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a b s t r a c t

Large-scale atmospheric circulation patterns are the primary drivers of wind power variability on
power networks at timescales of hours to days. This paper proposes a methodology that allows power
system operators and planners working on networks with high levels of wind generation, to conduct
probabilistic power flow (PPF) analyses by defining network ‘operating scenarios’ – i.e. the probability
density functions of generators, and correlations between generators representative of a future system
state – based on concurrent classified atmospheric states. The most significant contribution made by
this paper is in illustrating how PPF operating scenarios derived from clustering historic generation
data as a function of a set of classified atmospheric states reduces simulation uncertainty within a PPF
analysis. It is anticipated that the proposed methodology may provide network planners with more
appropriate operating scenarios for PPF analyses when compared to an unclustered base state, and
may assist network operators in converting wind power point-forecasts into probabilistic forecasts
whereby the spatial correlations between generators are incorporated. This methodology is illustrated
through a case study considering 11 geographically disperse wind generators on the South African
transmission network.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Power flow analysis and network uncertainty

Power flow analysis is an important tool for determining the
tatic operational conditions within various nodes of an intercon-
ected electricity network. A power flow analysis is conducted
y numerically solving a set of non-linear algebraic power flow
quations (Stott, 1974) to determine the value of relevant net-
ork parameters, including voltage magnitude, phase angle, and
ctive- and reactive power. On shorter time-scales (i.e. day-to-day
asis) network operators have used power flow analysis in con-
ucting contingency analysis (Van Hertem et al., 2005), determin-
ng generation scheduling and unit commitment requirements
Raglend and Padhy, 2006), network congestion and loading relief
Min et al., 2008). At longer time-scales, power flow analysis is
seful to network planners in determining grid strengthening
equirements and the layout of future network topologies (Bent
t al., 2012).
Stochastic behavior of both consumer load demand and gen-

ration components within a power system results in a negative
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352-4847/© 2021 The Authors. Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
economic impact, largely due to the implicit difficulties in bal-
ancing the system (Ueckerdt et al., 2015). Uncertainty in power
networks may be resolved by way of either a deterministic power
flow (DPF) or probabilistic power flow (PPF) analyses. In tradi-
tional power systems, the consumer load had been the primary
stochastic component within the system, as thermal generators
behave deterministically in normal operation. Thereby, a DPF
would be conducted for a set of system ‘snapshots’ (Jiang et al.,
2013) or operating scenarios to capture network conditions re-
sulting from typical variations in load demand such as weekday
load peak versus weekend load peak, or summer versus winter.
Two important drawbacks of DPF to note are that: uncertainties
are not adequately taken into account as the probabilistic nature
of renewable energy sources remain unrecognized (Tang et al.,
2016); and system snapshots are defined arbitrarily, based on the
experience of the system engineers (Borkowska, 1974).

Increasing levels of variable renewable energy (VRE) on power
networks result in increased variability in the power flows in
the network (Kroposki et al., 2017). Indeed, in networks with
high levels of VRE penetration, VRE has become a larger source
of uncertainty than load, as VRE resources are inherently more
variable. The combined effect of VRE and load stochasticity results
in a very large set of possible power flow scenarios. Thereby, tra-
ditional DLF operating scenarios are becoming insufficient in rep-
resenting uncertainties within power systems (Chen et al., 2008).
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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dditional reasons for DLF insufficiency include the complex-
ty and computational burden resultant from large multivariate
roblems, and the aggregated uncertainty resulting from the de-
erministically uncharacterizable dependencies between system
oad, solar PV and distributed wind power (Haghi et al., 2010).
s an alternative to DLF, PPF is becoming increasingly popular
mongst power system planners and operators (Chen et al., 2008).
PF accounts for network uncertainties through the introduction
f probability calculus whereby relevant variable network param-
ters such as load and generation are represented as distribution
unctions rather than single point-values. The points on such
istribution functions are then solved in what is most often a
tochastic Monte-Carlo type iterative calculation (Usaola, 2009).
he outputs from such calculations are thus also probabilistic
nd provide a representation of the uncertainties associated with
hese outputs.

