G
AZEk,B) =10 1 G | dZ(ke,0). (3.14)
0 0 K&k
where
ko kg
G=1C— FCQ , G= C'1 + Cs (3.15)
1
with
ﬁk%(lﬁg — Qkéo + Bkl ]\330)
Ci = 1
! K203 + K2) (3.16)
and
koo k2 Bk (k2 + k3)*
= —=9 _arctan | ——2—2L1| . 3.17
S EEEIE R kaokif (3.17)

The equations (3.13) and (3.14) give the temporal evolution of individual Fourier modes.
Given the initial second order statistics ®;;(ko,0) = @f;’(ko) as the isotropic von
Kdarméan tensor, (2.16), with energy spectrum, (2.17), we then have an explicit expression
for ®;,(k,t) (using (2.5)).
To make a stationary model we use (3.6) and (3.2) discussed in the beginning of this
section, i.e. we substitute ¢ with 7 given by (3.6). For the 33-component we get
4 3
Py3(k) = @g*g’(ko)%% = i(:}:l) (ki + k3) (3.18)

where ®52 refers to the isotropic von Kdrmdn tensor and E to the energy spectrum
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(2.17). The other components become

E(k
11 (k) = 47((,54) (kg = ki — 2kakaoCy + (ki + K)CF) (3.19)
0
E(k .
Dn(k) = 208 (1242 bkt + (87 + B)GD) (3.20)
0
E(k
Pia(k) = 47(rk04) (=kika — k1ksoCo — kaksoC1 + (K + k3)C1G2) (3.21)
0
E(ko)
$y5(k) = mﬁka (—kikso + (k2 + k2)G1) (3.22)
and
E(k
B3 (k) = 47r§c§0k)2 (=kokso + (ki + k3)C) - (3.23)

The equations (3.18) to (3.23) with (3.6) constitute the Uniform Shear model (US).

These equations have two differences from the expressions of Townsend (1976) for
plane shearing of homogeneous turbulence. The first is the elimination of time by (3.6)
and the second and related difference is that we do not use the turbulent viscosity of
Townsend, which would make the decay time time for all eddies equal, independent of
their sizes. (There are, however, also two typographical errors in (3.12.4) of Townsend
(1976): In the innermost brackets in the the expression for @5, kyo should be changed
into k3g. The expression for ®;3 should be divided by kg)

3.3. The effect of blocking by the surface

The US model presented in §3.2 has the symmetry group (2.14). This implies e.g. that
the one-point cross-spectrum spectrum of longitudinal and vertical fluctuation x.., (k1) is
real and that x,w(k1, Ay, Az = 0) is purely imaginary, i.e. @uw(ki, Ay, Az =0) = £90°.
As seen from figure 10(b) Im(x (k1)) is in fact negative, and @, (k1, Ay, Az = 0) is
systematically different from +90° for low wavenumbers (see figure 9(b)). This means that
the deviation from the reflection symmetry in the y-axis has measurable consequences.
In this section we shall modify the US model by incorporating the effect of blocking by
the surface which will break this reflection symmetry. The physical assumptions in this
section are crude, especially for the atmospheric flows in consideration, but are made to
illuminate effect of blocking in a tractable way.

We follow the ideas of Lee & Hunt (1989): They analyze by RDT how homogeneous
turbulence in a uniform shear is distorted when a rigid surface at z = 0 is suddenly
introduced at time 3 = 0. As in the US model we ignore viscosity so the only effect of
the surface is to block vertical velocity fluctuation. The blocked velocity field u?(zx, 3)
is written as u? = u 4+ u®, where u(z, 3) is the homogeneous velocity field from the US
model and u® obeys w¥(z,y,0,8) = —w(z,y,0,3), such that wB = 0 on the surface,
and u® — 0 for z — co.

We no longer have homogeneity in the vertical direction and it is appropriate to use
Fourier transforms in the two horizontal directions. The two-dimensional Fourier trans-
form of the homogeneous velocity field u;(«) from the US model thus becomes

dZi(ky, ke, 2,8) = | dZ;e*® (3.24)
ks
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where fkg denotes integration over all k3’s and dZ; is given by (3.14).
It can be shown (Hunt 1973; Hunt & Graham 1978) that «° is irrotational at the
initial instant (8 = 0) and has the form

dZBS(kl, kz, Z,O) = —e_z"/ dZ3(k,0). (325)
k3
and

e—'ZK

d25 (ky, ko, 2,0) = ik;

dZ;(k,0) fori=1,2 (3.26)
K k3

(s

where k = (k7 + k3)*. From the momentum equation Gartshore, Durbin & Hunt (1983)
derive g% V?w? =0 for a linear shear which implies

dZ3 (ki k2, 2,8) = —e™ 7~ | dZ3(k,B) = —e~**dZ3(ky, k2,0, 3) (3.27)
k3
(see also Durbin, 1987).
The other two components of the velocity field may be found from first two components
of the curl of the linearized momentum equations

D [ow® v’ o’ D [ouS owS o’
_ — - — | = — and ————} = — (3.28)
Dg \ dy Oz Ox Dg \ 9z Ox dy
as it has been done by Lee & Hunt (1989). The results are
ki _,
428 (hn ko2, 8) = e [ (14 P2)) dZa(k, ) (3.29)
k3
where
R k2
Pi(z)= PYETE: (z) and Pofz)= ~53 (2). (3.30)

The function @ is given by
Q(z) = elFs® {e"z [Er (k2 + ikgo2) — By (k2 + ik32))
— e ™ [27iH (—k3ksp) + E1(—k2 + ik3oz) — B1(—kz + ikgz)}} (3.31)

where H is the Heaviside function (H(z) = 1 for > 0 and 0 for z < 0) and E; is the
exponential integral function.

Using (3.24), (3.27) and (3.29) and eliminating the time dependence by (3.2) the spec-
tral tensor for the blocked flow now becomes a function of the two horizontal wavevectors
and two heights above the surface:

QiBj(I‘h?kZ)Zl;Zz) =
<(dZ¢(k1,kQ,21) + de‘S(klakal))* (de(kl,k'g,ZQ) + deS(kl,kz,Zg))>
dk;dk

from which all spectra and cross-spectra can be derived. As an example the 11-component
becomes

(3.32)

oo

(I)ﬁ(kl,kz,zl,z;z) = / (I)“(k)eikg(zg—zl)

— 00
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FIGURE 4. Properties of the uniform shear model as functions of the parameter ['; (a):
(Co-)variances divided by the isotropic variance (2.22), (b): Length scales of (cross-)spectra
defined by (3.34) divided by L.
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Though being more complicated than the US model the US+B model do not contain
more adjustable parameters since the distance to the surface z is known.

3.4. Properties of the sheared velocity tensors

We shall now investigate the basic properties of the sheared velocity tensors, (3.18)
through (3.23) and (3.32). The only four (co-)variances which are not zero, i.e. o3; = 02,
03, = 02, 023 = 02 and (uw), are calculated numerically by (2.10) and are shown
in figure 4(a) for the US model as functions of I'. The model exhibits the ordering
02 > 02 > 02 and a negative co-variance of v and w as observed in neutral flows
over homogeneous terrain in the atmosphere. In figure 5(a) the (co-)variances from the
US+B model (§3.3) for I = 3.5 are shown. It is seen that o2 and (uw) are attenuated
strongly close to the surface. This is not consistent with surface-layer scaling where
{uw) is approximately constant. However, the US+B model may be able to model the
surface-layer turbulence within a horizontal slab where (uw) is not varying too much.
Another characteristic feature of the one-point (cross-)spectra is the extremum of
ki Fi(k1) or kyRe(x13(k1)). Assuming isotropy this could be done analytically (2.20 and
2.21), but in the sheared case the extremum must be found numerically by integrating

(2.7) with Ay = Az = 0. Defining
Lmax,i = 1/kmax,ia (334)
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FIGURE 5. The effect of blocking on the (co-)variances (a) and length scales (b) as function of
distance to the surface normalized by the unblocked values. The lifetime parameter I" is 3.5.
See figure 4 for legends to the curves.

where kmax,; is the solution to

d
— (k1 F3(k1)) =0
we get the ordering Lmax,1 > Lmax,2 > Lmax,3 for the US model as seen from figure 4(b),
which is in at least qualitative agreement with experiments. The length scales of the

US+B model are strongly attenuated close to the surface as seen from figure 5(b).

4. Experimental validation

To test the tensor models described in §3 our strategy is:

(i) We determine the three parameters L, I' and ae’d of each of the models from
the four non-zero spectra measured in one point, namely F,(k1), F,(k1), F,(k1) and
Fuw(k1) = Re (xuw(k1)). (In the case of the model in §3.3 Im(xww (k1)) is also non-zero.)

(ii) Then we predict all two-point cross-spectra or coherences.

(iii) Finally, we compare the predicted and measured two-point cross spectra.

The easiest way to extract the parameters from the measured spectra would be to
estimate the length scales, defined as the reciprocal of the wavenumber that extremizes
k1 F(k1), and then determine I' and L from figure 4(b) in case of the US model. The
measured variances could then be used the estimate as3 from ﬁgure 4(a) and (2.22), or

alternatively the parameter could be determined from limg, oo kf Fi(ky) which fori =1
is %as% and fori = 2,3 is -15—?-016%, see (2.18) and (2.19), for which the limits still are valid
in the sheared case because the distortion tends to zero for large wavenumbers according
to (3.1). There are, however, several reasons not to proceed in that way. Firstly because
the time series available are of limited length the estimated spectra appear ‘ragged’ and

the global extrema are greatly influenced by random spikes in the spectra. Secondly,
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the measured variances depend on the filtering by the instruments in the high frequency
end and on large scale phenomena in the low frequency end, which can be caused by
small departures from neutral stratification. We do not want to model these very low
frequency phenomena.

Instead we find the parameters by performing a x2-fit of the models to the data. In
other words we minimize

T L act) = 3 Fralhs) = Puoly))

= ou(k;)ow(k;)
& (Falky) = Falky))*

where N is the number of wavenumbers in the estimated spectra, a subscript ¢ means
theoretical model values calculated by (2.7) with Ay = Az = 0, using the tensor mod-
els described in §3. The o?’s are the variances of the spectral estimates at the given
wavenumber, which will be discussed below.

4.1. Time series analysis

The spectra are estimated by dividing the time series into a number, n, of ‘ensembles’
of equal duration. Each segment is Fourier transformed and the spectrum is the average
of the absolute square of the Fourier transform over all the ensembles. Cross-spectra
are the ensemble average of Fourier amplitude of the first time series times the complex
conjugate of the second. The coherence is estimated as the absolute square of the cross-
spectrum divided by the product of the estimated spectra, and the phase is argument of
the complex cross-spectrum, in accordance with (2.8) and (2.9), respectively.
Under the assumption that the time series is long compared to the time scale of the
spectrum L /U, the relative standard deviation of the spectral estimate is,
O'(Fi> _ 1

()~ /r *2)

and for the cross-spectrum
o(xi5) : :L’ (4.3)
(F)(ENE
(Koopmans 1974). Often the spectra are block averaged over, say, n, consecutive fre-
quencies or wavenumbers in which case the relative standard deviation becomes (nbn)_%.

As an example the spectra in figure 7 are made on basis of time series of length 6 h
= 21600 s, which are divided into 27 pieces of 800 s. The relative standard deviation is
thus 27~ % =~ 19% at the lower wave numbers and smaller at higher wave numbers, where
block averaging is applied.

If we use (4.2) and (4.3) in the x*-fit, (4.1), the data will be closely fitted at the high
wave numbers but may be fitted poorly at the lower wave numbers. In practice we have
found that constant relative standard deviations give more satisfactory fits.

The statistics of the estimated coherences are more complicated. Kristensen & Kir-
kegaard (1986) have analyzed the problem in depth. We shall use their results derived
under the assumption that the segments of the time series are independent of each other.
Let coh, denoted the coherence estimated as described above from n segments of two
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time series having the true coherence, coh. The (ensemble) average of this stochastic
variable is unfortunately not the true coherence, coh, but

(cohp) = o (4.4)

with oy given by

n—1

ap=1-— (1 — coh)™ o Fi(n,n;n + 1; coh). (4.5)

It can shown that (coh,) > coh, i.e. the coherence is on average or systematically
overestimated, and that lim,_, (coh,) = coh. For the number of segments we have used
for the estimation of the coherence (> 144) the overestimation is almost insignificant.
F.ex. (cohjss) = 0.5017 for coh = 0.5 and (cohj44) = 0.0168 for coh = 0.01.
Kristensen & Kirkegaard (1986) found the ensemble variance of the coherence estimate
to be
Var(coh,) = ay — o (4.6)

where

n n . 5.
as =1—(1—coh)™(n l)x{n+12F1(n+1,n,n+2,coh)
n—2

oF1(n,n;n + 1;coh)} (4.7

which has the property that lim, .., Var(coh,) = 0.
In order to assess the success of the prediction of the coherence we define a ‘goodness’
parameter
G = b (4.8)
Ocoh,t
which is the ratio of the actual integrated scatter of the data around the predicted
coherence, ocon, to the theoretically expected scatter, ocon,:. The integrated scatter is

N
T = 3 S0l (k) — coha(k))? (4.9

where coh,(k;) is the coherence estimated from n segments of the time series at the
wavenumber k;, and (coh, ((k;)) is the theoretically predicted coherence with the small
overestimation added caused by the finite number of degrees of freedom according to
(4.4). N is the number of wavenumbers taken into the comparison with data. The
expected scatter for a perfect theory is

N
1
Teons = 7 D Var (cohn (ki) (4.10)

where the variance of the predicted coherence is given by (4.6). For a perfect theory the
value of G should be close to one.

Finally, we shall also use a approximate expression for the variance of the phase esti-
mate from Kristensen & Kirkegaard (1986):

1 — coh

Var(p) = 2(n — 1) coh

[1—(1-coh)™ ] (4.11)
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FIGURE 6. The mast array on Sprogg viewed from SSE. The tiny dots at the top of the masts
are the omni-directional sonic anemometers.

4.2. The Great Belt Coherence Erperiment

The construction of the world’s largest suspension bridge connecting two islands of Den-
mark, Funen and Zealand, is about to begin. The suspension bridge will have a main
span of 1,624 m and the 27 m wide girder deck will rise almost 70 m over the waters of
the Great Belt. The girder will be aerodynamically shaped and a large part of the dy-
namic force on it arises from the turbulence of the wind. The cross-spectrum of vertical
velocity fluctuations X (k1, Ay, 0) which give rise to lift forces on the girder, but also
Yuu is of importance for the estimation of dynamic loads on the bridge. Risg National
Laboratory was therefore asked to perform an experiment to measure and model the
relevant cross-spectra or coherences for the design basis of the Great Belt Bridge.

4.3. Description of the experiment

In order to conduct the coherence measurements a 70 m high mast was erected 40 m from
an existing mast on the easterly spit of Sprogg, an island in the midst of the Great Belt.
A 15 m long horizontal boom was mounted symmetrically at the top of the new mast
so that the whole construction has the form of a letter “T”. A Kaijo-Denki DAT-300
omni-directional sonic anemometer was installed at each end of the boom and at the top
of the old mast, providing 15.0, 32.5 and 47.5 m horizontal separations between the three
co-linear instruments. The mast array is shown in figure 6.

28 Risg-R-727(EN)



The spatial structure of surface-layer turbulence PART IA

0.5 S —
i F, ]
0.4“ (a) ......... F —:
S N F,
— 0.3 .
9 YN \ U _Re(qu)‘
o~ r ]
A 0.2 -
< 01 ‘
Ry L
& == .
0.1f <ol .
0.5: ! bbbt e ; :::
i F, ]
o4af @ F, 1
C ----Fy )
— 03fF A~y @ T Re(XuwH
ollm A VN ‘Im(qu)Z
A 0.2r .
< 0.1 N
[T:‘ :".::;' - ]
S OT:‘::’ .A‘_l:_:<;~/—»;—j,:/ T TE T
0.1F A :
_02: 1 PR T I S| M
' 0.001 0.01 0.1

Wavenumber k; [rad/m]

FIGURE 7. Fit of the model spectra (smooth lines) to the data (ragged lines) from the Great
Belt Coherence Experiment. The US model is shown in (a) US+B in (b). Since Im(xyw) = 0 for
the US model it is only shown in (b). The values of the model parameters are given in table 1.

The masts had other instruments to measure velocity and temperature profiles in order
to determine the stability and to cross-check the sonic anemometers.

We obtained one year of excellent data from which we can calculate lateral coherences
with unsurpassed precision. More details about the experiment including correction for
flow distortion by the sonic anemometers may be found in Mann et al. (1991).
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Great Belt LAMEX
Us US+B US US+B
L [m] 61 100 42 67
r 3.2 3.8 2.6 3.4

acd [m¥s2] 0.11 0105 0095 0.092

TaBLE 1. Parameters obtained by fitting models to the data. US: Uniform shear model (§3.2),
US+B: Uniform shear + blocking effects (§3.3). Compare with figures 7 and 10.

Ay=15m Ay=325m Ay =475 m
Components US US+B US US+B US US+B

uU 1.5 2.1 2.3 1.8 3.7 2.8
vV 2.0 2.7 1.7 3.0 2.0 3.3
ww 3.0 3.7 3.8 3.4 4.4 2.9
uv 1.1 1.1 1.5 1.2 1.8 1.5
UwW 4.7 3.3 3.9 2.4 3.7 2.2
YW 1.2 1.0 1.4 1.2 1.7 14

TaBLE 2. The ‘goodness’, G, of the coherence prediction given by (4.8). Compare with
figures 8 and 9. A perfect prediction has G = 1.

B
u, Ay =15 m

@
N
T

TR N !

LN N B B S B a1

bododo g1 1
=ttt

coh(ky)

AT TN N ST

TR B RN

=TT T2

o)

k‘l Ay
FIGURE 8. Measured (dots) and predicted coherences (solid lines, US; dashed lines, US+B) at all
horizontal separations from the Great Belt. The rightmost plot at the top is cohii(k1, 15m,0).
The dotted lines are the isotropic inertial range coherences, i.e. coherences valid for very small
Ay (Harris 1970; Kristensen & Jensen 1979). Compare with table 2.
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FIGURE 9. Coherence (a) and phase (b) between the v- and the w-component for a purely
horizontal separation of Ay = 32.5 m from the Great Belt. The solid curve is the prediction
by the US model, the dashed is the US+B model and the dots are experimental values. The
short-dashed curves in (b) are the theoretical 1-o deviations of the phase from the US model

according to (4.11).

4.4. Comparison with data

To test the models we have selected a six hour time series. The wind direction is virtually
perpendicular to the instrument line and the wind speed is fluctuating around 22.3 ms™!
at 70 m above the sea. The upstream over-water fetch is uninterrupted for more than
20 km. One-point spectra are calculated as described in §4.1 and are shown twice in
figure 7.

The parameters of the models are found by minimizing (4.1). Keeping in mind that
all four non-zero one-points spectra are fitted simultaneously with only three parameters
the fits for both models are very satisfactory.

The coherences are now predicted by performing the integral (2.7) numerically and
using the definition of coherence, (2.8). The numerics of a fast evaluation of (2.7) are
described in Mann et al. (1991). In table 2 the goodness, G, of the predictions of all
possible combinations of velocity components at the three different horizontal distances
for both models are shown. To get an idea of the meaning of G table 2 should be
compared to figure 8, where the measured and predicted coherences for some component
combinations are plotted.

There is generally a good agreement between measurements and predictions. One of
the poorer predictions in figure 8 is by the US model of cohz3(k1,47.5 m,0). In this case
G = 4.4 as seen from table 2 and the US+B model obviously gives a better prediction
with G = 2.9. Generally, there is otherwise not very large differences between the model
predictions. Large departures from the isotropic inertial subrange coherences are seen at
separations as small as Ay = 15 m.

As an example of coherence between different components of the wind field we have
shown coh,,, in figure 9(a) which is small but significantly larger than zero. The corre-
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46 m sonic

30 m cup cup cup
20m cup cup
10 m cup cup cup

Position (y,2) Om 20m 30m

TaABLE 3. Position of the instruments of the Lammefjord Experiment.

sponding phase is shown in figure 9(b). In the discussion about symmetries in §2.2 we
found that if the turbulent field has the symmetry group (2.14) as the US model, then
Xuww 1S purely imaginary. If this is the case, the phase should be close to £90° which is
not found at the lowest wave numbers in figure 9(b). The US+B model gives a slightly
better prediction of the phase.

The US tensor model has been tested with other runs from the Great Belt with mean
wind speeds in the range 12.5 ms™! to 20 ms™! and with small departures from neutral
stability in Mann et al. (1991). They used the inertial subrange lifetime (3.1) instead of
(3.6) and got slightly poorer fits to the one-point spectra but the predicted coherences
deviated not much from the US model with (3.6).

4.5. The Lammefjord Experiment

The purpose of the Lammefjord Experiment (Courtney 1988, LAMEX), which ran from
the beginning of June 1987 to the end of June 1988, was to provide wind data suitable
both as input for studies of dynamic loads on structures, especially wind turbines, and, as
in this study, as a basis for the verification and improvement of atmospheric turbulence
models.

4.6. Description of LAMEX

The experimental site was located at Lammefjord, a reclaimed, flat-bottomed fjord on
the Danish island of Zealand. The surrounding land is used for agriculture and lies
slightly below sea level. Because of difficulties with drainage, no buildings are found
within 2.5 km in the direction of the prevailing southwesterly winds. In this direction
the level did not vary more than one meter. The old sea bed is bounded by a drainage
canal beyond which the terrain rises steeply with hills up to ~ 100 m roughly 4 km from
the site. The change of roughness 2.5 km upstream of the masts will affect the turbulence
measurements above ~ 25 m.

Three masts were erected in a vertical plane perpendicular to the prevailing south-
westerly wind direction. Two were 30 m high and the third was 45 m. The position of
the anemometers relative to the base of the 45 m mast is shown in table 3.

The cup anemometers used were the Risg model 70, which has a distance constant of
about 1.7 m. At the wave numbers considered in this study the spectra are unaffected
by the low-pass filtering by the cups. The omni-directional sonic anemometer at the top
of the highest mast was a Kaijo-Denki model DAT-300. The sonic signal was recorded
at 16 Hz and the cups (and some other instruments) were recorded at 8 Hz almost
uninterrupted for a year, giving a body of data of approximately 12 Gbytes.
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FIGURE 10. Fit of the model spectra (smooth lines) to the data (ragged lines) from the sonic
of the Lammefjord Experiment at z = 46 m. The US model is shown in (a) US+B in (b). The
values of the model parameters are given in table 1.

