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Abstract: The fish pathogen Flavobacterium psychrophilum is currently one of the main pathogenic
bacteria hampering the productivity of salmonid farming worldwide. Although putative virulence
determinants have been identified, the genetic basis for variation in virulence of F. psychrophilum
is not fully understood. In this study, we analyzed whole-genome sequences of a collection of
25 F. psychrophilum isolates from Baltic Sea countries and compared genomic information with a
previous determination of their virulence in juvenile rainbow trout. The results revealed a conserved
population of F. psychrophilum that were consistently present across the Baltic Sea countries, with
no clear association between genomic repertoire, phylogenomic, or gene distribution and virulence
traits. However, analysis of the entire genome of four F. psychrophilum isolates by hybrid assembly
provided an unprecedented resolution for discriminating even highly related isolates. The results
showed that isolates with different virulence phenotypes harbored genetic variances on a number
of consecutive leucine-rich repeat (LRR) proteins, repetitive motifs in gliding motility-associated
protein, and the insertion of transposable elements into intergenic and genic regions. Thus, these
findings provide novel insights into the genetic variation of these elements and their putative role in
the modulation of F. psychrophilum virulence.

Keywords: Flavobacterium; pathogenicity; pan-genome; virulence; evolution; pathogen; genomics;
freshwater; T9SS

1. Introduction

Flavobacterium psychrophilum is a yellow-pigmented, Gram-negative fish pathogenic
bacterium with a global distribution in freshwater aquaculture, and causing “bacterial cold
water disease” (BCWD) and “rainbow trout fry syndrome” (RTFS) [1]. The disease results
in high rates of fry mortality, increased tendency for other infections, and high costs of
treatment with antibiotics; causing important economic losses for salmonid aquaculture
worldwide [2]. A diverse array of visible phenotypic alterations are attributable to F. psy-
chrophilum infection, including necrotic lesions, partial dark skin coloration, exophthalmia,
anemia, ascites, and vertebral deformities of the fish [1,2]. These signs have been related to
the presence of extracellular proteases [3], adhesion or biofilm formation [4], hemolysis [5],
and secreted systems [6,7]. Historically, the initial isolation of F. psychrophilum was reported
in the USA in the 1940s [1]; since then, F. psychrophilum isolates have been obtained from all
salmonid producing countries, including European nations [8–10].
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Previous studies on F. psychrophilum genomics have mainly focused on describing
the genomic properties involved in genetic diversification and virulence. First, whole
genomic analyses displayed a well conserved core genome with high similarities at nucleotide
level in isolates obtained across large geographical scales, suggesting that specific genomic
differences in F. psychrophilum isolates are mainly driven by gain and loss of mobile genetic
elements (MGE) [8,11]. Second, pathogenic-related genes associated with functions such
as proteases, adhesion, transport, and motility were found in a collection of isolates from
Denmark, Chile, and the USA [11]. Third, genome analyses suggested that F. psychrophilum
uses the widespread type IX secretion system (T9SS) to secrete many surface adhesins, soluble
or cell-associated peptidases, nucleases, and other hydrolytic enzymes [6,7,12,13]. Finally,
the genomes of 41 F. psychrophilum isolates displayed the presence of small plasmids and
genomic islands encoding DNA replication, restriction-modification systems, phage-related
elements, and transcriptional regulator genes [8]. Together, these findings suggested that
the genomic contents could provide valuable insights into the mechanisms of pathogenicity
in F. psychrophilum. However, despite the global picture of genomic diversity obtained for
this pathogen (>160 genomes available in public databases in 2021), there are still gaps in
our understanding of the links between specific genotype and virulence characteristics of F.
psychrophilum, which are required to unravel the molecular evolution of this pathogenic
bacterium. Thus, combining comparative genomics with virulence assays could provide
an excellent approach to obtain a more detailed characterization of the gene repertoire or
genetic regions that undergo variation (e.g., clusters of tandem repeats genes and amino
acid sequences) in relation to changes in virulence properties. Linking potential genomic
and phenotypic patterns could contribute to disease prevention approaches, including
alternative methods such as phage therapy [14–17].