.2. PPF challenges and intended applications

This paper proposes a novel methodology for deriving power
ystem operational states based on atmospheric circulation. These
perational states are represented as the joint probability density
unctions (PDF) (or copula functions) of multiple geographically
ispersed wind generators along with the correlations between
hese generators. Stochastic variables such as wind power can
ffectively be represented as PDFs, as such high-frequency un-
ertainties correspond to recurrent conditions (Fitiwi et al., 2015).
n terms of applications, the proposed methodology distinguishes
etween long term (weeks to months) ‘planning’ PPF and short
erm (hours to days) ‘operational’ PPF. Wind power variability at
ime-scales of hours to days are associated with the passage of
arge-scale weather systems (Dalton et al., 2019; Kiviluoma et al.,
016; Zhang et al., 2014). The primary power system applica-
ions to be informed by an operational PPF at such time-scales
nclude day-ahead electricity market, reserve requirement, unit
ommitment, economic dispatch, and short-term maintenance
cheduling (Zhang et al., 2014). Large-scale weather systems may
lso provide a useful perspective from which to understand net-
ork variability at longer timescales, thereby informing network
lanning studies (Grams et al., 2018). At timescales of weeks
o years, the primary power system applications that may be
nformed by a network-planning PPF include network strength-
ning requirements, expansion planning, and generator siting. It
s anticipated that the proposed methodology would have appli-
ations in both operational PPF (time-scales of hours to days) and
lanning PPF (time-scales of weeks to years) as explained below.

.2.1. Operational probabilistic power flow analysis
If conducting PPF analyses at operational time-scales of hours

o days, deriving a copula function for multiple wind genera-
ors essentially becomes a probabilistic forecasting problem. A
easonable point of departure may be to consider statistical reg-
larities in historic wind generation data arising from diurnal
nd seasonal cycles. Indeed, at the time-scales of 30 min to
h, it has been shown that most wind power forecasts tend

o be stochastic (Zhang et al., 2014), making the use of either
tatistical approaches (e.g. autoregressive techniques) or artifi-
ial neural networks (e.g. feed-forward, ADALINE, etc.) feasible
Soman et al., 2010). At timescales of more than 6 h however, dy-
amic physical weather models tend to be preferred to statistical
pproaches. As this study is focused on the role of synoptic-
cale atmospheric circulation in the electricity network, such
ynamic weather forecasts would have to be incorporated into
he analysis.

Wind power forecasts derived from converting wind speed
orecasts to wind power are often represented as a deterministic
3776
single value point or a ‘point-forecast’ representing a specific
look-ahead time. In a liberalized electricity network with mul-
tiple wind power plants operated by private companies, wind
power forecasts are typically submitted by these companies to
the central system operator. From the perspective of the system
operator, a couple of problems may arise when using point-
forecasts in operational decision making as discussed by Botterud
et al. (2011). Pertaining specifically to PPF, a point-forecast does
not provide a representation of forecast uncertainty, as needed in
a PPF, unless a computationally expensive ensemble forecast is
generated. Secondly, point-forecast skill will differ between loca-
tions based on the forecast models used, local terrain complexity
and the quality of local observations. Furthermore, in conducting
a PPF for a network with high levels of correlated wind power,
it is necessary for the data interdependency structures (i.e. the
level of correlation) between geographically dispersed wind gen-
erators to be taken into account. The level of correlation between
wind generators informs the smoothness of the aggregated power
profile fed into the network (Monforti et al., 2014). Wind power
forecasts are however likely to be provided to the grid operator
by independent parties responsible for operating wind generators
on a network (Zhang et al., 2014). Therefore it is unlikely that
the spatial correlation between several geographically dispersed
generators will be accurately represented for a future system
state.

Within the context of operational PPFs, which are informed
by wind power forecasts as described above, the problem that
this paper seeks to address may be summarized as: firstly how
to generate a probabilistic wind power forecast for a network
that contains multiple geographically dispersed wind generators,
where the forecast contains a valid assumption as to the shape of
the PDF and the correlations between wind farms using a NWP
point-forecast; and secondly illustrating of such a forecast may
be incorporated as an operating scenario (i.e. a copula function
representing the future system state) into an operational PPF.