4.7. Comparison with LAMEX data

The Lammefjord experiment is not perfectly suited to test our model since the fitting
of the one-point component spectra to the model is based on data from the sonic 46 m
above the ground while the all the other instruments are at lower heights.

To test our model we have chosen a 10 hour run with mean wind speed around 11 ms™
and direction very close to perpendicular to the mast array. The Richardson number is
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FiGURE 11. ‘Goodness’ of the predicted uu-coherences, G, according to (4.8) as a function of
vertical and transversal separation. At each position (Ay,Az) the left bar refers to the US
model while the right refers to the US+B model. Bars with G close to 1 represent the best
predictions.

between 0 and 0.1 at z = 21 m estimated from measured velocity and temperature
profiles. Even though the stratification is perhaps slightly stable it is assumed to be
sufficiently close to neutral that our model applies. The three measured component
spectra and the ww-cross-spectrum are shown in figure 10 together with the model fit.
Again the models account well for the essential features of the spectra. The values of I'
are smaller compared to the Great Belt indicating that the turbulence at the Lammefjord
site is more isotropic (see table 1). This may be explained by the limited fetch at the
Lammefjord site.

Only instruments from 20 m and above are used to test the model because we consider
it too crude to assume a linear wind profile from the sonic at 46 m down to 10 m.

From the parameters obtained from the fits in figure 10 we have predicted all possible
coherences between the velocity components of the sonic and the u-components measured
by the cups. The ‘goodness’, G, of the predicted uu-coherences is shown in figure 11 as
a function of transversal and vertical separation for both the US model and the US+B
model. It is seen that the models work well primarily for horizontal separations and
that the US+B model generally gives slightly better predictions. The models predict
by a small amount too large coherences for vertical separations. The consequences for
the errors in load calculations on vertical structures depend on the shape of the excited
modes. If the typical length scale of the mode shape is larger than the ‘coherence decay
length’ the model will predict slightly too high loads.

The success of the uv- and uww-coherence predictions is shown in table 4. For the
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FiGURE 12. uu-coherence (a) and phase (b) for a vertical separation Az = 26 m from LAMEX
(z1 = 20 m, z2 = 46 m). The dots are measured coherences, the solid curve is the US prediction,
the dashed is from the US+B model and the dotted curve is the isotropic inertial subrange
prediction. The short-dashed curves in (b) are the theoretical 1-o deviations of the phase from
the US model according to (4.11).

Ay Az G
[m] [m] US US+B

20 16 1.9 1.7
uwv 30 16 2.3 1.6
30 26 23 1.9

0 16 3.3 1.0
0 26 3.3 1.5
ww 20 16 2.2 1.2
30 16 2.0 2.1
30 26 20 14
TABLE 4. ‘Goodness’ of the predicted uv- and uw-coherences, GG, according to (4.8) for different

horizontal and vertical separation, Ay and Az. Predictions with G closest to one are the best
predictions.

US model the coherences with predominantly horizontal separations again seem to be
predicted best, but the US+B model seems to be superior to the US model.

We shall now look at two examples of predicted coherences represented in the bar chart
in figure 11 and in table 4. The first is the uu-coherence and phase between the sonic at
46 m and a cup directly under the sonic at z = 20 m (see table 3) displayed in figure 12.
This is a quite poor predictions (G = 3.6 for the US model, G = 2.3 for US+B); the
models, especially the US, are seen to overestimate the coherence systematically.

The phase calculated from the same data is shown in figure 12(b), where the scatter
Is estimated using (4.11). A positive ¢ here means that the fluctuations at z = 20 m
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FIGURE 13. uw-coherence with w measured at z = 46 m and u at 20 m and with zero
horizontal separation. See caption to figure 12.

come after the fluctuations at z = 46 m. The phase and the scatter are well predicted at
the higher wave numbers while the phase is underestimated at the lowest wave numbers.
The models make quite similar predictions in this case.

The last example (figure 13) shows coherence and phase predicted significantly differ-
ently by the two models. The coherence is predicted better by the US+B model which
has G = 1.5 compared to G = 3.3 for the US model. The measured phases are between
the two predictions.

5. Conclusion

We have investigated two slightly different models of the spectral tensor of neutral
atmospheric surface layer turbulence which contain only three parameters: A length
scale L, an eddy lifetime constant I” and the spectral multiplier in the inertial subrange
(ae%). Both models crudely consider the effect of shear on turbulence by using the
linearized and inviscid Navier—Stokes equation. The effect of the non-linear terms is
taken into account by including considerations about the lifetime of eddies of different
sizes. The simplest model is the Uniform Shear model (US) (§3.2) while the US+B model
(§3.3) additionally attempts to take into account the effect of blocking by the surface.

We have used two experiments specially designed to measure the spatial structure of
turbulence to test the models: The Great Belt Coherence Experiment measuring turbu-
lence over water and the Lammefjord Experiment (LAMEX), which measures turbulence
over an almost horizontally homogeneous terrain.

As mentioned in §2.2, since we have assumed a linear shear, we should only expect
the spectral tensors to model eddies with sizes smaller than the scale over which the
shear changes appreciably, which in the surface layer is the height above the ground, z.
Because of the three adjustable parameters, however, the fit of the model to the one-point
spectra is good well below k; ~ 27 /z. From these parameters virtually all second order
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oule® oyl oll? - (uw) /¢

Panofsky & Dutton (1984) 0.53 0.33 0.14 0.09
Other data (Maxey 1982) 053 028 0.19 0.14
Great Belt 0.54 0.31 0.15 0.11
US model (G.B. parameters) 0.51  0.30 0.19 0.13
TUS+B model (G.B. parameters) 0.46  0.34 0.20 0.11
Model of Maxey (1982) 0.59 0.34 0.07 0.14
LAMEXT 045 035 020 0.1
US model (LAMEX parameters) 0.47 0.31 0.22 0.13
US+B model (LAMEX parameters) 044  0.34 0.22 0.11

t Site is not completely homogeneous.

TABLE 5. Stress ratios from two references, our two experiment and some models. The
parameters of the US and US+B models are given in table 1.

two point statistics, i.e. coherences, phases etc., are predicted satisfactorily from the
models. Both models performs less well for vertical separations (e.g. figure 12) where
the departure from a linear profile might be important.

There are only small differences in the predictions made by the US and US+B models,
with the notable exception of coherences involving vertical velocity fluctuations where
the US+B model is superior. For the predicted phases the situation is not that clear
(see figures 9(b), 12(b) and 13(d)). Because the US+B model is more complex than the
US model we recommend the latter for engineering purposes, except in cases where the
coherence of vertical velocity fluctuations at low frequencies is of particular importance.

The two Great Belt Experiment gives a larger value of the lifetime parameter I' than
LAMEX (see table 1). The most plausible cause of the difference is a change of roughness
2.5 km upwind of the LAMEX site as discussed in §4.6 and §4.7.

This paper differ from previous studies of the application of rapid distortion theory to
homogeneous shear flow (Maxey 1982; Townsend 1976; Lee & Hunt 1989) in two respects.
Firstly, they do not incorporate ‘eddy life time’ in the spectral tensor models. Maxey’s
(1982) assumes that shear acts on all scales with the same strain in contrast to our
model. This has the consequence that the cross—spectrugn Fy (k1) in the inertial subrange

is proportional to k; % while our model predicts k; ° in accordance with Wyngaard
and Coté (1972) and that F,, < F, for k; — oo in contrast to the present models
which are isotropic for large k, i.e. F, = %Fu for k1 — oo. In relation to this, if the
parameters of the model of Maxey (1982) are adjusted to fit the observed shear stress
ratio — (uw) /q? = 0.14 (¢? is 02 + 02 + ¢2)) then the derived normalized variances of the
three velocity components are not well predicted. In table 5 normalized variances and
shear stresses are from homogeneous shear flow measurements and models are displayed.
It is seen that a closer comparison is found than that by Maxey (1982). The model by
Maxey (1982) predicts the ratio 02 /02 to be 4.9 while ours gives values in the range 1.4
to 1.7 in better agreement with data. The other difference from the previous studies is
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that we not only use one-point but also emphasize two-point statistics such as coherences
and phases in our experimental validation.

Finally, it should be noted that we have no formal justification to apply rapid distortion
theory to stationary and homogeneous flows. The reader may find discussions of this
point elsewhere (Townsend 1976; Maxey 1982; Savill 1987; Hunt & Carruthers 1993).
The purpose of paper is solely to present the models and make a detailed comparison
with data.
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Dr. Michael S. Courtney and others at the Risg National Laboratory for the excellent
experiments and A/S Storebzltsforbindelsen for financing the Great Belt Coherence
Experiment. The author is grateful to Drs. Leif Kristensen and Peter Kirkegaard (both
Risg) for many fruitful discussions and to Professor Steen Krenk of University of Aalborg
for his useful comments to the manuscript. Thanks to suggestions from Drs. Jack Herring
and Don Lenschow of the National Center for Atmospheric Research in Boulder, Colorado
the manuscript has been improved in several ways. The author acknowledge the financial
support from The Danish Research Academy during this study.
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Appendix A. Numerical methods

It does not take a great numerical effort to calculate one point spectra and co-variances
from (2.7) with Ay = Az = 0 and from (2.10). Two and three dimensional adaptive inte-
gration algorithms from the Risg Computer Library are used to these purposes. However,
when Ay and Az are just moderately large the standard adaptive integration algorithms
become very inefficient. The problem with the numerical evaluation of (2.7) is that the
integrand may vary rapidly, even if ®;;(k) itself is quite slowly varying. This means that
a 2-dimensional adaptive integration routine will spend a lot of time mapping all the
wiggles of the simple trigonometric function exp(i(koAy + k3Az)).

In this appendix we give a fast and reliable method to evaluate the numerical double
integral (2.7). For the sake of simplicity of the argument we assume Az = 0 in (2.7).
The idea is first, for a given k; (or frequency), to use a standard 1-dimensional adaptive
integration routine to evaluate the function

Pk k) = / " () dk (A1)

on a mesh in ky. This mesh is constructed as follows:, z is chosen equidistantly on the
interval | — 1, 1] and k» is given as ky = kg;y2/(1 — ), where kq;y is 1/Lif k1 < 1/L and
kq;v = k1 otherwise, where L is the length scale in the spectral tensor. Next we calculate

yis (k1 Ay, 0) = / F(kr k) exp(ikaAy) dks (A2)

by the effective method given below. The method allows fast calculation of x,; for a
range of Ay-values, when f(ki1, k2) is tabulated on the kp-mesh.

A.1. Integration of the product of a smooth function and an oscillating multiplier by
use of non-local cubic spline

This method generalizes Filon’s Method (Davis & Rabinowitz, 1984) to an arbitrary
mesh and combines is with the non-local cubic spline interpolation (Press et al., 1986).

Let the function y(z) be tabulated in the points z;, 7 = 1...N and let y; = y(z;). We
want to estimate the integral

/by(az)W(x)dx (A3)

where W (z) is either cos(kz) or sin(kz) and a = z; and b = zn. Suppose ¥ is so smooth,
that it is well approximated by a cubic spline. Then the second derivatives y; = y"(z;)
can by found easily in O(N) operations (see Press et al., 1986).

We start by estimating

b
/ y(z)dz (A4)

which is needed in our application. To integrate y on a subinterval [z;, z,41] we approxi-
mate y by the a cubic polynomial f determined by the non-local cubic spline interpolation
routine (Press et al., 1986) and use partial integration as follows

Tjit1 Ti41-3
/ y(z)dz =~ / flz +z)dz

i~

= [fz +2)2]7 Ty " - /xm%f,(x + T)zdz

i

J
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Ti41—%

= {f(.’,l, + i‘)l“‘%f,(x + f)mz]zj~f

1 [%i+1—%
+ 5/ "z + 7)z’ds

Ij—I

1 1 Tj4p1—T
=[f(z +2)z - §f/($ +2)z? + Ef"(a: +3)2’ |,
1 [%i+1—%

-5 /I " (z + z)2’da, (A5)

j'—.'l:

where T = (z; + z;4+1)/2. Since f" is constant and 73 is odd the last integral vanishes
and we end up with

Tj41 1
/ y(z)dz = = { 24(yj+1 + ¥5) (41 — 5)

i

= 6(3}1 — 1))@ = 2P+ W + 8 (s — ) (A6)
We can express ¥, — ¥} as fIIJj+1f”(x)da:, and since the interpolating polynomial f is
cubic, f is linear and we get

(T501 — ;)Y +y741)
y;'+1 - ?J; = 5 ’ . (A7)

Substituting (A7) into (A 6) and summing over all the sub-intervals of [a, b] we finally
get the estimate

b N-—1
1 1,
/ y(a)dz =~ H_ 55+ ) (@5 = 25) = 52 (5 + 95 ) (@5 — 2%, (A8)
a j=1

We now estimate (A 3) in the same way as (A 5) by partial integration. For definiteness,
we take W{z) = cos(kz):

ias (P .
[ vte)costka)de = ¢ (v sin(haen) - vy sin(he,)

J

1
+ 2 (yj+1 cos(kzj1) — yj cos(kx;))

1 1 .
=l (yis1 sin(kzjy1) — yf sin(kz;))
1
- ﬁyég,jﬂ) (cos(kzjy1) — cos(kz;)), (A9)
where yzlﬂ{dﬂ) means the (constant) third derivative of the interpolating polynomial on

the interval [z;,z;11]. Adding all terms and expressing yz’]’ j+1) in terms of the second
derivative, which is given by the cubic spline, we end up with

b
/y(a:) cos(kz)dz = % (yn sin(kd) — yy sin(ka))
1 ! !
+ =l (yn cos(kb) — y; cos(ka))

1
-3 (v sin(kb) — yy sin(ka))
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ky 0.01 0.1 1 10

X5 (k1,0,0) 0.16362  0.16229 0.091838 0.0034963
xhwm(k,0,0)  0.16356  0.16224  0.091774  0.0034953
x55(k1,0,0) 0.081825 0.082482 0.084185 0.0046329
x55™(k1,0,0) 0.081812 0.082469 0.084166 0.0046324
x55(k1,0,0) 0.081825 0.082482 0.084185 0.0046329
x55™(k1,0,0) 0.081790 0.082446 0.084149 0.0046321

TABLE 6. Exact and calculated one point spectra for various wavenumbers k;.

N-1

- = M (cos(kzj+1) — cos(kz;)) . (A 10)
k o Tt Ty

The first derivatives at the end points y; and y}, are either specified as a input to the
cubic spline routine or the so-called natural cubic spline, where yi and y%, are equal to
zero, is chosen, in which case the first derivatives in the end points are given by

Y2 — 1 (22 = 7)Yy
y;:xz_xlw - 2 (A11)
and
, yn—yYn-1 |, (BN —IN-1)YN
e . A12
YN P + 6 ( )

In the case W(z) = sin(kz), which is used for calculating imaginary parts of cross-
spectra, the estimate of (A 3) is

/by(:v) sin(kz)dz =~ -% (yn cos(kb) — yy cos(ka))

1 . .
+ 3 (yly sin(kb) — y; sin(ka))

L " "
+ A_3 (v cos(kb) — yi cos(ka))
Y — Y5
Y ; miil — I]] (sin(kz;+1) — sin(kz;)) . (A13)

A.2. Test of the numerical code

The numerical code is tested by comparison to the analytical von Karmdan spectra
and coherences given in terms of modified Bessel functions (Harris 1970; Kristensen
& Jensen 1979; Mann et al. 1991). Throughout the testing the relative precision of
the 1-dimensional adaptive integration routine in (A 1) is set to 0.0002. The number of
points in the ko-mesh is 300. For L = 1, ae®/® = 1 and I" = 0 (i.e the isotropic the von
Karmén tensor) exact and calculated one point spectra are given in Table 6 , where the
superscript of y corresponds to the ezact result or the numeric result. The relative error
is on average 0.0003 and the maximum relative error for the tested wavenumbers is less
than 0.0007. This error can for the present purpose be neglected.

For the same values of L and I" we have calculated the coherence for three various
values of the displacement: D = 1/3,1,3. The largest difference between the numerical

42 Risg-R-727(EN)



The spatial structure of surface-layer turbulence

PART IA

Ky

coh$(k1, %, 0)
cohiy™ (ki 3,0)
cohii(k1,1,0)
cohyy™(k1,1,0)
cohiy(k1,3,0)
COh?Llllm(kl ) 31 O)

coh$y(ki, £,0)
cohfy™ (ki 3,0)
cohsy(k1,1,0)
cohyy™(k1,1,0)
cohgs(k1,3,0)
cohy™ (%1, 3,0)

coh§3(k1, ,0)
cohgs™ (k1, £,0)
coh33(k1,1,0)
cohsy™(ky1,1,0)
cohg3(k1,3,0)
coh33™(k1,3,0)

0.01

0.60653
0.60688
0.10628
0.10635
0.00119
0.00119

0.74897
0.74921
0.28893
0.28902
0.00911
0.00911

0.47919
0.47960
0.01314
0.01315
0.02703
0.02705

0.1

0.60446
0.60482
0.10466
0.10472
0.00120
0.00120

0.75039
0.75064
0.29108
0.29117
0.00934
0.00934

0.48290
0.48331
0.01504
0.01505
0.02463
0.02465

1

0.44721
0.44762
0.02490
0.02489
0.00088
0.00088

0.74053
0.74075
0.25742
0.25748
0.00398
0.00399

0.52584
0.52629
0.06792
0.06798
0.00000
0.00000

10

0.00137
0.00137
0.00000
0.00000
0.00000
0.00000

0.02216
0.02218
0.00000
0.00000
0.00000
0.00000

0.00470
0.00470
0.00000
0.00000
0.00000
0.00000

TABLE 7. Exact and calculated coherences for various values of the displacement Ay and
wavenumber k.

and exact values (see table 7) is 0.0004 (we do not use relative error, because the coherence
is sometimes zero). This error is again too small to have any significance in the present

work.
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Appendix B. Derivation of (3.11) and (3.29)

In this appendix we first derive the linearized and Fourier transformed inviscid Navier-
Stokes equation (3.11) in some detail. This has been done elsewhere (Townsend 1976,
and references therein), but I would like to include a step-by-step derivation here.

Secondly, we include a explicit derivation of (3.29), although somewhat similar deduc-
tions appear in other publications (Durbin 1978; Gartshore et al. 1983).

B.1. Deriwation of (8.11)
To get an equation for the velocity components we start by taking the divergence on
both sides of the Navier-Stokes equation (3.8) and after decomposition in means and
fluctuations according to (3.7) we get
(S BB oo,
O0z; O0x; Oz, 0x;  Oz; Ox;

(B1)

The first term containing gradients of the mean flow is zero because of (2.13) and the non-
linear term in u is neglected (but is later crudely modelled as discussed in §3). Taking
the Fourier transform of the resulting equation we get

p (2552t 020 ) = ). (B2)

where the scalar field II(k) is the Fourier transform of the pressure field:
plz) = / e dII(k).

Using (3.7) in (3.8) we get
Du | U 0 dw_ 10p
Dt Yoz, " oz,  om;  pom

where D/Dt is defined in the main text. Equation (2.13) impies that the third term is
zero. Again, the non-linear term on the left hand side is neglected. On the right hand
side the last term is negligible since the Reynolds number of the neutral atmospheric
surface layer is high for the 2’s of interest and we are only interested in the larger scales
of the turbulence.

Townsend (1976) uses this last linear term to model the non-linear terms by substitut-
ing the molecular viscosity » by a ‘turbulent viscosity’ or ‘effective viscosity’, viury. We
use the life time concept, as illustrated in §3.1, to model the non-linear terms.

To find the Fourier representation of the first term in (B 3), we note that because of
incompressibility of the mean flow

0U; d(ww) _ U,
dxr 0z T Oz

The Fourier representation of the term d(zu;)/dz; = 8/0z; (zx [ exp(ik - )dZ;(k, 1))
is transformed as follows:

3 ik (9 ik
s ) ik-x Zi el de
833]' (:Ek /C d ) / 1 Gkk
R /_ 042 / ks 047,
T Tor, ] i ok TR
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e
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k 3

k3

FIGURE 14. Advection of a wave by linear shear in physical space (upper plots) and in Fourier
space (lower plot) according to (3.9) with 9U; /0z, = §;16k3dU/dz, i.e vertical shear. Note that
ki (and k2) is constant in time.

where we have used partial integration. The averaged total derivative can therefore be
written as

Du;(z, t) _/eik,x{ﬁdzz(k,t) BUjk.BdZi(k,t)}

Dt ot Oz 0 Ok
Interpreting the rate of change of wave number, dk,/dt, by
dky oU;
— =~k — 3.9
dt J ail,'k ( )

the Fourier representation of the averaged total derivative of the velocity field may be
written as

Dug::,t) _ /eim{<% 4 %%) dZi(k,t)} = /eik-m {Qfd__%%k’_t)}, (B4)

where we have implicitly defined D/Dt acting on a function of wavenumber and time.
Figure 14 illustrates the connection between advection in physical space and in Fourier
space shown in (3.9) and (B4). Combining (B 4) with the linearized version of (B 3) and
substituting the pressure according to (B2) we get

DdZI(k,t) _ dU k‘ik]
TR {—511 +255 }ng(k,t). (3.11)
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B.2. Derivation of (5.29)

The initial conditions (3.25) and (3.26) has been derived by Hunt (1973) and Hunt &
Graham (1978) for a sudden introduction of the surface/ground at g = 0. We are now
going to investigate the development of turbulence in the presence of linear shear and
the surface using rapid distortion theory. The solution for the third component (3.27) is
found in Gartshore, Durbin & Hunt (1983). I have not, however, been able to find the
exact derivation or explicit results from (3.29) and to the end of §3.3 anywhere although
it must have been used by Lee & Hunt (1989).
Taking the curl of the linearized momentum equation we get

Dw
Dt
where 2 and w are the mean and the fluctuating part of the vorticity. Writing out the
two first components and using the definition of 8 (3.12) we get the form (3.28), which —
since it is linear — is valid for the unblocked and blocked flows. From the first equation
in (3.28) we shall now derive the second component of the velocity field from the third
(vertical).
First we expand the total derivative and Fourier transform in the two homogeneous
directions (z and y):

=0 -Vu+w- VI, (B5)

a . adzs\ . . adzs : ;
5 <1k2d2’35 - 8; ) + ik z (xkgde - 822 ) =ik dZ5. (B6)

We have already solved for dZ5 (3.27) and guess a solution of (B6) of the form

kg T -
dz25(z,8) = i—e ~'°/k (1 - 5—,;2—6:"”3'@5(37[3)) dzsz(k, B), (B7)

where Q,(z, 3) is a function to be determined. To obtain Q, we first calculate

adZZS Sl A ZK k2 1k32 k2 1k3., 1. aQS
5, —ikqe /k3 { (1 ) Qs | + 23 iks@s + g dZs3(k, 3)

k2
= ~-ik26"”/ {1 + 1—6"‘32 /}ng( B3), (B8)
w2
where
. .0
z/;z(m-%kg)Qs—l—é%— (B9)
is defined for notational convenience. The parenthesis in (B 6) is then by (3.27)
odZs ke " ;
- s _ 9 - 2 ik3z 1.2 Z(k
ikyd 25 — —— 53 /kg e *k*pd Zs(k, B)
. koe™2" .
(519 *”“—228,{3 / e 7k29pd Z3(ko, 0) (B10)
k3

The left hand side of (B 6) thus becomes

kpe™ =" 9 2 ik 2}
LHS=-2% _ Rz} k2 ik zea k2 b d Zg (Ko,
s =-S5 [ {55 (¢ s ouig aztio 0

sz_ZK ks 81/) 2
= elkaz —k§dZs(ko, 0 B11
243 /k3 8,8 d 3( 0 ) ( )
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Imz
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I / Y ¢
X N, A PR —
Cs Cy

FIGURE 15. Contours integral paths. The curves C3 and Cs begin at real part +oco and end
at (a,xo0) and (—a, xo), respectively. Cy and Cs begin at (a,x) and (—a, x) and go toward real
part co.

because (3.9) implies 'a% exp(ik3z) = —ik;zexp(iksz). Using (B 7) on the right hand side
of (B6) gives

koe™=" 27, kg 1.2 iksz
RHS = — 53 /k3 (2/{ klk_g — ki1kge'™*Q | dZ3(ko,0). (B12)

Equating (B11) and (B 12) we see that if Q, obeys

?ﬁ" — 2k%ky a—iksz
B k2

then we have found a particular solution to (B 6). We postulate

- k1Qs (B13)

k3 e——ikgz
Q, = 2i /k dk} (B14)
30

K2 + k2

is a solution and we are now going to show that it is indeed so. The derivative of Q,
with respect to z is

0Qs _ . [F Kjeiaz
— SR et D A B
2, 2ki /km (~1) Py dkg, (B15)
and v becomes
k3 (lli ky — k! )e-ikgz
= 2ki 2 dkj. B16
v i /kso K2 + ki 3 ( )

Differentiating 1 with respect to 8 we now get (B13). In order to obey the initial
conditions (3.26) we see that s must be zero for 3 = 0. This follows clearly from (B 14).