Studies on genetic variants of fish pathogenic bacteria have demonstrated that the evo-
lution of virulence traits includes several factors such as acquisition of genetic elements by
horizontal gene transfer [18], genetic microvariations [19], and genome reduction and gene
loss [20]. In this study, we compared the genomic sequences of twenty-five F. psychrophilum
isolates collected in rainbow trout farms around the Baltic Sea (Denmark, Finland, Sweden,
Germany, Russia, and Poland), previously characterized phenotypically by Sundell et al.,
2019 [4]. Thus, we explored the relationship between genomic diversity and virulence traits
among the F. psychrophilum isolates. Together, these approaches provided insights into the
local genetic and pathogenic evolution of the fish pathogen F. psychrophilum in the Baltic
Sea rainbow trout production.

2. Materials and Methods
2.1. Strain Isolation, Medium Composition, and Growth Conditions

This study used twenty-five F. psychrophilum isolates from rainbow trout fish farms in
different geographic localities in Denmark, Finland, Sweden, Germany, Poland, and Russia,
covering a spatial scale of >2000 km and a temporal scale of >22 years (Table S1) [4]. For
comparative purposes, the type strain NCIMB 1947T was also included in this study [21].
The isolates were stored at −80 ◦C in TYES broth (tryptone 0.4%, yeast extract 0.04%,
CaCl2·2H2O 0.05%, and MgSO4·7H2O 0.05%) with 30% glycerol [22]. For culturing the F.
psychrophilum isolates, cells from the −80 ◦C stocks were inoculated in 50 mL TYES broth
and incubated at 15 ◦C with agitation (200 rpm) for 48–72 h [11].

2.2. DNA Extraction

DNA from F. psychrophilum isolates were extracted from cells harvested by centrifu-
gation (5000× g, 15 min, 4 ◦C) using a Wizard® Genomic DNA Purification Kit (Promega;
Catalogue number A1120). The bacterial DNA of the four isolates selected from the
Pacific Biosciences (PacBio) sequencing platform was extracted from 48 h-old bacterial
broth cultures using a QIAamp DNA Mini Kit (Qiagen; Catalogue number 51306). The
amount of genomic DNA was measured using a Quant-iTTM PicoGreen® quantification
kit (Invitrogen, Waltham, MA, USA).
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2.3. Genome Sequencing, Assembly, and Annotation

The genomic DNA sequences of twenty-five F. psychrophilum isolates were obtained
using the Illumina HiSeq platform at the FIMM Technology Centre (Finland) and BGI
(China) with pair-end read sizes of 100 bp. Library construction, sequencing, and data
pipelining were performed in accordance with the manufacturer’s protocols. The Illumina
data were assembled into contiguous sequences using Geneious software version 10 [23],
then, short and low coverage contigs were filtered out. The remaining contigs were
aligned using the previously sequenced F. psychrophilum strain JIP02/86 as a reference
genome (GenBank accession number: AM398681; September 2019) [3]. In addition, plasmid
sequences were identified (3.3 kb and 2.1 kb respectively; Table S1) that did not align with
the reference genome. In addition, F. psychrophilum isolates FPS-R7, FPS-S6, 950106-1/1,
and 160401-1/5N were selected for sequencing using the Pacific Biosciences (PacBio)
sequencing platform (BGI, China). Library construction, sequencing, and data pipelining
were performed in accordance with the manufacturer’s protocols. A hybrid assembly was
made using Ilumina (100 bp) and PacBio read data (average 20 kb) by the Flye assembler
program [24]. Circularized assemblies were further polished with the BUSCO [25] and
CheckM [26] packages to correct possible single-base and indel errors. To trace the presence
of any plasmid, the filtered reads were mapped using SOAP to the bacterial plasmid
database [27]. Annotation of the genomic sequences was done using the NCBI Prokaryotic
Genome Automatic Annotation Pipeline (PGAAP) [28].

