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Summary (English)
In natural sciences, one uses mathematics to model the interaction between things in
the real world. However, no model is fully correct, as it is always an approximation of
the actual physics. In most cases this model error is negligible by design and therefore
does not negatively influence the application at hand. However, in other cases it may
not be feasible to construct a model with negligible model error. One example of
this is inverse problems, where the goal is to infer something about a system given
an indirect measurement of said system. Inverse problems are well-known to utilize
simplified mathematical models to model complex large-scale physical systems for
this reason.
In this thesis, we study methods for characterizing and reducing model errors when
solving inverse problems. The driving application for this work is the inverse prob-
lem of Computed Tomography (CT), where the goal is to reconstruct the interior
structure of an object from measurements of X-ray attenuation from different view
angles around the object. The model error we consider is caused by uncertainty in
the actual view angles for which the data is acquired. We view this application as a
general linear inverse problem with the addition of uncertain model parameters and
review existing research for this type of problem.
The main contribution of the thesis is the development of a new framework in the
form of models and algorithms for handling CT with uncertain view angles. The work
can be condensed into two major components: 1) a new method for approximate
marginalization of view angle uncertainty and 2) a new method for estimation of
the view angles – including uncertainty quantification of the estimate. Ultimately
both components are combined to achieve estimation of the view angles as well as
marginalization of any remaining uncertainty – which in our simulated experiments
completely alleviate the issue with uncertainty in the view angles. Both components
are also general enough that they can be applied to other similar inverse problems.
A huge part of making models and algorithms relevant to practical inverse problems is
computational efficiency. In this thesis, computational efficiency has been considered
throughout and we demonstrate our framework on both 2D and 3D CT problems
with more than 106 unknowns and 106 data points.
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Summary (Danish)
I naturvidenskab bruger man matematik til at modellere interaktionen mellem ting i
den virkelige verden. Ingen model er dog helt korrekt, da den altid er en tilnærmelse
af den faktiske fysik. I de fleste tilfælde en model designed på en sådan måde at model-
fejlen er ubetydelig og påvirker derfor ikke det anvendte problem. I andre tilfælde er
det imidlertid ikke muligt at konstruere en model hvor model-fejlen er ubetydelig. Et
eksempel på dette er inverse problemer, hvor målet er at inferer viden om et system
givet en såkaldt indirekte måling af systemet. Inverse problemer er velkendt for at
anvende simple matematiske modeller til store komplekse fysiske systemer af denne
grund.
I denne afhandling studerer vi metoder til karakterisering og reduktion af model-fejl
i inverse problemer. Den drivende applikation til dette arbejde er computertomo-
grafi (CT), hvor målet er at rekonstruere den indvendige struktur af et objekt ud
fra målinger af røntgendæmpning fra forskellige synsvinkler omkring objektet. Den
model-fejl vi betragter skyldes usikkerhed i de faktiske synsvinkler som objektet er
målt ved. Vi undersøger problemet som et generelt lineært inverst problem med usikre
model-parametre og gennemgår eksisterende forskning for denne type problemer.
Hovedbidraget i denne afhandling er en ny metode – i form af modeller og algorit-
mer – til håndtering af CT med usikre synsvinkler. Arbejdet kan kondenseres i to
hovedkomponenter: 1) en ny metode til marginalisering af synsvinkelusikkerheden og
2) en ny metode til estimering af synsvinklerne - inklusive usikkerhedskvantificering
af estimatet. I sidste ende kombineres begge komponenter for at opnå både estimer-
ing af synsvinklerne og marginalisering af eventuel resterende usikkerhed - hvilket i
vores simulerede eksperimenter fuldstændigt afhjælper problemet med usikkerhed i
synsvinklerne. Begge komponenter er også generelle nok til, at de kan anvendes til
andre lignende inverse problemer.
En stor del af arbejdet har haft fokus på beregningseffektivitet og vi demonstrerer
vores metode for både 2D- og 3D CT-problemer med mere end 106 ukendte og 106

datapunkter.
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Preface
This PhD thesis was prepared at the department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in fulfilment of the require-
ments for acquiring a PhD degree at the PhD School of the university. The research
period was between September 1st 2017 and February 5th 2021 at the Section for
Scientific Computing under principal supervisor Associate Professor Yiqiu Dong and
co-supervisor Professor Per Christian Hansen both from the department. The project
was also co-supervised by Professor Jürgen Frikel from OTH Regensburg, Germany.
Part of the research was carried out during two short externals stays visiting Professor
Jürgen Frikel at OTH Regensburg and Professor Johnathan Bardsley at University
of Montana, USA. The majority of the project is funded by an internal scholarship
from the university with 3 months co-financed salary from Intereg Europe under the
MAX4ESSFUN sub-project.
The thesis covers research performed during the PhD programme related to charac-
terizing and reducing the influence of model errors in inverse problems. The aim is
to summarize and present the work of three of the papers written during the PhD
programme, as well as provide an overview of the field as a whole. The three papers
are all concerned with Computed Tomography with uncertain view angles and the
thesis therefore considers the research through this lens. Most of the other papers
are referenced and discussed briefly in the thesis, but are not included directly.

Kongens Lyngby, February 5, 2021

Nicolai André Brogaard Riis
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CHAPTER1
Introduction

The use of mathematical models to describe the behaviour of complex physical pro-
cesses is the backbone of many fields of research. One goal of scientists in these fields
is to select models that capture the essence of the physics and disregards the “unim-
portant” aspects. A hallmark of a great scientist have long been the ability to devise
simple yet effective models of real physical phenomena. In this way, these models are
used to solve real world problems despite the inexact nature of the model. A famous
quote by the statistician George Box “All models are wrong, but some are useful” [9]
summarizes this principle well.
However in some practical applications, it is not possible to come up with a perfect
model that only disregards the negligible aspects of a physical process. Instead, a
mathematical model often disregards some aspects of a process that may be important
to take into account. Furthermore, even physical processes that are taken into account
can only be modelled with limited accuracy in practise. Going back to George Box
another quote from some of his earlier works states

“Since all models are wrong the scientist must be alert to what is
importantly wrong.” (George E P Box, 1978 [10]).

In this thesis, we are interested in exploring this concept of model errors in applied
mathematics related to the field inverse problems. In particular, we aim to character-
ize and reduce the influence of model errors, when it is not feasible to simply improve
the mathematical model to avoid the error altogether. In an inverse problem the goal
is to infer information about an object of interest that can not be directly observed.
An inverse problem can be thought of as the inverse of a forward problem, for which
the goal is to predict the output of a system given some known input object. Hence,
the goal of an inverse problem is to infer the input given a measured output from a
system. This principle is illustrated in Figure 1.1. The inverse problem is solved by
reconstructing a set of parameters describing the object from the data. It is common
to refer to the reconstructed object as the solution to the inverse problem. The re-
construction is achieved by measuring an effect caused by the object and then using
a mathematical model to reconstruct the object from said measurement. In practise,
the system and data are both known with limited accuracy, which should be taken
into account when solving the inverse problem for the best results. In Chapter 2, we
give a brief overview of inverse problems.
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Forward problem

Inverse problem

System DataObject

Figure 1.1: A classical illustration of forward and inverse problems. When solving
an inverse problem both the data and system is known with limited
accuracy in practise. This should be taken into account in the recon-
struction of the object for the best results.

1.1 Model errors in inverse problems
Model errors in inverse problems is steadily becoming a popular topic of research in the
inverse problems community. It has long been known that errors in the mathematical
model can negatively influence the solution of an inverse problem, and there exists
bounds on the effect for specific cases as we discover in Chapter 4. However, recent
advances in theory, algorithms and computational efficiency have led to more research
and theory focused on explicitly taking the model errors into account when solving the
inverse problem. In this thesis, we explore some of these methods and discuss their
applicability in practise. The main part of the thesis focuses on a specific strategy for
characterizing model errors based on an additive model-discrepancy term and extend
upon existing research in this direction. The approach was originally pioneered in [32]
for Bayesian calibration of computer models and later adapted to inverse problems
in [31, 46] and is still ongoing research.

1.2 Computed Tomography
There are many important applications which can be viewed as an inverse problem
and where reducing the influence of model errors improves reconstruction quality. In
this thesis, we select Computed Tomography (CT) as the practical application to
validate and test our theory and algorithms on. In CT, the goal is to reconstruct the
interior structure of an object by measuring X-ray attenuation from different angles
around the object. One calls the measured X-ray attenuation from a specific angle
a projection. The interior may be a persons chest or the crystal structure of some
material for example. The object is reconstructed using a mathematical model that
combines the projections for each angle into a single image reflecting the objects X-
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ray attenuation at different locations in space. Because different materials present
different X-ray attenuation, this provides relevant information about the interior of
said object. In Chapter 3 we give an overview of CT.
In CT, model errors may arise for different reasons. In this thesis, we are interested in
the important case where the view angles of the scan is known with limited accuracy.
The parameter representing the view angle in the CT model can therefore be thought
of as uncertain. In Chapters 5 and 6 we develop new models and algorithms for
handling CT with uncertain view angles.

1.3 Preview of results
The research carried out in this thesis is not necessarily limited to CT alone. Despite
this, our research have focused on CT as the practical test case. One nice feature of
CT, is that it is easy to compare the performance of new theory and algorithms by
visually inspecting the reconstructed images. In this section, we give a preview of the
improvement one can obtain in the reconstructed images by using our methods. This
may lead one to believe that our research is limited to CT alone, but the hope is that
others can utilize approach we have developed on other interesting inverse problems
as well.
In Figure 1.2, we show reconstructions for a CT test case where each view angle
is assumed uncertain. To be more specific, the nominal view angles (equidistant
angles around the object) are uncertain and the true view angles are simulated as
realizations from a probability distribution with the nominal view angles as the mean.
More details on the simulations are given in the later chapters of the thesis and in
Appendix D.1.
In the top row of Figure 1.2, we compare CT reconstructions using the nominal view
angles with the ground truth image. We show a filtered back projection reconstruction
(FBP), which is a commonly used method in practise [14] and a total variation (TV)
based reconstruction (L2-TV), which is a state-of-the-art method used for CT [58].
Both are defined in Chapter 3. Indeed, in this example it is clear that the model
error introduced by reconstructing with the nominal view angles negatively impacts
the CT image. This example provides a relevant test case for the research carried out
in this thesis and we specifically try to handle this exact problem in this work.
In the bottom row of Figure 1.2, we show the best CT reconstructions obtained from
our research. In papers A and B, the goal is to take the view angle uncertainty
into account in the CT reconstruction, while still using the nominal view angles for
reconstruction. In paper C, the goal is to also estimate the true view angles to improve
reconstruction further. The right-most figure in this row shows the best possible L2-
TV reconstruction using the true view angles, which is only possible because the data
is simulated. The results show a steady improvement in the reconstruction quality
and paper C is very close to the best possible reconstruction using the TV prior.
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Ground truth FBP (nominal angles) L2-TV (nominal angles)

Paper A & B (nominal angles) Paper C (estimated angles) L2-TV (true angles)

Figure 1.2: Preview of results obtained in thesis for the CT test case. The filtered
back projection (FBP) and total variation based reconstruction (L2-TV)
using the nominal view angles both show severe artefacts caused by
view angle uncertainty. The reconstruction algorithm from paper A &
B improves reconstruction quality by taking the view angle uncertainty
into account. Finally, by also estimating the view angles (paper C) the
reconstruction result is improved to such a degree, that it is comparable
to a reconstruction obtained using the true view angles (the best-case
scenario).

1.4 Contribution of thesis
In this thesis, we give an overview of existing research concerned with handling model
errors in inverse problems in a general setting. The aim is to develop new theory
and algorithms in this direction. The main contribution is the development of a new
mathematical framework aimed at characterizing and reducing the influence of model
errors caused by model parameter uncertainty in inverse problems. The framework is
applied on a CT problem with uncertain view angles, but can be extended to other
similar inverse problems. The work can be condensed into two major components:
1) a new method for approximate marginalization of view angle uncertainty and 2) a
new method for estimation of the view angles – including uncertainty quantification
of the estimate. Ultimately both components are combined to achieve estimation of
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the view angles as well as marginalization of any remaining uncertainty – which in
our simulated experiments completely alleviate the issue with uncertainty in the view
angles. The detailed contributions can be listed as follows.

• The thesis provides an overview of the current approaches to handle model
errors in inverse problems.

• A new model and algorithm is proposed to take uncertain model parameters
into account when solving an inverse problem.

• This approach is able to approximately marginalize model parameter uncer-
tainty by constructing a data-fitting term that takes the model parameter un-
certainty into account.

• The marginalization is carried out alternately. That is, each time a new solution
to the inverse problem is obtained, the quality of the approximate marginaliza-
tion can be improved and in turn a new improved solution can be obtained.

• The approach also provides a direct way to estimate the model parameters
including uncertainty quantification of the estimates, which can be included
with the above-mentioned alternating procedure.

• The new framework is tested and verified on a CT problem, where the view
angle parameter is assumed to be uncertain, and shows significant improvement
in reconstruction quality in simulated experiments.

• The CT test case also illustrates the computational efficiency of the algorithms,
which is important for large-scale inverse problems.

1.5 Structure of thesis
Chapter 2 gives an overview of inverse problems mainly focused on variational regular-
ization, while the final section introduces the Bayesian approach to inverse problems,
which is needed to derive the data-fitting term that takes the uncertainty in the model
parameters into account.
Chapter 3 gives an overview of Computed Tomography. In particular, we define the
CT forward model parametrized by the view angles.
Chapter 4 gives an overview of existing research related to model errors in inverse
problems. The chapter also explains why a Bayesian approach was ultimately chosen
to handle the CT problem and gives an overview of the approach.
Chapter 5 summarizes the research of papers A and B.
Chapter 6 summarizes the research of paper C.
Chapter 7 is a discussion of further details and comments on the work.
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Chapter 8 is the concluding remarks with comments on future work.
The appendix contains Papers A, B and C as well as supplementary material related
to implementation details and selected definitions.



CHAPTER2
Inverse problems

In this chapter, we provide the reader with a brief overview of the field inverse problems.
Because inverse problems is a huge area of research, we present only the relevant
material as it pertains to our work. By taking a general perspective on inverse
problems, we are able to acquire important insight that can be applied to the inverse
problem of CT. The chapter begins with a general introduction to inverse problems, ill-
posedness and regularization and it ends with an overview of the Bayesian formulation
of inverse problems. The Bayesian formulation is a particularly important part of this
thesis, as our research heavily utilizes this framework. We refer to the recent review
paper on modern regularization theory for inverse problems [7] for a more general
treatment of regularization theory and to [31, 61] for a general treatment of inverse
problems in the statistical setting and [29] for the discrete (deterministic) setting.

2.1 Mathematical formulation
The term inverse problem describes the important category of real-world problems,
where the goal is to infer information about an unobservable object from measure-
ments of a quantity affected by said object – a so-called indirect measurement. To
provide meaningful insight to an inverse problem, a mathematical model is required.
For theoretical analysis it is beneficial to study inverse problems in an infinite di-
mensional setting. For the purpose of this thesis we only briefly consider the infinite
dimensional setting and mostly focus our attention to the finite dimensional case.
That is, we consider the inverse problem after discretization. Because we use CT as
a test case, we assume a linear relation between the data and the object of interest,
i.e. a linear forward model. This inverse problem can be formulated as

Ax = b, (2.1)

where b ∈ Rm is the data, x ∈ Rn is a set of parameters that describe the object
of interest and A ∈ Rm×n is the matrix representing the forward model relating the
parameters of the object with the data. The matrix A is often a discretization of a
continuous model, as is the case for the CT problem (more details in Chapter 3).
In general, the matrix A and parametrization of the object x are mathematical mod-
els – i.e. approximations – of the actual physical phenomena that have led to the
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observed data b. Therefore, the choice of parametrization and forward model are
particularly important to take into account when solving an inverse problem. Fur-
thermore, because the data is measured, it is contaminated by measurement noise.
For these reasons we have an approximate relation in practise, i.e.

Ax ≈ b. (2.2)

Despite this issue, we consider the inverse problem from the point of view of the
relation (2.1) for now and assume that the forward model represented by the matrix
A is exact, but that the data b can be contaminated by noise. Later in Chapter 4,
we return to the issue of model errors and expand the model to include these.
The nomenclature for inverse problems is that constructing the data b from the
parametrization x is called the forward problem, whereas reconstructing x from b is
called the inverse problem.
A key feature of inverse problems is that while the forward problem has a unique
solution, the inverse problem tend not to have one. Furthermore, the inverse problem
also tend to be “unstable” with respect to noise on the measured data. To formalize
this concept we introduce ill-posedness.

2.2 Ill-posedness
The definition of an ill-posed inverse problem is commonly attributed to the work of
Hadamard on partial differential equations [26]. The definition stems from defining
the complementary statement, namely when a problem is well-posed. Hadamard
stated the following three conditions for a problem to be well-posed.

• Existence: A solution to the problem exists.

• Uniqueness: The solution is unique.

• Stability: The solution depends continuously on the data.

A problem is then said to be ill-posed, if one or more of the above conditions are not
satisfied.
In the discretized setting, we can assume there exists some ground truth object x̄ ∈ Rn,
which represents the actual (unknown) parameters of the object we aim to reconstruct.
Then, the measured data b is a noisy version of the “clean” data b̄ = Ax̄. Often
the measured data is assumed to be affected by additive noise, i.e. b = b̄ + e, where
e ∈ Rm is the noise term. In this case, it is clear that a solution to (2.1) exists if
and only if b ∈ Ran(A) and that the solution is unique if and only if Ker(A) = {0}.
That is, measurement noise may move b out of the range of A, such that no solution
exists and e.g. if the system is overdetermined there is a non-trivial null-space and
the uniqueness condition fails.
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While existence and uniqueness are conditions that are clearly defined, the stability
condition can be more difficult to handle and may be interpreted in various ways. A
common interpretation is the following.

• Stability (interpretation): A small change in the data should only result in a
small change in the reconstructed solution.

Given the above interpretation, the stability of a linear inverse problem is related to
the condition number of the forward operator κ(A) = ‖A‖2‖A−1‖2 = σmax/σmin,
where ‖ · ‖2 is the matrix 2-norm defined in Appendix D.3 and σmin, σmax are the
smallest and largest singular values respectively (see [29] for more details). This is
shown in the following theorem.

Theorem 1 ([29, 39]). Consider the linear system (2.1) with perturbation e of the
data such that b = b̄ + e, where b̄ = Ax̄ and let A be square and non-singular. Then
for the naive solution x∗ = A−1b and the exact solution x̄ = A−1b̄ the following
bound holds

‖x∗ − x̄‖2

‖x̄‖2
≤ κ(A) ‖e‖2

‖b̄‖2
. (2.3)

Theorem 1 shows that for large condition numbers even small perturbations e in the
data can lead to large changes in the naive solution. Hence, if the forward operator
in the inverse problem has a large condition number the stability condition is not
satisfied and the problem is considered ill-posed.

Remark. A similar bound holds for perturbations of the forward operator A (i.e.
model errors), and we return to that in Chapter 4.

2.3 Regularization
Most inverse problems do not satisfy any of Hadamard’s conditions in practise and
are therefore ill-posed. One way to handle ill-posedness is to solve a modified version
of the inverse problem that is forced to satisfy the conditions. This technique is
known as regularization and the solution to the modified inverse problem is known as
a regularized solution. In the following, we give a prelude to regularization and refer
to [7, 29] for a more in-depth discussion on the topic.
First, consider the issue of non-existence. To handle this, one can choose to solve a
least squares problem

min
x

‖b − Ax‖2
2, (2.4)

which is guaranteed to have at least one solution for all possible A and b.
While the least squares problem (2.4) provides existence, it does not guarantee unique-
ness nor stability. To ensure that the solution is both stable and unique one can add
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a regularization term to the least squares problem. Perhaps the most simple regular-
ization term is the 2-norm, which defines the regularized least squares problem

arg min
x

‖b − Ax‖2
2 + λ‖x‖2

2, (2.5)

where λ > 0 is called the regularization parameter. This formulation is also commonly
referred to as Tikhonov regularization due to his early work on this problem [63]. For
a fixed regularization parameter λ > 0, there exists a unique solution to (2.5), which
has the closed-form expression

x∗
λ = (AT A + λI)−1AT b. (2.6)

Perhaps even more importantly, Tikhonov regularization can be shown to alleviate
the issue of stability. In a similar way to Theorem 1, this is shown by considering the
relative change in the solutions obtained with the exact and perturbed data as in the
following theorem.

Theorem 2 (Hansen, 1989 [27]). Consider the linear system (2.1) with perturbation
e of the data such that b = b̄ + e, where b̄ = Ax̄. Then for the Tikhonov solution x∗

λ

from (2.6) and the Tikhonov solution on the noise free data x̄∗
λ = (AT A + λI)−1AT b̄

we have the following bound

‖x∗
λ − x̄∗

λ‖2

‖x̄∗
λ‖2

≤ κλ(A) ‖e‖2

‖bλ‖2
, (2.7)

where bλ = Axλ and κλ(A) = ‖A‖2/λ.

The theorem shows that the influence of the error caused by measurement noise in
the data can be handled by adding a 2-norm regularization term given an appropriate
choice of the regularization parameter λ. The regularization parameter controls the
degree in which the problem is regularized as indicated by dividing by λ in the bound.
The trade-off is that the noise-free regularized solution x̄∗

λ can stop resembling the
ground truth x̄ if λ is too large. One can derive bounds for this so-called regularization
error in specific cases, but we leave these out of the thesis and refer to [29].

Remark. This presentation was chosen to highlight key elements of inverse problems
and regularization and is not meant detail a rigorous theory on the subject. For the
interested reader the theory of regularization methods present a rigorous treatment
of ill-posed inverse problems and provides clear conditions for methods to satisfy
well-defined versions of the Hadamard conditions. We leave the mathematical details
of regularization methods out of the thesis but refer to [7] for a recent overview.
A fourth requirement for regularization methods that is not clear from the current
presentation, is that the solution to the modified inverse problem should also converge
to the solution of the original inverse problem, when the noise in the data goes to
zero.
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2.3.1 Variational regularization
Tikhonov regularization (2.5) belongs to a larger group of methods know as varia-
tional regularization methods. These methods have become popular for solving a
wide variety of inverse problems in the last decade, in part due to their simplicity and
the development of fast and efficient solvers. The key principle is to define an opti-
mization problem with two terms: 1) a data fidelity/fitting term that measures the fit
between the measured data b and the forward projected solution Ax and 2) a regular-
ization term that includes the prior information about the object of interest, e.g. by
favouring or penalizing certain structures in the reconstructed solution. A variational
regularization method can thus be seen as solving the optimization problem

min
x

D(b, Ax) + λR(x), (2.8)

where again λ > 0 is the regularization parameter that controls the balance between
enforcing prior information in the regularization term R and fitting the data in data-
fitting term D. A unique solution to (2.8) is called the regularized solution. One can
show that for a number of choices of D and R that (2.8) constitutes a regularization
method see [7] and references therein.

2.3.2 Total variation regularization
For the purpose of this thesis, we are interested in the imaging problem of CT and
so we are motivated to select a regularization term (prior) that reflects natural CT
images. While Tikhonov regularization have been a popular method for CT [49], en-
forcing a small 2-norm provides limited prior knowledge of the CT image. Instead,
in these types of images one is interested in piece-wise constant solutions that clearly
show boundary information. For this reason, we choose a total variation (TV) reg-
ularization term. We note that the methods derived in this thesis do not directly
depend on the choice of regularization term, which is also the reason we only go into
brief detail here.
The method of TV regularization was originally proposed for image denoising [56]
and has subsequently been heavily used for CT reconstruction – see e.g. [58]. If we
consider x as the vectorization of a 2D or 3D image, the discrete the TV regularization
term can be defined as

TV(x) = ‖∇x‖2,1 :=
n∑

i=1
‖[∇x]i‖2, (2.9)

where [∇x]i is the discrete gradient of x at the ith pixel/voxel in the image. One
can select different discretization schemes and boundary conditions for the gradient
depending on the application. For this thesis, we simply choose to go with a forward
difference scheme with reflexive boundary conditions.
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2.3.3 Enforcing non-negativity
Another aspect of CT images is that the attenuation coefficients cannot be negative.
To enforce this prior, we define an indicator function

g+(·) =

{
0 if xi ≥ 0,

∞ if xi < 0,
(2.10)

which enforces the non-negativity by penalizing negative values.

2.3.4 Combining the priors in an variational model
By combining these two priors into a variational model, we arrive at the optimization
problem

min
x

D(b, Ax) + λTV(x) + g+(x). (2.11)

Because of the non-smooth TV term and the non-negativity constraint, an iterative
method is required to obtain a solution to (2.11). In this thesis, we have chosen to
utilize the popular Primal Dual Hybrid Gradient (PDHG) algorithm [17] and the
Stochastic version (SPDHG) [18, 21] for this purpose. We give further details on how
we use these algorithms in Chapter 5 and Appendix D.2 once the data-fitting term
have been derived, and refer to the referenced papers for a complete overview.
There exists many choices of data fidelity D depending on the application at hand.
A particular set of data fidelity terms, are those that are motivated by statistical
arguments. These arise when considering inverse problems in the Bayesian paradigm.
In this thesis, we rely on the data-fitting term to take the model and noise error into
account and this is again why the Bayesian paradigm is of central importance in our
work.

