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Zuzana Jelčicová*†, Adrian Mardari*, Oskar Andersson*, Evangelia Kasapaki*, and Jens Sparsø†
*Demant A/S, Smørum, DK; †Technical University of Denmark, Kgs. Lyngby, DK

Email: zuje@demant.com, admd@demant.com, oand@demant.com, evka@demant.com, jspa@dtu.dk

Abstract—This paper introduces a dedicated neural network
engine developed for resource constrained embedded devices
such as hearing aids. It implements a novel dynamic two-step
scaling technique for quantizing the activations in order to
minimize word size and thereby memory traffic. This technique
requires neither computing a scaling factor during training nor
expensive hardware for on-the-fly quantization. Memory traffic
is further reduced by using a 12-element vectorized multiply-
accumulate datapath that supports data-reuse. Using a keyword
spotting neural network as benchmark, performance of the
neural network engine is compared with an implementation
on a typical audio digital signal processor used by Demant in
some of its hearing instruments. In general, the neural network
engine offers small area as well as low power. It outperforms
the digital signal processor and results in significant reduction of,
among others, power (5×), memory accesses (5.5×), and memory
requirements (3×). Furthermore, the two-step scaling ensures that
the engine always executes in a deterministic number of clock
cycles for a given neural network.

I. INTRODUCTION

Deep neural networks (DNNs) are ubiquitous, finding their
application in various areas such as image and video processing
[1], robotics [2], medicine [3], games [4] as well as audiology
[5]. They are typically executed in the cloud due to their
computational complexity and size. The results are then
deployed wirelessly to power-constrained edge devices such as
hearing instruments. However, sharing data with the cloud is
not desirable due to issues such as security, privacy, latency, and
connectivity [6]. On the other hand, embedding NNs directly in
always-on devices that are extremely limited in area, memory,
power budget, and throughput, is a challenging task.

To minimize power consumption, hearing instruments are
typically implemented using heterogeneous platforms that
include specialized accelerators and DSPs. These DSPs often
contain vector datapaths that support 16 or 24-bit fixed-point
vector elements matching the accuracy of the audio samples.
[7]–[9].

Vector operations are also attractive for NNs, especially
for performing multiply-accumulate (MAC) operations. Many
works have demonstrated that a wordlength of 8 bits is sufficient
for inference, having no or insignificant impact on accuracy
[10]–[12]. The benefits are again reduced computational
complexity, reduced memory requirements, and – if a vectorized
datapath is used – processing of more vector elements per
instruction. On the other hand, it increases the risk of overflows
when the final MAC product in a wide accumulator needs to
be stored back to memory in a reduced format.

A common approach to handle this issue is quantization.
One of the most widely used quantization techniques is a static-
precision quantization, where the scale factor is determined for
the entire NN [13]–[15]. Opposed to it, a dynamic-precision
quantization firstly proposed by [16] enables varying multi-
precision fixed-point for every layer.

Although DSPs support MAC operations, they are generally
not able to exploit input sharing, a fundamental data reuse
optimization for NNs. This can be solved by moving away
from DSPs and developing customized hardware accelerators
specifically for NNs. Such accelerators exploit characteristic
dataflows found in NNs to enhance parallelism and reduce data
movement [6].

This paper targets the issues discussed above and introduces
the following contributions:

1) A dedicated NN engine (NNE) used as a co-processor
to Demant’s DSP (xDSP). The NNE is optimized by
applying a set of mutually dependent techniques with a
novel dynamic two-step scaling.

2) A dynamic two-step scaling mechanism capable of fitting
MAC products into the required wordlength at runtime
without analysing the data ranges during training and
adding expensive hardware for quantization on-the-fly.
This method ensures that the NNE always executes in a
deterministic number of clock cycles for any arbitrary
NN.

The NNE and two-step scaling technique further incorporate
the following methods: i) wordlength reduction from 24 to
8 bits for all NN parameters ii) 12 optimized MACs in
parallel, and iii) input and output stationary techniques [17]
to significantly reduce memory accesses. A keyword spotting
(KWS) NN [18] with a Google Speech Command Dataset
(GSCD) [19] is used as benchmark and implemented on both
the NNE and the xDSP. The NNE outperforms the xDSP in
all aspects (significantly smaller power consumption, memory
requirements, and number of memory accesses) thanks to the
set of the proposed techniques.