2.4. Predictions of Genomic Islands, Virulence-Related Factors and Prophages

We used islandviewer v.4 [29] and MAUVE [30] to predict the putative genomic
islands (GIs) (>8 kb, >8 ORFs, associated with integrases or transposases). A virulence
database was constructed for F. psychrophilum, containing all the putative virulence-related
factors recognized previously [3,8,11] and new virulence genes identified by searching
against MvirDB (E-value ≥ 10−5; identity ≥ 35%; coverage ≥ 75%) [31], virulencefinder
1.2 [32], and RAST [33]. Prophage-related sequences were identified by running bacterial
genomes in PHASTER [34]. Putative subcellular localization of ORFs was performed using
server tools. Prediction of the localization of bacterial proteins was achieved using PSort
V3.0b.75 [35]. Checking of trans-membrane helices (TMH) was performed with TMHMM
V2.0c.76 [36]. Predictions of signal peptides were obtained using SignalIP V3.0.77 [37].
Detection and alignment of repeats in protein sequences was accomplished using motif
scan [38].

2.5. Pan Genome Analysis

In order to predict the genomic diversity in F. psychrophilum, the bioinformatics pro-
gram EDGAR [39] was used to predict the pan genome of all twenty-five F. psychrophilum
isolates and calculate the pan-genome (total gene repertoire), dispensable genome (genes
found in two or more genomes but not in all the sequences), accessory genome (specific
genes, only found in one genome), and core genome (common genes, mutually con-
served). Pan-genome development was calculated by iterative pairwise comparison of
F. psychrophilum genomic sequences. Using the metacontig function of EDGAR, we also
defined custom groups of F. psychrophilum genomes for which the core genome or the pan
genome were stored as virtual contigs [11].

2.6. Phylogenetic Analysis

To determine the phylogenetic relationship among F. psychrophilum isolates based on
genomic data, we selected a set of orthologous genes shared by all twenty-five isolates
(1866 genes present in a single copy, paralogs not included) using OrthoMCL with an
e-value cut off 10−8 [40]. The set of 1866 single core and virulent-related genes were first
aligned at amino acid level using Clustal W version 2.0 [41]. The alignment of all amino
acid sequences from orthologous genes was concatenated using FASconCAT [42]. A gene
tree was constructed using PhyML [43].
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2.7. Accession Numbers

Accession numbers for the twenty-five F. psychrophilum isolates and their respective
plasmid sequences are listed in Table S1.

3. Results
3.1. Virulence Properties of F. psychrophilum Isolates

We obtained twenty-five F. psychrophilum isolates from infected rainbow trout [4]. The
F. psychrophilum isolates were obtained from spleens and kidneys (Table S1). The type strain
NCIMB 1947T was also included in this study as a reference strain. In vitro proteolytic
activities (collagenase, elastinase, caseinase) and gliding motility were previously mea-
sured for all the isolates [4]. Moreover, the virulence phenotype by median lethal dose
(LD50) of this entire F. psychrophilum strain collection had been previously reported [4],
and represents a more direct infection process driven by F. psychrophilum. The challenge
trials (intramuscular injection) with juvenile rainbow trout (mean weight 5 g) divided the
isolates into four groups referred to as high (7 isolates; LD50 < 105), moderate (13 isolates;
LD50 = 105–106), weak (5 isolates; LD50 > 106), and non-virulent (1 isolate; no mortality
observed) (Table S1) [4].

3.2. Genomic Characteristics of F. psychrophilum Isolates

The genomic annotations obtained from the twenty-five F. psychrophilum isolates were
analyzed together with the genomic annotation of the type isolate NCIMB 1947T [17]. The
isolates varied in genomic size from 2.71 to 3.20 Mb, with a GC content from 32.3% to 32.6%
(Table 1). Analysis of annotated sequences revealed relatively similar coding sequences
(CDS) among all the isolates, ranging from 2258 to 2806 (Table 1). One plasmid of either
3.3 or 2.1 kb was present in 15 out of 26 F. psychrophilum isolates (Table 1). In contrast
to a previous genomic analysis of the type strain NCIMB 1947T [8], we did not identify
plasmids in this strain in this study, suggesting that the plasmids may have been unstable
and lost from the cell.

Table 1. Genomic features of F. psychrophilum isolates used in this study.