2.4 Bayesian approach to inverse problems
Bayesian inverse problems – or Bayesian estimation – is the methodology of solving
an inverse problem by utilizing a probabilistic point-of-view, where the parameters of
the object, measurement noise and other variables are considered as random variables.
Specific for the Bayesian perspective is that the randomness describes the degree of
information for each variable. That is, how certain or uncertain are we of the value
of a specific variable.
In its simplest form, we consider the following version of the inverse problem in the
Bayesian paradigm

b = Ax + e, e ∼ πe(·), x ∼ πx(·), (2.12)
where b ∈ Rm is the measured data, A ∈ Rm×n are deterministic (fixed) forward
model and e, x are random vectors. Here the data are corrupted by additive noise,
which is a decent approximation for CT noise in practise [14].
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We are in particular interested in the probability distribution of the object of interest
x given the measured data b, which is the conditional probability distribution π(x|b).
This distribution is commonly referred to as the posterior distribution. The central
equation in Bayesian inverse problems that allow us to infer information about the
posterior is Bayes’ theorem which state the relation

π(x|b) = π(b|x)π(x)
π(b)

∝ π(b|x)π(x). (2.13)

Here π(b|x) is the likelihood, π(x) the prior and π(b) the evidence. An obvious
requirement of Bayes’ theorem is that the evidence is greater than zero, i.e. π(b) > 0.
That is, the probability of observing the data given the assumed model is greater than
zero. In general however, the evidence also tend to play the rule of a normalizing
constant and can be ignored by considering only the proportionality relation.

Remark. This presentation focuses on the Bayesian approach, but we note that
there exists similar theory and derivations by considering “combination of states of
information” that is free from the theoretical difficulties associated with conditional
probability distributions. For more details on this see e.g. [61].

2.4.1 Deriving the likelihood
One of the tasks in the Bayesian paradigm is to derive the likelihood according to
the assumed model. In this case the likelihood is determined according to our model
(2.12) by marginalizing out the noise term e. That is, the noise term is considered as
a nuisance parameter, that need not be estimated, but should be taken into account.
The marginalization is achieved by integration out the noise term, i.e.

π(b|x) =
∫
Rm

π(b, e|x)de, (2.14)

=
∫
Rm

π(b|x, e)π(e|x)de. (2.15)

Because x and e are specified conditioning on these yields π(b|x, e) = δ(b−A(x)−e),
where δ(·) is the delta distribution, see e.g. [31]. This simplifies the likelihood to

π(b|x) = πe|x(b − Ax|x), (2.16)

where πe|x is the conditional probability distribution of the noise term e given x. In
particular, if one assumes e to be independent of x the relation simplifies to

π(b|x) = πe(b − Ax), (2.17)

which is simply the probability distribution of e evaluated at b − Ax.



14 2 Inverse problems

Example 1. To clarify the presentation above, suppose the noise distribution is
Gaussian, i.e. e ∼ N (µe, Ce) and independent of x. Then the likelihood function
with respect to the generic additive noise inverse problem (2.12) is given by

π(b|x) = πe(b − Ax) (2.18)

∝ exp
(

−1
2

(b − Ax − µe)T C−1
e (b − Ax − µnoise)

)
, (2.19)

∝ exp
(

−1
2

‖b − Ax − µe‖2
C−1

e

)
, (2.20)

∝ exp
(

−1
2

‖Le (b − Ax − µe) ‖2
2

)
, (2.21)

where Le is the Cholesky factor of the inverse covariance C−1
e = LT

e Le.

2.4.2 Connection to variational regularization
Once the likelihood and prior are determined, the goal in Bayesian inverse problems
is to obtain samples or point estimates of the posterior distribution. In the following
we describe the connection between the maximum a posteriori (MAP) estimator and
variational regularization. For a more thorough walk-through on Bayesian inverse
problems and sampling-based methods see e.g. [3, 31].
The MAP estimator is defined as maximizing the posterior density (or minimizing
the negative logarithm), i.e.

arg max
x

(π(b|x)π(x)) = arg min
x

(− log π(b|x) − log π(x)) , (2.22)

and is closely linked to variational regularization.
Comparing the variational optimization problem (2.8) and the MAP estimation in
(2.22), we can interpret − log π(b|x) as the data fidelity and − log π(x) as the regu-
larization term. This allows us consider the negative log-likelihood as a data fidelity
term based on the statistics of the noise model.

Remark. An important distinction to make here is that the priors defined earlier in
Sections 2.3.2 and 2.3.3 are not straightforwardly extended to the Bayesian formula-
tion. We refer to [4, 37] for recent research in this direction for both cases. While this
technicality is an important one, we simply choose to consider the problem from a vari-
ational point-of-view, where the data-fitting term is defined according to a Bayesian
noise model.

One can show that Tikhonov regularization is equivalent to a Bayesian MAP estimate
with a Gaussian likelihood and prior. We end this section with that example.
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Example 2. In the case that both the prior and likelihood is Gaussian we have a
closed-form expression for the posterior. Assume x ∼ N (µx, Cx) and e ∼ N (µe, Ce)
are mutually independent. Then the posterior is given by

π(x|b) ∝ π(b|x)π(x) (2.23)
∝ πe(b − Ax)πx(x) (2.24)

∝ exp
(

−1
2

‖b − Ax − µe‖2
C−1

e

)
exp

(
−1

2
‖x − µx‖2

C−1
x

)
(2.25)

∝ exp
(

−1
2

‖Le(b − Ax − µe)‖2
2

)
exp

(
−1

2
‖Lx(x − µx)‖2

2

)
(2.26)

In particular if µe = µx = 0 and Ce = σ2I and Cx = α2I we arrive at the negative
log-posterior

− log π(x|b) ∝ 1
2σ2 ‖b − Ax‖2

2 + 1
2α2 ‖x‖2

2, (2.27)

which when defining λ = σ2/α2 and taking the minimum yields the Tikhonov regu-
larised least squares problem

min
x

‖b − Ax‖2
2 + λ‖x‖2

2. (2.28)

2.5 Summary
In this chapter, we gave a brief overview of inverse problems and regularization. We
showed that classical regularization based on 2-norm priors such as Tikhonov regular-
ization can be thought of as as strategy to handle measurement noise in the data. We
considered another prior better suited for CT, namely TV. Finally, we showed the
Bayesian approach to inverse problems and how the likelihood determined according
to the noise model can be used to guide the choice of data-fitting term. Finally,
we showed the Tikhonov regularization is equivalent to the MAP estimate of the
Bayesian model, where the prior and noise terms are both Gaussian.
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CHAPTER3
Computed

Tomography
In this chapter, we give a brief overview of computed tomography (CT). The chapter
begins with defining the classical line integral CT model, which is the model we use in
our numerical experiments. A special focus is put on defining the model with respect
to the view angle parameter, as this is assumed to be known with limited accuracy.
Finally, we show that the CT model can be decomposed according to the view angle
parameter, and how this can be utilized in reconstruction algorithms.
Computed Tomography is an indispensable imaging method for both clinical and
industrial applications. It is the practise of reconstructing an interior image of an
object by combining X-ray projection images from different view angles around the
object. The projection images are obtained by illuminating the object with X-rays
and measuring the X-ray “shadow” cast by the object. The projection images are then
combined to form a single image – in either 2D or 3D depending on the application
– that shows the attenuation of different parts of the object.

3.1 X-ray modelling
As mentioned, we are in CT concerned with reconstructing an image of the internal
structure of an object from projections at different view angles. We use X-ray atten-
uation to model the internal structure of the object, because it varies depending on
the material it passes through thus allowing the distinction of boundary information
on the object. Let f(x) be a function describing the absorption coefficient at location
x. Lambert-Beer’s law states the relation between the initial intensity of the X-ray
I0 and final intensity of the X-ray after having passed through the object f(x) along
a line ℓ and is given by

Iℓ = I0 exp
(

−
∫

ℓ

f(x)dx

)
. (3.1)

The derivation of Lambert-Beer’s law is shown in various places such as [14].
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Equation (3.1) is a severely simplified model for the interaction of X-rays with matter,
since it only considers direct absorption and ignores other effects such as scattering
or beam-hardening. Furthermore, the model assumes that X-rays attenuate the same
in matter for different wavelengths, which is well-known not to be true [14]. Despite
these issues, Lambert-Beer’s law is still widely used in practise. This is in part due to
the fact that in CT, we are interested in reconstructing the attenuation coefficients
f(x) by inverting the model for X-ray attenuation, which very quickly becomes com-
putationally unfeasible if the CT forward model is a complicated physical model.

3.2 Continuous model
This section is based upon previous work of the author in [54] and the definitions and
theorems are directly quoted from there.
From Lambert-Beer’s law, we formulate a mathematical model for CT that can be
used for reconstruction. To simplify the presentation we focus on the 2D case here.
Later in Chapter 7, we discuss the 3D case and give some numerical results.
First, we define the line ℓ(ω, s) parametrized by the unit vector ω ∈ S1, where S1 is
the unit circle and by the singed distance to the origin s ∈ R as

ℓ(ω, s) =
{

ωs + ω⊥t | t ∈ R
}

. (3.2)

It is sometimes useful to parametrize ω by the polar angle θ ∈ R such that ω(θ) =
(cos(θ), sin(θ)) is the unit-vector at angle θ and ω⊥(θ) = ω(θ + π/2) is the perpendic-
ular unit vector at angle θ.
The X-ray attenuation along this line is then modelled by Lambert-Beer’s law

I(ω, s) = I0 exp

(
−
∫

ℓ(ω,s)
f(t)dt

)
. (3.3)

By rearranging terms and taking the negative logarithm we arrive at

p(ℓ(ω, s)) := − log
(

I(ω, s)
I0

)
=
∫

ℓ(ω,s)
f(t)dt =

∫
R

f(ωs + ω⊥t)dt, (3.4)

where p(ℓ(ω, s)) is the so-called projection along the line ℓ(θ, s). This model for X-ray
attenuation is illustrated in Figure 3.1.
For the remainder of the thesis, we use the line integral model in (3.4) unless stated
otherwise. Note that this is simply a choice of convenience as the research carried
out in the thesis can be directly applied to other commonly used CT models in both
2D and 3D. Again we discuss the 3D case in Chapter 7.
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Figure 3.1: Illustration of CT line model in (3.4). This image is a modified version
of an illustration by the author in previous work [54].

3.2.1 Direct inversion formula
Given our model (3.4), it may be prudent to ask if it is possible to obtain a recon-
struction based on the continuous model. In fact, determining a function f from line
integrals (3.4) was considered in 1917 by Johan Radon unrelated to CT. His work was
later published in English in 1986 [51]. Following a more recent notation from [36],
we define the Radon transform as the forward operator that constructs the projection
data for all possible directions given the object f as follows.

Definition 1. The 2D Radon transform Rf : S1 × R → R of a function f ∈ S(R2)
is defined by

(Rf)(ω, s) :=
∫

ℓ(ω,s)

f(x)dx =
∫
R

f(ωs + ω⊥t)dt. (3.5)

Here S(R2) is the Schwartz-space of R2 described in Appendix D.4, Definition 6.

To arrive at the inversion theorem, we first define the back projection operator.

Definition 2. Given a function g ∈ L1(S1 × R), we define the back projection, R∗,
as

(R∗g)(x) =
∫

S1
g(ω, x · ω)dω. (3.6)
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Given the back projector one can show the following inversion theorem.

Theorem 3. For f ∈ S(R2) and the 2D Radon transform, Rf(ω, s), ω ∈ S1, s ∈ R,
we have the inversion formula

f(x) = (R−1Rf)(x) = (R∗ΛsRf)(x) (3.7)

= 1
2

(2π)−3/2
∫

S1

∫ ∞

−∞
FsRf(ω, σ)eîσ〈x,ω〉|σ|dσdω, (3.8)

where î =
√

−1 and Λs = F−1
s |·|Fs is a filtering in Fourier domain giving the inversion

formula its alias Filtered Back Projection (FBP). The theoretical justification of this
inversion formula and the definition of the 1D Fourier transform, Fs, is included in
Appendix D.4

3.3 Discrete model
In practise, one measures the intensities I and I0 using a detector with finitely many
camera elements, and so the data will present as finite dimensional. Further, to
visualize the CT attenuation image, we are going to need a finite set of pixels. For
this reason we are motivated to construct a discrete model for CT.
Suppose we use a discretization of the object x = [x1, x2, . . . , xn] ∈ Rn, where xi

describes the attenuation coefficient for each pixel in an N × N image, with n =
N2. The attenuation along a line is then approximated by summing the attenuation
coefficients xj weighted by the euclidean distance travelled by the X-ray beam through
that pixel. Indexing each measured data point by i, we can define

bi =
n∑

j=1
ai,jxj , (3.9)

where ai,j is the length of the ith beam going through the object and bi is the measured
data from the beam. We can represent the above discrete model in matrix form, which
is the linear equation

b = Ax, (3.10)
that we are already familiar with from Chapter 2. Here the ith row and jth column
of A is ai,j and b = [b1, b2, . . . , bm] ∈ Rm.
The CT matrix A is sparse. This is easily seen from (3.9) as for each ray i most
distances ai,j are zero. This is also clear from the illustration in Figure 3.2 showing a
single X-ray passing through an object with the discretization on top. In Figure 3.3,
we show an example of the non-zero elements of a CT matrix derived from the line
model (3.4). In large-scale CT, even storing only the non-zero elements of this CT
matrix is prohibitive. For this reason the CT matrix is typically not stored in practise
and multiplication with A or AT are carried out matrix-free. We get back to this
point later in Chapter 4.
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Figure 3.2: Illustration of discrete CT model. This image is an illustration by the
author in previous work [54].

Figure 3.3: Zoom of a small part (10N × 10p) of the non-zero elements of a CT ma-
trix of generated from the line model (3.4). There are about 0.18% non-
zero elements in the matrix. Even so storing all the non-zero elements
for the full n × m matrix is not feasible for large-scale CT problems.
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3.3.1 View angle parametrization
Because we are interested in the case where the view angle parameter is known
with limited accuracy, it becomes useful to explicitly define the CT forward model
parametrized by the view angles. To achieve this, we define the vector bi ∈ Rp

representing the ith projection at view angle θi for i = 1, . . . , q.
That is, the measured data is assumed to come from the CT forward model

(bi)l = A(θi)lx ≈
∫
R

f(ω(θi)sl + ω(θi)⊥t)dt (3.11)

where A(θi) ∈ Rp×n is the CT forward matrix for only the view angle θi and A(θi)l ∈
R1×n is the lth row vector of this matrix. Similar to earlier, the elements of the CT
matrix is given by the euclidean distance travelled through each pixel. In the integral
sl is the signed distance of the lth detector element.
A single projection at view angle θi is thus defined as

bi = A(θi) x, (3.12)

and the entire CT data set b is given by

b = A(θ) x. (3.13)

Hence, the full CT forward matrix is decomposed into q projection matrices

A(θ) =


A(θ1)
A(θ2)

...
A(θq)

 , (3.14)

where each projection matrix consists of the row vectors defined in (3.11), i.e.

A(θi) =


A(θi)1
A(θi)2

...
A(θi)p

 . (3.15)

3.4 Reconstruction methods
We now aim to obtain a CT image reconstruction given the measured data b and the
CT forward model. First thing to note is that the measured data b is affected by
measurement noise. For low-dose CT the measurement noise is best approximated
by a Poisson distribution, due to the counting nature of the detector. However, for
larger dose CT the noise is well approximated by additive Gaussian noise and is often
used in practise [14].
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3.4.1 Filtered back projection
Based on Theorem 9, we can derive the so-called filtered back projection (FBP) re-
construction. In the discrete setting, the back projector R∗ is approximated by the
transpose of the forward matrix, i.e. AT yielding the reconstruction formula

x = 1
2

(2π)−3/2AT ΛΓb (3.16)

where ΛΓ is a filter in Fourier domain, i.e. ΛΓ = F−1Γ(·)F , where F is the Fourier
transform defined earlier and Γ(·) = | · |. This provides an interesting perspective on
the effect of the measurement noise. If there is high frequency noise on the measured
data, then the filtering will amplify that noise and possibly destroy the reconstruction.
This is a well known phenomenon and for this reason a low-pass filter for Γ(·) is often
used in practise. We again refer to [14] for more details.
The FBP reconstruction works well when the CT data is complete, i.e. when the
object is densely illuminated from all scanning angles by X-rays. However, when
the data is limited e.g. from sparse angular sampling, the FBP reconstruction does
not perform well. This is illustrated in Figure 3.4, where the reconstructions are
from obtained from data with angular sampling is every 4◦ (see Appendix D.1 for
details on the simulations). It is clear that certain line artefacts appear in the FBP
reconstruction compared to the ground truth, which is also shown in the figure. This
phenomenon can be explained by microlocal analysis and we refer to [36, 54] for more
details. Note here there is no uncertainty in the view angle parameter because the
reconstructions are obtained with the true view angles.

3.4.2 Variational reconstruction based on total variation
Since the CT model fits directly into the linear inverse problem from Chapter 2,
we can use the TV-based variational method defined in Section 2.3.2 as well as the
non-negativity prior from Section 2.3.3 to define a reconstruction method. The data-
fitting term is chosen as a 2-norm due to the Gaussian measurement noise, defined as
e ∼ N (0, σ2I). The variational TV-based CT reconstruction can thus be written as

xL2-TV = arg min
x

1
2σ2 ‖b − Ax‖2

2 + λTV(x) + g+(x). (3.17)

Using the view angle parametrization we can also write the above optimization prob-
lem with q data fitting terms (one for each projection) as

xL2-TV = arg min
x

1
2σ2

q∑
i=1

‖bi − A(θi)x‖2
2 + λTV(x) + g+(x). (3.18)

This formulation lends itself well to be solved using the recently proposed SPDHG
algorithm [18, 21] already eluded to in Chapter 2. Again, we give a few details on
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how we utilize this algorithm in Appendix D.2 and otherwise refer to Paper A and
B.
The L2-TV reconstruction obtained for a specific regularization parameter is also
shown in Figure 3.4. Indeed the TV-based reconstruction performs better than FBP
for this test case and the line artefacts are removed. It is a well-known but interesting
phenomenon that the TV prior can suppress the line artefacts in the reconstruction.

3.5 Reconstructions with uncertain view angles
In this section, we give a prelude to the issue with only knowing the view angle
parameter with limited accuracy. Indeed, assume that we obtain reconstructions
using the so-called nominal view angles (equidistant around the object), instead of
the true view angles – again see Appendix D.1 for details on the simulation.
In the bottom row of Figure 3.4, we see the reconstructions for the FBP and L2-TV
reconstruction methods based on the nominal view angles. The FBP reconstruction
looks more “fuzzy” compared to the one from true view angles, indicating the un-
certainty in the nominal view angles impacts the quality of the CT reconstruction.
Interestingly, the L2-TV reconstruction is no longer able to suppress the line arte-
facts from the sparse angular sampling. In this case, the regularization parameter
was chosen as the one with the lowest relative error ‖x − x̄‖2/‖x̄‖2, where x is the
reconstruction. In Chapters 5 and 6 we return to this issue.

Remark. We note that it is still possible to suppress the line artefacts in the L2-TV
reconstruction by significantly increasing the regularization parameter at the cost of
significant loss of image detail.

3.6 Summary
In this chapter, we provided a brief overview of CT focused on the case where the
CT forward model was explicitly parametrized by the view angles. We provided two
methods of obtaining reconstructions from CT data, one based on the continuous
formulation on CT and one based on a variational formulation. We showed that both
existing methods for CT reconstruction perform poorly if the view angle parameter
is uncertain.
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Ground truth

FBP (true angles) L2-TV (true angles)

FBP (nominal angles) L2-TV (nominal angles)

Figure 3.4: CT reconstructions for the simulated test case in Appendix D.1.
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CHAPTER4
Handling model errors

in inverse problems
In this chapter, we survey some of the existing methods for handling model errors in
inverse problems as they pertain to the work carried out in this thesis. We split the
presentation into two parts. The first part is concerned with deterministic methods
that characterize the model error by a norm-bounded perturbation of the forward
model. The second part is concerned with a Bayesian method, where the effect of
the model error is characterized by a model discrepancy term on the data side. The
chapter contains an outlook and discussion on which methods are best suited for the
CT application.
In Chapters 2 and 3, it was assumed that the forward model in the inverse problem was
exact. However, all models are wrong. This is particularly true in inverse problems,
where there is a tendency to use precise mathematical models that can be analysed
and inverted in the continuous domain – such as the Radon transform (Definition 1,
Chapter 3) in the case of CT.
Using a mathematical model to describe a complex physical phenomena presents a
discrepancy between the predicted value of the model and the measured data, that
can not only be accounted for by measurement noise. When handling such model
errors, the goal is not to make the existing mathematical model more accurate by
including more complex interactions, but rather to acknowledge that the model error
exists and find a way to take it into account when solving the inverse problem.
In this thesis, it will prove useful to characterize the model error by its influence on
the residual – i.e. the difference between the measurement data and the predicted
forward model. Suppose we have a linear model A as in (2.1), relating the measured
data b with an parametrization x of the object such that

b ≈ Ax, (4.1)

where the symbol ≈ is simply used to state that the model is wrong, but approximates
the process that generated the data. We can then define the (noisy) residual as

ν := b − Ax. (4.2)
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We assume that the data is corrupted by additive measurement noise, such that a
part of the residual comes from said noise. For this reason, we split the residual into
two parts

ν = η + e, (4.3)
where e is the measurement noise which is independent of the system and η contains
the model errors influence on the residual, which we call the model discrepancy term.
This way of characterizing model errors have been considered before, of which [32] is
the earliest work we are aware of. The approach was also later adapted for Bayesian
inverse problems in [31] and applied on a number of practical applications [2, 11, 31,
33, 46, 47, 50, 62].
The model discrepancy η may arise from a number of different reasons. Using similar
terminology as in [32], we distinguish between the following three.

• Model inadequacy. Since the mathematical model only models a part of the
physical system that generated the data, it is possible – even for data with no
measurement noise – that the predicted value of the model will not equal the
true value of the physical process for any input. A simple example of this is a
finite-dimensional linear model describing a non-linear process.

• Parameter uncertainty. The mathematical models do not only depend on
the solution to the inverse problem. They also depend on some parameters that
may be directly or indirectly related to a physical parameter. In practise, these
may only be known with a limited accuracy, but are often assumed to be known
exactly, which introduces a model error from said parameter uncertainty.

• Code error. Finally, when implementing the forward model on a computer,
the implemented code may differ depending on the implementation. We call this
code error. This could for example be discretization error, but certain choices
may also be taken in the implementation that make it such that the code output
would not converge to the output of the model even for fine discretization.

Example 3. Consider the CT case, where the forward model approximates the inter-
action of X-rays with matter by a line integral model (3.4) parametrized by an angle
and distance parameter. First, in practise the angle and distance parameters may
only be known with a limited accuracy. This introduces a parameter uncertainty in
the model. Second, the line integral model ignores physical effects such as scattering,
refraction etc. in CT, which introduces a model inadequacy. Finally, the implemen-
tation of the line integral model may introduce code error, if certain steps are taken
to optimize the code for speed e.g. on the GPU.

Remark. This is not an exhaustive list for all possible model errors that may occur,
but all are relevant to the work carried out in this thesis and other work related
to the PhD project. Other reasons worthy of mention are residual and parametric
variability, which we do not consider here, but refer to the discussion in [32] for the
interested reader.
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Another way to think of model errors is as perturbations of the forward model. This
characterization is more limited, because it assumes the true process is also linear.
However, it provides a way to characterize the effect that existing regularization
techniques have on these types of model errors in inverse problems. As regularization
techniques are one of the main tools to solve inverse problems, we go into detail on
this topic in the following section.

4.1 Norm-bounded linear model error
In this section, we investigate a class of model errors that can be defined by a norm-
bounded linear perturbation of the true process. We also still assume that the data
is perturbed by a noise term e. That is, suppose that for the linear inverse problem
(2.1) both the model and data are affected by linear perturbations such that

A = Ā + E, b = b̄ + e, (4.4)

where we call E the linear model error and e the measurement error and assume that
both are norm-bounded. Here, we assume that Ā is the exact model such that the
exact data comes from b̄ = Āx̄ where x̄ is the so-called ground truth – or exact
solution to the inverse problem.
Equation (4.4) can be considered as a special case of the model error characterization
introduced in the beginning of this chapter. To see this relation, note that we can
express the inverse problem as

b = Āx + e (4.5)
= Ax + (Ā − A)x + e (4.6)
= Ax + η + e, (4.7)

where the exact solution that satisfies the relation is again the ground truth x̄. The
linear model error can thus be expressed on the data side by a model discrepancy
η = −Ex, with the assumption that both the exact and approximate forward model
are linear. The negative sign is simply because of the choice of defining the model
error E as a perturbation of the exact forward model, rather than as a perturbation
of the model. In fact, to ease notation and follow existing literature, we are going to
also define

Ā = A + ∆, b̄ = b + δ, (4.8)
such that ∆ = −E and δ = −e. This will become relevant in Section 4.1.2.
This type of linear model error in (4.4) is well-researched in the literature concerned
with perturbation theory [27, 29, 60], total least squares [23–25, 43] and robust op-
timization [6, 8, 66]. The main goal of perpetuation theory is to provide bounds on
the solutions to linear systems given perturbations in the matrix or data vector – i.e.
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the forward model and measured data. For our application this provides meaningful
insight into how model errors of the type in (4.4) can influence reconstructions.