In order to complete the solution we shall express Q, (B 14) in terms of exponential
integral functions. Using the substitutions x = k3z, xo = k302 and a = kz, (B 14) may
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be written as

, a+a?
X p—a—iz X a—iz
=i e“/ S da:—e‘“/ S _dz}, (B17)
xo @T1T xo —0T1T
or more compactly written
e-z —Zz
Q. = e“/ dz — e”“/ g dz, (B 18)
c < c; #

where the contours are defined in figure 15. Cauchy’s integral formula immediately gives

/ = —/ and / :27(1H(—«X0x)—/ (B19)
Ci C3+Cy Csy Cs+Co

because the lone pole in (0,0) of exp(—2z)/z has residue 1 (H is the Heaviside function).
For the integrals along Cs3, Cy, Cs and Cg we use the definition of the exponential integral
function to obtain

Q, = e*[Ey(a+ixo) — Eia +ix)] — e ® [2miH (—xo0X) + E1(—a +ixo) — Ei(—a +ix)]
(B 20)
from which (3.31) derives (Q = exp(ik3z)Qs).
The first component of the flow can most easily be found from the assumption of
incompressibility:
. s . S 9 S
ik1dZ;{ (2, B) +1kod 25 (2, B) + 5jd23 (z,8) =0 (B21)
Because of (3.25) the last term in the left hand side equals ke™**d23(0, 8) so
—rIdZ ikyd Z§
dZig(z,ﬂ)z—&e 3(0,ﬁi)k+1 od Q(Z,B)n (B22)
1

We now introduce (3.29) for 7 = 2 in this equation and get

dz23(z,8) = i-—“—e—“dzg(o B8) — i—k%—e‘“ (1 - —k—Z—Q(z)) dZ3(0,5)
1 ! kl ’ klﬁl 2&2 ’
K2 k§k2
2&3k1

= 1%6‘“d23(0,ﬂ) +ie” Q(2)d25(0, 8) (B 23)

from which (3.29) for ¢ = 1 follows.
The solution (B14) has been guessed as follows: Rearranging the terms in (B6) we
get
9?dz§ +iklzadz§ adzy
9830z Oz o))
This inhomogeneous, linear, partial differential equation can be solved by Fourier trans-

forming in 3:

+ ik d 25 = iky — zky kpd 25 . (B 24)

S
i(w + ky 2) adf 2 4 ik dZS = ky(w + ki2)e”**dZ3(ky, k2, 0,w), (B25)

where the solution for d 25 (z, 8) (3.27) is used, and where any missing arguments in dZ;
or dZ7, such as ki, k2, z or w, is understood. The equation, now just an ordinary linear
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differential equation, can be solved by standard methods:

k2 ., ik1k2d Z3(0,w)e™"% /k? + C(w
A28 (z,w) = 1;263 425(0,w) + Fk2dZs( ” l klz/ @) (B 26)
where C in an arbitrary function of w. A particular solution is thus
k kyk
AZ5(2,f) = 1e7"dZ5(0, 8) +i7 776 (d23(2 = 0) = 1) (8), (B27)

where * means convolution, C(w) = 0 is chosen and H is the inverse Fourier transform
of (w+ k1z)™1:
lemikzb 8>0
H(B)=4q0 B=0 (B 28)
~%e“"°1 zp3 ﬁ <0
Calculation of the convolution in (B 27) leads to an equation from which the particular
solution (3.29) for ¢ = 2 can be guessed.
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PART IB:
Applications of the spectral tensor

By JAKOB MANN
Risg National Laboratory, 4000 Roskilde, Denmark

Three applications of the spectral tensor models in Part IA are presented. The first
application concerns simulation of a three-dimensional turbulent velocity field that has
the second order statistics of the model in Part IA. The simulations can be used for
dynamic load calculations on wind turbines, bridges, masts etc. The simulation algorithm
is fast and simple to implement. The second investigates the attenuation of momentum
flux measurements done with displaced sensors. Specifically, the ‘K’ style sonic array is
analyzed. The spectral tensor model of Part IA is especially well suited for this, because
it models the ww-cross-spectrum correctly with a ——37— power law in the inertial subrange.
The last application in this part uses the tensor model to analyze turbulence generated
in a boundary layer wind tunnel. It comes as no surprise that the wind tunnel turbulence
is more isotropic compared to the atmospheric turbulence, but methods are suggested to
correct for this discrepancy in calculation of dynamic loads on a bridge.

1. Fourier simulation of a non-isotropic wind field modelf}

Realistic modeling of three-dimensional wind fields has become important in calcu-
lation of dynamic loads on some spatially extended structures, such as large bridges,
towers and wind turbines. For some structures the along wind component of the of the
turbulent flow is important while for others the vertical velocity fluctuations give rise
to loads. There may even be structures where combinations of velocity fluctuations in
different direction are of importance.

Most methods that have been developed to simulate the turbulent wind field are based
on one-point (cross-)spectra and two-point cross-spectra. Here a method is described
which builds on the model of the spectral tensor for atmospheric surface layer turbulence
at high wind speeds developed in Part IA (the US model). Although the tensor does not
in principle contain more information than the cross-spectra, it leads to a more natural
and direct representation of the three-dimensional turbulent flow. As described in Part
IA the basis of the model is an application of rapid distortion theory, which implies a
linearization of the Navier-Stokes equation, combined with considerations of eddy life
times. The physical considerations are quite crude, but the tensor contains essential
aspects of the second order structure of atmospheric turbulence. The tensor model has

T Parts of this section appear in the proceedings of the 6th International Conference on

Structural Safety and Reliability, ICOSSAR ’93, held in Innsbruck. Professor Steen Krenk of
University of Aalborg coauthored that paper.
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been checked and calibrated with data from different experiments made for estimation
of wind loads on a large suspension bridge and on horizontal axis wind turbines.

The wind field can be represented as a generalized Fourier-Stieltjes integral of its spec-
tral components. The necessary factorization (i.e., ‘square root’) of the spectral tensor
can be accomplished in closed form. A numerical simulation algorithm is obtained by
recasting the Fourier representation of the wind field in discrete frequency/wavenumber
space. The method is considerably faster and simpler than methods based on cross-
spectra. Shinozuka and Jan (1972) suggested a quite similar method in general terms,
but lack of a realistic spectral tensor of the turbulence in the atmospheric surface layer
has prevented its use in wind engineering. The discretization imposes two requirements:
If either the width or the height of the domain of the simulated field is not much larger
than the length scale of the turbulence care must be taken to represent the energy of the
largest scales. Secondly, the space domain must have a large enough margin around the
structure of interest in order to avoid effects of the imposed periodicity.

1.1. Definitions and preliminaries

The notation used in this part is presented in §IA.2.1, so we shall only refresh the most
basic concepts.

The atmospheric turbulent velocity field is denoted by i(x), where = (21, 72,23) =
(z,y,z) is a right-handed coordinate system with the z-axis in the direction of the mean
wind field and = as the vertical axis. The fluctuations about the mean wind field, u(x) =
(uy,u9,u3) = (v,v,w) = @(z) — (U(z),0,0), are assumed to be homogeneous in space,
which is often the case in the horizontal directions but is only a crude approximation in
the vertical. Since we are interested in shear generated turbulence the mean wind field
is allowed to vary as a function of z.

We shall use Taylor’s frozen turbulence hypothesis (see e.g. Panofsky & Dutton, 1984)
to interpret time series as ‘space series’ and to change between frequency and wavenum-
ber. Since the mean wind speed is not constant in space, the wind speed U in the Taylor
relation #(z,y,2) = @(—Ut,y, z) must chosen as a vertical average of U(z).

We only aim at simulating turbulence which has the right second order statistics, such
as variances, cross-spectra etc. The velocity field is otherwise assumed to be Gaussian,
which is not a bad approximation for strong winds. All second order statistics can be
derived from the covariance tensor or its Fourier transform, the spectral tensor:

D,;(k) = E}JS— /Rij('r) exp(—ik - r)dr, (1.1)

where [dr = fio ffooo fix;o drydradrs. The spectral tensor is the basis of the Fourier
simulation and we shall only briefly describe the non-isotropic tensor model in §1.2,
because it is described in detail in Part IA.

The stochastic velocity field can be represented in terms of a generalized stochastic
Fourier-Stieltjes integral:

u(x) = /e“””dZ(k), (1.2)

where the integration is over all wave-number space. The orthogonal process Z is con-
nected to the spectral tensor by

(dZ; (k)dZ;(k)) = @i;(k)dkidkadks, (1.3)
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which is valid for infinitely small dk; and where * denotes complex conjugation.

1.2. The ‘sheared’ spectral tensor

Only an outline of the derivation of the sheared spectral tensor will be given since details
may be found in Part IA.

To model the spectral velocity tensor in a shear flow we linearize the Navier-Stokes
equation to estimate the effect of the shear on the turbulence. If we assume the shear to
be linear such that OU/0z is constant we obtain a simple linear differential equation for
the time evolution or the ‘stretching’ of the spectral tensor. If the statistics of the initial
condition is the isotropic von Kérmdn tensor (IA.2.16) with energy spectrum (IA.2.17),
then the tensor ®;;(k,t) will become more and more ‘anisotropic’ with time. The lin-
earization is unrealistic, however, and at some point the stretched ‘eddies’ will break
up. To close the problem an equilibrium is postulated where eddies of size o« |k|™! are
stretched by the shear over a time proportional to their life time, 7. At least for relatively
high frequencies (the inertial subrange), 7 oc £72/3, and we introduce a parameter T,
such that the non-dimensional life time, 3, can be written as 8 = %%T = F%(kL)“%
For a more realistic modeling of the eddy life time outside the inertial subrange see
figure IA.3.

To the present purpose it is most convenient to present the results in terms of the
stochastic process dZ(k) as in Part IA. We write ko for (ky, kg, k3o) with ksq = ks + Bk;.
If dZ}*° has the statistics of the isotropic von Kérmén tensor, (IA.2.16), then the sheared
tensor may be found from (1.3) and the following equations

dZ (k) 10 Ci=kCofky | [dZio(ko)
dZs(k) | =10 1 keCi/ki+Cy | |dZi°(ko) (1.4)
dZs(k) 0 0 k3 [k dZ5° (ko)
where
1 = PR (kG — 2k3 + Bk1kso) (1.5)
1 K2k} + k) |
and
kK [k + D
= _(k% — kQ)% arctan R = Fahnf | (1.6)

which are identical to (IA.3.14) — (IA.3.17).

Compared to the isotropic tensor model we have an extra parameter I which de-
termines the anisotropy of the tensor. Integrating the spectral tensor over the entire
wavevector space gives the (co-)variances as a function of I' (see fig. IA.4). It is seen
that when anisotropy is introduced, 02 > ¢2 > 02 and (uw) < 0 as confirmed by
observations.

Three experimental tests of the model has been made. Two are atmospheric, one
over water and one over flat terrain giving the parameters L/z = 0.73, I' = 3.2 and
L/z = 0.87, I' = 2.6, respectively (see §IA.4). The third is based on data from a
boundary layer wind tunnel giving L/z = 0.60, I' = 2.2, implying that the turbulence is
closer to being isotropic compared to the atmospheric turbulence, see §3.

1.3. Fourier stmulation

Having discussed the spectral tensor we shall now describe how to simulate a velocity
field u(x) from it.
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FIGURE 1. The box B consists of N1 X N2 x N3 points and has side lengths L;,1=1,2,3, so
the separation between the points in the i-direction is AL; = L;/N;. U is the mean wind speed
and T is the simulation time.

We would like to approximate the integral (1.2) by a discrete Fourier series:

ui(z) =y _e*Cy;(k)n;(k), (17)
k

where the i'th component of x is z; = nAL; with n = 1,...,N;. The symbol ),
denotes the sum over all wavevectors k with components k; = m2w/L;, with the integer
m = —N;/2,...,N;/2, n;(k) are independent Gaussian stochastic complex variables with
unit variance and C;;(k) are coefficients to be determined. See figure 1. The great
advantage of (1.7) is that, once the coefficients are known, it can be evaluated very fast
by the fast Fourier transform (FFT). Solving (1.7) we get

Cij(k)n (k) = -V%s@—)/lgui(m)e"‘k'mdm, (1.8)

where V(B) = Ly L2 L3 is the volume of B and [ dz means integration over the box B.
To find the coefficients C;;(k) we calculate the covariance tensor of (1.8) obtaining

Cli(k)Cii (k)
1 / ik-x, —ik-z' 7
=-V—2-(793/g/3<u1-(w)u3-(w )) ¥ 7em e dade (1.9)

--—-—-1 ! ik (z—z' '
= V2(B) f/Rij(m — 2')1p(z)1p(a’)e* " dzda’,

where 15 denotes the indicator function of B. Using the convolution theorem we get

3 7
CoCu(k) = [ @) [[sine’ (ﬁ’ﬂ:{—)i> ar, (1.10)
=1
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FiGure 2. Illustration of the discretization problem by an isotropic w-spectrum. The thin line
is the target spectrum, the dotted line is the average spectrum obtained by using (1.12) and the
dashed line is an average spectrum using (1.13).

where sincz = (sinz)/x. For L; > L, assuming dk; = 27/L;, we have

T 3
Cilb)Cyuk) = S0, (0) = (4Z;(R)AZ,(0). (1.11)
The relation C;;(k)n;(k) = dZ;(k) then implies
(27)3/2
Cy(k) = WAij(k) (1.12)

with A% Aj; = ®;;, which is expected comparing (1.2) to (1.7).

1.3.1. Problems with discretization and periodicity

Two problems occur by simulating a field by the Fourier series (1.7) with the coefficients
(1.12). The first is that for many applications the dimensions of the simulated box need
not to be much larger than the length scale of the turbulence model L. Therefore (1.11)
may not be a good approximation to (1.10). However, almost always L; >> L, so we can
at least reduce (1.10) to

i (R)Cir (k) (1.13)
3
2m P . (kl — k')Lz ,
= @ij(klykz,ks)l];£81nC2 (———————2——1—— dk',

This integration, which has to be done numerically is here limited to wavevectors, k,
obeying k = |k| < 2.5/L. Outside this volume we consider (1.11) to be a good approxi-
mation to (1.10) regardless of the dimensions of the box. This discretization problem is
illustrated by figure 2. The thin line is the target spectrum, the dotted line is the average
spectrum obtained by using (1.12) with dimensions 64L x 2L x 2L, that is L, > L is not
true for [ = 2,3. The dashed line is an average of ten 512 x 32 x 32 points simulations
using (1.13) as described above.
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FIGURE 3. Illustration of periodicity. Simulated (dots) and model w-coherences (curves) as
functions of vertical coordinate z. The vertical dimension of the box is Lz = 3L.

The second problem is that the simulated velocity field (1.7) is periodic in all three
directions. Shinozuka and Jan (1972) suggested to perturb the wavevectors in (1.7) to
avoid this problem. However, this would corrupt the efficiency of the FFT. Our solution
to the problem is to use a larger spatial window. In figure 3 the coherence of vertical
velocity fluctuations for a vertical separation

. _ Ixss(kr, 2))?
cohyy(ky,2) = a3 (. 0)? (1.14)
calculated from the sheared velocity tensor with I' = 4 according to (I1A.2.7) is shown
together with coherences calculated from simulations with 2048 x 32 x 32 points and
dimensions 256L x 3L x 3L. Since the simulated field is periodic the coherence goes to
1 as z — L3 = 3L. In a response analysis the space domain (L, and L3) should be
chosen large enough to contain roughly twice the structure of interest in each dimension.
However, if L; > L or if the structure is insensitive to low frequency fluctuations the
structure might cover more than half the simulated field in each direction.
An example of a simulated non-isotropic velocity field with I' = 4 is shown in Figure 4.
It is seen that the shear elongates and tilts the fluctuations.

1.3.2. Implementation and speed

The implementation of the model includes three steps:
(i) Evaluate the coefficients C;;(k), either by (1.12) or if necessary by (1.13).

(ii) Simulate the Gaussian variable n;(k) and multiply.

(iii) Calculate u;(z) from (1.7) by FFT.
The time consumption in the first step is proportional to the total number of points
N = N;N,N5 in the simulation. It is well known that the required time to perform the
FFT is O(Nlog, N).

If only one velocity component, 3, is needed then A(k) is simply +/®;;(k). In this case
the first two steps in the 2048 x 32 x 32 simulation used in figure 3 took 3;&1‘ minutes
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FIGURE 4. Vertical and horizontal cross sections of the u-fluctuations of simulated non-isotropic
turbulence with I" = 4. The broad contours have u; = 0 and the thin contours have U = +o,
or +20,.

on a Intel 486 25 MHz computer. The FFT used used 2% minutes and input/output 45
seconds giving a total execution time of 63 minutes. If the integral (1.13) is not used
only half a minute is saved on the execution time while the spectra are poorly simulated
as illustrated by figure 2.

To simulate all three velocity components dZ¥*° is first calculated from (1.12) with the
explicit factorization

0 k ~k
E1/2(l€) 3 2
ko —ky 0

of ®° (see equation (IA.2.16)). Then dZi°(ky) is transformed into dZ;(k) by (1.4) and
(1.7) is used to get u(x).

1.4. Conclusion and future developments

In this section we simulate a stochastic field from a spectral tensor. This has not been
done before for a realistic spectral velocity tensor for atmospheric surface layer turbu-
lence, apparently because no such tensor model has been available. This paper is in
principle a special case of the general paper by Shinozuka and Jan (1972). There are
some differences, however: Shinozuka and Jan use (1.12) which in our specific study is
shown not to be a good approximation to the exact (1.10). Furthermore, we use evenly
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FIGURE 5. Sketch of experimental setup in Kretz et al. (1994). The wind velocity measuring
instrument is mounted on a blade, so the path of the instrument is a helix.

spaced wavevectors while Shinozuka and Jan suggest to wobble the wavevectors in order
to avoid the imposed periodic boundary conditions.

The two most time consuming steps in our algorithm are the evaluation of the spectral
tensor using time proportional to the number of points in the simulations NV = N; N2 N3,
and the FFT using O(N log, N).

Methods bases on cross-spectra often has the decomposition of Ni cross-spectral ma-
trices as the most time consuming step. The fastest algorithm to do this known to the
author is proportional to N; N2 N2, Winkelaar (1991), i.e., considerably slower than our
simulation method. Winkelaar’s study uses coherences and not complex cross-spectra in
which case important phase information is lost. Simulations based on Winkelaar (1991)
would thus never show tilted velocity fluctuations as in the upper contour plot of figure 4.

The work presented in this section is far from finished. Firstly, I have to clarify the
problems in §1.3.1 and provide general ways to avoid them. Secondly, the method has
to prove its usefulness in engineering. An important first step in that direction has been
taken by Kretz, Madsen and Petersen (1994) from the Test Station for Wind Turbines at
Risg. They have mounted five-hole pitot tube on a blade of a wind turbine (see figure 5)
in order to measure actual wind fluctuations impinging on the blade which give rise to
the forces and torque attacking the blade. Kretz et al. then used two models to simulate
the wind wind field streaming through the rotor plane; the one presented here and the
frequently used Sandia method (Veers 1988) (which is refined in Winkelaar (1991)).
Their tentative conclusion is that the model presented here compares very favorably to

58 Risg-R-727(EN)



Applications of the spectral tensor PART IB

Az/z

T

0.2

0.1

-0.1

~0.2

1 L N A
02 -01 O 01 02 v/

FIGURE 6. Contour plot of R13(0, Ay, Az)/Ry3(0,0,0) for L/z = 0.9 and I" = 3. Contours at
1.0, 0.975, 0.95, ... The 1.0 contour is the dot at (0,0).

the Sandia method by giving more realistic spectra of the forces on the blades. Kretz
et al. (1994) show that this has significant consequences for the estimation of the blade
fatigue. An other engineering application to pursue is the calculation of dynamic loads
on large bridges.

2. Momentum flux measurements with displaced sensors

The vertical flux of horizontal momentum is measured by correlating vertical and
horizontal velocity fluctuation in one point. A simple application of the US model is
to estimate the loss or gain of measured momentum flux caused by spatial averaging or
by the sensors of vertical and horizontal velocity not being co-located. Firstly, we shall
calculate the correlation expected from ideal pointlike vertical and horizontal velocity
sensor placed in two displaced point, i.e. we shall look at R;3(r) for non-zero r. Secondly,
in §2.2, we shall investigate the expected response from a specific sonic array.