Isolate Origin Isolation Year Genome Size (Mb) Genes CDS GC% tRNA Plasmid (kb)

FPS-G1 Germany 2017 2.86 2494 2423 32.4 49 3.3
FPS-F15 Finland 2017 2.86 2496 2425 32.5 49 2.1
FPS-P1 Poland 2016 2.86 2385 2344 32.5 41 No
FPS-R9 Russia 2017 2.86 2387 2347 32.6 34 No
FPS-P3 Poland 2017 2.86 2398 2358 32.4 34 No
FPS-S6 Sweden 2017 2.86 2528 2457 32.5 49 3.3

160401-1/5N Denmark 2016 2.82 2527 2456 32.5 49 3.3
P30-2B/09 Finland 2009 2.86 2542 2471 32.5 49 3.3

F164 Sweden 1996 2.86 2489 2418 32.3 49 No
FPS-F16 Finland 2017 2.86 2496 2425 32.5 49 No

V46 Finland 2005 2.84 2294 2258 32.4 30 No
FPS-S11A Sweden 2017 2.86 2484 2413 32.6 49 3.3

990512-1/2A Denmark 1999 2.86 2486 2415 32.5 49 3.3
141127-1/2N Denmark 2014 2.85 2488 2417 32.6 49 3.3

P15-8B/11 Finland 2011 2.85 2489 2418 32.5 49 2.1
160401-1/5M Denmark 2016 2.85 2484 2413 32.5 49 3.3

FPS-F27 Finland 2017 2.86 2490 2419 32.4 49 2.1
FPS-R7 Russia 2017 3.20 2878 2806 32.6 49 No
FPS-S9 Sweden 2017 2.86 2519 2448 32.5 49 No

030522-1/1 Denmark 2003 2.86 2534 2463 32.5 49 3.3
FPS-S10 Sweden 2017 2.86 2.495 2425 32.5 49 No

010418-2/1 Denmark 2001 2.86 2546 2475 32.6 49 3.3
K9/00 Finland 2000 2.86 2496 2425 32.5 49 No

950106-1/1 Denmark 1995 2.84 2507 2436 32.6 49 3.3
NCIMB 1947T USA Unknown 2.71 2397 2305 32.6 49 No

FPS-S11B Sweden 2017 2.86 2486 2415 32.6 49 3.3
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3.3. Relation of F. psychrophilum Pan Genome and Virulence Traits

In order to examine the gene repertoire of the twenty-six F. psychrophilum isolates
(including the type strain NCIMB 1947T), a pan genomic analysis was made using the
EDGAR platform (Figure 1; Figure S1). The pan genome increased slightly with each
addition of a new genome and had at least 4550 ORFs (Figure S1). In contrast, the core
genome decreased with the addition of each new genome, reaching 1866 ORFs (Figure S1;
Figure 1a). These core-related genes were allocated to putative functional categories using
the Clusters of Orthologous Groups of Proteins (COG) database (Figure 1b). The results
showed that approximately 65% of ORFs were assigned as hypothetical proteins, 5.6%
to cofactor and amino acid derivates, 4.7% to protein metabolism, and 1.2% to putative
virulence-related proteins (Figure 1b). Moreover, the dispensable genome (shell genes
present in two or more isolates) reached 534 ORFs and was split between 20% mobile
elements (plasmids and prophages) and 13% metabolic-related proteins (Figure 1c). Finally,
the remaining 529 ORFs were defined as the F. psychrophilum accessory genome (Figure 1a).
The number of nonduplicated unique genes in each F. psychrophilum isolate varied from 0 to
258 ORFs. The F. psychrophilum isolates FPS-R7, FPS-R9, and V46 had the largest numbers
of accessory genes, being 258, 138, and 85, respectively (Figure 1a). Functional annotation
showed that 91% of ORFs were classified as hypothetical proteins (Figure 1c).
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Figure 1. Pan-genome of F. psychrophilum isolates. (a) The flower plot represents the number of shared
(core), dispensable, and accessory genes based on cluster orthologs for each DNA sequence. Petals
display numbers of strain-specific genes (accessory genome) found in each genome of F. psychrophilum.
The array of colors indicates the virulence category as found in the juvenile rainbow trout model [4].
(b) COG subcategories of predicted genes within the core genomes of F. psychrophilum isolates. Each
category is graphed as a percentage of the total number of genes in the core pool of genes. (c) COG
subcategories of predicted genes within the dispensable genome of F. psychrophilum isolates. Each
category is graphed as a percentage of the total number of genes in the dispensable pool of genes.
(d) COG subcategories of predicted genes within the accessory genome of F. psychrophilum isolates.
Each category is graphed as a percentage of the total number of genes in the accessory pool of genes.