4.1.1 Perturbation bounds for closed-form solutions
Similar to the perturbation bounds in Theorems 1 and 2 in Chapter 2, it is possible to
characterize the influence of the linear model error in (4.4) by bounding the relative
difference between the solutions obtained with and without the said errors for certain
closed-form solutions.
We start by repeating the classical result, which shows the effect that the model error
has on the naive solution to the inverse problem.

Theorem 4 ([29]). Consider the linear system (2.1) with perturbations defined in
(4.4) and let Ā be square and non-singular and assume that ‖E‖2 < σmin. Then for
the naive solution x∗ = A−1b and the exact solution x̄ = Ā−1b̄ the following bound
holds

‖x∗ − x̄‖2

‖x̄‖2
≤ κ(Ā)

1 − γ

(
‖e‖2

‖b̄‖2
+ ‖E‖2

‖Ā‖2

)
, (4.9)

where γ = ‖E‖2/σmin and σmin is the smallest singular value of Ā.

The requirement that ‖E‖2 < σmin may seem restrictive, but is necessary to ensure
that A is invertible. The theorem shows that small errors in the model can cause
large changes in the reconstructed solution, when the condition number of the forward
matrix is large. This shows that even if the measurement noise is negligible some type
of regularization may be needed to handle the influence of modelling errors in inverse
problems with real data.
In Section 2.3, we presented a regularization strategy that was based on solving an
optimization problem with a data-fitting and regularization term and saw that in
the case both terms are squared 2-norms (Tikhonov regularization) this alleviated
the issue of stability with respect to perturbations in the data. We now show the
extended result given the perturbations in the model as well.

Theorem 5 (Hansen, 1989 [27]). Consider the linear system (2.1) with perturbations
defined in (4.4) and assume that ‖E‖2 < λ for some fixed λ > 0. Then for the
Tikhonov solution x∗

λ from (2.6) and the Tikhonov solution on the noise free data
x̄∗

λ = (ĀT Ā + λI)−1ĀT b̄ with the same λ we have the following bound

‖x∗
λ − x̄∗

λ‖2

‖x̄∗
λ‖2

≤ κλ(Ā)
1 − γλ

(
‖e‖2

‖b̄λ‖2
+ 2 ‖E‖2

‖Ā‖2
+ γλ

‖b̄ − b̄λ‖2

‖b̄λ‖2

)
, (4.10)

where b̄λ = Āxλ, κλ(Ā) = ‖Ā‖2/λ and γλ = ‖E‖2/λ.

These bounds illustrate that (Tikhonov) regularization can be thought of as a strategy
to handle linear model and data errors in inverse problems. This is because the
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influence of the model error in the Tikhonov solution is reduced by increasing the
regularization parameter to decrease the common factor in front of the perturbation
terms. The cost of reducing the influence of the model error is in the regularization
error as already argued in Chapter 2.
However, these perturbation bounds are generally only shown for regularized solutions
that have closed-form expressions, due to how the proof is constructed. For this reason
there are many regularization techniques that can not be considered using the above
mentioned technique. To investigate this further, we turn to a different approach and
see that this can be related to a larger class of regularization methods.

4.1.2 A different perspective on regularization
While regularization is commonly introduced to enforce the problem to be well-posed,
the regularization term can also be viewed from a different light, namely as a type of
robust optimization – see [6] for an overview. To see this consider the linear inverse
problem (2.1) with perturbations (4.8) such that

b + δ = (A + ∆) x. (4.11)

The goal in robust optimization is to optimize for the worst-case perturbation in
the linear forward operator A ∈ Rm×n, given that we know some bound for the
perturbation ∆. This is achieved by solving the robust-regression problem [8], which
is given by

min
x∈Rn

max
∆∈U

g(b − (A + ∆) x), (4.12)

with uncertainty set U = {∆ ∈ Rm×n : ‖∆‖ ≤ λ} and where g is a semi-norm. Here
‖∆‖ is the induced matrix norm defined in Appendix D.3.
In a sense the robust regression problem can be seen as solving the inverse problem
with the worst-case model error bounded by λ. What is particularly interesting is the
equivalence between this worst-case regression problem and variational regularization.
A recent theorem summarizes this for a large number of data-fitting and regularization
terms.

Theorem 6 (Bertsimas & Copenhaver, 2018 [8]). If g : Rm → R is a semi-norm
which is not identically zero and h : Rn → R is a norm, then for any z ∈ Rm and
x ∈ Rn

max
∆∈U(h,g)

g(z + ∆x) = g(z) + λh(x), (4.13)

where U(h,g) =
{

∆ ∈ Rm×n : ‖∆‖(h,g) ≤ λ
}

.

As a consequence of this theorem, we find a connection between the worst-case robust
formulation in (4.12) and variational regularization (2.8) in the case that the data-fit
is a semi-norm and the regularization term is a norm.
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Corollary 1 (Bertsimas & Copenhaver, 2018 [8]). For all b − Ax ∈ Rm, we have

max
∆∈U(h,g)

g(b − Ax + ∆x) = g(b − Ax) + λh(x), (4.14)

and so
min
x∈Rn

max
∆∈U(h,g)

g(b − (A + ∆)x) = min
x∈Rn

g(b − Ax) + λh(x), (4.15)

where U(h,g) =
{

∆ ∈ Rm×n : ‖∆‖(h,g) ≤ λ
}

.

The corollary shows that the objective functions of robust regression and variational
regularization are equivalent when the terms are (semi-) norms.
The above result indicates that if one aims to devise new methods to handle model
errors that perform better than standard regularization techniques, one must incorpo-
rate something more informative than worst-case perturbations of the forward model.

Remark. This formulation does not capture all variational regularization schemes,
as the regularization term is requred to be a norm. Hence, the TV regularization term
(2.9) is not included in this formulation. In fact, one can show that for specific semi-
norms the equality does not hold [8]. We are at this time unaware of any research
extending these results to TV. These results also lead to an interesting interpretation
of the regularization parameter that could be explored further, but we do not explore
these topics further.

A special case of Corollary 1 is if p, q ∈ [1, ∞] then

min
x∈Rn

max
∆∈Uq,p

‖b − (A + ∆)x‖p = min
x∈Rn

‖b − Ax‖p + λ‖x‖q, (4.16)

where Uq,p = {∆ ∈ Rm×n : ‖∆‖q,p ≤ λ}. In particular for p = q = 2, we recover
non-squared Tikhonov regularization (2.5). Strictly speaking, we recover similar for-
mulations to Tikhonov regularization, since we are working on the non-squared norms.
As argued in [66] there exists a choice of λ such that we reach the same solution. To
see this, consider h = g = ℓ2

2 such that the corollary yields

min
x∈Rn

max
∆∈U2

(2,2)

‖b − (A + ∆)x‖2
2 = min

x∈Rn
‖b − Ax‖2

2 + λ‖x‖2
2, (4.17)

where U2
(2,2) =

{
∆ ∈ Rm×n : ‖∆‖2

2 ≤ λ
}

and ‖∆‖2
2 is the square of the largest singular

value of ∆.

4.1.3 Extending to errors on the data
The previous presentation seems to have ignored the perturbation δ of the data. In
this section, we extend the presentation by explicitly considering this perturbation.
It may be that these results are obvious to those working in robust optimization, but
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we are at this time unaware of any literature going into detail on this, so we present
our derivations here.
In [8], it is briefly mentioned that if we have some uncertainty set for the noise δ ∈ V,
with V = {δ ∈ Rm : ‖δ‖ ≤ β}, then we may be tempted to consider

min
x∈Rn

max
e∈V
∆∈U

g(b + δ − (A + ∆) x), (4.18)

but may in fact work with a new loss function ḡ instead, defined as

ḡ(z) := max
δ∈V

g(z + δ). (4.19)

In this way, the problem can be reformulated in the form

min
x

max
∆∈U

ḡ(b − (A + ∆) x), (4.20)

for which the above theory can be applied directly.
In the following, we construct a proof to show this is actually the case. This can be
seen from results below.

Theorem 7. If g : Rm → R is a semi-norm which is not identically zero then for
any z ∈ Rm,

max
δ∈Vg

g(z + δ) = g(z) + β, (4.21)

where Vg := {δ ∈ Rm : g(δ) ≤ β}.

Proof. First note by the triangle inequality that for δ ∈ Vg, we have

g(z + δ) ≤ g(z) + g(δ) ≤ g(z) + β. (4.22)

We then show that there exists δ̂ ∈ Vg such that g(z + δ̂) = g(z) + β, since then
maxδ∈Vg

g(z + δ) = g(z) + β.

i) Assume first that g(z) 6= 0. Define δ̂ := β/g(z)z, and note that g(δ̂) = g(β/g(z)z) =
β, so δ̂ ∈ Vg. Then

g(z + δ̂) = g(z + β/g(z)z) = (1 + β/g(z))g(z) = g(z) + β, (4.23)

ii) Assume instead that g(z) = 0. Let y ∈ Rm such that g(y) = 1. Define δ̂ := βy.
Then by the triangle inequality

g(z + δ̂) ≤ g(z) + g(δ̂) = g(z) + βg(y) = g(z) + β, (4.24)

and by the reverse triangle inequality

g(z + δ̂) ≥ g(δ̂) − g(z) = g(δ̂) = β = g(z) + β. (4.25)

Hence, g(z + δ̂) = g(z) + β and since g(δ̂) = β, δ̂ ∈ Vg and so we have shown the
theorem.
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The theorem leads to the following result.

Corollary 2. For all b − (A + ∆) x ∈ Rm we have

max
δ∈Vg

g(b + δ − (A + ∆) x) = g(b − (A + ∆) x) + β, (4.26)

hence

min
x∈Rn

max
δ∈Vg

g(b + δ − (A + ∆) x) = min
x∈Rn

g(b − (A + ∆) x) + β. (4.27)

This provides a way to directly characterize Tikhonov regularization as a robust
optimization problem by substituting the following.

g(·) := ‖ · ‖2
2, h(·) := ‖ · ‖2

2, (4.28)
ḡ(·) := max

δ∈V2
‖ · +δ‖2

2, V2 := {δ ∈ Rm : ‖δ‖2
2 ≤ β}, (4.29)

U2
(2,2) := {∆ ∈ Rm×n : ‖∆‖2

2 ≤ λ}. (4.30)

Then by Corollary 1 and 2 we have that

min
x∈Rn

max
δ∈Vp

∆∈U2
(2,2)

‖b + δ − (A + ∆) x‖2
2 = min

x∈Rn
‖b − Ax‖2

2 + λ‖x‖2
2 + β, (4.31)

and since the Tikhonov problem is strictly convex we have

arg min
x∈Rn

max
δ∈V2

∆∈U2
(2,2)

‖b + δ − (A + ∆) x‖2
2 = arg min

x∈Rn
‖b − Ax‖2

2 + λ‖x‖2
2. (4.32)

That is, Tikhonov regularization can be seen as a type of worse-case regression, where
the perturbations of A and b are norm-bounded and the regularization parameter
can be related to this bound.

4.2 The difficulty with characterizing model errors
deterministically

In this section, we provide a perspective on some of the difficulties with deterministic
model errors, we have found during this PhD project and give the reason why the
majority of our work ended up using a statistical (Bayesian) approach instead.
The deterministic approach to handle model errors that is considered in this chapter,
provides an easy way to characterize and handle the model error by a norm-bound.
However, as we have also seen, this approach is equivalent to standard regularization
in many cases, which is not satisfactory if one aims to improve upon reconstruction
quality of existing methods.
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In some of the early work of this PhD project, we considered the model error intro-
duced by an unmatched transpose in CT [20] (Paper F), which can be viewed as a
type of code error. This was an interesting direction from a theoretical perspective,
but from a practical perspective it essentially also boiled down to adding a small
amount of regularization to “fix” the issue that arose from the unmatched transpose.
The approach did not significantly improve reconstruction quality in practise, because
existing approaches already use regularization in some form. Because of this, we are
motivated to pursue methods that add more structural prior information of the model
error to determine if it is possible to improve the reconstruction result compared to
existing regularization techniques.
To add structural priors on the model error in a deterministic setting raises many
challenges. Despite this there are some recent research that considers this case such
as structural TLS [30] as well as some of the methods in robust optimization [6].
Of particular interest is also the recent series of papers in [12, 13, 34, 35]. Here
the authors characterize model errors by a partial order relation, which is essentially
equivalent to providing upper and lower bounds on each element of the model matrix
in our case. The work in [12] even discusses the case arising from uncertain model
parameters. This approach shows great promise and has well-developed theory, but
it comes with a huge practical challenge in the case of CT for two reasons. First,
it is in most cases not feasible to store upper and lower bounds for each element
of a forward matrix in large-scale CT, even if the CT matrix is sparse as argued in
Chapter 3. Second, in the case that the view angles are uncertain, these upper and
lower bounds may be so large that they are meaningless to consider. For example,
we found that one could only bound the length of an X-ray through a pixel by zero
and the maximum length through that pixel for most pixels in our CT simulations,
due to the relatively large uncertainty in the view angle parameter.
For these reasons, we are motivated to take a different perspective on model errors
that instead describe the statistical characteristics of the model error rather than a
deterministic approach.

4.3 A Bayesian approach to model errors

In this section, we summarize a Bayesian approach for characterizing model errors us-
ing the model discrepancy formulation eluded to at the beginning of this chapter. We
are going to distinguish between the model error introduced by approximating a true
physical process P and two mathematical models, which we denote the parametrized
model A(θ) and the fixed model Aθ̂. The physical process P takes the true represen-
tation of the object, denoted X as input, while the mathematical models take a vector
x as input. The goal is now to characterize the model error introduced by using these
models. As earlier in the chapter, we split this into three scenarios as follows.
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4.3.1 Model inadequacy
First, we consider the model error caused by the model inadequacy compared to the
true physical process. To study this, two modelling choices need to be taken. First, a
representation for the physical unknown object X is needed. In general, it is common
to start with a continuous model, where the object is represented by an element
in some abstract space and later discretize the representation arriving at the vector
representation x ∈ Rn. These choices are heavily dependent on the application, so we
simply assume that a parametrization x of X have been selected e.g. as in Chapter 3
for CT. Second, the physical system P needs to be represented by a mathematical
model. This will generally be a model that depend on some parameters, which we
represent by the vector θ ∈ Rq. We consider the matrix A(θ) ∈ Rm×m, which
represent the discretized linear forward model given a set of model parameters θ.
With these two modelling choices the mathematical model of the inverse problem
approximates the physical relation, i.e.

P(X ) ≈ A(θ) x. (4.33)

Further, the measured data is assumed to come from the physical model with some
added independent measurement noise, i.e.,

b = P(X ) + e. (4.34)

Remark. To even consider (4.34) may seem uninformative, because for practical pur-
poses we can not know P nor X . However, we can select a model and parametrization
that approximate (4.34) and approximate the modelling error introduced by these
choices as indicated below.

In the spirit of [32], we characterize this model error introduced by model inadequacy
using the reformulation

b = P(X ) + e, (4.35)
= A(θ) x + (P(X ) − A(θ) x) + e, (4.36)
= A(θ) x + η + e, (4.37)

and we call η the model discrepancy term – introduced by model inadequacy in this
case.
To our knowledge this is the first type of model discrepancy considered, in particular
by the authors in [32]. Here η was modelled as a Gaussian Process with a known
mean and covariance function based on an assumed prior. In some of our earlier
work in the PhD project, we collaborated on a number of projects that utilize this
approach in sound field reconstruction [15, 16] (Papers D and E). We do not go into
further detail in this thesis.
For large-scale inverse problems Gaussian Processes may be prohibitive due to the
high dimensionality. For the purpose of this thesis and the CT test case, we ignore
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the influence of model errors introduced by model inadequacy and refer to the above-
mentioned papers for the interested reader.

4.3.2 Parameter uncertainty
In inverse problems, it is often the case that the forward model is “fixed” in the
sense that physical parameters are assumed to be known exactly, as we have already
seen with the CT test case in Chapter 3. This essentially means that we select some
parameters θ̂ from a larger set of possible parameters, e.g. a point estimate of a
probability distribution θ ∼ πθ(·) such that

A(θ) x ≈ Aθ̂ x. (4.38)

This can be reflected in the model discrepancy formulation by writing

b = Aθ̂ x + η + e, (4.39)

where η = A(θ) x−Aθ̂ x. We go into further detail on this formulation in Chapters 5
and 6 as this is the key formulation of the models in our research.

Remark. In the above presentation it is assumed that the data comes from the
forward model A(θ) x with some added measurement noise, which means the model
inadequacy is effectively ignored as stated earlier. We leave it to future work to also
consider the model inadequacy combined with this model.

4.3.3 Code error
The final type of model error we describe in this way is code error. In the following,
we assume that this comes from a type of discretization error, i.e.,

Ax ≈ Ahxh, (4.40)

where Ah ∈ Rm×h and x ∈ Rh is the forward model with a courser discretization
compared to A ∈ Rm×n and x ∈ Rn with h < n. Similar to above, we can write the
model discrepancy introduced by this discretization error as

b = Ahxh + η + e, (4.41)

where η = Ax − Ahxh and again any other model errors are ignored in the formula-
tion.

Remark. The majority of the work concerned with the approximation error approach
[31] considers similar formulations to this type of discretization-based code error. In
this thesis, we do not explore this topic further.
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4.4 Taking model error into account using
approximate marginalization

In this section, we describe how to take the model error into account using the model
discrepancy formulation above and approximate marginalization. We illustrate this
with the parameter uncertainty case, as this is the one relevant to our CT test case,
but the approach works for all three cases.

4.4.1 Model and likelihood
We consider the model where the parameter uncertainty is moved to a model discrep-
ancy term (4.39) and aim to derive a likelihood according to this model. We derive
the likelihood by defining the combined model discrepancy and measurement noise
term ν = η + e such that (4.39) becomes

b = Aθ̂ x + η + e = Aθ̂ x + ν, (4.42)
where we assume probability distributions for the variables θ ∼ πθ(·), e ∼ πe(·) and
x ∼ πx(·). Similar to Section 2.4 the likelihood is then derived by marginalizing out
ν to arrive at

π(b|x) ∝ πν|x(b − Aθ̂ x|x), (4.43)
where importantly ν is not independent of x.
This likelihood takes the model error and noise error into account because of the
marginalized variable ν. The issue is that this term can be complicated to determine
in practise.

4.4.2 Gaussian approximation
As in [31, 46] a Gaussian approximation is used for the combined term, i.e.

ν|x ∼ N (µν|x, Cν|x), (4.44)
leading to a closed-form expression of the likelihood

π(b|x) ∝ exp
(

−1
2

‖b − Aθ̂x − µν|x‖2
C−1

ν|x

)
, (4.45)

∝ exp
(

−1
2

‖Lν|x(b − Aθ̂x − µν|x)‖2
2

)
, (4.46)

where Lν|x is the Cholesky factor of the inverse covariance C−1
ν|x = LT

ν|xLν|x.
This approximate likelihood with the marginalized model discrepancy and noise term
ν, can then be used when solving the inverse problem either by sampling-based meth-
ods or as a data-fitting term in a variational formulation. The main challenge to
achieving this is to determine the mean µν|x and covariance Cν|x of the combined
term ν. This can be achieved by sampling from the prior distributions.
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4.4.3 Sampling the model discrepancy
We can generate S samples of model discrepancy by

ηs = A(θs) xs − Aθ̂ xs, xs ∼ πx(·), θs ∼ πθ(·), (4.47)

and compute the sample mean

µ̃η|x = 1
S

S∑
s=1

ηs (4.48)

and sample covariance

C̃η|x = 1
S − 1

S∑
s=1

(ηs − µ̃η|x)(ηs − µ̃η|x)T . (4.49)

Assuming that the measurement noise is Gaussian, i.e. e ∼ N (µe, Ce), we can define
the sample mean µ̃ν|x = µe + µ̃η|x and sample covariance C̃ν|x = Ce + C̃η|x. This
leads to the approximate likelihood with the sample mean and covariance, i.e.

π(b|x) ∝ exp
(

−1
2

‖L̃ν|x(b − Aθ̂x − µ̃ν|x)‖2
2

)
, (4.50)

where L̃ν|x is the Cholesky factor of the inverse sample covariance C̃−1
ν|x. For more

details see e.g. [31, 46].

Remark. The above approach defines the model discrepancy according to the as-
sumed prior distributions – effectively defining a prior model discrepancy. However,
if one has prior distributions that are not particularly informative, this may not be an
effective strategy and it may be better to determine the model discrepancy based on
the measured data. In Chapter 5, we adapt the above approach to the CT problem
with uncertain view angles, in particular by defining the model discrepancy based on
a reconstructed solution obtained from the measured data.

4.5 Summary
In this chapter, we gave an overview of various techniques to handle model errors
in inverse problems. The first section focused on the case where the model error
was seen as a linear perturbation and was norm-bounded. Here, we described the
equivalence relation between this formulation and a large group of regularization
techniques. Finally, we described a Bayesian approach to handle model errors based
on a model discrepancy formulation and related this approach to three types of model
errors.
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CHAPTER5
Computed

Tomography with view
angle marginalization

Relevant papers:

A) N. A. B. Riis and Y. Dong “A New Iterative Method for CT Reconstruction
with Uncertain View Angles.” In: International Conference on Scale Space and
Variational Methods in Computer Vision. Springer. 2019, pages 156–167. [52]

B) N. A. B. Riis, Y. Dong and P. C. Hansen ”Computed Tomography Reconstruc-
tion with Uncertain View Angles by Iteratively Updated Model Discrepancy.”
In: Journal of Mathematical Imaging and Vision (2020), pages 1–11. [53]

5.1 Motivation and goal
In CT, there is often a hidden assumption that the geometry of the physical set-up
is known exactly, which is never the case in practise. One way to characterize the
uncertainty of the geometry is to consider the parameters of the CT forward model
such as the view angle and distance parameters in (3.4) as being uncertain. As
already mentioned, we are going to focus on the case where the view angle parameter
is uncertain and assume that other geometric parameters have negligible uncertainty.
That is, we formulate the uncertain view angle CT problem as

b = A(θ) x + e, θ ∼ πangles(·), e ∼ πnoise(·), (5.1)

where b ∈ Rm is the measured data corrupted by additive measurement noise e ∈ Rm

and A(θ) ∈ Rm×n is the CT forward model explicitly parametrized by the view
angles θ ∈ Rq as defined in Chapter 3. We describe our lack of knowledge of the
parameters by assigning probability distributions πangles and πnoise for the view angle
and measurement noise respectively. The CT set-up is illustrated in Figure 5.1.
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Uncertainty in the view angles of a CT scan can arise from several sources such
as inexact estimates from a calibration procedure or uncertainty in the mechanical
positioning of the source and detector. For medical imaging these uncertainties may
be small, but from experience this uncertainty can be much larger in custom industrial
inspection such as scanning of oil pipes on the sea-bed [55] for example. Another
interesting source of view angle uncertainty is related to rigid body motion of the
object during the scanning procedure. Here the motion of the object can be viewed
as uncertainty in the scanning geometry, which can lead to larger uncertainty in the
view angles [45]. In some applications such as tomography of viruses using electron
microscopy, the view angles may even be known with such limited accuracy that they
are considered unknown in practise [5]. In this case, procedures for estimating the
angles may not produce accurate results and estimates may only be accurate to within
1◦ [41]. In this case it may be necessary to take the remaining uncertainty of the view
angles into account during the reconstruction to obtain the best results.
In this chapter, the goal is to obtain a candidate CT reconstruction to (5.1), which
takes the uncertainty in the view angles and measurement noise into account during
reconstruction. We therefore do not aim to estimate neither the view angles nor the
measurement noise directly. The distributions of the view angles and measurement
noise are assumed to be known or estimated beforehand.
Because of the above-mentioned goal, our work differs from the majority of existing
research in the literature concerned with uncertain view angles in CT. The reason for
this is that the common approach when the view angles are uncertain or unknown,
is to estimate the view angles along with the CT image either jointly or by first esti-
mating the view angles and later the CT image. To our knowledge there is no work
concerned with taking the view angle uncertainty into account in the CT reconstruc-
tion without direct estimation. Later in Chapter 6, we consider the issue of view
angle estimation and provide related references.