1.2.2. Planning probabilistic power flow analysis
System reliability/adequacy indices are important outcomes

of PPF analyses in network planning studies (Chen et al., 2008).
These indices may provide the planner with information such as
the probability, frequency and duration of periods during which
system reliability will be at risk. Traditionally, network planning
is based on the ‘worst-case-scenario principle’ used to meet net-
work requirements throughout most circumstances (Repo and
Laaksonen, 2005). The worst-case scenarios are typically very
conservative estimations of the maximum load combined with
minimum production or minimum load combined with max-
imum production. These assumptions are likely to be invalid
for networks with large amounts of VRE generation where the
stochastic properties of generators need to be taken into account
(Repo and Laaksonen, 2005).

However, in system planning studies only a limited number
of network operating scenarios can be simulated as part of an
analysis, particularly in large networks (Leite da Silva et al., 1990).
It is thereby important that an appropriate selection be made of
the most relevant network operating scenarios to be used in the
PPF. In networks with high levels of wind power penetration –
i.e. whereby atmospheric circulation is a dominant instigator of
power variability – it is anticipated that classified atmospheric
states may be used by network planners in deriving appropri-
ate operating scenarios to be included in the analysis. The pro-
posed methodology may inform appropriate operating scenario
selection by providing planners with a probabilistic valuation
of atmospheric states most representative of regional climatol-
ogy based historic occurrence frequency, and in terms of the
identification of atmospheric states that the network may find
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articularly challenging to accommodate (e.g. strongly correlated
ind conditions).
An important distinction between the operational and plan-

ing PPF applications of the proposed methodology is that the
perational PPF application is reliant on NWP forecasts (to de-
ermine a future system state) and historic wind power data
to determine probabilistic properties), whereas the planning PPF
pplication only requires historic wind power generation data. In
nstances where measured wind power data is not available due
o e.g. confidentiality reasons, or when a network expansion is
lanned, the simulation of long-term generation data becomes
ecessary.

.3. Paper overview

The primary underlying hypothesis of this paper is that: in
lanning and operational PPF, the probabilistic spatial–temporal
nformation needed to select appropriate operating scenarios re-
lective of future system states so as to resolve the aforemen-
ioned problems, may be obtained through the clustering of his-
oric wind power time-series for multiple generators as a function
f concurrent classified atmospheric states. This paper builds on
ork present by the authors in (Dalton et al., 2020a)
To test this hypothesis, a methodology is proposed that con-

ists of the following steps: (a) classification of NWP reanalysis
ata using Self Organizing Maps to represent a set of atmospheric
tates reflective of regional climatology; (b) simulation of a wind
ower time-series for multiple geographically dispersed genera-
ors for a period and time-step concurrent to that of the NWP
eanalysis dataset (to be implemented in planning assessments
here the wind generators do not exist yet or operational in-
tances when measured data is not available); (c) clustering wind
ower times series (simulated or measured) as a function of the
lassified atmospheric states and using the resultant clusters to
erive a set of copula functions which are in turn used as inputs
nto a PPF. An overview of the paper outline is provided in Fig. 1.

The layout for the remainder of this paper is as follows: Sec-
ion 2 provides a theoretic overview of the elements used within
he proposed methodology, Section 3 introduces a case study
f 11 wind farms in South Africa whereby the methodology is
llustrated, Section 4 shares results and discussions and Section 5
oncludes the paper.
The most significant contribution made by this paper is in

llustrating how PPF operating scenarios –represented as copula
unctions – can be derived from clustering historic generation
ata as a function of a set of classified atmospheric states so as to
educe uncertainty within the PPF analysis. These classified atmo-
pheric states represent the large-scale atmospheric circulation of
n area, which allows for the inputs into PPF to be based on phys-
cal meteorological phenomena. It is anticipated that defining
etwork states in terms of atmospheric circulation may provide
etwork planners with a method for selecting appropriate op-
rating scenarios to include in a PPF analysis, and may assist
etwork operators in converting wind power point-forecasts into
robabilistic forecasts whereby the spatial correlations between
enerators are incorporated.