Following the analysis of the F. psychrophilum pan genome, we examined possible
correlations between the virulence traits and genomic repertoire. First, we inferred the
phylogeny of our F. psychrophilum strain collection by comparing 1866 core ORFs for each
genomic sequence (Figure 2). The phylogenetic tree revealed distinct clustering of the
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isolates, without clear correlations with the virulence properties or country of isolation
(Figure 2). For example, F. psychrophilum isolates FPS-G1, FPS-S10, and FPS-S9 clustered
together, but originated from two different countries and showed high, moderate, and low
virulence, respectively (Figure 2; Table S1). However, some isolates clustered according to
the geographical origin of isolation such as: Danish isolates 141127-1/2N, 160401-1/5N,
and 160401-1/5M; Polish isolates FPS-P1 and FPS-P3; and Finnish isolates FPS-F15, FPS-
F16, FPS-F27, and P15-8B/11 (Figure 2; highlighted colors). In addition, we investigated
the dynamic nature of virulence-related gene repertoires across the F. psychrophilum iso-
lates. One hundred and nine virulence-related genes had been previously identified in
F. psychrophilum isolates (Table S2). More than 99% of these virulence-related genes were
present in all isolates (Table S2). Genes involved in gliding motility, T9SS, metalloproteases,
stress response, adhesion, and virulence were found in all isolates (Table S2). For example,
we found a broad distribution of genes whose virulence had previously been confirmed
in in vivo experiments: exbD2 (id: E5164_11170) of a TonB system [44], collagenase (id:
E5164_07005) [45], fpgA type-2 glycosyltranferase (id: E5164_06305) [46], and the thiol
oxidoreductase-like tlpB (id: E5164_02660) [47]. Interestingly, the Swedish isolate FPS-S11B
revealed a single mutation in the gliding motility gene gldB (id: H0I52_08290), causing
a premature stop codon in the amino acid sequence, which was previously linked to a
complete loss of virulence [12].
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On the other hand, only the high-virulent isolates FPS-P1, FPS-R9, and FPS-P3, and the
moderate-virulent isolate FPS-R7 had a multicopper oxidase (id: QRE04907.1). Moreover,
the moderate-virulent isolates V46 and FPS-R7 harbored a multi antimicrobial extrusion
pump (id: QRE04889.1) (Table S2). To reveal the evolution of the virulence, we inferred
the genetic diversity of 109 representative virulence-related factors shared by the F. psy-
chrophilum isolates (Figure 3). Only the high-virulent isolate FPS-R9 and moderate-virulent
isolates V46 and FPS-R7 tended to cluster as mono-phylogenetic groups (Figure 3). The
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remaining isolates, which presented from weak- to high-virulent phenotypes clustered
together in the same phylogenetic group (Figure 3). These findings suggest an unclear
association between virulence traits and well-shared virulence-related gene content in
F. psychrophilum.
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Similarly, the dispensable genome did not indicate a coherent correlation with viru-
lence traits. For example, two plasmids (3.3 and 2.1 kb) encoding a toxin-antitoxin system
were found in both virulent (e.g., FPS-G1, FPS-F15) and weak or non-virulent isolates
(950106-1/1 and FPS-S11B, respectively) (Table 1; Figure S2). Similarly, a 6H-like prophage
element was found in seven out of 26 isolates (Table S1) [48]. On other hand, only high-
virulent isolates FPS-G1 and FPS-P1 had a genomic island associated with transposase and
tRNA-Asn (Figure S2).

Finally, there was no clear link between virulence traits and the number of accessory
genes. Instead, the virulence tended to be distributed among the different F. psychrophilum
clusters (Figure 1a). For example, isolates FPS-G1 and FPS-F15 showed the highest vir-
ulence in the juvenile rainbow trout infection model and contained only three and zero
accessory genes, respectively (Figure 1a). Contrarily, F. psychrophilum isolate FPS-R7, ranked
as one of the lowest moderate-virulent isolates, had 258 accessory genes (Figure 1a). In-
terestingly, this specific isolate had ten genomic islands, being the GI-10 with a length
of around 320 kb and encoding multicopper oxidase (id: H0H26_04775), cysteine pro-
tease (id: H0H26_04400), β-lactamase (id: H0H26_04585), multidrug efflux pumps (id:
H0H26_04095- H0H26_04110), and multiple hypothetical proteins (Table S3).