π
θ

1 (·)

πθ2
(·)

b1 =
A

(θ
1 )x

+
e

1

b2 = A(θ2)x + e2

x

Nominal
Actual

Figure 5.1: Illustration of uncertainty in the view angles for the CT set-up.
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5.1.1 CT reconstructions using the nominal view angles

It is commonly the case that the physical uncertainty of the view angles is simply
ignored in the CT reconstruction by selecting a forward model based on the nominal
view angles as already discussed in 3. This introduces a model error when the true
view angles differ from the nominal ones as illustrated in Figure 5.1. However, this
approach is not necessarily unjustified as already argued in Chapter 4, since regular-
ization is shown to limit the influence of model errors in the reconstruction. But in
some cases, the CT images may end up over-regularized, leading to a loss of detail
and it is therefore necessary to take the view angle uncertainty into account in a more
direct approach.
To see the effect of ignoring view angle uncertainty, we repeat the results from Chap-
ter 3 for the uncertain view angle CT problem (5.1) by showing a reconstruction using
the nominal view angles and compare it with a reconstruction using the actual true
view angles that the data was acquired with. More details of the simulated CT set-up
are given in Appendix D.1. First, in Figure 5.2 we see 3 possible simulated data-sets
generated from realizations of uncertain view angles mentioned. To the naked eye
there is very little difference between the 3 data sets, but each data set is generated
from view angles that vary up to 2◦.
Looking at a CT reconstructions in Figure 5.3 obtained using the non-negative total
variation variational formulation shown in (3.17) for the left-most CT data set, we
see that using the nominal view angles severely deteriorates the CT reconstruction
compared to using the true view angles. Here the regularization parameter is chosen
as the one giving the lowest relative error. Since the actual true view angles are
unknown in practise it may therefore be necessary to take the view angle uncertainty
into account to improve the CT reconstruction.

Figure 5.2: Measured data from three different simulations of CT with uncertain
view angles.
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5.2 Contribution
The main contribution in this chapter and of papers A and B may be summarized
as follows. We propose a new model and algorithm for CT reconstruction when the
view angles are uncertain by taking the uncertainty of the view angles into account
in the CT reconstruction. This is achieved by reformulating the uncertain angle CT
problem into one where the forward model is defined by the nominal view angles and
the uncertainty in the view angles is moved to a model discrepancy term, similar to
the Bayesian approximation error approach described in Chapter 4. Given the new
reformulated problem, we derive a new iterative CT reconstruction algorithm, where
the model discrepancy is approximately marginalized in the data-fit. To achieve this
result a number of issues had to be addressed. We list these as follows.

• The model discrepancy term may have a complicated distribution, but is ap-
proximated with a Gaussian, which allows for a closed-form expression of the
data-fit.

• A variational optimization problem is defined using the above-mentioned data-
fit. The the model discrepancy in the data-fit depend on the unknown CT
image. We propose an alternating update scheme to handle this issue.

• In the data-fit, we need to sample and calculate the mean and covariance of the
model discrepancy as well as the Cholesky factorization of the inverse covariance.
This is carried out block-wise for each view angle, which greatly reduces the
computational load of the method.

• The CT image reconstruction is computed using a stochastic primal dual hybrid
gradient algorithm to make use of the fact that our variational optimization
problem can be separated into data-fitting terms for each view angle. This also
greatly reduces the computational work required of our method.

5.3 Method
This section briefly summarizes the CT model and reconstruction algorithm in pa-
pers A and B. The main principle of the methods used in our work is a reformulation
of the uncertain angle CT problem (5.1), where the model error introduced by us-
ing a forward model based on the nominal view angles is characterized by a model
discrepancy term. Similar to Chapter 4, this reformulating is given by

b = Aθ̂x + η + e, η ∼ πdiscrep(·), e ∼ πnoise(·), (5.2)

where η = A(θ) x − Aθ̂x is the model discrepancy term and θ̂ are chosen as the
nominal view angles of the scan.
We assume that the view angles are mutually independent, leading to distributions
θi ∼ πangle(i) for i = 1, . . . , q and that these can be sampled.
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5.3.1 Problem decomposition
A key aspect – which was partly realized in paper A and fully utilized in paper B
– is that the assumed independence of the view angles allows the problem to be
decomposed into q parts – one for each projection – such that the problem can be
written

bi = Aθ̂i
x + ηi + ei, for i = 1, . . . , q, (5.3)

where the model discrepancy ηi ∼ πηi
(·) is mutually independent. In addition to

the view angles being independent, we also assume that the measurement noise is
mutually independent, ei ∼ πei(·).

Remark. In the papers the independence of the model discrepancy was seen from a
different point of view. This presentation generalizes the presentation a little.

5.3.2 Likelihood
Given the decomposition in (5.3), we can define the Bayesian likelihood for the model
as the product of the likelihoods associated with each view angle, i.e.

π(b|x) =
q∏

i=1
π(bi|x). (5.4)

As already shown in Section 4.4 the likelihood can then be determined by defining
the combined model discrepancy and noise term νi = ηi + ei and marginalizing out
this term to arrive at

π(bi|x) = πνi|x(bi − Aθ̂i
x|x). (5.5)

5.3.3 Gaussian approximations
Because each of the terms in (5.5) can have a complicated distribution, we approx-
imate them by Gaussian distributions to arrive at a closed-form expression for the
likelihood.
That is, we assume that νi|x ∼ N (µνi|x, Cνi|x), which leads to the likelihoods

π(bi|x) ∝ exp
(

−1
2

‖Lνi|x(bi − Aθ̂i
x − µνi|x)‖2

2

)
, (5.6)

where Lνi|x is the Cholesky factor of the inverse covariance C−1
νi|x.

For a fixed x, the mean µνi|x and covariance Cνi|x can be estimated by sampling

ηs
i = A(θs

i )x − Aθ̂i
x, θs

i ∼ πangle(i), s = 1, . . . , S, (5.7)



46 5 Computed Tomography with view angle marginalization

and computing the sample mean

µ̃ηi|x = 1
S

S∑
s=1

ηs
i (5.8)

and sample covariance

C̃ηi|x = 1
S − 1

S∑
s=1

(ηs
i − µ̃ηi|x)(ηs

i − µ̃ηi|x)T , (5.9)

followed by adding the measurement noise and covariance, i.e. µ̃νi|x = µei
+ µ̃ηi|x

and covariance C̃νi|x = Cei + C̃ηi|x similar to Section 4.4.

Remark. If the mean and covariance of the measurement noise is not known or is
not Gaussian, one may also approximate e by the sample mean and covariance from
samples of ei ∼ πei

.

Basing the model discrepancy on a fixed x is the key difference between this ap-
proach and previous work. In principle, this x can then be determined from a CT
reconstruction method before sampling the model discrepancy.

5.3.4 Reconstruction problem
As we already saw in Chapter 2, we can use the likelihood to define a data-fitting
term by taking the negative logarithm. We choose to combine this with the total
variation regularization term (Section 2.3.2) and non-negativity to arrive at the CT
reconstruction problem with approximately marginalized view angle uncertainty

xMD-TV = arg min 1
2

q∑
i=1

‖L̃νi|x(bi − Aθ̂i
x − µ̃νi|x)‖2

2 + λTV(x) + g+(x), (5.10)

where L̃νi|x is the Cholesky factor of the inverse sample covariance C̃−1
νi|x.

The optimization problem in (5.10) is efficiently solved using the stochastic primal
dual hybrid gradient (SPDHG) algorithm [18, 21] as described in Appendix D.2.

5.3.5 Reconstruction algorithm
The optimization problem (5.10) raises a number of challenges. The main one is
that the sample mean and covariance depend on the CT image x and vice versa. It
is not feasible to recompute the sample mean and covariance each time the data-
fitting term needs to be evaluated. For this reason, we choose to alternately update
x and (µ̃νi|x, L̃νi|x). This approach is shown in both papers A and B and we briefly
summarize the idea of the algorithm here.
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First, set initial guess x0, and calculate µ̃νi|x0 and L̃νi|x0 from samples (5.7).
The alternating algorithm then repeats the following three steps:

1. Update CT reconstruction xk+1 by solving (5.10) with µ̃νi|xk and L̃νi|xk .

2. Sample S samples of model discrepancy ηi|xk+1 from (5.7).

3. Compute mean µ̃νi|xk+1 and Cholesky factor of inverse covariance L̃νi|xk+1 .

5.4 Results
In this section, we briefly summarize the performance of the proposed model and
algorithm and refer to the papers for more details. In Figure 5.3 we show the CT
reconstruction after 10 iterations (repeating steps 1-3 10 times) of the algorithm (MD-
TV) using S = 100 samples of the model discrepancy and regularization parameter
chosen to give the lowest relative error. We see that the reconstruction quality is im-
proved compared to ignoring the view angle uncertainty and most of the line artefacts
disappear from the reconstruction.
In papers A and B a thorough numerical study was carried out for the method
on a similar test problem to the one described in this thesis. Here, we repeat the
main results from the papers. First, by comparing relative error and regularization
parameter in the top left of Figure 5.4, we see that our method outperforms the
L2-TV method for almost all regularization parameters. This indicates that the
method is robust towards the choice of regularization parameter. In the top right of
Figure 5.4, we also compare the relative error vs epochs – where epochs are defined
as one multiplication with the forward matrix or its transpose. Here the black line
indicates when the model discrepancy is sampled requiring epochs but not improving
reconstruction quality immediately. From our experiments it seems that algorithm is
convergences numerically after 3 iterations. Finally, in the bottom row of Figure 5.4,
we compare the computational load in terms of epochs for the algorithm using either
the PDHG or SPDHG algorithms. We see that by using the SPDHG algorithm, we
can carry out 10 iterations of the algorithm before the PDHG finished the first one,
which is a significant improvement. We refer to Papers A and B for a more thorough
discussion.

5.5 Summary
In this chapter, we summarized papers A and B. We proposed a new model and al-
gorithm for CT reconstruction where the view angles are uncertain. The algorithm
takes view angle uncertainty into account by approximate marginalization and im-
proves existing reconstruction techniques based on the nominal view angles. We note
there is still some room for improvement in reconstruction quality compared to using
the true view angles.
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L2-TV (true angles) L2-TV (nominal angles) MD-TV (nominal angles)

Figure 5.3: We compare reconstructions from the L2-TV method (3.17) for both
the nominal and true view angles with the proposed MD-TV method
(5.10) using the nominal view angles.

Figure 5.4: Figures from Paper B [53] reprinted with permission. ©2019 Springer.
See text for details.
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C) N. A. B. Riis, Y. Dong and P. C. Hansen ”Computed Tomography with
View Angle Estimation using Uncertainty Quantification.” In: Inverse Problems
(2020), submitted.

6.1 Motivation and goal
In Chapter 5, we proposed a new model and algorithm for CT reconstruction given
the view angles of the CT scan were uncertain. In this chapter, we extend on upon
this work by proposing an updated approach, that additionally estimates the view
angles and also quantifies uncertainty of the estimate. This addition is significant,
because it allows for both marginalization and estimation of the view angles, which
in turn further improves image reconstruction quality as we will discover.
Compared to Chapter 5, we explicitly require both the view angles and measurement
noise to follow Gaussian distributions now. Thus, we consider the uncertain view
angle CT problem

b = A(θ) x + e, θ ∼ N (µθ, diag(δ)), e ∼ N (0, σ2I). (6.1)

The Gaussian assumption on the view angles is key to how the view angle estimation
is carried out in this work. We assign the mean µθ ∈ Rq as the nominal view angles of
the scan, which in our experiments are assumed equidistant in the scanning domain.
The uncertainty of the nominal view angles is then reflected by the diagonal covariance
matrix diag(δ) ∈ Rq×q. The measurement noise is assumed to be i.i.d. Gaussian with
zero mean and σ2 variance and independent of θ. Hence, each view angle and the
measurement noise have the assumption of mutual independence.
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6.1.1 Previous work
The CT problem in (6.1) can be handled in many ways. For example, for small
variances δ and σ2 in the view angles and measurement noise respectively, one can
utilize direct inversion methods [44] based on e.g. the inversion theorem in Chapter 3.
These methods perform well with enough measurement data, but will perform poorly
with increasing uncertainty in these parameters even with enough measurement data.
As an alternative to direct methods, variational methods can be robust towards mea-
surement noise and uncertainty in the model by incorporating prior information via
a regularization term, as we showed in Chapter 4. However, Figure 5.3 in Chapter 5
illustrated that this broad approach to handle the model error introduced by the view
angle uncertainty does come at the cost of reduced image detail.
Instead of using classical regularization, we proposed in Chapter 5 to approximately
marginalize the uncertainty of the view angles to improve reconstruction quality fur-
ther. This improves the CT reconstruction, but some artefacts still remain. To further
improve upon this, we therefore propose to additionally estimate the view angles in
this chapter.
Scan parameters such as the view angles we are interested in here, can be estimated
directly by attaching markers to the scanned object. The issue is that these markers
can create artefacts in the reconstruction [59]. An alternative approach is to estimate
the view angles after the scan. This can be carried out before the CT reconstruction
in a pre-processing step such as analytic methods based on specific geometries [5,
19, 22] or certain Bayesian methods [42]. The issue with these methods is that they
suffer from error propagation in the sense that any errors in the view angle estimate
propagates to the CT reconstruction.
Recently many approaches to joint estimation of view angles and CT reconstruction
have been proposed. The most popular approach for joint estimation are the so-called
projection matching (PM) algorithms. These methods try to match the acquired
projection data with projections from the forward model using various schemes [38,
45, 48, 64]. In Paper C, we compare our method with a gradient-based projection
matching approach recently proposed in [38]. The main difficulty with these methods
is that the matching is determined based on a best fit in some metric (typically a
2-norm), which depending on the regularization is a non-convex optimization problem
leading to errors in the view angle estimates as seen in [38] (in that paper the view
angles are called the tomographic angle).

6.1.2 Goal
The goal of this work is to devise a model and reconstruction algorithm which over-
comes the above-mentioned issues. That is, we aim to estimate the view angles with
a higher accuracy than existing methods, while also quantifying any remaining uncer-
tainty of the view angle estimate. In the CT reconstruction where the forward model
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is based on the estimated angles, we can then take this remaining uncertainty into ac-
count using the approach proposed in Chapter 5. This hopefully improves the image
quality compared to existing methods with acceptable computational overhead.

6.2 Contribution
The main contribution of this work is a new model and algorithm for CT reconstruc-
tion with an added view angle estimation component. The method used for view angle
estimation can also straightforwardly be extended to other geometric parameters, but
we leave that for future work. We summarize our contributions as follows.

• We propose a new CT reconstruction model and algorithm with an added view
angle estimation component.

• Our method is able to perform uncertainty quantification of the view angle
estimate and take this uncertainty into account in the CT image reconstruction.

• Our method is fast and computationally efficient both for the angle estimation
and CT image reconstruction.

• Numerical results show improved angle estimates and image reconstruction com-
pared to existing work.

• Finally, we show that the angle estimation is robust towards the choice of reg-
ularization parameter on the TV prior.

6.3 Method
We aim to estimate the view angles according to the model (6.1) and then reconstruct
the CT image using our existing approach (5.10) proposed in Chapter 5 given the
estimated view angles.
To achieve this, we use the same reformulation as earlier by moving uncertainty in
the view angles to the model discrepancy term, i.e.

bi = Aµθi
x + ηi + ei, for i = 1, . . . , q, (6.2)

where the model discrepancy is given by ηi = A(θi)x−Aµθi
x for θi ∼ N (µθi

, δi) and
q is the number of projections.
Similar to Chapter 5 the model discrepancy conditioned on x is assumed to follow a
Gaussian distribution ηi ∼ N (µηi|x, Cηi|x).



52 6 Computed Tomography with view angle estimation

6.3.1 Joint Gaussian distribution
Given the model-discrepancy based formulation in (6.2) with the combined model
discrepancy and measurement noise νi = ηi + ei conditioned on x approximated by
a Gaussian, i.e. νi|x ∼ N (µνi|x, Cνi|x), we find natural connection between x and
θi given the joint Gaussian distribution[

θi

νi|x

]
∼ N

([
µθi

µνi|x

]
,

[
δi cT

νiθi|x
cνiθi|x Cνi|x

])
, (6.3)

where µνi|x = µηi|x ∈ Rp because the mean of e is zero, the cross-covariance with
respect to a single angle θi is cνiθi|x = cηiθi|x ∈ Rp×1 because e is independent of θ
and Cνi|x = Cηi|x + σ2I ∈ Rp×p.

6.3.2 Angle estimation
Given the joint distribution (6.3), we estimate the view angles and associated un-
certainty given x from the conditional mean and covariance of the joint Gaussian
distribution. Given a reconstruction x the combined term can be estimated by
νi = bi − Aµθi

x for each i = 1, . . . , q and the conditional mean is given by

µθi|νi=ν̂i
= µθi + cT

ηiθi|xC−1
νi|x

(
bi − Aµθi

x − µνi|x

)
, (6.4)

and the conditional covariance by
δθi|νi=ν̂i

= δi − cT
ηiθi|xC−1

νi|xcηiθi|x. (6.5)

That is, given a candidate CT image x we can estimate the view angles and associated
uncertainty using the above conditional parameters given the joint distribution.

6.3.3 Sampling the cross-covariance
Similar to Chapter 5, we need to sample the model discrepancy to compute the sample
means and covariances used in the estimates above. That is the sampling of the model
discrepancy is carried out exactly as in (5.7) and computation of the sample mean
and covariance of the model discrepancy as in (5.8) and (5.9) respectively.
The parameter estimate also requires the cross-covariance of θi and ηi. Given x these
are also estimated by sampling as follows.

c̃ηiθi|x = 1
S − 1

S∑
s=1

(ηs
i − µ̃ηi|x)(θs

i − µ̃θi
), (6.6)

with sample mean

µ̃θi
= 1

S

S∑
s=1

θs
i , (6.7)

where θs
i follows the prior distribution and S is the number of samples.
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6.3.4 Relaxing the covariance estimate
A difficulty is that the sampled matrices for the covariance estimate depend on x.
For this reason, if the reconstruction x is poor and far from the ground truth x̄, we
cannot expect the estimates to be perfect. This issue was illustrated and discussed
in paper C, where numerical results showed that the variance estimate was overly
optimistic. We reprint the illustration in Figure 6.1.
To handle this issue, we add a relaxation parameter α ∈ [0, 1] to the covariance update
such that the estimate of the variance becomes

δθi|νi=ν̂i
= δi − αc̃T

ηiθi|xC̃−1
νi|xc̃ηiθi|x, (6.8)

such that if α = 0 the variance is not updated and if α = 1 the covariance is fully up-
dated. In our implementation we use α = 0.5 to conservatively update the covariance
estimate.

6.3.5 Algorithm
Because the angle estimation using the conditional mean (6.4) and covariance (6.5)
depends on the CT image and vice versa, we propose to alternately update the es-
timates. The proposed algorithm, denoted CT-VAE, is detailed in Paper C and we
briefly summarize it here. The algorithm can be summarized by repeating the follow-
ing two steps (note the updates are done for all i = 1, . . . , q).

1. View angle estimation step
Sample SVA samples ηs

i = A(θs
i )xk − Aθk

i
xk, θs

i ∼ N (θk
i , δk

i ).
Compute sample mean µ̃νi|xk , covariance C̃νi|xk and cross-covariance c̃ηiθi|xk

from (5.8), (5.9) and (6.6) respectively.
Update angle estimate θk+1

i and variance δk+1
i according to (6.4) and (6.8).

2. Image reconstruction step
Sample SCT samples ηs

i = A(θs
i )xk − Aθk+1

i
xk, θs

i ∼ N (θk+1
i , δk+1

i ).
Compute mean µ̃νi|xk+1 and Cholesky factor of inverse covariance L̃νi|xk+1 from
(5.8) and (5.9) respectively.
Update reconstruction xk+1 by solving (5.10) with µ̃νi|xk , L̃νi|xk , θ̂i := θk+1

i .

The algorithm alternately updates the estimate of the view angles (including uncer-
tainty estimates) and the CT reconstruction. For each step the model discrepancy is
sampled to either 1) update the covariance matrices used in the view angle estimate
or 2) update the data-fit in the CT reconstruction. Again, for more details see Paper
C.
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6.4 Results
In this section, we show simulated numerical experiments to demonstrate the perfor-
mance of our proposed method. The details of the simulations are in Appendix D.1.
In Figure 6.2 we compare the CT reconstruction obtained using our proposed algo-
rithm (CT-VAE) after 10 iterations compared with the method in Chapter 5 (MD-TV)
after 10 iterations both using 100 samples for the model discrepancy. We also com-
pare with the method in (3.17) (L2-TV) given the nominal and true view angles. The
reconstruction quality of CT-VAE is similar to the best-case scenario which is the L2-
TV method using the true view angles. This means that the view angle uncertainty
is completely handled by the combined view angle estimation and marginalization –
at least in this simulated case.
In Paper C, we conducted a thorough numerical study of the CT-VAE method includ-
ing the influence of various parameter choices. In Figures 6.3 and 6.4 we repeat the
main results of the study. Note that L2-TV-opt is the L2-TV reconstruction given
the true view angles.
First, by comparing relative error with regularization parameter we see in Figure 6.3
that for most choices of regularization parameter the proposed method provides re-
constructions with similar relative error compared to using the true view angles. This
indicates that the method is robust toward the choice of regularization parameter and
completely handles the view angle uncertainty for all these choices.
We show the angle estimates of the algorithm in Figure 6.4. Here, we see that the
estimated view angles are far closer to the true view angles compared to initial nominal
view angles.
In the paper we also show the comparison with the projecting matching algorithm in
[38] and show that our method outperforms this algorithm in both CT reconstruction
quality and angle estimation. We refer to paper C for the results and discussion on
this comparison.

6.5 Summary
In this chapter, we summarized the work of Paper C proposing a new model and
algorithm for CT reconstruction with uncertain view angles. Compared to our pre-
vious work this research proposed to also estimate the view angles. We show that
our algorithm is able to give reconstructions with similar quality to those obtained
with the same TV prior using the true view angles. Hence, the model and algorithm
completely takes care of the view angle uncertainty in the simulated tests. Finally,
we compare to existing work and show that our algorithm is able to give both bet-
ter reconstructions (in terms of relative error) and angle estimates than the existing
methods for our test case.
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Figure 6.1: Comparing the angle estimation using (6.4), (6.5) based on a CT recon-
struction x̂ and the ground truth x̄. Figures from Paper C reprinted
with permission.

L2-TV (true angles) L2-TV (nominal angles)

MD-TV (nominal angles) CT-VAE (estimated angles)

Figure 6.2: CT reconstruction for the uncertain view angle CT test problem.
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Figure 6.3: Comparing relative error vs regularization parameter for the CT recon-
struction methods. Figures from Paper C reprinted with permission.

Figure 6.4: Angle estimates (including uncertainty) after 10 iterations of the CT-
VAE algorithm. Figures from Paper C reprinted with permission.



CHAPTER7
Discussion

In this chapter, we give a discussion of selected topics and new research directions
with proof-of-concepts that are currently not part of any existing work.
In general, the aim of the PhD project was to study methods for characterizing and
reducing model errors in inverse problems broadly construed. A large part of this
work was tested on a CT problem with uncertain view angles, which steered the
direction of the project. A great benefit was the authors previous experience with
CT problems. The CT problem also provided practically relevant challenges in terms
of handling large-scale problems. In the following, we discuss the validity of the
Gaussian approximation of the model discrepancy term and give a proof-of-concept
of how to extend our work to 3D CT.

7.1 Is the Gaussian approximation of the model
discrepancy term valid?

Before going further it is worthwhile to discuss if the Gaussian approximation of the
model discrepancy ηi in (5.3) and (6.2) is even valid for CT. Recall, that the model
discrepancy is defined given an image reconstruction x and some fixed view angle θ̂i

as
ηi = A(θi)x − Aθ̂i

x, θi ∼ πangles(·). (7.1)
Assuming x is fixed, the stochastic part of ηi comes from the view angle distribution
πangles, which is transformed by applying the CT forward model A(·) and multiplying
with the CT image x. Essentially, the uncertainty in θ is translated to uncertainties
in elements of the CT matrix – which consists of the lengths that each X-ray passes
through all pixel – and then multiplied by x. One way to see this is to write each
projection as a sum similar to Chapter 3, i.e.

A(θi)x =
n∑

j=1
aj(θi)xj , (7.2)

where aj(θi) ∈ Rp is a vector of lengths with elements corresponding to the jth
column of A(θi). Even though most of these lengths are zero, a large number non-zero
stochastic scalars for each detector element in the projection is summarized. In theory,
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if all these have the same variance, the sum is well-approximated by a Gaussian due
to the central limit theorem. In practise, this may also be a reasonable approximation
even if the variances are not exactly the same. However, after multiplication with x
this will depend on the structure of the CT image, which makes the analysis more
difficult.
Instead of a theoretical analysis, we simply investigate histograms of the model dis-
crepancy in Figure 7.1. Here we use 1000 samples for 9 randomly selected pixels
given the initial CT reconstruction from the nominal view angles (left) and samples
given a CT reconstruction after 10 iterations of the algorithm in Chapter 6 (right)
where the view angles are also updated. Given the initial CT reconstruction, some
of the histograms are clearly not Gaussian from a visual inspection. On the other
hand, after running 10 iterations of the CT-VAE algorithm the histograms of the
model discrepancy do resemble Gaussian distributions. It is unclear exactly why this
trend happens, but we conjecture that it is due to the reduced view angle uncertainty
combined with an artefact free CT reconstruction. It would be interesting to explore
this topic further.

Remark. Even if the Gaussian assumption is violated, it is still possible to approx-
imately marginalize the model discrepancy using the Gaussian distribution, and the
results in Chapters 5 and 6 show that the reconstructions obtained do take the view
angle uncertainty into account, which indicates that even if the Gaussian approxima-
tion is not perfect the method could still be used.