The rest of the paper is structured as follows: Section II
presents related work. Section III provides background on the
xDSP and the KWS NN. Section IV describes the proposed
optimization techniques along with the NNE design. Section V
discusses the results, and finally Section VI concludes the
paper.



II. RELATED WORK

Lower precision introduces higher risk of overflows when
the activations need to be stored back to memory in a reduced
wordlength. This issue is usually solved by dynamically quan-
tizing activations during inference, or defining a quantization
factor during training that is fixed once the model is deployed.
Since weights and biases are fixed once training is completed,
quantizing them can be done statically.

Authors in [20] propose an overflow management scheme
which accumulates partial INT32 results (INT16 inputs) into
FP32, along with trading off input precision with length of
accumulate chain to gain performance.

In [12], MAC products in INT32 accumulator are firstly
downscaled using a multiplier, then cast down to uint8 (with
saturation), and finally run through an activation function to
produce the final 8-bit output.

The authors of [15] convert the final accumulated value by
either clipping it to the predefined limits set by integer and
fractional length (wordlength) or rounding to fractional length
bits using a specific rounding mode. The wordlength for the
fixed-point representation is set to 16 bits.

Using the static approaches in the works above might result
in encountering values outside the observed ranges at runtime
that must be clipped, likely causing additional loss of accuracy.

A dynamic, multi-precision per-layer data quantization
flow is introduced in [16] and adopted in [18]. The weight
quantization phase analyses the dynamic ranges of weights
in each layer to find the optimal fractional length per layer.
Fractional length is then initialized to avoid data overflow.
The intermediate data of the fixed-point CNN model and the
floating-point CNN model are compared layer by layer using
a greedy algorithm to reduce the accuracy loss.

All the above techniques require very deep and detailed anal-
ysis of the used NN during training or additional computation
resources that are usually not an option for resource-limited
devices such as hearing instruments.

Our dynamic two-step scaling method that handles overflows
on-the-fly does not require to compute a scaling-factor in
advance, and it does not introduce any instruction overhead.
Furthermore, it works on a per-layer basis, the HW implemen-
tation is cheap (implemented as an arithmetic shift operation),
and it makes the NNE execute in a deterministic number of
cycles.

III. BACKGROUND

A. Keyword Spotting (KWS) Neural Network

KWS systems in edge devices have limited power budget
since they must be always-on and operate real-time, while still
delivering high accuracy [18]. These requirements are even
more strict for extremely resource-constrained devices like
hearing instruments. The pretrained KWS model [18] used as a
benchmark in this paper is a fully-connected feed-forward NN
with a 250x144x144x144x12 configuration trained for 32-bit
floating-point (FP32). The input to the network is a flattened
feature matrix where a one-second audio recording is divided

into 40ms frames with a stride of 40ms, producing 25 frames
analysed in 10 frequency bins (250 inputs). Each hidden layer
consists of 144 neurons. The output layer has 12 neurons, each
representing one category. The first two neurons correspond to
"silence" (no speech present in the recording) and "unknown"
(NN is unable to classify the word). The remaining ten neurons
represent the following keywords: "yes", "no","up", "down",
"left", "right", "on", "off", "stop", "go". The dataset [19] has
more than 65,000 one-second recordings of 30 short words.
The final test set consists of 4,890 audio files.

Both inputs and all parameters (weights and biases) were
statically quantized to an 8-bit integer representation without
any re-training (post-training quantization) before running
the inference. Two quantization modes were tested, namely
asymmetric and symmetric, where the latter one proved to
work better for our use case. This technique resulted in a small
accuracy loss when going from FP32 to 8-bits. Further fine-
tuning could improve the accuracy even more. The activations
are quantized dynamically to an 8-bit fixed-point using a
dynamic two-step scaling technique.

B. Digital Signal Processor (xDSP)

The xDSP is a processor optimized for DSP applications
with multiple datapaths, register files, and custom functional
units. It has a 96-bit vector datapath that supports 4× 24-bit
fixed-point elements in a Q5.19 format. This format is used
for all NN parameters (weights, biases) and activations. The
MAC unit can multiply four elements at a time and store the
intermediate results in a single accumulator. This design has
limitations since neurons can only be calculated sequentially.

Weights and inputs/activations are fetched from memory as
vectors while biases as 24-bit scalars since only one neuron is
processed at a time. The 24-bit datapath is also important for
overflow management. Scaling out-of-range values involves a
global decision across a layer of neurons to keep the same
ratio among the outputs. Scaling and storing outputs of a layer
individually requires fetching the previously computed outputs
whenever a new largest overflow occurs. If, e.g. the first result
in a layer needs one shift, but the second one requires two
shifts to fit into 8 bits, the first neuron has to be re-fetched
from memory and shifted by the missing number of positions.