. Methodology

.1. Scenario selection and self organizing maps

Classification of atmospheric states is done using Self-
rganizing Maps (SOMs). SOMs are a type of artificial neural
etwork that learns in an unsupervised environment (Kohonen
t al., 1990). SOMs provide a method for clustering high dimen-
ional data into (what is typically) a 2-D node lattice, wherein
3777
the topological features of the input data (or feature vectors)
are maintained. The first step within the SOM training process
consists of defining a set of nodes (or reference vectors) of
equal dimension to the feature vectors. Competitive learning is
then utilized whereby the Euclidean distance between a feature
vector and the defined set of reference vector(s) is measured. The
winning node, or Best Matching Unit (BMU), is the node whose
weight vector is closest to that of the feature vector. Once the
BMU has been identified, its weight along with the weights of
the nodes in its topological neighborhood on the SOM grid, is
updated towards that of the feature vector. SOM training is an
iterative process and is completed once changes to node locations
no longer are being made. Mathematically the update of a neuron
n may be represented as:

Vn (t + 1) = Vn (t) + ϕ (i, j, t) .β (t) .(D (s) − Vn (t)) (1)

where: Vn is the weight vector; t is the step-index (or current
iteration); ϕ is the neighborhood function providing the time-
varying form of topological neighborhood from the BMU (neuron
i) to neuron j for the t ’th iteration; β is the temporally decreas-
ing learning function; and D(s) is the randomly selected feature
vector (Kohonen and Honkela, 2007).

SOMs were selected as a clustering methodology for atmo-
spheric data in favor of other commonly employed clustering
methods such as K-means or principal component analysis (PCA),
as SOMs do not discretize the data through operations such as
Eigenvector analysis or correlation, nor does it force orthogonality
(Lennard and Hegerl, 2014; Reusch et al., 2005). Rather, SOMs
consider the atmospheric input data as a continuum that is capa-
ble of recognizing non-linear relationships within the data. The
end result of the SOM may be interpreted as a generalized set of
smoothly transitioning atmospheric states, rather than patterns
of variance, as would be the case with PCA (Reusch et al., 2005).
Accordingly, SOMs have been broadly applied within the atmo-
spheric sciences as discussed by Liu and Weisberg (2011) and
Sheridan and Lee (2011).

In the final step of the SOM classification, the reanalysis time-
series is clustered in terms of the set of classified atmospheric
states – i.e. a SOM node number is assigned to each time-step.
The process for doing this is similar to the SOM training pro-
cess whereby the weighted Euclidean distance between each
time-step and each classified SOM node is calculated, and the
BMU is accordingly identified. Each time-step is then assigned a
SOM node label. When this methodology is implemented opera-
tionally, NWP forecasts will similarly be used to determine future
atmospheric states as per the SOM classification. The similarity
between neighboring SOM nodes is anticipated to give the pro-
posed methodology some robustness against NWP forecast errors
whereby a NWP forecast with a certain forecast error will still be
attributed to a SOM node within the correct neighborhood. This
is thereby deemed to fulfill a similar function to a probabilistic
ensemble forecast in determining the predictive distribution.

2.2. Simulation of wind power

For operational PPF, it is anticipated that the simulation of
wind power time-series would be largely unnecessary, as the grid
operator would have access to measured wind power data. For re-
search purposes, such data are usually proprietary and therefore
unavailable. Similarly, for network expansion planning PPF stud-
ies, wind measurements may not be available for sites considered
for wind farm siting (Al-yahyai et al., 2010). This lack of measured
data necessitates a reliable and long term wind power simulation
to represent variability in the network. Accordingly, a simulation
of wind power time-series for a number of wind power genera-
tors is included in this methodology. The simulation time-series
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Fig. 1. Paper outline.
is concurrent in terms of period and time-step to the reanalysis
time-series used in the previous step of the methodology. The
period and time-steps will be case study dependent (consider
Section 3). A brief description of the simulation methodology is
outlined below.

Wind power time-series are simulated using the CorWind
model developed by DTU as part of the CorRES (Correlations in
Renewable Energy Sources) framework. To rectify the mesoscale
smoothing effect associated with NWP modeling (Larsén et al.,
2012) which results in a spectral energy deficit, CorWind adds an
element of stochastic variability to modeled numeric wind data.
The combination of the meteorological data stochastic simulation
is presented (Koivisto et al., 2020), with validation for Denmark.
These fluctuations are informed by power spectral densities, the
details of which may be seen in Sørensen et al. (2008, 2002). The
CorWind model was validated also for South African conditions
in (Dalton et al., 2020b) and has been used in various energy
modeling studies e.g. Koivisto et al. (2019) and Sørensen et al.
(2018).

