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Summary (English)

This dissertation is about Model Predictive Control (MPC) and its application
to sewer networks.

Our main interest is to control sewer networks, such that the wastewater is kept
inside the network and not over�owing into the nearby environments, if possible.
Towards this goal, we consider the use of the predictive abilities of MPC, an
optimal control method, to account for the coming rain in�ow to the network;
provided through known forecasts.

An outline of the physics of sewer networks is presented, such as the Saint-
Venant equations and over�ows from weirs, including an outline of the general
goals for the operation of the network. An outline is given for di�erent ap-
proaches to formulating design models for the control of the sewer. We show
di�erent methods of how over�ow from weirs can be included in MPC for linear
designs, and discuss the bene�ts of each approach

For more realistic scenarios, we assume the presence of uncertainty in the
rain forecasts applied to the MPC. We outline di�erent approaches to MPC
with handling of uncertainty; such as tube-based MPC and Chance-constrained
MPC(CC-MPC). We show how the probabilistic formulation of CC-MPC can
be adapted to handle the presence of weirs; by the addition of constraints for
de�ning the expected over�ows, and probabilistic constraints on the avoidment
of over�ow. A discussion on the di�erent approaches to uncertainty is given;
showing how similar and di�erent they are.

We outline how the stochastic distributions of the constraints utilized by CC-
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MPC can be estimated, based on the usage of ensemble forecasts. We show how
the estimation can be applied to CC-MPC, to obtain computational simpler
optimization programs.



Summary (Danish)

Denne afhandling handler om Model Predictive Control (MPC) og dens anven-
delse i kloaknetværk.

Et af grund punkterne ved kontrol af kloakker er at holde spildevandet nede i
selve kloakken, således at der ikke sker forurening ved overløb til nærliggende
områder. Et andet er at lede spildevandet til rensningsanlæggene.

For at bedre opnå dette mål og tage højde for fremtidige regnvejr, anvender
vi den optimale kontrol metode MPC; for dens evner til at forudsige den rette
kontrol baseret på vejrudsigter.

I afhandlingen giver vi en beskrivelse af fysikken bag kloakker, såsom Saint-
Venant ligningerne og overløb. Vi diskuterer også de generelle driftsmål for klo-
akker, og hvordan de kan blive realiseret i kontrol design.

Selve modellerne brugt i kontrol design, bliver diskuteret for hvordan de kan
formes fra fysikken eller estimeringer.

En del af diskussionen omkring kontrol design, er fokuseret på inklusionen af
overløb i MPC med lineær designs. Vi diskuterer �ere tilgange til overløb og de
tilhørende fordele og ulemper.

Da realistiske vejrudsigter som udgangspunkt ikke er eksakte, må MPCen tage
højde for en vis grad af usikkerhed i de anvendte prognoser. Fra forskningen,
beskrive vi kort nogle af de forskellige tilgange til MPC der kan håndterer usik-
kerhed, f.eks. tube-baseret MPC og Chance-begrænset MPC (CC-MPC). Vi
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beskriver hvordan CC-MPC's probabilistiske formulering kan blive tilpasset til-
stedeværelsen af overløb; ved indførelsen af ekstra overløb de�nerende begræns-
ninger, samt probabilistisk begrænsninger til undgåelse af overløb.

Vi belyser de forskellige MPC metoders tilgange til usikkerhed, deriblandt dis-
kuterer vi hvor ens og forskellige de er.

Som en del af diskussionen om brugen af CC-MPC i kloak, diskuterer vi brugen
af distribution estimering, og hvordan dette kan benyttes til simpli�cering af
CC-MPC ved brug af ensemble prognoser.
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Chapter 1

Introduction

The ph.d. project of this dissertation was a part of the Water Smart City(WSC)
project between several institutions and industries in Denmark. The partici-
pants were DTU Environment, DTU Compute, DHI, Krüger Veolia, Rambøll,
DMI, Aarhus Vand, Biofoss, Hofor, and Vand Center Syd.

The WSC project was concerned with the future of urban water system man-
agement; from the initial design to the operation. This resulted in research into
weather forecasts, city planning, chemical process management in Waste Water
Treatment Plants (WWTP), sensors, and the management of sewer networks,
which this dissertation focuses on.

1.1 Background

Part of the motivation behind the ph.d. study, and the WSC project, is the con-
cern for the e�ect of climate change, such as increases in the frequency of heavy
rain events, which has been observed during the last decades[Gre15]. Heavy
rain events include weather phenomenons such as cloudbursts (min. 15mm in
30 minutes, [NAP17]). The main thoughts and concerns on the future for the
sewer networks of the cities under increased rain load are primarily on the ca-
pacity of the sewers to keep the water inside the sewers, without any �ows to the
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neighboring environments, such as rivers, �elds, harbors, roads or the Mayor's
Basement.

The main issues with such over�ows, especially in cities, are the sewer networks
are usually decades old, from a time where the rain- and waste �ows were
transported in a single pipe; commonly referred to as a combined sewer, as in
opposition to newer pipes known as separated sewers; a pipe for rain �ow and
a pipe for waste �ow. The use of combined sewer networks means that any
over�ow will be polluted by the sewer waste to some degree. An over�ow occurs
if a section of the sewer network is full, but still receives more �ow than it sends
to other sections, similar to pouring to much water in a cup and it �ows over
the edge.

While it is simple to think of solutions to deal with this problem in the long term
such as changing the combined sewer networks into separated sewer networks
and/or expanding the pipe and reservoir dimensions to increase the storage
capacity of the system; all of the simple solutions require investments into the
physical structures of the network, which is both expensive and time-consuming;
can be on the order of decades for a large city, if the general live and discomfort
of the population is to be taken into account.

Other solutions could be investing in devices to limit the rain �ow into the
sewers, such as controlled closing of the gratings to the sewer during larger rain
events[LBM+19]. While the solutions suggested above all consist of investing
time and money in updating the current infrastructure of the sewer networks;
in the research of this dissertation, the focus has been given to how to utilize
the current infrastructure to avoid these issues, possibly avoiding unnecessary
investments or decreasing the urgency of updating the current network, allowing
for more consideration for the population.

1.2 Previous Research

In the research, the approach to improve utilization of the infrastructure is
done through improving the overall control of the network. One common way
to control sewer networks is to use rule-based control, where a set of rules are
de�ned to direct the system under di�erent scenarios[GBGE+15]. For complex
systems and/or scenarios, this requires a lot of rules to cover all of the details
of the system, as well as expert knowledge of the exact system to design and
update the rules. Another approach to the control of the sewer networks is
Model Predictive Control (MPC)[GR94], where the network is described by a
model and the control is the optimum control of that model w.r.t. the given
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de�nition of optimum; such as minimum control or over�ow. While a model
requires expert knowledge for the exact system to formulate; changes to the
goal of the control, e.g. due to legal changes, do not require a system expert to
formulate the new de�nition of optimum.

MPC is a control method that has been developed over the last several decades.
The method is based on constrained optimization over a �nite horizon, per-
formed repeatedly as the horizon is receding. MPC's performance and formu-
lation with the presence of uncertainty have in recent years been researched;
resulting in several methods within MPC to handle uncertainty. One class of
methods are the Robust MPCs, such as Tube MPC, where the goal is to �nd
a solution to the control, which is applicable under all realizations of the un-
certainty. Another class of methods is the Stochastic MPCs, such as Chance-
Constrained MPC, where the goal is to �nd a solution which covers a statistic
portion of realizations of the uncertainty, based on stochastic knowledge.

Several formulations of MPC without uncertainty have been proposed for sewer
networks; discussing how to model the dynamics, especially the over�ows from
weir structures.

1.3 Research Outline

In the research of this dissertation, the control of the sewer networks has only
considered the aspects of �ow and volume of the sewer network, while other
aspects such as the concentration of pollution and sedimentation have been set
aside.

The research focuses on how to formulate the MPC optimization program utiliz-
ing linear models, while still encompassing the important dynamical structures
of the real sewer network. One focus is which of the previously suggested de-
scription of weirs provides a better MPC formulation and in which sense is it
better?

Another focus of the research has been MPC under the presence of uncer-
tainty, primarily focused on forecast uncertainty in sewer networks. The chance-
constrained MPC(CC-MPC) method is utilized as the approach to handling un-
certainty. A main point in the research is how CC-MPC operates in comparison
to MPC in sewer systems? Another point of the study is how to formulate
CC-MPC for sewer networks when over�ows from weirs are considered? such
that the probabilistic constraints are meaningful. Besides the formulation of
CC-MPC, the how to apply the stochastic knowledge is also of interest in the
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research.

1.4 Publications

Several publications have been published/submitted during the ph.d. project,
this dissertation has its foundation based on the following publications:

• Article A: Model Predictive Control of Over�ow in Sewer Networks - A
comparison of two methods, Systol 2019, Casablanca, Morocco

• Article B: An MPC-Enabled SWMM Implementation of the Astlingen
RTC Benchmarking Network, Water, April 2020

• Article C: Stochastic Model Predictive Control and Sewer Networks, un-
published article, Januar, 2020

• Article D: Chance-Constrained Model Predictive Control - A reformulated
approach suitable for sewer networks, Journal of Advanced Control for
Applications, submitted: July 2020

• Article E: Chance-constrained Stochastic MPC of Astlingen Urban Drainage
Benchmark Network, Journal of Control Engineering Practice, submitted:
August 2020

• Article F: Towards Robust & Stochastic MPC: a comparison of Tube-
Based and Chance Constrained MPC methods, Journal of Control Engi-
neering Practice, submitted: September 2020

• Article G: Sewer Orientated Framework for Ensemble-based Chance-Constrained
MPC, unpublished

Other publications published during the project, but not included as a basis for
this dissertation, are the following extended abstracts from conference proceed-
ings:

• Extended abstract: "Model Predictive Control: A case study of Trøjborg",
Novatech 2019, Lyon, France

• Extended abstract: "Model Predictive Control of Over�ow in Sewer Net-
works", Watermatex 2019, Copenhagen, Denmark

• Extended abstract: "A SWMMModel For The Astlingen Benchmark Net-
work", IWA WWC 2021, Copenhagen, Denmark, accepted.
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where the last two are sister publications to paper A and B respectively.

1.5 Outline of dissertation

In the following chapters, we will go through the current status of knowledge
as well as some basic knowledge for the uninitialized. Before following with the
research results of this project.
Chapter 2 of the dissertation presents aspects of sewer networks, such as the
mathematical description of the physical networks, the di�erent types of struc-
tures present in the networks, and the common management objectives.
Chapter 3 contains a short discussion on modeling approaches, and the di�erent
case studies utilized in my research.
Chapter 4 will introduce the reader to Model Predictive Control, from the ba-
sic theory of optimization to speci�c applications in sewer networks and more
advanced formulation regarding uncertainty, such as the robust Tube MPC and
the stochastic chance-constrained MPC.
Chapter 5 is a summary of the papers used as this dissertation's foundation;
outlying the context of each paper, both in relation to the content in chapters
2, 3, and 4 and in relation to the novelty of the research presented by the paper.
Chapter 6 will provide the reader with the conclusion of the dissertation; pro-
viding a summary of the results of the research, as well as thoughts on future
research to be considered along the lines of the research presented in this dis-
sertation.
The Appendices A-G contains the foundational papers of the dissertation, and
their background information, such as time and place of publication.
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Chapter 2

Sewer systems - Physics &
Manegement

Sewer systems are dynamical systems constructed by a network of pipes and
storage tanks, designed to transport sewage and rain down to the Waste Water
Treatment Plant (WWTP). The network systems are either designed as sep-
arated sewers, a network for sewage and one for rain, or as combined sewers,
where they �ow in the same network.

In this chapter, we will discuss the physical dynamics, and commonly observed
features found in sewer networks. The discussion will provide the mathematical
models of the structures, which are used in high-�delity simulators, such as
DHI's Mike Urban[DHI17] or EPA's SWMM[Ros17].

2.1 Saint-Venant & Pipes

The physical dynamics or hydraulics of sewer systems are di�erent for the dif-
ferent components of the system (tanks, pipes, etc.). Pipes are possibly the
most abundant component of the sewer system, both in sheer numbers and pos-
sibly also in total volume capacity. The dynamics of a pipe can, under suitable
assumptions, be described by the Saint Venant equations for gradually-varied
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unsteady �ow in open channels[BD11]. The Saint Venant equation is based on
the following assumptions among others:

• Flow through the pipe is 1-dimensional; only changing along the pipe
length, and being uniform across the �ooded cross-area of the pipe.

• Small bottom slope of the pipe, with pipe bed being �xed; changes such
as accumulation of solids are negligible.

• The e�ect of friction is comparable to steady �ow.

For pipes, where this is only applicable piece-wised over the pipes, the pipes can
be described as a cascade of pipe sections, for which the assumptions hold for
each section.

The Saint-Venant equations also called the shallow water equations for the 3-
dimensional version, can be derived from the more general Navir-Stokes equa-
tions for viscous �uids, through integration over depth.

The Saint Venant equations can also be derived from Newton's second law of
motion, Conservation of mass, and Reynolds transport theorem, see [CMM88].
The equations themself consist of a continuity equation and a momentum equa-
tion, discussed below.

Continuity equation If we consider a general pipe section of �xed length dx
as seen in Fig. 2.1, then from conservation of mass, the continuity equation can
be formulated as below

0 =
∂ρA

∂t
+ ρ

∂Q

∂x
− ρqL (2.1)

where A is the average cross-area of the pipe section, ρ is the �uid density, qL
is the lateral in�ow per unit length of the pipe and Q is the in�ow to the pipe

Momentum equation From Newton's second law of motion, the momumen-
tum equation given below can be obtained. The external forces a�ecting the
momentum of the pipe are in general due to gravity, friction, pressure, eddy
losses due to abrupt changes in pipe size, and wind shear due to the winds
frictional resistance; though only applicable for open channals and not pipes.

∂Q

∂t
+
∂βmQ

2/A

∂x
+ gA(

∂y

∂x
− S0 + Sf + Se)− βmqvx +WfB = 0 (2.2)
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Figure 2.1: An example of a simple channel, with notations for the derivation
of the Saint-Venant equations from [CMM88]; F being forces and
v being velocity.

where vx is the x-directional velocity of the lateral in�ow, and βm is the mo-
mentum/Boussinesq coe�cient. while S0 is the bed slope of the pipe (gravity
term), Sf is the friction slope given by the manning equation (friction term),
Se is the eddy loss slope (eddy term), Wf is the wind shear factor with B is
the surface width (wind shear term). The pressure term is given by the spatial
change in depth ∂y/∂x.

2.2 Reservoir Tanks

Besides pipes, reservoir tanks are the other big element of sewer networks, w.r.t
volume capacity. Tanks are storage elements and are de�ned by mass conserva-
tion, usually formulated in terms of reservoir volume with the density assumed
constant:

dV

dt
= qin − qout − qcso (2.3)

where the temporal change in volume equals the di�erence between in�ow, out-
�ow, and weir �ow[MP05].

2.3 Bernoulli & Features

Other than pipes and tanks, sewer networks consist of several other structural
features, usual connections between the pipes and tanks, directing the �ows of
the system. In hydraulics, such features are described using Bernoulli's principle,
which is a variation of the conservation of energy given in head (energy per unit
weight, [meters])[BD11]. In sewer systems, the liquids are generally assumed
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to be incompressible, so using Bernoulli in the case of liquid �ow between one
section of a pipe/structure to another, gives:

p1

ρg
+
v2

1

2g
+ z1 − hL =

p2

ρg
+
v2

2

2g
+ z2 (2.4)

where hL is the head(energy) loss between the two sections, due to pipe friction
and local features, such as changes in pipe geometry. Using (2.4), the �ow
between chosen sections in the sewer system can be formulated by an algebraic
relation, with the order depending on the head loss and velocity-�ow relations.
The velocity-�ow relation, at a given section i, is vi = qi/Ai, where Ai is the
�ooded cross-sectional area of the section, in the �ow direction. In hydraulics
based on Bernoulli's Principle, the pipes generally operate in one of two modes,
full and part-full; full pipes correspond to a pipe, where the liquid occupies the
entire pipe and Ai is maximized and constant at any point i along the pipe. In
Contrast, part-full pipes still have empty space in the pipe and a cross-area Ai
depending at the �ow height at the given point i along the pipe. In sewers, the
common mode of operation is the part-full mode.

2.3.1 Ori�ce Plate / Penstock

One of the features in the sewer networks is the ori�ce plates or penstocks, which
is used to limit the in�ow into a pipe, with the latter term being a controllable
variant[BD11]. Physically, an ori�ce feature is any type of plate used to reduce
the in�ow cross-area of the pipe, as illustrated in Fig. 2.2.

A simple approach to de�ne the �ow through an ori�ce plate is to utilize
Bernoulli's principle, focusing on the system just before and after the plate.
Under the assumption of equal pressure in both sections, and velocity v1 and
head loss being negligible (e.g. tanks), the ori�ce �ow is de�ned as

q2 = CdAo
√

2gH, H = z1 − z2 (2.5)

where Ao is the �ow area of the ori�ce, and Cd is the ori�ce coe�cient; correcting
for the assumptions a�ect on accuracy.

2.3.2 Weir

Another feature is the weirs; weirs are structures that allow �ows from one ele-
ment to another when the latter has reached a given capacity load, as illustrated
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Figure 2.2: An illustration of di�erent ori�ces and pipes; upper row showing
ori�ces with openings fully �ooded. Lower row shows the same
ori�ces with either changes in ori�ce position (in direction of the
orange arrow) or water level H (in direction of the blue arrow)

in Fig. 2.3. For a rectangular weir[BD11], the weir �ow can be derived from the
Bernoulli equations:

qcso = Cd
2

3
b
√

2gmax(h− hw, 0)3 (2.6)

where b is the width of the weir, h is the height of water above the channel bed.
The height hw is the height the weir crest is located above the channel bed, and
Cd is the discharge coe�cient correcting for assumptions, with a usual value:
Cd ∈ [0.6, 0.7]. The weir �ow in (2.6) is equivalent to the piece-wise function:

qcso =

{
Cd

2
3b
√

2g(h− hw)3, if h ≥ hw
0, otherwise

(2.7)

or given in term of a logical variable δ ∈ {0, 1}

δ = 1⇔ h ≥ hw (2.8)

qcso = δCd
2

3
b
√

2g(h− hw)3 (2.9)

2.4 Controlled features

As mention above, pipes and tanks are not the only elements of sewer systems,
other structural features exist; wherefrom we already have discussed the ori�ce
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Figure 2.3: An illustration of a weir; left picture showing the condition for no
weir �ow, central picture showing the condition for weir �ow, and
right picture illustrating a rectangular weir

plate and the weir. Some of these features are the di�erent types of controllers
used to a�ect the behavior of the sewer system.

One type of controllers commonly found in sewer systems is pumps[SCC+03],
commonly used to �ll and/or empty reservoir tanks, or shifting volume/�ow to
other sections of the network. Another controller type is the redirection gates,
where an in�ow is split into two out�ows; this split can both be at a ratio r
or one out�ow being �lled completely before the other. In the latter case, a
redirection gate would behave like a weir on a pipe with a controllable weir
crest qr. Consider the out�ows qa and qb, then the two descriptions would be
de�ned as

qa = rqin qa =

{
qin qin ≤ qr
qr

(2.10)

qb = (1− r)qin qb = qin − qa (2.11)

A third common type of controllers is the retention gates, which are used to hold
back volume in certain parts of the system. Retention gates can be constructed
with penstock ori�ce plates.

2.4.1 Control Levels

The control of sewer systems comes in many variants, but can generally be
categorized in local and global control strategies, as illustrated in Fig. 2.4. In a
local control strategy, each controller is operated independently of each other,
using measurements of its nearby system and a reference of thwe desired local
operation. In the case of a global control strategy, the controllers are operated
collectively; using measurements from the entire system, with overall operation
goals in mind.
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A global controller can be controlling the equipments directly or by dictating
the references to the local controllers. The reference used in local control is
either �xed mechanically or controlled manually by a remote operator/global
controller.

For most real systems, the local controllers are constructed as classical P, PI, or
PID controllers, given that they can be made both analog or digital. Another
bene�t is that they can be designed to provide the desired response to changes
in the reference, both w.r.t. time and behaviors, such as overshoot.

If we consider the equipment a system given byGp(s), then a local PID controller
Gc(s) and the resulting closed-loop system Gcl(s) can be de�ned as below in
accordance with [JS09].

Gc(s) = Kp
1 + τis+ τiτds

2

τis
(2.12)

Gcl(s) =
Gc(s)Gp(s)

1 +Gc(s)Gp(s)
(2.13)

where the tuning parameters Kp, τi, and τd are the control gain, integration
time, and derivative time of the PID. In the case of P and PI control, the
derivative time is zero, with the addition for the P controllers of the integration
time being in�nite. The exact way to tune the parameters depends on the
equipment's dynamics Gp(s) and the desired behavior of the system; which
has been researched extensively, [O'D09] provides an extensive compendium of
tuning rules for 1st to 5th order systems with or without delays as well as
generalized approaches, non-model speci�c ones, and zero-order systems with
delays.

The global controllers can be designed in various ways, such as rule-based or
model-based, we will discuss this further in chapter 3 and chapter 4.

2.5 Manegement in Sewer Operation

In Chapter 4, we will be discussing the control design of the system. In this
section, we will therefore be discussing some of the operational goals commonly
seen in the management of sewer systems[SCC+03], at least in the context of
MPC design.

The di�erent management objectives discussed below, are not necessarily used
in the control of all systems or even over the entire system equally but are chosen
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Figure 2.4: An illustration of local and global control schemes. The local PID
controllers (left) can be seen to operate independently according
to given references, while in the global controller (right), the lo-
cal controllers are given their references from a higher level MPC
controller; observing the entire system

to �t the desired behavior of the speci�c system, possibly with other objectives
not discussed here.

2.5.1 Reference �ow

A common objective is for some �ows in the system, to follow a reference in
some sense. The desired behavior can be understood as simply following the
reference with divergence in both directions being undesirable, or with staying
either below or above the reference being the desirable behavior.

A commonplace for a reference objective is the out�ow of the entire system
towards a WWTP. Some WWTP desire a limited, but predictable input for
their processes.

2.5.2 Maximum �ow & Minimum volume

The objective of maximum �ow is simply the desired behavior being the �ow
from or to a section in the system being as large as possible. The minimum vol-
ume objective is similarly just the desire for having empty tanks in the system,
such that the volume capacity of the sewer is ready to receive large rain in�ows.
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In some cases, the two objectives have the peculiar behavior of being equivalent,
while in other cases they are counteracting each other. An example is a maxi-
mum out�ow and minimum volume objectives considering the same tank, here
the operational results would be identical, making the objectives equivalent and
dualities of each other.

Similar to the reference objective above, the usage of maximum �ow objectives
can be seen in the �ow to the WWTP, due to some WWTP desire as much �ow
as possible.

2.5.3 Control usage

Minimum control is a management objective usually associated with active con-
trollers such as pumps, in order to reduce the monetary cost of operation. The
active controllers require a power source to be operational, while passive con-
trollers only require a power source to change operation setting; e.g. a pump
without electricity will not pump and therefore will not generate a �ow through
it, while an open ori�ce plate without electricity will still allow �ow through it.

Other operation goals can also promote the usage of a minimum control objec-
tive, such as a controller alternative to a weir, therefore emulating CSO mini-
mization.

2.5.4 Control change

In the operation of sewer systems, maintenance is usually an expense to be
reduced if possible. Maintenance is needed when the system is worn down to
some degree. Wear occurs due to aging, usage, and other factors. For sewer
systems, smooth changes in operation usually lead to less wear on the system.
this also applies directly to the controllers, where sudden changes in operation
generate more force in the mechanical structures, therefore leading to more wear
in the controllers.

This is usually mitigated by the objective of smooth control through minimiza-
tion of the change in control usage or control roughness. similar objectives can
be used for speci�c �ows in the system, whether they are control or not, to ful�ll
operational desired of smoothness; such as e.g. the out�ow towards a WWTP.
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2.5.5 CSO avoidance / minimization

An important management objective is whether one's aim is to avoid CSO or
minimize it. The subtle di�erence in the objective is important for the design
model discussed earlier; if the aim is on avoidance, then the dynamics of CSO
are excluded from the system dynamics and replaced with a constraint at the
crest level. In the case of CSO minimization being the aim, then the dynamics
of CSO is included in the system dynamics.

The reservoir tanks and pipes with weirs leading to the external environment are
the usual place for these objectives but are not excluding its usage on internal
weirs in the system, e.g. CSO from one tank to another.



Chapter 3

Sewer Systems - Modelling

In the previous chapter, we discussed how the physics of sewer networks is de-
scribed mathematically and which objectives are commonly used to manage the
sewer networks. In section 2.4, we discussed how the di�erent control equip-
ments are controlled by a local PID controller given a setpoint to operate at.
The actual management of sewer networks is commonly done as a global con-
troller; providing the references to all the individual local controllers in the
networks[SCC+03].

In many sewer networks, the global controller is based on rules, if-then state-
ments, to de�ne the references[GBGE+15]. For more complex systems, rule-
based controllers can become a massive collection of rules to cover each scenario
of the system w.r.t the management objectives. When a system is changed a
little, many rules might be a�ected and needing change, deletion, or even brand
new rules in order to work properly. An alternative to rule-based control is
model-based control, where the references are computed using a model of the
system. The model provides a mathematical description, describing the system
adequately enough, such that it covers all non-negligible dynamics a�ecting the
intended purpose of the model.

Models used for control design are generally a simpli�ed description of the sys-
tem. Otherwise for sewer systems, one would have to solve the partial di�erential
equations of the Saint-Venant equations discussed in section 2.1 to compute the
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prober control input to the system.

There are many methods for generating and describing a model for a given
system. In this chapter, we will discuss two ways to formulate models, and we
will discuss the physical limitation there exist in sewer systems and needs to be
included in the models. We will end this chapter discussing the di�erent case
studies of sewer networks utilized in the research in this ph.d. project.

The two methods considered are discrete methods w.r.t time[HJS08], where
the system is assumed stationary between time samples. The k-th sample of a
variable x(t) can be written as

xk = x(t0 + k∆T ) (3.1)

where t0 is the time where samples are counted from, and ∆T is the sampling
time; the period between each sample.

3.1 Transfer functions

The �rst modeling approach we will discuss is an external description of a
system[Pou07, Mad07], also called a transfer function; relating input and out-
put. Transfer function models only consider four things to describe a system:
1) the control variables 2) the external disturbances 3) the system outputs and
4) the structure of the model.
The system outputs are the elements of the system, which are measured for the
management of the system, e.g. speci�c �ows in a sewer system, such as the
�ow to WWTP and CSOs.

For a linear model structure; the transfer function of the i-th system output yk,i
at time k can be described by an ARMAX model:

yk,i+

n∑

j=1

ny∑

l=1

aj,l,iyk−j,l =

m∑

j=0

(
ci,jεk−j+

nu∑

l=1

bi,j,luk−j,l+
nd∑

l=1

fi,j,ldk−j,l

)
(3.2)

where u is the controlled variables, d is the external deterministic disturbances
and ε is the stochastic disturbances, assumed to be a white noise zero-mean
signal independent of the output at previous times, with ci,0 = 1.

The bene�t of these models is the lack of system knowledge needed; if enough
data of the desired outputs are available together with the corresponding control
and disturbance inputs, then the best parameters of any desired model structure
to describe the system can be estimated, without knowing the underlying physics
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of the system. It will, of course, help to know the physics, when one decides on
a given model structure.

One possible way of estimating the parameters are extended least-square(ELS)
estimation[Pou07]. The linear model can be rewritten in terms of the stochastic
noise at time k or its residual as

εk = yk −φφφTk θθθ (3.3)

where θθθ is a vector of model parameters and φφφk is a vector of known inputs
(control, disturbances, and previous outputs) at time k, given as

θθθ = [ai,1,1, ..., ai,n,ny , bi,1,1, ..., bi,m,nu , fi,1,1, ...fi,m,nd , ci,1, ...ci,m] (3.4)

and

φφφk = [yk−1,1, ..., yk−n,ny , uk,1, ..., uk−m,nu , dk,1, ..., dk−m,nd , εk−1, ..., εk−m]
(3.5)

For ELS estimation of the parameter, we assume that the previous residuals
in (3.5), can be estimated close enough by (3.3), where the parameters θθθ are

replaced by an estimate θ̂̂θ̂θ. By using the information of N known temporal
data sets of inputs and outputs, we can formulate an iterative estimation of the
parameters

θ̂̂θ̂θn+1 = θ̂̂θ̂θn +

( N∑

i=1

φφφiφφφ
T
i

)−1 N∑

i=1

φφφiεi (3.6)

where the parameter estimate θ̂̂θ̂θn can be updated until it settles to stationary
values; with repeated estimations every time new data sets becomes available.

3.2 Virtual Tanks

The second method we will discuss for modeling a system is known as a lumped
model, or speci�cally for sewer systems: a Virtual tank model[OM10]. A lumped
model is a description of a larger system, where the detailed dynamics are col-
lected into higher level interconnected parts; with each part corresponds to a
collection of system elements and is described collectively by simpler dynamics.

For the sewer systems, such a separation would correspond to splitting the
network into subnetworks of reservoir tanks and pipes. As illustrated in Fig.
3.1, the subnetworks can be assumed to be described su�ciently by the collective
volume capacity of each element in it; a virtual tank, see def. 3.1, where the
subnetwork is treated as a reservoir tank[GR94].
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Figure 3.1: An illustration of system simpli�cation by lumping dynamics into
simpler units

Definition 3.1 (Virtual tanks) For any given section of a system at
any given time, a virtual tank would be a volume storage element representing
the total volume stored inside the section; pipes, reservoir, etc. The element is
purely described by mass balance; current volume, in�ows, and out�ows[OM10].

The discrete dynamics of the reservoir and virtual tanks can be obtained through
discretization of the mass balance in (2.3), and are given by

Vk+1 = Vk + ∆T (qink − qoutk − qcsok ) (3.7)

If the out�ow of a linear tank model is driven by gravity through an ori�ce
(controlled or not), then the out�ow can be assumed proportional to the tank
volume:

qoutk = βVk (3.8)

where β is the volume-�ow coe�cient, [Sin88].

3.3 Constraints

While the real physical dynamics describe the system in its entirety, simpli�ed
models do not. In general, especially for linear models, one of the things not
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included in the model structure is the existence of physical limits on the di�erent
parts of the system. To describe the workspace of a given element, we can extend
the models with constraints to include the physical limits of the dynamics. In
the next chapter, we will discuss control with constraints.

For the volume of the reservoir tanks (virtual or not), the physical limits can be
de�ned as an upper and lower bound for each tank

0 ≤ Vk ≤ V (3.9)

The general controlled �ows are likewise constrained by an upper and lower
bound

qu ≤ quk ≤ qu (3.10)

where the exact formulation of the bounds is dependent on the type of control
device used. In sewer systems, several types of control devices are used. The
commonly used types include penstocks and pumps.

If the pumps are bidirectional (pumps in both directions), then the above con-
straint is applicable. If the pump is only unidirectional, then the pump con-
straints are given by

0 ≤ quk ≤ qu (3.11)

For both types of pumps, there would be speci�c pump model dynamics and
limitations, which one might have to include in the MPC design in order to
describe the dynamics of the sewer, similar to our discussion on the ori�ce
plates.

For the penstock devices (ori�ce plates), it is common to assume that backwater
�ow does not occur such that the �ow through an ori�ce is unidirectional, being
constraint as above. For the penstocks controlling tank out�ow (virtual or
real), the ori�ces are driven by the upstream volume through gravity; meaning
the control �ow in a penstock is limited by the volume. If we consider the
discussed linear tank out�ow in (3.8), then the constraints of the penstock can
be formulated as

0 ≤ quk ≤ βVk (3.12)

or as a combination of both of the above.

This discussion on the physical constraints of sewer systems are by no means a
complete list, but an attempt on a short overview of the most generally used.
Combinations and/or more complex constraints might be more applicable for
speci�c systems.
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3.4 Case Studies / Models

In the research of sewer systems, many di�erent case studies have been proposed
and used during the years[SCC+03, GGSvO14, PCR+09]. During this ph.d.
project, three case study systems have been utilized:

• Barcelona Sewer model

• Astlingen Benchmark model

• Aarhus Sewer model

The systems include di�erent features and have di�erent size and layout. The
contents of each case study model will be discussed in the remainder of this
chapter.

3.4.1 Barcelona

The Barcelona sewer model from [OM10] is a model of a subset of the sewer
network of the city of Barcelona in Catalonia, Spain. The model is de�ned using
virtual tanks, and consists of 12 tanks; one real tank and 11 virtual tanks, each
corresponding to a catchment area of Barcelona, as seen in Fig. 3.2. Further-
more, the model consists of 22 weirs, where most generates CSO, and a few
redirect the �ows internally in the sewer. The single real tank does not have
CSO capability, and both the in�ow and out�ow is controlled, by a redirec-
tion gate and a retention gate, respectively. Most of the CSOs in the system
�ow back into the system, after �ooding the surface of the catchments, those
who don't �ow back, �ows into the Mediterranean sea; permanently exiting the
system.

The thresholds for when a CSO occurs is given by the volume capacity of the
virtual tanks and the out�ow capacity of the weir elements. The dimensions
of each tank and weir element can be seen in Table 3.1, where the volume and
out�ow capacity of each element is given. In the Barcelona model, the controllers
are three redirection gates and a retention gate.
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Figure 3.2: A schematic of the Barcelona sewer model, on the tank level. The
labels T, SP, R, and U stands for tanks, sewer pipes, internal
structures, and control respectively.

element T1 T2 T3 T4 T5 T6
volume m3 16901 43000 35000 26659 27854 26659
out�ow m3/s 12.00 24.94 7.00 2.66 3.34 14.40
element T7 T8 T9 T10 T11 T12
volume m3 79229 87407 91988 175220 91442 293248
out�ow m3/s 27.73 47.20 11.96 71.84 45.72 146.62
element SP1 SP2 SP4 SP5 SP12 SP96

out�ow m3/s 9.14 3.40 32.80 13.36 60.00 10.0
element SPLTP SPBTP R1 R2 R3 R9
out�ow m3/s 7.30 9.00 24.60 63.40 30.00 24.00

Table 3.1: Dimensions of the Barcelona Model, indicating the thresholds for
CSO and other weir �ows
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Figure 3.3: A schematic of the Astlingen Benchmark model, with the receiving
bodies illustrated by the colored background, green for the creek,
and grey for the river. The external �ows from catchments are
noted by SCxx and SCxx-y, while the CSO from tanks is excluded
in the schematic and from pipes denoted by CSOX. The delays in
pipes are by x' in minutes

3.4.2 Astlingen

The Astlingen benchmark model from [SLPH18] is a designed arti�cial sewer
system, designed to include the most common aspect of sewer systems. It was
originally proposed to give an accessible and fully described benchmark system
for research and comparison of control practices in the sewer system communi-
ties, regardless of simulation software choice and model data accessibility from
utility companies. In Fig. 3.3, a layout of the Astlingen system is given in terms
of reservoir tanks as proposed in [SLPH18].

The system consists of six tanks and four pipe weirs, which all can produce
CSO to the nearby environments. An important feature about the Astlingen
is its environment; it is supposed to represent a city with a river and a creek
going through it. The river and creek act as the recipients for the CSO of the
sewer system. Given the smaller size and �ow in the creek, the river is the
preferred CSO recipient of the system. The recipient of the CSO from each weir
is shown in Table 3.2, together with volume- and out�ow capacities of the tanks
and pipe weirs. As with the Barcelona model, the CSO threshold is de�ned by
volume/out�ow capacities.
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element T1 T2 T3 T4 T5 T6
volume m3 700 1000 2600 500 500 600
out�ow m3/s 271.28 140.00 190.00 80.00 39.00 175.00
recipient river river river river river Creek
element CSO7 CSO8 CSO9 CSO10
out�ow m3/s 85.50 485.33 129.17 203.67
recipient creek river creek river

Table 3.2: Dimensions of the Astlingen Model

element T1 T2 T3 T4 T5 T6 T7 T8
volume m3 300 20 350 844 200 200 100 10
out�ow m3/s 1.50 0.60 1.00 1.80 0.50 0.80 0.10 0.04
delay out min - 20 10 4 - - - -
CSO type Ext Ext Back Back Ext Ext Int Ext
element T9 T10 T11 T12 T13 T14 T15 T16
volume m3 10 10 150 10 10 10 10 10
out�ow m3/s 1.00 0.20 0.35 0.10 0.80 0.20 0.40 0.70
delay out min - 2 5 - - - 20 3
CSO type Ext Ext Ext Ext Ext Ext Ext Ext
element T17 T18 T19 T20 T21 T22 T23 T24
volume m3 70 50 85 13001 10001 3501 90 3001
out�ow m3/s 0.80 0.15 0.98 0.22 0.40 0.18 1.20 0.09
delay out min 14 - - - - - - -
CSO type Ext Int Ext Ext Ext Ext Ext Ext
element T25 T26 T27 T28 T29 T30 T31 T32
volume m3 6699 3503 200 60 100 85 200 100
out�ow m3/s 1.50 0.10 0.20 0.70 0.20 0.10 0.20 0.04
delay out min - - - - - - - -
CSO type Ext Ext Int Ext Int Int Back Int
element T33 T34 T35 T36 T37 T38
volume m3 32 25 12 80 90 10
out�ow m3/s 0.50 0.50 0.50 0.30 0.40 0.10
delay out min - - - - - -
CSO type Int Int Int Int Int Ext

Table 3.3: Dimensions of the Aarhus Model[Dre20]
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Figure 3.4: A schematic of the Aarhus sewer model, displaying the intercon-
nection and spatial distribution of the virtual tanks relating them
to their corresponding real world area by the colored background.

The �ow in the interconnection between the tanks, pipe weirs, and catchments
is given as the delay of the inbetween �ow of each element set. The controllers
in the system are retention gates at the out�ow of each tank.

3.4.3 Aarhus

The Aarhus model is based on the section of the Marselisborg sewer system
covering the city of Aarhus in Denmark. It is an autogenerated design model
for MPC based on a MIKE URBAN high �delity model of the Marselisborg
sewer network[DH20]. The autogeneration has reduced the Saint-Venant based
MIKE model to a linear virtual tank based design model as illustrated in Fig.
3.4, based on pre-selected criteria such as controller location.