IV. THE NNE ACCELERATOR

Significant improvements can be gained by using the
dedicated NNE instead of DSPs, to improve resource utilization
during inference by exploiting a set of the proposed optimiza-
tion techniques.

A. Reduced wordlength

The wordlength and representation of the NN model pa-
rameters has a big impact on the inference performance.
Reduced parameter wordlength enables reading more elements
through the same memory interface in a single cycle, and lower
precision multipliers require less silicon area and power.
The original accuracy using FP32 on the KWS task is 81.77%.
Using 24, 12, 8, and 6-bit representation for all NN parameters



results in 81.24%, 80.36%, 80.28%, and 76.13% accuracy,
respectively. The FP32 and 24-bit xDSP implementations
achieve comparable accuracy, and a negligible drop is also
observed using 12 and 8 bits. Further reduction to 6 bits
results in a significant drop, and 8 bits are therefore selected
as a convenient trade-off between wordlength and accuracy,
decreasing memory requirements up to 3×.

B. Parallel MACs

The MAC unit in the xDSP can only process one neuron
at a time. Considering a 96-bit memory interface and an 8-bit
wordlength, the MAC is designed such that it can compute 12
intermediate results in parallel (see Figure 1). The intermediate
values are accumulated in accumulators with larger precision
to avoid overflows and loss of precision. Additionally, a feature
for preloading the biases in the accumulators is included. This
step saves one addition for each neuron, and serves as reset for
the accumulators. The theoretical minimum number of MAC
operations required for the inference of an arbitrary network
using our NNE is given by:

MACop =

(
N∑
i=1

Ai ×Oi

)
/V, (1)

where MACop is the number of vectorized MAC operations,
A is the number of activations/inputs to a given layer, O is
the number of outputs in the layer, N is the number of layers
(excluding input layer), and V is the number of elements in
a vector. The minimum number of MAC operations required
for the KWS application is therefore 6600 per inference in the
NNE.

C. Data reuse techniques

Input stationary and output stationary dataflows [17] are
used in our design to minimize the data movement between the
NNE and memory. An Input stationary dataflow reduces the
power by multiplying the input with weights of 12 different
neurons in a layer, and an output stationary dataflow does so
by accumulating 12 intermediate results. The final results are
transferred to memory as a 12× 8-bit vector. By combining
all the optimization techniques introduced previously, memory
accesses are reduced by at least 5.5× as shown in Table I.

In the xDSP, only four elements are fetched in a vector. We
thus need 63 vectors to represent 250 inputs, and 36 vectors
to represent 144 inputs. All these vectors are loaded for each
neuron in a corresponding layer since parallel processing is
not possible in the xDSP.

In contrast, the NNE efficiently handles 12 elements at a time
(both inputs and outputs), resulting in 21 vectors for the layer
with 250 neurons, and 12 input vectors for the layers with 144
neurons. These are then multiplied with vectors of 12 neurons
instead of a single one. This gives further reduction from 144 to
12 vectors, and 12 to one vector. The number of memory reads
(inputs and weights) is, thus, considerably reduced from 39,744
to only 7,176. The number of loads for biases is negligible,
and is therefore omitted from the calculations. Moreover, the

total number of memory accesses might grow even more for
the xDSP, depending on how often the overflows occur.

TABLE I
NUMBER OF INPUT AND WEIGHT VECTORS TO LOAD IN THE XDSP VS NNE.

xDSP NNE

Layer 1 (144)
Inputs 63 x 144 21 x 12
Weights 63 x 144 21 x 144

Layer 2 (144)
Inputs 36 x 144 12 x 12
Weights 36 x 144 12 x 144

Layer 3 (144)
Inputs 36 x 144 12 x 12
Weights 36 x 144 12 x 144

Layer 4 (12)
Inputs 36 x 12 12 x 1
Weights 36 x 12 12 x 12

Total 39,744 7,176

D. Two-step scaling

As mentioned in section III-B and IV-C, additional memory
accesses are necessary in the xDSP to reload and scale already
computed outputs in a layer if an overflow occurs. This
increases the power consumption, and makes the cycle count
non-deterministic which may compromise real-time processing.
These issues are handled in the NNE by introducing a dynamic
two-step scaling method. It is divided in the following parts:

1) Within a vector (when writing results to the memory)
- this step handles overflows when writing accumulator
values back to memory. The MAC products that are
stored in accumulator registers are scaled down. This is
done in vectors of 12 neurons (see Figure 1) that are
computed simultaneously.
Once the computations per vector are finished, the biggest
positive number among the 12 results is found. Negative
numbers are excluded from the calculations since the
ReLU activation function zeros them out afterwards. The
biggest positive value determines the scale factor per
vector, i.e. the number of shifts necessary to fit the result
into 8 bits. This is shown in Table II. The scaled vector
elements are stored in memory and the corresponding
per-vector scaling factors (green 2, blue 1, orange 3) in
a special register in the register file.
When all the vectors of neurons have been calculated (the
layer has been completed), the biggest number of shifts
among all the vectors is determined (3 in this example).

TABLE II
TWO-STEP SCALING, PART 1 - FINDING THE BIGGEST SCALE FACTOR PER

VECTOR OF 12 NEURONS AS WELL AS PER LAYER (RED NUMBER).

Group
Number of shifts

per vector
Additional shifts

Green 2 ?*

Blue 1 ?*

Orange 3 ?*
* Additional shifts are not known at this point



Fig. 1. xDSP (left) vs NNE (right) MAC unit. The xDSP is able to process
one neuron at a time using four 24-bit inputs. The NNE processes vectors
of twelve 8-bit neurons in parallel (vectors of four are shown for simplicity).
The two-step scaling firstly identifies scale factors for vectors in L2, and then
performs additional shifts when these vectors are loaded as inputs for L3.

2) Across layer (when reading results from the memory
in a subsequent layer) - this step maintains the ratio
across the entire layer. In the previous step, a scaling
factor for each vector of 12 neurons and the biggest
scaling factor across a layer were found. When computing
a new layer L3 as shown in Figure 1, the previously
scaled outputs are retrieved as inputs.
The biggest number of shifts determined in the previous
step is used to specify missing shifts for each vector in
order to scale the inputs correctly. Therefore, the biggest
number of shifts per vector needs to be subtracted from
the biggest number of shifts in the previous layer (see
Table III). The additional scaling is performed when the
vector is read from memory in the next layer.

TABLE III
TWO-STEP SCALING, PART 2 - CALCULATING THE MISSING NUMBER OF

SHIFTS FOR EACH INPUT VECTOR.

Group
Number of shifts

per vector
Additional shifts

Green 2 3 - 2 = 1
Blue 1 3 - 1 = 2

Orange 3 3 - 3 = 0

Using this dynamic two-step scaling never requires to retrieve
and process already computed results to perform additional
scaling as is the case when using the xDSP. Moreover, the
number of memory accesses to execute is always calculable
using the dynamic two-step scaling. It also makes the NNE
always execute in a deterministic number of cycles without
adding any additional overhead cycles related to activation
scaling. Furthermore, quantizing the fixed-point by powers of
two is considerably cheaper than other presented approaches,
since it only requires arithmetic shift operations. Finally, the
following equation yields the total number of cycles needed
for inference of an arbitrary network:

2N +

N∑
i=1

⌈
Oi

12

⌉
×
(
3 + 13

⌈
Ai

12

⌉)
+

⌈
Oi

12

⌉
, (2)

where N is the number of layers excluding the input layer;
O is the number of output neurons in the current layer; and A

is the number of inputs/activations to the layer.

E. The NNE Design

Figure 2 illustrates the NNE datapath which implements the
optimizations explained above. The control path that consists
of address generation modules (reading/writing data from/to
memory), a configuration module (registers storing parameters
such as the number of layers, starting read/write address etc.),
and a finite state machine (handling the entire NNE flow) is
not shown for clarity.
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Fig. 2. A high-level overview of the NNE datapath that implements the four
optimization techniques.

The NNE MEMORY consists of seven memory instances.
Smaller memories are preferred over a single, big memory to
decrease dynamic power for a read operation that dominates
the inference. The increased leakage is solved by switching



on/off the individual memory blocks when necessary. The
memory instances (see Figure 2) are split into three address
blocks: block_0, block_1, and read_weights, where the first
two blocks switch the read inputs/write results role after every
layer. The memory block used for reading the inputs in one
layer will become a block for storing the results in the next
layer and vice versa. The weight memory block (read_weights)
does not change, and the weight address is incremented after
each retrieved weight vector. Biases are stored in the same
memory block. The first address in the read_weights block
contains biases for the vector of neurons to be processed. The
following addresses represent their weights. Summing all the
required vectors together for the KWS task results in 6,694
96-bit vectors (∼78.45kB) that can be represented with a 13-bit
address range (addr).