CorWind allows for the conversion of wind speed to wind
power through the specification of a power curve. As this study
considers wind farms rather than single turbines, standard power
curves provided by turbine manufacturers were transformed into
multi-turbine power curves using the method by Norgaard et al.
(2004). The multi-turbine power-curve effectively smooths out
certain short-term fluctuations to provide a wind power profile
that is representative of an aggregation of multiple generators, as
would be the case with a wind farm.

Once the simulations have been completed, the SOM node
labels assigned to each time-step within the reanalysis dataset
is carried over to the corresponding simulation time-series. Ac-
cordingly, the wind power simulation time-series is clustered
according to a corresponding set of atmospheric states.

2.3. Copula functions

In a review article on probabilistic wind power forecasting
techniques by Zhang et al. (2014), it was noted that a spatiotem-
poral forecasting process may be most suitable when dealing
with multivariant PDFs. A copula is a cumulative distribution
function that takes marginal – or unconditional - distributions
and returns a single multivariate distribution that contains the
3778
dependence structure between the individual margins. The mar-
gins in turn are the inverse normal CDF (if it exists) - which
is used to transform the uniform distribution back to its actual
domain. When considering VRE, copula modeling is advantageous
as it separates the individual marginal distribution of generators
from the dependencies between various locations (Koivisto et al.,
2016).

In terms of finding a marginal distribution that is suitable for
wind power modeling, it should be noted that parametric distri-
butions such as Gaussian, Beta or Weibull do not provide a good
fit. Therefore the non-parametric empirical CDF (ECDF) marginal
was fitted to the wind power data. The ECDF is a step-function
that is essentially identical to the CDF of the variable.

For a d dimensional continuous random variable X where d≥1
and X = [X1,. . . , Xd], the CDF representing the probability that
Xd≤xd may be expressed as:

F (x) = P(X1 ≤ x1, . . . , Xd ≤ xd) (2)

Accordingly, Sklar’s theorem (Sklar, 1973) states that there exists
a copula function C, whereby the d-dimensional joint distribution
H, with 1-margins F1,. . . , Fd, can be written as:

H (x1, . . . , xd) = P [X1 ≤ x1, . . . , Xd ≤ xd]

= C[F1 (x1) , . . . , Fd (xd)] (3)

Thereby the C copula functions provide the dependence structure
between components and the marginals providing the CDFs of
X1,. . . , Xd.

There are several families of copulas, including the
Archimedean, Elliptical and Gaussian copulas. It has been ob-
served in previous studies that variations based on the selection
of copula type in modeling wind power distributions are rather
insignificant (Leuthold et al., 2008). Gaussian copulas were ob-
served to be the main approach for characterizing the interde-
pendence structure of multiple wind farms (Zhang et al., 2014)
and was therefore derived for each SOM cluster within the wind
power simulation time-series. A Gaussian copula with correlation
matrix P may be expressed as:

CGauss
P (u) = ϕn(ϕ−1 (u1) , . . . , ϕ−1 (ud) ; P) (4)

where ϕP is a multivariate normal CDF over Pd with expectation
mean vector zero, and ϕ−1 is the inverse CDF for the standard

Gaussian distribution
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. Case study: PPF analysis of the western cape transmission
etwork, South Africa

Hourly wind power data was simulated for 11 wind farms
ocated within the Western and Northern Cape provinces of South
frica for a period of 5 years (2010–2014). As is evident from
ig. 2, the wind farms are dispersed across a fairly large geo-
raphic area. To avoid confusion it is important to note that for
he simulation period most of these wind farms were not as yet
perational — rather the 5 years simulation data is used to derive
he probabilistic properties of these generators, which are still
eemed to be representative of current conditions. The simu-
ation period was selected based on the reanalysis data period
ithin CorWind for South Africa.
The 850 hPa geopotential heights from the open-source ERA5