The model consists of 38 virtual tanks, which in some cases includes real reser-
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voir tanks. Every tank has the ability to produce an over�ow, whereas twenty-
four of them correspond to CSO to the external environment, eleven corresponds
to internal over�ows in the system, and the last three corresponds to internal
backwater �ows towards the previous tank. The interconnection in the model
also consists of �ow delays between the tanks. The details of each tank are
shown in Table 3.3, where the CSO thresholds are the tanks' volume capacities.

The controllers of the system are placed at the out�ow of every tank and include
controllers such as pumps and retention gates.
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Chapter 4

Model Predictive Control

Model Predictive Control (MPC) is a control method that has been developed
since 1963, where it was originally proposed in [Pro63]. It has been applied to
a great number of di�erent �elds of applications[QB03, Lee11, HH15, Kim13,
SSR14, RSvdGvO14], one of these is, of course, sewer networks[GR94, CQS+04,
OM10, MP05].

MPC is an optimal control method, usually for discrete systems, using a receding
horizon approach; where the optimal control is computed over a prediction hori-
zon Nhp , with only the control of the �rst time step being utilized[Mac02, CB07].
Whereafter the horizon is shifted forward in time, one step, and the procedure
repeats.

MPC relies on having a model of the system to be controlled, covering the entire
prediction horizon; commonly obtained by extrapolating the discrete dynamics
of the system to obtain predictions of the future state of the system. If NHp is
the prediction horizon given in time steps, then it corresponds to the number
of predicted time steps being considered.

One of MPC's many bene�ts is the ability to include constraints in the control
formulation, both equality and inequality ones. The formulation of MPC is an
optimization program, where the optimization variables are the control variables
u used for minimizing a desired cost over the chosen prediction horizon, with
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the following formulation:

J = min
u

NHp∑

k=0

l(xk,uk,wk) (4.1)

s.t.

xk+1 = f(xk,uk,wk) (4.2)

h(xk,uk,wk) = 0 (4.3)

g(xk,uk,wk) ≤ 0 (4.4)

where l(·) is the cost at each time step, f(·) is the model dynamics, and h(·) and
g(·) are the equality and inequality constraint functions respectively. The vari-
ables xk are the predicted state at time k, while wk is the system disturbances
at time k. The state x0 is the current state of the system, and are commonly
assumed to be known.

In MPC, the cost functions are commonly chosen to be either linear, quadratic,
or a combination of the two, while the process- and constraint functions are
usually formulated as linear functions. This is due to simpler computations of
the optimal solution, but for most systems comes at the trade-o� of simplifying
the dynamics and constraint.

In order for us to �nd the optimal solution of the MPC, the MPC program has to
have a solution also known as being feasible. The feasibility of an optimization
program is purely determined by its constraint, both equality and inequality
ones. A program is said to be infeasible (no solution) if two or more constraints
overlap, such that the allowed set of solutions between the constraints are empty.

4.0.1 Optimality Conditions

The solution of the MPC program is found by solving the Karush-Kuhn-Tucker
(KKT) optimality conditions [NW06]. If the process equation in (4.2) are sub-
stituted out, then the Lagrangian of the MPC program in (4.1)-(4.4) can be
formulated as

L(u,λλλ,µµµ) =

NHp∑

k=0

l(xk,uk,wk) + λλλTk h(xk,uk,wk) +µµµTk g(xk,uk,wk) (4.5)

Where λλλ and µµµ are the Lagrange multipliers over the whole horizon for the
equality and inequality constraints respectively. In the Lagrangian given, we
have omitted the recursive substitution of the dynamics and kept it as xk.
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Using the same notation for the dynamics, the KKT conditions for an optimum
solution is then given as

∇uL(u,λλλ,µµµ) = 0 (4.6)

∇λλλkL(u,λλλ,µµµ) = h(xk,uk,wk) = 0 (4.7)

∇µµµkL(u,λλλ,µµµ) = g(xk,uk,wk) ≤ 0 (4.8)

0 ≤ λλλk,µµµk (4.9)

µk,jgj(xk,uk,wk) = 0,∀j, k (4.10)

Where it can be seen that the derivatives of the Lagrangian with respect to the
Lagrange multipliers are the initial constraints.

The KKT conditions are necessary conditions for an optimum solution, but it is
not, in general, a su�cient condition for a solution to be optimal. One situation
where the KKT conditions are also a su�cient condition is in convex programs,
where the cost function and the inequality constraints are convex (def. 4.1) and
the equality constraints are a�ne; then the Lagrangian in (4.5) is also convex,
and the solutions to the KKT conditions are the global minimum of the program,
[BV09]. Similar for maximization programs using the same Lagrangian, where
the cost function has to be concave and the inequality constraints are convex.

Definition 4.1 Convex: A set S ∈ Rn is a convex set if and only if that for
any two points in the set, x ∈ S and y ∈ S, the scaled sum, αx+ (1− α)y ∈ S
lies in the set for all α ∈ [0, 1]. A function f(x) is said to be a convex function
if its domain S is a convex set, and that for any two arguments x and y lying
in the domain, the following holds

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀α ∈ [0, 1] (4.11)

Concave: a function g is said to be a concave function, if and only if its negative
is convex: −g(x) is a convex function.[NW06]

In the case where this does not apply, the second-order condition is needed
to establish whether or not a solution is optimum. Let us denote the set of
inequality constraints by I and the set of active constraints by A(x); the set of
inequality constraints equal to zero and equality constraints at a given solution
x. The second-order condition is that the second derivative of Lagrangian w.r.t.
the control, also called the Hessian, for a given solution has to be semi-positive
de�nite at least within the set C:

sT∇2
u,uL(u∗,λλλ∗,µµµ∗)s ≥ 0 (4.12)
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where s is a vector in C:

s ∈ C, C :





∇uhi(u∗)T s = 0,∀i
∇ugi(u∗)T s = 0,∀i ∈ A(x∗) ∩ I with µ∗i ≥ 0

∇ugi(u∗)T s ≤ 0,∀i ∈ A(x∗) ∩ I with µ∗i = 0

(4.13)

For the special case of quadratic/linear programs with linear equality con-
straints, and no inequality constraints:

f(u) =
1

2
uTHu+GTu (4.14)

h(u) = Au−B (4.15)

The KKT conditions of the MPC solution can be stated as the KKT matrix:
[
H AT

A 0

] [
u
λλλ

]
=

[
−G
B

]
(4.16)

0 ≤ λλλ (4.17)

which is nonsingular, when A has full row rank, and either the Hessian is positive
de�nite or the reduced Hessian ZTHZ is, where Z is the nonzero nullspace
AZ = 0.

A reformulated version of the KKT matrix is used for solving programs with in-
equality constraints, e.g. the interior-point algorithm. For non-linear programs
(non-quadratic), one approach to computing the solution is sequential quadratic
programming; where the program is approximated as a QP, and iteratively the
real solution is approached, by updating the approximation after each iteration.

4.1 Over�ow Structure

In chapter 2, we discussed the sewer networks, and especially their weirs. The
equation of weir �ow in (2.6) was given for a rectangular weir, and would, in
general, be even more nonlinear than is given here.

A common approach used in MPC design to simplifying the weir dynamics is to
not consider the height above the weir crest, but instead consider the exceeding
of the capacity of the tanks and pipes, in volume and �ow respectively[GR94,
MP05].

qcsok =





max
(
Vk+∆T (qink −qoutk )−V

∆T , 0
)
, Tank case

max
(
qink − qout, 0

)
, Pipe case

(4.18)
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where tank case is based on the discrete mass balance discussed earlier in (3.7)
and the assumption that all excessive volume at time k becomes weir �ow at
time k; an assumption which does not hold for the true description.

4.1.1 Mixed Integer approach

As discussed in section 2.3.2, the maximum function in the description above
can be replaced with a logical variable[OM10]

qcsok =

{
δ
Vk+∆T (qink −qoutk )−V

∆T , δ = 1⇔ Vk + ∆T (qink − qoutk ) ≥ V
δ(qink − qout), δ = 1⇔ qink ≥ qout

(4.19)

Where the logical equivalences to the right, de�nes the switching function T (·)
of the weir, δ = 1 ⇔ T (·) ≥ 0. The use of both logical (integer) variable and
continuous variables are known as Mixed Integer (MI), and an MPC designed
using MI is an MI-MPC. Computation of the solution of MI-MPCs can, in
general, be thought of as a mix of search and optimization algorithms.

The above formulation of weirs for MI-MPC can be adjusted for similar math-
ematical structures, where the dynamics are piecewise functions of two pieces,
such as maximum, minimum, or absolute functions. The MI description in
(4.18) can be considered functional quadratic in the sense of multiplication of
logical terms with the continuous functions corresponding to each piece.

If we consider the Mixed Logical Dynamical (MLD) approach introduced in
[BM99a], then the description can be formulated as linear w.r.t. the logical
variable. Let us consider the general variable z de�ned piecewise between the
continuous functions f(x) and g(x), with the logical variable δ de�ning the
switch based on the function h(x)

z = δf(x) + (1− δ)g(x) (4.20)

δ = 1⇔ h(x) ≤ 0 (4.21)

Then by utilizing the upper and lower bounds of the three functions, the "lin-
earized" z can be formulated using six inequality constraints:

hδ ≤ h(x) ≤ h(1− δ) (4.22)

(g − f)(1− δ) ≤ z − f(x) ≤ (g − f)(1− δ) (4.23)

(f − g)δ ≤ z − g(x) ≤ (f − g)δ (4.24)

If any of the bounds on the functions are open, then a su�ciently large approx-
imation of positive or negative in�nity can be utilized.
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4.1.2 Slack approach

Another approach to including weir �ows in the MPC programs is through slack
variables with an additional penalty cost to minimize[GR94, HF17]. The basic
idea is to consider the weir �ow qcso an optimizable variable and excluding the
discussed weir dynamics from the model. The new variable is then minimized
through a penalty cost lcso(·), designed to approximate the real behavior of the
weir:

No weir �ows, when capacity is not reached

and the assumption of all excessive volume becomes weir �ow before the next
sample.

The generalized formulation of MPC with approximated weir �ow can be given
by

J = min
u,qcso

NHp∑

k=0

l(xk,uk,wk,q
cso
k ) + lcso(qcsok ) (4.25)

s.t.

xk+1 = f(xk,uk,wk,q
cso
k ) (4.26)

h(xk,uk,wk,q
cso
k ) = 0 (4.27)

g(xk,uk,wk,q
cso
k ) ≤ 0 (4.28)

where the arguments of the functions in (4.1)-(4.4) are extended to include the
weir �ows.

The additional cost lcso can be chosen in a lot of ways; [GR94] de�ned it as
quadratic and linear sums of CSO volume of the system, both temporal and
spatial, while [HF17] de�ned it as the linear sum of the accumulated CSO volume
from each weir at each time step

V csok,j = ∆T

k∑

i=0

qcsoi,j (4.29)

where j indicates the spatial location of the accumulated CSO volume.

The de�nition used by [HF17] ensures that the optimization does not initiate a
given CSO, mathematically, before the capacity of the given weir is reached; by
the weight on the individual CSO being repeated at each later predicted accu-
mulated volume. The approach also allows for spatially di�erentiated weighting
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of CSO from each weir. Though the weightings of the di�erent weirs have to
follow some guidelines, see Paper A; for connected elements (tanks, pipes, etc.)
there are not connected through a controller:

The weir upstream has to have a higher weighting than the downstream wear.

Preventing the generation of CSO upstream mathematically to avoid true CSO
downstream, e.g. two tanks connected in a cascade, where the downstream is
full and the upstream is half empty, and the �ow between is passively driven
by gravity; an optimization algorithm with even weighting might try an empty
the upstream by CSO, to lessen the passive in�ow to the downstream tank and
therefore avoiding CSO there; the solution is mathematical as optimal as the
physical CSO happening in the downstream tank.

For the case of the elements being connected through a controller, the con-
troller acts as a savepoint for the MPC, disconnecting the CSOs upstream and
downstream of the controller, see Paper G. This allows for more design-friendly
weightings of the CSO.

4.2 Objectives in the Cost Function

In Chapter 2, we discussed the kind of control objectives often seen in the
management of sewer networks, here we will see how these can be formulated
into cost terms Jn for the minimization in the MPC.

The presented list of possible ways to implement the objectives is by no means
complete, but a list of simple implementations of the objectives as costs. Each
presented cost is a convex expression in line with the convex optimization dis-
cussed in section 4.0.1.

Reference objective Previously we discussed the objective of a given �ow
to either follow a reference or stay below it, if we instead of considering a �ow
in the objective, consider a feature z (�ow, volume, etc.), then the cost term
can be formulated as

Jn = ||z− zref ||2Qref , Jn = QT
ref (z− zref ) (4.30)

where to the left we have the quadratic cost of the objective of following a given
reference zref with the weight Qref and to the right a linear cost of the objective
of staying below a given reference with the weight Qref .
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By using this de�nition of reference objectives, some of the other objectives can
be constructed using the same notation:
Minimum Volume: let z correspond to the volume of a given tank, then
having a reference of zero would minimize the volume.
Maximum �ow: let z correspond to a �ow and the linear cost have a negative
weight, then the �ow is maximized.
Control usage: If z corresponds to a control �ow, then the quadratic reference
cost will penalize the usage of control deviating from the zero references. For
non-negative controls, the linear cost can also be utilized.

Control change The simplest way to implement the objective of smooth
control is by a quadratic cost on the change:

Jn = ||∆u||2Q∆u
(4.31)

where Q∆u is the matrix weight of the quadratic cost. There does also exist a
linear version of the quadratic cost, formulated using slack variables t, weights
Qt, and extra inequality constraints:

Jn = Qtt (4.32)

−t ≤ ∆u ≤ t (4.33)

CSO avoidance / minimization In the case of CSO avoidance, there is no
term for the cost function. For the CSO minimization, it can be implemented
both as a quadratic cost or as a linear cost, as we discussed above the slack
approach.

Jn = ||qcso||2Qcso , Jn = QT
csoq

cso (4.34)

where Qcso is the matrix weight of the quadratic cost and Qcso is the vector
weight of the linear cost

4.3 Model Predictive Control Under Uncertainty

The discussion on MPC so far, have assumed the model and disturbances to be
deterministic and known, a more realistic assumption is to include uncertainty
in the MPC formulation. Over the years, MPC with handling of uncertainty
has been extensively studied, and the resulting MPC methods can generally
be divided into two classes; robust approaches[BM99b, MNSA03, KC16], and
stochastic approaches[Mes16, KC16, GCGP09, ECK12, SN99]. Where robust
MPC aims at �nding solutions that hold for all realizations of the uncertainties,



4.3 Model Predictive Control Under Uncertainty 37

and stochastic MPC aims to �nd solutions, which statistically covers a subset
of the realizations, based on stochastic knowledge of the uncertainty.

Within both classes of MPC, there exist several di�erent methods and variations
of these, in this section we will discuss the following three of these methods and
related theory to them:

• Tube-based MPC

• Scenario-Based MPC

• Chance-Constrained MPC

4.3.1 Tube-based MPC

The method known as tube-based MPC or Tube MPC (T-MPC) is from the
class of robust MPCs. Robust MPCs, including T-MPC, are based on the
assumption that any model and disturbance uncertainty is bounded by some
known set W[KC16], such that the uncertainties at time k are bounded by
wk ∈ Wk. Let us de�ne the set of uncertainties from two points in time as:

Wi:j =Wi ×Wi+1 × · · · ×Wj , i ≤ j (4.35)

where the set W0:NHp
from the current time to the end of the horizon, is the

uncertainty set W. The formulation of robust MPC is generally given in one of
two versions [BM99b], one where the cost is based on the nominal value of the
disturbances or one where the cost is given as a min-max problem as below; to
optimize over the worst-case cost w.r.t. the disturbances.

J = min
u

max
w∈W

NHp∑

k=0

l(xk,uk,wk) (4.36)

s.t.

xk+1 = f(xk,uk,wk) (4.37)

max
w0×···×wk∈W0:k

{g(xk,uk,wk)} ≤ 0 (4.38)

where the equality constraints h(·) either are not existing, formulated using the
nominal disturbance or substituted into the cost and other constraints, by an
invertion in some sense[NBP20]. The inequality constraints in (4.38) are usually
interpreted as the maximization of the individual constraints:

max
w0×···×wk∈W0:k

{gi(xk,uk,wk)} ≤ 0 (4.39)
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in contrast to all constraints at once. Furthermore, it is also assumed that the
uncertainty lies in a convex polytopic set W = {w : Vw ≤ v}.

In T-MPC, as in other robust MPCs, the worst-case of the constraints are
considered; the constraints are formulated as deterministic constraints for the
nominal disturbance, with a tightening of the constraints, such that the solution
will allow the original constraint to hold, even for the worst realization of the
uncertainty. The approach used in T-MPC relies on de�ning tubes describing
the possible constraint realizations due to the uncertainty as a sequence of sets
corresponding to a given constraint across the prediction horizon. The sets in
the tubes are de�ned as robustly positively invariant sets (def. 4.2), such that
the desired properties of the MPC are true, such as recursive feasibility.

Definition 4.2 (Robustly Positively Invariant set) a set Z is robustly posi-
tively invariant (RPI) under the dynamics f(z,w) and constraints g(z,w) if and
only if for all w ∈ W and z ∈ Z, the constraints hold and the dynamics lie in
the set; f(z,w) ∈ Z, [KC16].

There exist many approaches to how exactly one computes both the RPI and
the constraints tightening depending on the kind of system considered [NBP20,
KC16]. Below is given a simple linear example of the approach of [NBP20].

Example 1 Let us consider the linear constraint gi(u,w) ≤ H dependent on
the control u and the uncertain disturbance w ∈ W

gi(u,w) = F
T
u+GT

w ≤ H (4.40)

The constraint's set of possible realizations can then be written as

F
T
u

⊕
G
TW (4.41)

The tightening of the constraint can then be written as

F
T
u ≤ H − hi (4.42)

hi = max
w∈W

G
T
w (4.43)

where the computation of hi reduces the constraint to a deterministic tightened
version of the constraint. One approach to solving (4.43) is using an uncertainty
description based on zonotopes[BR15].

hi = G
T
w0 + ||GT · diag(∆w)||1 (4.44)

where the uncertainty is assumed bounded by w ∈ w0 ±∆w.
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4.3.2 Scenario-based MPC

From the class of stochastic MPC, another approach to uncertainty in the MPC
is the scenario-based MPC (SB-MPC), which is a statistical approximation of
the robust MPC [GCGP09, CGP19]. It works by �nding a solution of the MPC
program, that holds for any realization of the disturbances, also called a scenario,
within a given subsetW0 of all possible realizations of the disturbancesW. The
general scenario-based MPC is formulated as

J = min
u,ξ

ξ (4.45)

s.t.

NHp∑

k=0

l(xk,uk,wk) ≤ ξ, ∀w ∈ W0 (4.46)

xk+1 = f(xk,uk,wk), ∀w ∈ W0 (4.47)

h(xk,uk,wk) = 0, ∀w ∈ W0 (4.48)

g(xk,uk,wk) ≤ 0, ∀w ∈ W0 (4.49)

where cost constraint in (4.46) and the constraints are duplicated for each sce-
nario in W0. If the cost constraint is independent of the uncertainty, then the
cost function can be formulated as the cost constraint.

The theory used in SB-MPC relies on the scenarios in W being independently
and randomly sampled. Under these assumptions, [GCGP09] introduced a for-
mula for how many scenarios are needed for an approximation of a given quality:

N ≥ 2

ε
(ln(

1

β
) + d) (4.50)

where N is the number of independent scenarios, ε is the violation parameter,
β is the con�dence parameter and d is the number of optimization variables
in the MPC program. The con�dence parameter β and violation parameter ε
de�ne the probability 1− β that the solution of SB-MPC satis�es all constraint
realizations except at most an ε-fraction of them.

While SB-MPC has the bene�t of no assumption of distribution, and a formu-
lation with the same order of non-linearity as the original MPC, it comes with
the drawback of multiplying the program size; N copies of each constraint. If
a large N is chosen, this can lead to increased computation time depending on
the program. Let us consider (4.50) to see how large N should be; e.g. for a
system with three optimization variables across the horizon, d = 3, if we choose
a violation fraction ε = 0.1 and a con�dence of missing only one in a thousand,
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β = 10−3, then we can compute N:

2

0.1
(ln(

1

10−3
) + 3) = 60ln(10) + 60⇒ N ≥ 199 (4.51)

where it can be seen that even for a small program with a handful of variables,
the size of N increases rapidly if the desired violation fraction is small. If we
reverse the focus to the violation fraction and consider scenario sets of size 25
or 50, typical scenario forecast size from weather predictions[Ped18], then our
violation fraction ε becomes 0.79 and 0.40 respectively. Both being larger and
approaches one as the con�dence and number of variables increases.

On this basis, it would only be sensible to utilize scenario-based MPC on sewer
systems, if the given system were very limited in size w.r.t. optimization vari-
ables.

4.3.3 Chance Constrained Model Predictive Control

The last method, we will discuss is the Chance Constrained MPC (CC-MPC),
also from the class of stochastic MPCs. In [SN99], the Chance Constrained
approach to stochastic MPC was proposed, and have since then been well re-
searched [KC16, Mes16]. While the T-MPC was based on knowing the boundary
of the uncertainty, and the SB-MPC were based on access to enough independent
random scenarios of the uncertainty; the CC-MPC is based on the assumption
that we know the exact distribution of the constraints and cost, a�ected by the
uncertainties. The knowledge is used to formulate a deterministic MPC, where
the inequality constraints are tightened based on the probabilistic nature of the
constraint, as opposed to the worst-case tightening in the case of T-MPC.

Often it is assumed that the distribution of the uncertainties is known and that
the distribution of the constraints can be computed as needed. The general
formulation of CC-MPC using this assumption is given by

J = min
u

NHp∑

k=0

E{l(xk,uk,wk)} (4.52)

s.t.

xk+1 = f(xk,uk,wk) (4.53)

E{h(xk,uk,wk)} = h (4.54)

Pr{gj(xk,uk,wk) ≤ gj} ≥ γj,k, ∀j ∈ [0, ng] (4.55)

wk,i ∼ F bk,iak,i (θθθk,i) (4.56)
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where the cost and equality constraints are the expected values, and the inequal-
ity constraints are formulated as probabilistic constraints on each individual
constraint. The probability constraints could also be formulated across several
constraints, as a joint probability of all of the constraints being true.

In CC-MPC, the probabilistic formulation given above is rewritten such that it
becomes deterministic. For the probabilistic constraint, we utilize the relation
between probability and the CDF ΦX(x) of a stochastic variable X in (4.57),
to rewrite the constraint deterministically in terms of the quantile function of
the constraint.

Pr{gj(xk,uk,wk) ≤ 0} = Φgj(xk,uk,wk){0} ≥ γj,k (4.57)

Φ−1
gj(xk,uk,wk){γj,k} ≤ 0 (4.58)

The quantile function Φ−1
X (x) is in general hard to compute, given that it might

not be described by a well-researched quantile function, and due to its depen-
dency on the optimization variable u; making the quantile varying under the
optimization. A common trick is to simplify the constraint, by splitting the con-
straint in a stochastic and deterministic part: g(u,w) = gdet(u) + gstoch(u,w).
If the stochastic part, then becomes independent of the optimization, then the
quantile becomes �xed for the given uncertainty, as would be the case of additive
uncertainty.

Pr{g(u,w) ≤ 0} = Pr{gstoch(u,w) ≤ −gdet(u)}
= Φgstoch(u,w){−gdet(u)} (4.59)

Another approach to ease the computation of the quantile function is through
standardization of the constraint distribution and its quantile function. De-
pending on the constraint distribution, it might be possible with deterministic
expression to formulate the quantile as a function of a quantile function with
�xed distribution parameters. An example of a distribution with this property
is the normal distribution, where the quantile function of the stochastic variable
X is given by

Φ−1
X {γ} = E{X}+ σ{X}Φ−1{γ} (4.60)

where Φ−1{γ} is the quantile function of the standard normal distribution
N (0, 1). Both approaches can be used simultaneously.

Earlier in section 4.0.1, we discussed some bene�ts with quadratic and linear
cost and constraints, in the case of CC-MPC this is even more true; given that
both the expectation and variance functions for matrix /vector formulation have
certain properties that lead to simpler computations of the cost and constraint
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functions[Pou07]:

E{AX} = AE{X} (4.61)

σ2{AX} = Aσ2{X}AT (4.62)

tr{XTAX} = tr{AXXT } (4.63)

E{||X||2A} = E{X}TAE{X}+ tr{Aσ2{X}} (4.64)

The property given in (4.64) is especially useful for the cost in quadratic pro-
grams if the uncertainty in X is independent of the optimization; then the
variance term becomes constant w.r.t. the optimization.

Similarly for linear cost and constraints are (4.61) practical to isolate the uncer-
tain elements in the equations into the expectation of the uncertainties, which
are �xed w.r.t. the optimization.

4.3.4 Estimation of Probability Distribution

So far we have discussed how CC-MPC is formulated and how it utilizes the
knowledge of the distribution to formulate a deterministic MPC program. Here
we will discuss how knowledge of the distributions can be obtained. The sim-
plest way is of course that the knowledge is provided by some external source,
otherwise, the distributions have to be estimated from available data about the
uncertainty.

The simplest way of estimating a distribution from data is to evaluate the data
against a standard distribution, through a goodness of �t test for the chosen
standard distribution. With standard distribution, we mean any distribution de-
scribed previously by research (and usually named). There exist several types of
goodness of �t test[JFM11, Hay13], in the following paragraphs we will discuss a
few of them, and what one needs to estimate the parameters of the distributions
to compare with.

χ2 test: A goodness of �t χ2-test is based on evaluating whether the data
could belong to a given distribution, within a margin of error. It operates on
the hypothesis that the data comes from a given distribution, and tests if this
claim can be rejected, by comparing the test statistic with the critical point of a
suitable χ2 distribution. The test statistic is based on occurrences in intervals,
where the intervals cover the span of the given distribution. There exist more
than one type of χ2 test, where the di�erence lies in the formulation of the test
statistic. Below is the test statistic given for two common types.
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α 0.20 0.10 0.05 0.02 0.01
dα 1.07 1.22 1.36 1.52 1.63

Table 4.1: Values of the Kolomogorov-Smirnov critical point coe�cient

Pearson's χ2 test:

χ2 =

k∑

i=1

(Oi − Ei)2

Ei
(4.65)

likelihood ratio χ2 test:

G2 = 2

k∑

i=1

Oiln(
Oi
Ei

) (4.66)

where Oi is the number of occurrences within the ith interval and Ei is the
expected number of occurrences in the ith interval. The number k is the number
of intervals used, generally chosen so no occurrence is less than �ve.

if the test statistic χ2 or G2 are below the critical point χ2
α,k−1, e.g. χ2 ≤

χ2
α,k−m, then the hypothesis of the data being from the given distribution is

deemed plausible and accepted. m is the number of parameters estimated from
the data to described the given distribution.

Kolmogorov-Smirnov Test for single populations The Kolmogorov-Smirnov
test is based on the empirical CDF Φest(x) and the largest di�erence between it
and the CDF Φ0(x) of a proposed distribution. The empirical CDF is de�ned
using a data set of n samples as below, where the CDF value at x is de�ned as
the number of samples below x

Φest(x) =
#xi ≤ x

n
(4.67)

The Kolmogorov-Smirnov test statistic M is computed as the largest di�erence
between the CDFs de�ned as

M = max
x
|Φest(x)− Φ0(x)| (4.68)

The hypothesis is rejected if M is large, which typically is formulated as

M ≥ dα√
n

(4.69)

where dα√
n
is the critical point of the test. In Table 4.1, the coe�cient dα is given

for a selection of α values.
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Anderson-Darling Test Another test based on CDF is the Anderson-Darling
test, where the data is sorted after size, such that xi ≤ xj and the test statistic
A2 is de�ned as

A2 = −

n∑
i=1

(2i− 1)(ln(Φ0{xi}) + ln(1− Φ0{xn+1−i})

n
− n (4.70)

If the hypothesis is that the data follows a distribution F, then we reject the
hypothesis if A2 is larger than the critical point of the distribution F:

A2 ≥ Fα (4.71)

Parameters Whether the test is based on CDF or other formulations of the
given distribution, the theoretical distributions depend on its parameters, which
need to be chosen. The simplest scenario is when the proposed distribution
includes values of the parameters and not only the distribution type; testing
for a speci�c distribution such as the standard normal distribution N (0, 1). In
other cases, some or all of the parameters have to estimate from the data

Example 2 Let us consider a data set X = {x1, x2 · · ·xn} consisting of n
samples, and the assumption that it follows a normal distribution with no prior
assumption on the parameters. Then the parameters, mean µ and variance σ2,
has to be estimated from the data set:

µest =

n∑

i=1

xi
n

(4.72)

σ2
est =

n∑

i=1

(xi − µest)2

n
(4.73)

providing a parameter set to de�ne the distribution in the test.



Chapter 5

Summary of Own
Publications

In this chapter, we will discuss how the topics discussed in the previous chapters
of this dissertation relate to the work of the ph.d. project; presented in the
published/submitted papers used as the foundation of the dissertation.

In Table 5.1, we can see which papers relate to which of the discussed topics,
while the more fundamental and informative topics are excluded from the table
if no paper addresses the topic directly.

A more detailed discussion of the content and topics of each paper is given in
the following sections.

5.1 Paper A

In this paper, we utilized a linear virtual tank model of the Barcelona case study
through an implementation in MATLAB, to compare the CSO formulations of
MI-MPC and slack approximation, see section 4.1. The MI-MPC was based on
MLD formulations so that the MPC program was kept a QP program. The slack
approach was similarly formulated as a comparable QP program. Both programs
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Topic\Article: pap A pap B pap C pap D pap E pap F pap G

virtual tanks x x x x x x x
Hi-Fi simulation x x x
Design simulation x x x x
Barcelona x x
Astlingen x x x x
Aarhus x
MI-MPC x
CSO Slacks x x x x x x
CSO avoid x
QP-MPC x x x x x x
LP-MPC x
CC-MPC x x x x x
T-MPC x
Estimation x
cost: ∆u x x x x x x
cost: u x x x x x x x
cost: qcso x x x x x x

Table 5.1: Overview of the Topics in each of the Papers: with x indicating
paper includes topic given in that row

were given the same base cost, which the slack approach would extend. The
comparison presented in this paper covered the operational and computational
aspects of the two approaches to CSO formulation.

Given the simulation model were identical to the design model of the MI-MPC,
the found CSO of MI-MPC would match the simulation per de�nition; from
the simulations it was found that the slack approach likewise was able to pre-
dict the CSO of the simulation, therefore showing equal ability to predict the
system. Operationally the added cost of the slack approach improves the CSO
minimization in comparison to MI-MPC, but at the cost of worse performance
on other cost criteria, where the MI-MPC performs better.

On the computational side, it was shown that the computation time of MI-MPC
would increase drastically with increases in rain intensity or duration, while
the slack approach was much less sensitive to the increases, computationally.
The di�erence was shown for large rain events to generally be a factor of 500
times the computation time, for a horizon of 20 min by 5 min sampling. It
was further compared the computation sensitivity to the horizon length, were
again was shown that MI-MPC being more sensitive, with a drastic increase in
computation time.
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The slack approach used in this paper was based on the one of [HF17] with a
quadratic term, and it was shown that it is applicable to CSO from pipes and
not only tanks. The weighting rules for achieving physical behavior of the CSO,
when using the slack approach were stated:

• the weight is on the accumulated CSO volume

• the weight on the CSO slack variable has to be relatively higher than any
other costs

• the weight on CSO from upstream elements have to be higher than the
downstream CSOs

5.2 Paper B

In this paper, we presented an implementation of the Astlingen system and the
utility of MPC in comparison to other rule-based controllers, through simula-
tions. My contributions were regarding the MPC, excluding the implementation
of the system. The simulations were based on an SWMM model of Astlingen; a
simulator solving the Saint-Venant equations[Ros17] discussed in section 2.1.

We showed that the MPC approach from paper A; a simple QP MPC using the
slack approach, could achieve good operations on the nonlinear Astlingen sys-
tem, and outperforming the tested rule-base controllers. Indicating the potential
of using a simple advance controller instead of a simple rule-based controller.

5.3 Paper C

In this work, we considered the existence of uncertainty in the weather forecast
and the implication on MPC performance. The performance was evaluated
based on simulation of a simpli�ed Barcelona model, without internal over�ows.
As part of the evaluation, we used the CC-MPC method, a method designed to
handle uncertainty, as an alternative controller to the base MPC.

Both the base MPC and CC-MPC were designed as QP MPCs with CSO avoid-
ance. The simulations were done with an MPC with perfect forecast as a com-
parison. The CC-MPC was given a distribution with the perfect forecast as
the expected forecast, while the base MPC was given di�erent realizations of
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the forecast based on the same distribution. The evaluation of the performance
focused on feasibility range and false CSO predictions.

It was found that both MPCs became more unfeasible as the rain events in-
creased; MPC had fewer successful realizations and CC-MPC was restricted to
lower con�dence levels γ. This gives the CC-MPC a level of feasibility tuning,
which the base MPC does not have. The MPC was found to produce solutions
that caused CSO, though it should not, in contrast, the CC-MPC produced no
such false positive predictions.

This paper represents the intermediate work and thoughts between paper A and
B, and the methods and results of paper D.

5.4 Paper D

In this article, we presented the di�culties of applying CC-MPC to sewer net-
works, when aiming to minimize CSO and not avoid it. It was shown that
the standard formulation used in paper C lead to insensible probabilistic con-
straints. On that basis, we proposed a di�erent approach to the formulation of
CC-MPC, when working with weirs; using the switch function T (·) in (4.19) to
provide meaningful probabilistic constraints.

The proposed formulation is designed to include intrinsic feasibility, when the
deterministic MPC has it, as well as including the usage of the slack approach:

E{gi(xk,uk,wk,q
cso
k } ≤ 0 (5.1)

Φ−1
Ti(·){γ} − c ≤ 0 (5.2)

0 ≤ c (5.3)

where gi is the ith constraint at time k de�ning one of the over�ows in qcsok , Ti
is the corresponding switching function of the de�ned over�ow, and c is a slack
variable providing intrinsic feasibility, with some associated penalty.

The formulation was tested successfully on a simulation of using the design
model of the CC-MPC, inspired by the Astlingen network. Showing the pro-
posed formulation works, w.r.t. over�ow prediction, and expected performance,
when compared to an MPC with perfect knowledge.
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5.5 Paper E

In this work, the proposed formulation of CC-MPC from paper E was applied to
the Astlingen simulation setup from paper B. The performance of CC-MPC was
evaluated against a baseline of an MPC with perfect forecast. The evaluation
focused on the sensitivity of the performance of CSO and �ow to WTTP. The
sensitivity was de�ned w.r.t. variation in the con�dence level of the CC-MPC
and di�erent aspects of uncertainty, such as the bounds of the uncertainty, scaled
biases and o�set biases of the expected forecast.

It was found that for the Astlingen system, the CC-MPC and MPC were sen-
sitive to overestimation biases of the forecast, while only MPC being sensitive
to the corresponding underestimations. The CC-MPC's sensitivity towards the
uncertainty bound appeared to be negligible.

5.6 Paper F

In this paper, we considered and compared the di�erences and similarities of
robust and stochastic MPC, speci�cally tube-based MPC and CC-MPC. We
compared the formulations and drawbacks of the two methods, speci�cally the
uncertainty propagation and uncertainty handling in individual constraints. We
found the propagation was the same, and while approaches to obtaining a deter-
ministic constraint are di�erent, both did so with constraint tightening; which
for a linear case was found to have an inequality relation, for the uncertainty
term AZ given as:

Φ−1
AZ{γ} ≤ AZ0 + ||A · diag(∆Z)||1
Z = Z0 + ∆Z,∆Z ∈ [−∆Z,∆Z]

(5.4)

The general drawbacks were found to be worst-case conservatism for the T-MPC
and computation di�culties for CC-MPC; a simple formulation of T-MPC with
chance-constrained bounds was proposed.

A comparison of performances was done using the Astlingen setup used in paper
B and E. Like in paper E, we considered the sensitivity to the di�erent aspects
of the uncertainties. It was found that the T-MPC were less sensitive to the
biases than the CC-MPC, with opposite relation to the uncertainty bounds.
In general, it was found that CC-MPC would perform better w.r.t. CSO and
WTTP �ow.
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5.7 Paper G

In this article, we proposed a framework for applying CC-MPC on general sys-
tems, through the use of ensembles; Ensemble-based CC-MPC. The di�culties
in obtaining analytical quantile functions for the constraints for general dis-
tributions and/or nonlinear systems provided a limit to the application and
usefulness of the CC-MPCs discussed in paper C,D,E, and F.

Therefore we proposed to propagate an ensemble of uncertainty scenarios, in-
stead of propagating the distributions, and utilizing distribution estimation to
obtain a distribution of the constraint. The estimation can be in terms of known
distributions with known quantile functions, therefore providing the mathemat-
ical tools for the CC-MPC.

The framework was applied with good results on a linear design model of the
Aarhus system, section 3.4.3, using the proposed CC-MPC formulation from
paper D. The simulations were run with normal distributed uncertainty, and
estimation checking the constraints against being normal or uniform distributed,
using the Pearson's χ2 test.

An update to the weighting rules of the CSO slack approach presented in paper
A was introduced, such that the increase in upstream weightings can be reset if
separated from the downstream by a controller.



Chapter 6

Conclusion and future
research

In this ph.d. project, the focus has been on the application of Model Predictive
Control (MPC) to sewer networks, primarily w.r.t. the minimization of Com-
bined Sewer Over�ows (CSO) from weirs. The project has considered di�erent
types of existing approaches to formulate weirs in the MPC design; formulations
based on either integer or slack variables. It was found that both formulations
were adequate to represent the CSOs, with the di�erence being in the trade-o�
between computation-complexity and design freedom. The weighting rules of
the slack approach were found to decrease the design freedom, while the com-
putation time of the integer approach was seen to increase rapidly.

In the project, the presence of uncertainty has been considered w.r.t. the MPC
performance and design, mainly focusing on forecast uncertainty. Several exist-
ing methods for including the uncertainty in the MPC design such as chance-
constrained MPC (CC-MPC) were explored. It was seen how the MPC and
CC-MPC operated to avoid CSO; given less feasible solution space for CC-MPC,
but also avoiding the false-positive solutions of the MPC.