The spectral tensor model presented in the main text is well suited for these calculation
because the observed kfg behavior of the uw cross-spectrum (Wyngaard & Coté 1972)
is obeyed by the model.

We believe that the US+B model (§3.3) is unnecessary complicated for the subsequent
calculations because only the larger scales of the turbulence are affected by the blocking
by the surface. Therefore, we use the simpler US model (83.2). The calculations apply
to horizontally homogeneous sites.

2.1. The structure of Ri3
The correlation Ry3(r) is calculated from the US model (§3.2) of the spectral tensor
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FIGURE 7. {(a): Contour plot of R13(Az,0, Az)/R13(0,0,0) for L/z=0.9 and I' = 3. Contours
at 1.025, 1.0, 0.975, 0.95, ... The 1.0 contour is “8”-shaped. (b): Sketch to support the qualitative
argument for the location of extrema of the correlation. The u- and w-sensors are located at
crosses and the u-sensor is engulfed in a localized gust.

by the inverse of (2.3):
Ris(r) = /@13(k) exp(ik - r)dk. (2.1)

Figure 6 shows the correlation in the yz-plane and figure 7 in the zz-plane for parameters
L/z = 0.9 and I' = 3, which agree with the observed values from The Great Belt
Experiment and LAMEX. We have assumed the length parameter L to scale with z,
which is expected from neutral surface similarity theory.

The enhanced correlation away from (0,0) in figure 7a can be explained from the in-
compressibility of the flow: Suppose u is measured at (0,0) and w at a small positive
Az and a small negative Az as in figure 7b. If a local ‘gust’ engulfes the u-sensor at
some instant (i.e. positive u), then, because of incompressibility, it is probable that
there is a positive divergence in the yz-plane for small positive = as illustrated on the
drawing (fig. 7b). Therefore, it is likely that w is negative at the position of the sen-
sor. The correlation of u and w at these points is thus expected to be negative only
because of incompressibility. The negative correlation will add to the general negative
correlation (because of the downward momentum flux) and Ri3(Az,0,Az)/R13(0,0,0)
becomes larger that one. Similar arguments account for the behavior of the correlation
in the other three quadrants of figure 7.

2.2. The ‘K’ style sonic array
The 'K’ style sonic array, named after its designer J. C. Kaimal (Kaimal et al. 1990),

60 Risg-R-727(EN)



Applications of the spectral tensor PART IB

F1GURE 8. Sketch of the ‘K’ style sonic array from Advanced Technologies, Inc.

is used for atmospheric boundary layer studies. The K sonic consists of three transducer
pairs with gaps of G = 0.15 m. It is designed to minimize flow distortion errors at the
expense of the co-location of the gaps; see figure 8. We use the US spectral tensor model
to estimate the consequences of the displaced sensor gaps.

To make the analysis more complete we also take into account the finite gaps. First
we calculate the covariance between to arbitrarily positioned and oriented acoustic paths
(straight line between a transducer pair). Their signals are

X = el / m - u{lm + 7)dl (2.2)
G2
and
1 [G/2
Y = ~—/ n-u(l'n+s)dl, (2.3)
G J g

where r and m are the position and orientation (a unit vector parallel to the gap line)
of sonic X, s and n are the position and orientation of sonic ¥ and G is the length of
the gap. The covariance of X and Y is

Mt G/2 G/2
(XY)=-—-"2L2 / / R;j(I'n — lm + s — r)dldl’
G* J_gpt-cp

. G2 G/
= —d /@ij(k) exp(ik - (s — 7'))/ / exp(ik - (I'n — lm))dldl'dk
G -Gj2J-G/2
=m;n; / ®,;(k)cos(k - (s — r))sinc (k- mG/2)sinc (k- nG/2) dk, (2.4)

where sinc(z) = sin(x)/z.

The velocity components measured by the three sonics in the K sonic array are Hy +h;
(upper), Hy + hy (lower) and w,, (vertical), where (h;) = (hs) = (wq,) = 0. The non-
zero component of the mean wind vector is U = /H? + HZ. The measured longitudinal
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90°

F1GURE 9. Contour plot of (uw)_, /R13(0,0,0), the normalized momentum flux as expected to
be measured by the K sonic. The radial axis is the ‘size’ of the sonic D = 0.185 m divided by
the height above the ground z, and « is the direction of the mean wind field with oo = 0 being
parallel to the boom head on the vertical sonic, see figure 8. The 100% contour passes exactly
through zero, because here neither the distance between the acoustic paths nor the finite gap
will influence the measurement. Contours are spaced by 2.5%.

velocity fluctuations become u = hy cosa — hysina, where cosa = H, /U, and v =
hisin a + ho cos o for the transversal.

If D denotes the horizontal distance from the vertical sonic to the others, which is equal
to half the distance from the upper to the lower sonic, then the measured momentum
flux is

(uw),, = (hiway) cosa — (haway) sin a (2.5)
with displacement vector s —r = (D cosa, D sin e, D) for the first term on the right hand
side and (D cosa, Dsina, —D) for the second in the coordinate system defined by the
mean wind velocity. Each term in (2.5) is calculated by (2.4) for the geometry of the K
sonic (D = 0.185 m) and the result is shown in figure 9.

As seen from figure 9 the measured flux for any incident angle will be larger than 92%
of the real flux, if D/z = 0.1, i.e. z = 1.85 m. So it seems that the instrument has to
be very close to the ground (< 2 m) to get any significant flux reduction (> 10%). This
agrees well with Kaimal’s (1990) recommendation not to use the instrument below 4 m.
If the instrument were turned up side down the error for small o would be even less.
This is because in that case the displacement vector between the u- and w-sensor will be
positive Az and negative Az so the momentum flux will be reduced comparably little,
see figure 7.

From (2.4) it can be seen that the averaging by the gaps is not important. The ‘Half
Width at Half Maximum’ of the cosine term in (2.4) is kuwnm = arccos(3)/|r — s| =
4.00m~" for the geometry of the K sonic. The HWHM of the sinc term is kawuaMm =
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3.79/G =~ 25.3m~!. So it is almost only the cosine term that attenuates the flux, i.e.
only the displacement of the sensors matters. Careful numerical experimentation shows
that the line averaging in the acoustic gaps has a detectable but very small effect on the
momentum flux measured by the K sonic.

For the validation of the theoretical predictions in this appendix a small experiment
at Risg has been planed. Unfortunately, the experiment has been delayed and could thus
not be included in this dissertation.

3. The spatial structure of boundary layer wind tunnel turbulence

The purpose of this section is to compare the turbulence in the new, wide boundary
layer tunnel at the Danish Maritime Institute (DMI) in Lyngby to the turbulence mea-
sured at Sprogg in the Great Belt. It is of particular interest to estimate the differences
in the turbulent energy available for buffeting excitation (Davenport et al. 1992, and
references therein) at different frequencies attributed to the imperfectly simulated tur-
bulence in the wind tunnel. The tool used to do this is the spectral tensor model of Part
IA.

The wind tunnel has in addition to carpets on the tunnel floor 21 spires to create the
turbulent wind. The difference between the natural turbulent wind and the wind tunnel
turbulence is primarily that latter is slightly more isotropic. This implies that the length
scales of the u-spectrum and w-spectrum are not far apart, while in the natural boundary
layer the scales are separated by a factor of ~ 10. The reason for this is primarily the
limited length of the wind tunnel. In absence of spires at the tunnel inflow a turbulent
equilibrium boundary layer is not able to develop to the height of the bridge deck.

Since the turbulent fluctuation of the vertical velocity component is the most important
for the buffeting excitation of the bridge deck the w-scale has been chosen to fit the
target spectrum (as described in the design basis of the Eastern Bridge of the Great Belt
connection) so we shall emphasize vertical fluctuations in the this investigation.

We compare the wind tunnel data with the US model in §IA.3.2. We have chosen not
to use the US+B model because it is more complicated and does not give very different
results.

In §3.2 the US model will be used to estimate the differences in turbulent energy
available for buffeting excitation response due to imperfectly simulated turbulence as a
function of wavenumber or frequency. In order to do so the following highly idealized
assumptions are made:

(i) The length scales of the relevant eigen-modes of the bridge are large compared to
the transversal distance over which fluctuations are correlated or equivalently, where the
coherence is not small.

(ii) There is a linear relation between the two-point cross-spectrum of w (or u) and

response spectrum of a given eigenmode.
Clearly, this last assumption can only be valid for buffeting excitation, and even in that
case the assumption is probably too crude. The ‘idealized response amplitudes’ derived
in §3.2 should thus only give an indication of how the Boundary Layer Wind Tunnel
(BLWT) over- or underestimates the buffeting response amplitudes.

The tentative conclusion is that at the highest relevant frequencies the the buffeting
response amplitude due to vertical velocity fluctuations will be overestimated by the
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BLWT by up to 20%. However, as discussed in §3.3, the extrapolation of the Great Belt
data to very high wind speeds adds uncertainty to this conclusion.

The data were kindly provided by Timothy A. Reinhold and Michael Brinch of the
Danish Maritime Institute.

3.1. Data analysis

In the wind tunnel experiment the vertical and horizontal velocity was measured simul-
taneously in two points. The measurements were carried out without the model bridge
in the tunnel. The probes were displaced by a distance ranging from 0.01 m to 0.22 m
normal to the flow in a height of 0.35 m. This corresponds to a full scale height of 70 m
and horizontal separations of 2 to 44 m since the bridge model (which was not in the
wind tunnel during this test) was build on the scale of 1 to 200. The velocity measuring
devices were of the type DANTEX 55F63 and consisted of two slanting hot wires in an
X configuration. Since lateral homogeneity of the most simple statistics such as mean
velocity and velocity variance already has been shown by Smitt and Brinch (1992) we
only perform this more detailed analysis for the velocity probes placed at the center line
of the tunnel at the downstream position of where the bridge model were situated during
aerodynamic tests.

The w- and u-components have been derived without taking into account the sensitivity
to the transversal velocity fluctuations and deviations from a pure cosine response (Larsen
1986, Appendix E.). Using Larsen’s (1986) values for the pitch and yaw correction valid
for the DISA 55F11 sensor which is similar to the present sensors we multiply the u-
spectrum by 0.97, w- by 1.11 and the ww-cross-spectrum by ~ 1.06. This is done to all
wind tunnel spectra in this reporty.

Three one-point spectra can be determinated from the data, namely Fy(k1), Fu(k)
and the cross-spectrum Xuw(k1), where k, = 2nf/U is the wave number in the direction
of the mean wind, f the frequency and U the mean wind speed. Furthermore, we
calculate two two-point cross-spectra for each horizontal separation Ay of the cross-
wires: Yww(k1, Ay,0) and Xuu(ky, AY, 0), where the zero indicates no vertical separation
of the probes.

The purpose of data analysis or data reduction is to describe large amounts of data by
a simple theory or model. Here we shall use the spectral tensor model (US) developed
in Part IA.

The three one-point spectra are fitted to the data in figure 10. This procedure yields
the three parameters of the tensor which in turn enables us to predict all cross-spectra
or coherences defined as

Ixii (K1, Ay, Az)?
F2 (k1) ’

cohy;(k1, Ay, Dz) = (3.1)
where Fy(k1) = xi:(k1,0,0) (no summation) is the one-point spectrum. Experimenting
with the lifetime models in §IA.3.1 we find that (IA.3.6) is not the best fit to the wind
tunnel data, as was the case for the atmospheric experiments, but that (IA.3.1) fits
better. The minimized x> (see eq. 1A.4.1) for the model (IA.3.6) is 50% larger than for

1 The ratio between the u-spectrum and the w-spectrum is ~ 0.87, i.e., not 3/4 as it should

be in the inertial subrange (high frequencies). Without Larsen’s correctinos the ratio would be
even larger.
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FIGURE 10. The spectral tensor model fitted to the three measured one-point spectra giving
the three parameters I, L and ac?/®. The smooth curves are the fit and the ragged curves the

data.

(IA.3.1) for the wind tunnel spectra. Consequently, we use (IA.3.1) in the US model to
predict the coherences in the wind tunnel.

The model fits the one-point spectra well as seen from figure 10, and the predicted
coherences are shown in figures 14 to 16. Around the theoretical predictions in these
figures the expected 1-o scatter is shown as dashed lines according to (IA.4.6) with 82
degrees of freedom. It is seen that the predictions are fairly accurate. However, a curious
deviation from the predictions is seen in figure 14 for Ay = 0.01 m both for the u- and
the w-component. A possible explanation for this is that Ay could have been close to
0.013 m instead of 0.01 m.

To compare atmospheric and wind tunnel the data have to be scaled in such a way
that the Froude number F' = U?/(lg) is invariant. Since the acceleration due to gravity
g can not be changed and all dimensions of the model [ is scaled down from the full scale
bridge by a factor of 200, the mean velocity in the wind tunnel U must be scaled up by
a factor v/200. The wind tunnel wind speed is 4.1 m/s corresponding to a atmospheric
wind speed of ~ 58 m/s. Spectra and cross-spectra were only obtained at wind speeds
up to 23 m/s at Sprogg so these spectra must also be scaled. Larsen et al. (1991) found
experimentally 02, o« U? for U < 30 m/s. We assume that this proportionality holds
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FIGURE 11. Comparison of w-spectra from the boundary layer wind tunnel and from Sprogg
at a full scale velocity of 58 m/s.

up to 56 m/s. The scaled w-spectra are shown in figure 11. Comparing the spectra the
turbulence seems to be somewhat too strong in the wind tunnel at most frequencies.

3.2. Consequences for the ‘idealized response amplitudes’

Having compared turbulence measurements from the Great Belt to the BLWT we shall
in this section discuss the consequences for the buffeting response amplitudes. The
discussion is highly idealized, so the results are only an indication of what the imperfectly
simulated turbulence in the BLWT might imply for the prediction of the oscillation
amplitudes of the bridge deck.

Assuming linear excitation of the eigenmodes of the bridge and that the width of the
bridge deck is smaller than the scales in the turbulence that excites the motions, the
square of the amplitude can be written as a weighted integral of the cross-spectrum of
the component(s) of the wind that excites the mode. The weighting includes the mode
shape, damping coefficient, eigenfrequency and more. It is obvious from experimental
studies that these assumptions are too crude. See e.g. Davenport et al. (1992, figure
16), where forces and wind fluctuations are seen to have different correlations along the
bridge deck. However, we assume that we are able to give an indication of the relative
difference in the amplitudes due to differences between the simulated boundary layer
turbulence and the atmospheric turbulence over the Great Belt.

Since the wavelengths of the relevant eigen-modes are long compared to the separa-
tion over which the turbulent velocity fluctuations become uncorrelated, the squared
amplitude A% of a given mode can under these idealized circumstances be shown to be
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FIGURE 12. Cross-spectra of vertical velocity fluctuations as a function of horizontal displace-
ment Ay for a fixed wavenumber k; = 0.03 rad/m. Both model predictions and actual data are
shown. Wind tunnel data are scaled up to full size and Sprogg data are scaled up to U = 58 m/s.

proportional to the integral of the cross-spectrum. We get
A% x /j" X4 (k1,y,0)dy
= /_oo ®,; (k) exp(ikoy)dydk
- / &, (k)26 (ky)dk |

o0

= 27(/ (I)ij (kl, D, k‘g)dk;g (32)
— 00

where we have used (IA.2.7) to relate the cross-spectrum to the spectral tensor and the

identity [~ exp(iksy)dy = 276(ks), where 6 is Dirac’s delta function. Equation (3.2)

gives an approximate relation between the amplitude and the tensor for a wavenumber

ky =27 fy /U, where fy is the eigenfrequency and U is the mean wind speed.

Cross-spectra of vertical velocities are shown on figure 12 as a function of displacement
Ay. It is seen that the US model predicts both cross-spectra well.

The tensor obtained from the boundary layer wind tunnel is scaled up from model size
and is called 2T and the tensor extracted from the Great Belt Coherence Experiment
is denoted by ®3B!*. By (3.2) the ratio between the ‘idealized response amplitudes’ of
the model in the wind tunnel scaled up to natural size and the amplitudes of the Great
Belt bridge is

(3.3)

o 1/2
Aptwr [ S o 5V (K1, 0, ks)dks
AGBelt

J2o, ®@8Be(ky 0, k3)dks

under the assumptions given in the start of this section.
If i = j = 3 then (3.3) gives the ratio of amplitudes for modes primarily excited by the
w-component of the velocity fluctuations and if i = j = 1 it gives the ratio of u-excited
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FIGURE 13. Ratio of ‘idealized response amplitudes’ (3.3) as a function of wavenumber.

modes. Both are shown in figure 13. It is seen that the w-excited modes in the wind
tunnel are too large by a small amount for most frequencies.

According to Reinhold et al. (1992) the relevant eigen-frequencies of the bridge deck
are between 0.05 Hz and 0.38 Hz. If we assume the relevant wind speeds to be between
30 and 56 m/s then the interesting wavenumbers will be in the interval 0.006 rad/m
to 0.080 rad/m. According to figure 13, this implies that the w-excited modes most
probably are overestimated due to the imperfectly simulated wind tunnel turbulence,
while the energy in the u-excited modes are better estimated.

3.3. Conclusion

Turbulence from the wide boundary layer wind tunnel at DMI has been compared to
measurements from the Great Belt.

The US model of Part IA fits the measured wind tunnel spectra well and predicts the
cross-spectra almost perfectly (figures 14 to 16). The US model is used to predict that
in the wavenumber interval of interest for dynamic load calculation (~0.006 rad/m to
0.080 rad/m) under very simplistic assumptions about the interaction between turbulence
and the motion of the bridge deck, the amplitudes of the oscillation modes are slightly
overestimated by up to 20% (for modes excited by the w component, see figure 13).

However, there are two major systematic uncertainties in this estimate. Firstly, the
tensor model does not fit the Great Belt data perfectly as seen from figure IA.7. Secondly,
the Great Belt spectra has been extrapolated up to U = 58 m/s by assuming that the
turbulence intensity is independent of U as in Larsen et al. (1991). The assumption
of constant turbulence intensity is fairly obvious for fixed surfaces but the surface of
the sea changes as the wind speed grows, which can affect the turbulence intensity. I
have used a simple model of how the sea surface reacts to the wind, Charnock’s relation
(Charnock 1955), to estimate the increase in turbulence intensity. From 25 m/s to 58 m/s
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it increases by roughly 20% (assuming that the ratio between ¢ and (uw) is constant),
which should be added the amplitudes estimated from the Great Belt data. This may
cancel the 20% overestimation seen in figure 13 for the w-excited modes.

Under the very simple assumptions relating turbulence to mode amplitude (3.2) it
seems — taking the uncertainties mentioned above into account — that scaled amplitudes
at the relevant frequencies will lie within £30% of amplitudes of the real bridge, if all
other physics is being perfectly scaled and modeled.
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cohy (b1, Ay)

cohyy (k1, Ay)

]C]_ Ay

FIGURE 14. Measured coherences from the wind tunnel (dots) and predicted coherences (solid
curves) as a function of k;Ay. The dashed curves are the expected 1-o deviation from the
predicted coherences according to (IA.4.6). The left column is the u-coherences, the right the

w-coherences. The separation of the cross-wires is indicated on each plot.
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cohyy (K1, Ay)

FIGURE 15. See caption of figure 14.
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FIGURE 16. See caption of figure 14.
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We determine how long a time series must be to estimate covariances and moments up
to fourth order with a specified statistical significance. For a given averaging time 7" there
is a systematic difference between the true flux or moment and the ensemble average of
the time means of the same quantities. This difference, which we call the systematic
error, is a decreasing function of 7" tending to zero for T — oco. The variance of the time
mean of the lux or moment, the so-called error variance, represents the random scatter of
individual realizations which, when T is much larger the integral time scale 7 of the time
series, is also a decreasing function of T'. This makes it possible to assess the minimum
value of T necessary to obtain systematic and random errors smaller than specified values.
Assuming that the time series are either Gaussian processes with exponential correlation
functions or a skewed process derived from a Gaussian, we obtain expressions for the
systematic and random errors. These expressions show that the systematic error and the
error variance in the limit of large T’ are both inversely proportional to T which means
that the random error, i.e. the square root of the error variance, will in this limit be
larger than the systematic error. We demonstrate theoretically, as well as experimentally
with aircraft data from the convective boundary layer over the ocean and over land, that
the assumption that the time series are Gaussian leads to underestimation of the random
errors, while derived processes with a more realistic skewness and kurtosis give better
estimates. For fluxes we estimate the systematic and random errors when the time series
are sampled instantaneously, but the samples separated in time by an amount A. We
find that the random error variance and the systematic error increase by less than 8%
over continuously-sampled data if A is no larger than the integral scale obtained from
the flux time series and the co-spectrum, respectively.

1. Introduction

A fundamental tool in studying turbulence processes is the use of statistical moments to
describe the properties of a field of turbulent fluctuations. Ideally the statistical moments
should be determined by ensemble averaging, but in practical experimental situations

+ Permanent affiliation: Risg National Laboratory, 4000 Roskilde, Denmark.

1 The National Center for Atmospheric Research is sponsored by the National Science
Foundation.
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this is not possible. Instead, the moments are estimated by a finite number of sample
averages over a finite time period. Since theoretical treatments of turbulence often assume
ensemble-averaged statistical moments, it is an important practical consideration to be
able to estimate the difference between measured moments and the idealized ensemble-
averaged moments that they are assumed to represent.

Recent observational studies such as the First ISLSCPt Field Experiment (FIFE)
and the Atmospheric Boundary Layer Experiments (ABLE) have renewed interest in
examining the significance of turbulence statistics measurements. This interest is related
to such issues as the effects of changes in greenhouse gas concentrations on climate and on
understanding the interaction of vegetated land surfaces with the atmosphere (Lenschow
and Hicks, 1989). One example of the importance of this issue is the observation by
Betts et al. (1990), Kelly et al. (1992), and Grossman (1992) of a significant reduction
in airplane-measured scalar fluxes in FIFE due to inadequate length of flight legs and
high-pass filtering.

Another example is the comparison of large-eddy simulation (LES) and direct sim-
ulation results with observations. For example, measurements of third-order moments
do not always agree with LES, and in some cases it is not clear whether the differences
are statistically significant. Moeng and Rotunno (1990), for example, have carried out
direct simulations of buoyancy-driven turbulence and found that their simulations differ
significantly from observations in a convective boundary layer. Similarly, large-eddy sim-
ulations of the convective atmospheric boundary layer (Schmidt and Schumann, 1989;
Mason, 1989) make predictions about the behavior of turbulence statistics, and again
differences between simulated and observed values, particularly for third moments, are
found. However, observations of the third-order moment contain considerable scatter
and are difficult to measure accurately. LeMone (1990) discusses some observations of
skewness and possible sources of error in skewness measurements. Her approach is to
investigate the effects of specific mesoscale phenomena in altering skewness rather than
a general approach for estimating the significance of measurements of higher-order mo-
ments.