3.4. Precision Long-Read Sequencing for F. psychrophilum

Long-read sequencing approaches can produce completely closed genomes, which
allow the assembly of complex genomic areas (e.g., transposon elements and highly repeti-
tive regions) [49] and provide an opportunity to identify new genetic elements involved
in virulence mechanisms, besides the gene loss function from single mutations. By com-
bining shot-read Illumina and long-read Pac Bio technologies (hybrid assembly), we fully
sequenced four F. psychrophilum isolates, which displayed different virulence phenotypes
in the juvenile rainbow trout infection model. The selected F. psychrophilum isolates were
the high-virulent isolates FPS-6 and 160401-1/5N, the moderate-virulent isolate FPS-R7
and the weak-virulent isolate 950106-1/1 (Table S1). The non-virulent isolate FPS-S11B
was not included in the strains selected for Pac Bio sequencing as the loss of virulence in
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this strain had previously been identified to be caused by a single mutation in the gene
gldB [12].

For Illumina data, we mapped the reads to the published reference genome F. psy-
chrophilum JIP02/86 (Figure S3; see materials and methods). For all the isolates, we identi-
fied two genetic zones with very high coverage (from 1500× to 2200×) caused by repetitive
DNA sequences, which had around 10× more coverage than the entire genome (Figure S3).
The first zone was in a genetic region of 21 kb, which had leucine-rich repeat (LRR) proteins
(Figure S3A), and the second region encoded a putative gliding motility-associated protein
(Figure S3B). Based on the hybrid analysis, the F. psychrophilum isolates FPS-R7, FPS-S6,
950106-1/1, and 160401-1/5N showed a different number of LRRs in comparison to the
reference strain JIP02/86 (Figure 4). For example, the high virulent isolates FPS-S6 and
160401-1/5N harbored 23 and 19 LRR proteins, respectively, and these isolates tended
to have a higher number of LRRs than the moderate- and weak-virulent isolates FPS-R7
and 950106-1/1, which had 19 and 18 LRR ORFs, respectively, and the weak-virulent
strain NCIMB 1947T, which had only 16 LRR ORFs (Figure 4a). Moreover, the putative
gliding motility protein varied in repetitive motifs among the F. psychrophilum isolates
(Figure 4b; Table S4). The high-virulent isolates FPS-S6 and 1060401-1/5N had higher
numbers of repetitive units, with a total of 87 and 88, respectively, whereas the moderate
isolate FPS-R7 and the weak-virulent isolate 950106-1/1 had 35 and 69 units, respectively.
The weak-virulent strain NCIMB 1947T had 55 motifs (Figure 4b).
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ization of leucine-rich repeats identified by hybrid assembly of Illumina and PacBio sequencing
technologies. (b) Representative amino acid repeat units in gliding motility-associated protein. Genes
are represented as squares. Loci tags, isolates, and virulence phenotype are shown in the figure to
facilitate comparison. The number of repetitive motifs is presented in parenthesis and their amino
acid sequences are described in the Table S4.

The impact of mobile insertion elements (IS) on virulence via gene interruption has
been described for F. psychrophilum. In the strain JIP02/86, the transposition of the IS
element IS256 within the collagenase gene resulted in a pseudogene formation, probably
inactivating the enzymatic activity [3,50]. Beyond this, by full genome comparison, we iden-
tified 62 transposases across the five F. psychrophilum genomic sequences (Table S5). Eighty
percent of the transpositions of these elements were in intergenic regions. For example,
the high-virulent isolates FPS-S6 and 160401-1/5N and the weak-virulent strain 950106-
1/1 had an element transposition between metabolic (id: E5164_11350) and T9SS sorting
signal type C domain-containing (id: E5164_11355) proteins (Figure 5a). Interestingly, the
moderate-virulent strain FPS-R7 and the weak-virulent strain NCIMB 1947T were the only
isolates with a transposition within ORFs that encoded cell-surface (id: H0H26_09915) and
antibiotic ABC transporter (id: FPG3_04665) proteins, respectively (Figure 5b; Table S5).
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4. Discussion