Copernicus Climate Change Service, 2017) reanalysis dataset
ere used as a classification parameter for the SOMs. The geopo-
ential height data was downloaded for the same period (2010–
014) and time-step (hourly) as the wind power simulation
ata. Geopotential height refers to the elevation above sea level
here the specified pressure level is found. 850 hPa Geopotential
eights were selected as the input parameter to the classifications
chema as it provides a good representation of synoptic-scale
irculation patterns in that it reflects well the baroclinic and
arotropic systems which are features of South Africa’s clima-
ology (Tyson and Preston-Whyte, 2000). Furthermore, 850 hPa
rovides sufficient elevation to describe circulation above the
omplex local geography of the South African escarpment.
The selection of SOM size (i.e. the number of SOM nodes) is

subjective decision (Lennard and Hegerl, 2014) which depends
n the intended application and the amount of detail or gen-
ralization required. Thereby the smaller the SOM, the greater
he degree of generalization and the larger the SOM, the greater
he level of detail provided. In the practical application of this
ethodology, this decision would ultimately lie with the end-
ser, e.g. the network operator. The decision would be based on a

rade-off between desired operational complexity (i.e. number of t

3779
operating scenarios) and accuracy of probabilistic representation
(i.e. number of SOM nodes). SOM size selection would also be a
function of regional climate variability whereby a greater SOM
size might be required to resolve a complex thermally driven
climate. To illustrate this methodology, a six by six SOM node
topology (i.e. 36 nodes) was selected. A hexagonal lattice struc-
ture was selected in favor of a rectangular lattice so as to increase
the level of interdependence between SOM nodes. It has however
been shown that the selection of the lattice shape has little
bearing on the final SOM (Openshaw, 1994). The classification
area was bounded between 22–40◦S and 5–40◦E, making the SOM
egion significantly larger than the geographic spread of the wind
urbines for which the simulation was conducted. This was done
o allow for large-scale circulation associated with the Indian and
tlantic oceans to be included in the classification.
Gaussian copula functions were derived using the clustered

ind power time-series, for each SOM node as discussed within
he Methodology section. For the purposes of the PPF, DIgSILENT
owerFactory software was used. The derived Copula functions
ere uploaded into PowerFactory as ‘characteristics’, which were
ssigned to appropriate generators. Thereby each wind power
enerator had a set of distribution functions for each SOM node
or atmospheric state) and each SOM node had a corresponding
orrelation matrix for all generators.
For an accurate representation of the current operational

ransmission networks within the study area, South Africa’s na-
ional network operator Eskom has supplied the authors with the
ppropriate PowerFactory case files. Due to the size of the South
frican network and due to the relatively low penetration of wind
nergy in the network (3.8% for 2019 BP, 2020), parts of the
etwork were isolated so that the experiment being conducted
ould be representative of a network with a more significant
hare of wind energy. Accordingly, for the network configuration
sed in the case study, wind energy contributed approximately
0% to installed generation capacity. Only wind generators were
onsidered probabilistically as variable inputs. Loads, along with

he balance of the generators on the network, were considered
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Fig. 3. Case study methodological outline.
deterministically as point values. The commonly used Newton–
Raphson power flow method was employed using non-linear AC
power flow equations. With the aim of reducing the computa-
tional burden, the quasi-Monte Carlo sampling method was used,
which has been shown to lead to faster convergence (DIgSILENT
GmbH, 2019). The idea behind the quasi-Monte Carlo method
is that sampling space is more uniformly covered which avoids
sample clustering. PPF analysis was conducted for 1000 sampling
iterations for each of the atmospheric states.

The methodology as applied in the case study is summarized
in Fig. 3 below.