For these reasons, we have carried out a detailed evaluation of the error generated in
second-, third-, and fourth-order moments of a single variable, and in covariances of two
variables (e.g. fluxes) due to using measured time series of limited length to estimate the
ensemble statistics. This error contains both a systematic and a random contribution.
We also consider the additional error introduced by selecting an equally-spaced subset of
the original time series from which the covariance is computed. Practical applications of
this include: 1) use of sampling technology to grab an instantaneous sample of air whose
constituents can then be measured in a more leisurely fashion with slower-responding
sensors than required for direct measurements of the covariance without compromising
the frequency response of the measurement (Cooper, 1993); and 2) it may be possible
to reduce the amount of data to be stored without increasing the error in the covariance
estimates. We then compare the theoretical expressions with errors calculated from
airplane measurements of vertical air velocity and temperature.

In the following analysis we consider only stationary time series. This implies that they
must be of infinite duration. Real time series are, of course, never strictly stationary and
very often they are far from it. For example, they often have significant trends, and often

1 International Satellite Land Surface Climatology Project
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FIGURE 1. Open circles are values of skewness and kurtosis of w from the flight legs used by
Lenschow and Stankov (1986) in their analyses of length scales. Most of the legs are from the
Air Mass Transformation Experiment (AMTEX); a few are from NCAR Queen Air flight legs
over eastern Colorado and over the Gulf of Mexico. The flight legs varied from 42 to 170 km
in length. Closed circles (w) and crosses (6) are the values from the flight legs used used in
the analyses presented here, which are about 180 km in length. The right panel has the same
data plotted as K vs. S. The parametric curve shows the skewness and kurtosis for the process
(2.19) as a function of the parameter a.

random fluctuations have a different character at different regions in the time series. We
often then assume that the given time series is a part of an infinitely long stationary
time series, but that the given time series is too short for all these large-scale features
to be statistically resolved. For this reason, real time series are often preprocessed to
eliminate or suppress these large-scale features. Examples of preprocessing are trend
removal, time-dependent scaling or ‘windowing’ and high-pass filtering. Dealing with this
inevitability of the real world requires skill, experience and some a priori knowledge of
the phenomenon under investigation to preprocess time series in such a way that the
physical information is minimally corrupted.

The problem of estimating the statistical errors of higher moments has been addressed
before by Lumley and Panofsky (1964). Their results have been discussed and applied by
e.g. Wyngaard (1973) and Sreenivasan et al. (1978). As we discuss here, their approach
differs from ours in that they do not separate systematic errors from random errors.
It is quite natural to make this separation because averaged moments of second and
higher order are functions of the averaging time (or length) and therefore systematically
different from the theoretical ensemble values, which we can imagine to be the result of
infinite averaging time. Furthermore, they only predict errors of second- and fourth-order
moments, not third.
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2. Systematic Errors

In the following we separate the analysis into moments of one variable and moments
of more than one variable. In the first category we deal with second, third and fourth
moments, whereas in the second we discuss only second moments, i.e. co-variances or
fluxes.

2.1. Single Time Series Moments

We consider an ergodic and consequently stationary time series w(t) with the ensemble
mean removed for notational convenience, i.e.

{w(t)) = 0. (2.1)
The ensemble mean is in experimental situations estimated by the time average
T/2
w(t)dt 2.2
T / T/2 22)

which in general is different from (w(t)). However, taking the ensemble average of (2.2)
implies

(wr) = (w(t)) = 0. (2.3)
By the assumption of ergodicity,
Jim (wr) = (). (24)

The nth-order central moment is
fin = ((w = (w))") = (w™), (2.5)

which, in analogy to (2.2), is determined experimentally by time averaging, viz.
T/2

1
pn(T) = T/ (w(t) — wp)™dt. (2.6)
-T/2
In general, when n > 1
{(un(T)) # pin.-
For the second-order moment we get
T/2 \
/’* — wp)°)dt
o T T/2 2
T/2 T/2
= 12~ 7 / dty [ dtalw(ty w(ts)). 2.7)
T/2 —-T/2

Since there will subsequently be several definite, multi-dimensional integrals of the
type occurring in (2.7), we introduce the short-hand notation for the n-dimensional,
dimensionless integral operator:

T/2 T/2 T/2
/ / dt; / dtn. (2.8)
T/2 T/2 T/2
Using this new convention, we get for the third- and fourth-order moments

(us(T)) = pa — 3 / (w? (b1 (1)) + 2 / (w(tr Yt wlts)). (2.9)
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and

(1a(T)) = pa — 4/(w3(t1)W(tz)) + 6/<w2(t1)w(tz)w(t3))
-3 / (w(t: yw(ts)w(ts)w(ts)). (2.10)

We define the auto-covariance function R,.,(7) and the auto-correlation function p(7)
by
Ruw(tz —t1) = (w(t;)w(tz)) (2.11)
and
pop(te — t1) = Ruw(tz — 11) (2.12)
which, due to ergodicity and consequently, stationarity, are even functions of only one

variable, namely the time lag 7 = t — t;. From this it follows that the double integral
in (2.7) can be reduced to a single integral,

%122 =1- %/OT (1 - %) p(r)dr (2.13)
and in the limit T > 7,
%@l ~1-2L, (2.14)
where
T= /OOO p(t)dt (2.15)

is the integral time scale.

In order to estimate (u3(7)) and (u4(T')) we use the approximation that the signal can
be derived from a Gaussian process. In the case of (u4(7')), we assume that the signal
itself is a Gaussian process. This implies that the Isserlis relation (Koopmans, 1974)t

(w(t)w(t2)w(ts)w(ta)) = (wlti)w(tz))(w(ts)w(ts))
+ (w(ty)w(ts)){w(te)w(ts))

+ (w(t)w(ts))(w(tz)w(ts)) (2.16)
can be applied to (2.10) to obtain in the limit T > 7
(na(T)) T
— ]l -4 2.17
i T (217)

Lenschow, Mann and Kristensen (1993) (LMK) present the exact evaluation of (2.7)
or (2.13) together with the fourth-order systematic error for all values of 7" assuming an
exponential autocorrelation function

p(7) = exp(=|7|/T), (2.18)

see also (A1) and (A 2) in appendix A.
When evaluating (2.9), we obtain the trivial result that (u3(7")), as well as all other
odd moments, are zero if we assume that w(t) is a Gaussian process. Most real processes
t The Isserlis relation states that, in general, the 2nth-order moment can be reduced to a

sum of (2n — 1)!! terms, where (2n — 1)!' = (2n — 1) x (2n —3) x (2n —5) x --- x 3 x 1, each of
which is a product of n/2 second-order moments.
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in the boundary layer are non-Gaussian. Therefore, to estimate the systematic error of
odd moments in particular, we use a non-Gaussian process with skewness and kurtosis
different from zero and three, respectively. A simple way to construct such a process is by
modifying a Gaussian process z(¢) with variance o2 and an exponential auto-correlation
function such that

2(t) — (22(¢

w(t) = z(t) + ai_(_)__ﬂ_)l_
go

Using the Isserlis relation, it is easily seen that the skewness and kurtosis of w(t) are:

ps  2a(3 + 4a?)

#3/2 T (1 + 2a2)3/2

=t 3(1 + 20a? + 20a*)
T opd (1 + 2a2)2

(2.19)

S

Il

(2.20)

Realistic values of a are between 0 and 0.1 for the vertical velocity w and around 0.2
for the temperature 6 as seen from the right panel of Fig. 1, where values of skewness and
kurtosis from the flight legs used by Lenschow and Stankov (1986) in their analysis of
length scales as well as the flight legs used here, are displayed together with a parametric
curve of {K(a), S(a)} from (2.20). LMK derive the asymptotic systematic errors (T > 7))
for all higher order moments of the skewed process (2.19), see also appendix B. The error
of the third-order moment becomes

(i = a0 /s =3 (2~ T rama e ) 7 (2.21)

which is between 57 /T and 67 /T. The systematic errors of the second- and fourth-order
moments are not very different from the Gaussian results (2.14) and (2.17). (See Table
6 and §B.4.)

2.2. Fluzes

It is straightforward to generalize the preceeding discussion to more than one signal. It
is of particular interest to extend the analysis to second-order moments of two random
variables such as the vertical flux of a scalar s(¢). In this case w(¢) is the vertical velocity.
Let us assume that s(¢) has a zero ensemble mean. Then (2.1) - (2.4) apply to s(t) as
well as w(t). The second-order moment, i.e. the flux, is defined as

F = (w(t)s(t)). (2.22)
Experimentally, the flux is determined as the time average
F(T)= /{w(t) —wrH{s(t) — st} (2.23)

In general the ensemble average of F'(T") will be different from F. We get, in analogy to
(2.13)

ww»=F—/&Mm—m, (2.24)

where
Ryo(7) = (w(t)s(t + 7)) (2.25)
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is the covariance function of w(t) and s(t). If we define an integral time scale

= / Rus(7 (2.26)

in analogy to the integral time scale for a single variable (2.15), then (2.24) can be written

as
F—(F(T)) _ . Tuws
— 27— (2.27)
for T > T,s.
LMK discuss the difficulties in the experimental determination of 7,5, which in some
cases becomes negative. They therefore derive an inequality giving an upper bound on
the systematic error in terms of the integral time scale of the vertical velocity 7, the

integral scale of the scalar fluctuations 7, and the variances of these quantities; p» and
Ms:

e <2 (2.28)

Substituting the correlation coefficient 7,5 = F/\/l2fts into (2.28),
P~ (F(T)| _ 2 VTT,
F “rws 1T
LMK also derive an exact expression for the error assuming R,,s(7) to be exponential,
given by Ry, s(7) = Fpuws(7) = Fexp(—|7|/Tws), in analogy to (2.18):
F—-(F(T) 2 2 2

= — — — . 2.30
F x x2 + erx? ( )

(2.29)

where z = T/ Tys.

3. Random Errors

When averaging over a finite time 7" the time means of moments will, in general, differ
from each other and from the ensemble means; that is, they are randomly scattered. As
in the case of systematic errors, we discuss higher moments of one quantity and fluxes
separately.

3.1. Single Time Series Moments

In the case of the nth-order central moment of w(t), the individual realizations in an
ensemble will be distributed around (u,(7")) with an error variance

Ta(T) = ((1n(T) = (ua(T)))?). (3.1)

If we, for measuring purposes, want to determine how long we need to average in order

to get a stable time-averaged value p,(T), i.e. to get an error variance smaller than a

specified value, we must find a way to estimate (3.1). Lenschow and Kristensen (1985)
show that if the signal is a Gaussian process, for T > 7

2 o)
o2(T) ~ 4&/ p*(T)dr. (3.2)
T Jo
Similarly, taking only the first-order terms in 7 /T, we get for third- and fourth-order
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moments
3 [e<]
o2 (T) = 1242 p*(r)dr. (3.3)
T Jo
and
o2(T) ~ 482 / {30%(r) + p (7)) dr- (3.4)

Again we assume that the autocorrelation function can be represented with sufficient
accuracy by the exponential (2.18). Therefore, we have

/00 p™(r)Ydr =T /n, (3.5)
0

and thus obtain the error variance estimates

T
o3(T) ~ 2413 =, (3.6)
T
o5(T) = 4u§§: (3.7)
and
W T 84 T
o(T) = 84M2T or  o(T)=~ —g—ug—f. (3.8)

LMK (see appendix A) derive exact equations valid for all T for ¢3(T'), o3(T) and
o%(T) assuming a Gaussian process and that (3.5) is valid. These exact error variances,
normalized by ps to the appropriate powers, are shown in Figs. 6, 7 and 8 (dashed
lines). We note that the error variances actually go to zero as T/7 goes to zero. Here
the systematic errors correspondingly become very large.

Comparing these results with those obtained by Lumley and Panofsky (1964), and
later discussed by Wyngaard (1973), we note that they state the problem of statistical
uncertainty somewhat differently. We derive error variances of central moments of a time
series, while they discuss powers of time series which do not have a zero time average.
In other words, we extract the leading term of (3.1) for T > 7 in the form

o2 (T) = <{ [ iw® - wr) —<<w<t>—wz~>">1}2>, (3.9)

whereas Lumley and Panofsky (1964) based their asymptotic expressions on

p= <{ o - <w”<t>>]} > (3.10)

Furthermore, they use the time scale (2.15) as the pertinent integral scale for w™(t),
irrespective of the value of n, whereas we have assumed the exponential autocorrelation
function (2.18) and consequently obtained our integral time scale from (3.5).

In our notation, using our definition of the integral time scale, we find ¢2(T).p =
02(T) for Gaussian processes when n is even. This is not the case when n is odd. For
example, the asymptotic error variance of the third moment, based on (3.10) and (3.5),
is

2 3T . 2
o3(T)Lp = 22u2—f = 5.505(T). (3.11)
For odd moments with n larger than 3 the ratio between o2(T).p and 02(T) decreases
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with n. For instance, for n = 5 this ratio is very close to 2, and very close to 4/3 for
n=717.

In contrast to the systematic errors, the random errors are significantly affected by
the introduction of a realistic skewness and kurtosis using (2.19). These modified error
variances corresponding to (3.6), (3.7) and (3.8) are derived in LMK (and appendix A)
and summarized in Table 6 normalized by u2, as well as in Figs. 6, 7, 8 and also Table 6
normalized by p%. The same relative error in the second-order moment requires an
average twice as long for a skewed process (a = 0.2, in (2.19)) compared to a Gaussian
process (a = 0).

3.2. Fluzes
In analogy to (3.1), we define the error variance of the flux as
ob(T) = ({F(T) — (F(T)}?). (3.12)
Inserting (2.23), we find
D) = [T @), (313)

where

F1() = {w(®) —wrH{s(t) — sv} = {w(t) —wr}{s(t) - s7}) (3.14)
is a time series with zero ensemble mean and defined only in the interval -T'/2 <t < T/2.
In the limit T — oo, (3.14) becomes a stationary time series

Ft) = w(t)s(t) — (w(t)s(t)). (3.15)

In analogy to the derivation of the error variance of one signal LMK show that if the
variables w(t1), s(t2), w(t3) and s(t4) have a joint Gaussian probability distribution the
error variance for T' > 75 becomes

T,
o%(T) ~ 2M—1%, (3.16)

where 5 and 7; are the variance and the integral time scale, respectively, of the time
series f°(t).

The relative error, which is the square root of the random error variance normalized
by F2? can be estimated from (3.16), after first using the Isserlis relation to expand the
fourth-order moment, py, as follows:

py 14T,
jp = pops + F? = F_J;:T (3.17)
Thus, the relative error is
or(T) _ (20\'? (1+2,\"* (318)
7l o\ T Toos ' '

In parallel to the upper limit of the systematic error (2.29), Lenschow and Kristensen
(1985) derive an upper limit to the error variance of the flux
in(T. 71" /2
or(T) < "'x min(7, 75) 7 (3.19)
L T
expressed in terms of more commonly available integral time scales.
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4. Disjunct Sampling of Fluxes

In the previous sections we have derived expressions for systematic and random errors
of fluxes based on continuous sampling over finite periods with duration T". However, it
is also of practical interest to experimentalists to know how many samples it is necessary
to collect in the period T in order to keep the error below a specified level. In this
case, we assume that the measurements are “instantaneous,” i.e. that the instrument
response time is much smaller compared to the integral scales of w and s, and are
collected at equally-spaced time intervals A. Therefore, the error becomes a function of
two time periods, T and A. This technique may preclude estimating spectra and integral
time scales. However, the high-frequency contributions to the fluxes are retained at the
possible expense of an increased systematic error and a larger statistical uncertainty.

This technique was proposed by Haugen (1978) for reducing the amount of data to be
archived and to be used in computations of turbulence statistics while still maintaining
acceptable error levels. Kaimal and Gaynor (1983) applied this procedure to data from
BAO (Boulder Atmospheric Observatory) and called it “grab sampling”. Some authors
(Bendat and Piersol, 1986) refer to the process as “decimation”. Still another application
of the technique, proposed by Cooper (1993), is for estimating scalar fluxes using sensors
with frequency responses that would not be adequate for straightforward flux measure-
ment. With this technique, which Cooper calls “intermittent sampling,” the samples are
grabbed quickly in a time interval which determines the temporal resolution of the mea-
surement; the scalar quantity is then measured over a longer period, compatible with the
time response of the sensor. We suggest the term “disjunct sampling” for this process,
since it conveys the interpretation of separation between data points, while decimation
means literally taking every tenth sample and intermittency already has a quite separate
meaning in the context of turbulent flows.

We illustrate these considerations, with only small modifications in the derivation from
the case with continuous sampling, by considering measurements of the flux of a scalar
s(t) at equidistant time intervals A over a total record length T, although the technique
is applicable to other turbulence statistics as well. The number of sampled points is

N =T/A. (4.1)
The time averages are now
1 N
wra =5 ; w(lA), (4.2)
N-1

s(0A). (4.3)

ST.A =

2[*“
uM

The time average of the flux is, in analogy to ( .23),

N—-1
F(T,A) Z{w(m) wra}{s((A) — st al. (4.4)

The ensemble average of F(T,A) now becomes

1 N—-1 1 N-—1
(F(T,A)) = F — Nfg) Zb w(lyA)s(lyA)) (4.5)
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If we assume, as in the preceeding sections that the covariance function p,s is exponential,

then it is straightforward to evaluate (4.5) exactly for all values of N = T/A > 1. We
get

F—(F(T,A) T _

F Tws

A A (A/Tws)(Tws/T)[l - exp(—T/Tws)]
= h -
Ton | (ms) 2sink? (52-)

The two asymptotes of the relative systematic error can be written, for T > 7T,,, as

F—(F(T,A) T _ {2 for A < T

F Tws L for A > Ty,

(4.6)

(4.7)

This result does not depend on the assumption of an exponential covariance function.
For disjunct sampling, the error variance becomes

N1 N-—1
o3(T, A) = %Zzz:o%e;o(fm(flﬁ)fm(gzlx)) +O(1/N?). (438)

which to first order in A/T = 1/N < 1 becomes, for an exponential covarince function,

2
oL(T,A)T A (A)
—“—“——z“‘—coth_— 49

v T 5O (+9)

(see LMK for a derivation). Normalizing the error variance by ps7¢ /T, the asymptotes
can be written, for T > T, as

oL (T,A) T {2 for ATy
— = =194

wy Ty - for A>Ty (4.10)

T5
independent of the assumption of an exponential covariance function.

Equation (4.9) is used by Cooper (1993) in his uncertainty analysis. For T > 7,
the second term in (4.6) is negligible, so that the systematic and random errors have a
similar dependence on the ratio of A and the appropriate integral scale.

5. Experimental Validation

Here we compare the theoretical expressions derived in the previous sections with
moment errors calculated from actual time series. We use vertical air velocity, w, and
temperature, #, measured by the NCAR Electra aircraft during two field campaigns: 1)
a set of ten 30-minute flight legs over the East China Sea during wintertime cold-air
outbreaks over a relatively warm ocean surface, and 2) one 30-minute leg over land in
the daytime convective boundary layer. The first campaign took place in February, 1975
as part of the Air Mass Transformation Experiment (AMTEX), which is described by
Lenschow and Agee (1976). The second campaign (ELDOME) was carried out in May,
1988 over the sand-hill country of Western Nebraska, where the rolling hills (stabilized
sand dunes) extend to a height of up to 80 m. We include this leg for comparison with the
over-water flight legs from AMTEX. A summary of flight parameters is given in Table
1. Prior to the analysis, a linear trend was removed from all the time series to eliminate
contributions from large-scale variability and instrument drift.
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FIGURE 2. Subdivision of a time series in ‘realizations’ of length T'.

For each of the flight legs we calculated the three moments ps, us and py, the corre-
sponding values of the skewness S and the kurtosis K, and the integral scale T for the
vertical velocity w . The integral scale was obtained from the spectrum of w by a least
squares fit to the function

T 1

Punle) =
which is the Fourier transform of the autocorrelation function (2.18). The results of
these calculations are shown in Table 2. We note that most of the integral time scales
are about 1 s or less. However, two of the time series (AMTEX03 and AMTEX07) have
time scales around 2 s. The values of z/z; for these flight legs were 0.7 and 0.3, i.e.
cruising heights well into the boundary layer.

The temperature signals, 6(t), were generally of lower quality than the velocity data
and, as shown in Table 3 not all the temperature time series could be used because
of noise and other instrument problems. In the remaining temperature time series the
mesoscale structures were removed by a symmetric Gaussian high-pass filter with a time
constant which was 100 times the integral time scale 7 of the concurrent w time series.
This removes temperature fluctuations at scales larger than about 10 to 20 times the
depth of the boundary layer z;. After this filtering, the selected temperature time series
were analyzed in the same way as w to obtain moments and the integral time scales
7Ts. The results are shown in Table 3. The values of 7; are generally about 50% larger
than for 7, in contrast to Lenschow and Stankov (1986) who obtained values of 7; about
6 times larger than 7. This is likely due to their use of unfiltered temperature time
series (although they used legs mostly of from 50 to 100 km length) and their use of
the autocorrelation function only up to the first zero crossing for computing the integral
scale.

We then computed the co-spectrum of temperature and velocity and the power spec-
trum of the product time series (3.15) to obtain, by fitting to a spectrum of the type
(5.1), the integral time scales 7,,; and 7;. These are presented in Table 4, together with
the estimated values of the flux " and the variance ps of the the product.