The NNE performs the computations on a per-layer basis.
When the NN inference begins, the bias values are preloaded in
the accumulator registers (bias_align/MAC and accu_0-accu_11
in the MAC unit). This step saves one addition and also resets
the accumulators.

The first 96-bit vector of 12 inputs is then loaded into the
inp_fifo in the Load_inp unit, along with a 3-bit value (inp_shift)
for additional realignment (two-step scaling, 2nd part).

The next step are 12 parallel MAC operations
(bias_align/MAC in the MAC unit). A 96-bit input vector
consisting of 12 weights for 12 different output neurons
is loaded. Intermediate results are stored in twelve 25-bit
accumulator registers to avoid overflows and any loss of
precision.

When all input vectors have been loaded, and all MACs
have been performed for the current vector of 12 neurons, a
local scaling factor is found (two-step scaling, 1st part). The
Scaling logic applies ReLU on 12 accumulated values, and
outputs both twelve 8-bit results as a 96-bit vector, and a 5-bit
output representing a scaling factor per vector.

The scaling factor is found among positive inputs by counting
leading zeros. Once it is determined, the number of shifts for
each input is obtained by subtracting the computed minimum
leading zero count and final result word length (8 bits) from
the accumulator word length (25 bits). If the incoming 25-bit
input is negative, the 8-bit result is directly set to zero (ReLU).
Else the input is shifted by the calculated value. The 96-bit
result will be stored in the memory in the next clock cycle.
The 5-bit shift value is mapped as an input for the shift_buffs
in the Shift_res unit.

The shift_buff keeps track of the arithmetic shift count
performed for each vector of activations, such that each vector
is appropriately aligned when loaded into the inp_fifo. Two
shift_buffs are necessary (shift_buff_0 and shift_buff_1). One
shift_buff is used for storing 5-bit unsigned shift values for
the vectors in the layer currently being computed. The second
shift_buff contains 5-bit unsigned shift values from the previous
layer that will be used to calculate the scaling factors for the
current inputs (two-step scaling, 2nd part, extra_shift). The
Shift_res unit decides which shift_buff is for reading and writing
the shift values. The roles of the shift_buffs are swapped at the

end of every layer. The accu_val logic populates the accu_shift
register with the accumulated number of shifts from previous
layers in order to correctly align biases in the accumulator.

V. RESULTS AND DISCUSSION

The performance of the NNE and the xDSP is compared in
terms of memory traffic, memory capacity, power, area, and
accuracy. Similar comparisons with other works are provided
as well.

Both the xDSP and the NNE design were synthesized with
28nm CMOS technology. Power simulations for the KWS
application were run at 0.7V and 2MHz. The results per
inference, i.e. processing of a one-second audio file, are shown
in Table IV. Accuracy is given as an average over 4,890 audio
recordings.

TABLE IV
24-BIT DSP VS 8-BIT NNE. BOTH DESIGNS WERE SYNTHESIZED WITH

28NM CMOS TECHNOLOGY AT 0.7V AND 2MHZ.

xDSP (24-bit) NNE (8-bit)
Memory accesses (SIMD4, 96 bits) 39,744 7,250
Memory accesses (scalar, 24 bits) 888* -
Bits transferred (kB) 468.35 84.97
Memory occupied (kB) 235.37 78.45
Power (µW) 43.3 9
Clock cycles ∼45,000 7,332
Area (mm2) 0.71 0.19
Accuracy (%) 81.24 80.28

* This number can grow depending on how often overflows occur

The total memory capacity required for storing all parameters
along with results and inputs is 235.37kB and 78.45kB for the
xDSP and NNE, respectively. The decrease in memory capacity
requirements of more than 3× for the NNE is mostly thanks
to the reduced wordlength from 24 to 8-bit for all parameters.
The second contributing factor is an optimized approach of
reusing the memory space as described in Section IV-E. The
xDSP memory has limited capacity. Therefore, a KWS NN
with 4× fewer neurons in each layer (63x36x36x36x3) was
executed instead, and the memory leakage was scaled as well
as the execution time such that it corresponds to the processing
time of one frame in order to match the NNE.