When considering the reduction of CSO, it was found that CC-MPC has issues
of compatibility between the approach to uncertainty and weir formulation;
the slack approach. A new formulation of CC-MPC was proposed; addressing
and solving the issues of compatibility, with the addition of providing intrinsic
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feasibility to the CC-MPC design, provided the deterministic MPC would have
intrinsic feasibility.

The performance of the formulated CC-MPC was compared to the MPC's per-
formance, both on design models and hi� models. It was found that in general,
the CC-MPC would perform comparable to an MPC with known forecast, and
better than those with biased forecasts.

A similar comparison was performed for the CC-MPC against Tube MPC, re-
garding performance and formulation. There found a mathematical relation
between the conservatism of the two MPCs for linear constraints. Performance-
wise, it was found that each had its own strengths, depending on the aspect and
size of the uncertainty in the forecast.

The dependence of CC-MPC on the availability of the right stochastic knowledge
has been considered. Based on the dependency and distribution estimation, a
framework for CC-MPC using ensemble forecasts (ECC-MPC) were formulated.
The ECC-MPC framework will allow for the complicated constraint distribu-
tions to be described in terms of known distributions; simplifying computations.
The framework was tested against the formulated CC-MPC and they were found
to perform comparable to each other.

6.1 Future research

In this dissertation and the ph.d. project, the research has generally been limited
to linear design models and additive uncertainty terms. Real systems are gener-
ally nonlinear to some extent, with non-additive uncertainty relations existing.
It would therefore be of interest to extend the research and methods presented
in this dissertation to include such aspects. Among the possible topics there
could be considered in future research are:

1. Further evaluation and testing of the performance of the ECC-MPC frame-
work. Including simulations with HiFi models (nonlinear), as well as with
non-normal distributed uncertainties, or using historical ensemble fore-
casts.

2. Applying the proposed MPC methods to nonlinear sewer networks, with
a nonlinear design model for the MPC; in order to capture more of the
system dynamics in the optimization. Allowing for evaluation of which
nonlinearities are bests modeled as nonlinear or could be modeled as lin-
ear adequately for the desired management, with only negligible losses of
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performances. A simple nonlinearity to introduce would be the tank out-
�ow, as given in (2.5). Sequential quadratic programming could be the
solving method for such MPCs.

3. While uncertainty with additive relations to the optimization variables
has certain nice properties, uncertainty with other relations such as mul-
tiplicative is just as present in real systems. How to expand the proposed
methods to include other relations are therefore a topic of interest for fu-
ture research. We have in Paper G brie�y mentioned a scenario for which
multiplicative relations should be applicable for the framework method;
based on assuming a standardization of the quantile function similar to the
normal distribution is reasonable. It would be interesting to see if other
scenarios can provide quantile functions independent of the optimization;
both for multiplicative relations as well as for other uncertainty relations.

4. A source of model uncertainty in MPC is the linearization or changes to
the real system. An interesting research topic could therefore be cou-
pling MPC with methods from adaptive control theory, such as extended
Kalman �ltering and system identi�cation. A research topic could be how
one would detect changes in the constraint limits, especially expansions.

Another interesting aspect of the research in MPC is the a�ect of the length of
the prediction horizon. Given that longer horizons gives larger MPC programs,
it also increases the risk of numerical issues to occur, e.g. combinations of very
large and small values. The following topic could therefore be o� interesst:

A Research into the use of several sample times across the prediction horizon,
to increase its length without the consideral increase in MPC program.
Such research would focus on the performance and applicability of the
methods discussed in this dissertation.



54 Bibliography



Bibliography

[BD11] David Butler and John W. Davies. Urban Drainage. Spon Press,
3rd edition, 2011.

[BM99a] Alberto Bemporad and Manfred Morari. Control of systems inte-
grating logic, dynamics, and constraint. Automatica, 35:407�427,
1999.

[BM99b] Alberto Bemporad and Manfred Morari. Robust model predictive
control: A survey, volume 245 of Lecture Notes in Control and
Information Sciences, pages 207�226. Springer, London, 1999.

[BR15] Matthias Beck and Sinai Robins. Computing the Continous Dis-
cretely - Integer-Point Enumeration in Polyhedra. Springer, Oct.
2015.

[BV09] Stephen Boyd and Lieven Vandenberghe. Convex Optimization.
Cambridge University Press, 7th edition, 2009.

[CB07] E.F Camacho and C. Bordons. Model Predictive Control.
Springer, 2nd edition edition, 2007.

[CGP19] Marco C. Campi, Simone Garatti, and Maria Prandini. Scenario
Optimization for MPC, pages 445�463. Springer International
Publishing, Cham, 2019.

[CMM88] Ven Te Chow, David R. Maidment, and Larry W. Mays. Applied
Hydrology. McGraw-Hill, 1988.



56 BIBLIOGRAPHY

[CQS+04] Gabriela Cembrano, Joseba Quevedo, M. Salamero, Vicenç Puig,
J. Figueras, and J. Marti. Optimal control of urban drainage sys-
tems. a case study. Control Engineering Practice, 12:1�9, 2004.

[DH20] Lars Haslev Drejer and Rasmus Halvgaard. Water smart cities
milestone 5: O�ine model predictive control (mpc) performance
results for the marselisborg, aarhus case study. Technical report,
DHI, April 2020.

[DHI17] DHI. Mouse pipe �ow - reference manual. Technical report, DHI,
2017.

[Dre20] Lars Haslev Drejer, March 2020. Private Correnspondence.

[ECK12] Martin Evans, Mark Cannon, and Basil Kouvaritakis. Linear
stochastic mpc under �nitely supported multiplicative uncer-
tainty. Proc. of the 2012 American Control Conference, June
2012.

[GBGE+15] L. García, J. Barreiro-Gomez, E. Escobar, D. Téllez, N. Quijano,
and Carlos Ocampo-Martinez. Modeling and real-time control of
urban drainage systems: A review. Advances in Water Resources,
85:120�132, November 2015.

[GCGP09] S. Garatti, Marco C. Campi, Simone Garatti, and Maria Pran-
dini. The scenario approach for systems and control design. An-
nual Reviews in Control, 33:149�157, October 2009.

[GGSvO14] Stefano Galelli, Albert Goedbloed, Dirk Schwanenberg, and
Peter-Jules van Overloop. Optimal real-time operation of mul-
tipurpose urban reservoirs: Case study in singapore. J. Water
Resour. Plann. Manage., 140:511�523, 2014.

[GR94] M. S. Gelormino and N. L. Ricker. Model predictive control of
a combined sewer system. INT. J. CONTROL, 59(3):793�816,
1994.

[Gre15] Ida Bülow Gregersen. Past, present and future variations of ex-
treme rainfall in Denmark. PhD thesis, Technical University of
Denmark, DTU Environment, Kgs. Lyngby, 2015.

[Hay13] Anthony Hayter. Probability and Statistics for Engineers and
Scientists. Brooks/Cole Cengage Learning, 4th edition, 2013.

[HF17] Rasmus Halvgaard and Anne Kathrine Vinther Falk. Water sys-
tem over�ow modeling for model predictive control. In Proceed-
ings of the 12th IWA Specialised Conference on Instrumenta-
tion, Control and Automation. Proceedings of the 12th IWA Spe-



BIBLIOGRAPHY 57

cialised Conference on Instrumentation, Control and Automa-
tion, june 2017.

[HH15] R. Horalek and J. Hlava. Multiple model predictive control of
grid connected solid oxide fuel cell for extending cell life time.
In 23rd Mediterranean Conference on Control and Automation,
pages 310�315, 2015.

[HJS08] Elbert Hendricks, Ole Jannerup, and Paul Haase Sørensen. Lin-
ear Systems Control. Springer, 2008.

[JFM11] Richard Johnson, John Freund, and Irwin Miller. Miller and
Freund's Probaility and Statistics for Engineers. Pearson, 8th
edition, 2011.

[JS09] Ole Jannerup and Paul Haase Sørensen. Reguleringsteknik. Poly-
teknisk Forlag, 4th edition, 2009.

[KC16] Basil Kouvaritakis and Mark Cannon. Model Predictive Control -
Classical, Robust and Stochastic. Advances Textbooks in Control
and Signal Processing. Springer, 2016.

[Kim13] Sean Hay Kim*. Building demand-side control using thermal
energy storage under uncertainty: An adaptive multiple model-
based predictive control (mmpc) approach. J. Building and En-
vironment, 67:111�128, 2013.

[LBM+19] Nadia Schou Vorndran Lund, Morten Borup, Henrik Madsen,
Ole Mark, Karsten Arnbjerg-Nielsen, and Peter Steen Mikkelsen.
Integrated stormwater in�ow control for sewers and green struc-
tures in urban landscapes. Nature Sustainability, 2:1003�1010,
2019.

[Lee11] Jay H. Lee. Model predictive control: Review of the three decades
of development. International Journal of Control, Automation,
and Systems, 9(3):415�424, 2011.

[Mac02] Jan Marian Maciejowski. Predictive Control: with constraints.
Pearson, 2002.

[Mad07] Henrik Madsen. Time Series Analysis. Chapman & Hall/CRC,
2007.

[Mes16] Ali Mesbah. Stochastic model predictive control: An overview
and perspectives for future research. IEEE Control Systems Mag-
azine, pages 30�44, December 2016.



58 BIBLIOGRAPHY

[MNSA03] L. Magni, G. De Nicolao, R. Scattolini, and F. Allgöwer. Ro-
bust model predictive control for nonlinear discrete-time sys-
tems. International Journal of Robust and Nonlinear Control,
13(3-4):229�246, 2003.

[MP05] Magdalene Marinaki and Markos Papageorgiou. Optimal Real-
time Control of Sewer Networks. Advances in Industrial Control.
Springer, 2005.

[NAP17] Niels Woetmann Nielsen, Bjarne Amstrup, and Claus Petersen.
Construction of a cloud burst index in numerical weather predic-
tion. DMI report 17-16, page 17, 2017. Technical Report.

[NBP20] M. Nassourou, J. Blesa, and V. Puig. Robust economic model
predictive control based on a zonotope and local feedback con-
troller for energy dispatch in smart-grids considering demand un-
certainty. Energies, 13(3), 2020.

[NW06] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.
Springer Series in Operations Research. Springer, 2nd edition,
2006.

[O'D09] Aidan O'Dwyer. Handbook of PI and PID Controller Tuning
Rules. Imperial College Press, 3rd edition, 2009.

[OM10] Carlos Ocampo-Martinez. Model Predictive Control of Wastew-
ater Systems. Advances in Industrial Control. Springer, 2010.

[PCR+09] Vicenç Puig, Gabriela Cembrano, J. Romera, Joseba Quevedo,
B. Aznar, G. Ramón, and J. Cabot. Predictive optimal control
of sewer networks using coral tool: application to riera blanca
catchment in barcelona. Water Science & Technology, 60(4):869�
874, 2009.

[Ped18] Jonas Wied Pedersen, 2018. Private communication at Water
Smart City workshop.

[Pou07] Niels Kjølstad Poulsen. Stokastisk Adaptiv Regulering -
Stokastiske systemer, identi�kation og regulering. DTU Com-
pute, Technical University of Denmark, 15th edition, 2007.

[Pro63] A.I. Propoi. Use of lp methods for synthesizing sampled-data
automatic systems. Automatic Remote Control, 24, 1963.

[QB03] S. Joe Qin and Thomas A. Badgwell. A survey of industrial
model predictive control technology. Control Engineering Prac-
tice, 11:733�764, 2003.



BIBLIOGRAPHY 59

[Ros17] Lewis A. Rossman. Storm water management model reference
manual volume ii - hydraulics. Technical report, Nation Risk
Management Laboratory, O�ce of Research and Development,
U.S. Environmental Protection Agency, May 2017.

[RSvdGvO14] L. Raso, D. Schwanenberg, N.C. van de Giesen, and P.J. van
Overloop. Short-term optimal operation of water systems using
ensemble forecasts. Advances in Water Resources, 71:200�208,
2014.

[SCC+03] Manfred Schütze, Alberto Campisano, Hubert Colas, Peter Van-
rolleghem, and Wolfgang Schilling. Real-time control of urban
water system. In Int. Conf. on Pumps, Electromechanical De-
vices and Systems Applied to Urban Water Management, Valen-
cia, Spain, April 2003.

[Sin88] Vijay P. Singh. Hydrologic Systems. Volume 1: Rainfall-runo�
modelling. Prentice Hall, 1988.

[SLPH18] Manfred Schütze, Maja Lange, Michael Pabst, and Ulrich Haas.
Astlingen - a benchmark for real time control (rtc). Water Sci &
Technol, 2017(2):552�560, 2018.

[SN99] Alexander T. Schwarm and Michael Nikolaou. Chance-
constrained model predictive control. AIChE Journal,
45(8):1743�1748, August 1999.

[SSR14] Lalu Seban, Narayan Sahoo, and B.K. Roy. Multiple model based
predictive control of magnetic levitation system. In Proc. Annual
IEEE India Conference, 2014.



60 BIBLIOGRAPHY



Appendix A

Article A

The paper presented in this appendix was originally published in connection
with a conference and an oral presentation of the content.

Information of the publication:

• Title: Model Predictive Control of Over�ow in Sewer Networks - A com-
parison of two methods

• Conference: Systol 2019 - 4th International Conference on Control and
Fault-Tolerant Systems.

• Date: September 18-20th, 2019

• place: Casablanca, Morocco



Model Predictive Control of Overflow in Sewer Networks
A comparison of two methods

Jan Lorenz Svensen1, Hans Henrik Niemann2 and Niels Kjølstad Poulsen3

Abstract— In this work, a comparison of two previous pro-
posed methods for Model Predictive Control (MPC) of sewage
systems are presented. The focus is on prediction of overflow
from weirs and the computation time of the methods. The first
method considered in this study is a mixed integer quadratic
program MPC based on mixed linear dynamic formulations.
The second method considered is a quadratic program MPC
with optimizable overflows and accumulated overflow volume
penalty. For the comparisons of the methods, a case study
of the Barcelona sewer network is utilized. Our numerical
experiments show that the predictions of the system’s expe-
rienced overflow, performed by the quadratic program MPC
are equivalent to the predictions of the mixed integer variant,
but is computing faster and in general reduces the overflow
volumes, due to the difference in the choice of control.

I. INTRODUCTION

Model Predictive Control (MPC) has been applied to
dozens of work areas [5]-[8], urban drainage systems being
one of them. In this work, two approaches to the modelling of
design models for MPC in sewages system will be compared.
One common way of simplifying the large sewage networks,
are to model pipes, manholes, etc. of an area collectively as a
virtual tank, such that only the volumetric storage dynamics
are left [9]-[13]. The system is then only consisting of virtual
tanks, real tanks and the connections between them. The
only problem remaining for having a simple model of the
system is to model the weir overflows occurring in the tanks
and connections. These overflows depends on the amount
of volume or flow above the weir limit of a given system
part. This gives the overflows a binary nature; being zero
below the weir limit and following a function above it. This
binary nature has led previous work by Ocampo-Martinez [1]
to apply Mixed Integer (MI) MPC to the system with good
success. Another approach was given by Halvgaard and Falk
[3] by expanding on Gelormino and Ricker’s approach [4],
where the overflow were modelled as a control variable to
be optimized, allowing the MPC to be a quadratic program
(QP), when using a linear model of the sewage network. For
the comparison, the model of the Barcelona sewage system
presented by Ocampo-Martinez will be utilized, shown in
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Fig. 1. A schematic of the Barcelona Sewage System model presented by
Ocampo-Martinez [1], showing the interconnections between the different
tanks and the environment. The controlled parts of the system is tagged
with a U

Fig. 1. The focus in this paper is the two approaches’
ability to predict the amount of overflow the sewer system
experience, and what the benefits are using one approach
over the other. The MPCs of the two approaches will be an
MI QP MPC and a QP MPC.

A. Notation

The following notations are utilized in this paper. Bold
font are used to indicate vectors, and the quadratic norm of
x is given by ||x||2A = xTAx. The subscripts indicates either
spatial placement or time in samples, while the superscripts
noted with u and w indicates control and weir variables
respectively. The inflow and outflow of a subpart of the
system are noted with the superscript in and out respectively.
Variables written with a q or V indicates flow or volume
respectively. The sampling time is noted by ∆T and the min.
and max. of a function f(x) are notated f and f̄ respectively.
The parameter β is the volume/flow conversion coefficient
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introduced by Singh[14].

II. MODEL

Three models are needed for the comparison, a simulation
model and two design models, one for each approach. The
simulation model and the design model for the MI method
are based on the MI model of the Barcelona sewage model
introduced by Ocampo-Martinez [1]. The MI design model is
the simulation model rewritten in a linear form, by utilizing
the mixed logical dynamical (MLD) modelling framework,
introduced by Bemporad and Morari[2]. Meaning that for
the MI method, the design model and the simulation model
are equivalent. The three models all consist of the same
five type of subparts: manipulated/unmanipulated redirection
gates, sewages pipes, virtual tanks, and real tanks with input
gates. In the design model of the QP method, each subparts
are described as a linear element without logical variables.
By combining the subparts of each part of the system,
the resulting design models of both methods have 12 state
variables corresponding to the volume of the 12 tanks and 4
control variables representing the four manipulated gates in
the system. In the MI design model, 32 logic variables δ are
utilized to formulate the binary nature of 54 flow variables q,
giving a total of 302 linear inequality constraints. While the
QP design model only has 83 linear inequality constraints
with 23 flow variables qw describing the weir overflows.
Among the subparts, overflow can occur in the virtual tanks
and in the sewage pipes. In the following, a description of
the virtual tank and the sewages pipe are given for the QP
method. A comparison and description of all five subparts
for both methods are given in appendix A.

A. Quadratic Program Overflow Model - Virtual Tank

The outflows of the tank are restricted linearly by the upper
tank limit, while the overflow only occurs for volumes higher
than the upper tank limit. By defining the effective volume
of the virtual tank to be the tank volume minus the overflow
volume, the outflow and the overflow of the tank can be
written linearly, as seen in (1)-(4).

vk+1 = (1− β)(vk −∆Tqw) + ∆Tqin (1)
qout = β(vk −∆Tqw) (2)

0 ≤ v −∆Tqw ≤ v̄ (3)
0 ≤ qw (4)

B. Quadratic Program Overflow Model - Sewages pipe

Overflows occurs, when the inflow surpasses the outflow
limit. The pipe outflow can therefore be modelled as the in-
flow minus the overflow, with the outflow and weir overflow
being constrained by thee physical limits as seen in (47)-(49).

qout = qin − qw (5)

0 ≤ qin − qw ≤ q̄out (6)
0 ≤ qw (7)

III. COST FUNCTION

For finding the optimal solution for the system, when
using the MI design model, we utilize the weight-based cost
function given by (8) for a prediction horizon N.

J = min
qu,δ,qw

N∑
k=0

(
||zk − zrefk ||

2
Q + ||∆qu

k ||2R
)

(8)

The ∆qu
k are the changes in the control flows, and the

output vector zk and its reference vector zrefk contains four
elements, corresponding to the following objectives:

• minimize the aggregated overflows from the virtual
tanks and sewage pipes to the streets

• minimize the aggregated flow to the Mediterranean Sea
from the sewage system

• maximize flow to Wastewater Treatment plant Llobregat
• maximize flow to Wastewater Treatment plant Besòs

The weights Q and R are diagonal matrices with the diagonal
being (2.0, 1.0, 0.5, 0.5) and (0.01, 0.01, 0.01, 0.01) respec-
tively, chosen such that the priority of the minimization is
given to the weir overflow, flow to the sea, flow to treatment
plants and the control change, in that order. The references
of the flows towards the WWTPs are the maximum flow
capacity of the corresponding pipes, while the references of
the overflows are zero. The maximization of the flow to the
WWTPs are defined as the minimization of the deviation
from their maximum flow.

A. Linear Overflow Cost

The same cost function is utilized in the QP method, but
with a linear term introduced in (9) by Halvgaard and Falk
[3]. This term is added, because the QP method treats weir
overflows as control variables, and the usage therefore needs
to be penalized.

J = min
qu,qw

N∑
k=0

(
||zk − zrefk ||

2
Q + ||∆qu

k ||2R + WT Vw
k

)
(9)

Halvgaard and Falk [3] introduced the extra term to penalize
the accumulated overflow volume of each tank weir, but is
here also used to penalize the accumulated overflow volume
of pipe weirs. The accumulated overflow volume Vw

k of each
weir at time k is given in (10), where qw

i is a vector of
overflows qwi from weirs at time i.

Vw
k =

k∑
i=0

∆Tqw
i (10)

There are two guiding rules to the weighting of the extra
term; firstly, the term should have a relatively high weight W,
such that the cost of the extra term is significantly higher than
the cost of the other terms in the cost function. Making the
usage of the overflow undesirable if avoidable. The second
rule, is that each wear’s overflow volume are penalized dif-
ferently to enforce physical overflows only; the reason is that
if two components containing weirs are in a series, then the
optimizer might start emptying the upstream component in
order to prevent overflow downstream, even if the upstream
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TABLE I
INDEPENDENT OVERFLOW VOLUME WEIGHTS
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qwR1

110 100 100 100 90 80
qwT12

qwR2
qwT6

qwT8
qwR3

qwSP12

80 60 60 50 20 20
qwT11

qwBTP qwSP5
qwT5

qwT7
qwLTP

10 1 20 10 1 1
qwT9

qwR9
qwSP96

qwSP4
qwT10

110 100 90 20 1

Fig. 2. Idealized Rain Pattern

component is not full. This problem can be avoided by
penalizing weir overflows from upstream components more
than downstream components. The weights of the overflow
volumes were chosen as 104 times an independent factor,
shown for each weir in Table I. The subscripts indicates
location in the system as displayed in Fig. 1.

IV. RESULTS

To compare the two methods, the results from simulations
with rain events will be evaluated. For the simulations a
sampling time ∆T of 5 min will be utilized[1] together
with a prediction horizon of 20 min, chosen for its general
low computation time. The rain events will be idealized rain
patterns with the form of a step, as shown in Fig. 2 with
a rain intensity of 3 µm/s, each rain pattern have an hour
of dry weather before and a 19 hours of dry weather after
the rain. The period of the rain in the simulations are varied
with increments of a half hour from a half hour long to
five hours long. The intensity of the rain in the simulations
are varied with 2 µm/s starting at 2 µm/s ending with
14 µm/s. With the design model of the MI method being
identical to the simulation model, the predictive overflows
from the MI model are identical to the achieved overflow
from the simulations, where the MI method were used as
the controller. For the QP method, the design model deviates
from the simulation model. In Fig. 3 selected weir flows are
shown from a representative simulation controlled using the
QP MPC, indicating the QP method succeeds to only predict
overflows, which the system experience. In the next part of
the result, we will focus on comparing the performance of
the MPCs based on the objectives given in the cost functions,
and a few other aspects.

A. Flooding

The flooding from the overflows of virtual tanks and pipes
are the main terms of the cost function, especially in the

Fig. 3. A representative selections of overflows predicted by QP MPC vs
Overflows obtained in Simulation

Fig. 4. Difference between MIQP MPC and QP MPC’s amount of flooded
wastewater

QP method. The total accumulated weir overflow volume
of these terms are given in Fig. 4 for each simulation, as
the difference between the results of the MI method and the
QP method, with the latter subtracted. It can be seen that
in general the MI method produces a higher weir overflow
volume, corresponding to approximately 11k m3 overflow
volume on average. The percentage difference of overflow
volume between specific rain events are on average 11.2%
more overflow for the MI method.

B. Treated Waste Water

In the cost function the flow of wastewater to the systems
two Treatment plants, Llobregat and Besós, were given as
maximization objective. The results of the simulations tells
that the QP method in general did worse than the MIQP
MPC, with the average difference of amount of waste water
being treated at the Llobregat and Besós plants being ap-
proximately 57 m3 and 1.4k m3 respectively. The difference
of the combined treated wastewater is shown in Fig. 5 for
the different intensities and period lengths. On average the
percentage difference between the two methods are 3.7%,
when considering treated wastewater volume of both plants.
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Fig. 5. Difference between MIQP MPC and QP MPC’s amount of treated
wastewater

Fig. 6. Difference between MIQP MPC and QP MPC’s amount of sewage
water directed to the sea

C. Flow to Catchment and the Sea

The Barcelona sewages system also contain an outflow,
which is not penalized in the cost function described earlier,
the flow to a neighboring sewage catchment. This flow to the
neighbor catchment were identical for both MPC methods.
Given the flow is the result of an internal weir overflow; this
indicates the QP methods ability to match the MI method
prediction ability of the overflows of the system. The last
flow contained in objectives of the cost function, is the flow
to the Mediterranean Sea through the system (not flooding).
The difference between the two methods can be seen in Fig.
6 given in accumulated volume, showing the QP method
generally perform worse. The difference in volume were on
average approximately 22.3k m3 higher for the QP method
than for the MI method; percentagewise the difference was
on average 3.7% higher for the QP problem.

D. Computation Time

In the results so far, we have looked on the physical impli-
cations of the models and compared them; for the following
results, the focus will be on the computational aspects of the
methods. In Fig. 7, we see contour graphs of the maximum
computation time of each optimization for the simulations
with the QP method, and in Fig. 8, we see the ratio of the

Fig. 7. Maximum Computational Time - QP MPC

Fig. 8. Maximum Computational Time Ratio - MI/QP

maximum computation time between the two methods. It
can be seen that the computation time of the MI method for
around half of the simulations takes 500 or more times longer
to compute the solution, corresponding to at least a quarter of
the sampling time of the computation. In the worst cases, the
computation were more than 3000 times longer. While these
high computation times occurs for less likely rain events,
even the more likely events has computation times up to ten
times as long. The computation time of the QP method were
on the other hand very satisfying, with the worst cases being
around one thousand five hundredth of the sampling time.
For the MI method, the higher computation times occur as
both the intensity and the period increased. The computation
time peaks at rain events, generating the scenario of several
tanks being full or almost full during the same horizon.
Resulting in the logical variables oscillating between values
depending on the control chosen, while the high and low
intensity scenarios brings the system to its extreme, where
the tanks are either full or relatively empty, making the
logical variables settle independently of the control.

E. Horizon Length

The length of the prediction horizon affects the size of a
MPC problem and therefore the computation time. In Fig.
9, the maximum computation time for both the QP and MI
methods are shown as the prediction horizon increases for
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Fig. 9. Maximum Computation time for prediction horizon length

Fig. 10. results of simulation with a historical rain event - QP MPC

a rain block of 2 µm/s intensity and half hour duration; a
rain pattern with no weir overflow. It can be seen that the
computation time for the MI method increases dramatically
in comparison to the QP problem, making MI method
impractical for longer horizons with a sample times of five
minutes. This is especially true in the context of weather,
where a desired prediction horizon usually is not on the scale
of a dozen minutes, but on the scale of at least a few hours.

F. Historical Rain

In Fig. 10 are shown the results of the QP method
from a simulation with a historical rain event, recorded in
Viby, Denmark on the 27th of August, 1992 by the Danish
Spildevandskomité[15]. It can be seen that the overflow in the
virtual tank 4 and the link towards Besós’ first occurs, when
the capacity limit has been reached, segmenting that the
QP method succeeds in not violating the physical reality of
weirs, despise using the overflows as optimization variables.

V. DISCUSSION

Based on the simulations it is clear that the QP method
is an alternative to the MI method, as an approach for the
design model of sewage systems with weir elements with
regards to predicting the weir overflows. Furthermore the

QP method defined, has less constraints and variables to
determine than the MIQP method, and no integer variables.
The computational aspects tells it is possible to run the QP
method with much longer prediction horizons than for the MI
method. Some of the drawbacks of the use of the QP method
includes; forced penalization of every overflow and not only
unwanted overflow from weirs. With the weighting rules
described in section III-A, the choosing of the weights of
the cost function becomes more complex; with the weighting
of the overflow terms, possible colliding with a desired
prioritization of terms in the cost function. Another drawback
is the weighting tends to large values, possible making the
problem badly scaled. The extra term penalizing overflows in
the cost function, is the reason for the disparity between the
performances of the two methods, with overflows being more
prioritized than treated wastewater and flow to the sea. The
linear description of the gate elements does also come short
in comparison to the MI description, given the control signal
in the MI is corresponding to the actual position of the gate,
and not the flow through the gate as in the QP method. The
results of this study obtained were obtained using MATLAB
R2017a with CVX v.2.1 and the Mosek 8.1 solver on a HP
Elitebook Laptop with an Intel i7 processor.

VI. CONCLUSIONS

In this paper, two methods for handling weir overflow has
been compared; Mixed Integer (MI) MPC and a QP MPC
with a linear accumulated overflow volume cost term, run
against a simulation model equivalent to the MI MPC design
model. The results showed that the QP MPC were equivalent
to the MI MPC, with regards to predicting the overflows
occurring in the sewer system, while being significantly more
efficient regarding computation times than the MI MPC.
The performance of the QP MPC with regards to the MI
MPC, showed a significant improvement, when considering
the amount of flooding the system experienced. While the
performance of the QP MPC were worse than the MI MPC
with regards to maximizing the amount of wastewater being
treated. The QP MPC could also be utilized with longer pre-
diction horizons than the MI MPC, due to the computational
improvement, giving it a wider practical utility.

APPENDIX

A. Sewage Model - Subparts

The five subparts of the sewage system model are dis-
cussed below, with a comparison between the model bor-
rowed from Ocampo-Martinez[1] and the QP design model.

1) Virtual Tanks: For the MI model, the virtual tanks
are described by (11)-(14), where both the outflow and the
overflow depend on the logic variable δ, and the volume
dynamics are a linear mass balance.

δ = 1⇔ v ≥ v̄ (11)
qw = δ(v − v̄)/∆T (12)

qout = δβv̄ + (1− δ)βv (13)

vk+1 = vk + ∆T (qin − qout − qw) (14)
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The linear model in (15)-(18), is obtained by substitution in
(13) and (14), with inequalities replacing the logics.

vk+1 = (1− β)(vk −∆Tqw) + ∆Tqin (15)
qout = β(vk −∆Tqw) (16)

0 ≤ v −∆Tqw ≤ v̄ (17)
0 ≤ qw (18)

2) Real Tanks with Input Gates: These elements consist
of a tank without a weir, where the inflow and outflow is
controlled by a redirection and retention gate respectively.
The inflow are in the MI model given by (19)-(24). For
the QP model, the inequalities in (25)-(26) are a sufficient
description of the controlled inflow.

δ1 = 1⇔ qu ≤ qin (19)

qz1 = δ1qu + (1− δ1)qin (20)

δ2 = 1⇔ qz1 ≤ q̄u (21)

qz2 = δ2qz1 + (1− δ2)q̄u (22)

δ5 = 1⇔ v̄ − v ≤ ∆T (qz2 − qout,tank) (23)

qin,tank = δ5(
v̄ − v)

∆T
+ qout,tank) + (1− δ5)qz2 (24)

0 ≤ qu,in ≤ qin (25)

qu,in ≤ q̄u,in (26)

In a similar way does (27)-(28) describe the tank outflow for
the MI model, while (31)-(32) describes the linear model.

δ3 = 1⇔ qout ≤ q̄out (27)

qz3 = δ3qout + (1− δ3)q̄out (28)

δ4 = 1⇔ qz(3) ≤ βv (29)

qout,tank = δ4qz3 + (1− δ4)βv (30)
0 ≤ qu,out ≤ q̄u,out (31)

qu,out ≤ βv (32)

The tank dynamics and gate outflow of the two models are
similar, with the QP model including the limits on the tank
volume as inequality constraints.

vk+1 = vk + ∆T (qin,tank − qout,tank) (33)

qout = qin − qin,tank (34)
0 ≤ vk ≤ v̄ (35)

3) Manipulated Redirection Gates: The inflow are divided
in two outflows. In the MI model, the control flow qu is the
max. flow for a given gate position. The MI model is seen
in (36)-(40), with the flows written by logic terms.

δ1 = 1⇔ qin ≤ qu (36)

δ2 = 1⇔ qu ≤ q̄u (37)

qz1 = δ1qin + (1− δ1)qu (38)

qout,con = δ2qz1 + (1− δ2)q̄u (39)

qout,res = qin − qout,con (40)

In the linear model, the control flow qu is the actual flow
through the gate, disallowing still standing gates when inflow

drops. As seen in (41)-(43), the logic description has been
replaced with the inequalities of the physical limits.

qout = qin − qu (41)
0 ≤ qu ≤ qin (42)

qu ≤ q̄u (43)

4) Sewage Pipes & Unmanipulated Redirection Gates:
Mathematically the unmanipulated redirection gates are iden-
tical to the sewage pipes. The MI description of both is given
in (44)-(46), with logic describing the outflow and overflow.

δ = 1⇔ qin ≥ q̄out (44)

qout = δq̄out + (1− δ)qin (45)

qw = δ(qin − q̄out) (46)

The linear model in (47)-(49), is obtained by substituting
qw out of the outflow description, and adding the physical
constraints of the weir flow and the outflow.

qout = qin − qw (47)

0 ≤ qin − qw ≤ q̄out (48)
0 ≤ qw (49)
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Abstract: The advanced control of urban drainage systems (UDS) has great potential in reducing
pollution to the receiving waters by optimizing the operations of UDS infrastructural elements.
Existing controls vary in complexity, including local and global strategies, Real-Time Control (RTC)
and Model Predictive Control (MPC). Their results are, however, site-specific, hindering a direct
comparison of their performance. Therefore, the working group ‘Integral Real-Time Control’ of the
German Water Association (DWA) developed the Astlingen benchmark network, which has been
implemented in conceptual hydrological models and applied to compare RTC strategies. However,
the level of detail of such implementations is insufficient for testing more complex MPC strategies. In
order to provide a benchmark for MPC, this paper presents: (1) The implementation of the conceptual
Astlingen system in an open-source hydrodynamic model (EPA-SWMM), and (2) the application of
an MPC strategy to the developed SWMM model. The MPC strategy was tested against traditional
and well-established local and global RTC approaches, demonstrating how the proposed benchmark
system can be used to test and compare complex control strategies.

Keywords: Astlingen benchmark network; SWMM model; model predictive control; real-time control

1. Introduction

Real-time operations of urban drainage systems (UDS) have proven to be an efficient and
cost-effective management strategy for reducing pollution to the aquatic environment without having
to invest in expensive infrastructural expansions [1–6]. Applied approaches include Real-Time Control
(RTC), such as rule-based control (RBC) [7,8], and Model Predictive Control (MPC) [9–11]. However,
RTC and MPC performances are site-specific and also depend on the rainfall characteristics, hindering
cross-validation of control algorithms across systems and research groups. There is therefore the need for
a common method for comparing RTC and MPC approaches in order to support further advancements
and widespread application of these technologies in both academia and practice [12]. Under this
necessity, the working group ‘Integral Real-Time Control’ of the German Water Association (DWA)
has constructed the Astlingen example network [5], which serves as a benchmark complementing
the German DWA-M180 document on planning of RTC systems [6]. The purpose of a benchmarking
model was to encourage as many experts (researchers, practitioners) as possible to use and compare
performance of different control methodologies under the same test bed. Therefore, the Astlingen
benchmark model should preferably also be implemented in a free, widely used open-source software.
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Currently available implementations of the Astlingen network are based on simple hydrological
models. For example, the hydrological module of the Simba# simulator has previously been used to
demonstrate the base case (BC) of locally controlled throttle settings, as well as the global rule-based
equal-filling-degree (EFD) approach [13]. MPC has been widely investigated for UDS optimization
solutions [1,3,4,7,9–11,14–17], but it is difficult to find a contribution with clear definition of the internal
MPC model, as well as the core implementation principles [11]. Therefore, the extension of the
benchmark model for MPC application and testing can support the development of these techniques.
Furthermore, testing MPC often requires more complex description of the hydraulic processes taking
place in the network (e.g., backwater effects). Therefore, simple conceptual hydrological models might
be inadequate.

This paper presents an implementation of the Astlingen case based on a hydrodynamic Storm
Water Management Model (SWMM). EPA-SWMM 5.1.013 [18] is a free, open-source software that is
widely used in both academia and practice, thereby making the Astlingen benchmark case available to
a wider audience. The SWMM model was calibrated to emulate the results from the Simba# model
implementation, which was used as reference in this paper [5,19]. The SWMM implementation was
combined with an MPC strategy to provide an example of a detailed description of the methods and
core principles of an MPC application for UDS control. The MPC controller was defined by two
aspects: The internal model and the control design. The internal model used a simplified discrete
model of the Astlingen system, while the control design defined the behavior of the system and the
length of each prediction. The MPC optimization was defined by the conceptual network of Astlingen,
while the effects of the generated control setpoints were simulated in the SWMM model. In order to
integrate the optimization and simulation process, a closed-loop RTC scheme wrapped in PySWMM (a
Python-based SWMM Software) was also provided. A one-year simulation was used to evaluate the
MPC approach, which was compared against two control scenarios: Base case (BC) and EFD.

To facilitate the wide usage of the results from this article for benchmarking, teaching, research
and development, all the data, models, and codes used for the examples can be freely accessed on
https://github.com/open-toolbox/SWMM-Astlingen.

2. SWMM Model and Rule-based Control

2.1. The Astlingen Benchmark System

The Astlingen benchmark system [5,18] is a hypothetical case area including both combined
and separated sewer systems. The schematic representation of the Astlingen network is presented
in Figure 1 (adapted from [5]). Rainfall spatial heterogeneity is included using four rainfall gauges,
connected to 10 subcatchments (SC). The system includes six storage tanks (where Tank 1 and 5 are
not controlled) with a total storage volume of 5900 m3. There are 10 combined sewer overflows
(CSO): One for each storage basin (CSO1-6) and four at junction nodes (CSO7-10). Flow routing and
transport across the network are represented by time delays (ranging from a minimal 5-minute to a
maximal 20-minute). The documentation provided by the working group ‘Integral Real-Time Control’
of the German Water Association (DWA) also includes additional information on the network layout,
overflow structures, as well as 10-year rainfall data [20]. These are provided as four rainfall series
based on measurements provided by the Erftverband water utility (Germany) with a five-minute time
resolution [19,20]. The average annual rainfall at these four rainfall stations amounts to 705 mm, 723
mm, 699 mm, and 711 mm, respectively, and an overview of the first year rainfall of data is shown in
Figure S1(Supplementary Materials). Two receiving bodies are defined for the CSOs, which are the
Main River and the smaller but more sensitive Park Creek.
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Figure 1. Scheme of Astlingen Sewer Network (adapted from [5]), showing the location of the 10
subcatchments (SC) and combined sewer overflow (CSO) structures, along with the six basins (with
respective storage volumes). Transport times are long the network are expressed in minutes.