(5.1)
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Name Date Period Airspeed z %
Local time (ms™!) (m) (m)

AMTEX01 15-2-75 11:30-12:00 97.3 100 1200
AMTEX02 16-2-75 11:36-12:06 1040 95 1430
AMTEX03 16-2-75 16:11-16:41 1080 980 1430
AMTEX04 18-2-75 11:02-11:32 1037 90 1010
AMTEX05 182-75 14:30-15:00 103.5 85 1010
AMTEX06 19-2-75 10:47-11:17 101.8 95 1842
AMTEX07 21-2-75 12:02-12:32 100.9 315 1100
AMTEX08 22-2-75 12:04-12:34 99.2 95 1900
AMTEX09 28-2-75 12:42-13:12 1054 95 1700
AMTEX10 28-2-75 13:28-13:58 106.4 285 1700
ELDOME  12-5-88 14:12-14:42 101.0 70t 2950
t 30-100 m

TaBLE 1. Time, true airspeed, height above the surface z and inversion height z; for the
airplane flight legs used in the data analysis.
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FiGURE 3. Normalized second-order moment of vertical velocity (solid lines) and temperature
(dotted lines) versus observation time T' divided by the timescale 7 or 7, (see Table 2 and
3). The broad solid line is the asymptotic expression, (2.14), the dashed almost obscured by
the data curves is the exact expression valid for all T/7 assuming exponential auto-correlation,
(A1)
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FIGURE 4. Normalized third-order moments. See caption of Figure 3. The solid line is the
asymptotic expression, 1 — 67'/7 (from (B37) with a = co in (2.19)), the dot-dashed the ex-

act, (A3), also with a = co.
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FIGURE 5. Normalized fourth-order moments. See caption of Figure 3. The solid line is the
asymptotic expressions, (2.17), the dot-dashed the exact for the Gaussian process (A2).
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Name Lo 13 m S K T

(ms™1)?  (ms™)*  (ms™!)* (s)
AMTEXO01 1.060 0.342 3.303 0.313 2.938 1.045
AMTEXO02 1.105 0.398 3.507 0.343 2.872 0.789
AMTEXO03 1.122 0.983 6.326 0.827 5.022 2.504
AMTEX04  0.420 0.091 0.513 0.334 2.909 0.754
AMTEXO05 0.576 0.190 1.030 0.434 3.100 0.681
AMTEX06 1.257 0.682 5.116 0.484 3.238 1.200
AMTEXO07 1.963 1.496 11.339 0.544 2.943 1.879
AMTEX08 1.110 0.475 3.724 0.407 3.025 0.681
AMTEX09  0.213 0.047 0.170 0.483 3.747 0.583
AMTEX10  0.187 0.042 0.136  0.526 3.886 0.737
ELDOME 0.885 0.220 2479 0.264 3.165 1.038

TABLE 2. Moments and integral scales of w for the analyzed flight legs.

b

Name 12 13 m S K
(X?) (XK?) (K% (s

~

AMTEXO1 0.0297 0.00610 0.00397 1.188 4.490 1.249
AMTEXO04 0.00547 0.000348 0.000137 0.860 4.558 1.354
AMTEXO06 0.0479  0.0123 0.0105 1.173  4.583 1.456
AMTEXO07 0.0225  0.00441 0.00294 1.311 4.826 2.266
AMTEXO08 0.0398 0.00964 0.00737 1.215 4.649 1.034
ELDOME 0.0470 0.0124 0.0110 1.216 3.962 1.528

TABLE 3. Moments and integral scales of § for the analyzed flight legs.

Name F I Tws Ty
(ms7!K) (ms7!K)?2  (s) (s)

AMTEXO01  0.1073  0.0467 1.277 0.419
AMTEX04  0.0263  0.00370 0.982 0.306
AMTEX06  0.1534  0.1067 1.563 0.488
AMTEXO07  0.1118  0.0891 1.898 0.894
AMTEXO08  0.1200 0.0719 0.937 0.326
ELDOME 0.0896  0.06055 1.597 0.356

TABLE 4. Fluxes, variances of the fluxes and flux integral scales of 6.

Figure 2 shows an example of the analysis procedure. The time series are divided into
sub-series of length 7" from which the moments ps(T"), pz(T") and pug(T) are calculated.
Even though T is of the order of 25 time scales, the means (indicated by broad horizontal
lines) are not equal to the mean of the entire time series shown by the thin horizontal
line. This has the consequence that second- and higher order moments are slightly
underestimated as predicted in Section 2.

Assuming the entire time series to be stationary, the averages of the estimates of the
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FIGURE 6. Normalized random error variance of the second-order moment of vertical velocity
(solid lines) and temperature (dotted lines) versus observation time 7' divided by the timescale
T or 7T, (see Table 2 and 4). The three straight lines are the asymptotic expression from Table 6
for a = 0, a = 0.1 and a = 0.2 with a = 0 as the lower and a = 0.2 as the upper line. The
dashed line is the exact expression for the error variance for the Gaussian process (A5).

moments represent (i, (T)), which are shown in Figs. 3, 4 and 5 as functions of T'/7.
The means of the moments estimated from a time series of length T' are normalized
by pn determined from the entire time series in order to compare with the theoretical
expressions. For the second moment we compare to the exact expression, (A1), which is
valid both for a Gaussian and the skewed process (2.19) provided that the auto-correlation
is exponential. The experimental systematic errors of the third moment are compared to
(A3), which is derived from the very skewed process (a — co in (2.19)), and errors of the
fourth moment are compared to (A2), derived from the Gaussian process. The systematic
error of the second moment is well predicted. The estimates of the systematic error of
the third moment have more scatter and the error of the fourth moment is generally
less than predicted. The error of the temperature moments tends to be smaller than
for the vertical velocity moments, which might be due to the filtering. The asymptotic
expressions differ significantly from the exact ones only at very small averaging times.
The variances of the estimates of the nth moment normalized by p3 versus averaging
time divided by the time scale are shown in Figs. 6, 7 and 8. Generally, the error variance
estimates for a Gaussian process in section 3 are lower limits for the error variance of the
moment estimates for the atmospheric signals. The estimates are improved when we use
the results from the skewed process (2.19) from Table 6. This can be seen most clearly
in Fig. 7 where the temperature, which generally has larger skewness than the velocity
signal, has larger error variance. From Tables 2 and 3, and Fig. 1 it can be seen that
a = 0.2 for the temperature signals and that a is between zero and 0.1 for the velocity.
The velocity signal from AMTEXO03 has an exceptionally large skewness and kurtosis and
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FIGURE 7. Normalized error variance of the third-order moment. See caption of Fig. 6 and
Table 6. The dashed line is the exact expression for the Gaussian process, (A6).
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FIGURE 8. Normalized error variance of the fourth-order moment. See caption of Fig. 6 and
Table 6. The dashed line is the exact expression for the Gaussian process (AT).
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FIGURE 9. Systematic error of continuously sampled fluxes (thin solid lines) and disjunctly

sampled fluxes (thin dotted lines) with A/7,,; = 5. The lower broad curve is (2.30) while the
upper dotted broad curve is (4.6).

therefore has large error variances (see the uppermost thin solid lines in Figs. 7 and 8).
The spread of the curves in Fig. 6 for T/7 = 1000 is partly due to poor statistics. Only
three estimates of u, were made here for each half hour time series giving an uncertain
determination of 02 (7). We do not know why the error variance of one run, AMTEX07,
drops significantly below the Gaussian estimate for both n = 2 and n = 4.

To test the theory of random and systematic errors of flux measurements both the
scalar (temperature) and the vertical velocity signal were subdivided into shorter pieces
of length T as shown in Fig. 2. The averages wr and st were subtracted and the flux was
estimated according to (2.23). For the disjunctly sampled flux (4.4) was used to estimate
the flux, and in order to use all the information in the data and not only data points
separated by A, we permitted the intervals of length T', used to estimate of F(T,A), to
be overlapping. This improved the statistics of the estimates of (F(T, A)) and ¢%(T, A).

As seen from Fig. 9 the theory predicts the systematic errors of the flux estimates
well. For the random error variance, however, there is a large spread around the theory
as shown in Figs. 10 and 11. Among the reasons for this spread are poor statistics for
large T and nonstationarities in the product time series s(¢)w(t), which were not obvious
from a visual inspection of the time series. We conclude that (3.16) is slightly superior
to (3.19) as an estimate of the error variance. The data analysis shown in Fig. 12
supports the asymptotic expression (4.9) for the error variance of disjunctly sampled
fluxes, although the data points are somewhat scattered.
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FIGURE 10. Normalized random error variance of the vertical flux of temperature. The broad
line is the asymptotic expression (3.16).
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FiGURE 11. Normalized random error variance of the vertical flux of temperature. The broad
line is the square of the asymptotic expression (3.19).

6. Discussion and Conclusions

Several previous evaluations of statistical errors of moments and fluxes have been
carried out subsequent to the analysis of Lumley and Panofsky (1964). For example,
Sreenivasan et al. (1978) investigated statistical errors of moments and fluxes using
wind velocity, temperature and humidity measurements at a height of 5 m above MSL
over Bass Strait off the Gippsland coast of Victoria, Australia. The conditions were
slightly unstable with a Monin-Obukhov length of about —100 m. Our data are from
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FIGURE 12. Normalized random error variance, o%(T, A)/0%(T), of disjunctly sampled fluxes
of temperature. Dots have A/7; = 2 while the crosses have A/7; = 5. The horizontal lines are
the asymptotic expression (4.9) valid for N = T'/A > 1 normalized by (3.16).

w 7
SCA LMK SCA LMK

S 0.02 ~04 0.39 ~1.
K 3.16 ~3.5 3.05 ~4.3

ra@ 9y 26 29 4
i(r
2D 105  19. 109 40
Hi

TABLE 5. Comparison between the results of Sreenivasan et al. (1978) (SCA) and the present
analysis (LMK) for random errors of second and fourth order.

the convective boundary layer and consequently we observe somewhat higher values of
skewness S and kurtosis K. In Table 5 we compare their relative error variances of
second and fourth moments of w (a=0.1) and § (a=0.2) with ours. The normalized
relative error variances for Gaussian processes with exponential autocorrelation functions
are 2 and 28/3~9.3 for second- and fourth-order moments, respectively. We notice that
for both orders the results of Sreenivasan et al. (1978) are indeed not far from the
predictions for Gaussian variables, as they pointed out. However, our results show that
the error variances, in particular that for the fourth-order moment, vary significantly
with deviations from a Gaussian process.

In view of the general agreement between theory and experiment, we now feel confident
in addressing the question of how long is “long enough” when measuring fluxes and other
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po = (TN T ps—(us(THT  pa— (ua(T) T
2 T 13 T Ha T
a=0 2 — 4
a=0.1 2 5.02 4.3
a=0.2 2 5.09 4.8
a3(T) T ()T ai(T) T
ui T ui T pi T
a= 2 —_ 9.3
a=0.1 2.6 29. 19.
a=0.2 4.1 24, 40.
a1 a3(T) T ()T
i T w7 py T
a=0 2 4 84
a=0.1 2.6 9.97 231
a=0.2 4.1 30.6 897

TABLE 6. Systematic and random errors of second-, third- and fourth-order moments. The
Gaussian process has a = 0, while a = 0.1 and a = 0.2 (in (2.19)) correspond to skewnesses
typical for the vertical velocities and temperatures analyzed here. The random errors are nor-
malized in two different ways.

turbulent statistics. We first consider continuous sampling of higher moments and fluxes.
Table 6 summarizes our results for both systematic and random errors of continuously
sampled moments. Applying (2.28) and (3.19), and assuming on basis of the data in
Tables 2 and 3 that 7, ~ 7, we arrive at the general result for the ratios of the errors

UTL(T) ~ UF(T) - Z
tn — (D)) TF — (F(TH] A/; (6.1)

where A is a dimensionless constant of order unity for the one-variable moments. (For
fluxes A is not necessarily close to unity.) Equation (6.1) and Table 6 tell us that for
T > 7T, the systematic error becomes small and the random error 3> the systematic
error, so that we can generally disregard the systematic error.

As an example, we estimate how long an airplane flight leg is required to estimate
it4 with an error of 10%. Neglecting the observation that the measured kurtosis in the
boundary layer is larger than for a Gaussian process, we estimate that 04(7)/p4 ~ 0.10 =
3v/L/L, where we have now transformed from the time to the space domain, and use
L as the averaging length and £ as the integral length scale. Thus L ~ 900L or, since
L ~ 100 m, L ~ 90 km. With these values of L and £ the systematic error becomes
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~ 0.4%. If we assume the time series to be skewed as the temperature measurements
analyzed here (e =~ 0.2) the flight leg would have to be L =~ 40£/(0.10)? ~ 400 km.

The approach here complements that of Lenschow and Stankov (1986), who used the
formulation of Lumley and Panofsky (1964) and estimated integral scales of the second
moments from aircraft observations. They did not consider systematic errors nor the
effects of non-Gaussianity on the errors. A situation where the systematic error becomes
relevant is when trying to evaluate a scalar flux from an area of limited extent with
aircraft measurements. From Lenschow and Stankov (1986) the integral length scales for
w and a scalar s are £ =~ 0.242;(2/2;)"/? and L, ~ 1.492,(z/2)'/?, respectively, and the
value they used for the correlation coefficient in the lower part of the mixed layer is

Tws = Fo/v/itatts =~ 0.56, (6.2)

where Fy is the surface flux. [We know of no similar general formulation in the literature
for L5, so we cannot use (2.27).] Therefore, from (2.29) the systematic error, expressed
here as a function of the length L of the particular flight segment, is given by

F—(F(L))| _ 1.2z(z/z)'?
F - |rws|L
Thus, the systematic error in the lower part of the mixed layer normalized by the surface
flux is

(6.3)

|Fo — (Fo(D))] _ 2.2zi(2/2:)"/?
F - L '
As an example, if z; = 1000 m, L = 4000 m, and z = 100 m, the systematic error is
< 17%.
Using the integral length scale for the flux in the mixed layer given by Lenschow and
Stankov (1986), £ ~ 0.162;(z/2;)'/3, in (3.18) and (6.2) we get

or(L) PAAINY
IngIL =116 (-Z—) (f)l i (6.5)

(6.4)

The result for the above example is 39%.
Substituting (6.2) and the expression for £ into the alternative expression (3.19) we

have, since £ < Lq,
/4
or(L) 2\ 2
< 1. — — . .
|F] s (z) (L) (6.6)

The result for the above example is < 49%.

We see that the random error is more than twice the systematic error. In order to
reduce the random error to < 10%, we would have to fly over the same 4 km section 16
times. This would not, of course, reduce the systematic error. If we extend the flight
segment to 20 km, however, the systematic error is reduced to < 4%, while the random
error is ~ 18%. Thus, the systematic error rapidly becomes negligible while the random
error may still be significant. This means that a running integral of the cospectrum from
high frequency to low frequency, as utilized by e.g. Friehe et al. (1988), may approach
a particular estimate of the flux, but that particular value will still have random scatter
associated with it that will require further averaging to reduce.

In the above example, we have estimated the errors in a measured flux by normalizing
by the flux at that level. This is often not as appropriate as the surface flux since the
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surface flux is used as a scaling parameter in both the surface layer and the mixed layer.
In the lowest ~ 10% of the boundary layer the flux is often assumed to be equal to
the surface flux. In other cases, it may be preferable to normalize by the flux at the
measurement height, since the errors would be the relative errors at that particular level.
The disadvantage of using the flux at the measurement height is that in some cases (e.g.
the buoyancy flux at some level in the upper part of the mixed layer) the flux goes to
zero so that the relative error becomes large for any reasonable measurement length.

In the case of stress or momentum flux measurement, Lenschow and Stankov (1986)
point out that in the mixed layer generally considerably longer averaging lengths are
required than for scalar fluxes to achieve the same accuracy. This follows from having a
correlation coefficient that is smaller than for scalars, which more than compensates for
the momentum flux having an integral scale about 75% that of scalars. Consideration of
the momentum flux is somewhat more complicated than scalar fluxes since in the mixed
layer the correlation coefficient depends on both z/z; and on the ratio of the Monin-
Obukhov length Lo to z;. From the results of Lenschow et al. (1980), we obtain for
the correlation coefficient of the wind component along the direction of flow in the lower
part of the mixed layer, where the momentum and temperature fluxes are assumed to
have their surface values,

_ 2/3 -1/3
rwu:0.74< LMO) (i) . (6.7)

Zi Zi

This means that in most cases 7., < 0.25, and that typically the averaging lengths for
momentum flux will be several times that for scalar fluxes for the same accuracy.

The results in this paper can also presented from the perspective of spectra and cospec-
tra by noting that the integral time scale for an exponential autocorrelation (or corre-
lation) function is related to the frequency of the peak in the corresponding spectrum
(or cospectrum) (5.1) multiplied by frequency. The relation is wm, = (7)7'. The corre-
sponding relationship between the integral length scale and the wavelength of the spectral
maximum is A = 27L.

We have used mixed layer scaling for the examples here, but similar formulations can
be obtained and applied to the surface layer. From the flux cospectrum presented by
Wesely et al. (1989), the integral length scale for scalar fluxes in the surface layer is
L.s/z ~ 1.6, while from the spectra presented by Kaimal et al. (1972), £/z ranges from
~ 0.3 to ~ 1.0, depending on stability.

Both theory and data show that disjunct sampling of fluxes does not appreciably
increase the systematic error and the error variance by much until the time between
samples A becomes several times the appropriate integral scale. For example, (4.9)
shows that for the same total averaging time T', 0% is about 8% larger than for continuous
sampling when A = 7y, increasing to 31% and 250% when A/7; is increased to 2 and
5, respectively. The same is true for the systematic error using 7, for the integral
scale with the condition that T 3> 7,,. From this point of view it seems that it is
possible to use rather slow sensors with a temporal resolution of several seconds for flux
measurements in the mixed layer without appreciable loss of statistical significance if the
sample is grabbed quickly, as pointed out by Cooper (1993).

We acknowledge the contributions of Art Isbell, Mike Dipurna, John DeSanto, and
Michelle Querijero who developed programs and carried out calculations of moments
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from aircraft data. Peter Kirkegaard provided helpful clarification of the use of the
Isserlis relation. We also acknowledge the contributions of the NCAR Research Aviation
Facility in conducting the Electra research flights and processing the aircraft data sets.
Helpful comments on the manuscript were received from Tom Horst and Steve Oncley.
We are particularly grateful to one of the referees for several helpful comments including
suggesting the modified Gaussian process (2.19).
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Appendix A. Exact 2nd-, 3rd- and 4th-Order Moments

We have obtained exact formulations of systematic as well as random errors up
to fourth order, assuming an exponential autocorrelation function. As it is a trivial,
but extremely cumbersome task to evaluate and verify all these expressions, we have
employed the capabilities of Mathematica (Wolfram, 1991) to automate most of the
symbolic mathematical operations.

The second-order systematic error (2.13) becomes

() 2,2 2

ALaCA Sl A T e

o x  z? e%x?’

(A1)
where z = T'/7T.

For all other systematic and random errors we must assume that the process is either
Gaussian or derived from a Gaussian process such that it becomes possible to break
moments of higher than second order down to second-order moments using the Isserlis

relations.
The fourth order systematic error for a Gaussian process is then

T 4 8 4 12 4 8 24 4 12
(M4( )>:1-——+ _____ + + + - - (A2)

fa T 2 3 4 eI:L-Z e:ca;3 errd ez 3 ez i )

When the process w(t) is not Gaussian, but given by (2.19) in the extremely skewed
limit of @ — oo, i.e. w(t)  2%(t) — o2, where z(t) is Gaussian and has a zero ensemble
mean and variance oy, the systematic errors are

{ii3(T)) 6 18 24 6 24
PR R (43)
and
(Aa(T)) _, 36 168 492 684 12 216 648 12 36 (A4)
fig 5z 532 533 5zt b5erz? 5errd  Setxt  He2exd  Hergt’
where a tilde denotes moments for the skewed process.
For a Gaussian process the error variances are
o3(T 2 9 12 8 8 16 16 1 4 8
_Q.u%—) T + 23 T2t erx? | e%gd | evat + €%z 32 + e g3 + ez gt’ (A5)
a2(T) 4 112 138 70 576 480
@Bz 322 23 ozt b ab
72 288 666 1440 1440
+ €I£E2 + 61233 et ez s 62.'1)6
126 666 1152 1440
02173 | g2ugd | g2uy5 | g2z46
4 12 70 288 480
+ 3632\’132 63zx3 €3$$4 e3Tpd e3z 6 (A 6)
and
UZ(T) _ _8:% _ _7_243 8768 B 12472 B 7176 + 16032 + 29376 n 13824
JI5; z 22 3a8 3zt b z8 z’ 8
288 1344 26864 6048 52320 100224 55296
eTx2 | e*zd  3erzt  erzd  e"zb  e*z’  e¥a®
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36 1152 1152 17280 61344 124416 82944

e25g2  e2mg3  eligd | g2agh | o236 | glagl | gags
352 272 5280 29856 65664 55296
3e37g3  3edrgt | o325 @320 BrgT | o3ug8

3 32 728 1224~ 4800 =~ 12096 13824

. (AT
edzp2 edr 3 3edz 4 ez 5 edz 6 etz 7 edz 8 ( )

Assuming the special non-Gaussian process w(t) o 2%(t) — 02 we get for the error
variance of jis(T")

G3(T) 22 155 500 688

p2 -z oz 23 2t

8 4 208 656
e r2 ex $E3 et 4

3 12 32
e2x 2 €2x1-3+e2:r$4'

+

(A8)

In this case the third- and fourth-order error variances turned out to be too complicated
to evaluate.
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Appendix B. Asymptotic Results for Higher Order Moments

In §B.1 we derive asymptotic expressions valid for large = T'/T for the systematic
error and the error variance of measured moments of arbitrary order for a Gaussian
process. Then, in §B.2, we derive similar expressions for a highly skewed process w(t) o
22(t) — 08 or a — oo in (2.19). Since this process has unrealistic kurtosis and skewness
we also derive the systematic and random errors in §B.3 of the more realistic process
(2.19), but only up to the fourth moment. Finally, in §B.4 the results are summarized
in some tables.

The property that odd moments of a Gaussian process are zero while even order
moments of order 2n can be expanded into a sum over all possible products of n covari-
ances, will be used extensively (the Isserlis relation). The number of terms in this sum
is (2n — 1)!!. Simple combinatorial arguments are also used.

B.1. The Gaussian Process
In order to evaluate the ensemble average of (2.6), the estimate of the n-order moment,
we expand (w(t) — wr)™ and obtain a series of n-order moments. If n is odd then the
ensemble average is zero, so we assume n to be even. Without loss of generality we
assume (w?(t)) = 1. The simplest term in the expansion is (w"(t)) = (n—1)!!. The next
simplest is

/(w"—l(t)w(tl)) =(n- 1)!!/p(t —t) B1)

The factor (n —1)!! is found as follows. The pair containing w(¢;) can be chosen in n—1
different ways. The remaining n — 2 Gaussian variables in the ensemble mean can form
pairs in (n — 3)!! ways. All terms in the expansion reduce to (w(t)w(t1)) and there are
inall (n—1)x (n—23)!"=(n—1)". In the limit T > 7 or = >> 1 the integral on the
right hand side reduces to 2/z.