23683 35628 40110

371 14273 44127

23645 14667 24847

23683 35628 40110

371 14273 44127

23645 14667 24847

Figure 7.1: Histograms of the sampled model discrepancy for 9 randomly selected
detector pixels. Left: given initial CT reconstruction, right: given CT
reconstruction after 10 iterations of algorithm in Chapter 6.

We are at this time unaware of other papers investigating the Gaussian assumption on
the model discrepancy in detail other than the recent work in [40]. Here the authors do
not check if the discrepancy is Gaussian, but rather visually compare the true model
discrepancy in their simulations with the sampled model discrepancy. In Figure 7.2
we do the same comparison in our case. Indeed the sampled model discrepancy
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η = A(θs)x − Aθ̂x, where θs ∼ πangles and x is the L2-TV CT reconstruction from
the nominal view angles resembles the true model discrepancy defined as Aθ̄x̄ −Aθ̂x̄.

True model discrepancy Sample Sample

Sample Sample Sample

Figure 7.2: Comparing the true model discrepancy with samples of the model dis-
crepancy given an L2-TV CT reconstruction.

7.2 Extending to 3D
We now discuss how our algorithm is straightforwardly extended to a 3D CT case.
First note that for cone-beam tomography with a fixed axis rotation, we can formulate
the 3D CT problem with uncertain view angles exactly as previously, i.e.,

b = A(θ) x + e, θ ∼ N (µθ, diag(δ)), e ∼ N (0, σ2I), (7.3)

where A(θ) ∈ Rm×n now represents a discretized cone-beam CT forward model
parametrized by the view angles θ ∈ Rq, which rotate around a fixed axis. The cone-
beam model is illustrated in various places, but we like the illustrations in [1]. Note
here that the voxels of the 3D object is represented as a vector x ∈ Rn, which now
has n = N3 elements, where N is the number of voxels in the image width, height
and depth. Similarly, the detector is a 2D panel with p2 elements such that m = p2q
is the total number of measured data.

7.2.1 Numerical results
Reusing most of our existing code, but switching the ASTRA forward projector to a
3D cone-beam projection and modifying a few plotting functions, we can handle the
3D case. Here we use N = 100, q = 90, and p = 120 such that both n and m have
more than 106 elements. We decide to run the CT-VAE algorithm from Chapter 6
with SCT = 0 and SVA = 500, i.e. we do not marginalize the view angle uncertainty
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in the CT reconstruction but update the view angles using 500 samples of the model
discrepancy. We run 10 iterations of the algorithm. The 3D TV term is computed
similar to (2.9), where the gradient is computed using a forward difference for all 6
neighbouring voxels.
In Figure 7.4, we see the CT reconstructions using the nominal, estimated and true
view angles similar to the figures we compare in the earlier chapters. The phantom is
a 3D version of the Shepp-Logan phantom from [57]. Similar to the previous results,
we also see a visual improvement in the reconstructions when estimating the view
angles. In Figure 7.3 we see the convergence of the algorithm in terms of relative
error. Note that the algorithm reaches the lowest relative error after just 3 iterations.

7.2.2 Even more efficient view angle estimation
For large-scale CT, computing SVA full samples to estimate the view angles, followed
by solving a p2 ×p2 linear system in 3D – i.e. multiplying with the inverse covariance
C−1

νi|x) in (6.4)) – may be too computationally expensive even for a single projection.
In this case, we can reduce the computational load further by reducing the forward
model for the view angle estimation. This can simply be carried out by defining a
selection function F : Rp2 7→ Rp2

r where pr < p and then using the reduced model
Rr(θi)x = F (R(θi)x). In practise, only the selected p2

r X-ray transforms need to be
computed. This is feasible because the statistical model does not require the entire
CT data, since the angle estimation in (6.4) uses a sampled covariance, which in turn
would be reduced to a matrix of size p2

r × p2
r. We show the effect of this reduction in

Figure 7.3 where p2
r = p2/50 and the selection was carried out by only sampling every

50th element of the model discrepancy. The results show that the CT reconstruction
quality in terms of relative error is similar, even when using 1/50th of the data for
the angle estimation. It is important to note that the CT reconstruction step still
uses the full data set.

Figure 7.3: Showing the computational gain of sampling 1/50th of the parameters
for the model discrepancy used in the view angle estimation.
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L2-TV (nominal angles)

CTVAC (estimated angles)

L2-TV (true angles)

Figure 7.4: Comparing CT reconstructions for the 3D test case.
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CHAPTER8
Concluding remarks

In this chapter we give a perspective on the PhD project as a whole and provide possible
directions for future work. Specific contributions and conclusions can be found in the
individual chapters as well as the attached papers.
During the PhD project, we studied methods for characterizing and reducing the
influence of model errors in inverse problems. A large part of the PhD project focused
on a Computed Tomography (CT) application, where the model error was caused by
uncertainty in the view angles of the scan. For this reason, the thesis is seen through
the lens of CT.
As we saw in Chapter 4, methods for characterizing model errors by perturbations of
the forward model have long been studied and have a strong theoretical foundation.
In fact, in the chapter we saw that many existing regularization methods can be
shown to reduce the influence of such model errors. In Section 4.1.2 we also showed
how researchers recently have been able to find a connection between worst-case
linear perturbations of the forward model and a large class of existing regularization
techniques, further solidifying the concept that existing regularization techniques can
work as methods for handling model errors in inverse problems.
The material in Chapter 4 provided an important perspective on the direction of the
PhD project, as the goal of developing new methods for reducing the influence of
model errors would need to include more structural information of the model errors
to be able to improve upon existing techniques. We discussed the difficulties with
incorporating this structural information in a deterministic setting for the CT prob-
lem, which ultimately led the PhD project in the direction of statistical (Bayesian)
methods instead.
In Section 4.4, we discussed a Bayesian method that provided an approach for char-
acterizing any model error by its influence on the data residual. More specifically,
the model error was characterized by a model discrepancy term and assumed to be
a random variable. This spawned a number of projects which ultimately led to the
work of Papers A, B and C (part of thesis) as well as papers F and G (not a part of
thesis).
In Papers A, B and C, we applied the model discrepancy characterization to a CT
problem with model error caused by uncertain view angles. In Paper A and B (Chap-
ter 5), we used the characterization to derive a reconstruction algorithm which took
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the uncertainty in the view angle into account by approximate marginalization. In
Paper C (Chapter 6), we used the same characterization to also estimate the view
angles and associated uncertainty. Both approaches assumed very little about the
CT model – except for independence of the view angles – and we argue that they can
therefore be relatively straightforwardly extended to other similar inverse problems.
Combined this work provides a new framework for handling model errors caused
by uncertain model parameters in inverse problems. The approach allows for both
estimation and marginalization of the uncertain parameters. We showed in simulated
numerical experiments, that the framework completely reduces the influence from
uncertainty in the view angles for the CT problem with acceptable computational
overhead.

8.1 Possible future work
During the PhD project a number of interesting questions came up that we unfortu-
nately did not have the time to consider in detail. Some of these were already briefly
discussed in Chapter 7. In the following we describe other possible directions for
future work.
An Achilles’ heel of this PhD project is the lack of theoretical analysis of the two
proposed algorithms in Chapter 5 and Chapter 6. A major reason for this, is that
we combine statistically- and optimization-based approaches, which makes analysis
difficult. We propose as a future study, to investigate the convergence properties of
these methods. A possible direction to investigate is whether it is possible to connect
our model to Kalman filters [65].
Another direction of possible future research is to validate our framework on other in-
verse problems. A straightforward extension is to include more geometric parameters
in the CT model such as axis shift/tilt similar to problems considered in [38, 45].
Finally, another extension of our work is also to validate the method on real data. A
possible avenue of research is the scanning of oil pipes on the sea-bed [55], which we
know from experience has uncertainty in the view angles.
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Abstract. In this paper, we propose a new iterative algorithm for Com-
puted Tomography (CT) reconstruction when the problem has uncer-
tainty in the view angles. The algorithm models this uncertainty by an
additive model-discrepancy term leading to an estimate of the uncer-
tainty in the likelihood function. This means we can combine state-of-the-
art regularization priors such as total variation with this likelihood. To
achieve a good reconstruction the algorithm alternates between updating
the CT image and the uncertainty estimate in the likelihood. In simu-
lated 2D numerical experiments, we show that our method is able to
improve the relative reconstruction error and visual quality of the CT
image for the uncertain-angle CT problem.

Keywords: Computed Tomography · Uncertain view angles ·
Model error · Variational methods · Total variation ·
Model discrepancy

1 Introduction

In this paper, we consider Computed Tomography (CT) where the geometry of
the physical set-up is only known approximately. The goal is to achieve recon-
structions that are stable in the presence of uncertainties in the geometric param-
eters. We restrict our attention to uncertainty in the view angles. We assume
that the actual view angles are realizations of some known probability distribu-
tion πangles(·) and that the measured sinogram is corrupted by additive Gaussian
noise with known mean and covariance.

With the above assumptions, we formulate the CT reconstruction problem
under uncertain view angles as estimating the unknown attenuation coefficient
image x ∈ R

n from a measured (noisy) sinogram b ∈ R
m following the model

b = A(θ)x + e, θ ∼ πangles(θ), e ∼ N (μe,Ce), (1)
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where e ∈ R
m is the additive Gaussian noise with mean μe and symmetric

positive definite covariance Ce. The parameterized matrix A(θ) ∈ R
m×n is the

discrete approximation of the Radon transform with view angles θ ∈ R
q. The

measurement at detector element l from the view angle θi with i = 1, . . . , q,
i.e., (A(θi)x)l, is a discretization of (Rf)(θi, sl) =

∫
R

f(slV (θi) + tV ⊥(θi)) dt,
where sl gives the position of the lth pixel on the detector with l = 1, · · · , p,
and m = qp. Moreover, the function f is the continuous representation of x,
V(θ) = (cos θ, sin θ) and V⊥(θ) = V (θ + π/2). For more details on the mathe-
matical model of CT see e.g. [1]. We emphasize that the goal in this work is to
estimate the CT image x from a measured sinogram b according to the model
(1) with uncertain view angles θ and noise e. Here, θ and e are considered as
nuisance or uninteresting parameters, and they are only taken into account when
reconstructing x without being explicitly estimated.

1.1 Previous Work

Many variational methods have been proposed for CT reconstruction, see e.g.,
[2–4]. In general, variational models in these methods consist of a data-fitting
term and a regularization term, and these two terms are balanced by a regular-
ization parameter. In order to deal with the ill-posedness in CT reconstruction
problems, the choice of regularization is very important. Different regularization
techniques have been applied, for example, total variation (TV) regularization
[5] and framelet representations [2]. But these methods do not take parametric
uncertainty such as uncertainty in view angles into account. Therefore, good
performance of the methods is not guaranteed if the view angles are uncertain.

The CT reconstruction problem with uncertain view angles in (1) is generally
solved by estimating the view angles from some measurements. Geometrical
calibration of models in CT has been studied, see e.g. [6] for a review. Typically
such methods are based on reference objects or reference instruments for the
calibration. Recently, in the case of uncertain or unknown view angles a few
reconstruction methods that only use the measured sinogram without reference
objects or instruments have been proposed, see [7–9]. These methods aim to
estimate the view angles θ in addition to the CT image x, and can be categorized
into two groups: (1) Estimating view angles directly from projection data and
then estimating the CT image and (2) simultaneously estimating view angles
and CT image.

In [9] it has been shown that if the scanned objects are asymmetrical then
view angles can be uniquely determined by sinogram measurements. Accord-
ing to this result, we can estimate angles directly from complete measurements.
However, if the object is partly symmetrical or the measurements are not suffi-
cient, we cannot obtain an accurate angle estimation, see [8]. Then, due to error
propagation, an inaccurate angle estimation would lead to an unsatisfactory
reconstruction.

The simultaneous methods such as Bayesian sampling-based methods [7]
can effectively avoid error propagation, but they are limited by computational
complexity and generally require many evaluations of the forward model (1),
which makes them unfeasible for large-scale problems.
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There are also a few methods for characterizing and reducing model errors
in general inverse problems, see [10–15]. Most of these methods are based on the
statistical description of the model error in a Bayesian setting. This leads to a
natural way of incorporating uncertainties and modelling errors in the model.
However, full Bayesian methods also suffer from computational complexity issues
except in cases when the object is assumed to follow a Gaussian distribution, in
which case closed-form solutions exist.

1.2 Our Contribution

In this paper, we propose a new iterative algorithm for CT reconstruction with
uncertain view angles. The main step in the algorithm is based on a variational
method, which combines the state-of-the-art regularization such as TV with a
modified data-fitting term, that includes the uncertainty in the view angles via
a model-discrepancy term. Since the model-discrepancy term depends on the
estimated reconstruction, we update it and the reconstruction alternately. The
simulated numerical results show that the new algorithm is able to reduce the
relative error and improve the visual quality of the reconstructions.

2 Our Method

The CT reconstruction with uncertain view angles is formulated in (1) with an
assumption of the probability distribution on the view angles. By including the
known expected view angles, θ̂, we can reformulate the problem as follows.

b = A(θ̂)x + η + e, e ∼ N (μe,Ce), (2)

where the new random variable η = η(θ,x) = A(θ)x − A(θ̂)x with θ ∼
πangles(θ) models the uncertainties associated with the view angles. Note that (2)
is consistent with (1). By this reformulation, we basically shift the uncertainties
in the view angles to the model-discrepancy term η, which will be used to derive
our variational model.

Defining modelling errors as an additive model-discrepancy term was first
applied in [16] in the field of model calibration of physical and computer models.
The distribution of η was assumed as a Gaussian Process and determined as
a model correction term in addition to x. In [11,17], this idea was applied in
Bayesian inverse problems and named as the Approximation Error Approach
(AEA). The main differences are that in the AEA η is used to represent the
difference between two grid systems instead of a model discrepancy and it is
marginalized out in the likelihood function. The outputs of the AEA are the dis-
tributions of x and η. To further improve the results, in [14] an iterative scheme
was introduced where the distributions of x and η are updated alternately.
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Inspired by the ideas of the AEA, we derive the likelihood according to the
model (2) by marginalizing out both η and e. Define ν = η+e, and the likelihood
is given by

π(b |x) =
∫
Rm

π(b, ν |x)dν =

∫
Rm

π(b |x, ν)π(ν |x)dν = πν | x(b−A(θ̂)x |x). (3)

The conditional distribution of ν |x may be rather complicated, but we can
approximate it by a simpler distribution such as a Gaussian. Gaussian approx-
imations has been shown experimentally to be reasonable in many applications
[11,13,14,17,18]. Here, we assume that η |x follows a Gaussian distribution
N (μη |x,Cη |x) with mean μη |x and covariance Cη |x and e is independent
of x. Then we obtain the negative log-likelihood function

−log π(b |x) ∝ 1
2
‖b−A(θ̂)x−μν |x‖2

C−1
ν | x

=
1
2
‖Lν |x(b−A(θ̂)x−μν |x)‖22, (4)

where μν |x = μe + μη |x, Cν |x = Ce + Cη |x is the combined covariance
of the measurement noise and model discrepancy, and LT

ν |xLν |x = C−1
ν |x is

the Cholesky factorization of the inverse covariance. Applying regularization
techniques, we can formulate a variational model for (2) that gives a stable
solution with respect to the uncertain view angles and measurement noise using
the likelihood (4). TV regularization has shown good performance in CT [2], and
thus we use it as regularization term and obtain the following variational model

min
x≥0

1
2
‖Lν |x(b − A(θ̂)x − μν |x)‖22 + λTV(x), (5)

with minimizer xSTV and regularization parameter λ > 0. We use TV(x) =∑
i ‖[∇x]i‖2, where ‖[∇x]i‖2 =

√
(∇hx)2i + (∇vx)2i , with (∇hx)i and (∇vx)i

denoting the derivatives of xi along horizontal and vertical directions with sym-
metric boundary condition, respectively. A non-negativity constraint is added
because the attenuation coefficients x cannot be negative.

2.1 An Iterative Algorithm

The variational model defined in (5) still leaves the question of how the mean
and covariance of η |x are determined. Given a reconstruction x, one can gen-
erate Nsamp samples of η |x by drawing samples θs following the distribution
πangles(θ), and then evaluate the model discrepancy by

ηs = A(θs)x − A(θ̂)x, θs ∼ πangles(θ), s = 1, . . . , Nsamp. (6)

The sample mean and covariance given x can then be calculated by

μsamp
η |x =

1
Nsamp

Nsamp∑

s=1

ηs, (7)
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and

Csamp
η |x =

1
Nsamp − 1

Nsamp∑

s=1

(ηs − μη |x)(ηs − μη |x)T . (8)

If we have a good estimate of x, we can obtain good samples of the model dis-
crepancy, and then we can use the sample mean and covariance in the model (5)
to further improve the reconstruction result. This leads to an iterative scheme for
alternately updating the estimate of x and the estimates of mean and covariance
of η |x. The iterative scheme is shown in Algorithm 1.

Algorithm 1. Iterative update of reconstruction and likelihood

Inputs: b, λ, θ̂, and πangles(θ). Initial choice of L
[0]

ν | x and μ
[0]

ν | x.

Output: x
[K]
STV

1: for k = 1, 2, . . . , K

2: x
[k+1]
STV = arg minx≥0

1
2
‖L[k]

ν | x(b − A(θ̂)x − μ
[k]

ν | x)‖2
2 + λTV(x)

3: for s = 1, 2, . . . , Nsamp

4: ηs = A(θs)x
[k+1]
STV − A(θ̂)x

[k+1]
STV for θs ∼ πangles(θ)

5: end
6: Estimate μη | x and Cη | x according to (7) and (8)

7: μ
[k+1]

ν | x = μe + μη | x
8: L

[k+1]

ν | x = chol
(
(Ce + Cη | x)−1

)

9: end

Here, chol(C−1) gives the Cholesky factorization of the inverse covariance
C−1, i.e., LTL = C−1. In the initialization, we use the measurement noise mean
and covariance to initialize L[0]

ν |x = Le and μ
[0]
ν |x = μe, where LT

e Le = C−1
e .

Compared with the AEA proposed in [14], our method has two main differ-
ences. First, our method deals with the uncertainties in the model parameters
and the accurate model is unknown, while in the AEA the accurate model is
known and the discrepancy is between two different grid systems. Secondly,
in our method, we apply a variational method incorporated with regulariza-
tion techniques to obtain a reconstruction result, which can be solved by many
advanced optimization methods, while in the AEA the distribution of the recon-
struction is obtained by applying Bayesian inversion methods, which leads to
much higher computational complexity.

2.2 Approximation of Lν | x

Because of the computational complexity in calculating the inverse and Cholesky
factorization of the covariance matrix Ce + Cη |x, our method can be of lim-
ited use for solving large-scale CT problems. To overcome this limitation, we
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Fig. 1. An example of the absolute value of the full covariance Cη | x, its approximation

Ĉη | x according to (9), and their absolute difference for the uncertain angle CT problem
(2). We conclude that the approximation is reasonable for this problem.

approximate the covariance matrix Cη |x ∈ R
m×m by a block diagonal matrix

Ĉη |x given by

Ĉη |x =

⎡

⎢
⎢
⎢
⎣

Cη |x,11
Cη |x,22

. . .
Cη |x,qq

⎤

⎥
⎥
⎥
⎦

, (9)

where Cη |x,ii ∈ R
p×p are the block diagonal parts of Cη |x, q = m/p is the

number of view angles and p is the number of detector pixels. Then, if the
Gaussian measurement noise e is i.i.d., i.e., Ce = σ2Im, we can compute the
Cholesky factorization of the approximate inverse covariance (Ce + Ĉη |x)−1

block-wise as follows

L̂ν |x =

⎡

⎢
⎣

chol((Cη |x,11 + σ2Ip)−1)
. . .

chol((Cη |x,qq + σ2Ip)−1)

⎤

⎥
⎦ . (10)

If the full covariance was used multiplication of an vector with Lν |x would
require O(m2) = O(p2q2) operations, whereas multiplication with L̂ν |x would
only be O(p2q) operations. Additionally, the matrix inversion and Cholesky fac-
torization is reduced from O(m3) = O(p3q3) to O(p3q) operations.

In Fig. 1, we show the absolute values of the full covariance Cη |x, its approx-
imation Ĉη |x according to (9), and their absolute difference. The values in the
off-diagonal parts are much smaller than those in the block diagonal parts of
Cη |x. Hence, the approximation is reasonable for this problem. In the following
experiments line 8 in Algorithm 1 is therefore approximated by (10).

3 Numerical Experiments

In this section, we present simulated 2D numerical results to show the perfor-
mance of our method. The experiments are carried out in MATLAB and we use
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Table 1. The physical parameters in the simulated CT experiments.

Parameter Value

Beam type Fan-beam

Reconstruction domain size 50 cm × 50 cm

Source to center distance 50 cm

Source to detector distance 100 cm

Detector length 130 cm

Small example

Image pixels n = 45 × 45

Detector pixels p = 90

Number of view angles q = 90

View angle standard deviation δ = 1.2◦

Larger example

Image pixels n = 135 × 135

Detector pixels p = 270

Number of projection angles q = 270

View angle standard deviation δ = 0.4◦

the ASTRA toolbox [19] and “Spot Operators” [20] for matrix-free forward- and
back-projections, i.e., for multiplication with A(θ) and A(θ)T . In the simulated
CT problems arising from (1), the physical parameters are shown in Table 1.
In both examples, the distribution of the view angles is assumed to be i.i.d.
Gaussian with equidistant view angles from 0◦ to 360◦, denoted by θequid, as
mean and δ2 as variance. These examples illustrate the physical case where the
measurements are acquired at equidistant view angles, but each measurement is
associated with some independent uncertainty. Note that the “small example”
has 90 view angles and standard deviation δ = 1.2◦, whereas the “larger exam-
ple” has 270 view angles with δ = 0.4◦. This is to ensure that the view angles are
unlikely to switch positions relative to each other from the added uncertainty.
In our numerical tests, we generate the measurements according to

b = A(θmachine)x̄ + e, (11)

where x̄ is either the Shepp-Logan or Grains phantom generated from AIR Tools
II [21], and θmachine denotes the actual view angles, which is a realization of
N (θequid, δ2I). Here e ∼ N (0, σ2I), where σ = 0.005‖A(θmachine)x̄‖2/

√
m. We

solve the TV minimization problem using the Chambolle-Pock algorithm in [22]
and stopping when the relative change in the objective function is below 10−6.
In our method, we set the maximum iteration number K = 10 and the number
of samples Nsamp = 5000.
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We compare our results with the non-negative TV reconstruction that does
not take the uncertainty in the view angles into account, i.e.,

xTV = arg min
x≥0

1
2σ2

‖(b − A(θ̂)x)‖22 + λTV(x), (12)

where θ̂ = θequid. In addition, we also show the results from the non-negative
TV reconstruction with the actual view angles θmachine, which would be the
best-case scenario:

xTV-opt = arg min
x≥0

1
2σ2

‖(b − A(θmachine)x)‖22 + λTV(x). (13)

3.1 The Small Example

In Fig. 2 we show the expected view angles θ̂ = θequid and 3 realizations of
πangles(θ) = N (θequid, δ2I), i.e. 3 examples of θmachine. The realizations are used
to generate noisy sinograms according to (11). We compare the reconstructions
xSTV from our method (Algorithm 1) with the ones obtained by solving (12) and
(13). In the left column of Fig. 3 we plot the relative error ‖x−x̄‖2

‖x̄‖2
of the three

methods with the regularization parameter λ varying from 10−6 to 10−2. We can
see that except for large λ, where the influence of the data-fitting term becomes
weak, the reconstructions from our method has lower relative errors compared
to xTV from (12). With the optimal λ choice, which gives the smallest relative
error, the improvement by our method is significant. It shows the importance of
taking the uncertainty in the view angles into account. In the right column of
Fig. 3 we numerically show the convergence of the relative errors in our method.

In order to visually compare the reconstructions from these three methods,
in Fig. 4 we show the reconstruction results for the same λ values, which corre-
sponds to the optimal choice in (13). It is clear that our method can effectively
reduce the artifacts due to the uncertain view angles.

For this small example, in our method we can also compute the full covariance
Cη |x ∈ R

m×m instead of using the approximation Ĉη |x introduced in Sect. 2.2.
Since the relative errors by using the full covariance are almost identical to using
the approximation, we do not show them here.

Fig. 2. For the small experiment in Table 1. From left to right: The expected view
angles θ̂ = θequid and three realizations of πangles(θ).
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Fig. 3. For N = 45 in Table 1. Top: Shepp-Logan. Bottom: Grains. Left: Relative error
vs. regularization parameter. Right: Relative error vs. iteration number in Algorithm 1.

Fig. 4. Reconstructions for N = 45 in Table 1. Top: Shepp-Logan. Bottom: Grains.
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3.2 The Larger Example

We also compute a larger example according to the parameters in Table 1. In
Fig. 5 we show a zoomed part of the expected view angles θ̂ as well as a realization
of πangles(θ) that is used to generate the data. In Fig. 6 we show the plots of
the relative errors with different choices of λ and along the iterations in our
method. In this case the difference between xTV from solving (12) and xTV−opt

from solving (13) is not as big as in the small example, and the main reason
is that the variance δ2 in the view angles is much smaller. However, we can
still clearly see that our method improves the reconstruction quality in terms
of relative error. To compare the reconstruction visually, in Fig. 7 we give the
reconstruction results from three methods.