2.2. Model building

The SWMM model was built to emulate the results from the implementation in Simba# presented
in [5], which was used as reference. Implementing the Astlingen benchmark network in the detailed
hydrodynamic SWMM model requires a series of assumptions, since the original system has been
described with a level of details suitable for a simple hydrological model. These assumptions include
the definition of physical details of the system, such as system setup and geometric elements between
tanks. The criteria used to build the SWMM model and to define its elements were:

• The deviation between the outputs provided by SWMM and Simba# models should be less than
10%. This comparison was based on a one-year simulation with both models.

• The number of additional elements added to the detailed model should be kept to a minimum.

The detailed SWMM model was developed by following a three-step procedure: (1) Rainfall-Runoff

Calibration, to estimate the subcatchments parameters; (2) Base Case Calibration, to configure and
estimate the parameters of the new elements added in the detailed models; (3) EFD Verification, to
ensure that the detailed model achieve the same results as the conceptual when applied for testing
control strategies.

2.2.1. Rainfall-Runoff Calibration

In the conceptual Simba# model of Astlingen, rainfall-runoff flows are calculated using Linear
Reservoir Models with the parameters n = 3 (number of tanks) and k = 5 minutes (reservoir constant).

SWMM conceptualizes a subcatchment as a rectangular surface with uniform slope S (-) and width
W (m), draining to a single outlet channel. The relative runoff flow Q [m/s] from this subcatchment
was computed using the Manning equation expressed as (see [21] for further details):

Q =
1

Ae
WS1/2d5/3 (1)
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where A
[
m2

]
is the impervious area, e (s/m1/3) is the impervious area roughness, d (m) is the net depth

excess ponds atop the subcatchment surface. Considering that A for a subcatchment is a constant
defined in the conceptual model, the parameters to be estimated are W, S, and e. These were estimated
by a trial and error procedure, comparing the simulated runoff from SWMM against the one from
Simba#. The parameters were calibrated until a Nash–Sutcliffe Efficiency [22] above 0.65 was reached,
and the parameter set which generate the best fitting was used (Table 1). An example of the simulated
runoff from the 10 subcatchments is shown in Figure S2 (Supplementary Materials).

Table 1. SWMM rainfall-runoff parameters estimated for the 10 subcatchments in Astlingen.

Subcatchment A (ha) W (m) S (-) e (s/m1/3)

SC01 33.00 2400 0.80 0.009
SC02 22.75 1500 0.80 0.009
SC03 18.00 2000 0.50 0.007
SC04 6.90 200 0.70 0.009
SC05 15.60 1000 0.50 0.007
SC06 32.55 985 0.50 0.010
SC07 4.75 360 0.51 0.020
SC08 28.00 1950 0.45 0.010
SC09 6.90 650 0.40 0.016
SC10 11.75 650 0.50 0.008

2.2.2. Base Case Calibration

The BC scenario is based on local controls which uses constant nominal throttle flow settings.
Six orifices are used to control the emptying of each storage tanks, which are the only controllable
elements in the Astlingen network. These directly affect the CSO volumes from the overflow structures
located at basins (CSO1-6), and indirectly the volumes discharged at the junction nodes (CSO7-10).
The latter are also affected by the characteristics of the upstream network (e.g., flow input and the
routing abilities). Therefore, the throttle settings, as well as the physical characteristics of the nodes,
orifices, and related pipes, were estimated by comparing the CSO volumes simulated by the two
models. Similar to the Rainfall-Runoff Calibration, the parameters were estimated using a trial and
error procedure until deviation between SWMM and Simba# output was below 10%.

2.2.3. Equal-Filling Degree Verification

The EFD approach is a simple illustrative example of a global RBC strategy, which compares
the filling degree of the storage tanks in the network and sets the throttle flows emptying the tanks
accordingly, aiming at establishing an equal filling degree in all the tanks [23]. EFD is among the
control algorithms implemented in the conceptual Simba# model, where additional aspects of sensor
and control delays, rainfall predictions, etc., are deliberately not considered. The EFD was also
implemented in the SWMM implementation of Astlingen in order to verify its applicability for testing
control strategies and to compare the estimated improvements in CSO volumes against those estimated
by the Simba# implementation.

To implement EFD in the SWMM model, the control editor embedded in EPA-SWMM was used
with the defined rules of comparing filling degrees for the Tank 2, 3, 4, and 6. If the water levels at
these tanks were all lower than the threshold value of 20%, the nominal throttle flows values defined
for the BC were used. Otherwise, the minimal possible flows were used to increase the storage in tanks
with low filling, while the maximum possible flows were used for emptying tanks with high filling.

3. Model Predictive Control

MPC consists of receding horizon optimizations based on predictions from an internal model of
the system to be controlled and a control design. The internal model is usually a simplified discrete
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representation of the internal dynamics of the system to be controlled. The control design defines the
desired behavior of the controlled system, the optimal behavior, and the length of each prediction.

The MPC in this contribution utilizes a simplified conceptual model of Astlingen as its internal
model, with the assumption of perfect forecast, generated by precomputed simulations. The MPC
sampling time was 5 min, with prediction and control horizons chosen of 100 min. The MPC was
implemented in MATLAB, which communicated to the detailed SWMM model through PySWMM.
In order to integrate the optimization and simulation processes, a closed-loop scheme of MPC and
SWMM was used (Figure 2). At each time step, the MPC optimizer (quadratic program solver from
Mosek’s Matlab toolbox) generated optimal control actions and sent them as setpoints to the simulator,
which fine-tuned them, computed the effects of these control actions, and updated state measurements,
which were used to initialize a new optimization in the following time step. A similar scheme can be
used for other RTC approaches.
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3.1. Internal model

The internal MPC model includes the elements of the Astlingen system described in Figure 1, and
it was built by utilizing a modular approach of well-defined sewer structures. These modules included
a linear reservoir tank with a passive outflow, linear reservoir tank with a controlled outflow, and pipe
with delays. The approach used for modelling weir overflow in this paper was an approximation
approach through a penalty [24]. The CSOs were treated as optimization variables with a heavy cost
for minimizing their use.

3.1.1. Linear Resevoir Tank—Passive outflow

The module describing the linear reservoirs or tanks at the k-th time step was based on
water volume-balance:

Vk+1 = (1− ∆Tβ)Vk + ∆T
(
qin

k − qw
k

)
(2)

qout
k = βVk (3)

In the case of a tank with a passive outflow, the tank volume vector is defined by the current
volume Vk ∈ Rnp (m3), the total inflow qin

k ∈ R
n f to the tank (m3/s), and the weir overflow of the tank

qw
k ∈ R

np (m3/s), where ∆T is the sampling time (s), np, n f are the numbers of the tanks and pipes (-),
respectively. This relation is given by the process in Equation (2). The tank outflow in Equation (3) is a

linear approximation, defined by the volume-flow coefficient β = qout

V
[25].

0 ≤ (1− ∆Tβ)Vk + ∆T
(
qin

k − qw
k

)
≤ V (4)

0 ≤ qw
k (5)
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The module was further defined by the constraints on the volume and the overflow given in
Equations (4) and (5), where the vector V represents maximal storage capacities of the tanks. This
module was used to describe Tank 1 and 5, whose emptying orifices were passive and uncontrollable.

3.1.2. Linear Reservoir Tank—Controlled outflow

The module for the linear reservoirs with a controlled outflow was formulated in a similar manner
to the passive outflow variant.

Vk+1 = Vk + ∆T
(
qin

k − qu
k − qw

k

)
(6)

qout
k = qu

k (7)

The difference in the formulations is that the volume now also depends on the control flow qu
k ,

and the outflow is the control flow as seen in Equations (6) and (7).

0 ≤ Vk + ∆T
(
qin

k –qu
k − qw

k

)
≤ V (8)

0 ≤ qu
k ≤ βVk (9)

qu
k ≤ qu (10)

0 ≤ qw
k (11)

The constraints of this module cover the limits to the tank volume, as well as the limits to the
control flow, as seen in Equations (8)–(11). The controlled outflow in the Astlingen model were all
orifice-based, and were therefore dependent on the volume of the tank. For the module, this resulted
in two upper constraints for the control flow, one being the linear volume-flow relation discussed
previously and the second being the physical limit of the outflow pipe.

3.1.3. Pipe with Delays

The interconnection between the tanks in the Astlingen model consist of pipes. Depending on the
length of the pipes, the time it takes to flow from one tank to arrive in another tank might exceed the
sampling time of the model ∆T. For these pipes, we introduced a delay module corresponding to one
sampling time ∆T.

ηk+1,i = qin
k,i (12)

qout
k,i = ηk,i (13)

The outflow of the module is then equal to the delay flow η, as seen in Equations (12) and (13),
and the delay between tanks can be constructed as a cascade of delay modules, e.g., a 15-min delay
would correspond to three delay states in succession.

Based on the different modules, it was possible to generate the entire model by connecting the
right inflows and outflows together from each module. The inflow to each subpart can be seen in
Table 2, where the i-th runoff inflow is noted by wk,i, and the i-th tank is noted by Ti. The delay flow to
the i-th tank is given as ηi: j, where j is the total remaining delay in minutes to the tank. The outflow of
subpart z is written as qout

k,z .
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Table 2. Inflows to the different elements of the systems.

Subpart Inflow

T1 qout
k,η1:5

T2 wk,2
T3 wk,3 + qout

k,η3:5

T4 wk,4
T5 wk,5
T6 wk,6

η1:5 qu
k,T2

+ qout
k,η1:10

η1:10 wk,1 + qu
k,T3

+ qu
k,T4

+ qout
k,η1:15

η1:15 qout
k,T5

η3:5 qout
k,η3:10

η3:10 qout
k,η3:15

η3:15 qu
k,T6

3.2. Control Design

The design of the MPC [26] utilized in this work was based on the model discussed above. The
operational objectives for the system utilized in the MPC design in this work were:

• Maximizing flow to the WWTP (qout
k,T1

);

• Minimizing CSO flow to the river/creek;
• Minimizing roughness of control.

The first objective can be achieved by a linear negative cost on the outflow of Tank 1, while the
second objective can be formulated as a linear positive cost on the total overflow of the system. These
objectives are collectively written as vector zk. The third objective of control roughness aims for smooth
control and can be written as a quadratic cost on the change in control flow. Due to the overflow being
modelled by an approximation approach, a fourth objective of minimizing the accumulated overflow
volume Vw

k was needed.

J = min
qu,qw

Hp∑
k=0

‖∆qu
k ‖

2
R + QTzk + WTVw

k (14)

z = ΦConqu + ΨV0 + Θw + Γqw (15)

Vw
k =

k∑
i=0

∆Tqw
i (16)

ΩConqu + ΩvolV0 + Ωrainw + Ωweirqw
≤ Ω (17)

By utilizing the internal model over the prediction horizon Hp, the cost function of the MPC can
be written as in Equation (14), where ‖X‖2R is the weighted quadratic norm XTRX, while the predicted
objectives z and overflow volumes, given by Equations (15) and (16), were derived from the internal
model and propagation through the predicted volumes and delays. The constraints of the internal
model can similarly be collected into a single matrix inequality given by Equation (17). The matrices
Ψ, Φ, Θ, and Γ define the influence of the initial volume, the predicted control qu, inflow w, and
CSO qw on the objectives, respectively. The weighting of the different objectives in the cost function
was done in accordance with the approximation approach [27]. The fourth objective (minimizing
accumulated CSO volume) has to have a high cost relative to all other objectives, and upstream CSOs
(discharging to the more sensitive creek) have higher cost than downstream. The priority of the
different objectives was given in the following order from highest to lowest priority:
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1. Minimization of accumulated CSO volume (16);
2. Minimization of CSO to the river/creek;
3. Maximizing flow to the WWTP;
4. Minimizing roughness of control.

The weighs for the accumulated overflow volume from each tank are given in Table 3, while the
weights of the remaining objectives are:

• 2 for the flow to the river/creek
• −1 for the flow to the WWTP
• 0.01 for the roughness of the control.

Table 3. Cost function weighting of accumulated overflow volum W, showing a higher cost for
upstream tank modules discharging to the sensitive creek.

Tank 1 Tank 2 Tank 3 Tank 4 Tank 5 Tank 6

1000 5000 5000 5000 5000 10,000

These weights indicate that the avoidance of the flow to the river and creek is prioritized twice as
high as increasing flow to the WWTP. The weight on the roughness indicates the desire for the control
to be smooth, but not a general priority. As seen from Table 3, the priority of the accumulated overflow
can be inferred to be significantly higher than the other objectives, given the weights and the overflow
volume/flow relation given by Equation (16).

4. Results

4.1. Detailed Model of Astlingen

4.1.1. SWMM Implementation

The implementation of the Astlingen benchmark network in the detailed hydrodynamic SWMM
model is shown in Figure 3. The SWMM model and the reformatted rainfall series, as well as the
defined EFD control rules, can be downloaded through https://github.com/open-toolbox/SWMM-
Astlingen and applied directly through EPA-SWMM with different RTC approaches configured by
interested practitioners.
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4.1.2. Base Case Scenario

As described in the Section 2.2.2, the BC scenario was used to compare the results from the
detailed SWMM model against the reference conceptual model in Simba#. Table 4 compares the
throttle flows and CSO volumes from the two models for a one-year simulation. These results show
that the deviations between the models were less than 4.5%, i.e., below the 10% criteria defined in
calibration. This shows how the proposed SWMM model satisfactory emulated the reference Simba#
implementation, i.e., results from the detail models can directly be compared against those provide by
the authors of [5].

Table 4. Simulated throttle flow (reported as maximum values) and CSO volumes for BC scenario.

Throttle Flow (L/s) CSO Volume(m3)

SWMM Simba# SWMM Simba#

Tank1/CSO1 271 271 79,459 77,339
Tank2/CSO2 33 32 32,875 31,605
Tank3/CSO3 124 124 27,600 26,029
Tank4/CSO4 28 28 11,157 10,058
Tank5/CSO5 39 39 15,460 14,053
Tank6/CSO6 75 76 69,593 66,095

CSO7 85 86 3972 3920
CSO8 487 485 15,902 15,862
CSO9 127 129 3972 3951

CSO10 202 203 4741 4711
TOTAL 264,731 253,623

Max Deviation <4.5% <4.5%

4.1.3. Equal-Filling Degree Control

The improvements in terms of CSO volumes obtained after the application of the EFD rule-based
control were compared against the results obtained in the BC scenario. Table 5 presents the results
of the two scenarios for both the detailed and the conceptual Astlingen models. The reduction in
CSO volume for the EFD scenario simulated by the SWMM model was 6.4%, compared to the 8.3%
reduction estimated using the reference Simba# model. Considering the differences in the model
structures and level of details of the two models, the estimated CSO reduction can be considered as
similar, i.e., the SWMM model can be considered as equivalent to the reference Simba# model for
evaluating the performance of control strategies.

Table 5. Simulated CSO volumes (m3) for different control scenarios (EFD and BC) obtained by the
detailed (SWMM) and conceptual (Simba#) models.

Detailed (SWMM) Conceptual (Simba#)

EFD BC EFD BC

Tank1/CSO1 99,721 79,459 71,302 77,339
Tank2/CSO2 24,882 32,875 26,371 31,605
Tank3/CSO3 26,229 27,600 34,743 26,029
Tank4/CSO4 9356 11,157 8886 10,058
Tank5/CSO5 15,460 15,460 14,053 14,053
Tank6/CSO6 43,552 69,593 49,557 66,095

CSO7 3972 3972 3920 3920
CSO8 15,903 15,902 15,862 15,862
CSO9 3972 3972 3951 3951

CSO10 4751 4741 4711 4711
TOTAL 247,788 264,731 232,320 253,623

CSO Reduced by EFD 6.4% 8.3%
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4.2. Model Predictive Control

4.2.1. CSO Volume

The simulated CSO volumes resulting from the application of MPC to the SWMM implementation
of Astlingen are shown in Table 6, along with the percentage volume reduction compared to volumes
for the BC and EFD scenarios. Compared to the BC and EFD scenarios, the MPC discharged significant
less CSO volumes to the river and creek for most of the storage tanks (up to over 50% reduction for
single discharge points). Considering that the MPC scenario led to an increase of discharges from some
CSO structures, the overall improvement was around 7% and 13% against EFD and BC, respectively. It
can be seen that the discharges from the passive parts of the system (CSO7-10, Tank1 and 5) increased
with around 1%–2% as a result of control choices and due to backwater flows. The MPC successfully
managed to achieve a major CSO reduction for the most sensitive part of the system (creek). These
results are further illustrated by Figure 4, where the CSO volumes are subdivided according to the
receiving water body.

Table 6. Simulated CSO volumes (m3) for the Model Predictive Control (MPC) scenario, and percentage
difference from the BC and Equal-Filling Degree Verification (EFD) scenarios. Positive variations denote
reductions in CSO volume, while negative values denote increases in discharges.

Tank & CSO MPC (m3) EFD (%) BC (%)

Tank 1 93251 6.49 −17.36
Tank 2 15484 37.77 52.90
Tank 3 34017 −29.69 −23.25
Tank 4 4814 48.55 56.85
Tank 5 15147 2.02 2.02
Tank 6 37950 12.86 45.47

CSO 7 4016 −1.11 −1.11
CSO 8 16207 −1.91 −1.92
CSO 9 4030 −1.46 −1.46

CSO 10 4838 −1.83 −2.05

River 183754 6.39 1.84
Creek 45996 10.68 40.68

Total 229750 7.28% 13.21%
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4.2.2. CSO Events

The simulated number of CSO events and days with recorded CSOs for the MPC scenario are
shown in Table 7, together with results from the BC and EFD scenarios. Since some CSO events
took place over midnight, there was a discrepancy between these two values. Overall, the MPC and
EFD scenarios produced less CSO events, but more days with CSOs than in the BC scenario. This
suggests that both the control strategies stored water in the system more efficiently, and that they
caused longer (but smaller) CSO events. Also, coupled rain events can be lumped into a single event
due to the increased storage and longer emptying of the tanks. Indeed, CSO events were defined
based on the physical characteristics of the system, i.e., a six-hour threshold was used to distinguish
them. Considering that the total storage volume in the system was 5900 m3 and that the system can
be emptied with a maximal rate of 0.271 m3/s [5], it took roughly six hours to empty the system in
the BC scenario. This emptying time was clearly increased by the control algorithms in the EFD and
MPC scenarios.

Table 7. Simulated CSO events for the MPC, EFD, and BC scenarios.

CSO Events MPC EFD BC

Number 58 58 61
Days 70 65 62

5. Conclusions

This paper presents a hydrodynamic model of the Astlingen benchmark network in the open-source
software SWMM, enabling a more widespread usage of Astlingen for benchmarking complex control
strategies. The development of this detailed model provides a unified test-bed, which allows the
interested researchers and engineers to use and compare performance of different control methodologies.
This will also solve practical difficulties confronted by researchers or interested engineers to share
models and data of real-life urban drainage systems for RTC implementations.

The detailed hydrodynamic model was developed to emulate the reference the conceptual model
using a three-step procedure and two model development criteria. The performance of the SWMM
model was evaluated against the reference model by comparing a local throttle control (Base Case) and
a global RTC approach (EFD rule-based strategy). The developed model and data are freely available
on a public repository and they can be downloaded and applied directly through EPA-SWMM with
different RTC approaches configured by interested practitioners.

The potential of the detailed SWMM model of the Astlingen benchmark network for testing
complex control algorithms was demonstrated by applying an MPC strategy. This was described
with clear internal model and core principle definitions. The MPC utilizes the conceptual model of
Astlingen to generate optimal control actions, while the detailed SWMM model was used for the
fine-tuning of the control setpoints. In order to integrate the optimization and simulation processes, a
closed-loop scheme of MPC and SWMM was used. This configuration can be used in other cases other
than Astlingen, and with any other complex control algorithm (RTC and MPC).

The flexibility of the proposed implementation of the Astlingen benchmark model was shown for
different control strategies, with different level of complexity, ranging from simple local controls (BC),
global RTC (EFD), and complex MPC strategies. Researchers and practitioners therefore now have a
new useful case for testing and comparing different control strategies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/4/1034/s1,
Figure S1: Overview of the first year of rainfall data provided for the Astlingen benchmark system aggregated to
daily values, Figure S2: The first year simulated runoff flows from the ten sub-catchments in the SWMM model.
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Stochastic Model Predictive Control and Sewer Networks

Jan Lorenz Svensen1, Hans Henrik Nieman2, Anne Katrine Vinther Falk3 and Niels Kjølstad Poulsen4

Abstract— In this work, an evaluation of Chance-Constrained
Model Predictive Control (CC-MPC) in sewer systems over
the use of the classical deterministic Model Predictive Control
(MPC) is presented. The focus of this evaluation is on the avoid-
ance of weir overflow when uncertainty is present. Furthermore,
the design formulation of CC-MPC is presented with a com-
parison to the design of MPC. For the evaluation, a simplified
model of the Barcelona sewer network case study is utilized.
Our comparison shows that for sewer systems with uncertain
inflows, a CC-MPC allows for better statistical guarantees for
avoiding weir overflow, than relying on a deterministic MPC.
A simple back-up strategy in case of infeasible optimization
program was also apparent for the CC-MPC based on the
results of the analysis.

I. INTRODUCTION

For the last few decades, the usage of Model Predictive
Control (MPC) in sewer systems has been researched[1]-
[6]. While the previous research has primarily focused on
deterministic scenarios, known systems and inflows, we will
in this work focus on the uncertainty there in reality does
exist in sewer systems and how it can be handled. Some
of the uncertainties there exist with regard to controlling
and observing sewer systems includes model and inflow
deviations from the expected. The uncertainty of the inflow
is especially important for the MPC, given its reliance on
the predicted forecast of the inflow. Therefore the type of
uncertainty considered in this work will be limited to the
uncertainty of the inflow.

While the deterministic MPC previously considered in
research, is not directly designed to handle uncertainties
in the optimization, stochastic formulations of MPC do
exist[7]-[11]. These stochastic MPCs are designed to handle
uncertainties to some degree, and by different approaches
depending on the type of stochastic MPC chosen. These
approaches have wide ranges; some approaches might con-
sider a statistic-based robust method through finite real-
izations of the uncertainties[10], while others might con-
sider expectation or probabilistic constraints to handle the
uncertainties[11], some with additive uncertainties[8] others
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Fig. 1. A schematic of the simplified model inspired by the Barcelona
Sewage System model presented by Ocampo-Martinez [2], showing the
interconnections between the different tanks and the environment. The
controlled parts of the system are tagged with a U

with multiplicative uncertanties[9]. In this work, we investi-
gate a probabilistic method known as Chance-Constrained
MPC (CC-MPC), previously applied to drinking water
networks[8].

For an evaluation and comparison of both the deterministic
and the stochastic MPCs’ performance, the results of simu-
lations are utilized. The evaluation will primarily focus on
their performance in avoiding weir overflows from occurring.
In the evaluations, a model inspired by the Barcelona Case
study[2] is utilized. The model, seen in Fig. 1, is a simplified
version of its inspiration formulated as a linear model.



A. Notation

In this paper, the following notations are employed. Bold
font is used to write vectors, while the quadratic norm of x
is written as ||x||2A = xTAx, while a generic set of function
varibables are indicated by the bullet •. The functions E(x),
Pr(X ≤ x) and ΦF (x) indicate the expectation of x, the
probability of X less than x, and the cumulative density
function(CDF) of a given distribution F respectively. The
notation X ∼ F indicates that X is following a given
distribution F, While distributions written as F ba indicate
bounds on the distribution, a for the lower and b for the
upper bound. Distributions written without parameters are
standardized distributions, e.q. normal distribution with zero
mean and unit variance. The variables written as µx and σ2

x

are the mean and variance of a variable x. The min. and
max. of a function f(x) is denoted by f and f̄ respectively.
The superscripts indicate the nature of the parameter with the
following meanings: u means a controlled variable, w means
it relates to a weir, ref means it is a reference, and in and
out denotes inflow and outflow respectively. The subscript
k indicates the sample time, while the sampling time of the
system is written as ∆T . A variable noted by a V or q is
representing a volume or a flow respectively.

II. MODELS

Two models are utilized for the evaluation, one for the
simulation and one for the control design. The models are
based on the Barcelona sewage system model[2] but reduced
such that the system only contains ten tanks, and only has
weirs in the virtual tank elements. Given that the aim for
the controllers is to avoid weir overflows, the weirs are not
included in the model for the MPC. The simplified models
can be described as a combination of a few components,
assembled as in Fig. 1. The main component is the virtual
tank, given by (1) and (2). For the simulation model, the
weir overflow is given by (3), while it is zero in the control
model. The control model also includes boundaries on the
tank volume given in (4)

Vk+1 =Vk + ∆T (qink − qoutk − qwk ) (1)
qoutk =β(Vk −∆Tqwk ) (2)

qwk = max

(
0,
Vk − V̄

∆T

)
(3)

0 ≤Vk ≤ V̄ (4)

Where β is the volume/flow cofficient[12] of the tank
outflow. The system also contains a real tank, where the
difference from the virtual tank is that the weir overflow
qwk is zero for both models. Another difference is that the
outflow qout is controlled by a retention gate qu,out. In the
control model, the controlled outflow is constrained by:

0 ≤ qu,out ≤ q̄u,out (5)
qu,out ≤ βVk (6)

The last component is the redirection gate, which is given by
(7). The control flow qu of the redirection gate reduces the

outflow and is constrained in the control model by (8)-(9).

qoutk = qink − quk (7)

0 ≤ quk ≤ qink (8)
quk ≤ q̄u (9)

III. MPC DESIGN

The classical MPC is a deterministic controller and is
designed based on the assumption of the ideal scenario;
where we would have perfect knowledge about the rain
inflow to the sewer systems. In MPC, an optimization
program is solved at each time instance k in conjuction
with the prediction horizon receeding. The formulation of the
optimization program consists of two parts; a cost function
and a constraint set, which together form the program. In
this paper, we will formulate the program of the MPC as a
quadratic program of the minimization variant. A quadratic
program means the terms of the cost function can only be
quadratic or linear, and that the constraints are all linear. The
cost function utilized in this work is given by (10) and aims
at minimizing the cost terms.

J = min
u

N∑

k=0

||(zk − zrefk )||2Q + ||∆quk ||2R (10)

The terms of the cost functions consist of a penalty on
the change of controlled flow ∆quk for each time step k,
similarly, it contains a penalty for deviations of the output
zk from the desired output reference zrefk . The output vector
zk consists of two elements, corresponding to the objectives
given below:

• maximize flow to the Besós Wastewater Treatment Plant
• minimize the aggregated flow to the Mediterranean Sea

The priority of the different terms in the cost function was
mostly put on the flow to the sea followed by the flow to
the treatment plant, with least priority given to the change in
control flow. The weight matrices Q and R were on this basis
chosen to be diagonal matrices, with the Q matrix having
the weights of each objective being 0.5 and 1.0 respectively,
while the R matrix was chosen to 0.01 uniformly in the
diagonal.

The constraint set of the MPC is obtained by combining
each component of the control model according to Fig. 1,
resulting in a constraint set on the form given below for
each time step k.

Vk+1 = AVk +Bquk +Gqraink (11)

zk = CVk +Dquk + Fqraink (12)
∆quk = quk − quk−1 (13)

Mquk + PVk + Sqraink ≤ K (14)

Which consists of the three linear equality constraints in
(11)-(13) represents the tank volume process equation, the
output equation, and the change of control flow definition
respectively. The inequality constraint in (14) describes the
boundaries of the specific variables and combinations of
them. The variable qraink is the external inflows into the
sewer system, such as rain and dry weather flows.



A. Stochastic MPC - Chance Constrained MPC

In stochastic MPC, the system is not assumed to be
deterministic as before. Instead are knowledge about the
uncertainty of the inflow taken into account during the opti-
mization. The usage of the knowledge of uncertainty requires
that the MPC formulation is changed to accommodate the
information. While there exist many different approaches
to stochastic MPC, we will focus only on the Chance-
Constrained (CC) method here. The CC-MPC method was
chosen for the statistical guarantees it provides, as well as its
simplicity and similarity to MPC under specific assumptions
on the uncertainties. In CC-MPC and other stochastic MPCs,
one change from MPC is the cost function. Before we
minimized the actual cost of the system, but with the in-
troduction of uncertainty, we will instead gain the optimum,
by minimizing the expected cost of the system as seen in
(15). This allows for the cost function to be formulated by
the same terms as we utilized in the MPC earlier.

J = min
u
E

{ N∑

k=0

||(zk − zrefk )||2Q + ||∆quk ||2R
}

(15)

By reformulation of the cost function into sums of expec-
tations, the only non-constant quadratic term present is the
left-hand side of (16). While the right-hand side rewrites it
to a quadratic term and a trace term of the variance of the
output.

E(zTkQzk) = E(zk)TQE(zk) + tr(Qσ2
zk) (16)

In addition to the reformulation of the cost function, the
constraint set also needs to be reformulated. For CC-MPC,
this is done in different ways for equality constraints and
inequality constraints. The equality constraints are handled
by taking the expectation of the constraints, similar to the
cost function.

For the inequality constraints, a different approach is
utilized. Here the deterministic constraints are handled on
single constraints basis. Each constraint is rewritten as a
probabilistic constraint as seen in (17), which is a constraint
on the probability of the deterministic constraint being true.
The probability guaranty γ ensures that the deterministic
constraint is fulfilled for any rain inflow realization within
the most likely γ100% realizations of the inflow. In (17),
the original inequality constraint is split in a stochastic part
fstoch and in a deterministic part fdet.

Pr(fstoch ≤ fdet) ≥ γ (17)

For CC-MPC, the stochastic part of the probabilistic con-
straint is assumed to follow a known distribution F, as given
in (18).

fstoch ∼ F (•) (18)

Given that the probability function of constraint corresponds
to the CDF of the deterministic part ΦF (•)(fdet), the con-
straint can be rewritten using the quantile function of the
distribution corresponding to γ, as below.

fdet ≥ Φ−1
F (•)(γ) (19)

Given that the quantile function above is depending on the
parameters of the distribution, which likely are varying with
the system, the constraint can be simplified by reformulation
utilizing the CDF of a standardized distribution of F. In (20),
the standardized reformulation of distributions defined purely
by their mean µf and their variance σ2

f is given, such as the
normal distribution. For the remainder of this discussion, we
will assume fstoch follows such a type of distribution, see
(21).

ΦF

(
fdet − µf

σf

)
≥ γ (20)

fstoch ∼ F (µf , σ
2
f ) (21)

With the constraint being formulated with a standardized
CDF, the quantile function Φ−1

F of the standardized distribu-
tion F can again be applied to reformulate the constraints as
(22), where only deterministic formulations are remaining.
The usage of quantile functions is a potential drawback of
CC-MPC, given that it requires that the quantile function of
the given distribution to exist explicitly, or that the specific
quantile corresponding to γ is accessible for the computation.

fdet ≥ µf + σfΦ−1
F (γ) (22)

Doing the above reformulation for each inequality constraint
and taking the expectation of the cost function and equality
constraints, allows for the uncertainty to be removed from
the formulation of the optimization problem. The inclusion
of additional functions such as trace, mean and variance in
the formulation, does potentially increase the complexity of
the optimization. If some assumption on the uncertainty does
hold, which is discussed below, the increased complexity
can be avoided. Similarly discussed below is the case,
when the distribution of the uncertainty was bounded by an
interval.

1) CDF of Truncated Distribution: In some cases, the
stochastic uncertainty is upper and/or lower bounded. Such a
stochastic variable is said to follow a truncated distribution,
as seen in (23) for the variable X following a distribution F
truncated between a and b. An illustration of the difference
between an unbounded distribution and a truncated variant
is given in Fig. 2.

X ∼ F ba(µx, σ
2
x)⇒ a ≤ X ≤ b (23)

The CDF of a truncated distribution is given by (24).
Where it can be seen to be formulated by the standardized
unbounded distribution F. It can be observed that choosing ei-
ther a or b to be infinity, indicating no bound, would remove
the corresponding term in the CDF by either becoming 0 or
1 respectively or if both are chosen, becoming the standard
distribution.

ΦF b
a(µx,σ2

x)
(x) =

ΦF (x−µx

σx
)− ΦF (a−µx

σx
)

ΦF ( b−µx

σx
)− ΦF (a−µx

σx
)

(24)



Fig. 2. An illustration of a standard normal distribution, and a truncated
standard normal distribution, truncated to within −1 and 1.5

By rearranging and substitution of the truncated CDF, a
bounded version of the probability constraint in (20) can be
formulated as (25).

ΦF (
x− µx
σx

) ≥ γΦF (
b− µx
σx

) + (1− γ)ΦF (
a− µx
σx

) (25)

By applying the quantile function reformulation, the
deterministic description of the probabilistic constraint with
a bounded distribution can be formulated.

2) Assumptions on Uncertainty: The CC-MPC is math-
ematically similar to MPC but does contain a few extra
function terms in its formulation, such as the trace function,
the quantile function and variances. All of these functions
may potentially add to the computational difficulties for
solving the optimization. However, if the following two
assumptions hold, then the CC-MPC holds the same com-
putational complexity as the deterministic MPC during the
optimization.

The first assumption is on the independency of the uncer-
tainty in the system, as stated:

• the uncertain inflow of time k is independent of the
uncertainty of the tank volume at time k, Vk ⊥ qraink

This allows the variance σ2
zk in (16) to be rewritten as below,

given that the covariance terms become zero.

σ2
zk = Cσ2

Vk
CT + Fσ2

qrain
k

FT (26)

The variance of the tank volume can with the same argumen-
tation, be rewritten until it is only dependent on the initial
variance of the volume and the variance of all inflows up
until time k − 1. This rewritten of the variance, leads to the
trace term in (16) becomes constant during an optimization.
This reduces the cost function and the equality constraints to
a deterministic formulation, where the variables correspond
to the expected value instead of the actual value.

The second assumption is that the stochastic part of
the constraints fstoch is independent of the optimization
variables. This means that under an optimization, the mean
and variance of the stochastic part is constant, resulting in
the right-hand side of both (22) and (25) to also be constant.
The resulting constraints have the same non-linearity as their
MPC counterpart.

Fig. 3. An example of actual rain inflow and a predicted rain inflow
realization, shown for a step of 0.7 µm/s with a duration of 90 minutes

IV. RESULTS & DISCUSSION

In this section, the results of simulations with the different
MPCs are discussed and compared. The MPC methods
utilized are standard deterministic MPCs with perfect and
imperfect predictions of the rain inflow, and CC-MPCs
with different probability guarantees γ. For the MPCs, with
imperfect predictions, 10 random realizations of the rain
inflow were utilized for each simulation scenario, such that
the realizations would be representative of the uncertainty.
The probability guarantees γ of the CC-MPC was utilized
with all inequality constraints having the same probability
with the following values being used: 95%, 90%, 80%, 70%,
and 60%.

In the simulations, the rain inflow utilized were step
inflows, which had varying rain durations and intensities.
The rain steps utilized all had a dry weather period before
and after the step with a duration of two and nineteen
hours respectively. During the dry weather periods, the inflow
to the sewers would be 0.04 µm/s. The duration of the
rain steps was varied with half-hour increments, starting
at half an hour and ending at five-hour durations, while
the intensity was varied from 0.1µm/s to 11µm/s, with
increments of 0.1µm/s. The inflow predictions utilized by
the MPCs discussed above were generated as a truncated
normal-distributed inflow with the mean being equal to the
actual inflow, and the standard deviation σ being 0.01 µm/s
with a third of the actual inflow added to it. The lower bound
on the truncated distribution was chosen to be zero, given that
rain inflows are not negative. The upper bound was chosen to
be three σ above the expected inflow, corresponding to 99.7%
of rain inflow realizations for normal-distributed uncertainty.
In Fig. 3, an example of the rain inflow is shown together
with one realizations of the predicted rain inflow with its
lower and upper bounds.

In the comparison, the MPC with perfect prediction will be
utilized as a benchmark for the other MPCs. The focus of the
comparisons is the avoidance of weir overflow generations.
Given that the MPCs are designed to avoid overflows,
there are only two scenarios for which an overflow would
occur. The first scenario is the case for which an overflow
is unavoidable, regardless of the control chosen; in other
words, the optimization problem has become infeasible. The
problem could have been infeasible from the start of the



simulation (e.g. too heavy rain) or the previous choice of
control has led it to be infeasible, due to uncertainty. In
such cases, the controller relies on either previous computed
predictions or other back-up procedures, such as less strict
uncertainty handling. The second scenario is the case for
which the MPC finds a feasible solution, but due to the
uncertainties, the computed control leads to the generation
of overflows. The feasible solution of this case is a false
positive solution, in the sense that they are solution expected
to be feasible, but are not. In the following sections, we will
focus on each of these cases, but the scenario used for the
comparison will only include those for which the MPC with
perfect knowledge is feasible.

A. Feasibility of Predictions

For the first case, the feasibility of the MPCs are the
focus. In Fig. 4, we can observe the feasibility of the
deterministic MPC with imperfect knowledge. Given that
the blue line indicates the feasibility limit of the MPC
with perfect knowledge, we can infer about the likelihood
of the imperfect MPC being infeasible. We can observe
that the closer the scenario is to the feasibility limits, the
more of the ten realizations becomes infeasible. It is clear
that for the scenarios with long duration goes directly from
all realizations are feasible to all are infeasible. While the
scenarios with short durations slowly lose realizations to
infeasibility as the intensity increases. Given that higher
intensity in these simulations means higher variance, these
results are in agreement with expectations of stochastic
realizations of the uncertainty.

In Fig. 5, the feasibility lines for the considered CC-MPCs
are shown. It can clearly be seen that the CC-MPC with
γ = 95%, stops being feasible significantly lower than the
remainder of the CC-MPC or the perfect MPC. As the value
of γ decreases the feasibility lines close in on the MPC
feasibility line. While higher values of γ have more rain
realizations covered by the solution, a slight decrease in
value can restore feasibility, if the desired γ would lead to
infeasibility. This allows for a simple, but effective back-up
strategy for CC-MPC; if the problem is infeasible, reduce
the probability guarantee γ until a feasible solution is found.