To first order in 27! = 7 /T we have

/(w"_g(t)w(n)w(tz)) =(n-— 3)!!/'0(151 —1y) £ (n - 3)112/z (B2)

The first equality is exact while the second is valid to the first order in z~! as indicated by
the special sign L . To understand this asymptotic relation note that only the (n — 3)!!
products of the form (wZ(t))n/Q_1 (w(t;)w(t2)) are of first order in 1/2 when integrated,
while other terms like [ (wQ(t)>n/2*2 (w(t)w(t1)) (w(t)w(t2)) would be of higher order in
1/x. Finally,

/<wn—i(t)ﬁw(te)> Lo, fori > 2 (B3)
£=1

so expanding the ensemble average of (2.6) we get

g(—w‘ %)/ <w"‘i<t>flw(m>

=1

{(un(T))

|I=

(n— 1! —n(n - 1)112/z + ﬁ%’—l—)(n —3)12/x
(n -1 —-n/z) (n even) (B4)

1

by inserting (B1), (B2) and (B3). For the normalized systematic error of the estimated
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n-order moment we therefore get

(T)) 1.
{(1a(T)) Ly E’ for n even. (B5)
HKn z

in the limit of large T or z.
To find asymptotic expressions for the random error of the moments we proceed in
almost the same way, not expanding (i, (T)) but

(i2(T)) = / (w(ta) = wr)" (w(ts) — wr)") (B6)

To do this we again need to expand and estimate the leading terms of various higher
order correlations. We get

[ ey = 32 [on-i- nn("})rz‘! [p-n),  ®

=0

where we have introduced the notation

Z for n even
EE ieven, k<i<n (B3)

pors > for n odd.
todd, k <i<n

This is true exactly, not only asymptotically, for large z. To understand (B7) assume n
is even. The number of terms which contains only variances and not covariances when
we apply the Isserlis relation is found as the number of possible pairings of the n w(t;)’s
times the number of pairings of the w(t2)’s, i.e. ((n — 1)!")2. This is the first term in the
sum in (B7). To find the number of terms including the factor Ptz — t1) we select i

2
of the w(t1)’s and i of the w(t;)’s (where 7 has to be even) which can be done in (7;)

ways. These terms can be grouped to (w(t;)w(ts))* in i! ways. The remaining (n — 1)
w(t1)’s and w(t2)’s can be paired to variances (= 1) in ((n—i — 1)1? ways. The product
of these numbers is the coefficient of p* in (B 7). The arguments are very similar for odd
n.

The following relations are valid for large z:

/(w"(t1)w"_1(t2)w(t3)> = {?(1(?(7:—”2”))!!){;}(;?;_t.lt)l) Zce)‘c/liln (B9)

0 n even

/<wn—l(tl)wn“l(t2)w(t3)w(t4)> = {((n —-2)? fp(ts = t1)  n odd (210

[ w2t u)

L {(()n—l)!!(n—?))!!fp(tg-—tl) zgzﬁ{n (B11)
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All other correlations needed in the expansion of the square of the nth momentf:

() = 3 Y1y (") (?) / <w"“”(ta>w”*j(tb)ﬁw<te)> (B12)

i=0 j=0
can be shown to be of higher order in 1/z and are therefore dropped in the summation.
We now assume that w(t) has an exponential correlation function in which case [p"(t2 —

t1) L 2/(nz). Substituting (B7), (B9), (B 10) and (B 11) into (B 12) and using the result
for {1, (T)), (B4) we obtain after some rearrangement

2 2 _ 2 n 2
o (T) _ (p2(T)) = (pa(T)) L 22 [(n—z’—— 1)1!(7;)} (i —1)! (B13)

n

:U/g K2 T =2
for arbitrary values of pus.

B.2. A Skewed Process
The process w(t) is here defined as the highly skewed process z%(¢) — (22(t)), where
z(t) is a Gaussian process. For simplicity we let (z"’(t)> =1, and let pg(r) denote the
correlation function for z(z).
The derivation is similar to the Gaussian case, but more cumbersome. In the expan-
sion (B 12) we need to estimate expressions of the form

/ <z%(ta)22p(tb) 1 zz(tg)> (B14)
£=1

for x > 1. When applying the Isserlis relation, the number of terms where 2¢ of the
z(to)’s and 2q of the z(t,)’s combine to give pa?(t, —t5) and all other z’s combine to give
variances (=1) is found easily: Select 2¢ of the z(t,)’s and 2q of the z(¢;)’s, which can be
done in (Zk

2q
can form variance pairs in (2(k — ¢) — D" (2(p — q) — 1)!! ways. All terms where z(¢,)
and z(tp) form po(t, — ;) in various powers are thus

min(k,p) .
atn =Y (o) () enren-o-ee-o- v

9=0 2

) (g?) ways. These can form pgq(zttZ — &) in (2q)! ways. The left over z’s

< [ tta - 1) (B15)

The expansion of (B 14) to first order in z71 is

/<z2k(ta)22p(tb)nz2(tf)> l_;Zl(k’p)

{=1

+ 2(?) (2k — 1)"(2p — 1)!!/p§(t —t1)
+ 2mk(2k — 1)!(2p — 1)!!/pg(t —t1)

+ 2mp(2k — 1)!(2p — 1)!!/pg(t —11)

t A product from £ =1 to 0 is just 1
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= Zi(k,p) + 2k = DN(2p — D! [m® +m (2(k + p) — 1)] /pg(t —t1) (B16)

where the first term on the right hand side has already been discussed, the second terms
arise from combinations of different z(t;)’s to give correlations while the third and the
fourth terms come from combinations of z(t¢) with z(t,)’s and z(t)’s, respectively. When
p =1 (B 16) simplifies to

/<z2k<ta)ﬁz2(te)> é(%—l)n{n [m2+m(2k—1>]/p3<t~t1)}. (B17)
=1

To evaluate the systematic error of the skewed process we need the asymptotic expres-

sion
/ <w"(t) H 1U(tg)>
¢=1

j;(_l)fl—f(?) i(—l)f’ (’;’)/<z”(t>£llz2<te>>

q=0

Il

i

jZZ(j)(—l)"‘“”(?) X:;(—l)q(fj) x

q

(25 — U2k — 1) {1 + [¢® + q(2k - 1)] /pg(t - tl)} (B18)

P P
easily found from (B 17). Using the relations Z(—l)q (p) = bop, E(—l)" <p) qg=—61p
9=0 1 9=0 1

P
and Z(——l)q <§)q2 = —0b1p + 202, we get to first order in 71
q=0

fi(ﬂ)"—i(?)(zj—l)!! p=0
/<uﬂ<t>ﬂw<m>é Z(“l’”_j(?)23'(21'—””//)@—&) p=1

7=0
=1 n
(n
2 - 2'-1!!/ t—t =2
S (e foe-w s
(0 elsewhere

(B19)
where we have assumed pg to be exponential so p% can be substituted by p Using the
same expansion of the ensemble mean of the nth order moment as in (B4) we get by
(B19)

(in(T)) = j;)(—l)"-f (?)(2]' — 1)
n—1

PN ("7 1 )i o -9) (B20)
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For the random error we use the expansion in (B 12) and note that

. . it
/ <w"-f(ta)wn—f(t,,) Hw(m> =

2ty 1 3m0p ) T 12
- « [ <z (ta)z (tb)gz(t2)> (B21)
(in(T)) = p;;f 1)+ (}f) (’;)Zz(k,p)
O )
. @ﬂ;—ﬂ;g(—nw ("2 (0)er-nue-nn @)
where

Zo(k,p) = (2k — 1)11(2p — 1)!

min(k,p)

g=1
B.3. A More Realistic Skewed Process
As mentioned in section 2 the stochastic process (2.19) may realistically model the skew-
ness and kurtosis for both the vertical velocity and the temperature. Without loss of
generality we assume here that og = 1 so (2.19) becomes
w(t) = 2(t) +a(2%(t) - 1) (B24)
We calculate the time scale 7 of the skewed process w(t) as
Js° Ruw(r)dr _ 1+ a?
R, (0) 1+ 242
where 7 is the time scale for the Gaussian process z(i). Expansion of the equation

for the mean moments (2.6) and for the error variance of the moments (3.1) requires
evaluation of integrals of the form

T= T (B 25)

v

/ <w(t1)w(t1)...w(t1) wlts) . w(ts) ... w(tm)...w(tm)> . (B26)

] ne Tan

It can be seen that only if the number of odd n;’s is zero or two is the integral of higher
than second order in 1/x. In the first case, i.e. when nq,...,n,, are all even, the integral

106 Risp-R-727(EN)



How long is long enough? PART ITA

(B 26) has a constant term

m

[ = 11 (B27)
t=1
and a term proportional to 1/zs = T /T = 17'_%9;7 = %fa%z—l/m:

min(n;,n;)

m—1 m m
S T mw-nr > %1!(’7)(7)@1»—1-1)!!(%—1—1)!!. (B 28)

i=1 j=itl k=1 =2

k#1,7 step2
In the second case, i.e. when ny,...,nm_o are even and n,,—; and n,, are odd, there is
no constant term and the term proportional to 1/ is

min(nm—1,2m) |

m-—2
Hew-vr > 75-1!("‘"}*) (”;”)(nm_l — 1= 1) (nm — 1= 1)1, (B29)
k=1 0

=1

step2
These equations are obtained by using the Isserlis relation and combinatorial arguments.
Expanding (2.6) and (3.1) with the aid of Mathematica (Wolfram, 1991) and applying
(B27), (B28) and (B 29) we get for the first few moments of the skewed process (B 24):

2
(ie(T)) =1+ 2a% — ;(1+a2), (B 30)
0
- 2 6a 2
(23(T)) = 2a(3 + 4a®) — - (5 + 4a?) (B31)
0
and
12
(2a(T)) = 3(1 + 20a? + 20a*) — o~ (1 + 274 + 18a4) . (B32)
0
Error variances of the these moments are
2
F2(T) = — (1+ 32a° + 22a%), (B33)
0
4
&3(T) = — (14 1470 + 1476a* + 780a°) (B 34)
Zo
and
11 2470 96
AT = B 108 L 24708 s + 15600a° + 4629 5 | (B 35)
Zo 7 7 7
As functions of x the normalized moments thus become:
- - 2
(2(T)) JA2 =1 = —, (B 36)
(a(T)) Jis =13 ( 2 : : (B37)
K s = (I+a?)(3+4a?) ) z
and

2 2 4

(ia(T)) Jjia = 1 — 4(1 +2c21 W1+ 27(21 + 18;1 )l.
(1+a?)(1+20a? +20a%) =z

Expressions for the error variances normalized by either i or ji2 may also easily be
derived. Here we give only the general, a-dependent error variances normalized by fi?.
Examples for « = 0.1 and @ = 0.2 for both normalizations are shown in the tabular

(B 38)
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(fin = (fin(T)))/ fin
n  Gaussian more skewed
a=0 a=01 a=02 a = oo

2 2/x 2/x 2/x 2/x

3 — 5.02/z  5.09/z 6/z

4 4/ 427/x 4.718/x  36/(5z)
5 — ? ? 160/(17z)

TABLE 7. Systematic errors as functions of z = T'/7T.

ga(T)/ i3
n  Gaussian more skewed
a=0 a=01 a=02 a = co

2/x 257/r  4.12/z 22/x

4/z 9.97/z 30.6/x 780/
84/r  231/x  897/x 69444/
448/ ? ? 9491360/

TaBLE 8. Random errors normalized by 4} as functions of z = T/7.

W e

Ut

summary B.4 and in section 6. The error variances as functions of z and not zg as in
(B 33) - (B 35) become:

5 2(1432a® +22a%) 1

...2 =
JQ(T)/p‘Z - (1"}'&2)(1'{" 2@2) $’ (B39)
s 3 1+ 2a?)(1 + 147a% + 1476a* + 780a%) 1
2 T 2 — ( - B4
o5(T)/ s a?(1 + a?)(3 + 4a?)? z’ (B 40)
and
o o (1+20)(7 + 1108a® + 24708a* + 109200a® + 46296a°) 1
61(T)/py = 3(1 + 2002 1 200%)2(1 + a?) o (B41)

It can be shown that in the limit @ — oo the results in this section agree with the
expressions derived in section B.2.

B.4. Tobular summary

Table 7 contains some of the lowest order normalized systematic errors given by (B 5)f,
(B 20) and (B 36) - (B 38). Question marks indicate that the term has not been evaluated.

We see that the introduction of non-zero skewness does not significantly alter the
systematic errors.

Using the equations in sections B.1, B.2 and B.3 we have tabulated error variances of
some of the lowest order moments in Table 8.

Normalized in this way the parameter a drastically alters the error variance.

t Both the odd moments and the systematic error of odd moments of the Gaussian process
are zero.
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o2(S(T)) o*(K(T)) S? K2

a=0 4/z 12/x 0 9
a=01 56/z 68./x 035 12
a=02 105/z 333./z 1.3 22

TABLE 9. Random errors of skewness and kurtosis as functions of z = T/T.

Appendix C. Random Errors of Skewness and Kurtosis

‘How Long is Long Enough’ evaluates only the random and systematic errors of the
moments, not of the skewness and the kurtosis. These errors will not be calculated in
the same rigorous fashion as the errors of the moments, only asymptotically (7 > 7).
We have evaluated the systematic errors asymptotically. However, only at relatively
small values of T/T, where the asymptotic approximation is poor, we find significant
systematic errors of the skewness and kurtosis. We therefore concentrate exclusively on
the random errors.

C.1. Estimation of errors

We shall use considerations of propagation of variances to estimate the random error
of the skewness and kurtosis. In general, if Z = X“4/Y P then the variance of Z can
be expressed approximately in terms of the variances of X and Y and the co-variance
between X and Y, Cov(X,Y):

o*(Z) ~ o2 o% o Cov(X,Y) , o}
(22 7 (x)? Xy TP (v)?

Since the skewness calculated from a time series of length T is defined as S(T) =
1s(T)/p2(T)3/? the variance of the skewness measurement can be estimated as

o?(S(T) _ o3(T) _ 3 Covs (1), p2(T)) | 903(T)
52T K3 hi2 4 p3

(Since we are only interested in the asymptotic behaviour it is permissible to substitute
(u3(T)) with ps, etc.) For T > T this expression can be evaluated along the lines
described in LMK, i.e. by assuming the process to be Gaussian with an approximately
exponential auto-correlation function (or the non-Gaussian process (2.19)), then applying
the Isserlis relation and using the asymptotic expressions for (B 26) in appendix B.3. The
result for a Gaussian process (a = 0) is

(C1)

(C2)

o*(S(T)) ~ -, (C3)

8|

where . = T'/7T, and
2 (2 +950% + 908a* + 2670a° + 37924® + 134441°)
(1+a2)(1+2a2)'z

o*(S(T)) = (C4)

for the more general skewed process (2.19).
For the random error of kurtosis there are two possibilities of using (C1). The first has
A=B=1,X=p(T)and Y = p3(T), and the second has A = 1, B = 2, X = ;14(T)
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T T 11

I BRI

o?(S(T))

0.01 NN >

i 1 I B | { L R NN | 1 3 . W

10 100 1000
T/T
FIGURE 13. Random error variance of the skewness of vertical velocity (solid lines) and tem-

perature (dotted lines) versus observation time T divided by the timescale 7 or 7 (see Table 2
and 3). The three straight lines are the asymptotic expressions from Table 9.

and Y = po(T). In both cases we get after a series of lengthy manipulations

c2(K(T)) ~ -1; (C5)

for the Gaussian process and
12
o2 (K(T)) = —x
x

1 4+ 40402 + 11828a* + 8876848 + 24026448 + 28598440 + 86304a!?

(1+4a2)(1+2a2)° (©6)

for the skewed.

In Table 9 we have evaluated the random error ((C4) and (C6)) for typical values
of a. The relative error variance of the kurtosis 0?(K(T))/K? ~ 31 (Gaussian case) is
much smaller than the relative variance of the fourth order moment o3(T)/p3 = 81

(see Table 6).

C.2. Ezperimental validation

The analysis of the AMTEX and ELDOME data is completely parallel to the analysis
in section 5. The general agreement with the theoretical predictions is again good except
that the theory seems to overestimate the error variance of the skewness for the velocity
signals which have small skewnesses. The error variance of the velocity signal AMTEX03
is the uppermost thin solid curves in Figs. 13 and 14. This signal has an exceptional large
skewness and kurtosis (see Table 2 and Figure 1) which supports our conjecture that the
error variance increases rapidly with skewness and kurtosis. This is also substantiated
by the fact that the error variances of the temperature signals are generally larger those
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FIGURE 14. Random error variance of the kurtosis of vertical velocity and temperature. See
caption of figure 13.

of the velocity signals. The uppermost dotted curve in Fig. 14 is the temperature signal
with the largest skewness and kurtosis (AMTEXO07).
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PART IIB:
Errors in Airborne Flux Measurements

By JAKOB MANN}{ AND DONALD H. LENSCHOW
National Center for Atmospheric Researcht, Boulder, Colorado 80307, USA

(Accepted for publication in Journal of Geophysical Research)

We present a general approach for estimating systematic and random errors in eddy-
correlation fluxes and flux gradients measured by aircraft in the convective boundary
layer as a function of the length of the flight leg, or of the cut-off wavelength of a high-
pass filter. The estimates are obtained from empirical expressions for various length
scales in the convective boundary layer and they are experimentally verified using data
from FIFE, AMTEX and ELDOME. We show that the systematic flux and flux gradient
errors can be important if fluxes are calculated from a set of several short flight legs or
if the vertical velocity and scalar time series are high-pass filtered. While the systematic
error of the flux is usually negative, that of the flux gradient can change sign. For
example, for temperature flux divergence the systematic error changes from negative to
positive about a quarter of the way up in the convective boundary layer.

1. Introduction

Analysis of aircraft eddy-correlation flux measurements from the First ISLSCP (In-
ternational Satellite Land Surface Climatology Project) Field Experiment (FIFE) has
indicated that significant systematic errors can be introduced by high-pass filtering the
vertical velocity w and scalar s time series used in calculating the eddy correlation fluxes,
and possibly by inadequate length of the flight legs (Betts et al. 1990; Kelly et al. 1992;
Grossman 1992a, b). Not only is the flux itself affected, but also the vertical divergence
of the flux, which is a term in the budget equation for s. Although this issue is of imme-
diate relevance to the FIFE results, as presented in the special issue of J. Geophys. Res,
97, No. D17, it is of critical importance for any field program involving aircraft flux mea-
surements. Therefore, we present here a general approach for consideration of systematic
errors in fluxes measured in the convective boundary layer (CBL) as a function of the
length of the flight leg, or of the cut-off wavelength of a high-pass filter. One measure of
the importance of the systematic error is to compare it with the random error, which we
also estimate.

We build on the results of Lenschow & Stankov (1986) and of Lenschow, Mann &
Kristensen (1993) to predict the systematic and random errors. The vertical flux of a
scalar is equal to the integral of the cospectrum of the vertical velocity and the scalar.
When fluxes are calculated from flights of relatively short lengths or if the data signals

1 Permanent affiliation: Risp National Laboratory, Roskilde, Denmark

1 The National Center for Atmospheric Research is sponsored by the National Science
Foundation.
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are high-pass filtered, the low wavenumber contribution to the flux is neglected. The
magnitude of this systematic error depends on the exact shape of the cospectrum at low
wavenumbers, which is related to the integral length scale of the cospectrum. Because
the cospectrum typically has the same sign at all wavenumbers, the systematic error will
usually reduce the absolute value of the flux. For the random error the relevant length
scale is the integral length scale of the flux itself. Errors in estimating flux gradients are
dependent on the vertical variation of these length scales.

To test our error estimates we use convective boundary layer (CBL) data from the
Air Mass Transformation Experiment (AMTEX) and the ELectra raDOMe Experiment
(ELDOME) (Lenschow et al. 1993), as well as from FIFE (Kelly et al. 1992). AMTEX
data were obtained over the ocean, while ELDOME and FIFE were from the continental
boundary layer.

These results are, of course also applicable to tower-based eddy-correlation flux mea-
surements. In that case, the sample length is obtained from the product of the sample
time and the mean wind, instead of the aircraft true airspeed, and surface layer scaling
for the integral length scales (e.g. Lenschow, 1993) is more relevant.

2. Flux errors

We consider a vertical flux of s, F' = (ws) and assume, without loss of generality, that
both s and w have zero mean ({s) = (w) = 0, where ( ) denotes an ensemble average).
We use the symbol f for the series f(z) = w(z)s(z) — F, i.e. departures from the mean
flux. The variance of a variable y is denoted by 02. We first consider systematic flux
errors resulting from either the limited length or high-pass filtering of a flight leg. We
next consider the random error resulting from the lack of a truly ensemble estimate of
the flux.

2.1. Systematic flur errors
Lenschow et al. (1993) show that the systematic error in the flux is given by
2F L5
7
where L is the length of the flight leg and £,,s is an Eulerian integral length scale which

in principle can be determined from the cospectrumt C,, (k) of w and s in the limit as
the wave number £ — O:

F—(F(L)) ~ (2.1)

7Cys(0)

Loys = —F (2.2)
Similarly, the integral length scales for w and s are given by
£, =2 (2.3)
0w
and
L= -71?—;—3@, (2.4)

where ®,,(k) is the (double sided) power spectrum of y. The height dependence in the
CBL of £,, and L (for temperature, humidity and ozone) was estimated by Lenschow

t The spectra are considered double sided, i.e. the integral from minus infinity to infinity
equals the covariance.
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and Stankov (1986) as

L, =0.24zz!? (2.5)
and

L, =149zz1? (2.6)
where z. = z/z; and z; is the height of the CBL.

Another aspect to consider is the different integral length scales generated by a scalar
flux at the surface (bottom-up transport) compared to that resulting from a scalar flux
at the top of the boundary layer (top-down transport). Moeng and Wyngaard (1989)
used large-eddy numerical simulations of the convective boundary layer to estimate the
scalar dissipation time scales of these two processes. If we assume spectral similarity
between the top-down and bottom-up processes (that is, that the shapes of the spectra
are the same, but that their amplitude and the location of the spectral maximum may
be different), their results predict that the ratio of the integral scales of the top-down
to bottom-up increases from about unity at z/z; = 0.8 to about 5 at z/z; = 0.2. They
also predict that, for the same flux at the bottom as at the top, the ratio of top-down to
bottom-up variance decreases from about 28 at z/z; = 0.8 to about unity at z/z; = 0.2.
Thus, we would expect to see larger integral scales for scalars with significant top-down
fluxes than for those with relatively small top-down fluxes.

Unfortunately, for temperature the ratio of the top-down to the bottom-up flux is
nearly constant and the few humidity flux profiles that have different ratios have very
large scatter, so we are unable to test the predictions of Moeng and Wyngaard. In the
case of ozone flux over the ocean presented by Lenschow and Stankov (1986), where
the surface flux is negligible compared to the top-down flux, they found no significant
difference between the ozone, and the temperature and humidity integral scales. This is
an issue that need to be investigated further by comparing scalars such as ozone over the
ocean which has negligible surface flux with others such as temperature and humidity
which normally have larger surface fluxes than top-down fluxes.