Fig. 5. For the larger experiment in Table 1. Left: the expected view angles θ̂. Right:
a realization of πangles(θ). Here we zoomed in on a part of the view angles.

Fig. 6. For the experiment with N = 135 in Table 1. Top: Shepp-Logan. Bottom:
Grains. Left: Relative error vs. regularization parameter. Right: Relative error vs. iter-
ation number in Algorithm 1.

76 A A New Iterative Method for CT Reconstruction with Uncertain View Angles



166 N. A. B. Riis and Y. Dong

Fig. 7. Reconstructions for N = 135 in1 Table 1. Top: Shepp-Logan. Bottom: Grains.

Based on our tests, if we increase the image size n and keep the same number
of measurements, the quality of the reconstruction by our method gets closer to
the one from (12). The reason is that the reconstruction problem becomes more
ill-posed and therefore more difficult to deal with. In this case, we would need
a better initial guess on L̂[0]

ν |x and μ
[0]
ν |x in order to obtain a good estimate of

x̄. Another idea would be to update the estimate of θ̂ and πangles(·) in each
iteration. We leave this to the future study.

4 Conclusion

We proposed a new iterative algorithm for the uncertain angle CT problem. The
method models the uncertainty of the view angles in the likelihood function.
We showed numerically that combining this likelihood with a strong prior such
as total variation can significantly improve the relative error and visual quality
of reconstructions. Furthermore, we showed a method for approximating the
likelihood by a block-diagonal approximation of the covariance, which leads to
an algorithm that can run on large-scale CT problems.
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Abstract
We propose a new model and a corresponding iterative algorithm for Computed Tomography (CT) when the view angles
are uncertain. The uncertainty is described by an additive model discrepancy term which is included in the data fidelity term
of a total variation regularized variational model. We approximate the model discrepancy with a Gaussian distribution. Our
iterative algorithm alternates between updating the CT reconstruction and parameters of the model discrepancy. By assuming
that the uncertainties in the view angles are independent we achieve a covariance matrix structure that we can take advantage
of in a stochastic primal dual method to greatly reduce the computational work compared to classical primal dual methods.
Using simulations with 2D problems we demonstrate that our method is able to reduce the reconstruction error and improve
the visual quality, compared to methods that ignore the uncertainties in the angles.

Keywords Computed Tomography · Uncertain view angles · Model error · Model discrepancy

Mathematics Subject Classification 65F22 · 65K10

1 Introduction

In this paper we consider Computed Tomography (CT)
reconstructionwhere the view angles are only known approx-
imately. This uncertaintymayarise fromseveral sources, e.g.,
inaccuracies in the physical set-up and inexact estimates from
a calibration procedure. The goal is to reconstruct aCT image
in such a way that we take into account both measurement
noise and the uncertainty associated with the view angles.

We formulate the CT reconstruction problem with uncer-
tain view angles as estimating the unknown attenuation
coefficient image, represented by the vector x ∈ R

n , from
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from The Villum Foundation and by the National Natural Science
Foundation of China via Grant 11701388.
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a measured and noisy sinogram represented by the vector
b ∈ R

m . We use the model

b = R(θ) x + e, θ ∼ πangles(·), e ∼ πnoise(·), (1)

where the uncertainty in the view angles and the measured
sinogram are characterized by the probability distributions
πangles and πnoise, respectively.

The CT forward model (the forward projection) is repre-
sented by the matrix R(θ) ∈ R

m×n , which is the discrete
approximation of the Radon transform R explicitly param-
eterized by the view angles θ ∈ R

q . Specifically, if f is
the continuous representation of the attenuation image, the
discretization satisfies

(R(θi )x)l ≈ (R f )(θi , sl)

=
∫
R

f (sl
−→v (θi ) + t−→v ⊥(θi )) dt, (2)

where sl with l = 1, . . . , p is the position of the lth pixel
on the detector, θi with i = 1, . . . , q is the view angle,
and hence m = qp. Moreover, −→v (θ) = (cos θ, sin θ) and−→v ⊥(θ) = −→v (θ + π/2). For more details on the physical
and mathematical models of CT see, e.g., [5,17].
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We emphasize that the goal in this work is to reconstruct
the CT image x from a measured sinogram b according to
the model (1) with uncertain view angles θ and noise e. We
consider θ and e as nuisance or uninteresting parameters,
and they are only taken into account when reconstructing x
without being explicitly estimated.

While our work focuses on 2D CT reconstruction, our
methodology can also be applied to 3D CT and other appli-
cations, because there are no restrictions on the matrix in the
forward model. We emphasize the computational advantage
of having a block representation of the covariance matrix
for the model discrepancy introduced in the next section (cf.
Sect. 3).

1.1 RelatedWork

Variational methods have been proposed for CT reconstruc-
tion problems that, in addition to a data fidelity term which
incorporates the noise model, explicitly incorporate prior
information via a regularization term, see the survey [3].
Different regularization techniques can be applied, for exam-
ple, Tikhonov regularization [23,29] or total variation (TV)
regularization [26,27]. But these methods do not take para-
metric uncertainty in themodel into account. Therefore, good
performance of these methods is not guaranteed if the view
angles are uncertain.

Reconstruction methods that aim to estimate the view
angles θ in addition to the CT image x using only the mea-
sured sinogram without reference objects or instruments
are proposed in [2,10,18,22]. These methods can be cat-
egorized into two groups: estimating view angles directly
from projection data and then estimating the CT image, and
simultaneously estimating view angles and CT image. In
the former case an inaccurate angle estimation could lead
to an unsatisfactory reconstruction due to error propagation.
Algorithms for the latter case (such as theBayesian sampling-
based method [22]) can effectively avoid error propagation,
but they are limited by large computing times which makes
them unfeasible for large-scale problems.

There are also a few methods for characterizing and
reducing model errors in general inverse problems, see
[6,11,12,15,16,21]. Most of these methods are based on
Bayesian sampling-based methods which may also suffer
from large computing times, except in the special case of a
Gaussian prior for the solution where a closed-form expres-
sion exist.

1.2 Our Contribution

Wepropose a newmodel and algorithm forCT reconstruction
when the view angles are uncertain. Our model incorporates
the uncertainty of the view angles in the data fidelity term of a
variational method. This provides a CT reconstruction where

the uncertainty is accounted for and we avoid error propaga-
tion without the extra cost of simultaneously estimating the
view angles and CT image.

Compared to our preliminary work in [25] the main con-
tribution in this work is the formulation and utilization of
block-structure of the computational problem. This allows
us to utilize a stochastic primal dual hybrid gradient method
[9] to significantly reduce the computational work and allows
the method to solve large-scale problems. Moreover, we use
a numerically stable and efficient approach to factorize and
invert the covariance matrix required in our data fidelity
term.

2 Iteratively UpdatedModel Discrepancy

In this sectionwe summarize our previouswork in [25]where
we reformulate (1) by fixing the forward model with an esti-
mate θ̂ of the view angles. This is done to avoid dealingwith a
distribution of models R(θ), θ ∼ πangles(·) in the CT recon-

struction. The angles θ̂ are set to the nominal angles of the
scanner, and we obtain

b = R(θ̂) x + η + e, η ∼ πdiscrep(·), e ∼ πnoise(·), (3)

where η acquires its push-forward distribution from

η = η(θ , x) = R(θ) x − R(θ̂) x, (4)

and we call η the model discrepancy term. The advantage of
doing so is that the uncertainty in the forwardmodel ismoved
into η and the CT model R(θ̂) is fixed. If we ignore the fact
that η depends on x and consider η as independent additive
noise, then (3) becomes a standard CT reconstruction model
with the fixed view angles θ̂ .

Representing the model uncertainties as an additive mod-
el discrepancy term was first proposed in [14], where η was
assumed a Gaussian process and used for calibration from
a physical model to a computational model. In [12,13] a
similar idea was applied to Bayesian inverse problems and
referred to as the approximation error approach (AEA), in
which η denotes the model discrepancy. This approach is
used successfully in a number of different imaging appli-
cations such as fine-to-coarse mesh approximation in diffuse
optical tomography [1], unknown domain boundaries in elec-
tric impedance tomography [20], unknown scattering in both
diffuse optical tomography and quantitative photoacoustic
tomography [15,24], truncation errors in magnetic particle
imaging [4] and uncertain sound speed in photoacoustic
tomography [28].
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Inspired by AEA, we derive the likelihood for (3) by
marginalizing both η and e. Let ν = η + e, then

π(b|x) =
∫
Rm

π(b, ν|x)dν

=
∫
Rm

π(b|x, ν)π(ν|x)dν
= πν|x(b − R(θ̂) x|x). (5)

This formulation raises two main issues:

(1) The distribution πν|x can be rather complicated andmay
not have a closed-form expression, so the evaluation of
the likelihood becomes difficult.

(2) The distribution πν|x depends on the unknown x.

To deal with the former issue, we introduce a Gaussian
approximation to πν|x, i.e., we simplify the model. The latter
issue, on the other hand, is dealt with from an algorithmic
point of viewby using a computationalmethod that alternates
between updating πν|x and x.

2.1 Gaussian Approximation

The distribution πν|x may not have a closed-form expression,
so we approximate it by a simple distribution. Experiments
suggest that Gaussian approximations are useful in many
applications related to model discrepancies [1,4,6,11–13,15,
19,20,24,28]. In this work, we therefore assume η|x follows
a Gaussian distribution, i.e.,

η|x ∼ N (μη|x,Cη|x) (6)

with mean μη|x and covariance Cη|x, both depending on x.
Moreover, we assume

e ∼ N (μe,Ce), (7)

withmeanμe and covarianceCe,which are independent onx.
Following these two assumptions, we obtain the distribution
of ν|x

πν|x = N (μη|x + μe,Cη|x + Ce). (8)

Then, the likelihood (5) admits a closed-form expression. By
taking the negative logarithm we get

− logπ(b|x) ∝ 1
2‖b − R(θ̂) x − μν|x‖2C−1

ν|x

= 1
2‖Lν|x(b − R(θ̂) x − μν|x)‖22, (9)

where μν|x = μη|x +μe, Cν|x = Cη|x +Ce, and LT
ν|xLν|x =

C−1
ν|x is the Cholesky factorization of the inverse of the com-

bined covariance matrix.

2.2 Alternate Updates

Since the distribution πν|x depends on the unknown x, the
question is how the meanμν|x and the covarianceCν|x of the
combined uncertainties can be determined.

Considering a given reconstruction x̂, one can generate
samples of η|x with x = x̂ by drawing samples θ s with
s = 1, . . . , S following the distribution πangles, and evaluate
the model discrepancy term by

ηsx̂ = R(θ s) x̂ − R(θ̂) x̂, s = 1, . . . , S. (10)

Then, the sample mean and sample covariance can be calcu-
lated by

μ
sample
η|x=x̂ = 1

S

S∑
s=1

ηsx̂ (11)

and

Csample
η|x=x̂ = 1

S − 1

S∑
s=1

(ηsx̂ − μ
sample
η|x=x̂ )(ηsx̂ − μ

sample
η|x=x̂ )T . (12)

In (9), we can then use the sample mean and the sample
covariance to approximate μη|x and Cη|x, respectively.

Good estimation of the model discrepancy term strong-
ly relies on a reconstruction that resembles the ground truth.
VariationalmethodswithTV regularization have showngood
performance in large-scale CT reconstruction [27]. Adding a
TV regularization term to the negative log-likelihood in (9)
we obtain the variational model

min
x≥0

1
2‖Lν|x(b − R(θ̂) x − μν|x)‖22 + λTV(x), (13)

where λ > 0 denotes the regularization parameter, and the
TV term is defined as

TV(x) = ‖∇x‖2,1 ≡
n∑

i=1

‖[∇x]i‖2 , (14)

in which [∇x]i denotes the discrete gradient of x at the
i th pixel, computed via a forward difference scheme with
reflexive boundary conditions. The non-negativity constraint
represents the fact that the attenuation coefficients x can-
not be negative. Since Lν|x depends on the unknown x, the
objective function in (13) is non-convex, which means that a
solution relies on the initialization as well as the numerical
algorithm.
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According to (13), the reconstruction x also depends on
μν|x and Cν|x. To further strengthen the relation between x
and (μν|x,Cν|x)we introduce an alternately updating scheme
MD-TV shown in Algorithm 1.

Algorithm 1: Iteratively Updated Model Discrepancy
with TV (MD-TV)

Input: b, λ, θ̂ , πangles, μe, Ce. Initialize L0
ν|x, μ0

ν|x.
Output: x
1: for k = 1, 2, . . . , K
2: xk = argmin

x≥0

1
2‖Lk−1

ν|x (b − R(θ̂) x − μk−1
ν|x )‖22

+ λTV(x)
3: for s = 1, 2, . . . , S
4: ηsxk = R(θ s) xk − R(θ̂) xk with θ s ∼ πangles(·)
5: end
6: μ

sample
η|x=xk = 1

S

∑S
s=1 ηsxk

7: Csample
η|x=xk =

1
S−1

∑S
s=1(η

s
xk − μ

sample
η|x=xk )(η

s
xk − μ

sample
η|x=xk )

T

8: μk
ν|x = μe + μ

sample
η|x=xk

9: Lk
ν|x = chol

(
(Ce + Csample

η|x=xk )
−1

)
10: end

Here,L = chol(C−1) gives theCholesky factor of the inverse
covariance C−1, i.e., LTL = C−1. Note that although the
minimization problem for obtaining x is convex now, it does
not guarantee that the overall algorithm converges.

3 Block-Wise Representation

In each iteration of Algorithm 1 we require S forward pro-
jections to generate samples (10) of η|x in step 4, which can
dominate the cost of each iteration for large S. Moreover,
even for small S the algorithm can be of limited use in solv-
ing large-scale CT problems in its “naive” form due to the
amount of work in solving the TV optimization problem in
step 2 and inverting and factorizing the covariance matrix
Ce + Csample

η|x=x̂ ∈ R
m×m in step 9.

In our previous work [25], the latter issue was partly
addressed by a block-diagonal representation of the covari-
ance matrix. This greatly reduces the computational burden
of the inversion and factorization and it reduces the cost of
multiplication with the factorized matrix when solving the
TV optimization problem. In this work, we further extend
these ideas by reformulating the entire variational model
using the blockdiagonal representation.Our new formulation
can thus benefit from algorithms that utilize this structure as
well as parallelization in the block-wise sampling, inversion
and factorization of the covariance matrix.

3.1 Block Covariance Matrix Representation

The covariance matrix Cη|x=x̂ is block-diagonal when the
view angles are independent. The sampled matrix in (12)
may not be block diagonal due to the finite sampling.

Our experience is that the norm of the off-diagonal blocks
decreases as the number of samples S increases. Therefore,
we replace the sample covariance matrix Csample

η|x=x̂ ∈ R
m×m

by a block diagonal matrix C̃sample
η|x=x̂ given by

C̃sample
η|x=x̂ =

⎡
⎢⎢⎣
Csample

η|x=x̂,1
. . .

Csample
η|x=x̂,q

⎤
⎥⎥⎦ , (15)

where Csample
η|x=x̂,i ∈ R

p×p are the block diagonal parts of

Csample
η|x=x̂ . Then, assuming the Gaussian measurement noise

is independent identically distributed, i.e.,Ce = σ 2I, we can
compute the Cholesky factor of the inverse covariancematrix
(Ce + C̃sample

η|x=x̂ )−1 block-wise as follows

L̃sample
ν|x=x̂ =

⎡
⎢⎢⎢⎢⎣

chol
(
(σ2Ip + C̃sample

η|x=x̂,1)
−1)

. . .

chol
(
(σ2Ip + C̃sample

η|x=x̂,q )−1)

⎤
⎥⎥⎥⎥⎦ . (16)

These aspects are illustrated in Fig. 1, which shows that the
block-diagonal representation captures the structure of the
actual covariance matrix with fewer samples compared to
the full version.

Furthermore, to achieve a computationally efficient and
numerically stable inversion and factorization, we note that
we can interchange the inversion and factorization and utilize
that the covariancematrix can bewritten as a low-rank update
of a scaled identity matrix,

C̃sample
ν|x=x̂ = σ 2Im +

S∑
s=1

wswT
s , (17)

where ws = ηsx̂−μ
sample
η|x=x̂√

S−1
. Therefore, the computation of the

inverse Cholesky factors that constitute the blocks in L̃sample
ν|x=x̂

merely consists of low-rank updates of σ−2Im . Updating
an inverse Cholesky factor is discussed in, e.g., [8]; this
approach is numericallymore stable than using the Sherman-
Morrison formula for updating the inverse covariancematrix.
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Fig. 1 These plots show the small top-left submatrix of the entirematri-
ces. Each plot shows the absolute value of the matrix elements, and
to visualize the zero-nonzero structure we use a logarithmic colormap.
Left: the full sampled covariancematrixCsample

η|x=x̂ and theCholesky factor

Lsample
η|x=x̂ of its inverse with S = 100 samples.Middle: the block-diagonal

representation C̃sample
η|x=x̂ according to (15) and theCholesky factor L̃sample

η | x=x̂
of its inverse with S = 100 samples. Right: full sampled covariance
matrix and Cholesky factor of its inverse with S = 10000 samples.
We see that the block-diagonal representation captures the structure of
the actual covariance matrix with fewer samples compared to the full
version

3.2 Block-Wise Variational Model

Given the block-wise approximation of the covariance
matrix, the variational model in (13) can be formulated as

min
x≥0

1

2

∥∥∥∥∥∥∥

⎡
⎢⎣
L̃ν|x,1

. . .

L̃ν|x,q

⎤
⎥⎦

⎛
⎜⎝

⎡
⎢⎣
b1
...

bq

⎤
⎥⎦ −

⎡
⎢⎣
R(θ̂1)

...

R(θ̂q)

⎤
⎥⎦ x −

⎡
⎢⎣

μν|x,1
...

μν|x,2

⎤
⎥⎦

⎞
⎟⎠

∥∥∥∥∥∥∥

2

2

+ λTV(x),

(18)

where we use the short-hand notation μν|x,i and L̃ν|x,i for
the blocks of the sample mean (11) and Cholesky factor of
the inverse sample covariance matrix (16).

We can conveniently utilize the block structure to arrive
at a variational model using q data-fitting terms, i.e.,

min
x≥0

1

2

q∑
i=1

‖L̃ν|x,i (bi −R(θ̂i ) x − μν|x,i )‖22 + λTV(x). (19)

This formulation allows us to take the block structure into
account via a stochastic optimization algorithm, namely, the
stochastic primal dual hybrid gradient (SPDHG) method [9].
This greatly reduces the number of outer iterations and thus
the overall computational work, compared to classical pri-
mal dual methods. The SPDHG algorithm solves the generic
optimization problem

min
x

q+1∑
i=1

fi (Aix) + g(x), (20)
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where for (19) we specifically have

f1,...,q(·) = 1
2‖ · +L̃ν|x,i (bi − μν|x,i )‖22, (21)

fq+1(·) = λ ‖ · ‖2,1, (22)

A1,...,q = −L̃ν|x,iR(θ̂i ), (23)

Aq+1 = ∇, (24)

g(·) =
{
0 if xi ≥ 0,

∞ if xi < 0.
(25)

The procedure for solving the generic problem (20) is shown
in Algorithm 2, where we specially use the proximal opera-
tors:

proxτ
g(x) = max(x, 0), (26)

proxω
f ∗
i
(y) = 1

1+ω

(
y + ωL̃ν|x,i (bi − μν|x,i )

)
,

i = 1, . . . , q, (27)

proxω
f ∗
q+1

(y) = 1

λ

y
max(1, ‖y‖2) . (28)

Algorithm 2: SPDHG

Input: Initial x, step parameters ωi , τ .
Output: x
1: y = 0, z = z̄ = AT y = 0
2: for k = 1, . . .
3: x = proxτ

g(x − τ z̄)
4: Select i ∈ 1, . . . , q with probability Pi
5: y+

i = proxωi
f ∗
i
(yi + ωiAix)

6: �z = AT
i (y+

i − yi )
7: z = z + �z, y = y+
8: z̄ = z + 1

Pi
�z

9: end

A key choice here is the selection of the probabilities Pi in
step 4. First note that if Pi = 1 then we obtain the standard
the primal dual hybrid gradient (PDHG) aka. the Chambolle-
Pock algorithm [7]. However, if Pi < 1 only a few blocks
are updated in the dual variable before x is updated, which
reduced the computational work in each iteration. To ensure
that the algorithm puts equal weight on both regularization
and the data-fitting blocks, we choose

Pi =
{

1
2q if i = 1, . . . , q,

1
2 if i = q + 1.

(29)

The step sizes are selected according to

ωi = γ
ρ

‖Ai‖2 I, τi = γ −1 ρPi
‖Ai‖2 I, τ = min τi , (30)

where ρ < 1 and γ > 0. In our implementation we choose
γ = 1 and ρ = 0.999, i.e., we put equal balance between
primal and dual variable and as large a step size as possible.

4 Numerical Experiments

We present simulated numerical experiments in 2D to show
the performance of our method and compare it to our pre-
vious non-block version in [25]. The simulations are carried
out inMATLAB andwe use the ASTRAToolbox [30] for the
matrix-free forward and back projections, i.e., formultiplica-
tion with R(θ) and R(θ)T . The block formulation involves
multiplication with the block matrices R(θi ) ∈ R

p×n and
their transpose for i = 1, . . . q.

We assume that the view angles are independent and dis-
tributed according to πangles = N (θequid, δ2I), where θequid

are equidistant view angles in [0◦ to 360◦). We generate the
noisy data according to

b = R(θ̄)x̄ + e, (31)

where x̄ represents MATLAB’s Shepp-Logan phantom and
e ∼ N (0, σ 2I) with σ = 0.005 ‖R(θ̄)x̄‖2/√m. Moreover,
θ̄ is a realization of N (θequid, δ2I).

As in [25] we compare our results with a TV reconstruc-
tion that does not take the uncertainty into account, and a TV
reconstruction that uses the true view angles θ̄ . That is, we
compare

Table 1 The physical and discretization parameters in the simulated
CT experiments

Parameter Value

Scan geometry Fan-beam

Reconstruction domain size 50 cm × 50 cm

Source to center distance 50 cm

Source to detector distance 100 cm

Detector length 130 cm

Small example

Image pixels n = 452

Detector pixels p = 90

Number of view angles q = 90

View angle standard deviation δ = 1.2◦

Medium example

Image pixels n = 1352

Detector pixels p = 270

Number of projection angles q = 270

View angle standard deviation δ = 0.4◦
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Fig. 2 We compare relative error (y-axis) with regularization parameter choice (top) for all 3 methods, show convergence history of our algorithm
(middle) and compare number of samples of the model discrepancy for our method (bottom)

123

B Computed Tomography Reconstruction with Uncertain View Angles by Iteratively Updated Model
Discrepancy 87



Journal of Mathematical Imaging and Vision

Fig. 3 We compare reconstruction quality of the solutions for all 3
methods with the optimal regularization parameter choice. All images
are shown with the same greyscale. Top row N = 45, bottom row

N = 135. We see that our method (MD-TV) improves reconstruction
quality visually compared to a standard TV reconstruction, and is visu-
ally similar to the TV reconstruction using the true view angles

xTV = argmin
x≥0

1

2

q∑
i=1

‖Le,i (bi − R(θ̂i ) x − μe,i )‖22

+ λTV(x), (32)

xMD-TV = argmin
x≥0

1

2

q∑
i=1

‖L̃ν|x,i (bi − R(θ̂i ) x − μν|x,i )‖22

+ λTV(x), (33)

xTV-opt = argmin
x≥0

1

2

q∑
i=1

‖Le,i (bi − R(θ̄i ) x − μe,i )‖22

+ λTV(x), (34)

where θ̂ = θequid and MD-TV is our method.
In all cases, when solving for x we have a choice between

using SPDHG (Algorithm 2) and PDHG. We use K = 10
outer iterations and S = 100 samples unless stated other-
wise. According to our numerical tests, after K = 10 outer
iterations the reconstruction error levels off, see Fig. 2 (mid-
dle plots). The stopping criterion in Algorithm 2 when using

SPDHG is

‖xk+1 − xk‖2
‖xk‖2 ≤ 10−6

q
, (35)

and when using PDHG we use the stopping criterion

‖xk+1 − xk‖2
‖xk‖2 ≤ 10−6. (36)

We found empirically that dividing by q in (35) for SPDHG
provides similar reconstructions as using (36) for PDHG.

InTable 1,we summarize the parameters for our simulated
experiments. We consider the same two examples from [25].
We compare the quality of a solution x using the relative error
‖x − x̄‖2/‖x̄‖2 and visual quality.

4.1 Reconstructions

In the top row of Fig. 2 we show the relative error versus
the regularization parameter λ for the two examples and
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Fig. 4 We compare the convergence history of Algorithm 1 using either PDHG or SPDHG on our block-structure problem (19). Every “corner” in
these plots indicates the beginning of a new outer iteration. We see that SPDHG greatly decreases the number of epochs required for this problem

all three methods. First note that for the ranges shown our
method (MD-TV) always has a lower relative error compared
to theTVreconstruction (TV) from (32). Furthermore,we see
that the optimal choice of regularization parameter for MD-
TV is similar to the one from the TV reconstruction using
the true view angles (TV-opt) from (34). This indicates that
the uncertainty due to the view angles is better handled by
incorporating it in the data fidelity, rather than increasing the
amount of TV regularization.