When we compare the CC-MPC feasibility lines with the
colored feasibility points of the realizations of the imperfect
MPC, we can observe that for a coverage of for example
γ = 80%, the corresponding simulations with imperfect
MPC have an infeasibility rate of around 4 out of 10. Giving
approximately 40% of rain realization not to be covered
by the MPC, with additional scenarios below also having a
higher chance of experiencing infeasibility. The discrepancy
between the two types of MPCis most apparent, when
the variance is higher, making the infeasibility tendencies
converge as duration increases. This means that it is more
likely that the use of CC-MPC will conserve feasibility, than
by relying on a given rain prediction and a deterministic
MPC.

Fig. 4. Feasibility of MPC with imperfect knowledge

Fig. 5. Feasibility of all three types of MPC

B. False Positive Predictions

We will now focus on the case of false positive predictions,
where the computed feasible predictions are in fact infeasible
when implemented by the control. The occurrence of unpre-
dicted weir overflows produced by the MPC with imperfect
knowledge and by the CC-MPC can be seen in Fig. 6 and Fig.
7 respectively. The red line in the figures is the feasibility line
of the given MPC design. It can be observed that while the
CC-MPC does not produce any false positive prediction of
overflows, the basic MPC does. We can further observe that
the false positive overflow occur when the rain intensity gets
closers to the feasibility line in the graph. It can further be
seen that they only occur for longer rain durations, possible
due to the increase in variance for the higher intensities at



Fig. 6. Weir overflow of MPC with imperfect knowledge, False positive
predictions

Fig. 7. Weir overflow of Chance-Constrained MPC, False positive
predictions

the lower durations; simply making the MPC infeasible. As
is evident from the feasibility discussion of Fig. 4, showing
how many realizations becoming infeasible at each scenario.

C. Thoughts on different stochastic inflows

In the previous sections, we have focused on stochastic
forecasted rain inflows for which the actual inflow was equal
to the expected inflow of the system, which is not generally
the case. A simple deviation from this simple rain inflow
is to assume the actual rain inflow has some bias, a sort of
offset from the expected inflow of the system. When the bias
makes the expected inflow larger than the actual inflow, it
generally would lead to fewer overflows generated by both
the MPC with imperfect knowledge and the CC-MPC, as
long as the MPC’s still is feasible. While a bias which makes
the expected inflow lower than the actual inflow, generally
would lead to more overflows and false positive predictions,
due to the system being filled faster than expected. In the
case of imperfect MPC, such bias would simply skew the
probability of a given realization, therefore still leaving the
feasibility of the MPC to chance. For the CC-MPC, a bias
from the expected overflow would be accounted for by the
constraint-restriction introduce by the probability guarantee
γ, as long as the actual inflow does not correspond to a rain
realization outside the covered realizations.

The rain considered in this work has been a simple step
up and down; in reality, rains are a lot more varying and
fluctuating in intensity. This means real rain has several
spikes, and in general, an appearance closer to the uncertain
predictions used earlier than actual steps. On the other hand,
given that MPC is a discrete method, any fluctuating rain can
be described as a series of sample-length steps. This means
that as long as the description of the stochastic distribution
of the rain is known, then the CC-MPC can operate as seen if
the actual rain lies within the bounds of a feasible probability
guarantee γ.

V. CONCLUSIONS

In this paper, we have considered the utilization of the
deterministic MPC and the stochastic Chance-Constrained
MPC (CC-MPC) in a sewage system with uncertain predic-
tions of the rain inflow. From the results of the simulations,
it was shown that CC-MPC was less prone to false positive
predictions about feasibility and could keep the system
feasible for a larger portion of possible rain realizations in
comparison to the deterministic MPC. The CC-MPC being
a more optimization-complex MPC type was shown to have
the same complexity as the deterministic MPC, under the
right assumptions on the uncertainty. In addition, the CC-
MPC also had a clear and simple back-up procedure in case
of infeasibility during computation, by slacking the desired
probabilistic guarantees.
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Abstract
In this work, a revised formulation of Chance-Constrained (CC) Model Predictive
Control (MPC) is presented. The focus of this work is on the mathematical formu-
lation of the revised CC-MPC, and the reason behind the need for its revision. The
revised formulation is given in the context of sewer systems, and their weir over-
flow structures. A linear sewer model of the Astlingen Benchmark sewer model
is utilized to illustrate the application of the formulation, both mathematically and
performance-wise through simulations. Based on the simulations, a comparison of
performance is done between the revised CC-MPC and a comparable deterministic
MPC, with a focus on overflow avoidance, computation time, and operational behav-
ior. The simulations show similar performance for overflow avoidance for both types
of MPC, while the computation time increases slightly for the CC-MPC, together
with operational behaviors getting limited.
KEYWORDS:
stochastic MPC; Combined Sewer Overflow; chance-constrained; Astlingen sewer network

1 INTRODUCTION

With the increase in heavy rains in the recent decade1, the operation of sewer systems has become more important. In sewage
systems2, there are several objectives for the ideal system operation; control of the flow to the wastewater treatment plant
(WWTP), and the avoidance of weir overflows are among some of them. In the previous decades, Model Predictive Control
(MPC) has been applied to sewage systems with fair results3-8 aiming for the ideal operation. However, the structure of sewage
systems is always changing leading to model uncertainties, and the systems being intrinsically driven by rain and dry weather
inflows, creating a dependency on the quality of the predictions of those inflows. With the classical MPC being a deterministic
method, the presence of uncertainty has not in general been included in the research on MPC for sewer networks.
While the classical MPC is deterministic, MPC methods for handling uncertainty has been developed in the past decades9-

13, but not applied to sewer systems. Collectively these methods are referred to as Stochastic Model Predictive Control (SMPC)
and include a wealth of methods. The methods range from finite scenario-based robust approaches12 to methods based on the
probability of constraints being true10,11,13, among other methods9. In this work, we will focus on the method known as chance-
constrained MPC (CC-MPC), which previously has been applied to other systems, such as drinking water systems10 with good
results. The CC-MPC method utilizes an optimization based on the expected cost of the system, together with probabilistic
formulations of the constraints. The probabilistic formulations are introduced in order to tighten the constraints so that the
performance resulting from the controller are feasible within the real constraints with a given probability.
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While CC-MPC and other similar SMPCmethods can utilize information of the uncertainty to generate constraint tightenings
for more robust performances, it does not come without drawbacks. Given that tighter constraints mean the workspace of the
controller gets smaller and in worst-case results loss of feasibility for the CC-MPC. This can happen if the uncertainty is too
large or if the desired probability for the constraints to hold are too high, resulting in overlapping constraints and infeasibility.
Another important aspect ofMPC design for sewer networks, besides feasibility, is how the overflows fromweirs are integrated

into the design formulation. Weirs are physical structures with a binary nature of either overflowing or not, giving two different
dynamics of the systems to include in the MPC design. Weir overflows are usually integrated by one of three approaches: 1) they
are ignored in the formulation and their occurrence means an infeasible scenario. 2) They are integrated into the constraints but
excluded from the dynamics. And 3) they are integrated into the dynamics and propagates through the MPC formulation. In this
paper, we will consider the third formulation of the weir overflows, however, the CC-MPC mentioned earlier is not suitable for
this formulation, due to the overflows being defined by the original constraints (without tightening). The inclusion of overflow
into the dynamics leads to another issue with the formulation of CC-MPC. With the inclusion, the constraints defining the weir
elements become intrinsically feasible through the presence of overflow. This results in the probabilistic formulations of the
CC-MPC method becomes insensible with probabilities larger or equal to one.
To deal with the above drawbacks of CC-MPC applied to sewer networks, we will in this paper outline and apply a revised

formulation of the CC-MPC applicable for sewer networks with weir structures. The reformulation will aim to introduce sensible
probabilistic constraints, suitability for the inclusion of weir structures in dynamics, as well as the preservation of the original
feasibility of the system.
For the application of the revised CC-MPC formulation will utilize a model of the Astlingen benchmark Network14, displayed

in Fig. 2. Furthermore, will the focus of this paper will be given on the revised CC-MPC’s performance in view of the classical
deterministic MPC’s performance when using the third approach to overflow integration.
In the following sections, we will first present the general MPC program for systems with overflows, and then we will discuss

and formulate the revised CC-MPC formulation. The paper will end with an applied example and evaluation of the formulated
method.

1.1 Notation
In this paper, the following notation is utilized. Bold font is utilized to indicate vectors, while a bullet ∙ represents a subset or
set of a function’s variables. For a stochastic variable X, the expectation and variance are denoted E{X} and �2X respectively,
while Pr{X ≤ x} and Φ(x) is the probability function and cumulative distribution function (CDF) respectively for a given
value x. The notation X ∼ F indicates that X is following a given distribution F. The weighted quadratic norm of x is denoted
by ||x||2A = xTAx, while the minimum and maximum of a given function f (x) are denoted f and f respectively. The notation
ΔT and the subscript k indicate the sampling time and the sample number respectively. Variables written with the letters V and
q are used to indicate volume and flow respectively. The superscripts in, out, u, and w indicate the inflow, outflow, control flow,
and weir overflow respectively.

FIGURE 1 An illustration of the nature of weirs where the weir flow qwk,i is zero when the switching function T (∙) is negative,
and following a given non-negative weir function tw(T ), when the switching function is positive.
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2 STOCHASTIC MPCWITHWEIR ELEMENTS

Systems with weirs or weir-like structures, such as sewer systems, have a binary nature originating from the weirs. The binary
natures are shown in Fig. 1 for a linear weir function tw(T ). The binary nature can easily be observed, by noting that the flow
is zero when the switching function Ti(∙) is negative, and otherwise follows some given function depending on the switching
function. The general deterministic formulation of MPC for systems with weirs can be formulated as below.

J = min
u
f (x,u, zref ,w,qw) (1)

xk+1 = ℎproc(xk,uk,wk,qwk ), x0 = xini (2)

qwk,i =

{
tw,i(Ti(∙)), Ti(∙) ≥ 0
0

∀i ∈ {1 ∶ Nw} (3)

h(xk,wk,uk,qwk ) = 0 (4)
g(xk,wk,uk,qwk ) ≤ ḡ (5)

Where x corresponds to the system states, the control of the system is u,w is the rain inflow into the system, and the weir flow qwk,icorresponds to the ith weir element out ofNw at time k, and is always non-negative, while xini is the system’s initial condition.
As mentioned earlier, we will in this work consider the stochastic MPC method CC-MPC. Using the CC-MPC method to

handle uncertainty, the cost function in (1) and the equality constraints in (4) are rewritten as the expectation of the given function.
The inequality constraints in (5) are reformulated as the probability of the constraints holds true with a given probability. The
process equation (2) and weir definition (3) can be substituted into the cost function and constraints so that the only state the
system is explicitly depending on is the initial state x0. Due to the presence of weirs with (3), the resulting probability functions
become meaningless as will be shown later. Therefore, we will reformulate the CC-MPC formulation, such that the inclusion of
weir structures gives a sensible expression of the probabilistic formulation.

2.1 Revised CC-MPC Formulation
In our revised formulation of CC-MPC, we will formulate how to include weir structures in the probabilistic formulation, but
we will also consider the feasibility of the program, as well as overflow determination. In the formulation of the cost function
and the equality constraints, the approach utilized in standard CC-MPC can be reused as given below.

J = min
u
E{f (x0,u, zref ,w,qw)} (6)
0 = E{ℎ(x0,u,w,qw)} (7)

Where qw is written for clarity of the presence of weirs. The formulation of the probability constraints in CC-MPC can cover
sets of constraints or individual constraints. We consider the latter in this work, where the approach to the reformulation of the
inequality constraints depends on the specific constraint. If the constraint does not contain a weir element, meaning that no weir
overflow is defined by this particular constraint, then the direct probabilistic approach from CC-MPC can be utilized to handle
the uncertainty. Below is shown the probabilistic rewriting of the ith inequality constraint (8), into the quantile function-based
constraint (10), with arrows indicating the order of steps in the process.

gi(∙) ≤ ḡi (8)
→ Pr{gi(∙) ≤ ḡi} ≥ � (9)
→ Φ−1gi(∙)(�) ≤ ḡi (10)

The above quantile function is based on the distribution of the constraint. Given the optimization variables are contained in the
quantile, this is difficult to solve optimization-wise. Utilizing standardization of the constraint distribution, this can be simplified
as shown in (11), where the distribution is assumed defined purely by its expectation and variance. Such distributions include the
normal distribution; therefore, we will utilize this assumption in the rest of this discussion of the reformulation of the CC-MPC.

E{gi(∙)} ≤ ḡi − �gi(∙)Φ
−1(�) (11)

If the constraint does define a weir overflow, then the direct probabilistic approach results in a meaningless probability. This
is due to the weir element making the constraint intrinsically feasible, by counteracting the breaching of the constraint, as
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demonstrated below:
gi(∙, qwk,i) ≤ ḡi, qwk,i = 0 (12)
gi(∙, qwk,i) = ḡi, qwk,i > 0 (13)

→ Pr{gi(∙, qwk,i) ≤ ḡi} = 1 (14)
where regardless of which parameters ∙ the constraint depends on, the weir overflow will be depending on the same parameters
so that the constraint holds.
For this reason, including the above constraint in the optimization formulation is redundant. In order for achieving a statistical

bound on the overflow generation, we instead turn to the probability of keeping the weir overflow qwk,i non-positive, where wecan see this is related to its switching function T (∙), as shown below.
Pr{qwk,i ≤ 0} = Pr{Ti(∙) ≤ 0} ≥ 
 (15)

→ E{Ti(∙)} ≤ −�Ti(∙)Φ−1(
) (16)
This allows us to formulate probabilistic constraints for both constraints with or without weir elements, as were shown in (16)
and (11).

2.2 Feasibility
In the above, we only considered handling the uncertainty such that a given solution would be feasible in the real system with
known probability. This leads to probabilistic restrictions on the inequality constraints, but these restrictions will also lead to
more rain scenarios causing infeasibility during computations. By utilizing slack variables with a suitable cost term in the cost
function, we can restore the original feasibility of the constraints by the following approach, while keeping the probabilistic
restrictions, when possible.

E{gi(∙)} ≤ ḡi + sk − �gi(∙)Φ
−1(�) (17)

E{Ti(∙)} ≤ ck − �Ti(∙)Φ
−1(
) (18)

0 ≤ sk, ck (19)
Where the constraints without weirs are given by (17) and the weir defining constraints is given by (18). For the constraint
without weirs, an extra constraint is necessary to represent the original constraint of the system:

sk − �gi(∙)Φ
−1(�) ≤ 0 (20)

Using the above versions of the constraints, the formulation of the optimization program for feasible CC-MPC can be written
as the following:

J = min
u,c,s

E{f (x0,u, zref ,w,q)} + l(c, s) (21)
0 = E{ℎ(x0,uk,wk,qwk )} (22)

E{gi(∙)} ≤ ḡi + sk − �gi(∙)Φ
−1(�) (23)

E{Ti(∙)} ≤ ck − �Ti(∙)Φ
−1(
) (24)

sk ≤ �gi(∙)Φ
−1(�) (25)

0 ≤ sk, ck (26)
where the additional function l(c, s) in the cost functions is the cost term of the slack variables, penalizing their usage.

2.3 Overflow Approximation
So far, we have been considering an optimization formulation with a dynamic description of the weir overflows included in it.
Given the nature of weir overflows being binary as seen in (3) and therefore not being convex, the inclusion of the dynamic
can lead the optimization program to be computational heavy. One approach to deal with this is to treat the weir overflows
as additional optimization variables and penalize their utilization5. Given that overflows cannot be negative, a constraint for
this needs to be added. Another aspect is the determination of the value of the overflow for approximation; Given that we are
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minimizing the overflow, we need a constraint telling us the minimum size of the overflow. A fitting constraint for this is the
original constraint containing the overflow, due to it being its very definition. We can utilize the expectation of this constraint,
to achieve a description of the overflow size and still taken care of the uncertainty. Based on the added constraint shown below,
our approximated overflow can be considered the expected overflow of the system in some sense.

E{gi(∙,qw)} ≤ ḡi (27)
0 ≤ qwk (28)

With the approximation approach we have utilized, we can formulate the optimization program as below. The cost function now
includes a penalty term on the overflow variables. This term is a penalty on the accumulated overflow volumes at each sample
in the predictions.

J = min
u,c,s,qw

E{f (x0,u, zref ,w,q)} + l(c, s) +
N∑
k=0

MT
k qwk (29)

0 = E{ℎ(x0,uk,wk,qwk )} (30)
E{gi(∙)} ≤ ḡi + sk − �gi(∙)Φ

−1(�) (31)
E{Ti(∙)} ≤ ck − �Ti(∙)Φ

−1(
) (32)
sk ≤ �gi(∙)Φ

−1(�) (33)
E{gi(∙, qwk )} ≤ ḡi (34)

0 ≤ sk, ck, q
w
k (35)

3 MODEL & COST

In this section, we will outline an example of the application of the revised CC-MPC formulation. For clarity, we will first outline
the design model of the deterministic MPC followed by the stochastic counterpart. The system considered is a linear model of
the Astlingen sewer network14 illustrated in Fig. 2. The Astlingen system consists of 10 catchment areas connected to a system
of 6 controllable tanks and 4 independent weirs, all capable of flooding the nearby river by overflows. For the cost function of
the MPC given below, we will utilize a mix of linear and quadratic cost terms, including the overflow approximation approach,
discussed previously5 15.

J = min
u,qw

N∑
k=0

||Δuk||2R +QT zk +WTVw
k (36)

Vw
k =

k∑
i=0

qwi (37)

where the cost is minimized over an N step prediction horizon on the system, with a quadratic penalty of the control change Δu
and a linear cost on the output objective z. The output objectives correspond to the following objectives:

• maximizing flow to WWTP

• minimizing flow to the environment

The third termWTVw
k is a linear penalty on the accumulated overflow volume at time k.

The system can be considered to consist of tanks, pipes with weirs, and delay pipe elements. If the sizes of the delays are
in multiples of the sampling time, then they can be considered a cascade of delays of the size of the sampling time, Dk,i. The
dynamics of the tanks and delays are described by the following equations:

Vk+1,i = Vk,i + ΔT (qink,i − q
out,V
k,i − qwk,i) (38)

Dk+1,i = qink,i (39)
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FIGURE 2 A schematic of the system model based on a linear version of the Astlingen Benchmark Network14. It shows the
interconnections between tanks, pipes, and the environment. The parts tagged with a ui is controllable.

The outflows of each element are described by the equations below, where V, P, and D indicate the type of element; tank volume,
pipe flow, and delay flow respectively.

qout,Vk,i = uk,i (40)
qout,Pk,i = qink,i − q

w
k,i (41)

qout,Dk,i = Dk,i (42)
The inflow qink,i of the ith element, given below, are dependent on the connections of the elements in the system as shown in
Table 1. Where the ith tank is denoted by Ti, pipe i from catchment i by pi and the n minute delay to tank i is given by Ti:n.

qink,i = wk,i +
∑
j∈i

uk,j +
∑
j∈V

i

qout,Vk,j +
∑
j∈P

i

qout,Pk,j +
∑
j∈D

i

qout,Dk,j (43)

Where the j denotes the flows of the subsetsi,V
i ,P

i ,D
i of all control flows, tank outflows, pipe outflows, and delay outflows

respectively. The variable wk,i indicates the rain inflow to the system part.
The inequality constraints are formulated below, where the upper and lower limits of the tank volumes, the pipe outflow,

control flow, and the weir overflows are stated for time k. The constraints are based on the individual elements i of the system.
Not all of the constraints are applicable for all types of elements, e.g. (44) are only applicable for tanks.

0 ≤ Vk,i − ΔT qwk,i ≤ V̄i (44)
0 ≤ qout,Pk,i ≤ q̄out,Pi (45)
0 ≤ qout,Vk,i ≤ �iVk,i (46)
0 ≤ uk,i ≤ ūi (47)
0 ≤ qwk,i (48)
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TABLE 1 Inflows to the different elements of the systems
Element Inflow
T1 qout,Dk,T 1∶5T2 wk,2
T3 wk,3 + q

out,D
k,T 3∶5

T4 wk,4 + q
out,D
k,T 4∶5T5 wk,5

T6 wk,6 + q
out,D
k,T 6∶5

T3:5 qout,Dk,T 3∶10
T3:10 qout,Dk,T 3∶15
T3:15 quk,6 + q

out,P
k,p8

T4:5 qout,Dk,T 4∶10
T4:10 qout,Pk,p7

Element Inflow
p7 wk,7p8 wk,8p9 wk,9p10 wk,10
T1:5 quk,2 + q

out,D
k,T 1∶10

T1:10 wk,1 + quk,3 + q
u
k,4 + q

out,D
k,T 1∶15

T1:15 quk,5 + q
out,D
k,T 1∶20

T1:20 qout,Pk,p10
T6:5 qout,Dk,T 6∶10
T6:10 qout,Dk,T 6∶15
T6:15 qout,Pk,p9

Where � is the volume-flow coefficient16. The upper constraints of the tank volumes and pipe outflows are the definitions of the
occurrence of overflow. With the corresponding switching function given by (49).

Ti(∙) =

{
Vk,i − V̄i (Tank)
qink,i − q̄

out,P
i (Pipe) (49)

3.1 Stochastic Model
The revised formulation of CC-MPCwith overflow handling presented earlier can now be applied to the system described above.
The cost function of the revised CC-MPC can then be written as:

J = min
u,c,s,qw

N∑
k=0

E{||Δuk||2R +QT zk +WTVw
k } +WT

c c +WT
s s (50)

Both the rewritten cost function and the later inequality constraints depend on the expectation of the system’s subpart equations.
Where the expected tank volume, delay flow, element inflow, tank outflow, pipe outflow, and delay outflow are given by (51)-(56)
respectively.

E{Vk+1,i} = E{Vk,i} + ΔT (E{qink,i} − E{q
out,V
k,i } − qwk,i (51)

E{Dk+1,i} = E{qink,i} (52)
E{qink,i} = E{wk,i} +

∑
j∈i

uk,j +
∑
j∈V

i

E{qout,Vk,j } +
∑
j∈P

i

E{qout,Pk,j } +
∑
j∈D

i

E{qout,Dk,j } (53)

E{qout,Vk,i } = uk,i (54)
E{qout,Pk,i } = E{qink,i} − q

w
k,i (55)

E{qout,Dk,i } = E{Dk,i} (56)
In the following paragraphs, the formulation of each inequality constraint is given in the context of the corresponding subpart.
The resulting formulation of the lower constraint of the tank volume is given by:

�Vk,iΦ
−1(�j) − sj,k ≤ E{Vk,i} − ΔT qwk,i (57)

0 ≤ sj,k ≤ �Vk,iΦ
−1(�j) (58)
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where j indicates the specific constraint. The probabilistic formulation of the upper constraint of the tank volume is then defined
by the switching function (49) as written in (59). The constraint for overflow approximation is given by (60).

E{Vk,i} ≤ V̄i − �Vk,iΦ
−1(
) + ck (59)

E{Vk,i} − ΔT qwk,i ≤ V̄i (60)
0 ≤ ck (61)

From (54), we know that the tank outflows are controlled and therefore deterministic, this gives us that the lower limit is the
same as in (46). For the upper limit, the probabilistic formulation is given by (62) and (63).

uk,i ≤ �E{Vk,i} − ��Vi�
−1(�j) + sj,k (62)

0 ≤ sj,k ≤ ��Vi�
−1(�) (63)

The limits on the pipes with weirs are given by (64) and (65) for the lower limit, and by (66)-(68) for the upper limit.

�qout,Pk,i
Φ−1(�j) − sj,k ≤ E{qout,Pk,i } (64)

0 ≤ sj,k ≤ �qout,Pk,i
Φ−1(�) (65)

E{qink,i} − q
w
k,i ≤ q̄out,Pi (66)

E{qink,i} ≤ q̄out,Pi + cj,k − �qink,iΦ
−1(
j) (67)

0 ≤ cj,k (68)

Given that there is, per definition, no uncertainty in optimization variables, the constraints on the control and weir overflow are
deterministic and are therefore the same as in (47) and (48).

3.2 Benefits and costs
The utilization of the approximation method discussed above has some significant drawbacks as previously discussed in15. The
main drawbacks are the loss of design freedoms in the weighting of the cost function. These come from the extra weights on
the aggregated overflow volume has to be relatively higher than the main terms of the cost functions, and have hierarchically
weightings depending on their relative placement in the systems.
These design restrictions on the weightings limit the flexibility of the control with regards to the planning of overflow coun-

termeasures. While the revised CC-MPC does not change these drawbacks, it might give a possible remedy for the hierarchical
weightings requirement. If a given weir overflow in the system is more attractive to society than weir overflow further down
the system (e.g. downstream is a bathing area). Then by having a higher probability guarantee (�, 
 in (11), (16), and section
3.1 ) on the downstream part than on the specific upstream overflow, the downstream constraints will be less likely to cause an
overflow, if it is possible to avoid.

The revised CC-MPC formulation has the drawbacks of introducing more optimization variables and inequality constraints,
even without the weir overflow approximation. These drawbacks arise from the conserved feasibility through the slack vari-
ables and the constraints on these for elements without weirs. The revised CC-MPC also has the clear benefits of conserving
feasibility but more importantly giving statistical constraints on overflow generation, similar to the CC-MPC formulation for
systems without internal overflow description.

3.3 Variance of Constraints
Given the assumption of the variance of the probabilistic constraints exist, and that the probabilistic constraints are scalar, the
variance of each constraint is also scalar. We can utilize this feature to derive a computationally simple method for computing
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TABLE 2 Cost function weighting of accumulated overflow volumeW, showing a higher cost for upstream elements.
T1 T2 T3 T4 T5 T6 p7 p8 p9 p10
1000 5000 5000 5000 5000 10000 10000 10000 15000 5000

the variance for the constraints. Firstly, we need to define the variance of each constraint.

�2Vk,i = �
2
Vk−1,i

+ ΔT 2�2qink−1,i
(69)

�2Dk,i
= �2qink−1,i

(70)
�2
qout,Pk,i

= �2qink,i
(71)

�2
qout,Dk,i

= �2Dk,i
(72)

�2qink,i
= �2wk,i

+
∑
j∈P

i

�2
qout,Pk,j

+
∑
j∈D

i

�2
qout,Dk,j

(73)

where each source of uncertainty is assumed to be independent both temporally and spatially. This gives equations for the
variances, which is a linear model of the initial state variance and the rain inflow variances as shown in (74). Utilizing this, all
of the constraints discussed above can be combined into a matrix inequality covering the entire prediction horizon as shown in
(75)-(77).

���2 = Θ�2V0 + Γ�
2
w (74)

ΩuU + Ωqwqw ≤ Ωconst + ΩsS + ΩcC + ΩI�DiagΦ−1(
) (75)
Ωconst = Ω + ΩxE{x0} + ΩwE{W} (76)
�Diag =

√
diag(���2) ∈ nxn (77)

4 RESULTS & DISCUSSION

In the previous sections, we have introduced the revised CC-MPC formulation, in this section; we will focus on analyzing the
difference between the performance of the revised CC-MPC and the classical deterministic MPC applied to the Astlingen model
introduced earlier. In the simulations, the examples of the MPC designs given in section 3 are used with a prediction horizon of a
100 min., where the weights of each objective in the cost function have the following values; 2 for minimizing flow to nature, −1
for maximizing flow to WTTP, and 0.01 for the change in control flow. The higher the absolute weight is the higher the priority,
while a negative weight indicates maximization, instead of minimization in the objective. The weighting of the accumulated
overflow volume is given in table 2, where it can be seen the weights vary accordingly to the placements of the overflows in the
system, as described in15. The usages of the slack variables are weighted uniformly with 100.
Several scenarios with varying parameters have been run during the simulations. The profiles for the rain inflows in simulations

were all step rains, where the rain intensity was varied from 0.5 to 6 �m∕s, and the rain duration varying from a half-hour
to five hours, with 0.5 �m∕s and half-hour intervals. For the revised CC-MPC, the probability guaranty was equal across all
constraints andwas varied between scenarios, with values of 90%, 80%, and 70% respectively. The deterministicMPC is assumed
to have perfect forecasts of the rain inflow, while the revised CC-MPCs are operating with uncertainties following a truncated
Gaussian distribution, with the expectation being the actual rain inflow. The size of the uncertainty for the CC-MPC (the standard
variation �), was chosen as a third of the expectation plus a constant deviation of 0.01�m∕s, to avoid zero uncertainty. The
truncated distribution of the uncertainty was assumed to be non-negative and below three � above the expectation, resulting in
all realizations of the inflows to be within two times the expected non-zero value. A realization of a rain scenario can be seen in
Fig. 3, with the actual rain and bounds on the uncertainty, included.
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FIGURE 3 Realization of the rain forecast of a rain scenario
with 3.5 �m∕s intensity and a three and a half-hour rain dura-
tion. Showing the uncertain prediction around the actual step
inflow.

FIGURE 4 The difference of Maximum computation time
during each rain scenario simulation of the perfect MPC and
the revised CC-MPC computed as MPC - revised CC-MPC

4.1 Computation Time
From Fig. 4, we can observe the difference in the maximum computation time between the deterministic MPC and the revised
CC-MPC with the three chosen probability guarantees. It can be observed that in general, the revised CC-MPCs are around
0.1 seconds slower than the deterministic MPC, while occasional computations performer faster or slower for both types of
controllers due to numerical variations.

4.2 Weir Overflow
In this part, we focus on the results of the simulation to do with weir overflows. In fig. 5, one of the simulations results is shown,
showing the overflow over time for both the MPC with perfect forecast and the revised CC-MPC with 90% probability bound
on the constraints. We can observe that the experienced overflow of the system is identical between the two controllers. This is
further supported by the percental difference between the controllers for each rain scenario, shown in Fig. 7. Here we can see
that in general, the difference is approximately zero, but also that a few scenarios have larger differences. These differences are
due to the conservatism of the CC-MPC when the end of the rain cannot be seen within the prediction horizon, giving the CC-
MPC a better start position than the MPC for the next time step. The total volume of weir overflow of the deterministic MPC
can be seen in Fig. 6. By comparison to the percental differences before, we can see that the larger differences occurred, when
the overflow volume is small for the MPC, making small divergences big in percentages.

4.3 WWTP
In this part, we focus on the results of the simulation to do with the amount of water sent to the wastewater treatment plant of
the system. In Fig. 8 and Fig. 9, we can observe the volumetric difference and the percentage difference in wastewater sent to
the treatment plant respectively.
We can see from the volume difference, that the deterministic MPC has an outflow, which is generally larger than the outflows

of the revised CC-MPC, by somewhat constant volume bias around 120m3 depending on the probability bound. We can observe
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FIGURE 5 The total temporal overflow of a representative
simulation

FIGURE 6 Total overflow volume of MPC with perfect
knowledge

from the percentage difference that while the bias is constant, the percentage difference primarily decreases with the duration
of the rain, and not with the intensity of the rain. We can further see that the decrease in percentage difference corresponds to
the increase in the outflow, depicted for the deterministic MPC in Fig. 10

4.4 Scenario example
In this section, we will focus on a representative simulation and the operational behavior across the system. The corresponding
realization of the rain and the total overflow historic were already shown earlier in Fig. 3 and Fig. 5. From Fig. 11, we can
observe the computational difference given as the cost difference. Here we can observe that the cost of the revised CC-MPC is
always higher than for the deterministic MPC, with revised CC-MPC having a constant additional cost. It can also be observed
that the revised CC-MPC with the highest probability bound has the highest cost, as one would expect.
The tank operational behavior of the system can be observed in Fig. 12, with the tank outflow controllers displayed in Fig. 13.

From the tank volumes, we can once again see that the different MPCs agree on the optimal amount of volume exceeding the
tanks. We can also observe that the revised CC-MPCs find a steady-state volume, which is higher than the steady-state volume
of the deterministic MPC. This can further be observed by the control flows, where we can see that the control flows of both the
deterministic MPC and the revised CC-MPC with 90% probability bound stay below the individual physical control constraint
bounds of the control flows. We can see that the deterministic MPC, in general, operates slightly higher than the revised CC-
MPC, and as expected can operate on the constraint bound. While the graph only depicts individual physical control constraint
bounds, it is still interesting to note how far the steady-state operation of the revised CC-MPC is operating from the constraint
bounds, due to the stochastic restraints. It can also be noted that the difference in operation between the two MPCs, first occurs
after the rain has ended and not before, where rain was forecasted to happen. This indicates the difference is due to cost priority
of the steady-state operation.

5 CONCLUSIONS

In this paper, we have presented a revised formulation of Chance-Constrained MPC (CC-MPC) inspired for application in sewer
networks. The main aspect of the reformulation focuses on preserving feasibility and introducing overflow handling of binary
structures. The mathematical formulation and reasoning behind the revised CC-MPC has been stated and applied to a model of
the Astlingen sewer system for testing the method. A comparison of the performance of the revised CC-MPC and deterministic
MPC was based on simulations with idealized step rain inflows as the perturbation of the Astlingen system. From the results of
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FIGURE 7 Percentage difference in total overflow expe-
rience, between revised CC-MPC and MPC with perfect
knowledge

FIGURE 8 The difference in wastewater volume sent to the
treatment plants, between the revised CC-MPC and the MPC
with perfect knowledge

FIGURE 9 The percentage difference in wastewater volume
sent to the treatment plants, between the revised CC-MPC and
the MPC with perfect knowledge

FIGURE 10 The total outflow volume of the deterministic
MPC with perfect knowledge.
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FIGURE 11 The difference in optimal cost function value between the revised CC-MPC and the MPC with perfect knowledge

the simulations, it was shown that the weir overflow avoidance of the revised formulation provides similar results as the MPC
with perfect forecast. Indicating the revised CC-MPC as an alternative to MPC, when a perfect forecast is not achievable. The
results also showed a trade-off with regards to the worst-case computation time, which in general increased slightly.
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Abstract

In urban drainage systems (UDS), a proven method for reducing the combined sewer overflow (CSO)
pollution is real-time control (RTC) based on model predictive control (MPC). MPC methodologies
for RTC of UDSs in the literature rely on the computation of the optimal control strategies based on
deterministic rain forecast. However, in reality, uncertainties exist in rainfall forecasts which affect
severely accuracy of computing the optimal control strategies. Under this context, this work aims to
focus on the uncertainty associated with the rainfall forecasting and its effects. One option is to use
stochastic information about the rain events in the controller; in the case of using MPC methods, the
class called stochastic MPC is available, including several approaches such as the chance-constrained
MPC method. In this study, we apply stochastic MPC to the UDS using the chance-constrained
method. Moreover, we also compare the operational behavior of both the classical MPC with perfect
forecast and the chance-constrained MPC based on different stochastic scenarios of the rain forecast.
The application and comparison have been based on simulations using a SWMM model of the Astlingen
urban drainage benchmark network.

Keywords: Astlingen benchmark network, CSO, Stochastic MPC, Chance-Constrained, Real-Time
Control,

1. Introduction

Regarding the state-of-the-art during the last
couple of decades, Model Predictive Control (MPC)
[1] has been proved beneficial for the optimal op-
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eration of urban drainage systems (UDS)[2]-[10].
Those studies use different types of modeling and
optimization techniques to compute the best con-
trol actions, based on models and forecasts, which
are subject to uncertainty. However, up to now,
most of the MPC applications of UDS are based
on deterministic rain forecasts without consider-
ing uncertainties, which may risk in introducing
sub-optimal or undesired behaviors to the MPC
solutions [2]-[16]. For a more realistic scenario,
uncertainty has to be considered as a part of the
UDS. The way how the uncertainty is treated by
the control, becomes an important design deci-
sion: using a stochastic approach, or robustly op-
erating on worst-case assumptions.
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While the basic formulation of MPC is deter-
ministic, how to handle uncertainty in MPC has
been researched for many years [17]-[27]. This
has resulted in several different methods for han-
dling uncertainty divided into two categories; the
group of the methods known collectively as robust
MPC[24]-[27], and the group of methods known as
stochastic MPC[17]-[24]. The first group essen-
tially considers the worst-case scenario and op-
erates conservatively so that the solution is opti-
mal for all possible realizations of the uncertainty.
The second group addresses the uncertainty by
using knowledge about the uncertainty, such as
its distribution to only take the statistical likely
scenarios into account for the control.

In this work, we will focus on a method from
the group of stochastic methods known as chance-
constrained MPC (CC-MPC)[17]-[20] to operate
the UDS in order to reduce pollution to the receiv-
ing waters through minimization of the combined
sewer overflows (CSO). Given that the CSOs are
purely dependent on the volumes and flows of the
system; the overflow constraints are intrinsically
feasible and probabilistic insenstive, when CC-
MPC is applied directly. We will therefore use the
revised CC-MPC formulation[17] in this work.

In our previous work[4], an MPC methodology
was implemented and tested on a SWMM model
of the Astlingen urban drainage benchmark net-
work [28], where the goal was to minimize the
CSOs volume of the system, while maximizing the
amount of treated wastewater by the wastewa-
ter treatment plant (WWTP). We obtained good
results from this, in comparison with other real-
time control strategies. In this paper, we return to
the Astlingen urban drainage system for applying
stochastic MPC using chance-constrained method
regarding the uncertainty of rainfall forecast, and
comparing the performance of CC-MPC with un-
certain forecasts against the performance of the
deterministic MPC with a perfect forecast. The
key performance indexes considered are the CSO
volume, and the volume received by the WWTP.

In this paper, the following mathematical no-
tations are used. f indicates the maximum of a
given function f(x), β represents the volume-flow
coefficient[29], and bold font is used to indicate

vectors. The formulation ‖x‖2A = xTAx is the
weighted quadratic norm of x. The superscript
u indicates control variables, superscript w indi-
cates CSO elements, and the superscripts in and
out indicate inflow and outflow related flow, re-
spectively. The letters V and q indicate variables
of volume and flow respectively, while the vari-
ables written with w are inflows from catchments.
The notation ∆T and the subscript k represent
the sampling time of the system and the sample
number respectively.

2. Internal model of the Astlingen Bench-
mark Network

The Astlingen urban drainage network con-
sists of six tanks and a single outflow towards a
WWTP (see Figure 1). In between and upstream
of the tanks there are pipes of varying lengths,
causing flow delays in the system. The system
also consists of four pipes with CSO capabilities.
The control variables of the system are the out-
flow of tanks 2, 3, 4, and 6. The desired opera-
tion of the system is to have the least amount of
CSO as possible, and secondly having the largest
amount of wastewater being sent to the WWTP.
For designing an MPC controller for the system,
an internal model describing the dynamics and
constraints of this system is required, typically a
simplified model of the system capturing the main
dynamic behaviours is used.