Bacterial pathogens exhibit significant variation in their genomic content of virulence-
related factors [51]. This reflects the richness of strategies evolved by pathogens to infect
host organisms [52]. In this study, we found that the nature and distribution of gene
repertoires of F. psychrophilum isolates did not clearly reflect their virulence properties
(Figure 1). The results presented here revealed a low overall genetic diversity within F.
psychrophilum recovered from Baltic Sea countries (Figures 2 and 3). However, the complete
genome sequences of four selected F. psychrophilum isolates, 950106-1/1, FPS-R7, FPS-S6,
and 160401-1/5N, obtained using Illumina and PacBio hybrid assembly, demonstrated
specific dissimilarities on leucine-rich repeats (LRR) ORFs, repetitive motifs in gliding
motility-associated protein, and IS transposition in these isolates (Figures 4 and 5). These
results suggest a link between these genetic variations and the modulation of virulence
phenotypes, suggesting that these genetic regions may play an important role in the
evolution and virulence of F. psychrophilum.

Pan-genome analyses have been an effective approach to understand pathogenic
bacteria, allowing the association of genotype–phenotype profiles in specific pathogenic
groups of bacteria [53,54]. Previous analysis of F. psychrophilum isolates from Baltic Sea
countries [11] suggested that the core/pan-genome ratio (80% total gene content) was
very close to those obtained from other geographical areas [8]. However, when combining
genomic with virulence traits using LD50 in this study, there was no correlation between
the presence of accessory genes and the virulence level of the isolates (Figure 1; Table S1).
Similarly, the core genome composition and the virulence-related gene distribution phy-
logeny were not associated with virulence properties (Figures 2 and 3). These results are
opposite to the virulence patterns observed in Vibrio anguillarum [55], a pathogenic bac-
terium that resides in marine water and that can cause vibriosis in many fish and shellfish
species [56]. The pan genome analysis of V. anguillarum showed a clear relationship be-
tween gene content and virulence, where the most pathogenic isolates possessed a unique
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accessory genome, attributed to pathogenic genomic islands, toxin-carrying prophages,
and virulence-related factors [55]. Although the results obtained in this study showed that
in F. psychrophilum the accessory gene content was not linked with virulence traits by LD50
(Figure 1), interesting genes were found in a genomic island of 320 kb in the moderately
virulent F. psychrophilum isolate FPS-R7. This genomic island encoded multicopper oxidase,
cysteine protease, β-lactamase, and multiple multidrug efflux pumps (Table S3). These
genes have previously been connected to microbial pathogenesis, antibiotic resistance,
and stress management [57–60]. However, their direct contribution in the mechanisms of
pathogenicity of F. psychrophilum was not determined in this study; undoubtedly, these
findings open new perspectives for the study of gene function in this bacterium.

The large-scale distribution and genetic homogeneity of core virulence-related factors
(Table S2; Figure 3) supported the previous speculation that F. psychrophilum isolates all have
a similar mode of pathogenicity, based on adhesion, colonization, and destruction of fish
tissues [11]. An earlier report showed that all the isolates had in vitro proteolytic activities
(e.g., gelatinase, caseinase, elastinase) and gliding motility except the F. psychrophilum isolate
FPS-S11B [4], while another study established that this specific isolate had a premature
stop codon in the gliding motility protein GldB, corroborating that gliding motility genes
are linked to virulence-related properties in F. psychrophilum [12,13]. However, besides this
finding, virulence-related gene profiling was not strictly linked to the virulence phenotype
by LD50 presented by the isolates (Table S1; Figure 3). Therefore, we propose that other
genetic factors could be responsible for the virulence traits in F. psychrophilum.

Transposase elements are among the simplest mobile genetic elements and widespread
in bacteria [61]. However, it is now clear that they play an important role as bacterial mu-
tagenic agents, enabling the host to adapt to environmental challenges [62], colonize
new niches [63], and modulate virulence [64]. In this study, we found that the F. psy-
chrophilum isolates 950106-1/1, FPS-R7, FPS-S6, and 160401-1/5N harbored transposase
elements inserted into genic and intergenic regions (Figures 4 and 5). The direct impact
of these dynamic elements on the virulence of F. psychrophilum was not investigated in
this study; however, it has been described that IS transposition into genic sequences can
modulate biofilm formation and the production of extracellular polymeric substances in
the pathogenic bacteria Staphylococcus aureus [65] and Enterococcus faecalis [66]. Moreover,
we also found IS transposition into non-coding regions (Figure 5), a previously described
mechanism for altering the expression of adjacent genes [61]. Most commonly, the effect of
IS transposition is gene repression [67–69]; however, cases have been described illustrating
gene activation [70]. Thus, we hypothesize that transposases may promote genetic and
phenotypic variability in F. psychrophilum.