In the middle row of Fig. 2 we show the convergence his-
tory ofMD-TV for the K = 10 outer iterations. The SPDHG
algorithmuses onemultiplicationwithR(θ̂) and its transpose
every 2q iterations in expectation. Hence, to show conver-
gence and compare the amount of work we use the unit of an
epoch defined as thework involved in onemultiplicationwith

R(θ̂) or its transpose, since the computation is dominated by
the forward and back projections.

The SPDHG algorithm computes q times as many gradi-
ents (multiplication with ∇) as the PDHG algorithm. This
leads to a small increase in computational cost that is not
accounted for when only comparing epochs. However, eval-
uation of each finite difference approximation [∇x]i in (14)
requires summing only the neighboring pixels in the CT
reconstruction, compared to summing all pixels along each
line for the forward and back projections. Hence—except for
very underdetermined problems—computation of the gradi-
ent is significantly less expensive than computing the forward
projection. In our numerical tests using MATLAB, we found
that a direct computation of the gradient is 1000 times faster
than computing a forward projection with the optimized
CPU-ASTRA library. The convergence plot includes the
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work associated with sampling the model discrepancy which
requires S + 1 multiplications of R(θ).

In the bottom row of Fig. 2 we show the convergence
history of MD-TV for different number of samples S. We
note that relative error of the final solution does not improve
when using more than about S = 100 samples, so we use
that for our other experiments.

Finally, in Fig. 3 we show the reconstructions obtained
from the regularization parameter that yielded the lowest rel-
ative error using all 3 methods.

4.2 Convergence

In Fig. 4, we compare the convergence history of our algo-
rithm using SPDHG which takes the block structure into
account with our previous algorithm using PDHG, which
does not. Every “corner” in these plots indicates the begin-
ning of a newouter iteration, andwe see a significant decrease
in the number of epochs required in each outer iteration. We
see for example that in the small example the SPDHG algo-
rithm reaches convergence in the first outer iteration using
69 epochs compared to PDHG with 2174 epochs.

5 Conclusion

We proposed a new model and iterative algorithm for CT
reconstruction when the view angles are uncertain. The
uncertainty is described by a model discrepancy term and
included in the data fidelity term of a TV regularized varia-
tional model. To establish the newmodel, we have overcome
two key difficulties: (i) the probability distribution for the
combined measurement noise and model discrepancy may
not have a closed-form expression leading to difficulties for
deriving a data fidelity term and (ii) the combined noise and
discrepancy depend on the unknown CT reconstruction. We
handle these issues by approximating the model discrepancy
by a Gaussian, leading to a closed-form expression for the
data-fidelity, and we alternately update the reconstruction
and the parameters of the model discrepancy. 2D numerical
experiments show that this approach improves the recon-
struction quality in terms of relative error and visual quality
compared to a standard TV reconstruction. Furthermore, our
model admits a block structure, which we take advantage of
to greatly reduce the overall computational work.
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Abstract. We consider computed tomography (CT) with uncertain measurement
geometry, with a focus on the case where the view angles are uncertain and
where estimation of these angles improves the reconstruction. We propose a new
reconstruction model and a corresponding algorithm that has an additional view-
angle estimation component, allowing us to determine the angles solely from the
measured CT data. A key component of our approach is that we quantify the
uncertainty of the view angles via a model-discrepancy formulation, allowing us
to take the uncertainty into account in the image reconstruction. This approach
generalizes in a straightforward way to other cases of uncertain geometry. Our
method is computationally efficient since we can utilize a block-structure in our model
for estimation of both the CT image and the view angles. The joint image/angle
reconstruction problem is non-convex which leads to difficulties in recently proposed
algorithms, and we demonstrate numerically that our method seems to avoid these
difficulties. Simulations show that our method, with a total variation (TV) prior that
reflects our phantoms, is able to achieve reconstructions whose quality is similar to
ones obtained with the correct view angles (the ideal scenario).
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1. Introduction

In this paper we consider Computed Tomography (CT) where – in addition to
reconstructing an X-ray attenuation image of an object – estimation of certain
parameters of the measurement geometry leads to an improved reconstruction. We
focus on the important case of uncertain view angles, but our approach will also work
for other types of uncertainties in the measurement geometry. In the standard models for
CT the view angles of the set-up are assumed to be known exactly, but in practice they
may only be known with a limited accuracy. For specific applications, such as nano and
micro X-ray tomography [21, 32] or motion impaired CT [17] this uncertainty in the view
angles is important to take into account to improve the quality of the reconstruction.
The goal in this paper is to study a new method for simultaneous image reconstruction
and view angle estimation solely from measured CT data with no machine or object
calibration.

The generic version of the discretized CT reconstruction model takes the form

b = R(θ)x+ e, (1)

where b ∈ Rm is the measured (noisy) CT data, x ∈ Rn is the unknown X-ray
attenuation coefficients (CT image) that we want to reconstruct, and e ∈ Rm is the
measurement noise. The CT forward model – or forward projection – is represented by
the matrix R(θ) ∈ Rm×n, which is parameterized by the vector θ ∈ Rq that represents
the geometry – here the view angles. Specifically, we consider CT geometries where each
position of the source is defined by a single angle given by the view angles in θ. This
includes 2D parallel- and fan-beam as well as 3D cone-beam with a fixed axis rotation.
Any other parameter of the measurement geometry is assumed to be known with high
accuracy and are therefore not parameterized explicitly in the forward model. In the
case that other parameters are uncertain these can be added to the parameterization θ.
For more details on the physical and mathematical models of CT see e.g., [5, 16].

1.1. Previous work

The CT problem in (1) can be handled in many different ways. Direct inversion methods
[16] are fast, but may perform poorly with increasing measurement noise or uncertainty
in the parameters of the scan, e.g., in the view angles. Variational methods can
incorporate prior information via regularization terms, see, e.g., the survey [3]. These
methods are robust toward measurement noise because of the regularization techniques.
Techniques such as Tikhonov regularization [22, 29] or total variation (TV) [25, 26] are
used for the image reconstruction problem. However, these methods do not take the
uncertainty of the view angles into account, which means that good performance is not
guaranteed if the view angles are only known with limited accuracy.

View angles and other scan parameters can be estimated by attaching markers
to the scanned object that can then be tracked during the measurement process. In
addition to being time-consuming to attach, these markers are made of a material with
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a high X-ray absorption, which can obscure areas of interest in the scanned object
and create artefacts in the reconstruction [27]. Alternatively, marker-free view angle
estimation approaches that are based only on the measured CT data have been studied
analytically for specific geometries in e.g., [2, 7, 9]. This has – along with a number of
practical methods – led to a large body of work on estimating view angles and other scan
parameters in CT such as [2, 7, 9, 17, 20, 31, 33]. These methods can be categorized
into two groups: i) estimating the view angles directly from the CT data followed by a
reconstruction, and ii) jointly estimating the view angles and image reconstruction.

Methods such as [9] that first estimate the view angles based purely on the CT data
and then reconstruct the CT image are computationally efficient, but they suffer from
error propagation since any errors introduced in the view angle estimation propagate
to the reconstruction. Jointly estimating the view angles and CT image, e.g., via
Bayesian sampling methods [20], avoid this error propagation, but these methods can
be computationally expensive due to the sampling-based nature of the approach.

A popular approach for joint estimation is the so-called projection matching (PM)
methods. Here, given a reconstruction, the view angles are estimated by matching the
measured projections with ones obtained from the forward model. Different approaches
for finding the matching projections have been proposed and investigated such as cross-
correlation [33] or joint optimization using, e.g., exhaustive search [21], gradient-based
methods [31] or derivative-free methods [17]. In general, the goal of projection matching
using joint optimization is to obtain the best fitting view angles by comparing the
distance of the forward model projection with the CT data in some metric (typically a
2-norm data-fit). This leads to a non-linear problem and depending on the regularization
it can be a non-convex problem with many local minima, often leading to inaccuracies
in the view angle estimation [31].

In our previous work [24], we proposed a CT reconstruction method that takes
potential uncertainty in the view angles into account using a model-discrepancy term
based on the approximation error approach (AEA) [13]. This approach worked well,
but was lacking in two major areas which we address in this paper: i) we assumed
that the model discrepancy followed a Gaussian distribution and hence the quality of
the reconstruction was limited by this assumption and ii) the uncertainty in the view
angles is marginalized in the likelihood and hence even if the correct distribution of the
model discrepancy term is known, the quality of the reconstruction is impacted by the
marginalization of the uncertainty.

1.2. Our contribution

To address the above-mentioned issues, we propose a new CT reconstruction method
that estimates the view angles in addition to reconstructing the CT image. A key
contribution of our method is that we are able to quantify the uncertainty of the view
angles and incorporate this into the image reconstruction with acceptable computational
overhead. The uncertainty is quantified by utilizing a model-discrepancy term, which is
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used to estimate the view angles as well as to incorporate any remaining uncertainty in
the likelihood for the CT data. We summarize our contributions as follows:

• We propose a new CT reconstruction method with a view-angle estimation
component that uses uncertainty quantification.

• We quantify the uncertainty of the view angles and take this into account in the
image reconstruction.

• We achieve a fast and computationally efficient angle estimation procedure by
utilizing a block-structure of the CT reconstruction model.

• We show numerically that our method gives reconstructions of similar quality to
ones obtained with the exact view angles.

• We show numerically that our method is robust towards the choice of the
regularization parameter on the TV prior.

• We show numerically that our algorithm seems to avoid the difficulties associated
with the non-convexity of the joint image/angle reconstruction problem, found in
other recent methods.

1.3. Structure of paper

Our paper is structured as follows. In Section 2 we summarize our previous work
in [24], where we derive a CT reconstruction method that takes uncertainty in the
view angles into account by marginalization. In Section 3 we propose our new method
which additionally estimates the view angles and the associated uncertainty by jointly
estimating the view angles and the CT image in an iterative procedure. In Section 4
we present simulated numerical results that show the performance of our method and
finally Section 5 is the conclusion.

2. Review of CT algorithm with marginalized view angle uncertainty

In this section we summarize our previous work in [24] to arrive at a statistical model for
the CT problem (1), where the view angles are known with a limited accuracy and are
marginalized in the likelihood. We assume Gaussian distributions for the view angles θ
and measurement noise e. The CT model with uncertain view angles is then given by

b = R(θ)x+ e, θ ∼ N (µθ, diag(δ)), e ∼ N (0, σ2I), (2)

where µθ are chosen as the nominal view angles of the scanner with variances diag(δ).
The measurement noise e is assumed to be independent identically distributed zero-
mean Gaussian with standard deviation σ.

To avoid working with a distribution of forward models R(θ), θ ∼ N (µθ, diag(δ)),
we reformulate (2) using a fixed forward model R(µθ) and obtain the modified CT
model

b = R(µθ)x+ η + e, η ∼ πdiscrep(·), e ∼ N (0, σ2I), (3)
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where the so-called model-discrepancy term η is given by

η(θ,x) = R(θ)x−R(µθ)x. (4)

It can be advantageous to use the model (3) instead of (2) because the uncertainty in
the view angles is moved to η while the forward model R(µθ) is fixed. If we ignore
that η depends on x and consider η as independent additive noise then (3) becomes a
standard CT image reconstruction model with two additive noise terms.

Representing model uncertainty as a model-discrepancy term has been successfully
applied to many imaging applications, such as fine-to-coarse mesh approximation in
diffuse optical tomography [1], unknown domain boundaries in electric impedance
tomography [19], unknown scattering in both diffuse optical tomography and
quantitative photoacoustic tomography [15, 23], truncation errors in magnetic particle
imaging [4], and uncertain sound speed in photoacoustic tomography [28]. The idea of
a model-discrepancy term was originally proposed in [14] where η was modelled as a
Gaussian process and was later adapted to Bayesian inverse problems in [12, 13] and
named the Approximation Error Approach (AEA).

2.1. Gaussian approximation of model discrepancy

The distribution πdiscrep may not have a closed-form expression, so we approximate
it by a simple distribution. Gaussian approximation of the model discrepancy have
been shown experimentally to be useful for this application [24] and many other
applications [1, 4, 6, 10, 12, 13, 15, 18, 19, 23, 28]. Hence, we simplify the model (3)
by approximating the distribution πdiscrep conditioned on x by a Gaussian distribution,
i.e., η|x ∼ N (µη|x,Cη|x) with mean and covariance depending on x.

Given a reconstruction x̂ one can generate samples of the model discrepancy
η|x = x̂ by drawing samples θs following the prior distribution N (µθ, diag(δ)), and
evaluating the model discrepancy

ηs
x̂ = R(θs) x̂−R(µθ) x̂, s = 1, . . . , S. (5)

The sample mean and covariance of the model discrepancy are then given by

µ̃η|x̂ =
1

S

S∑
s=1

ηs
x̂, (6)

C̃η|x̂ =
1

S − 1

S∑
s=1

(ηs
x̂ − µ̃η|x̂)(η

s
x̂ − µ̃η|x̂)

T . (7)

2.2. CT image reconstruction

To arrive at a good reconstruction we choose a method based on a variational
formulation. Variational methods require a data-fitting term that incorporate the
forward model and regularization terms that incorporate prior information about the CT
image, see e.g., the survey [3]. For our purpose the data-fitting term is derived through
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the likelihood function associated with the model (3) using the Gaussian approximation
of the model discrepancy in Section 2.1. Letting ν = η+ e we marginalize with respect
to ν to arrive at the likelihood

π(b|x) =
∫
Rm

π(b,ν|x)dν = πν|x(b−R(µθ)x|x). (8)

By taking the negative logarithm and using the Gaussian distributions of η|x and e, we
obtain the closed-form expression of the negative log-likelihood

− log π(b|x) ∝ 1

2
∥Lν|x(b−R(µθ)x− µη|x)∥22, (9)

where Lν|x is the Cholesky factor of the combined inverse covariance (Cη|x + σ2I)−1.
Combining this with total variation (TV) regularization, which can work well for large-
scale CT problems [25, 26], we arrive at the CT image reconstruction problem

xMD-TV = argmin
x≥0

1

2
∥Lν|x(b−R(µθ)x− µη|x)∥22 + λTV(x), (10)

where λ > 0 denotes the regularization parameter, and the TV term is defined as

TV(x) = ∥∇x∥2,1 ≡
n∑

i=1

∥[∇x]i∥2 , (11)

in which [∇x]i denotes the discrete gradient of x at the ith pixel using reflexive boundary
conditions. The non-negativity constraint represents the fact that the attenuation
coefficients x cannot be negative.

The optimization problem in (10) is solved efficiently by the stochastic primal-dual
hybrid gradient (SPDHG) algorithm [8] due to the separable nature of the data-fitting
term. More details on the block-representation of the covariance matrix and efficient
computation of the Cholesky factor of the inverse covariance, as well as the solver for
(10), can be found in our previous work [24].

3. New CT algorithm with View Angle Estimation

The quality of the reconstruction from (10) is limited by the Gaussian assumption on
the model-discrepancy term η. If this assumption is not valid or the uncertainty in
the view angles is too large then – even when we take the uncertainty into account
– we cannot obtain satisfactory results. To overcome this limitation and obtain a
better reconstruction, we have to estimate the view angles in addition to the image
reconstruction. In this section, we propose a new method with added view angle
estimation based only on the measured CT data.

3.1. View angle estimation

First of all, we consider how to estimate the view angles θ, more specifically the
mean µθ and the associated uncertainty according to the CT model (2), given the
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measured CT data b and an obtained reconstruction x̂. Recall that the distribution
of ν = η + e conditioned on x is approximated by a Gaussian distribution, i.e.,
ν|x ∼ N (µη|x,Cη|x + σ2I). This provides a natural connection between x and θ.
With the Gaussian approximation and assuming that e is independent of η as well as
θ, we have a joint Gaussian distribution[

θ

ν|x̂

]
∼ N

([
µθ

µν|x̂

]
,

[
diag(δ) CT

νθ|x̂
Cνθ|x̂ Cν|x̂

])
, (12)

where µν|x̂ = µη|x̂ because the mean measurement noise is zero, Cνθ|x̂ = Cηθ|x̂ because
the measurement noise is independent of θ, and Cν|x̂ = Cη|x̂ + σ2I.

The joint distribution provides a closed-form expression (shown below) for the
conditional parameters – i.e., mean and variance – of the view angles given the
reconstruction x̂, through the combined model-discrepancy and noise term ν|x̂. This is
in contrast to determining the conditional parameters, e.g., from π(θ|b,x), which would
require a distributional prior on x. Thus, in turn, requires sampling-based methods
that are unfeasible for large-scale CT. Moreover, deriving the conditional parameters
provide natural uncertainty estimates of the view angles that can be used in the image
reconstruction from Section 2 – a feature which is not present in, e.g., projection
matching methods which only provide a single point estimate through optimization.

To derive the conditional parameters according to the joint distribution we need
an estimate of the combined model discrepancy and measurement noise term ν. Given
a reconstruction x̂ the combined term can be estimated by ν̂ = b−R(µθ)x̂. To obtain
an estimate of the view angles the conditional mean of θ given ν̂ is

µθ|ν=ν̂ = µθ +CT
νθ|x̂(Cη|x̂ + σ2I)−1(ν̂ − µν|x̂),

= µθ +CT
ηθ|x̂(Cη|x̂ + σ2I)−1(b−R(µθ) x̂− µη|x̂). (13)

Furthermore, the conditional covariance is given by

Cθ|ν=ν̂ = diag(δ)−CT
νθ|x̂(Cη|x̂ + σ2I)−1Cνθ|x̂,

= diag(δ)−CT
ηθ|x̂(Cη|x̂ + σ2I)−1Cηθ|x̂. (14)

The mean µη|x̂ ∈ Rm and the covariance matrix Cη|x̂Rm×m can be approximated by the
sample mean and sample covariance defined in (6) and (7), respectively. Furthermore,
the cross-covariance matrix Cηθ|x̂ ∈ Rm×q of the view angles θ ∈ Rq and the model-
discrepancy term η|x̂ ∈ Rm can be approximated by the sample cross-covariance

C̃ηθ|x̂ =
1

S − 1

S∑
s=1

(ηs
x̂ − µ̃η|x̂)(θ

s − µ̃θ)
T (15)

with sample mean

µ̃θ =
1

S

S∑
s=1

θs, (16)

where θs follows the assumed prior distribution N (µθ, diag(δ)).
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Figure 1. The dependence of the conditional mean and covariance estimates on the
CT image used. Top: example of reconstruction using (10) (left) and exact CT image
(right) used to calculate the sample mean and covariances shown below. Bottom: the
mean and confidence intervals according to the prior (left) and the conditional mean
and covariance calculated from (13) and (14), respectively, using x̂ (middle) and x̄

(right).

The quality of the conditional mean and variance estimates depend heavily on the
reconstruction x̂ both for estimating ν̂ and for the sampled mean and covariances in
(6), (7) and (15). For this reason, we cannot expect the conditional mean (13) to be
close to the true underlying view angles if the estimate of x̂ is poor. A similar argument
holds for the conditional covariance in (14)

To illustrate this point, Figure 1 shows the conditional mean and 99% confidence
intervals calculated from (13) and (14), respectively, using a reconstruction x̂ from
solving (10) and from the ground truth CT image x̄. The object is the Shepp-Logan
phantom and the number of samples is S = 100. For comparison, Figure 1 also shows
the mean and 99% confidence intervals from the prior distribution N (µθ, diag(δ)). Note
that (13) and (14) yield estimates of the view angles that are closer to the ground truth
with smaller uncertainty (variance) compared to the prior. Furthermore, we see that
even when using a reconstruction x̂ rather than the ground truth x̄ it is possible to
estimate the view angles.

However, the variance does not capture the true uncertainty when using the
reconstruction. This suggests that the conditional mean can be used to update the
current estimate of the view angles, but the conditional covariance is too aggressively
reduced when using x̂ rather than x̄ and therefore can not be fully trusted. To avoid this
issue we add a relaxation parameter α ∈ [0, 1] to the term that reduces the variance, to
take into account that we are using an estimated CT image and not the ground truth,
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101

102

10-4

10-2

Figure 2. Left: The matrix C̃ηθ|x̂ ∈ Rm×q is difficult to show because it is very
rectangular (“tall and skinny”), and therefore we show the sum of the absolute values
of the sample covariance between ηi and θj , which is identical to ∥C̃ηiθj |x̂∥1, shown
here for i, j = 1, 2, 3, 4, 5. Right: Zoom of the top-left 5×5 submatrix of the computed
conditional covariance from (14). The that the colormap in both images is in log-scale.

as assumed by the model. The relaxed conditional covariance is therefore
Cα

θ|ν=ν̂ = diag(δ)− αCT
ηθ|x̂(Cη|x̂ + σ2I)−1Cηθ|x̂. (17)

When α = 1 we fully trust the conditional covariance, i.e., Cα
θ|ν=ν̂ = Cθ|ν=ν̂ and when

α = 0 we do not update the covariance, i.e., Cα
θ|ν=ν̂ = diag(δ).

3.2. Block Representation

In this paper we consider CT geometries where in each projection, the position of the
source is defined by a single independent angle that needs to be estimated. Therefore the
elements of θ are assumed mutually independent and the mean and covariance defined
in (13) and (14) can be computed element-wise.

Our work can immediately be extended to estimation of other parameters in the
measurement geometry that have independent realizations for each projection. The
importance of this independence can be seen in the block-structure of the estimated
covariance matrices as illustrated in Figure 2 where we use the CT set-up in Table
1 with the Shepp-Logan phantom. Note that the colormap here is in log-scale. The
matrix C̃ηθ|x̂ ∈ Rm×q is very rectangular (“tall and skinny”) and therefore it is difficult
to display it properly; hence the left image in Figure 2 shows the sum of the absolute
values of the covariance between ηi and θj. This amounts to plotting ∥C̃ηiθj |x̂∥1 for
each pair of ηi and θj which is done here for i, j = 1, 2, 3, 4, 5. This confirms that there
is little covariance between ηi and θj when j ̸= i due to the independence of the view
angles.

The conditional covariance Cθ|ν=ν̂ from (14) has diagonal elements that are much
larger than the off-diagonal elements. Therefore the computation of the conditional
mean and covariance according to (13) and (14) is carried out element-wise as follows(

µθ|ν=ν̂

)
i
= µθi + cTηiθi|x̂(Cηi|x̂ + σ2I)−1
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bi −R(µθi) x̂− µηi|x̂

)
, (18)(

Cθ|ν=ν̂

)
ii
= δi − cTηiθi|x̂(Cηi|x̂ + σ2I)−1cηiθi|x̂, (19)

for i = 1, . . . , q. Here, µθi = (µθ)i and cηiθi|x̂ ∈ Rp is the ith column vector of the
cross-covariance

Cηθ|x̂ =

 cη1θ1|x̂
. . .

cηqθq |x̂

 ∈ Rp×q, (20)

and (Cηi|x̂ + σ2I)−1 is the sub-matrix of the ith block in

(Cη|x̂ + σ2I)−1 =


(Cη1|x̂ + σ2I)−1

. . .
(Cηq|x̂ + σ2I)−1

 . (21)

The smaller covariance sub-matrices can be approximated by the sampling the model
discrepancy for each view angle, i.e., for each i = 1, . . . , q we sample

ηs
i = R(θsi ) x̂−R(µθi) x̂, s = 1, . . . , S, (22)

where θsi follows the assumed prior distribution N (µθi , δi). We then calculate the blocks
of the sample mean and covariance

µ̃ηi|x̂ =
1

S

S∑
s=1

ηs
i , (23)

C̃ηi|x̂ =
1

S − 1

S∑
s=1

(ηs
i − µ̃ηi|x̂)(η

s
i − µ̃ηi|x̂)

T , (24)

as well as the cross-covariance vector

c̃ηiθi|x̂ =
1

S − 1

S∑
s=1

(ηs
i − µ̃ηi|x̂)(θ

s
i − µ̃θi)

T . (25)

with sample mean

µ̃θi =
1

S

S∑
s=1

θsi . (26)

Similarly, as we show in [24], the data-fitting term in (10) can be split into q data-fitting
terms arriving as the image reconstruction model

xMD-TV = argmin
x≥0

1

2

q∑
i=1

∥Lνi|x(bi −R (µθi)x− µ̃ηi|x)∥
2
2 + λTV(x), (27)

where the Cholesky factor Lνi|x is obtained by Cholesky factorization of the inverse
covariance (C̃ηi|x̂ + σ2I)−1. This provides a block representation on both the image
reconstruction and view angle estimation problem.
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3.3. Alternating scheme for image reconstruction and view angle estimation

The quality of the CT image reconstruction introduced in Section 2 depends on how
close the nominal view angles µθ are to the true underlying view angles that generated
the CT data, as well as the corresponding variances δ. Similarly, the quality of the
conditional view angles and corresponding variances introduced in this section depends
on how close the reconstruction is to the ground truth that generated the CT data.
Hence, to take advantage of this relationship we propose an alternating scheme (CT-
VAE) shown in Algorithm 1, where we reconstruct the CT image using (10) and estimate
the view angles using the conditional mean and variance in (13) and (17) alternately.