From Figure 1, it is clear that the system can
be deduced to be uncontrollable (passive) in the
sections upstream the tanks; therefore, the inter-
nal model will be limited to only covering the
tanks of the system. The internal model is con-
structed with the same modular approach as used
in previous works[4]. In the internal model, the
CSO are treated as optimization variables through
a penalty approach[2]. The elements of the inter-
nal model consist of the following parts: linear
reservoir tanks and pipes with delays that are de-
scribed below.

In CC-MPC, the internal model of the deter-
ministic MPC mentioned above is extended with
a process equation of the variance of the dynam-
ics, while the dynamics are replaced with the ex-
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pectation of the dynamics. The constraints are
reformulated either as the expectation of the con-
straint or as a probabilistic version of the con-
straints. The prior is in general used for equality
constraints, while the latter is used for inequality
constraints.

In this work, the run-off flows (w, covering
runoff and passive flows) generated by forecasted
rainfalls are the disturbance, involving uncertainty.
We will assume this uncertainty to follow a normal
distribution, which is commonly used to interpret
fluctuations in measured or forcasted variables[30,
31]. Then, for uncertainties following a normal
distribution, the probabilistic constraints can be
written deterministically as shown in (1), using
the expectationE{x} and standard deviation σ{x}
of the stochastic variable X, as well as the quantile
function Φ−1(x) of the standard normal distribu-
tion on the desired probability confidence level γ

Pr(X ≤ x) ≥ ⇔ x ≥ E{X}+σ{X}Φ−1(γ) (1)

Furthermore, the only sources of uncertainty con-
sidered in the formulation of the internal model
for the CC-MPC are the initial states of the sys-
tem and the inflow from the run-off sources such
as catchments. It is further assumed that the dif-
ferent sources of uncertainties are independently
distributed, in both spatial and temporal sense.

2.1. Linear Reservoir Tank - passive outflow
The linear reservoir model has either a pas-

sive outflow or a controlled outflow and is based
on mass-balance to describe the dynamics of tank
volume. The volume of the tank Vk is driven by
the inflow qink and the weir overflow qwk . In the
case of passive outflows, the outflow is controlled
by gravity, and is assumed linear with a volume-
flow coefficient[29] defined as β = qout/V .

For the passive outflow case, the volume up-
date and the outflow are defined by:

Vk+1 = (1−∆Tβ)Vk + ∆T (qink − qwk ) (2)

qoutk = βVk (3)

The constraints of the reservoir are based on the
physical constraints with the tank limits given by

0 ≤ (1−∆Tβ)Vk + ∆T (qink − qwk ) ≤ V (4)

0 ≤ qwk (5)

Figure 1: A scheme of the Astlingen Benchmark
Network[28] showing the interconnections between tanks,
pipes and the WWTP, with CSOs coming from the six
tanks and the four pipes noted CSO7 to CSO10. The de-
lay between tanks and/or pipes are noted by x’ in minutes.

2.1.1. CC-MPC formulation

Utilizing the revised CC-MPC formulation[17]
mentioned earlier, the passive reservoir model can
be reformulated, such that the volume update and
the outflow are defined by their expectation and
variance given by

E{Vk+1} = (1−∆Tβ)E{Vk}+ ∆T (E{qink } − qwk )
(6)

E{qoutk } = βE{Vk} (7)

σ2{Vk+1} = (1−∆Tβ)2σ2{Vk}+ ∆T 2σ2{qink }
(8)

σ2{qoutk } = β2σ2{Vk} (9)

The stochastic interpretation of the physical
constraints is given by (10)-(14), utilizing slack
variables for guaranteeing feasibility[17].

The stochastic constraint for the lower limit of
the tank is given by (10), while the upper limit is
given by (11) and (12). The first one is a stochas-
tic constraint for avoiding weir overflow qwk , while
the latter is an expectation constraint defining the
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expected overflow

σ{(1−∆Tβ)Vk + ∆Tqink }Φ−1(γ)− sk ≤
(1−∆Tβ)E{Vk}+ ∆T (E{qink } − qwk )

(10)

(1−∆Tβ)E{Vk}+ ∆TE{qink } ≤
V − σ{(1−∆Tβ)Vk + ∆Tqink }Φ−1(γ) + ck

(11)

(1−∆Tβ)E{Vk}+ ∆T (E{qink } − qwk ) ≤ V
(12)

sk ≤ σ{(1−∆Tβ)Vk + ∆Tqink }Φ−1(γ) (13)

0 ≤ qwk , sk, ck (14)

The limits on the slack variables sk, ck are given
by (13) and (14). For the control of the Astlingen
model, Tank 1 and Tank 5 are considered tanks
with passive outflow.

2.2. Linear Reservoir Tank - Controlled outflow

For a linear reservoir tank with controlled out-
flow, the volume is driven by the inflow qink , the
control flow quk and the weir overflow qwk . The
volume update and outflow are defined by

Vk+1 = Vk + ∆T (qink − quk − qwk ) (15)

qoutk = quk (16)

and the physical limits on the tanks and control
are given by

0 ≤ Vk + ∆T (qink − quk − qwk ) ≤ V (17)

The limits of the control including two upper
limits of the control flow are defined as

0 ≤ quk ≤ qu (18)

quk ≤ βVk (19)

0 ≤ qwk (20)

where the first one establishes the physical limit
of the outflow pipe, and the other one a linear
Bernoulli expression given by the volume-flow co-
efficient β.

2.2.1. CC-MPC formulation

The controlled reservoir model can be formu-
lated for CC-MPC as below, considering that the
volume update and outflow are defined by the ex-
pectation and variance

E{Vk+1} = E{Vk}+ ∆T (E{qink } − quk − qwk )
(21)

E{qoutk } = quk (22)

σ2{Vk+1} = σ2{Vk}+ ∆T 2σ2{qink } (23)

σ2{qoutk } = 0 (24)

Note that the outflow variance is zero, due to the
control.

According to the reformulation[17], the stochas-
tic version of the physical constraints is given by

0 ≤ E{Vk}+ ∆T (E{qink } − quk − qwk ) (25)

E{Vk}+ ∆T (E{qink } − quk ) ≤
V − σ{Vk + ∆Tqink }Φ−1)(γ) + ck

(26)

E{Vk}+ ∆T (E{qink } − quk − qwk ) ≤ V (27)

0 ≤ quk ≤ qu (28)

quk ≤ βE{Vk} − βσ{Vk}Φ−1(γ) + sk (29)

sk ≤ βσ{Vk}Φ−1(γ) (30)

0 ≤ qwk , ck, sk (31)

where the slack variables are limited by (30) and
(31). The constraints (25)-(27) define the upper
and lower limits of the tank, in a similar way as
(10)-(12). The control limits are defined by (28)
and (29).

2.2.2. Decoupling of slack variables

In (25), the lower limit of the tank is given
as expectation constraint, while in (10) it was ex-
pressed in a probabilistic manner. The change is
due to the interconnections of the slack variables
of the upper and lower constraints as follows

sk ≤ ck + V −∆Tqwk (32)

where the upper slack is forced to be active if the
lower slack is too large.

This can lead to an undesired trade-off dur-
ing optimization when the uncertainty term is too
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large. This can be solved by a rescaling of the op-
timization weights or by reformulating the prob-
ability constraint. The latter was used here. The
probability of the tank volume being above zero
(33) can be rewritten

Pr(0 ≤ Vk + ∆T (qink − quk − qwk ))

= Pr(∆Tquk ≤ Vk + ∆T (qink − qwk )) ≥ γ
(33)

by considering that the tank volume Vk are al-
ways below the upper tank limit, given that any
volume above it would have turned into an over-
flow. This leads to the volume only decreases,
when the control flow is used, i.e.

Vk ≤ Vk + ∆T (qink − qwk ) (34)

From here, we can replace (33) with a stricter and
simpler probability as follows

Pr(0 ≤ Vk + ∆T (qink − quk − qwk ))

≥ Pr(∆Tquk ≤ Vk) ≥ γ
(35)

By multiplying with the volume-flow coeffi-
cient β and assuming that β∆T ≤ 1, the prob-
ability constraint can be rewritten even stricter.
The assumption is fair, given that if the oppo-
site is true, then the volume can become negative.
The resulting probability constraint

Pr(β∆Tquk ≤ βVk) ≥ Pr(quk ≤ βVk) ≥ γ (36)

can be recognized as (29), the stochastic version
of one of the upper control limits. This indicates
that if (29) holds so does (36), and therefore (33)
would be a duplicate. For this reason, (33) can
be replaced with the expectation constraint given
in (25), for the inclusion of the lower limit of the
tank.

2.3. Pipe with delays

In the Astlingen network [28], the tanks and
upstream catchments are connected through pipes.
The presence of these pipes introduces delays in
the flows to the tanks from the upstream parts
of the system.The importance of these delays de-
pend on the chosen sampling time. Delays η of
exactly one sampling can be described by

ηk+1,i = qink,i (37)

qoutk,i = ηk,i (38)

Subpart Inflow Subpart Inflow

T1 qoutk,η1:5
η1:5 qoutk,T2

+ qoutk,η1:10
T2 wk,2 η1:10 wk,1 + qoutk,T2

+ qoutk,T4
+ qoutk,η1:15

T3 wk,3 + qoutk,η3:5
η1:15 qoutk,T5

T4 wk,4 η3:5 qoutk,η3:10
T5 wk,5 η3:10 qoutk,η3:15
T6 wk,6 η3:15 qoutk,T6

Table 1: Inflows to the different elements of the systems

where delays of multiple sampling times, can be
constructed as a cascade of single delays

2.3.1. CC-MPC formulation

For the CC-MPC, the delay equations are re-
placed by their expectations

E{ηk+1,i} = E{qink,i} (39)

E{qoutk,i } = E{ηk,i} (40)

In addition, the variance of the delay equations
are given by

σ2{ηk+1,i} = σ2{qink,i} (41)

σ2{qoutk,i } = σ2{ηk,i} (42)

2.4. Constructing the model

The MPC model of Astlingen network can now
be constructed considering the interconnection of
the tanks and delays presented in Figure 1 and
using the models discussed above. The inflow of
each considered subpart of the network are sum-
marized in Table 1. The i-th tank and the delay
flow to it are noted by Ti and ηi:j respectively,
with j being the remaining delay in minutes to
the tank. The outflow of subpart z is written as
qoutk,z , and the i-th run-off inflow to the system is
given by wk,i.

3. MPC design

The design of controllers used in this work for
both MPC and CC-MPC are based on the models
discussed above and the minimization of a cost
that considers the following operational objectives
for the network:

• Maximizing flow to the WWTP

• Minimizing flow to the river/creek

• Minimizing roughness of control
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The first objective can be achieved by a linear neg-
ative cost on the outflow of tank 1, while the sec-
ond objective can be formulated as a linear posi-
tive cost on the total overflow of the system; these
objectives are collectively written as zk, with the
weight Q. The third objective can be written as a
quadratic cost on the change in control flow ∆quk ,
with the diagonal weight R. Due to the overflow
being modeled by a penalty approach, a fourth
objective of minimizing the accumulated overflow
volume Vw

k is introduced, with the weight W.

J = min
qu,qw

ΣN
k=0‖∆qu

k‖2R + QTzk + WTVw
k (43)

subject to

z =ΦConq
u + ΨV0 + Θw + Γqw (44)

Vw
k =Σk

i=0∆Tq
w
i (45)

By using the MPC model over the prediction
horizon N , the cost function of the MPC can be
written as in (43), while the predicted objectives z
and accumulated overflow volumes, given by (44)
and (45), are derived by substitution of the pre-
dicted volumes and delays. The constraints of the
MPC model can similarly be collected into a sin-
gle matrix inequality given by

ΩConq
u + ΩvolV0 + Ωrainw + Ωweirq

w ≤ ΩΩΩ (46)

where the subscripts of the Ω matrix terms relates
to the corresponding terms: Con for the control
term, vol for the initial volume term, rain for the
external inflows term, and weir for the term de-
scribing the CSOs of the system.

The design of the CC-MPC can similarly be
derived using the corresponding model presented
above. The cost of the resulting optimization pro-
gram, appear as the expectation of (43) with the
added linear cost term of the minimization of the
slack variables c and s with weights Wc and Ws

J = min
qu,qw,c,s

E{ΣN
k=0‖∆qu

k‖2R + QTzk

+WTVw
k }+ WT

c c + WT
s s

(47)

The expected objectives are given by

E{z} = ΦConq
u+ΨE{V0}+ΘE{w}+Γqw (48)

T1 T2 T3 T4 T5 T6
1000 5000 5000 5000 5000 10000

Table 2: Cost function weighting of accumulated overflow
volume W, showing a higher cost for upstream elements.

while the accumulated overflow volume is unchanged
from (45).

The matrix inequality of the collected proba-
bilistic constraints are given by

ΩConq
u + ΩvolE{V0}+ ΩrainE{w}+ Ωweirq

w ≤
ΩΩΩ− σ{ΩvolV0 + Ωrainw}Φ−1(γ) + Ωss + Ωcc

(49)

and the variance term

σ2{ΩvolV0 + Ωrainw} = Ξvolσ
2{V0}+ Ξrainσ

2{w}
(50)

The weighting of the different objectives in the
cost functions is done in accordance with the penalty
approach[2, 3]. The priority of the different objec-
tives is given in the following order from highest
to lowest priority:

1. Minimization of accumulated overflow vol-
ume Vw

k

2. Minimization of flow to the river/creek
3. Maximizing flow to the WWTP
4. Minimizing roughness of control

The weightings used in this work are for the ac-
cumulated overflow volume given in Table 2 for
each tank weir. The weights of the remaining ob-
jectives are 2 for the flow to the river/creek, -1 for
the flow to the WWTP, 0.01 for the roughness of
the control, and in the CC-MPC case 10 for the
usage of the slack variables. The weights indi-
cate that the avoidance of the flow to the river is
prioritized twice as high as increasing flow to the
WWTP. The weight on the roughness indicates
the desire for the control to be smooth, but not a
general priority. As seen from the table, the pri-
ority of the accumulated overflow is significantly
higher than the other objectives.

4. Results

The CC-MPC discussed above has been ap-
plied to the SWMM model of the Astlingen bench-
mark network. In order to test the strength of
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the CC-MPC, different types of uncertainty have
been applied. Four different scenarios have been
tested with the first being variations in the prob-
ability confidence level γ, changing from 60% to
100%. The remaining three scenarios are related
with the uncertainty itself and how the MPC re-
lies on its forecast information, where one sce-
nario varies the size of the bound of the uncer-
tainty and the last two varies the expected values
of the inflow predictions deviation from the actual
inflow, through scaled and offset biases. During
each test, only one parameter has been changed.
In the baseline test case, the CC-MPC has been
designed using a 90% probability confidence level,
a 50% uncertainty bound, 0% scaled bias and zero
offset bias. In all the simulations, the uncertainty
has been assumed that it follows a truncated nor-
mal distribution, where the lower bound is zero
and the upper bound is three standard deviations
above the expected disturbance.

4.1. CC-MPC with Various Probability Confidence
Levels γ

The results in terms of CSO volume from vary-
ing the probability confidence level can be ob-
served in Table 3, and in Table 4 for the volume
of treated water in WWTP. From these tables,
we can see the distribution of CSO through the
system. Both the CSO and WWTP volume of
the CC-MPCs are comparatively close to the re-
sults of the deterministic MPC, regardless of the
chosen probability guaranty. Similar conclusions
can be obtained from Figure 2, which presents
volume dynamics for the tanks with controllable
orifices (Tank 2, Tank 3, Tank 4, Tank 6) un-
der CC-MPCs with probability confidence levels
in the range from 60% to 100%. In Figure 2,
there are small deviations for the tank volumes
resulting from CC-MPCs with different probabil-
ity confidence levels. However, a slightly trend
can be observed such that the smaller the proba-
bility confidence levels, the larger volumes at the
peak points, which may reach the maximal stor-
age more easily and generate more CSOs for the
corresponding tanks. This figure only presents
simulation results for day 10 and day 11 in order
to provide a clearer view.

Figure 2: The volumes for the tanks with controllable ori-
fices (Tank 2, Tank 3, Tank 4, Tank 6) for the CC-MPCs
with probability confidence levels γ of 100-60%.

4.2. CC-MPC with Various Uncertainty Bounds

The uncertainty bound describes the interval
the uncertainty can take. For these simulations,
a constant lower bound of zero is used; while the
upper bound is defined as a percentage p of the
actual inflow above the expected rain inflow, see
(51). The standard deviation of the uncertainty is
assumed a third of the actual rain inflow times the
percentage p, while the expectation is assumed
equal to the actual rain. For normal distributions,
this leads to the bound to be defined as

bound = [0, E{q}+ pµ] (51)

corresponding to the 99.7% confidence interval of
a corresponding unbounded distribution, if expec-
tation matches the actual inflow. The CC-MPC
is tested with percentage p bounds of 25%, 50%
and 75%. From Tables 5 and 6, we can observe
the resulting CSO volume and WWTP volume,
respectively. It can be observed that the devia-
tions from the results of the deterministic MPC
are negligible of up to a few hundred cubic meters.
Figure 3 provides detailed dynamic evolution for
the tank volumes of CC-MPC with uncertainty
bounds of 25%, 50% and 75%, confirming con-
clusions obtained from Table 5 showing that the
deviations brought by CC-MPCs are negligible.
On another hand, it can be observed from Figure
3 that, the larger the uncertainty bound is, the
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Tank & MPC CC-MPC CC-MPC CC-MPC CC-MPC CC-MPC
Pipes 100% 90% 80% 70% 60%
T1 93251 93713 92927 93015 93114 93229
T2 15484 15683 15544 15543 15543 15543
T3 34017 34174 34313 34214 34427 34248
T4 4814 4823 4814 4814 4814 4815
T5 15147 15147 15147 15147 15147 15147
T6 37950 37723 37946 37939 37980 37870
P7 4016 4016 4015 4016 4016 4016
P8 16207 16207 16191 16203 16203 16199
P9 4030 4030 4029 4029 4029 4029
P10 4838 4838 4842 4839 4839 4840
River 183754 184585 183778 183774 184086 184020
Creek 45996 45769 45990 45984 46025 45915
Total 229750 230353 229768 229758 230111 229935
R. % -0.4522% -0.0131% -0.0109% -0.1807% -0.1448%
C. % 0.4935% 0.0130% 0.0261% -0.0630% 0.1761%
Tot. % -0.2625% -0.0078% -0.0035% -0.1571% -0.0805%

Table 3: Overflow results of the SWMM simulations with different controllers: MPC, and CC-MPC with the probability
guarantees of 100-60%

MPC CC-MPC CC-MPC CC-MPC CC-MPC CC-MPC
100% 90% 80% 70% 60%

WWTP
Vol.

3772057 3771560 3772159 3772088 3771889 3771795

Imp. % -0.0132% 0.0027% 0.0008% -0.0045% -0.0069%

Table 4: Treated Wastewater results of the SWMM simulations with different controllers: MPC, and CC-MPC with the
probability guarantees of 100-60%

smaller the tank volume is, which may cause less
CSOs to the corresponding tank. This is because
the larger uncertainty bounds make the CC-MPC
generate more conservative orifice operations with
the function of preventing CSOs. This conclu-
sion is also in agreement with the basic deviations
trends for the tanks CSO comparisons in Table 5.

4.3. CC-MPC with Various Scaled Biases

In this section, the percentage bound on the
uncertainty are kept constant, 50%, instead the
expected inflow is introduced as a scaled version
of the actual rain inflow, given by

E{q} = aqactual (52)

Both the CC-MPC and the MPC are tested with
20% and 10% underestimated inflow, perfect fore-
cast, and 10% and 20% overestimated inflow. The
results can be seen in Table 7 and 8, for the CSO

Tank & MPC CC-MPC CC-MPC CC-MPC
Pipes 25% 50% 75%
T1 93251 93067 92927 92795
T2 15484 15543 15544 15544
T3 34017 34267 34313 34067
T4 4814 4814 4814 4814
T5 15147 15147 15147 15147
T6 37950 37939 37946 37673
P7 4016 4016 4015 4016
P8 16207 16203 16191 16207
P9 4030 4029 4029 4030
P10 4838 4839 4842 4838
River 183754 183879 183778 183412
Creek 45996 45984 45990 45718
Total 229750 229864 229768 229130
R. % -0.0680% -0.0131% 0.1861%
C. % 0.0261% 0.0130% 0.6044%
Tot. % -0.0496% -0.0078% 0.2699%

Table 5: Overflow results of the SWMM simulations with
different controllers: MPC and CC-MPC with the uncer-
tainty bound of 25-75%.
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MPC CC-MPC CC-MPC CC-MPC
25% 50% 75%

WWTP
Vol.

3772057 3772086 3772159 3772676

Imp. % 0.0008% 0.0027% 0.0164%

Table 6: Treated Wastewater results of the SWMM sim-
ulations with different controllers: MPC, and CC-MPC
with the uncertainty bound of 25-75%.

Figure 3: The volumes for the tanks with controllable ori-
fices (Tank 2, Tank 3, Tank 4, Tank 6) for the CC-MPC
with the uncertainty bound of 25-75%

Figure 4: The volumes for the controllable tanks under
CC-MPC with different scaled bias.

volume and the WWTP volume, respectively. We
can observe that if the expected inflow is overes-
timated then both types of MPC perform rela-
tively worse as the overestimation increases with
respect to CSO volume, and slight improvement
of WWTP volume. When the inflow is under-
estimated, then the MPC performs significantly
worse than the MPC with perfect forecast, when
regarding CSO but only slightly better for the
WWTP volume. For the CC-MPC, both the to-
tal CSO and WWTP results are relatively close to
the MPC with perfect forecast, but with the draw-
back of the distribution of the CSOs being signif-
icantly worse for the creek. Figure 4 gives detail
volume comparisons for the controllable tanks un-
der CC-MPC with different scaled bias through a
two-day simulation (day 10 and day 11). The dy-
namics of Figure 4 confirm that CC-MPC with
an underestimated inflow performs significantly
worse than that the CC-MPC with overestimated
inflows. The explanation for this conclusion is
also due to less conservative generated by the un-
derestimated inflows. Moreover, the larger scales
tend to have more differences in terms of tank
volumes.

4.4. CC-MPC with Various with Offset Biases

In this section, the bias is changed from a scal-
ing to an offset, see (53). Both the CC-MPC and
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Tank & MPC CC-MPC MPC CC-MPC MPC CC-MPC MPC CC-MPC MPC CC-MPC
Pipes -20% -20% -10% -10% 0% 0% 10% 10% 20% 20%
T1 96776 90004 95187 91355 93251 92927 94419 94728 96383 96615
T2 16727 16801 15957 16023 15484 15544 15384 15383 15317 15316
T3 33182 33298 33842 33857 34017 34313 34239 34065 33928 34304
T4 5938 5960 5191 5206 4814 4814 4730 4729 4714 4713
T5 15147 15147 15147 15147 15147 15147 15147 15147 15147 15147
T6 39252 39082 38341 38296 37950 37946 37790 37770 37908 37836
P7 4015 4015 4016 4015 4016 4015 4015 4016 4015 4015
P8 16195 16190 16208 16195 16207 16191 16188 16203 16188 16191
P9 4029 4029 4030 4029 4030 4029 4028 4029 4028 4029
P10 4841 4843 4837 4841 4838 4842 4843 4839 4843 4842
River 188805 182242 186369 182623 183754 183778 184949 185094 186519 187129
Creek 47297 47126 46387 46341 45996 45990 45834 45815 45952 45880
Total 236102 229368 232756 228964 229750 229768 230782 230909 232470 233008
R. % -2.7488 0.8228 -1.4231 0.6155 -0.0131 -0.6503 -0.7292 -1.5047 -1.8367
C. % -2.8285 -2.4567 -0.8501 -0.7501 0.0130 0.3522 0.3935 0.0957 0.2522
Tot. % -2.7647 0.1663 -1.3084 0.3421 -0.0078 -0.4492 -0.5045 -1.1839 -1.4181

Table 7: Overflow results of the SWMM simulations with different controllers: MPC and CC-MPC under different scaled
bias.

MPC CC-MPC MPC CC-MPC MPC CC-MPC MPC CC-MPC MPC CC-MPC
-20% -20% -10% -10% 0% 0% 10% 10% 20% 20%

WWTP
Vol.

3765554 3772166 3769365 3772992 3772057 3772159 3771015 3770672 3769214 3768942

Imp. % -0.1724 0.0029 -0.0714 0.0248 0.0027 -0.0276 -0.0367 -0.0754 -0.0826

Table 8: Treated Wastewater results of the SWMM simulations with different controllers: MPC, and CC-MPC under
different scaled bias.

the MPC are tested with zero offset and three pos-
itive offsets. The sizes of the offsets are the annual
mean inflow (0.02) times the factors of 1 and 0.25,
and 10 times the dry-weather inflow (0.1)

E{q} = qactual + b (53)

The results of both MPC types can be seen in
Table 9 and 10 for the CSO and WWTP volume,
respectively. We can observe that for both non-
zero offsets, the CSO is significantly worse, with
the offset of 0.1 being even worse. The results
of the WWTP volume are also worse than the
MPC with perfect forecast. Figure 5 gives more
information about the performance of CC-MPC
under different offsets. The differences in tank
volume among CC-MPC using different offsets are
compared. As always, the more volume in the
tank indicates an increased chance of having more
CSOs. From Figure 5, we can conclude that CC-
MPC with 0.1 offset have more tank volume than
that the offsets, which means, CC-MPC with 0.1
offset behaves worse than that of MPC. However,
the CC-MPC with 0.005 and 0.02 did not show a
clear trend.

From the above results, we can infer that the

Figure 5: The volumes for the controllable tanks under
CC-MPC using different offsets.
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Tank & MPC CC-MPC MPC CC-MPC MPC CC-MPC MPC CC-MPC
Pipes 0 0.005 0.005 0.02 0.02 0.1 0.1

T1 93251 92927 93655 93856 96472 96590 131407 130211
T2 15484 15544 15387 15450 15453 15452 15847 15511
T3 34017 34313 33975 34322 34086 34485 36811 36548
T4 4814 4814 4728 4728 4639 4644 4465 4465
T5 15147 15147 15147 15147 15147 15147 15147 15147
T6 37950 37946 37916 37961 37877 37780 37907 37763

P7 4016 4015 4015 4015 4015 4016 4016 4016
P8 16207 16191 16188 16193 16188 16203 16203 16203
P9 4030 4029 4028 4029 4028 4029 4029 4029
P10 4838 4842 4843 4842 4843 4839 4839 4839

River 183754 183778 183922 184536 186828 187360 224718 222925
Creek 45996 45990 45959 46005 45920 45825 45952 45808

Total 229750 229768 229881 230541 232748 233185 270670 268733

R. % -0.0131 -0.0914 -0.4256 -1.6729 -1.9624 -22.2928 -21.3171
C. % 0.0130 0.0804 -0.0196 0.1652 0.3718 0.0957 0.4087

Tot. % -0.0078 -0.0570 -0.3443 -1.3049 -1.4951 -17.8107 -16.9676

Table 9: Overflow results of the SWMM simulations with different controllers: MPC and CC-MPC under different off-set
biases.

MPC CC-MPC MPC CC-MPC MPC CC-MPC MPC CC-MPC
0 0.005 0.005 0.02 0.02 0.1 0.1

WWTP
Vol.

3772057 3772159 3771978 3771575 3768823 3768643 3731689 3733651

Imp. % 0.0027 -0.0021 0.0001 -0.0857 -0.0905 -1.0702 -1.0182

Table 10: Treated Wastewater results of the SWMM simulations with different controllers: MPC, and CC-MPC under
different off-set biases.

CC-MPC is capable of handling different type of
uncertainties, and for those type of uncertainties,
it performs similarly to the deterministic MPC.
We can further see that the CC-MPC, while not
performing that well with constant offset biases,
these biases were also outside the uncertainty bound,
practically making the CC-MPC as blind as the
deterministic MPC. In real-world scenarios, the
uncertainty of the inflow is not exactly as the one
used here. Instead the uncertainty bound would
vary across the prediction horizon, as would do
the biases of the expected inflow.

5. Conclusion

A stochastic MPC has been applied to a hy-
drodynamic SWMM model of the Astlingen ur-
ban drainage benchmark network, using a chance-
constraint formulation of MPC. A comparison study

of the application of both CC-MPC and MPC has
been done for several scenarios and types of un-
certainties in forecasts, involving both biases in
the forecast to different sizes of the uncertainty.
Based on the simulations, we can conclude that
only the uncertainty regarding biases has an effect
on the performance of CC-MPC. Furthermore, it
could be observed that the performance of both
type of MPC considered deteriorate similarly with
respect to CSO volume, when the forecast overes-
timates the rain inflow. However, when the fore-
cast underestimates the rain inflow, then the CC-
MPC performs similarly to the ideal case, while
the performances of deterministic MPC deterio-
rates.
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aDepartment of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens
Plads 324, 2800 Kongens Lyngby, Denmark
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Abstract

Model Predictive Control (MPC) has become a mature approach being researched and applied in
many different domains, such as the field of urban drainage considered as application case study in this
paper. Within the MPC applications, an important aspect to deal with is the presence of uncertainty
in models and/or disturbances. Two families of MPC exist, the robust MPCs and stochastic MPCs,
which considers the uncertainties during the optimization process, each with their own approach to
model uncertainty. These two families of approaches to handle uncertainty have both similarities and
differences depending on which specific methods are considered. But, how different and similar the
families really are, is still a question to be addressed. Under this consideration, in this paper, we
discuss the two MPC families through comparing tube-based and chance constrained MPC approaches
because of some similiraties in the way of dealing with uncertainty bounds. The analysis has been done
by comparing their general mathematical methods, with a focus on their constraint formulations for
specific methods. Afterwards, the performance has been compared through optimising the combined
sewer overflow problems in urban drainage systems using the Astlingen model. The obtained results
confirm great similarity in their general formulations and concepts, with some differences in the involved
mathematical computations. Furthermore, the performance comparison results indicates which MPC
method best suited for different type of considered uncertainty.
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1. Introduction

Model Predictive Control (MPC) has, since its
conception[1], been proved as an effective method
for multivariable constrained control problems, due
to its capacity of handling multi-input and multi-
output control systems under certain performances
and operational objectives. In this time, MPC has
been matured to a well-researched field of study,
covering from the original linear-quadratic prob-
lems to nonlinear and mixed-integer problems[1]-
[35]. A research field within MPC is the handling
of the presence of uncertainty in the controlled

Preprint submitted to Control Engineering Practice September 10, 2020



system[18]-[35]. Depending on the approach to
handle uncertainty, the MPC reasearch can be
grouped into two general families of methods; the
robust MPCs and the stochastic MPCs.

The robust MPCs utilize knowledge about the
set that bounds the uncertainty realizations, and
consider the worst-case of the constraints and oc-
casionally the cost function[21, 28]-[35]. There are
plenty of methods on how to design robust MPC.
The easiest way relies on exploiting the inherent
robustness of MPC, where the open-loop control
action is determined without explicitly consider-
ing uncertainties affecting the system [4, 5]. How-
ever, due to the possible reduction of the control
performance and to guarantee the feasibiliy and
closed-loop stability, feedback control can be de-
signed to explicitly consider uncertainty[30, 31].
With this aim, min-max MPC is a standard ap-
proach to include robustness in MPC. But, it typ-
ically leads to quite conservative results because
it considers all possible (worst-case) disturbance
realizations[35] and the computational load is, in
general, also intractable[32]. In contrast to these
approaches, a type of MPC design, which can deal
with robustness with conservatism and reasonable
computational load is required. The tube-based
MPC (T-MPC)[21, 28, 29] which bounds the un-
certainty deviation through a sequence of invari-
ant sets (so called tubes) in the state space can
meet these requirements[33, 34]. This is the main
motivation of considering T-MPC in this paper.

On the other hand, considering the fact that
system uncertainties usually have probabilistic char-
acteristics, stochastic MPC which takes into ac-
count the probabilistic nature of the uncertainties
in the controller design[20] is helpful. Stochastic
MPC utilizes the knowledge about the stochastic
distribution of the uncertainty to ensure the com-
puted control satisfies the constraints for the most
likely realizations [20]-[27]. Stochastic MPC in-
cludes many approaches, from the scenario-based
MPC[27] approximating the robust approach to
the chance constrained MPC (CC-MPC), whose
probabilistic constraint tightenings consider viola-
tion probability under a chosen confidence level.
Given that the CC-MPC approach has been used
successfully in different domains with promising

results[18, 24]-[26], it will therefore be the stochas-
tic approach considered in this paper.

The T- and CC-MPC present some similiraties
in their handling of the uncertainty. Both con-
sider the uncertainty restricted to some set of val-
ues, but requiring different type of knowledge (in-
terval vs probabilistic distribution). The question
is then how different and similar the approaches
really are? This paper contributes to discuss this
question through comparisons of the two meth-
ods, the T- and CC-MPC, theoretically and prac-
tically:

1. A general comparison of their mathematical
formulations is provided to show what are
their strengths and weakness, respectively.

2. A comparison of the constraint formulations
is provided, in the context of two specific
methods; discussing how uncertainty propa-
gates and is included in the constraints, and
how the methods relates to each other.

3. A mathematical comparison of a proposed
chanced-constrained T-MPC method with
T-MPC and CC-MPC is presented.

4. A performance comparison of the two spe-
cific MPC methods in solving the combined
sewer overflow (CSO) problems in an urban
drainage system is included. A well-known
benchmark, the Astlingen urban drainage
network, is used as case study[17, 36], sim-
ulated using a SWMM1 simulator.

5. A comparative discussion is also given to
clarify which MPC approach is best suited
under different type of considered uncertainty.

1.1. Nomenclature

In this paper, the following notations are used.
Vectors are denoted by bold font, while the di-
mension of a function or variable f is given by nf .
The minimum and maximum of a given function
f(x) are noted by f and f respectively, while the
sampling time and sample number is denoted by
∆T and the subscript k, respectively. A stochas-
tic variable X following a distribution F is writ-
ten by X ∼ F , while its expectation is given by

1EPA’s Storm Water Manegement Model
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E{X}. The probablity function for the value of x
is denoted by Pr{X ≤ x}, likewise the cumulative
distribution function (CDF) is given by ΦX{x}.

2. Tube-based MPC and Chance Constrained
MPC - generic formulation

Before considering the general aspects of T-
MPC and CC-MPC, let us begin with definining a
generic formulation of MPC for the deterministic
case. MPC consists of a minimization of a cost
l (typically, linear or quadratic) defined over the
prediction horizon Hp subject to the constraints
consisting of a process function f : Rnx+nu+nw →
Rnx and an inquality constraint function g :
Rnx+nu+nw → Rng , as given by

J = min
u
l(x,u,w) (1)

s.t.

xi+1|k = f(xi|k,ui|k,wi|k) (2)

g(xi|k,ui|k,wi|k) ≤ g, ∀i ≤ Hp (3)

where x is the predicted states, u is the manipu-
lated control, and w is the disturbance across the
prediction horizon from time k, while x0|k is the
known initial state at time k.

In its general formulation, T-MPC is similar
to other robust MPC methods and formulated as
seen in (4) or (5). For robust MPCs, the uncer-
tainty in the disturbances w is only considered
to be bounded within a known set W ⊆ Rnw×Hp ,
considering the worst-case effect on the systems.
The given formulations is for two approaches to
uncertainties in the cost function, worst-case(left)
and nominal (right)[21]. The cost in the prior case
is defined by the maximization of the cost with re-
spect to the disturbance w. In the latter case, the
nominal cost is intepreted as the cost based on the
expected disturbance and the nominal states xnom

J = min
u

max
w∈W

l(x,u,w) (4)

s.t.

xi+1|k = f(xi|k,ui|k,wi|k)

max
w0|k,...wi|k∈W0|k×···×Wi|k

g(xi|k,ui|k,wi|k) ≤ g

J = min
u
l(xnom,u, E{w}) (5)

s.t.

xi+1|k = f(xi|k,ui|k,wi|k)

max
w0|k,...wi|k∈W0|k×···×Wi|k

g(xi|k,ui|k,wi|k) ≤ g

where the maximization of the constraints, can
be intepreted both as a ng maximizations of the
individual constraints or as maximizations over
several constraints. The set W bounding the dis-
turbance w is a tube consisting of temporal sets
Wi|k following:

Wi|k = {wi|k : wi|k ≤ wi|k ≤ wi|k} ⊆ Rnw (6)

each corresponding to the disturbances wi|k at the
i-th prediction.

On the other hand, where the robust MPCs
were reliant on knowing the workspace of dis-
turbances, the CC-MPC approach is based on
stochastic knowledge of the uncertainty w that
assumes a known probability distribution, w ∼ F .
In the formulation of CC-MPC, the cost func-
tion is typically given as the expected cost[21, 24],
while the constraint set is expressed as probabilis-
tic constraints, as given below

J = min
u

E{l(x,u,w)} (7)

s.t.

xi+1|k = f(xi|k,ui|k,wi|k) (8)

Pr{g(xi|k,ui|k,wi|k) ≤ ḡ} ≥ γ (9)

⇐⇒ Φ−1
g(xi|k,ui|k,wi|k){γ} ≤ ḡ (10)

where γ is the chosen confidence level, defining
how robust the solution should be with respect to
the stochastic nature of the disturbances. Typi-
cally, the probabilistic constraints are defined in
terms of their quantile function as is shown in
(10). As with the maximization constraints be-
fore, the probabilistic constraints can be intepreted
as probabilities on the individual constraints or as
joint probability on the group of constraints.

From the general formulations given above,
the different ways to treat uncertainty in both
MPC approaches can clearly be seen. In case of
the T-MPC, each possible realization of the dis-
turbances is consindered, resulting in very con-
servative solutions (worst-case). For most cases,
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this also makes the T-MPC very dependent on
the existence of finite bounds on the uncertainty
set. This dependency can be illustrated as the
disturbance term either having a natural bound
independent of the disturbance as e.g. a periodic
behavior modelled as sin(w) as seen in (11), or
being unbounded in nature such as e.g. a linear
model, where the bound is needed to do maxi-
mization.

max
w

sin(w) = 1 (11)

In constrast, the CC-MPC fundamentally re-
lies on the assumption of the distribution of the
disturbances being a known quantity. For most
scenarios of constraint functions and uncertainty
distributions, the probabilistic constraints increase
the computational difficulties of the optimization,
through the computation of the distributions of
the constraints, and their’s corresponding quan-
tile functions.

