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Abstract: Accurate estimates of extreme precipitation events play an important role in climate change
studies and natural disaster risk assessments. This study aimed to evaluate the capability of the China
Meteorological Forcing Dataset (CMFD), Asian Precipitation-Highly Resolved Observational Data
Integration Towards Evaluation of Water Resources (APHRODITE), and Climate Hazards Group
Infrared Precipitation with Station data (CHIRPS) to detect the spatiotemporal patterns of extreme
precipitation events over the Qinghai-Tibet Plateau (QTP) in China, from 1981 to 2014. Compared
to the gauge-based precipitation dataset obtained from 101 stations across the region, 12 indices of
extreme precipitation were employed and classified into three categories: fixed threshold, station-
related threshold, and non-threshold indices. Correlation coefficient (CC), root mean square error
(RMSE), mean absolute error (MAE), and Kling–Gupta efficiency (KGE), were used to assess the
accuracy of extreme precipitation estimation; indices including probability of detection (POD), false
alarm ratio (FAR), and critical success index (CSI) were adopted to evaluate the ability of gridded
products’ to detect rain occurrences. The results indicated that all three gridded datasets showed
acceptable representation of the extreme precipitation events over the QTP. CMFD and APHRODITE
tended to slightly underestimate extreme precipitation indices (except for consecutive wet days),
whereas CHIRPS overestimated most indices. Overall, CMFD outperformed the other datasets for
capturing the spatiotemporal pattern of most extreme precipitation indices over the QTP. Although
CHIRPS had lower levels of accuracy, the generated data had a higher spatial resolution, and with
correction, it may be considered for small-scale studies in future research.

Keywords: CMFD; APHRODITE; CHIRPS; extreme precipitation; Qinghai-Tibet Plateau

1. Introduction

Extreme precipitation events are associated with natural flooding disasters that have
devastating impacts on the infrastructure, local economies, and human lives [1,2]. As a
region sensitive to climate change, the Qinghai-Tibet Plateau (QTP) is particularly prone
to natural hazards, such as debris flow from landslides, flash floods, and glacial lake
outburst floods [3,4]. Precipitation plays a central role in the cryosphere and climate;
however, there is limited relevant research on this because of the scarcity of conventional
meteorological data. Thus, high quality and gridded precipitation datasets are vital for the
concerted effort on drought monitoring, extreme climate analyses, and natural hazard risk
assessments [5–7].

In recent decades, extensive studies have been conducted to evaluate the performance
of precipitation products at the local and regional scales. For example, the assessment
of gridded precipitation products such as Multi-Source Weighted-Ensemble Precipitation
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(MSWEP) and Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)
in mainland China [5,8], and across the entirety of the QTP [9]; China Meteorological
Forcing Dataset (CMFD), Tropical Rainfall Measuring Mission (TRMM), and CHIRPS in the
QTP [10]; Asian Precipitation-Highly Resolved Observational Data Integration Towards
Evaluation of Water Resources (APHRODITE), Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN-
CDR), and CHIRPS in the QTP [11]; TRMM and Integrated Multi-satellite Retrievals for
GPM (IMERG) over the QTP [12] and Hexi Corridor [13]; Climate Prediction Center’s
morphing technique (CMORPH) over the QTP [14]. The overall results showed that
there are distinct differences and biases between rain-gauge networks. Furthermore, the
regions characterized by complex topography, precipitation estimates can be associated
with significant error, because of high spatiotemporal variability and uncertainty controlled
by the orography [15–17].

The accuracy evaluation of extreme precipitation events derived from gridded precip-
itation products are crucial for flood and drought monitoring, especially in the relatively
sparse rain-gauge network areas [18]. These products are particularly important in complex
topography, where rain gauges are generally distributed in lowlands, thus the precipitation
occurring in highlands is underrepresented. For these regions, satellite-based precipitation
(SBP) products may be the only source to fill this important data gap. [16]. Currently,
several studies on assessing extreme precipitation events using gridded products on a
regional scale are available in the literature, such as the reports on the United States [19],
Brazilian Amazonia [20], Sub-Saharan Africa [21], Southeast Asia [22], China [23,24], the
Loess Plateau [25], and the three-rivers headwater region of China [26]. In summary, the
accuracy of extreme precipitation products varies with regions, and spatiotemporal scales.
However, extreme precipitation evaluations are lacking in the QTP. Thus, three long-term
gridded precipitation datasets were considered in this study—CMFD, APHRODITE, and
CHIRPS 2.0. The main reasons we chose these three precipitation datasets were that (1) all
have high spatial resolution (0.05 ~ 0.25◦); (2) all provide daily precipitation records up
to 30 years which could greatly improve the accuracy of extreme precipitation prediction;
(3) according to previous studies [9–11], these three datasets have different performance
advantages with regard to the study on QTP.