4. Results and discussion

4.1. Classified atmospheric states

Fig. 4 shows the 36 (6 × 6) node SOM wherein the classified
modes of the 850 hPa geopotential heights is used to repre-
sent characteristic circulation over the study area. Simply put,
each SOM node represents a classified atmospheric state. The
frequency of SOM node occurrence is indicated as a percentage
above each node. As anticipated, it is evident that the level
of dissimilarity between nodes increases with the distance be-
tween nodes. Nodes on the left of the SOM lattice are dominated
by high pressure circulation whereby the upper left-hand cor-
ner represents the ridging of the semi-stationary Atlantic Ocean
High Pressure System onto the sub-continent. The bottom left
hand corner in turn represents the ridging of the Indian Ocean
High Pressure System. Conversely, nodes towards the right of
the SOM lattice are dominated by low pressure circulation, no-
tably the bottom right-hand corner which represents the passage
of mid-latitudinal cyclones. These mid-latitudinal cyclones and
associated cold fronts have been shown to be significant insti-
gators of strong wind conditions and wind power ramp events
throughout the study region (Dalton et al., 2020b; Kruger et al.,
2010).

4.2. Wind power variability for different atmospheric states

Fig. 5 shows correlation matrices for a subset of five sam-
pled wind farms whereby their respective generation time series
were clustered based on the concurrent occurrence of four at-
mospheric states as represented by SOM nodes (1,1), (1,6), (5,1)
and (6,6). The four SOM nodes displayed were selected based
on the frequency of occurrence and because of their relative
3780
location on opposite sides of the SOM map. Along the diagonals,
variable histograms are displayed. Simply put, Fig. 5 shows how
the probabilistic distribution of a generation time series, and
the correlation between wind farms, differ based on the atmo-
spheric state. From Fig. 5 it is thereby evident that the proposed
methodology of clustering of wind power time-series based on
atmospheric state, is able to elucidate significant differences in
probabilistic properties of wind generators, and in the data in-
terdependency structures between generators. It is evident that
SOM node (1,1) is associated with weakly correlated generation
between turbines along with a high probability of low power
generation for each of the turbines sampled. Conversely SOM
node (6,6) is associated with a high correlation between turbines
and a high probability for high power generation for each of the
turbines.

4.3. Probabilistic power flow analysis

Fig. 6 shows active power in MW on two sampled transmission
lines for the PPF conducted, based on atmospheric states repre-
sented by SOM nodes (1,1), (1,6), (5,1) and (6,6), compared to a
base scenario, a best-case scenario and worst-case scenario. The
base state copula was derived without considering any clustering
criteria, but rather considering the entire simulation period. The
best-case and worst-case scenarios are reflective of the highly
conservative, but commonly employed ‘worst-case planning prin-
cipal’ as discussed by Repo and Laaksonen (2005), whereby the
best-case scenario load flow analysis considers all wind power
generators to be fully correlated and operating at full capacity.
Conversely, the worst-case scenario considers all wind power
generators to be generating no power. Note that due to non-
disclosure restrictions, the line/component names provided in
Figs. 6 and 7 only refer to the general geographic area within
which the line/component is located.

For Stikland, the base state is associated with comparatively
high network simulation uncertainty as is evident from the rela-
tively flat PDF curve which assigns the same approximate prob-
abilities to a relatively broad range of potential line loadings
(approx. 100–120 MW). When considering the specific operat-
ing scenarios, simulated network uncertainty tends to be de-
creased as is evident from higher probabilities assigned to a
relatively narrow range of potential line loadings. Indeed, strong
cyclonic circulation (SOM (6,6)) is associated with a high proba-
bility of relatively low active power (approx. 85 MW) and ridging

high pressure circulation (SOMs (5,1) and (1,1)) is associated
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Fig. 4. SOM of 850 hPa geopotential heights, along with the frequency of SOM node occurrence over Southern Africa (2010–2014).
ith a high probability of relatively high active power (approx.
15–125 MW).
For Acacia, it is similarly apparent that the operating scenarios

ased on atmospheric circulation reduce network uncertainty
hen compared to the base state. Indeed, strong cyclonic cir-
ulation (SOM (6,6)) is associated with a high probability of
elatively high active power (approx. 165–170 MW) and high
ressure conditions (SOMs (5,1) and (1,1)) are associated with
high probability of relatively low active power (approx. 135–
40 MW). SOM (1,6) was largely unable to differentiate itself
rom the base state for both Stikland and Acacia. It is furthermore
nteresting (and somewhat counter-intuitive) to note the changes
n atmospheric states associated with high/low line loadings be-
ween Acacia and Stikland which likely speaks to the relative
ositions of these lines within the network topology. Finally, the
estrictiveness of using best- and worst-case fictitious planning
cenarios in networks with distributed generation is evident for
oth Stikland and Acacia, based on its (comparatively) broad
oading parameters. These parameters may in turn result in the
nderutilization of network capability, especially in networks
ith high levels of wind power.
Fig. 7 shows the PPF active power output for two network

omponents – a series reactor and a series capacitor. Similarly
o Fig. 6 it is evident from Fig. 7 that the proposed methodology
s able to decrease simulated network uncertainty associated
ith the base state and is able to make sharp differentiations in
nticipated active power as a function of the atmospheric state.