Regarding the cost formulations, it can be seen
that their complexity compared to each other, de-
pends on the order of the cost l(·). For example, if
the cost is linear, then the nominal and expected
are identical, while for quadratic they are equiva-
lent, if the variance is independet of optimization,
and likewise for more nonlinear costs the expecta-
tion becomes more complex, which is similar for
maximization.

These drawbacks can also be interpreted as
benefits of the tube-based MPC that involves sim-
pler computations without requiring the propa-
gation of distributions. However, the CC-MPC
presents the benefits of handling unbounded un-
certainties and having a tunable degree of conser-
vatism, through the chosen confidence level γ of
the probabilistic constraint.

The T-MPC’s reliance on the entire bounding
set of the disturbances, can in stochastic terms
of the CC-MPC be intepredet as assuming a uni-
form distribution of the disturbances within its
boundaries, where all realization is just as likely
and important for consideration. In the context
of a probilistic constraint, this would correspond
to a confidense level γ of 1.

3. Tube-based MPC and Chance Constrained
MPC - Constraints Comparison

From the discussion of the general formula-
tion given above, it is clear that the uncertainty
is treated differently in the two different types of
MPC. In order to understand how differently the
treatment of the uncertainty really is, a mathe-
matical comparison of the constraint formulation
is discussed in this section. For simplicity, we will
consider a linear system with additive uncertainty
as given below, and we will consider the maxi-
mization and probabilistic constraints being de-
fined in the form of individual scalar constraints

f(xi|k,ui|k,wi|k) = Axi|k +Bui|k +Gwi|k (12)

gj(xi|k,ui|k,wi|k) = Ψi,jxi|k + Γi,jui|k

+ Θi,jw(i|k) ≤ φi,j

(13)

where

A ∈ Rnx×nx , B ∈ Rnx×nu , G ∈ Rnx×nd (14)

and

Ψi,j ∈ R1×nx ,Γi,j ∈ R1×nu ,Θi,j ∈ R1×nd , φi,j ∈ R
(15)

The i-th step prediction of the system states is
given by (12), while the j-th scalar constraint at
the i-th step is given by (13). By propagation of
(12), the i-th predicted states can be formulated
in terms of the initial states, as follows

xi|k = Aix0|k +
i−1∑

j=0

Ai−1−jBuj|k +
i−1∑

j=0

Ai−1−jGwj|k

(16)

And through substitution of (16) into (13), the
propagated version of the j-th constraint becomes

Ψi,jA
ix0|k + Ψi,j

i−1∑

j=0

Ai−1−jBuj|k + Γi,jui|k

+Ψi,j

i−1∑

j=0

Ai−1−jGwj|k + Θi,jwi|k ≤ φi,j

(17)
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From the constraint given by (17), we can formu-
late a compact notation of the predicted distur-
bances and control variables as follows

Wi|k = [wT
0|k wT

1|k . . . wT
i|k]T (18)

Ui|k = [uT
0|k uT

1|k . . . uT
i|k]T (19)

and with the corresponding constraint terms be-
ing

Θ̃i,j = [Ψi,jA
i−1G Ψi,jA

i−2G . . .Ψi,jG Θi,j]
(20)

Γ̃i,j = [Ψi,jA
i−1B Ψi,jA

i−2B . . .Ψi,jB Γi,j]
(21)

The j-th constraint can then be stated in the fol-
lowing compact notation for the i-th prediction

Ψi,jA
ix0|k + Γ̃i,jUi|k + Θ̃i,jWi|k ≤ φi,j (22)

3.1. Tube-Based MPC

For T-MPC, there are many approaches on
how to define the tube approach used in solv-
ing the maximization of the constraints[21]. For
the comparison given here, we will use a tube
approach[29] based on zonotopes[37]. We will con-
sider the initial state x0|k and the disturbances
Wi|k of the system as the uncertain terms in the
constraints. Let us define them in terms of an
expected known part (x̃0|k,W̃i|k) and a unknown
uncertain part (∆x0|k,∆Wi|k). The unkown part
is assumed symmetrically bounded, and the ex-
pected part is defined as the mean of the bounds
on the uncertainty, as seen in (23) and (24), such
that the bounding set of the unknown part corre-
sponds to a translation of the original bounding
set. We can collect these terms in a general uncer-
tainty Zi|k for the i-th prediction, and formulate
it as a zonotope as shown in (25)

Wi|k =W̃i|k + ∆Wi|k, W̃i|k =
1

2
(Wi|k + Wi|k),

∆Wi|k ∈ [−∆Wi|k,∆Wi|k] (23)

x0|k = x̃0|k+∆x0|k, x̃0|k =
1

2
(x0|k + x0|k),

∆x0|k ∈ [−∆x0|k,∆x0|k]
(24)

Zi|k = [xT
0|k,W

T
i|k]T , ∆Zi|k ∈ 0⊕Hz,izd,i (25)

where: Hz,i is a diagonal matrix defined as

Hz,i = diag(∆x0|k,∆w0|k, . . . ,∆wi|k) (26)

and
zd,i ∈ Bnx+(i+1)×nd (27)

where B = [−1, 1], ⊕ denotes the Minkowski sum
and the 0-vector is the center of the zonotope.
With the uncertainty zonotope ∆Zi|k and expected

part Z̃i|k defined, the j-th constraint can be writ-
ten in terms of the uncertainty Zi|k

[Ψi,jA
i Θ̃i,j]Z̃i|k + [Ψi,jA

i Θ̃i,j]∆Zi|k

+ Γ̃i,jUi|k ≤ φi,j

(28)

The propagated uncertainty in the constraint can
then be formulated as a zonotope ∆i,j with the
below definition and reformulated constraint

∆i,j = 0⊕ [Ψi,jA
i Θ̃i,j]Hz,izd,i (29)

[Ψi,jA
i Θ̃i,j]Z̃i|k + Γ̃i,jUi|k ≤ φi,j −∆i,j (30)

With the zonotopes of the constraints defined, the
constriction of the T-MPC constraints can be for-
mulated. Using the 1-norm to compute the inter-
val hull of the zonotope[29], the largest possible
value of ∆i,j can be found, as follows

∆i,j = ‖[Ψi,jA
i Θ̃i,j]Hz,i‖1 i ≥ 0 (31)

3.2. Chance Constrained MPC

Following the CC-MPC definition in (7)-(10),
the j-th constraint of the i-th prediction is given
below as the probability of the constraint being
true

Pr{Ψi,jxi|k + Γi,jui|k + Θi,jwi|k ≤ φi,j} ≥ γi,j
(32)

Similarly, to the T-MPC, the constraint can be
rewritten using the proposed propagation in (16).
If we use the same notation as in (16)-(21), the
constraint can be rewritten as

Pr{Ψi,jA
i−1x0|k+Γ̃i,jUi|k+Θ̃i,jWi|k ≤ φi,j} ≥ γi,j

(33)
or in terms of the uncertainty Zi|k

Pr{[Ψi,jA
i−1 Θ̃i,j]Zi|k ≤ φi,j − Γ̃i,jUi|k} ≥ γi,j

(34)
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In CC-MPC, as mentioned, it is assumed that the
uncertainties follow some stochastic distribution
F , defined by the parameters θ, in the intervals
between a and b

Zi|k ∼ Fb
a (θ), a ≤ b (35)

where the interval of the distribution can be open
or not (a and/or b or neither are infinite). From
(34), we can reformulate the probabilistic con-
straint in a deterministic way by using the quan-
tile function

Γ̃i,jUi|k ≤ φi,j − Φ−1

[Ψi,jAi−1 Θ̃i,j ]Zi|k
{γi,j} (36)

where the quantile function can be considered to
be constricting the constraint.

As discussed earlier, the approach used in T-
MPC assumes the disturbances are uniformly dis-
tributed within the intervals between a and b, as

Zi|k ∼ U(a,b),

(a,b) = (Z̃i|k −∆Zi|k, Z̃i|k + ∆Zi|k)
(37)

Based on the above analysis of the constraint
formulations, we can formulate a relation between
the constraint constrictions of the two types of
MPCs, as given by Theorem 1

Theorem 1. For the zonotope-based T-MPC, let
us consider the expected part Z̃i|k of the distur-
bance as part of the constraint constriction for the
T-MPC, and the constraint’s distribution used by
the CC-MPC to be upper bounded, then the con-
straint constriction of the two MPCs is related by

Φ−1

[Ψi,jAi−1 Θ̃i,j ]Zi|k
{γi,j} ≤ [Ψi,jA

i−1 Θ̃i,j]Z̃i|k

+ ‖[Ψi,jA
i−1 Θ̃i,j]Hz,i‖1 ∀γi,j ∈ [0, 1] (38)

with the two sides being identical at γi,j = 1.

Proof 1. Considering the fact that for any upper
bounded stochastic variable X of some distribu-
tion F b

a , the quantile with a lower confidence level
γ1 is smaller that the quantile with a higher con-
fidence level γ2, it naturally follows that a confi-
dence level of 1 corresponds to the upper bound of

the variable.

X ∼F b
a(θθθ), a ≤ X ≤ b (39)

Φ−1
X {γ1} ≤Φ−1

X {γ2} ≤ Φ−1
X {1} = b,

0 ≤ γ1 ≤ γ2 ≤ 1
(40)

Given that the constraintment of the right hand
side of (38) corresponds to the upper bound of the
constraint’s uncertainty, the right hand side are
therefore, equal or larger than the quantile func-
tion of any distribution for the given variable.

Although the approaches for handling uncer-
tainty appear very different at first glance as we
discussed in Section 2, the propagation of the un-
certainty through the system is the same for both
types of MPCs. Moreover, we have realized that
the T-MPC’s approach corresponds to a general
assumption of a bounded uniform distribution,
while the CC-MPC assumes the exact distribu-
tion to be known. This difference in assumptions
leads to both the more conservative constriction
of the tube-based MPC, but also the more compu-
tationally complex optimization of the CC-MPC,
depending on the exact distribution.

4. Tube-based MPC with
Chance Constrained bounds

For any given constraint set and uncertainty
distribution, bounded or not, it would be benefi-
cial if the chosen MPC could be simple to com-
pute, while also providing less conservative solu-
tions than worst-case. As discussed earlier, the
T-MPC is simpler to compute but has the main
issue of being worst-case conservative and not be-
ing defined for unbounded uncertainties, while the
CC-MPC quickly becomes hard to compute, but
handles unbounded distributions at an abritary
level of conservatism.

Combining the T-MPC with the probabilis-
tic approach of CC-MPC can be done in several
ways[28] to deal with the issues of both MPC
types. A simple approach to formulating a prob-
abilistic bounded T-MPC is defining the utilized
bounds (w,w) on the uncertainty as scalar or joint
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probabilities of the disturbances with a chosen cri-
terion γ, by assuming a distribution for each dis-
turbance wi ∼ Fi (uniform, normal, etc.)

Pr{w ≥ w} ≥ γ (41)

Pr{w ≤ w} ≥ γ (42)

This provides the minimum upper bound and the
maximum lower bound needed to cover the dis-
turbances with probability γ:

w ≥ Φ−1
w {γ} (43)

w ≤ −Φ−1
−w{γ} (44)

This approach allows for the knowledge of the un-
certainty distribution to be incorporated, but it
can also be used with only knowledge of bounds
through an assumption of uniform distribution.
Furthermore, it does not propagate the distribu-
tion through the dynamics to the constraint, there-
fore keeping the computation of the optimum as
simple as the T-MPC discussed earlier. The gen-
eral formulation of the chance constrained bounded
robust MPC approach can then be written as be-
low for the worst-case cost

J = min
u

max
w

l(x,u,w) (45)

s.t.

xi+1|k = f(xi|k,ui|k,wi|k) (46)

max
w

g(u,w) ≤ ḡ (47)

− Φ−1
−w{γ} ≤ w ≤ Φ−1

w {γ} (48)

The solution of the CC bound T-MPC is less con-
servative than the original T-MPC when the origi-
nal maximization of the constraint corresponds to
a disturbance w outside the stochastic bounds;
otherwise, the solution is the same as the origi-
nal T-MPC. In comparison to the CC-MPC, the
formulation only utilizes the knowledge of the dis-
tribution on the bounds, while the CC-MPC cov-
ers the entire spectrum of the constraints. This
leads to simpler computations in comparison to
the CC-MPC.

With regards to the conservatism and CC-MPC,
it is generally hard to predict which method is
most conservative; due to the dependency of the

quantile function on the constraint function. Un-
der some conditions, it is given that the CC-MPC
is the least conservative for the chosen probabil-
ity criterion. For example, if the constriction of
the CC-MPC corresponds to the constraint with
a disturbance realization wΦ; lying in the uncer-
tainty set defined by (48) as given below, then it
is clear that the CC bound T-MPC has consid-
ered the given realization, and therefore is more
or equally conservative

Φ−1
g(u,w){γ} ≡ g(u,wΦ) (49)

−Φ−1
−w ≤ wΦ ≤ Φ−1

w (50)

For some constraint functions, this can be shown
to be true in general. An example of such is given
below for joint probabilities, and the set of invert-
ible constraint functions (linear and nonlinear).

Example 1. Consider the set of fully invertible
constraint functions g(u,w) ∈ Rn on the domain
of w ∈Wm as described by

g(u,w) = y (51)

g−1(u, g(u,w)) = w ∈Ww,∀u ∈ U (52)

g(u, g−1(u,y)) = y, ∀u ∈ U (53)

with the relations to inequalities and inversion given
by

g(u,w) ≤ g⇔a1w ≤ a2g
−1(u, g), ∃u ∈ U (54)

a1,i,j, a2,i,j =





0 i 6= j

1

−1

(55)

where the parameters ak,i,j depend on the specific
constraint function, and are introduced to preserve
the used inequality notation.

Let us define the probability constraint of the
CC-MPC as a joint probability across the con-
straints, and reformulate it accourdingly to (54):

Pr{g(u,w) ≤ g} = Pr{a1w ≤ a2g
−1(u, g)} ≥ γ

(56)

and formulated using the appropriate quantile func-
tion for the joint probability as

a2g
−1(u, g) ≥ Φ−1

a1w
{γ} (57)

7



Given that a2
1 = I, we can inject a2

1 into the right-
hand side of (57), obtaining the same form as in
(54). We can now reverse the invertion of the
inequality constraint from (56)

a1(a1Φ−1
a1w
{γ}) ≤ a2g

−1(u, g)

⇐⇒ g(u, a1Φ−1
a1w
{γ}) ≤ g

(58)

Depending on whether the elements of a1 is pos-
itive or negative, we can see that the obtained
constraints corresponds to a disturbance realiza-
tion wΦ equal to the upper or lower bounds of the
disturbance workspace in the probabilistic T-MPC
(47)-(48). This case correponds to an example in
which (49)-(50) are true.

The formulation of the constriction of CC-MPC
given in (58) can in general be considered to be
utilized in standard CC-MPC, as a way to ease
the computation of the quantile function of joint
probabilities, when the constraint function is in-
vertible.

5. Performance Comparison:
Simulation Setup

In the previous sections, we have compared
and discussed the mathematical differences and
similarities of T-MPC and CC-MPC, even consid-
ering possible combinations of the two methods
approaches to uncertainty, for fixing drawbacks.
While these discussions have all been theoreti-
cal, we will in the next few sections focus on a
more practical oriented performance comparison,
based on simulations. In particular, the T-MPC
approach and CC-MPC, discussed in Section 3,
will be compared to the performance achieved by
means of an appropriate standard MPC without
uncertainty (perfect MPC).

5.1. Urban Drainage

Urban drainage system is a critical infrastruc-
ture in modern cities, which carries wastewater
and rainwater to be treated in the wastewater
treatment plant (WWTP) before releasing them
into the natural environment. However, when
the combined water is out of the capacity of the
system during storm weather, CSO occurs and

Figure 1: A schematic of the Astlingen system[36] showing
the interconnections between tanks, CSO pipes and the
WWTP, as well as pipe delays x’ in minutes. The CSOs
the creek receives comes from the green section, while the
river receives CSO from the blue section.

brings serious pollution to the water ecosystem.
MPC has been used as an important type of con-
trol approach to optimize CSO and protect the
environment[38].

5.2. Case Study System

As application case study, we will utilize the
Astlingen urban drainage system [36] in a setup
of pySWMM and Matlab, where the controller is
defined in Matlab, while the simulator is given in
SWMM with connection to Matlab through the
pySWMM Python package [17]. The Astlingen
is a combined sewer network, carrying wastewa-
ter and rain together to a wastewater treatment
plant (WWTP) as seen in Figure 1. It contains
weir structures where CSOs may occur, located in
water detentions (tank 1-6) and diversion struc-
tures (CSO 7-10). The system consists of two re-
ceiving bodies for CSO, a creek and a river, where
the latter is the preferred receiver. It is also driven
by the unknown rain inflow as disturbances.

For the design of the MPCs, the linear model
of the Astlingen discussed in [18] is used. Further-
more, the uncertainty utilized in the simulations
are normal distributed; the quantile functions of
the constraints can therefore be written as

Φ−1
gj(u,w){γ} = E{gj(xi|k,ui|k,wi|k)}

+σ{gj(xi|k,ui|k,wi|k)}Φ−1{γ}
(59)

where Φ−1{γ} is the quantile of the standard nor-
mal distribution.
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5.3. Constraint Formulation

When CC-MPC is applied directly, the pres-
ence of uncertainty in urban drainage systems gives
issues with CSO definition and feasibility as dis-
cussed in [18,19], for the given case considering
the needed revision of CC-MPC formulation. These
issues are identical for both T-MPC and CC-MPC
given they originates from the presence of the con-
straint constrictions. We can, therefore, use the
same revision as was introduced for the CC-MPC
on the T-MPC. As a simple example from the
considered case study system, let us consider the
constraints of a tank with controlled output

Vi+1|k = Vi|k + ∆T (qini|k − qui|k − qCSO
i|k ) (60)

0 ≤ Vi|k + ∆T (qini|k − qui|k − qCSO
i|k ) ≤ V (61)

where the upper constraint defines the CSO of the
tank, qCSO

i|k for the i-th prediction.

If we consider the volume Vi|k and inflow qini|k to
be uncertain, and the controlled outflow qui|k and

CSO flow qCSO
i|k to be optimization variables, then

the robust constraints become

max(−Vi|k −∆Tqini|k) ≤ −∆T (qui|k + qCSO
i|k ) (62)

max(Vi|k + ∆Tqini|k)−∆T (qui|k + qCSO
i|k ) ≤ V (63)

for the direct application of T-MPC. If we intro-
duce the mentioned revisions from [19], then (63)
can be divided into

E{Vi|k + ∆Tqini|k} −∆T (qui|k + qCSO
i|k ) ≤ V (64)

max(Vi|k + ∆Tqini|k)−∆Tqui|k − ci|k ≤ V (65)

The first being a constraint defining the CSO flows,
based on some expected value of the uncertainty,
while the latter formulates the robustness of avoid-
ing CSO. The robust constraint introduces an un-
bound slack variable c for guaranteeing feasibility.
For the lower constraint in (62), the revised ver-
sion can be obtained by introducing a bounded
slack variable s for the feasibility issue

max(−Vi|k−∆Tqini|k)− si|k ≤ −∆T (qui|k + qCSO
i|k )

(66)

si|k ≤ ‖∆Vi|k + ∆T∆qini|kk‖1 (67)

0 ≤ si|k, ci|k (68)

where the upper bound on the slack variable s
is set to equal to the constriction as discussed in
(31)

For the simulations of T-MPC, the expected
value in (64) is defined as the mean of the bounds
of the uncertainty.

5.4. Cost formulation

In the simulations, the different MPCs will op-
erate on the same basis cost function, with the
only difference being the cost of slacks introduced
by the revisions, discussed above. The cost func-
tion is the quadratic-linear program described in
[18],where the CSO flows are detimined by the
approximation through penalty costs[12, 14, 15]
and only considering the inflow uncertainties. The
terms in cost function are a quadratic cost given
on the change of control flow. While linear cost
is used for maximizing outflow to WWTP and
minimizing CSO flow, with the latter ones giving
higher priority. For the T-MPC, the outflow term
of the cost is formulated as the maximum cost,
while for the CC-MPC it is the expected cost.

6. Performance Comparison:
Simulation Results

The simulations were performed using a one-
year dataset. In the simulations, a prediction
horizon of a 100 min was utilized with a sampling
time of 5 min for all MPC types. In the simula-
tions, the CC-MPC is utilized with a confidence
level γ of 90% for all probabilistic constraints.

In each set of simulations, a single parameter
was changed in order to compare the sensitivity
between the controllers towards the given param-
eter, performance-wise. The parameters consid-
ered are the bound on the uncertainty, scaling
bias of the expected disturbance and offset bias
of the expected disturbance. For each parameter,
a base value was chosen to be utilized in the sim-
ulation, when the parameter was not varied. The
base values were chosen as 50% for the bound on
uncertainty, 0% for the scaling bias and zero for
the offset bias.
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Table 1: Overflow results of the SWMM simulations with different Controllers: MPC and CC- and tube-based MPC
with the uncertainty bound of 25-75%.

Tank
&
Pipes

MPC
CC-
MPC
25%

T-
MPC
25%

CC-
MPC
50%

T-
MPC
50%

CC-
MPC
75%

T-
MPC
75%

T1 93251 93067 85742 92927 89509 92795 92766
T2 15484 15543 18999 15544 17526 15544 16350
T3 34017 34267 32602 34313 33693 34067 34699
T4 4814 4814 7642 4814 6595 4814 5478
T5 15147 15147 15147 15147 15147 15147 15147
T6 37950 37939 41585 37946 39733 37673 38489
P7 4016 4016 4016 4015 4016 4016 4015
P8 16207 16203 16203 16191 16199 16207 16190
P9 4030 4029 4029 4029 4029 4030 4029
P10 4838 4839 4839 4842 4840 4838 4843
River 183754 183879 181174 183778 183509 183412 185473
Creek 45996 45984 49630 45990 47778 45718 46532
Total 229750 229864 230804 229768 231287 229130 232005
R. % 0.0680% -1.4041% 0.0131% -0.1333% -0.1861% 0.9355%
C. % -0.0261% 7.9007% -0.0130% 3.8742% -0.6044% 1.1653%
Tot. % 0.0496% 0.4588% 0.0078% 0.6690% -0.2699% 0.9815%

Table 2: Treated Wastewater results of the SWMM simulations with different Controllers: MPC, and CC- and tube-based
MPC with the uncertainty bound of 25-75%.

MPC
CC-
MPC
25%

T-
MPC
25%

CC-
MPC
50%

T-
MPC
50%

CC-
MPC
75%

T-
MPC
75%

WWTP Vol. 3772057 3772086 3771026 3772159 3770439 3772676 3769809
Imp. % 0.0008% -0.0273% 0.0027% -0.0429% 0.0164% -0.0596%

Figure 2: The total volume evolutions under T-MPC and
CC-MPC with the uncertainty bounds of 25-75%.

6.1. Uncertainty Bound
The first parameter in the comparison is the

bound on the uncertainty of the inflow distur-
bance q. The bound is defined by (69), where the
disturbance is assumed to be non-negative and
below three standard deviation σ above the ex-
pected inflow

bound = [0,E{q}+ 3σ] (69)

In the simulations, the size of the standard devi-
ation was varied so that the upper bound would
correspond to 25%, 50% and 75% above the ex-
pected value. The results of simulations with each
of the controller types with the three uncertainty
bounds can be observed in Table 1 for CSO re-
sults and in Table 2 for treated wastewater vol-
ume results. In Table 1, we can see the total CSO
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volume for each tank and pipe weirs, the CSO
volume to the receiving bodies, the river and the
creek, and as well as the total CSO volume for
the system. Moreover, the percentage changes
from the perfect MPC to the last three volumes
are also given. In Table 2, the total amount of
treated wastewater and the percental change is
provided. From these comparisons, it can be ob-
served that the CC-MPC performs slightly better
than the T-MPC in the total CSO volume. More-
over, we can also conclude from Table 1 that the
T-MPC perform worse as the uncertainty bound
increases, while the CC-MPC works better with
the increase in uncertainty bounds. Figure 2 also
confirms this conclusion, wherethe total volume
evolutions for all the tanks under MPCs with dif-
ferent uncertainty bounds are provided (in order
to have clear evolution, only the day 10 and day 11
are presented). In this figure, the increasing un-
certainty bounds for the CC-MPC, seems to result
in less tank volumes, which indicate less possible
CSOs. The T-MPC seems affected slightly by the
changes of uncertainty bounds in the limits of the
tank volume. The difference in how the MPC
approaches are affected by the increase in uncer-
tainty bound, is consistent and can be explained
by their formulation; the CC-MPC becomes more
strict or conservative. While the T-MPC expect
more inflow (higher bound mean), as well as try-
ing to be more strict, resulting in both increased
and decreased local volumes internally in the sys-
tem, and an increase in the entire system. With
regard to the treated wastewater, we can see that
both controllers are in general indifferent to the
change of uncertainty bound.

6.2. Scaled Bias

The second compared parameter is the scal-
ing bias of the expected disturbance in compar-
ison to the actual disturbance, as given by (70).
The factor a corresponds to a scaling bias k, by
a = 1 + k/100. Therefore, the negative scal-
ing biases indicates an underestimation of the ac-
tual disturbance and an overestimation for posi-
tive scaling biases

E{q} = aqactual (70)

Figure 3: The total volume evaluations for the tanks under
T-MPC and CC-MPC with different scale bias.

When running the simulations, the following scal-
ing biases have been utilized: 0%, ±10% and±20%.
The results of CSO volume and amount of treated
wastewater can be seen in Table 3 and Table 4,
respectively. It is clear that for both the T-MPC
and the CC-MPC, the CSO performances are de-
teriorating as the scaling bias increases. Further-
more, it can also be seen, that the T-MPC per-
form slightly worse than both the perfect and CC-
MPC. For the T-MPC, we again observe a dete-
rioration of the distribution of the CSO, which is
not seen for the CC-MPC. Figure 3 illustrates the
conclusions graphically, where the total tank vol-
ume evolution for day 10 and day 11 are compared
among MPC approaches with different scaled bias
values. MPCs with 20% have larger tank volumes,
which indicates more CSO may occur in the fu-
ture. Actually, the figures appear very similar,
but there is slight trend showing that the increase
of scaled bias slightly increase the tank volumes,
which indicates more potential CSO.

When considering the treated wastewater, the
improvements and deteriorations become close to
negligible for both controllers, but with the notion
that they all perform worse as the bias increases
toward positive.
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Table 3: Overflow results of the SWMM simulations with different Controllers: MPC and CC- and tube-based MPC
with scaled uncertainty bias of -20-20%.

Tank
&
Pipes

MPC Type -20% -10% 0% 10% 20%

T1 93251 CC-MPC 90004 91355 92927 94728 96615
T-MPC 86457 87834 89509 90712 92138

T2 15484 CC-MPC 16801 16023 15544 15383 15316
T-MPC 18718 18166 17526 17041 16565

T3 34017 CC-MPC 33298 33857 34313 34065 34304
T-MPC 32706 33102 33693 34413 34488

T4 4814 CC-MPC 5960 5206 4814 4729 4713
T-MPC 7457 7010 6595 6078 5704

T5 15147 CC-MPC 15147 15147 15147 15147 15147
T-MPC 15147 15147 15147 15147 15147

T6 37950 CC-MPC 39082 38296 37946 37770 37836
T-MPC 41132 40350 39733 39101 38755

P7 4016 CC-MPC 4015 4015 4015 4016 4015
T-MPC 4016 4016 4016 4015 4015

P8 16207 CC-MPC 16190 16195 16191 16203 16191
T-MPC 16203 16203 16199 16191 16192

P9 4030 CC-MPC 4029 4029 4029 4029 4029
T-MPC 4029 4029 4029 4029 4029

P10 4838 CC-MPC 4843 4841 4842 4839 4842
T-MPC 4839 4839 4840 4842 4842

River 183754 CC-MPC 182242 182623 183778 185094 187129
T-MPC 181526 182301 183509 184423 185076

Creek 45996 CC-MPC 47126 46341 45990 45815 45880
T-MPC 49177 48395 47778 47144 46799

Total 229750 CC-MPC 229368 228964 229768 230909 233008
T-MPC 230704 230696 231287 231567 231875

R.% CC-MPC -0.8228% -0.6155% 0.0131% 0.7292% 1.8367%
T-MPC -1.2125% -0.7907% -0.1333% 0.3641% 0.7194%

C. % CC-MPC 2.4567% 0.7501% -0.0130% -0.3935% -0.2522%
T-MPC 6.9158% 5.2157% 3.8742% 2.4959% 1.7458%

Tot. % CC-MPC -0.1663% -0.3421% 0.0078% 0.5045% 1.4181%
T-MPC 0.4152% 0.4118% 0.6690% 0.7909% 0.9249%

Table 4: Treated Wastewater results of the SWMM simulations with different Controllers: MPC, and CC- and tube-based
MPC with scaled uncertainty bias of -20-20%.

MPC Type -20% -10% 0% 10% 20%
WWTP Vol. 3772057 CC-MPC 3772166 3772992 3772159 3770672 3768942

T-MPC 3771113 3770657 3770439 3770220 3769903
Imp. % CC-MPC 0.0029% 0.0248% 0.0027% -0.0367% -0.0826%

T-MPC -0.0250% -0.0371% -0.0429% -0.0487% -0.0571%
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6.3. Offset Bias

The final parameter in the comparison is the
offset bias given by (71), where the offset b skews
the expected disturbance away from the actual
disturbance. For the simulations, the following
constant offsets have been used as illustrative val-
ues; zero, one fourth, one and five times the aver-
age inflow disturbance

E{q} = qactual + b (71)

In Table 6, we can observe the results of treated
wastewater showing that the T-MPC is less sen-
sitive to increases in offset biases than the CC-
MPC. It can also be observed that for lower off-
sets, the deviation from the results of the perfect
MPC are negligible, but that the CC-MPC has
less deviation, in comparison to the T-MPC.

The results of CSO volume are shown in Ta-
ble 5, where we can again observe that the sensi-
tivity to increase in offset, is significantly lower
for T-MPC than the CC-MPC. It can also be
seen that the performance of the CC-MPC is sig-
nificantly deteriorated for the higher offsets, but
only slightly affected for lower offsets, while the
T-MPC have performances that are significantly
less affected for higher offsets, and only slightly
worse for lower offsets. It can further be ob-
served, that for both types of MPCs the distribu-
tion of the CSO improves as the offset increases,
but with deteriorating performances as a result.
For the T-MPC, the CSO distribution through
the system is in general performing significantly
worse than for the CC-MPC. Figure 4 gives ad-
ditional graphically information about the CSO
performance of CC-MPC under different offsets
through comparing the differences in tank volume
among CC-MPC using different offsets. As ex-
plained previously, the more volume in the tank
indicates the more chance of having more CSOs.
From Figure 4, we can conclude that the CC-MPC
with 0.1 offset have more tank volume than those
of CC-MPC with different offsets, which means,
the CC-MPC with 0.1 offset behaves worse than
the other CC-MPCs, as one would expect. While
for the T-MPC, the T-MPC with less offset has
more tank volume, which indicates more possible

Figure 4: The total tank volumes under T-MPC and CC-
MPC with different offset bias.

CSOs. This is in despite of the higher offset CSO
results from the table, shows the opposite situa-
tion. The difference in volume and CSO behavior
is due to the overestimated inflow making the T-
MPC stricter resulting in lower dry-weather tank
volume, but also overreacting towards CSO avoid-
ance of the upstream tanks, disregarding CSO vol-
ume minimization over CSO distribution.

6.4. Chance Constrained or Tube-Based MPC

From the analysis of the performance compar-
isons above, we can evaluate when and where each
method is most applicable, based on one’s confi-
dence in the knowledge of the disturbance. It can
be concluded that for the compared methods, the
T-MPC works better for achieving a performance
insensitive to bias uncertainty, while the CC-MPC
is more insensitive with the size of the uncer-
tainty bound. If the preference is given to the
performance (CSO / treated wastewater), then,
in general, the CC-MPC works better with the
exception of a few cases of extreme uncertainty.
The difference in performances between CC-MPC
and T-MPC is usually around a thousand cubic
meters, corresponding to around 0.3% difference
with respect to the perfect MPC for CSO perfor-
mance.

13



Table 5: Overflow results of the SWMM simulations with different Controllers: MPC and CC- and tube-based MPC
with offset uncertainty bias.

Tank
&
Pipes

MPC Type 0 0.005 0.02 0.1

T1 93251 CC-MPC 92927 93856 96590 130211
T-MPC 89509 90134 92357 97668

T2 15484 CC-MPC 15544 15450 15452 15511
T-MPC 17526 17103 16417 15514

T3 34017 CC-MPC 34313 34322 34485 36548
T-MPC 33693 33865 34071 35306

T4 4814 CC-MPC 4814 4728 4644 4465
T-MPC 6595 6151 5131 4567

T5 15147 CC-MPC 15147 15147 15147 15147
T-MPC 15147 15147 15147 15147

T6 37950 CC-MPC 37946 37961 37780 37763
T-MPC 39733 39645 39062 37608

P7 4016 CC-MPC 4015 4015 4016 4016
T-MPC 4016 4015 4015 4016

P8 16207 CC-MPC 16191 16193 16203 16203
T-MPC 16199 16196 16195 16203

P9 4030 CC-MPC 4029 4029 4029 4029
T-MPC 4029 4029 4029 4029

P10 4838 CC-MPC 4842 4842 4839 4839
T-MPC 4840 4841 4841 4839

River 183754 CC-MPC 183778 184536 187360 222925
T-MPC 183509 183437 184158 189244

Creek 45996 CC-MPC 45990 46005 45825 45808
T-MPC 47778 47689 47106 45653

Total 229750 CC-MPC 229768 230541 233185 268733
T-MPC 231287 231126 231264 234897

R.% CC-MPC 0.0131% 0.4256% 1.9624% 21.3171%
T-MPC -0.1333% -0.1725% 0.2199% 2.9877 %

C. % CC-MPC -0.0130% 0.0196% -0.3718% -0.4087%
T-MPC 3.8742% 3.6808% 2.4133% -0.7457%

Tot. % CC-MPC 0.0078% 0.3443% 1.4951% 16.9676%
T-MPC 0.6690% 0.5989% 0.6590% 2.2403%

Table 6: Treated Wastewater results of the SWMM simulations with different Controllers: MPC, and CC- and tube-based
MPC with offset uncertainty bias.

MPC Type 0 0.005 0.02 0.1
WWTP Vol. 3772057 CC-MPC 3772159 3771978 3768643 3733651

T-MPC 3770439 3770306 3770471 3767206
Imp. % CC-MPC 0.0027% -0.0021% -0.0905% -1.0182%

T-MPC -0.0429% -0.0464% -0.0420% -0.1286%
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7. Conclusion

In this paper, the tube-based MPC (T-MPC)
from the robust MPC family and the chance con-
strained MPC (CC-MPC) for the stochastic MPC
family have been compared mathematically, show-
ing how similar and different they are in concepts,
and displaying how the assumptions on uncer-
tainty affect the constriction of the constraints
for the two types of MPC. The drawbacks of each
method were also discussed and used as inspira-
tion for formulating a T-MPC with chance con-
strained bounded uncertainty. Moreover, we have
also compared the performances of both MPC
types, on a case study of an urban drainage con-
trol problem, using simulations on a SWMM model
of the Astlingen benchmark network. The follow-
ing conclusions of the analysis can be summarized:

1. T-MPC is computational simpler, while the
solutions are worst-case conservative and in
general requiring bounded disturbances.

2. CC-MPC is in general computationally dif-
ficult, but provide solutions of tuneable con-
servativism and are applicable for bounded
and unbounded disturbances

3. CC-MPC assumes the exact distribution is
known, while T-MPC only assumes uncer-
tainty bounds are known; which is equiva-
lent to the assumption of uniform distribu-
tion

4. An inequality relation between constraint
constriction of T-MPC and CC-MPC have
been derived; showing that the T-MPC con-
striction is always stricter than the CC-MPC
constriction.

5. The proposed chance constrained bound T-
MPC is less conservative than the original
T-MPC, while being computational simpler
than the CC-MPC.