The full xDSP implementation of the KWS application
requires ∼5.5x more vector memory fetches than the NNE.
Moreover, it also needs a baseline of 888 scalar memory
accesses to retrieve biases (444) and store the results (444),
while the NNE only works with vector operations. The
number of scalar memory fetches can grow depending on how
often overflows occur. Whenever an overflow is encountered,
previously computed results in the same layer must be reloaded
from the memory. All these additional accesses significantly
contribute to the total of ∼45k clock cycles for the xDSP, while
the NNE reduces the clock cycles down to 7,332 (6×), which
is very close to the theoretical MAC-based minimum.

Reducing wordlength and the number of memory operations
had therefore a significant impact on memory traffic. Only
∼85kB are transferred in the NNE instead of original ∼469kB
in the xDSP, resulting in reduction of 5.5×. This assumes



TABLE V
COMPARISON OF THE NNE WITH OTHER WORKS.

ISSCC
2017 [21]

VLSI
2018 [22]

JSSC
2019 [23]

ESSCIRC
2018 [24]

ISSCC
2020 [25]

This
work*

Tech (nm) 40 28 65 65 28 28
Algorithm DNN CNN LSTM LSTM DSCNN DNN
Voltage (V) 0.65 0.57 0.6 0.575 0.41 0.7

Memory (kB) 270 52 65 32 2 79
Area (mm2) 7.1 1.29 2.56 1.04 0.23 0.19
Freq (MHz) 3.9 2.5 0.250 0.250 0.040 2.0
Latency (ms) 7 0.5-25 16 16 64 40

Keywords 10 11 10 4 1∼2 10
Power (µW) 288 141 10.6 5 0.51 9

Dataset NA TIDIGITS GSCD TIMIT GSCD GSCD

Accuracy (%) NA 96.11 90.87 91.8
98@1 word

94.6@2 words
80.28

* Synthesis results.

the best-case scenario for the xDSP, i.e. excluding additional
operations due to overflows.

Average power consumption during inference for the xDSP
and the NNE is 43.3µW and 9µW, respectively, making the
accelerator ∼5× more power efficient. As expected, most of
the NNE power is used on the memory accesses that dominate
the inference. The NN memory is accessed in 98.88% of the
clock cycles with 7,213 vector load operations and 37 vector
store operations. Memory operations consume almost 91% of
the total power, while for the xDSP it is approximately 80%.
Moreover, the NNE area (0.19mm2) is 3.7× smaller than the
xDSP area (0.71mm2).

All the above improvements compensate for a negligible 1%
loss of accuracy from 81.24% (xDSP) to 80.28% (NNE).

Table V is included for completeness and shows comparisons
with prior works. As observed in the table, comparing all the
works on equal terms is a difficult task since each varies from
the rest in many different perspectives. The NNE accuracy is
lowest from all the referred works. However, this is mainly
due to the selected network topology, which has an accuracy
of 81.77% in FP32 precision. The 8-bit implementation results
in an almost negligible drop of 1.5% unit using post-training
quantization. Retraining the network could bring the accuracy
closer to the FP32 result. However, a different algorithm or
topology would be required for a more significant improvement.
Therefore, the main takeaway is that the NNE offers small area
and low power consumption with decent accuracy for a given
NN. It outperforms the xDSP significantly and can efficiently
execute NN inference in low-power embedded devices such as
hearing instruments.

VI. CONCLUSION

This paper presented a dedicated NNE for hearing instru-
ments that implements a cheap, novel dynamic two-step scaling
technique for fitting the extended MAC products back to
memory in a reduced format. It is implemented as a shift
operation that scales the fixed-point by powers of two within
i) vectors of neurons, and ii) across all neurons in a layer.
The two-step scaling makes the NNE always execute in a
deterministic number of cycles. This number of cycles is close

to the number of vectorized parameters that need to be retrieved
from memory. The NNE also implements other complementary
methods to further improve its performance. These are: reducing
wordlength from 24 to 8 bits, executing 12 MAC units in
parallel, and exploiting input and output stationary techniques.
The combination of all of these approaches makes the NNE
outperform a typical audio DSP in all aspects. The two
implementations were tested using a benchmark KWS NN. In
comparison to the xDSP, the NNE reduced power 5×, memory
accesses 5.5×, clock cycles 6×, memory requirements 3×,
and area 3.7×, while the accuracy dropped only by less than
1%. In general, the NNE offers small area and low power, and
it can be easily used in resource constrained embedded devices
such as hearing instruments.
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