Repetitive motifs are known to occur in a wide variety of proteins present in bac-
teria [71]. These motifs represent an alternative module for the assembly of various
multiprotein complexes, and thus, repetitive-containing proteins often participate in a wide
range of functional roles, including virulence [19]. First, we found tandem leucine-rich
repeat (LRR) proteins, which tended to increase in number according to the virulence
phenotype of F. psychrophilum isolates (Figure 4a). These LRR proteins have been shown
to be part of the microbial virulence-related factors involved in the interaction with host
cells [72] and the invasion of mammalian host cells [73,74]. For example, the interactions
of microbe–host and immune response in the human pathogenic bacteria Streptococcus
pyogenes [75], E. faecalis [76], and Listeria monocytogenes [77] are mediated by cell surface
proteins with conserved LRR motifs. Thus, we hypothesize that these LRR cell-surface
proteins could be involved in the pathogenic mechanisms of F. psychrophilum. Second, we
found a higher number of repetitive units in a gliding motility-associated protein in the
high-virulent isolates 160401-1/5N and FPS-S6 (Figure 4b; Table S4). These gliding motility-
related proteins have been described as facilitators of the biological function of the type IX
secretion system (T9SS), which in pathogenic Flavobacterium species has been verified as a
major virulence determinant, playing a role in motility and translocation of cell surface
adhesins, peptidases, and other enzymes and virulence-related factors [7,13,78,79]. Several
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studies have shown that disruption or mutations of the gliding motility-related genes
resulted in defects in motility [80], extracellular enzymatic activity [6], and translocation of
gliding motility proteins to the cell surface [81]; thus providing a link between the virulence
and motility apparatus in pathogenic members of the Bacteroidetes phylum. Therefore,
our finding allows us to speculate that repetitive motifs can alter both the structure and
function of virulence-related proteins in F. psychrophilum. However, there is not a direct
coupling between the number of LRR and the virulence phenotypes, and more research is
required to define the evolutionary trends of the repeat motif features and their potential
virulence functions in this fish pathogenic species.

5. Conclusions

Although diverse putative virulence-related genes have been identified in genomic
sequences of F. psychrophilum, the role played by other genetic factors in the develop-
ment of BCWS and RTFS diseases is still poorly understood [3,11]. Previous work has
indicated that gliding motility and proteolytic activity are required for pathogenicity in
F. psychrophilum [4]. Although, gene repertoire and comparative genomic analyses did
not reveal a clear relationship between genotype and virulence traits in the current study
(Figure 1), we found that variability in the number of consecutive leucine-rich repeat
(LRR) proteins, repetitive motif dynamics, and IS transposition could be key factors in
understanding the evolution and virulence of F. psychrophilum (Figures 4 and 5). This new
information will form the foundation of future investigations into the pathogenicity mech-
anisms of F. psychrophilum and stimulate various experimental studies, including genetic
manipulation by specific gene knock-out [82] or transposition [83], to fully understand the
factors governing the virulence in this freshwater pathogen.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9081658/s1, Figure S1: F. psychrophilum pan, core, and accessory genome
evolution according to the number of sequenced genomes, Figure S2: Schematic representation
of dispensable genome in F. psychrophilum isolates, Figure S3: Graphic representation of mapped
reads in F. psychrophilum isolate JIPO82/6 as a reference genome, Table S1: Characteristics of F.
psychrophilum isolates used in this study, Table S2: Distribution of putative virulence-related factors
in F. psychrophilum isolates, Table S3: Distribution of genomic islands in F. psychrophilum isolates,
Table S4: Amino acid sequences of repetitive motifs in F. psychrophilum isolates, Table S5: Distribution
of transposase genes in F. psychrophilum isolates.
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