6. Performance-wise, we can conclude that when
uncertainty biases are low or the uncertainty
interval are high, the CC-MPC performs bet-
ter, while the performance of T-MPC is more
insensitive to biases.
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Abstract
In this work, we present a framework for ensemble-based (E) chance-constrained
(CC)model predictive control (MPC) in sewer systems. The framework considers the
availability of ensemble forecasts and the difficulties with propagation of distribu-
tions; through distribution estimation. Utilizing a case study of the sewer network of
the city of Aarhus in Denmark, the performance of the ECC-MPC framework is eval-
uated through simulations. The evaluations were based on linear models of the case
study and compare the ECC-MPC performance with the performance of CC-MPC.
Based on the simulations, it was found that the ECC-MPC performed comparable to
the performance of the CC-MPC, not only in the context of overflow and outflow but
also with respect to behavior in response to changes in different aspects of forecast
uncertainties. Regarding the aspects, it was found that expectation offset biases in the
forecast were affecting the performance of the CC- and ECC-MPC the most. While
other aspects only had a reduced effect on the performances, within the ranges tested.
With the comparable performances, it was found that ECC-MPC would work as an
alternative approach to CC-MPC.
KEYWORDS:
stochastic MPC; Combined Sewer Overflow; chance-constrained; Ensemble; Sewer system

1 INTRODUCTION

In the last few decades, research into Model Predictive Control (MPC) has been applied many types of systems with promising
results1,2. One application is sewer systems3− 7, which will be the focus of this work. In sewer systems, MPC have been applied
for its predictive abilities, to include the information from rain forecasts into the control.
For MPC applied to sewer systems, the used models are usually simplified to consist of networks of interconnected virtual

tanks; lumped models of volume capacity representing segments of the overall system’s network of pipes and tanks. The per-
formance of MPC is depending on the accuracy of the used model and the forecasted disturbances to the system; the model and
forecast uncertainty. In the case of sewer systems, model uncertainty comes from the simplified model not perfectly describing
the real system, while forecast uncertainty originates in the rain forecast of the inflows to the system.
Within the MPC research there are many approaches on how to handle the presence of uncertainty8− 15; from the robust MPC

methods aiming for the worst-case scenario, to the stochastic MPC methods aiming for statistic coverage of the uncertainty.
For this work, we will consider the CC-MPC from the group of stochastic MPC methods as the approach to handling uncer-

tainty. The choice of CC-MPC are due to rain forecasts can be considered stochatstic disturbances, describing the likelihood of
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FIGURE 1 Conceptual framework layout of Ensemble-based CC-MPC.

different inflow scenarios. The CC-MPC method relies on knowing the stochastic distribution of the uncertainties of each con-
straint and formulating the inequality constraints as probabilistic constraints. The knowledge about the constraint distributions is
used to obtain deterministic versions of the probability constraints, utilizing the quantile functions of the constraint distributions.
The reliance on knowing distributions and quantile functions gives the CC-MPC method some drawbacks, given that con-

straint distributions are obtained from knowledge of the distributions of themodel and forecast uncertainties across the prediction
horizon of the CC-MPC. For most types of systems and uncertainty distributions, propagation of a distribution throughout the
system would change the initial type of distribution, e.q. adding together the squares of different types of distribution. The quan-
tile function of the resulting constraint distribution might then become impractical to compute. Exceptions to such distribution
changes include linear systems with additive uncertainty with a normal distribution.
In the context of sewer systems, the usage of CC-MPC is further complicated by the rain forecasts rarely being provided as a

distribution. It is more commonly provided as a fixed-sized ensemble of statistical scenarios of the rain’s temporal and spatial
development, from where the distribution has to be determined.
The main contribution of this work are the suggestion of a framework for applying CC-MPC to the general sewer system. The

proposed framework aims to handle the issues with the propagation and lack of available initial distribution, through estimation
of the constraint distributions based on propagated ensemble forecasts, as illustrated in Fig. 1.
A performance evaluation of the proposed framework of ensemble-based CC-MPC (ECC-MPC) is given, based on simulations

of the Aarhus case study16 from Denmark. The evaluation is done by comparison to a CC-MPC with known quantile functions
(propagated distribution). The Aarhus case study is discussed through a design model for MPC; autogenerated from a MIKE
URBAN Hi-Fi model by DHI16,17.
For the performance evaluation, we will consider a linear system model, where only forecast uncertainty is included. The

uncertainties in the evaluation will be normal distributed with varying bounds and biases between simulations. Given that sewer
systems experience combined sewer overflows (CSO) from their weir structures, the CC-MPC formulations utilized in this work
are based on our previous proposed revised formulation10.
In the following section, we will first present a brief formulation of the MPC and CC-MPC used in the work, followed by

the formulation and a diskussion of the suggested ECC-MPC framework. In the third section, we discuss the design models
of the Aarhus case study. In the fourth section, we discuss the simulations of ECC-MPC and CC-MPC, and the results of the
performance comparison. We end the paper with a conclusion of the paper’s results.

1.1 Notation
The notations utilized in this paper are as follows; the superscripts in, out, u and cso indicate the inflow, outflow, control flow,
and weir overflow respectively, while the subscript k indicates the sample number and ΔT notes the sampling time. A bullet
∙ represents a subset or set of a function’s variables, while Bold font indicates vectors and f notes the maximum of a given
function f (x). For a stochastic variable X, the notation X ∼ F indicates that X is following a distribution F. While E{X} and
�2X note the expectation and variance of X respectively, and Pr{X ≤ y} and ΦX(y) are the probability function and cumulative
distribution function (CDF) of X respectively for a given value y.
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2 MPC AND THE FRAMEWORK

The general formulation of MPC for systems with overflows, such as sewer systems can be written as
J = min

u
f (x,u, zref ,w,qcso) (1)

xk+1 = ℎproc(xk,uk,wk,qcsok ) ∀k > 0 (2)

qwk,i =

{
tw,i(Ti(∙)), Ti(∙) ≥ 0
0

∀i ∈ {1 ∶ Nw} (3)

hk(xk,wk,uk,qcsok ) = 0 ∀k ≥ 0 (4)
gk(xk,wk,uk,qcsok ) ≤ ḡk ∀k ≥ 0 (5)

Where x, u, andw corresponds to the states of the system, the control of the system, and the inflow disturbances into the system,
fx. rain. The overflows are given by qw and defined by some function tw,i and the switching function Ti, where each ith overflow
corresponds to the overflow structure of the system.
The above formulation can be simplified by approximating the overflows qw as optimization variables through a minimization

cost3 6 18. Thus increasing the number of variables in the formulation, and removing the logical part given in (3); resulting in a
program that is simpler to compute, perhaps even convex. If the process equation of (2) is further substituted into the constraints
of (4) and (5), the simplified program can be written as

J = min
u,qw

fq(x0,u, zref ,w,qcso) (6)
h̃k(x0,w,u,qcso) = 0 ∀k ≥ 0 (7)
g̃k(x0,w,u,qcso) ≤ ḡk ∀k ≥ 0 (8)
0 ≤ qcso (9)

where the cost function fq contains the initial cost function f and the substituted process, plus an additional cost for the
approximation by minimization. While h̃k and g̃k are the equality and inequality constraints with substituted process equation.
In the case of the CC-MPC, the revised formulation addresses the oddity of a probabilistic constraint on an intrinsical feasible

constraint10, with the formulation given by (10)-(16).
J = min

u,qw
E{fq(x0,u, zref ,w,qcso)} + fs(s, c) (10)

E{h̃k(x0,w,u,qcso)} = 0 ∀k ≥ 0 (11)
Φ−1g̃k,i(x0,w,u,qw)(
i) ≤ ḡk,i + sk,i ∀k ≥ 0,∀i ∉w (12)
E{g̃k,i(x0,w,u,qcso)} ≤ ḡk,i ∀k ≥ 0,∀i ∈ cso (13)
Φ−1T̃i(x0,w,u,qcso≠i )

(
i) ≤ 0 + ck,i ∀k ≥ 0,∀i ∈ cso (14)
0 ≤ sk,i ≤ Φ−1g̃k,i(x0,w,u,qcso)(
i) − E{g̃k,i(x0,w,u,qcso)} (15)
0 ≤ qcso, c (16)

where cso is the set of constraints defining an overflow in the system, and the added slack variables s and c preserves the feasi-
bility of the original MPC with regards to expectation, see (15), but ensures the probability constraint holds if possible through
minimization of an added cost fs. The set w is utilized to determine which constraints can be formulated as a probability
constraint directly (12) or are formulated as an expectation constraint (13). Wherefore the latter case has the addition of a prob-
ability constraint (14) based on the process substituted switching function T̃i corresponding to the overflow defined by the given
constraint.
For some distributions such as the normal distribution, the quantile function of the constraints can be standardized as below

Φ−1g̃(x0,w,u,qcso)(
) = E{g̃(x0,w,u,q
cso)} + �{g̃(x0,w,u,qcso)}Φ−1(
) (17)

Allowing for simplification of the optimization program into a deterministic formulation. For example, when considering
additive uncertainty, the variance-quantile function term of the right-hand-side in (17) becomes constant with respect to the
optimization variables. Later, in the performance evaluation, we will utilize this to construct a CC-MPC with known quantile
function.
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2.1 Framework for probabilistic constraints
The formulation of CC-MPC given above relies on knowing the expectations and 
-quantiles of the constraints; which in general
can be difficult to have knowledge about. In the case of uncertainties with a constant nature, such as a fixed distribution; the
expectations and quantile functions of the constraints could be determined once and for all, therefore providing the needed
knowledge for the CC-MPC. An example of this could be some types of model uncertainties affecting the constraints.
If one can not be certain of the nature of the uncertainties are unchanged, then even knowing the exact distribution of the

uncertainties might not be of much use. Given that the propagation of uncertainty throughout the constraints might very well
change the distribution to a different type of distribution. One for which the quantile functions might not be well-defined or easy
to determine. For examples when the constraint distribution results in a mix of different types of distributions.
Therefore it might be more effective to determine the constraint distribution through an estimation, based on propagating

scenarios of the uncertainty rather than distribution formulas. Where the scenarios describe both temporal and spatial aspects
of the uncertainties. If the distribution of the uncertainty is known, then an ensemble of such scenarios can be generated for the
propagation. This further means that the knowledge of the distribution of the uncertainty is no longer a necessity if an ensemble
of uncertainty scenarios is available from another source.
In general, the propagation of the uncertainty ensemble wE is given by (18), where an ensemble of n scenarios are given

for m sources of uncertainties w, and mapped to an ensemble of n scenarios of the ith constraint as a function of deterministic
parameters and variables

wE ∈ m×n → gi(x0,wE ,u,qcso) = gEi (x0,u,qcso) ∈ 1×n (18)
Given that the constraint ensemble is a function of the optimization variables, the ensemble suffers the same computational
issues that the standard CC-MPC has with the quantile functions for general constraint functions: the distribution depends on
the optimization.
Under the right conditions for the relationship between uncertainty and variables, these issues disappear with regards to

certain stochastic properties of the constraints. To start with, if the relationship is multiplicable then it follows from lemma 1,
that the expectation and variance of the constraint are deterministic. Similarly, if the relationship is additive, then from lemma 2,
it follows that the quantile function of the constraint is deterministic in addition to the expectation and variance of the constraint.
Lemma 1 (Multiplicative properties). If the scalar constraint function is given by (19) and w is following some distribution 

g(u,w) =
N∑
i=0

g1,i(w)g2,i(u), w ∼  , gi,j(x) ∶ nx×1 → ,∀i, j (19)

Then it follows that the expectation is given by

E{g(u,w)} =
N∑
i=0

E{g1,i(w)}g2,i(u) (20)

�2{g(u,w)} =
N∑
i=0

N∑
j=0

�2{g1,i(w), g1,j(w)}g22,i(u)g22,j(u) (21)

Lemma 2 (Additive properties). If the scalar constraint function is given by (22) and w is following some distribution 
g(u,w) = g1(w) + g2(u), w ∼  , gi,j(x) ∶ nx×1 → ,∀i, j (22)

Then it follows that the quantile function, expectation, and variance is given by
Φ−1g(u,w){
} = Φ

−1
g1(w)

{
} + g2(u) (23)
E{g(u,w)} = E{g1(w)} + g2(u) (24)

�2{g(u,w)} = �2{g1(w)} (25)
The lemmas above are also applicable to the constraint ensemble, in the sense that the estimation of the constraint distribution

with respect to certain stochastic properties only needs to consider the constraint part g1 that includes the uncertainties. This
can simplify the estimation and the following MPC program, by the formulation becoming deterministic.
For this reason, the definition of our framework will assume the uncertainty to be additive, such that the estimated quantile

function is independent of the optimization variables. The procedure of the ECC-MPC framework can be summarized as the
following steps:
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• Obtain an Ensemble forecast, wE

• Propagate the Ensemble to the constraints, gE

• Estimate the constraint distributions, Φ−1gi(u,w)
• Solve the CC-MPC
• Apply control solution
• Repeat

The procedure is also illustrated in Fig.1. The second step in the procedure provides us with the ensemble of constraint scenarios
we need for the third step, by taking each forecast scenario in the ensemble and propagate it through the entire system description.
With the constraint ensemble ready, the distributions of the constraints can be estimated. There are many ways to do such
estimation, one of them is a Pearson’s �2 goodness of fit test; that allows one to estimate the constraint distribution in terms of
well-known distributions such as normal, uniform, gamma, and others. This method has the benefit of estimating the constraint
distribution as the best fitting distribution with a known quantile function, ready to be applied to the constraint formulation. In
the simulations, presented later in this work, this approach to the estimation of the constraint distributions is utilized.

2.1.1 Benefits and limitations
The ECC-MPC framework described above has both benefits and limitations to its usage. The framework has the benefits of
not being reliant on either the presence of ensemble forecast data from external sources or forecast distributions, but being
usable when either one is available. With regard to the stochastical nature of the uncertainty, the framework only assumes the
expectation and quantile functions can be estimated. This means the framework is benefiting from not depending on assumptions
such as the uncertainties being independently distributed; in order to simplify the propagation throughout the system and its
cross-correlations.
Given the ECC-MPC framework is based on an estimation approach, the choice of approach is a limiting factor in the quality

of the estimation, and therefore in the resulting controller. This also means the computation time of the framework is reliant
on the choice of estimation approach, while the traditional CC-MPC method does not rely on estimations, which can increase
computation time. Furthermore, if one relies on externally sourced ensemble forecasts then the size of the ensemble is also a
limiting factor of the estimation. Another limiting aspect of the estimations is the necessity of the constraint ensembles being
independent of each other, in order for the estimation to be statistically valid. This means the ensembles of the ensemble forecast
also has to be independently generated, regardless of their origin.
As mentioned earlier the ECC-MPC framework assumes the uncertainties and optimization variables to have an additive

relationship. This limits the types of systems it can be applied to, excluding relationships such as multiplicative, logarithmic, and
others. For the multiplicative case, the framework could be used if the standardization shown in (17) is reasonable to assume,
utilizing lemma 1 to achieve a deterministic constraint.

2.1.2 Thoughts on other MPC-types
The ECC-MPC framework can easily be redesigned for other types of MPCs, by changing the distribution estimation step. If
the desired controller is a tube-based controller from the class of robust MPCs, then the estimation step could either be changed
to only estimating the indirectly assumed uniform distribution of the constraints, or directly utilizing the worst-case from the
available constraint scenarios; obtained from the propagation of the ensembles. similarly, other types of MPC could refit the
estimation step to suit the type of data they rely on.

3 AARHUS SEWER SYSTEM ANDMPC DESIGN

As mentioned earlier, the system utilized in the performance evaluation later in this work is based on the Marselisborg sewer
system, specifically the segment of the system covering the city of Aarhus. Aarhus is a city covering an area of 91km2 with
a population of 280534 in 202019. Given that a sewer system is a network of pipes and tanks described by the Saint-Venant
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FIGURE 2 A schematic of the Aarhus sewer system model based on an autogenerated virtual tank description. The colored
segments correspond to different quarters of the city, with their names written in the segments. The apparent layout differentiates
from the real geography of the city.

equations20,21, a simpler description is usually preferred for the MPC design; such as virtual tank models. In such models, com-
plete sections of the system are lumped together and described by their combined volume storage capacity and their interactions
with other sections22,4. A virtual tank model description of the Aarhus sewer system can be seen in Fig. 2. The shown descrip-
tion was autogenerated by DHI from a high fidelity MIKE URBAN model16 and translated to a design of deterministic MPC.
One of the design criteria in the autogeneration among others; is that each section has a controlled outflow, and is extended from
there until another section is reached.
In this work, we will utilize this design of the deterministic MPC to formulate our CC- and ECC-MPC, and as a baseline in

the later performance evaluation. The design is based on a modular approach, such that each module corresponds to one of the
tanks in Fig. 2, and connected likewise so. The dynamics of the tanks utilized in the model are given by

Vk+1 = AVk + Bqk = Vk + ΔT qk (26)

where qk is the sum of flows in and out of the tank, at time k. In the design of MPC, a prediction horizon Hp is chosen as
a set number of samples to predict into the future of the system. The dynamics above can be reformulated to cover the entire
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prediction horizon as given below
V =M0V0 +Mq, V = [V1, V2,… , VHp

]T , q = [q0, q1, q2,… , qHp−1]
T (27)

M =

⎡
⎢⎢⎢⎢⎣

B 0 …
AB B 0 …
⋮ ⋮ ⋱ ⋱

AHp−1B AHp−2B … B

⎤⎥⎥⎥⎥⎦
= ΔT

⎡
⎢⎢⎢⎢⎣

1 0 …
1 1 0 …
⋮ ⋮ ⋱ ⋱
1 1 … 1

⎤
⎥⎥⎥⎥⎦
∈ HpxHp , M0 =

⎡
⎢⎢⎢⎢⎣

A
A2

⋮
AHp

⎤
⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

1
1
⋮
1

⎤
⎥⎥⎥⎥⎦
∈ Hpx1 (28)

The inflows and outflows of the tanks can be quantified as the controlled output qout, CSO qcso, internal inflow qin and disturbance
inflow qdin. This gives the following predictive dynamics

V =M0V0 +Mqin +Mqdin −Mqout −Mqcso (29)
In the MPC design, the CSO is treated as an optimization variable3,6,18, by a minimization cost on accumulated CSO volume
Vcso
k , defined as

Vcso
k =

k∑
i=0
ΔTqcsoi ⇒ Vcso =Mqcso (30)

The cost function of the MPC design can be defined as the sum of cost functions JD,i from each module as seen in the left
equation of (31), with minimization with respect to qout and qcso. Similarly, the right equation shows the cost function of the
CC- and ECC-MPC and the module costs JCC,i; with the slack variables c and s discussed earlier as optimization variables.

J = min
u,qw

Ns∑
i=1

JD,i, J = min
u,qw,c,s

Ns∑
i=1

JCC,i (31)

The different modules in the model have different physical meanings and are therefore formulated differently. Each module can
be classified as one of five types of tanks; regular tanks, dynamic tanks, and backflow tanks, as well as a strict control version of
the regular and backflow tanks. For the deterministic MPC, the modular cost function can be generalized as in (32) with linear
costs on the outflow and accumulated CSO volume.

JD,i = ���TQ,iqouti +
���TC,i
Hp

Mqcsoi (32)
Where ���Q and ���C are uniform weight vectors on the cost terms. A fewmodules diverge from the above cost and will be discussed
later. In the case of the CC- and ECC-MPC, the cost function is an extended version of the deterministic case as seen in (33),
and is utilized both for the ECC-MPC and the distribution-based CC-MPC.

JCC,i = ���TQ,iqouti +
���TC,i
Hp

Mqcsoi + ���TS(si + ci) (33)
The added cost ���S on the slack variables is the same for all slack variables across all modules, with a value of a 100. The cost
on the outflow and CSO for each module can be observed in Table 1. The table also shows the maximum volume and outflow
of each tank as well as their module type. It can be seen that the tanks with larger volumes (300 + m3) have a slight cost for
maximizing the outflow, while small tanks aim at minimizing its usage. By comparison to Fig. 2, it can be seen that CSO
connecting to external receivers are weighted higher (5000+), while internal CSOs have lower weights (200-), in order to avoid
pollution outside the sewer system.
For the formulation of the modules in the paragraphs below, a few definitions are suitable. In (34), a variable di is given

representing the disturbance and initial volume terms of the predictive dynamics for the ith tank, together with its ensemble
counterpart dEi .

di =
[
M0 M

] [V0,i
qdini

]
, dEi =

[
M0 M

] [ V E
0,i

qdin,Ei

]
(34)

The ith switching function discussed earlier in (3) is given by (35) over the prediction horizonHp, as the volume above the ith
tank’s limit.

Ti =M0V0,i +Mqini +Mqdini −Mqouti −MIqcsoi − Vi, MI =M − ΔT IHp
(35)

where IHp
is the identity matrix of size Hp, making the kth prediction of the CSO term independent of the kth CSO. For the

CC-MPC based on distribution knowledge, we assume it follows a standardizable distribution as in (17) and that the different
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Tank type V [m3] q[m
3

s
] �Q �C Tank type V [m3] q[m

3

s
] �Q �C

1 regular sc 300 1.50 -0.01 5000 20 regular 13001 0.22 -0.01 5000
2 regular sc 20 0.60 10−4 5000 21 regular 10001 0.40 -0.01 5000
3 backflow sc 350 1.00 -0.01 200 22 regular 3501 0.18 -0.01 5000
4 backflow sc 844 1.80 -0.01 200 23 regular sc 90 1.20 10−4 5000
5 dynamic 200 0.50 10−4 5000 24 regular 3001 0.09 -0.01 15000
6 regular sc 200 0.80 10−4 5000 25 regular 6699 1.50 -0.01 5000
7 regular 100 0.10 10−4 0.02 26 dynamic 3503 0.10 -0.01 10000
8 dynamic 10 0.04 10−4 5000 27 regular 200 0.20 10−4 0.02
9 regular 10 1.00 10−4 5000 28 regular 60 0.70 10−4 5000
10 regular 10 0.20 10−4 5000 29 regular 100 0.20 10−4 0.02
11 regular 150 0.35 10−4 5000 30 regular 85 0.10 10−4 200
12 regular 10 0.10 10−4 5000 31 backflow 200 0.20 10−4 20
13 regular sc 10 0.80 10−4 5000 32 dynamic 100 0.04 10−4 200
14 regular 10 0.20 10−4 5000 33 dynamic 32 0.50 10−4 200
15 regular 10 0.40 10−4 5000 34 dynamic 25 0.50 10−4 200
16 regular 10 0.70 10−4 5000 35 dynamic 12 0.50 10−4 200
17 regular sc 70 0.80 10−4 5000 36 regular 80 0.30 10−4 200
18 regular sc 50 0.15 10−4 200 37 regular 90 0.40 10−4 200
19 regular sc 85 0.98 10−4 5000 38 regular 10 0.10 10−4 5000

TABLE 1 The system data of the Aarhus network17

uncertainties are independent. Under these assumptions, the predicted variance ���i of the ith module is given by

���i =
√
M2

0�
2
V0,i
+M2���2

qdini
(36)

where both the squares and root are to be understood as element operations.

3.1 Modules - regular and backflow type
For the ith module belonging to either the regular or backflow type, the definition is identical with the difference lying in
connections between tanks. For the deterministic MPC, the module is defined by the constraints given by (37)-(39), describing
the volume, outflow, and CSO limitations.

0 ≤ Vi ≤ Vi (37)
0 ≤ qouti ≤ qouti (38)
0 ≤ qcsoi (39)

For the distribution-based CC-MPC, the constraints in (40)-(44) define the module as according to section 2, with the volume
and switching function being substituted by (29) and (35) respectively.

0 + ���iΦ−1(
i) − si ≤E{di} +Mqini −Mqouti −Mqcsoi ≤ Vi (40)
0 ≤qouti ≤ qouti (41)
0 ≤qcsoi , ci (42)

E{di} +Mqini −Mqouti −MIqcsoi ≤ Vi − ���iΦ−1(
i) + ci (43)
0 ≤si ≤ ���iΦ−1(
i) (44)
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For the ECC-MPC, the definition is given by (45)-(49), where the quantile termsΦΦΦ−1
±dE needs to be estimated.

0 + Φ−1−dEi (
i) − si ≤Mqini −Mqouti −Mqcsoi ≤ Vi − E{dEi } (45)
0 ≤qouti ≤ qouti (46)
0 ≤qcsoi , ci (47)

Mqini −Mqouti −MIqcsoi ≤ Vi −ΦΦΦ−1dEi
(
i) + ci (48)

0 ≤si ≤ ΦΦΦ−1−dEi (
i) − E{−dEi } (49)

3.2 Modules - strict control regular and backflow type
The strict control versions of the regular and backflow modules are using the same formulation as their counterpart, but includes
extra constraints on the controlled outflow of the tank, as seen in (50). These added limitations relate the outflow to the volume
of the tank by the volume-flow coefficient � 23. The lower constraint is scaled by the parameter asc,i, limiting how far the outflow
can be from the physical limit.

asc,i�iVi ≤ qouti ≤ �iVi (50)
For regular modules with strict control, the value of asc,i is 0.8, while it is 0.95 for the corresponding backflow modules.
For the definition of the modules with respect to the CC- and ECC-MPC, the added constraints introduce two new slack

variables, with more cost terms added to the base module cost from (33), as seen in (51).
JCC,i = J baseCC,i + ���

T
S(s1,i + s2,i) (51)

The module definition of the distribution-based CC-MPC is similar to above, the same formulation as the non-strict counterpart
with the added constraints given by (52)-(54)

asc,i�iE{Vi} + asc,i�i���iΦ−1(
i) − s1,i ≤ qouti ≤ �iE{Vi} − �i���iΦ−1(
i) + s2,i (52)
0 ≤ s2,i ≤ �i���iΦ−1(
i) (53)
0 ≤ s1,i ≤ asc,i�i���iΦ−1(
i) (54)

From the constraints in (55)-(57), the additional constraints to defined the module for ECC-MPC are given, with the quantile
function being dependent on scaled ensembles of dE .

asc,i�iM(qini − qouti − qcsoi ) + Φ−1
asc,i�idEi

(
i) − s1,i ≤ qouti ≤ �iM(qini − qouti − qcsoi ) − Φ−1
−�idEi

(
i) + s2,i (55)
0 ≤ s2,i ≤ Φ−1−�idEi (
i) − E{−�idEi } (56)
0 ≤ s1,i ≤ Φ−1asc,i�idEi (
i) − E{asc,i�idEi } (57)

3.3 Modules - dynamic type
For the modules representing the dynamic tanks no constraints are added, but the control constraint in (38) is replaced with (58),
where the upper limitation now depends on the inflows to the tank.

0 ≤ qouti ≤ qouti + qini + qdini (58)
Given the replacement relies on the uncertain qdin, the definitions for the CC- and ECC-MPC introduce a new slack variable
with a new cost term associated with it

JCC,i = J baseCC,i + ���
T
Ss3,i (59)

The definition for distribution-based CC-MPC is given by (60) and (61), where the prior is the replaced constraint and the later
is an added constraint on the new slack variable.

0 ≤ qouti ≤ qouti + qini + E{qdini } + s3,i −
√
���qdini Φ

−1(
i) (60)
0 ≤ s3,i ≤ √

���qdini Φ
−1(
i) (61)
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Tank j 2 3 4 10 11 15 16 17
Delay(min.) 20 10 4 2 5 20 3 14

TABLE 2 Delays in the Aarhus network17

similarly, the constraints given in (62) and (63), gives the definition for the case of the ECC-MPC.
0 ≤ qouti ≤ qouti + qini − Φ−1−qdin,Ei

(
i) + s3,i (62)
0 ≤ s3,i ≤ Φ−1−qdin,Ei

(
i) − E{−qdin,Ei } (63)

3.4 Modules - connections and operation
With the modules defined, the interconnection between them and specific operation goals can be discussed. The connections
come in two types; backflows and downstream connections.

3.4.1 Backflows
Backflows of a tank i are flows going upstream to the previous tank j inside the outflow pipe. In the two types of backflow
modules, this is formulated as the CSO of the backflow of tank i affecting the outflow constraint of tank j. As seen in (64) for
the general case of (38), but similarly added to other module type variants.

0 ≤ qoutj + qcsoi ≤ qoutj (64)

3.4.2 Downstream Connections
For the downstream connections, one has to consider possible flow delays and multiple sources of outflows and internal CSOs.
The delays in the system can be observed in Table 2 with the tank of origin. For the receiving tank i, the tank inflow is formulated
as (65), where the sets Qc and Qo define which CSO and outflows connect to the tank. While the matricesMΔ andM� define
the delays of the jth outflow.

qini =
∑
j∈Qc

qcsoj +
∑
j∈Qo

(MΔ,jqoutj +M�,jqout�,j ) (65)

MΔ,j =

⎡⎢⎢⎢⎢⎢⎣

0N�,j
0N�,j

…
1 − �q,j �q,j 0 …
0 1 − �q,j �q,j ⋱
⋮ ⋱ ⋱ ⋱
0 0 1 − �q,j �q,j

⎤⎥⎥⎥⎥⎥⎦

∈ HpxHp , M�,j =

⎡⎢⎢⎢⎢⎣

�q,j (1 − �q,j) 0 …
0 ⋱ ⋱ ⋱
⋮ ⋱ �q,j (1 − �q,j)

0Hp−N�,j
0Hp−N�,j

… 0Hp−N�,j

⎤⎥⎥⎥⎥⎦
∈ HpxN�,j+1 (66)

whereN�,j is the number of whole sample delays, �q,j is the remaining fraction of a whole sample, and qout�,j is the delayed flowsfrom the last sample.

3.4.3 Flow Inhibitors
A few of the tanks in the system has features affecting the outflow, which are not described by the general modules discussed
so far. These tanks follow the constraints in (67) instead of (38). The values of the inhibition factor �fac can be seen for each
affected tank in Table 3.

0 ≤ �facqouti ≤ qouti (67)
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Tank 7 21 24 27 29 31
�fac 0.2857 0.5 0.2571 0.5714 0.2 0.5714

TABLE 3 The flow inhibitor factors �fac in the Aarhus network17

3.4.4 Reference
For the operation of the sewer system, there is a desire to keep the outflow of tank 1 at a specific flow rate qref of 0.9 m3∕s, if
possible. Therefore an extra cost and constraints are added to the module for tank 1, defined as

JD,1 = J baseD,1 + ���
T
R(r1 + r2) (68)

−r1 ≤ qout1 − qref ≤ r2 (69)
0 ≤ s4, s5 (70)

where ���R is uniformly valued at 0.01. For the CC-MPCs, the addition is the same.

3.4.5 Spare Volume
For the system, it is desirable that the tanks are not empty. Therefore each tank description is extended with an operational lower
limit to operate at, as given in (71) for a limit at some fraction �b of the maximum volume.

JD,i = J baseD,i + ���
T
B(r3,i) (71)

�bVi − r3,i ≤ Vi (72)
0 ≤ r3,i (73)

where the weight���B is uniformly valued at 0.01, and �b at 0.1. For the CC- and ECC-MPC, this restriction of the lower constraint
is similar to their own probabilistic restriction, and therefore this extra restriction is only considered for the expectation:

�bVi − r3,i ≤ E{Vi} (74)

4 RESULTS-PERFORMANCE

For the evaluation of the ECC-MPC framework, we will compare its performance against the discussed distribution-based CC-
MPC. The deterministic MPC is used as a baseline for the comparison, to give a performance reference. The MPCs will all use
a prediction horizonHp of 20 samples and a sampling time of 300 seconds, giving 100 minutes of prediction. For the ECC- and
CC-MPC, the confidence level 
 of the quantile functions is used as 90% for all quantiles. The ECC-MPC is given an ensemble
forecast of 50 independent rain scenarios, to use for the estimation. The initial volume V0 of each tank is assumed to be known
perfectly and is 1m3 at the start of each simulation. For the simulations, 9 sets of historical weather scenarios from the city of
Aarhus were utilized. In Fig. 3, the temporal evolution of the rain events is shown, clarifying the duration of the event and its
intensities in m3∕s. Likewise in Fig. 4, the spatial distribution of the rain inflow is shown, quantifying the amount of volume m3
each tank has received per event.

4.1 Distribution estimation approach
In the simulations, the estimation approach utilizedby the ECC-MPC is the Pearson’s �2 goodness of fit test mentioned earlier. In
this work, only two distributions have been tested for during the simulations, Normal and Uniform distributions, but could easily
be extended to other well-known distributions. The uniform distribution was used as the fallback strategy, in case of estimation
failure.While each probabilistic constraint is scalar, the estimation procedure used has assumed that the quantile functions within
one specific module follows the same type of distribution (normal, uniform, etc.), and has estimated them simultaneous.
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FIGURE 3 weather scenarios, temporal FIGURE 4 weather scenarios, spatial

Simulation Nr. 1 2 3 4 5 6 7 8 9 10 11 12
Uncertainty Bounds � 0.5 0.5 0.5 0.5 0.5 0.1 0.25 0.75 1 0.5 0.5 0.5

Scaled Bias a 0.8 0.9 1 1.1 1.2 1 1 1 1 1 1 1
Offset Bias b 0 0 0 0 0 0 0 0 0 0.005 0.01 0.1

TABLE 4 The sizes of the different types of forecast uncertainty introduced in each of the 12 simulation scenarios

4.2 Test Scenarios
In order to evaluate the performance of the controllers, three different types of uncertainties were introduced into the rain forecast
f utilized by the ECC- and CC-MPC, while the deterministic MPC is given the correct rain forecast f0. The three types of
forecast uncertainty are:

• forecast’s uncertainty bound, f ∈ E{f} ± 3�f
• scaled bias of the forecast expectation, E{f} = af0
• offset bias of the forecast expectation, E{f} = f0 + b

where the variance term �f is given by �f = �
3
f0. Each type of uncertainty was given a default setting, such that only one

type of uncertainty was being varied from simulation to simulation. In Table 4, each used combination of the three uncertainty
types is shown. The default values are � = 0.5, a = 1.0 and b = 0.0 respectively. For the simulations, the uncertainty added to
the rain forecast was truncated normal distributed, in accordance with the three types of uncertainties discussed. In Fig. 5, the
total CSO per event is shown for the default simulation scenario. It can be seen that both ECC- and CC-MPC are comparable in
performance for the default simulation. While they both perform worse than MPC for the middle-sized events, and comparable
to for small and large events, corresponding to a low loaded system and a saturated system respectively.

4.3 Performance: Uncertainty Bounds
By varying the bounds of the uncertainty on the utilized forecasts, the effects on the controller can be evaluated. This allows
us to evaluate the reliance on the certainty of the forecast. Considering the outflow of the system, we can see from Fig. 6, that
the ECC-MPC operate comparably similar to CC-MPC, while providing larger outflows than MPC for the middle-sized events.
Furthermore, the effects of varying the bounds appear to have only a slight effect on the performances of both ECC- and CC-
MPC, with outflow generally increases as bound is increased. When focusing on the performance in the context of CSO, we
have both the total CSO volume and the external CSO volume to consider. Shown for both ECC- and CC-MPC in Fig. 7 and Fig.
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FIGURE 5 Total CSO Volume
FIGURE 6 Total outflow with MPC as the baseline; for
variations in uncertainty bounds

8 respectively, as percentage improvement in comparison to MPC performance. From the external CSO, we can observe clear
improvements for both CC-MPCs, with a slight trend for high bounds to perform better as the event size increases. The general
performance between ECC- and CC-MPC is comparable but not identical. From the total CSO, it can be seen that the price
of improving the external CSO is generally a great increase in the internal CSO, rerouting the water internally leading to the
observed increase in the outflow. It can further be seen that the external CSO improvement is very reliant on the spatial/temporal
distribution of the rain inflow, while the total CSO only seems to depend on the event size.

4.4 Performance: Scaled Bias
In practical applications, biases are natural to expect in the expected forecast of the distribution or ensemble. The ECC- and
CC-MPC’s performances under a constant scaling bias is evaluated in Fig. 9 and Fig. 10, for the total CSO and external CSO
respectively. It can be seen that the general performance across events matches the performance discussed previously, with
improvement in external CSO volume, at the cost of increased total CSO. The ECC- and CC-MPC are still comparable in their
performance. With regard to the scaling bias, the CSO improvement has no general trend, with the exception of events with
smaller percentage improvements, who shows a slight benefit of overestimating the rain forecast. From Fig. 11, the performance
in the outflow volume is shown. Again, the performances are similar between the CC-MPCs and with larger outflow than the
MPC.

4.5 Performance: Offset Bias
Now considering the bias on the expectation of the forecast is a constant offset bias instead of a scaling bias. The total outflow
volume with offset biases can be observed in Fig. 12. While the performance of the ECC-MPC are comparable to that of CC-
MPC; they both have a clear reliance on the bias with the outflow increasing as the bias increases. The same reliance can be
seen about the improvement in CSO from Fig. 13 and Fig. 14 for total and external CSO respectively. For the external CSO, the
improvements show a general reliance on the bias, in the sense that the improvement drops as the bias increases; to the point of
the largest bias results in a deterioration of performance.
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FIGURE 7 Total CSO improvement in percentages
with MPC as the baseline, positive percentages
representing a reduction in CSO

FIGURE 8 External CSO improvement in percentages with
MPC as the baseline, positive percentages representing a
reduction in CSO

FIGURE 9 Total CSO improvement in percentages
with MPC as the baseline, positive percentages
representing a reduction in CSO

FIGURE 10 External CSO improvement in percentages with
MPC as the baseline, positive percentages representing a
reduction in CSO

4.6 Reflections on the Results
The performances of both ECC- and CC-MPC show that constant offset bias is the predominant influence on their performance.
While the performances appear to be less variant of the bound on the uncertainty and scaled biases. A reason for this can be
the size of the scale bias is within the uncertainty bound, and that the simulations on uncertainty bound utilizes an expectation
equal to the correct forecast, only resulting in more conservative solutions. While the larger offset bias might shift the correct
forecast outside the bounds of the forecasts of both the ECC- and CC-MPC.
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FIGURE 11 Total outflow with MPC as the baseline;
for variations in scaling bias

FIGURE 12 Total outflow with MPC as the baseline; for
variations in offset bias

FIGURE 13 Total CSO improvement in percentages
with MPC as the baseline, positive percentages
representing a reduction in CSO

FIGURE 14 External CSO improvement in percentages with
MPC as the baseline, positive percentages representing a
reduction in CSO

In all of the simulations, the performance of both CC-MPC and ECC-MPC were comparable, but not identical to each other.
This gives a good suggestion that the proposed framework should perform similar to CC-MPC at more complex system setups
than linear system with normal distributed uncertainty.
Lastly a small but curious result can be observed in the general performance of both ECC- and CC-MPC w.r.t. the external

CSO. The CC- and ECC-MPC perform better than the baseline MPC with a perfect forecast. While this can seem unlogical
given the MPC should find the optimal solution, this is a consequence of using a finite prediction horizon. It is due to the forecast
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not including the whole rain event, and is an intrinsic trade-off of all types of MPC; future information can change the optimum
trajectory. Stated more practically, the MPC finds the optimal solution within the finite horizon, while CC-, and ECC- MPC
finds more conservative solutions. This can results in an initial state of the next time step’s optimization that is at times more
favorable in the long term.

5 CONCLUSIONS

In this paper, we have suggested a framework for handling propagation of uncertainty distributions in chance-constrained(CC)
model predictive control (MPC) based on ensemble forecasts and distribution estimation. The ensemble-based CC-MPC frame-
work (ECC-MPC) have been evaluated by simulations on a model of the sewer network of Aarhus, Denmark, and compared in
performance with the performance of CC-MPC.
The simulations utilized linear models with normal distrubted forecast uncertainty, to produce a setup where both CC-MPC

and ECC-MPC could easily be computed. For this particular system setup, it was found that CC-MPC and the ECC-MPC were
comparable in their performances, and even shown the same responses to different changes in aspects of the uncertainties, such
as expectation biases and bounds. The aspect of uncertainty which had most effect on ECC- and CC-MPC were found to be
offset biases, while they were less sensitive to changes in scalling biases and uncertainty bounds.
Based on the comparable performances of the simple setup of this work, we can conclude that the ECC-MPC framework

should be a suitable alternative approach to CC-MPC for more complex scenarios of distribution propagation of nonlinear
models and/or non-normal distributed additive uncertainties.
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