t is furthermore similarly evident that the best- and worst-case
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scenarios result in conservative anticipated line loadings which
may not be well suited to networks with high levels of wind
power penetration. For the Muldersvlei series reactor, the ridging
of the Indian- and Atlantic Ocean High Pressure Systems (SOMs
(1,1) and (5,1)) are associated with a high probability of high ac-
tive power (approx. 45 MW) and strong cyclonic circulation (SOM
(6,6)) is associated with a high probability of relatively low active
power (approx. 25 MW). For the Kronos series capacitor, SOM
(1,1) is associated with a high probability of relatively low active
power (approx. 210–230 MW) and SOM (5,1) is associated with
a high probability of relatively high active power (approx. 360–
370 MW). SOM node (1,6) is unable to significantly distinguish
itself from the base state. It may thereby be summarized that the
proposed methodology is able to define operating scenarios that
reduce network uncertainty by increasing the relative probabil-
ities associated with line loadings as a function of atmospheric
state occurrence.

5. Conclusions

This paper has set out to formulate a methodology for defining
operating scenarios for PPF, based on large-scale atmospheric cir-
culation for networks with significant levels of wind power. The
primary underlying hypothesis of this paper was that the proba-
bilistic spatial–temporal information needed to select appropriate
operating scenarios to reflect future system states in planning
and operational PPFs, may be obtained through the clustering
of historic wind power time-series for multiple generators as a
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Fig. 5. Correlation Matrices for the four sampled SOM nodes.
Fig. 6. Active Power on sampled lines within the study area.
unction of concurrent classified atmospheric states. Accordingly,
or operational PPF, dynamic NWP point-forecasts can be used by
etwork operators to infer the atmospheric state at the forecast
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time of interest, and thereby the appropriate operating scenario
can be selected for PPF to resolve a specific future system state.
For planning PPF, frequently occurring SOM nodes, and SOM
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Fig. 7. Active Power on sampled network reactor and capacitor components within the study area.
odes that represent operating states that the network may find
ifficult to accommodate, may be used to derive the operating
cenarios to include within a network planning and expansion
nalysis.
To demonstrate its potential benefits, the proposed method-

logy was applied in a case study considering a portion of the
outh African transmission network with 11 wind generators.
lthough one case study is not sufficient to gain a generalized
nderstanding of the relation between certain network states
nd atmospheric circulation, it is sufficient to demonstrate the
ontribution of the proposed methodology in reducing simu-
ation uncertainty and representing system states in terms of
tmospheric circulation. The following conclusions can be made:

• Sharp distinctions in the probabilistic properties of indi-
vidual wind power generators and interdependency struc-
tures between generators can be elucidated when clustering
historic wind power time-series as a function of a set of
classified atmospheric states.

• The copula functions derived from the proposed clustering
methodology can effectively be applied as a set of operat-
ing scenarios within an operational or planning PPF anal-
ysis which results in a reduction in simulation uncertainty
when compared to an unclustered base case. Such scenarios
are furthermore less restrictive than scenarios defined on a
highly conservative worst-case planning principle.

he most significant contribution made by this paper is in il-
ustrating how operating scenarios that accurately represent the
mpact of wind energy generators within a PPF analysis (which
ncludes the probabilistic density functions of generators, and
orrelations between generators) can be derived from clustering
istoric generation data as a function of a set of classified at-
ospheric states. Through its synthesis of atmospheric science
nd power systems engineering, this paper is interdisciplinary
n its approach and its contributions. Future research will be fo-
used on expanding the proposed methodology to other network
arameters — notably load demand and solar PV.
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