We do not know of estimates of L, in the literature. This is not surprising because
®,5(k) can be difficult to estimate since it can, for example, change sign, especially at
low wave numbers where the coherence typically becomes small. Furthermore, in some
situations, such as when the sign of the flux at the surface is different from that at the
top of the CBL (as is normally the case with temperature flux) the flux must go through
zero at some level within the CBL. At this point, the positive area in one region of the
cospectrum must be balanced by a negative area in another region. Because of this,
(2.2) is not a very ‘robust’ definition of a length scale. We therefore derive a relation for
estimating £, from other more robust empirical relations.

In general,

[Pus(k)? < Do (k) (K), (2.7)
where ®,5(k) is the cross-spectrum (= Cys (k) +iQ.s (k), where Quws(k) is the quadrature
spectrum) of w and s. Therefore

Cros(0) = [2us(0)° < B4 (0)8,,(0). (2.8)

Substituting the length scales (2.2), (2.3) and (2.4) into (2.8), we find an upper limit for
Los:

L2, < LuLlyry?, (2.9)
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o2 o2 F Tws Lw Ls Lus L5 2 2z
(m?/s?)  (K?) (mK/s) (m)

AMTEXO01 1.06 0.0297 0.107 0.60 102 122 124 41 100 1200
AMTEXO04 0.42 0.0055 0.026 054 78 140 102 32 90 1010
AMTEXO06 1.20 0.0479 0.153 0.63 122 148 159 50 95 1842
AMTEXO07 1.96 0.0225 0.112 053 190 229 192 90 315 1100
AMTEXO08 1.11 0.0398 0.129 061 68 103 93 32 95 1900
ELDOME 0.89 0.0470 0.090 044 105 154 161 36 70 2950

TABLE 1. Characteristics of the AMTEX and ELDOME flight legs used in this note
(Lenschow et al. 1993). The scalar variable used here is air temperature.

where
F
s = . 2.
Tws = - (2.10)
For the data in Table 1, where s is temperature, we find that
Lows = (Lowlo)M?. (2.11)

We use (2.11) to estimate the systematic error from (2.1).
Assuming the functional forms of (2.5) and (2.6) (but not necessarily the values of the
coefficients), we obtain by normalizing (2.1) by Fyz;/L

LF-(F(L)

= b(1 — az,)zl/? 2.1
S (1-az)="%, (212)

where b = 2(LyLs)/?/(z:2+'%). Because of (2.5) and (2.6), b is independent of z.. We
have also assumed a linear variation of flux with height (which would be the case for a
conserved scalar with no differential advection and which is supported by the temperature
and humidity flux profiles from FIFE, see §4): F. = (1 — az.)Fy, where Fp is the surface
flux and @ = 1 — F,,/Fp is defined so that F, = F, = the flux at the top of the CBL
when z, = 1.

From (2.5) and (2.6), b ~ 1.2. Alternatively, if we use the observation from Lenschow
et al. (1993) that £,/L, =~ 1.4, along with (2.5), we obtain b =~ 0.6. Thus, the value
of b is somewhat uncertain, and depends on how the data are treated and on mesoscale
structure in the CBL that may vary from case to case.

2.1.1. Low frequency behavior of spectra

Before we try to verify the estimate (2.12) empirically we emphasize that there is some
arbitrariness to it, due to mesoscale variability. In the results presented by Lenschow et
al. (1993) the estimates of the integral length scales were obtained from least square fits
of an assumed spectral shape to the measured spectra. The spectral form used was

L, o2 1
G, (k) = L — 2.13
JJ( ) T 1 + k2[f§ ( )
which is the Fourier transform of an exponential autocovariance function,
(y(@)y(z + €)) = oy exp(—[€]/Ly)- (2.14)
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FIGURE 1. Observed surface-layer cospectrum (dashed curve) compared to the model
spectrum (2.13) (solid curve). The spectra are normalized so the area under the curves is 1.

On the other hand, Lenschow and Stankov (1986) estimated the integral scales by
integrating the autocorrelation function to the first zero crossing. Furthermore, Lenschow
and Stankov (1986) used time series that varied from 40 to 170 km in length, with most of
the legs 50 to 70 km in length, while Lenschow et al. (1993) used legs that were about 180
km (exactly 30 minutes) in length. In practice, scalar variables have mesoscale variations
even in otherwise nearly horizontally homogeneous conditions. In AMTEX flights the
mean temperature increases along the air trajectory because of heating by the relatively
warm ocean. This was largely, but not completely removed by fitting a least-squares
linear trend to the data. This large-scale variability can make a large contribution to
Ls, but contributes relatively much less to the flux. Lenschow et al. (1993) removed
these variations by high-pass filtering the temperature series using a Gaussian filter with
a length constant equal to 100L,,. The result of their analysis is that L)L, = 1.4, while
Lenschow and Stankov (1986) obtained £:/L, = 6.2. The values of £,, obtained by
Lenschow et al. (1993) are in reasonable agreement with those of Lenschow and Stankov
(1986), while the values of £; obtained here are about 45% less than those of Lenschow
and Stankov. An important issue that should be investigated further is how best to deal
with this mesoscale variability in the scalar fields.

Related to this is the issue of how well the observed spectra and cospectra are fitted
with the spectral shape (2.13). Fig. 1 shows that (2.13) predicts a somewhat more peaked
cospectrum than what has been observed for surface-layer scalar cospectra from towers
(Wesely et al. 1989). However, Kaimal et al. (1982) point out, based on concurrent
aircraft and tower measurements, that aircraft w spectra tend to be somewhat more
peaked than tower spectra. Certainly at the high wavenumber end, the model spectral
shape decreases somewhat more rapidly than has been observed since the model predicts
a —2 slope, as compared to the observed -—% slope for spectra. However, this difference
has negligible impact on the integral scale; rather the behavior at low wavenumbers is
much more critical. Fig. 2 shows least-square fits of (2.13) to the spectra and cospectra
calculated for the airplane time series. Generally there is good agreement with the as-
sumed spectral shape. The large wavenumber region of the scalar (temperature) spectra
is larger than predicted because of random noise present in the recorded signal.
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FIGURE 2. Least squares fit to spectra and cospectra for the time series in Table 1. Noise is
present in some of the scalar spectra at large wavenumbers. The spectra are normalized so that

(1/L) =1.

2.2. Random fluz errors

According to Lenschow et al. (1993) the random error of the flux estimate obtained for
two joint-Gaussian distributed variables over a leg of length L normalized by the surface

flux is
or(L 2L\ Y2 (14 72,\"?
o0 () (R s s
Lenschow and Stankov (1986) find from mixed-layer observations that
Ly =016z2"", (2.16)
so that (2.15) becomes
1/2 2 \1/2
L
(5) or(L) _ 0.572/° (%T—Iﬁ—> (1-az,). (2.17)
Z; Fo Tws

In order to evaluate 7y in (2.15), we resort to a collage of empirical results from both
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FIGURE 3. The correlation coefficient, ry, from (2.23) for various values of v = F.,/Fy and

the random flux error according to (2.17). The curves are valid for the approximate range of
0.1 <z.<0.9.

observations and large eddy simulations (LES). We first incorporate the “top-down —
bottom-up” formulation for the relationship between fluxes of s at the surface Fy and at
the top F%; of the CBL developed by Moeng & Wyngaard (1989), and 02(z,):

2 2
o2(z.) = (£9> fo+2 (FSUZ) foo + (F) fe, (2.18)

* ¥ Wi

where w, is the convective velocity scale, and fy(2.), fi(2.), and fv(z«) are dimensionless
similarity functions for variance from the bottom-up and top-down diffusion processes.

These functions were estimated from large-eddy simulations (Moeng & Wyngaard 1989)
their results fit the functions:

b

fo ~ 2700 for z,>0.1 (2.19)
fe~31(1—z,)73/?2 (2.20)

Combining this with the estimate of
02 = 1.8w?z2/*(1 - 0.82,)2 (2.22)

obtained by Lenschow et al. (1980) from aircraft measurements, assuming a linear vari-
ation of flux with height and solving for 1,5, we obtain

_ 14+ (y=1)z,
1.3420/%(1 ~ 0.82,)[27%° + 3.192(1 — 2,)=3/2 4 34]1/2]

where v = 1 ~a = F., /F,. Values of 7, for a range of v are shown in Fig. 3. For
temperature fluxes in the CBL v is —0.2 to —0.4, and we see that the values on the
figure agree reasonably with the data in Table 1 which are obtained in the lower third

of the mixed layer. The random error incorporating these various values of 7, is also
given in Fig. 3.

Tws

(2.23)
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FIGURE 4. Normalized systematic errors of the flux (left plot, eq. 2.12 with b = 1.2) and the
vertical flux divergence (right plot, eq. 3.1, b = 1.2) for various values of v = F., / Fp.

3. Errors of flux gradients

We first derive an expression for the systematic error and then for the random error
of the vertical flux gradient or divergence.

3.1. Systematic errors

Differentiating (2.12) with respect to height, the normalized systematic error in the flux
divergence is
L o(F ~ (F(L)) :
F() 0z
We note that the error (3.1) passes through zero and thus changes sign at z, = (3a)7!.
The systematic errors of the normalized flux and flux divergence, (2.12) and (3.1), are

plotted in Fig. 4 using the more conservative (larger systematic error) estimate of b = 1.2.

~ g(l - az*)z*—l/ — bazi/?. (3.1)

3.2. Random errors of flux gradients

In order to measure the flux gradient, flux measurements at several heights are needed.
It is obvious that the more flight legs used to estimate the flux gradient the smaller the
random error, and if all the flights legs are at roughly the same height it is very difficult to
estimate a vertical flux gradient. In the following we shall quantify these considerations.
If we assume that the random errors of the individual legs are roughly equal, i.e.
0%(L,z) = 0% (L,%), where the overbar denotes a mean value of all the legs used in the
flux gradient measurement, we can use a standard expression for fitting straight lines to
a set of data points (linear regression) given by Press et al. (1986). With this expression,

the random error of the gradient is
_ ok(L.3)

U%F/(")z - Nog2 3 (32)

where N is the number of legs and o2 is the variance of the mean heights of the set of
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FIGURE 5. Systematic error of scalar flux as a function of zizi/z/f,. Sensible heat fluxes: o,
Wyoming King Air; o, NRC Twin Otter; x, AMTEX. Latent heat fluxes: o, Wyoming King
Air; ¢, NRC Twin Otter. The lines are the predicted errors with different values of b (see (2.12)
or (4.1)).

N legs. Furthermore, we often estimate the surface flux by linearly extrapolating fluxes
measured at several flight levels to the surface. Under the same assumptions leading to
(3.2) the random error of the surface flux Fy is (Press et al. 1986)

2 U%’ (Z’ E)Z—i

F, = '—Nl;g—-— (33)
Equation (3.3) can be used to design flight patterns for a minimum random error of
the surface flux. If z, is the lowest flight level that can be flown and 2 is the highest
flight level within the CBL, then, still assuming o to be roughly constant in this height
interval, it can easily be shown that 0%0 is minimized if Nz,/(2; + z;) legs are flown at
zp and Nz¢/(z + z) at 2. As an example, suppose that 18 flight legs are available,
and z, &~ 0.1 and z; =~ 0.8. Then the most reasonable distribution of heights that will
minimize JQFO is 2 at z; and 16 at z,. Thus to accurately estimate the surface flux, the
optimal approach is to minimize the flux measurement error at the lowest flight level.

4. Experimental verification

In order to verify the estimates of the systematic error of the flux and the flux gradient,
(2.12) and (3.1), we use data from the Canadian National Research Council Twin Otter
and the University of Wyoming King Air research aircraft obtained during the First
International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment
(FIFE) as described by Kelly et al. (1992). We use both the sensible and latent heat flux
from these sources. We also use the sensible heat flux data from AMTEX and ELDOME
described in Lenschow et al. (1993).

Two different flux estimates are given for each leg in the FIFE data. The first is
calculated from detrended time series while the second is from high-pass filtered time
series. Kelly et al. (1992) use a third-order recursive filter with a cut-off wave length
of 5 km. Lenschow et al. (1993) used in their theoretical analysis a simple high-pass
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FIGURE 6. a: Scatter plot of unfiltered (detrended) sensible heat flux from 261 flight legs. The
line is F(z.)/Fo = 1 — az. with a = 1.38 and the dashed lines are the expected +10 deviations
from (2.17). b: Averaged profiles of sensible heat flux. The dots are unfiltered measurements
while the circles are filtered. ¢: From these average profiles the systematic error of the flux
gradient is calculated. The curves are the predicted error from (3.1) with ¢ = 1.38 and 6 = 0.6
and 1.2, respectively.

removal of running mean filter. It can be shown that if we choose the length scale in
running mean filter of Lenschow et al. to be L., = 2.8 km, the spectral attenuation will
closely resemble that of the filter of Kelly et al.

4.1. Systematic fluz errors

The systematic error contributed by the difference between using a detrended time series
and the high-pass filter can be predicted from (2.12) and written as (after replacing Fy
by F(1 —az.)™!):

1/2

ZiZx%

AF = (F(L)) = (F(Lrm)) = b 7 F (4.1)

where L=! = Lz} — L~'. Thus for a given narrow range of values of the parameter
zizi/ 2 /ﬁ there is a linear relation between AF' and the flux, F. We extract the constant
of proportionality of the relation AF « F by a least squares fit of (4.1) to all points,
{F(L),F(L) — F(Lym)}, which have zizi/Z/E in the same narrow bin. For this analysis
we chose only flight legs with L > 12.5 km. The average length is 21 km for the 401
Twin Otter legs and 15.6 km for the 134 King Air legs. The results are shown in Fig. 5.
Because we have used fewer legs from the King Air these points have more scatter.

The analysis of the AMTEX and ELDOME data is simpler since we have a few very
long legs instead of many short legs. For these legs we first calculate the flux for the
detrended 180 km data series. Then the series are divided into 64 sections 2.8 km in
length from which we estimate (F (2.8 km)). AF/F is calculated for all six runs analyzed
by Lenschow et al. (1993) (x’s in Fig. 5).

4.2. Systematic fluz gradient errors

It is difficult to obtain accurate measurements of flux gradients, and therefore even more
difficult to empirically estimate their systematic error. In order to get sufficient statistical
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FIGURE 7. Random error of flux gradient (3.2). See caption to Fig. 5 for list of symbols.

significance from the flux gradient measurements so that we can compare (3.1) with the
observations, we found that it was not sufficient to just compare the flux gradients
derived from filtered and unfiltered flux measurements from the ~ 20 legs of a typical
FIFE flight. This is because the random error from this limited number of legs is large
enough to obscure the systematic error. Instead we combine all sensible heat fluxes
(from legs with L > 12.5 km) from all FIFE flights. First, all sensible heat fluxes are
normalized by the surface flux, Fy, determined by linear extrapolation of the fluxes from
each flight to the surface (Fig. 6a). All sensible heat fluxes from all 261 flight legs are
then treated as if they were obtained from one flight. It is possible to proceed in this
way with the sensible heat flux because all flights have roughly the same normalized flux
gradient, while the latent heat flux gradients vary widely (Betts et al. 1990, 1992). Both
the unfiltered (detrended) and filtered normalized fluxes are then grouped with respect to
normalized CBL height and averaged (Fig. 6b). Finally, we calculate flux gradients from
the averaged filtered and unfiltered fluxes and take the difference in order to estimate
the systematic errors. These are compared to the prediction (3.1) with b = 0.6 and 1.2.
We see in Fig. 6c¢ that the systematic error changes sign somewhere in the vicinity of
z, = 0.25, which agrees with the prediction discussed in (§3.1) for a value of @ = 1.38.
This is the value of a that is consistent with the data in Fig. 6a.

4.3. Random errors

We also see in Fig. 6a that the estimated random flux error agrees well with the prediction
in the lower part of the CBL. Higher up the data show more scatter than predicted. This
is mainly because we assume a = 1.38, while in fact a varies considerably from flight to
flight; for some of the flights a > 2.

The random error of the flux gradient is predicted by (3.2) and is estimated from the
data for each flight (up to 26 legs per flight) by using all combinations of four legs that are
well spread out through the CBL. We then compare the random error of these estimates
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to (3.2) using NV = 4, and the mean values of L, z, a and o,. Despite considerable scatter
the measured results displayed in Fig. 7 agree reasonably well with the prediction (3.2).

5. Discussion

We now apply the formulations for systematic and random flux and flux divergence
errors to a specific example to illustrate their impact. We select z; = 1000 m, z = 200 m,
high-pass filtering with L,,, = 2800 m, and b = 1.2. If we assume that the length of
the flight leg L > L., this example gives a systematic error (4.1) of 19%, i.e. the
filtered signal gives a 19% lower flux compared to the unfiltered. For comparison, we
now calculate how long a flight leg is required to reduce the random error to < 19%.
From (2.17), using the flux at flight level for normalization and r,s = 0.56, we obtain
L > 22 km. We note, however, that the systematic error scales with L%, while the
random error scales with L=!/2. Thus if we, for example, increase L,,, by a factor of
two, which halves the systematic error, we must increase L by a factor of four to halve
the random error.

If we now further assume in the previous example that a = 1, i.e., that v = 0,
which means that the flux linearly decreases to zero at z;, the systematic error in the
flux divergence, obtained by multiplying (3.1) by z;/L,m is about 47% at z, = 0.1,
decreasing monotonically to about —38% at z, = 0.9. Thus, through most of the CBL,
the systematic error in the flux divergence for this example is comparable to that for the
flux; however, near the surface, it can become considerably larger. In order to keep the
random error in the flux divergence at less than 40%, assuming a set of flight legs of 22
km length and a value of o, = 0.2z;, from (3.2), the number of flight legs N > 6.

These results show quantitatively the systematic error of high-pass filtering, or of av-
eraging together several relatively short (e.g., less than ten times the depth of the CBL)
flight legs to obtain the flux and flux divergence. One might ask, however, whether fluxes
or flux divergences that have significant systematic error can be corrected with the for-
mulations obtained here. To some extent, they undoubtedly can be, but the scatter in the
data is considerable, which means that this practice would be no substitute for directly
measuring the significant contributions to the flux. Significant factors contributing to
this scatter are: (1) the contribution of mesoscale variations, which do not necessarily
scale with z;, to the fluxes; (2) possible organization of the convective eddies relative to
the mean wind direction; and (3) over land, the effects of a horizontally inhomogeneous
surface on the distribution and sizes of the convective eddies. This is an area worthy of
further research.

We are indebted to Robert D. Kelly of the University of Wyoming for providing the
FIFE data and explaining the high-pass filtering process. J. M. is grateful to the Danish
Research Academy for supporting his visit to NCAR.
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Dansk sammendrag

Denne afhandling bestar af to dele. I fprste del udvikles en model for den rumlige
struktur af atmosfeerisk turbulens ved hgje vindhastigheder. En sddan model kan bruges
til at beregne dynamiske laster pd konstruktioner, der har en rumlig udstraekning s&
som vindmgller, heengebroer og master. Modellen bestar af en spektral tensor, der for
enhver bglgevektor k er en 3 gange 3 covarians matrix af de tre hastigheds komposan-
ter’s Fourier komponenter hgrende til k. Modellen bygger pa en raekke antagelser: Den
atmosfaeriske vindprofil kan, over det omréde, der har interesse for en given konstruk-
tion, approksimeres med en linezer profil. Vindfeltet antages ogsd at veere statistisk
homogent i rummet, hvilket igen kun kan veere en god approximation over et begranset
hgjdeinterval.

Modellen bygger pd en kombination af Rapid Distortion Theory — en linearisering af
Navier—Stokes ligningerne — og af estimater af turbulente ‘hvirvlers’ levetider. Modellen
indeholder kun tre justerbare parametre, der kan bestemmes ud fra observationer af
spektre malt i ét punkt, hvorefter alle topunkts-spektre kan forudsiges v.h.a. modellen.

To atmosfeeriske eksperimenter analyseres for at bekraefte modellen. Det ene er Store
Bzlts Koherens Eksperimentet, hvor tre vindvektor sensorer (soniske anemometre) mélte
turbulente hastigheder i tre punkter i 70 meters hpjde. Som det ses af figur IA..8 pa side 30
er koherenserne (de normerede krydsspektre) godt forudsagt, méaske med undtagelse af
de vertikale vindfluktuationer, hvor kohaerensen er overestimeret.

Ni anemometre indgér i Lammefjords Eksperimentet, som ogsé er blevet brugt til at
teste modellen (se §IA.4.5). Igen er forudsigelserne tilfredsstillende i store treek. En
anden lidt mere kompliceret model, der tager hensyn til jordoverfladens blokering af de
turbulente strgmninger, forudsiger visse aspekter af andenordens statistikken lidt bedre
(se §1A.3.3).

I del IB anvendes tensormodellen til at simulere turbulente hastighedsfelter til brug
for lastberegninger p& konstruktioner. Desuden bruges den til beregning af korrektioner
til momentumfluksmalinger for instrumenter, der ikke méler horisontale og vertikale
hastighedsfluktuationer i samme punkt i rummet. En sidste anvendelse er en analyse
af strukturen af turbulensen i Skibteknisk Laboratoriums brede greenselagsvindtunnel.
Her er analysen brugbar i forbindelse med forudsigelser af last p& broer ud fra vindtunnel
model malinger.

I anden del af afthandlingen udvikles matematiske modeller til at bestemme hvor lange
tidsserier skal veere for at estimere ko-varianser (flukse) og hgjere ordens momenter med
en given statistisk usikkerhed. For en given midlingstid T" er der en systematisk forskel
pa den sande fluks eller moment og middelvaerdien af den tidsmidlede stgrrelse. F.eks.
vil variansen af en meget lang tidsserie vaere stgrre end variansen af sma stykker af
samme tidsserie (se figur I1A.2). Denne forskel, den systematiske fejl, er en aftagende
funktion af T og gir mod 0, ndr T — oo. Variansen af de tidsmidlede méalinger (flukse
eller momenter), den sdkaldte fejlvarians eller tilfzeldige fejl, er ogséd, nar T er meget
stgrre end integraltidsskalaen 7, en aftagende funktion af 7. Under antagelse af, at de
involverede stokastiske processer er gaussiske med exponentielle korrelationsfunktioner,
bestemmes systematiske og tilfeeldige fejl som funktion af 7'. Det viser sig imidlertid,
at antagelsen om gaussiske processer fgrer til undervurderinger af de tilfeeldige fejl. Ved
en analyse af ikke-gaussiske processer med mere realistiske skeevheder (for turbulente
atmosfeeriske tidsserier) kan tilfzeldige fejl bedre forudsiges.
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