The optimization problem with respect to the reconstruction x in line 12 is solved
by using a stochastic primal-dual hybrid gradient algorithm [8]. For more details on
solving the CT problem see [24]. The sampling and computation of the conditional
mean and covariances in lines 2–7 as well as 8–11 can be carried out in parallel for each
i = 1, . . . , q. Note that different number of samples SVA and SCT may be used when
sampling the model discrepancy term for the view angle estimation step and image
reconstruction step respectively.

4. Numerical Experiments

In this section, we show simulated numerical experiments to illustrate the performance
of our method on a CT problem where the view angles are only known with a limited
accuracy. All simulation tests were run in MATLAB using the ASTRA toolbox [30]
for computing the matrix-free forward and back projections, i.e., multiplication with
R(θ) ∈ Rm×n and its transpose. The CT matrix is obtained by the line model and it
represents discretized line integrals parameterized by the view angles θ ∈ Rq. That is,
letting f be the continuous version of the CT image x, the discretization satisfies

(R(θi)x)l ≈ (Rf)(θi, sl) =

∫
R
f(sl

−→v (θi) + t−→v ⊥(θi)) dt, (28)

where sl with l = 1, · · · , p is the position of the lth pixel on the detector and θi with
i = 1, · · · , q are the view angles, and thus m = qp. Moreover, −→v (θ) = (cos θ, sin θ) is the
direction of the view angle θ and −→v ⊥(θ) = −→v (θ + π/2) is the perpendicular direction
in which the X-ray is attenuated. The sub-matrix R(θi) ∈ Rp×n represents a single
projection at view angle θi. In our simulations we use a fan-beam geometry and the
nominal view angles µθ are chosen as equidistant in [0◦, 360◦). We generate the noisy
CT data according to

b = R(θ̄)x̄+ ē, (29)

where x̄ is either MATLAB’s Shepp-Logan phantom or the “grains” phantom from AIR
Tools II [11], which consists of piece-wise constant Voronoi cells. The true underlying
view angle θ̄i is a realization from the uniform distribution U(µθi − 2

√
δi, µθi +2

√
δi) for

each i = 1, . . . , q to avoid inverse crime. The prior for each view angle θi is N (µθi , δi)

and therefore the true view angles fit within a 95% confidence interval of the prior, but
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Algorithm 1: Computed Tomography with View Angle Estimation (CT-
VAE)

Input : Measured CT data b, CT matrix R(·), noise variance σ2, number of
outer iterations K, regularization parameter λ > 0, relaxation
parameter α ∈ [0, 1], initial reconstruction x0, mean of view angles
θ0 and variance of view angles δ0.

Output: Final reconstruction xK , mean of view angles θK and variance of
view angles δK .

1 for k = 1, 2, . . . , K do
// View angle estimation step

2 for i = 1, 2, . . . , q do
3 Sample ηs

i = R(θsi )x
k −R(θki )x

k, θsi ∼ N (θki , δ
k
i ), s = 1, . . . , SVA.

4 Calculate µ̃ηi|xk , C̃ηi|xk and c̃ηiθi|xk from (23), (24) and (25).
5 θk+1

i = θki + c̃Tηiθi|xk(C̃ηi|xk + σ2I)−1(bi −R(θki )x
k − µ̃ηi|xk).

6 δk+1
i = δki − αc̃Tηiθi|x̂(C̃ηi|x̂ + σ2I)−1c̃ηiθi|x̂

7 end

// Image reconstruction step
8 for i = 1, 2, . . . , q do
9 Sample ηs

i = R(θsi )x
k −R(θk+1

i )xk, θsi ∼ N (θk+1
i , δk+1

i ), s = 1, . . . , SCT.
10 Calculate µ̃ηi|xk from (23).
11 Calculate the Cholesky factor Lνi|xk of (C̃ηi|x̂ + σ2I)−1 from (24).
12 end
13 xk+1 = argmin

x≥0

1

2

q∑
i=1

∥Lνi|xk(bi −R(θk+1
i )x− µ̃ηi|xk)∥22 + λTV(x)

14 end

are drawn from a different distribution. Finally the measurement noise ē is a realization
from N (0, σ2I) with σ = 0.005∥R(θ̄)x̄∥2/

√
m. The physical parameters of the CT

model are summarized in Table 1. We note in particular that the image reconstruction
problems here are under-determined since n = 1282 and m = pq with p = 128 and
q = 90, which could not be dealt with in [24].

We use SVA = SCT = 100 samples, but note that different number of samples could
be used when sampling the model discrepancy in the two stages, i.e., for the view angle
estimation (line 2) and image reconstruction (line 9). We set K = 10 outer iterations
and relaxation parameter α = 0.5. We apply the SPDHG algorithm [8] to solve the
minimization problem for reconstructing x (line 12), and stop the inner iterations when
the relative change in x is small, i.e., when ∥xl − xl−1∥2/∥xl∥2 < 10−5 where l is the
iteration index for the inner loop. We found no significant difference in reconstruction
quality when using 10−5 and a smaller relative error 10−6 (which was used in [24]). We
compare a reconstruction x to the ground truth x̄ using relative error (RE) defined as
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Table 1. The physical and discretization parameters in the simulated CT experiments.

Parameter Value
Scan geometry Fan-beam
Reconstruction domain size 50 cm × 50 cm
Source to center distance 50 cm
Source to detector distance 100 cm
Detector length 130 cm
Image pixels n = 1282

Detector pixels p = 128

Number of view angles q = 90

View angle standard deviation
√
δ = 1◦

∥x− x̄∥2/∥x̄∥2 and compare the view angles θ to the true underlying view angles θ̄ by
the mean absolute difference

∑q
i=1 |θi − θ̄i|/q or direct numerical difference θi − θ̄i.

To benchmark the performance of our method, we compare the reconstruction
obtained from our new method CT-VAE with the ones obtained from our previous
algorithm MD-TV [24] from (10). We also compare with a classical non-negative TV
regularized reconstruction using the nominal view angles µθ (L2-TV) as well as the true
underlying view angles θ̄ (L2-TV-opt), obtained from solving the optimization problems

xL2-TV = argmin
x≥0

1

2σ2

q∑
i=1

∥bi −R(µθi)x∥22 + λTV(x), (30)

xL2-TV-opt = argmin
x≥0

1

2σ2

q∑
i=1

∥bi −R(θ̄i)x∥22 + λTV(x). (31)

Here, xL2-TV-opt represents the optimal reconstruction obtainable with the non-negative
TV prior, since in (31) the true underlying view angles θ̄ are used.

Finally, since our method also estimates the view angles in the CT problems, at the
end of this section we also compare our view angle estimation results with the projection
matching method proposed in [31] that solves for the best-matching projections using a
gradient descent method.

4.1. Comparison of reconstructions

Figure 3 shows the best reconstructions obtained by selecting the optimal regularisation
parameter that gave rise to the lowest relative error RE from our new method CT-
VAE, our previous method MD-TV, as well as the L2-TV and L2-TV-opt methods.
The images all have the same colormap. Comparing CT-VAE and L2-TV-opt with
L2-TV and MD-TV, we see that the last two look visually inferior and have a larger
relative error than the first two. Note especially the sharper white boundary in the
Shepp-Logan phantom and the sharper edges in the grains phantom. In particular, our
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Figure 3. Best reconstructions obtained by selecting the optimal regularization
parameter in terms of relative error for our method (CT-VAE) in Algorithm 1 compared
to our previous method MD-TV (10) in [24], L2-TV (30) and L2-TV-opt (31) for the
Shepp-Logan phantom (top) and the grains phantom (bottom).

method provides reconstructions that are very similar to the benchmark reconstruction
obtained with the true view angles (L2-TV-opt) both in terms of visual quality and
relative error. Especially, with respect to the relative error our method performs the
same or even slightly better than L2-TV-opt.

This comparison shows that for the uncertain view angle CT problem (2) our
method outperforms the methods that do not use view angle estimation, and it can
provide reconstructions with the same quality as the ones obtained using the true
view angles. Furthermore, there is also a difference in the value of the regularization
parameter λ, where L2-TV and MD-TV both require more regularization – i.e., larger
λ – to avoid artefacts from reconstructing with the nominal view angles.

In Figure 4 we compare the reconstruction quality in terms of relative error with
respect to varying regularization parameters. We can see that in terms of relative error
our method provides comparable results to the benchmark (L2-TV-opt) reconstructions
except for really small regularization parameters. In particular, our method and L2-TV-
opt have the same optimal regularization parameter. The reason is that any remaining
uncertainty in the view angle estimate is dealt with by the image reconstruction step
from Section 2 and therefore additional regularization from the prior is not needed.
Furthermore, our method always provides reconstructions with lower relative errors
compared to L2-TV and MD-TV. In the case with small regularization parameters the
reconstructions are under-regularized, i.e., covered by artefacts from measurement noise
and view angle errors, and those artefacts would have a strong effect on the results of
the conditional mean and covariance and leads to poor view angle estimates. On the
other hand, when we use very large regularization parameters, the reconstructions are
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Figure 4. Comparison of relative error vs regularization parameter for the Shepp-
Logan phantom (left) and the grains phantom (right) for our method (CT-VAE) in
Algorithm 1 compared to our previous method MD-TV (10) in [24], L2-TV (30) and
L2-TV-opt (31).

so over-regularized that the uncertainty in the view angles is negligible, therefore all
four methods end up with the same relative errors. From these results it is also evident
that joint estimation of the view angles and CT image provides better reconstructions
with lower relative error compared to reconstruction obtained using the nominal view
angles.

4.2. View angle estimation

In addition to reconstructing the CT image, our new method CT-VAE also estimates
the view angles using the conditional mean (13) and covariance (17). In Figure 5 we
show these estimates of the view angles obtained from our method and compare with
the prior mean and covariance. It is obvious that for both the Shepp-Logan and the
grains phantoms the estimated view angles are significantly closer to the true underlying
view angles compared with the prior. In the prior, the errors in the mean of the view
angles are in the range [0, 2.5◦], but using our method the range of the errors is reduced
to [0, 0.15◦]. Furthermore, the variance estimates accurately reflect the distance from
the true underlying view angles, i.e., the true view angles lie within a 99% confidence
interval in the figure.

In Figure 6 we can also compare the average angle error
∑q

i=1 |θKi − θ̄i|/q from the
conditional mean (13) in terms of varying quality of reconstruction. This is achieved by
varying the regularization parameter for the TV prior. Here we see that the smallets
angle error is obtained at around the same regularization parameters that provide the
best CT reconstruction (smallest relative error RE) and that the angle error is the
same for a large range of regularization parameters. The average angle error of the
nominal view angles is

∑q
i=1 |µθi − θ̄i|/q = 0.90◦, hence even for the largest and smallest

regularization parameters the estimated view angles are closer to the true underlying
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Figure 5. Distance to the true view angles and 99% confidence interval for the
prior (left), and CT-VAE estimates for the Shepp-Logan (middle) and grains (right)
phantoms. The scale on the y-axis is the same in all three figures.

Figure 6. The angle estimation error
∑q

i=1 |θKi − θ̄i|/q from CT-VAE vs the
regularization parameter λ in reconstructing x.

view angles than the nominal view angles. This shows that the angle estimation of
our method is robust towards the quality of the CT reconstruction. Essentially, if the
reconstruction is not heavily over- or under-regularized, we are able to obtain a good
angle estimate.

4.3. Convergence history

Here we consider the convergence history of our method and compare the computational
work of different parts of the algorithm. For this purpose we use the unit of an epoch
defined as the work involved in one multiplication with R(·) or its transpose, since the
computation is dominated by the forward and back projections as discussed in [24].

Figure 7 shows the convergence history of our method in terms of relative errors for
the CT reconstruction and angle estimation errors. We note that the horizontal lines of
no change in relative error happen when sampling the model-discrepancy in Algorithm
1 (lines 3 and 9), since this does not change x but requires forward evaluations of R(·).
The beginning of the horizontal lines is where a new outer iteration starts. We see
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Figure 7. The convergence history of the CT-VAE method.

Figure 8. The convergence history of x for varying number of samples SVA = SCT.
Note that we use log-scale for epochs (x-axis) in these plots.

that for both phantoms the relative error and the angle error levels off after at most 10
iterations.

4.4. Number of model-discrepancy samples

Figure 8 shows the convergence history of x for varying number of samples SVA = SCT.
We see that the relative error of the final reconstruction does not improve when using
more than 100 samples, so we use that in our experiments. If we use fewer than 100
samples the covariances are no longer accurately estimated by the sample covariances
(24) and (25). This leads to the term c̃Tηiθi|x̂(C̃ηi|x̂ + σ2I)−1c̃ηiθi|x̂ in the conditional
covariance estimate (17) to sometimes become larger than δi and thus giving a covariance
estimate that is negative. Since S = 100 was found to be a good sample size in [24] for
this particular problem, we do not explore the sample size selection further.
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Figure 9. The convergence history of our method CT-VAE and the projection
matching method with gradient descent methods PM-GD.

4.5. Comparison with projection matching using gradient descent

We conclude by comparing our method with the projection matching scheme proposed
in [31]. The proposed scheme solves the non-linear least-squares optimization problem

min
θ,x>0

1

2σ2
∥b−R(θ)x∥22 + λTV(x). (32)

The algorithm to solve (32) is based on variable projection and essentially alternates
between an image reconstruction step and a gradient step for the view angles. Hence,
this alternating scheme is similar to our method, and the main difference lies in how
the reconstruction and the view angles are estimated. For our implementation of the
projection matching scheme, we use SPDHG for the image reconstruction step and a
simple gradient step with line search for the view angle estimation step.

In Figure 9 we compare the convergence history of our method with the projection
matching scheme using gradient descent (PM-GD). We see that both in terms of relative
error vs epochs and angle error vs epochs our method provides better results except in
the first few iterations where our method spends computational work sampling the
model discrepancy. Furthermore, we see that our method reaches a lower relative error
and angle error compared with PM-GD. To further investigate why our method yields a
lower final relative error, we plot the objective function (32) with respect to θi given the
CT reconstruction x0 as well as the angle estimates from our method and the projection
matching scheme. Note that the objective function is highly non-convex with many
local minima. It is therefore clear that unless the initial view angles are close to the
true view angles, the projection matching scheme can get stuck in local minima.
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Figure 10. Comparison of the values obtained in the first angle estimation step θ1

given the initial CT reconstruction x0 for our method (CT-VAE) and the projection
matching scheme from [31] with gradient descent (PM-GD) for the Shepp-Logan
example with λ = 0.021. The objective function used for the projection matching
scheme (32) is shown in grey to illustrate the non-convexity of the objective.

5. Conclusion

We propose a new model and a corresponding algorithm for CT reconstruction with an
added view angle estimation component, in order to handle uncertain angles (other
geometric uncertainties can be handled in a similar way and are in some cases a
straightforward extension of this work). We show numerically that our method is
able to outperform gradient descent-based projection-matching methods for the joint
image/angle reconstruction problem. In particular, our method, with a TV prior that
reflects our phantoms, is able to provide reconstructions that are of similar quality as
ones obtained with the exact view angles, which is the best-case scenario. Furthermore,
our method is able to run on large-scale CT problems because of an inherent block-
structure in our CT model. At this time, we can demonstrate numerically that our
method converges; it is a topic of future research to prove this rigorously.
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APPENDIXD
Supplementary

material
D.1 Overview of simulated CT experiment
The simulations are carried out in MATLAB using the ASTRA Toolbox [1] for compu-
tation of the CT forward and back projections. As in the papers the data is generated
from

b = Aθ̄x̄ + ē. (D.1)
In this case for x̄ we use the grains phantom from AIR Tools II [28] similar to the
one used in the paper. The true view angles θ̄i are sampled from

U(µθi − 2, µθi + 2), (D.2)

to avoid inverse crime, since the prior of the view angles is Gaussian, θ ∼ N (µθ, diag(δ)).
Here µθ is the nominal view angles and δi = 1◦. The measurement noise is sampled
from N (0, σ2I) with σ = 0.005‖Aθ̄x̄‖2/

√
m. The CT problem is of size n = 512×512

with m = p × q with p = 512 and q = 90.

D.2 (Stochastic) Primal Dual Hybrid Gradient
algorithm for CT

In this thesis we consider a variational regularization problem on the form

xMD-TV = arg min 1
2

q∑
i=1

‖L̃νi|x(bi − Aθ̂i
x − µ̃νi|x)‖2

2 + λTV(x) + g+(x), (D.3)

This is solved using the Primal Dual Hybrid Gradient [17] and Stochastic Primal Dual
Hybrid Gradient [18, 21] algorithms. These algorithms solve the generic (non-smooth)
optimization problem

x∗ ∈ arg min
xRn

{
q+1∑
i=1

fi(Bix) + g(x)

}
, (D.4)
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where in our case

f1,...,q(·) = 1
2 ‖ · +L̃νi|x(bi − µνi|x)‖2

2, (D.5)
fq+1(·) = λ ‖ · ‖2,1, (D.6)

Bi = −L̃νi|xAθ̂i
(D.7)

Bq + 1 = ∇ (D.8)
g(·) = g+(·). (D.9)

The PDHG and SPDHG algoritms are summarized below.

PDHG
Inputs: Initial x, step parameters σi, τ .
Output: x

1: y = 0, z = z̄ = BT y = 0
2: for k = 1, . . .
3: x = proxτ

g(x − τ z̄)
4: for i = 1, . . . , q + 1
5: y+

i = proxσi

f∗
i
(yi − σiBix)

6: ∆z =
∑q+1

i=1 BT
i (y+

i − yi)
7: z = z + ∆z, y = y+

8: z̄ = z + ∆z
9: end

SPDHG
Inputs: Initial x, step parameters σi, τ .
Output: x

1: y = 0, z = z̄ = BT y = 0
2: for k = 1, . . .
3: x = proxτ

g(x − τ z̄)
4: Select i with probability Pi

5: y+
i = proxσi

f∗
i
(yi − σiBix)

6: ∆z = BT
i (y+

i − yi)
7: z = z + ∆z, y = y+

8: z̄ = z + 1
Pi

∆z
9: end

In the above proxS
f (x) defines the proximal operator of f with step size S given by

Definition 3. Let S be a symmetric and positive definite matrix. Then we define the
proximal operator of f with step size S as

proxS
f (x) := arg min

z

{
‖z − x‖2

S + f(z)
}

. (D.10)

For our case this is given by

proxσ
f∗

i
(y) = 1

1+σ

(
y + σL̃νi|x(bi − µνi|x)

)
, i = 1, . . . , q, (D.11)

proxσ
f∗

q+1
(y) = 1

λ

y
max(1, ‖y‖2)

(D.12)

proxτ
g(x) = max(x, 0). (D.13)

We refer to the discussion in Paper B for step-sizes τ, σi, and selection probability Pi.
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D.3 Definitions used in Section 4.1.2
We start with some necessary definitions.

Definition 4. For a norm on Rn we define its dual, denoted ‖ · ‖∗, to be

‖x‖∗ := max
y∈Rn

yT x

‖y‖
. (D.14)

For a norm on Rm×n we define its dual, denoted ‖ · ‖∗, to be

‖∆‖∗ := max
A∈Rm×n

〈A, ∆〉
‖A‖

, 〈A, ∆〉 = Tr(AT ∆). (D.15)

Example 4. The ℓp norms ‖x‖p
p :=

∑
i |xi|p for p ∈ [1, ∞) and ‖x‖∞ := maxi |xi|

satisfy the well-known duality relation

ℓp∗ is dual to ℓp, where p∗ ∈ [1, ∞] with 1
p + 1

p∗ = 1. (D.16)

We call p∗ the conjugate of p. Finally, we need some definitions of matrix norms:

Definition 5. We define the following matrix norms.

• The p-Frobenius norm:
‖∆‖p

Fp
:=
∑

ij

|∆ij |p. (D.17)

• The p-spectral norm:
‖∆‖σp

:= ‖µ(∆)‖p, (D.18)
where µ(∆) denotes the vector containing the singular values of ∆.

• The h, g-induced norm (where h and g are norms):

‖∆‖(h,g) := max
x∈Rn

g(∆x)
h(x)

. (D.19)

D.4 Definitions used in Section 3.2
This section is qouted from earlier work of the author [54]. Thus, it does not stand
as any contribution to the thesis, but is included for completeness.

Definition 6. The Schwartz space S(Rn) is defined as the set of all functions f ∈
C∞(Rn) for which

‖f‖α,β := sup
x∈Rn

∣∣xβDαf(x)
∣∣ < ∞ (D.20)

for all multi-indices α, β ∈ Nn
0 , where Dα = ∂α/∂xα.
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Definition 7 (Fourier Transform). The Fourier transform of a function f ∈ L1(Rn)
is defined by the operator F : L1(Rn) → C0(Rn) of a function

Ff(ξ) := f̂(ξ) = (2π)−n/2
∫
Rn

f(x)e−i〈x,ξ〉dx. (D.21)

Definition 8 (Inverse Fourier Transform). The inverse Fourier transform of a func-
tion g ∈ L1(Rn) is defined by

F−1g(x) := (2π)−n/2
∫
Rn

g(ξ)ei〈ξ,x〉dξ. (D.22)

Hence, if f̂ ∈ L1(Rn) then the equality F−1f̂(x) = f(x) holds. In particular it can
be shown that if f ∈ S(Rn) then f̂ ∈ S(Rn) ⊂ L1(Rn).
One of the most central results in tomography is the Fourier Slice Theorem. It relates
the Radon transform of a function to the function itself by Fourier transforms. In
the following we use the 1D Fourier transform of Rf(ϕ, s) along s and denote it
by R̂f(ϕ, σ) = FsRf(ϕ, σ). Whenever an angle, ϕ, is fixed we denote the Radon
transform for a fixed angle by Rϕf(s).

Theorem 8 (Fourier Slice Theorem). For f ∈ S(Rn) and ϕ ∈ Sn−1 we have

R̂ϕf(σ) = (2π)(n−1)/2f̂(σϕ), σ ∈ R. (D.23)

Proof. Applying the definition of the one-dimensional Fourier transform of Rϕf over
s and then the Radon transform we get

R̂ϕf(σ) = (2π)−1/2
∫
R

Rϕf(s)e−isσds

= (2π)−1/2
∫
R

∫
ϕ⊥

f(ϕs + y)dy e−isσds

= (2π)−1/2
∫
R

∫
ϕ⊥

e−isσf(ϕs + y)dyds.

Now, let φ : ϕ⊥ × R → Rn, be defined by φ(y, s) = sϕ + y, and let u = (y, s). Note
that s = x · ϕ = ϕ · x over ϕ⊥ and that ϕ⊥ × R is an open set. Then by change of
variables we see that

R̂ϕf(σ) = (2π)−1/2
∫
R

∫
ϕ⊥

e−isσf(φ(u))du

= (2π)−1/2 1
|detDφ(u)|

∫
Rn

e−iσϕ·xf(x)dx.
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Noting that |detDφ(u)| = 1, we get the desired result

R̂ϕf(σ) = (2π)−1/2(2π)n/2

(2π)−n/2
∫
Rn

e−iσϕ·xf(x)dx


= (2π)(n−1)/2f̂(σϕ).

Using the Fourier Slice Theorem, one can derive an inversion formula for the Radon
transform.

Theorem 9 (Inverse Radon Transform). For f ∈ S(Rn) and the Radon transform
Rf(ϕ, s), ϕ ∈ Sn−1, s ∈ R we have that f is given by

f(x) = 1
2

(2π)−n+1/2
∫

Sn−1

∫ ∞

−∞
FsRf(ϕ, σ)eiσ〈x,ϕ〉|σ|n−1dσdϕ. (D.24)

Proof. Assume f ∈ S(Rn). Then by applying the inverse Fourier transform on f̂ ∈
S(Rn), we can write

f(x) = (F−1f̂)(x) = (2π)−n/2
∫
Rn

f̂(ξ)ei〈x,ξ〉dξ. (D.25)

Let U = Sn−1 × (0, ∞) and V = Rn\{0}. Note, U and V are open sets and since
the singleton {0} has measure zero in Rn the integral over U and R3 are equal.
Furthermore, let

φ : U → V, (σ, ϕ) 7→ σϕ = ξ (D.26)

for ϕ ∈ Sn−1 and σ ∈ (0, ∞). Then we can write any ξ ∈ V as ξ = φ(σ, ϕ) = σϕ.
Noting that | det[(Dφ)(σ, ϕ)]| = |σ|n−1 we have by change of variables on (D.25) the
following.

f(x) = (2π)−n/2
∫

Sn−1

∫ ∞

0
f̂(σϕ)ei〈x,σϕ〉|σ|n−1dσdϕ. (D.27)

The Fourier Slice Theorem 8 and Rf being even then yields

f(x) = 2π−n+1/2
∫

Sn−1

∫ ∞

0
FsRf(ϕ, σ)ei〈x,σϕ〉|σ|n−1dσdϕ (D.28)

= 1
2

(2π)−n+1/2
∫

Sn−1

∫ ∞

−∞
FsRf(ϕ, σ)ei〈x,σϕ〉|σ|n−1dσdϕ (D.29)
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