In this study, we compared 12 indices of extreme precipitation to the results of annual
precipitation scales based on the three gridded products and 101 rain-gauge stations over
the QTP. This study aimed to evaluate the accuracy and applicability of the gridded prod-
ucts for characterizing extreme precipitation events over the entire QTP and to determine
whether these products are suitable for long-term monitoring of extreme precipitation
events in the QTP. This paper is structured as follows: a brief introduction of the QTP;
methods and data are presented in Section 2; Section 3 contains the results and discussion
of the findings, including the evaluation results of the rainfall extremes from the different
datasets at the monthly and annual scales; conclusions are presented in Section 4.

2. Data and Methods
2.1. Study Area

As the highest geomorphic unit on the earth, the QTP is known as the ‘roof of the
world’ (Figure 1). It is located in southwestern China (25–40◦ N, 73–104◦ E), with an area
size of approximately 2.57× 106 km2 and an average elevation of >4000 m, characterized by
a terrain that slopes from NW to SE and consists of a series of high mountains and plateaus.
The mountain ranges primarily include the Himalayas, Kunlun, Tanggula, Qilian, and
Hengduan mountains. The plateaus are dominated by the Qiangtang, Qingnan, and the
Northwest Sichuan plateaus, inlaid with Qaidam, Qinghai Lake, and other inland basins.
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Figure 1. Elevation and the location of nine secondary climate systems of QTP.

QTP has a typical plateau climate system due to its unique topography, with the
region’s constantly lowest temperature across its latitude. The average annual temperature
of QTP is −5.75–2.57 ◦C, characterized by large daily temperature variability and small
annual temperature range. Annual precipitation in most areas of the plateau ranges from
200 to 500 mm, with a decreasing pattern from southeast to northwest and a spatial pattern
that is seasonally distributed. The area with the lowest annual precipitation is the NW
Qaidam basin, and the highest precipitation levels are seen in the Yarlung Zangbo Grand
Canyon area, and the southeast edge of the plateau. Total plateau lake area in the QTP
is 3.1 × 104 km2 which is the reason QTP is also called the ‘Water Tower of Asia’, as the
source of many major rivers, including the Yangtze, Lancang, and Brahmaputra.

Due to the difference of thermal and moisture indices, seven climatic systems are
classified as first-level climatic systems in mainland of China by the China Meteorolog-
ical Administration (CMA). Moreover, according to the topography characteristics and
administrative division and differentiation, the first-level climatic systems are divided into
32 secondary sub-systems. The QTP belongs to the plateau climate system (first level)
and consists of nine sub-systems (second level), including Qilian-qinghai Lake (I), Bomi-
chuanxi (II), Tsaidam (III), Qingnan (IV), Changdu (V), Dawang-chayu (VI), Zangbei (VII),
Zangzhong (VIII) and Zangnan (IX) [9] (Figure 1).

2.2. On-Site Meteorological Data

QTP daily precipitation data for the period of 1981–2014 recorded by 101 meteoro-
logical stations were obtained from the China Meteorological Administration (CMA;
http://data.cma.cn/) (accessed 20 June 2021). Data quality was strictly controlled by the
National Meteorological Information Center of China, whereby data of extreme values and
consistency were accepted or rejected upon verification [27]. Locations of the meteorolog-
ical stations are presented in Figure 1 (geographic coordinates are listed in Appendix A
Table A1). Notably, meteorological stations are mainly concentrated in the eastern and
southern parts of QTP and are scarce in the northwest region of the plateau.

http://data.cma.cn/
http://data.cma.cn/
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2.3. Gridded Precipitation Datasets
2.3.1. CMFD

The CMFD was developed by the Institute of Tibetan Plateau Research at the Chi-
nese Academy of Science. It is the first high spatiotemporal resolution meteorologi-
cal forcing dataset for land process studies in China (http://data.tpdc.ac.cn) (accessed
20 June 2021) [28]. Composite data were derived from the fusion of remote sensing prod-
ucts (GEWEX-SRB, GLDAS, and TRMM 3B42 precipitation datasets), Princeton reanalysis
datasets, and in-situ station data at a spatial resolution of 0.1◦ every three hours, from
January 1979 to December 2018. In particular, three background field datasets (TRMM 3B42,
GLDAS NOAH10SUBP 3H, and GLDAS NOAH025 3H) were combined to generate the
precipitation data. The CMFD dataset was created by using an ANU-Spline interpolation
algorithm that takes into account the difference or ratio between the station data and the
background field datasets. Owing to its long temporal coverage and high spatial resolution,
CMFD has become one of the most widely used meteorological datasets in China [10,29].
The daily precipitation gridded products for 1981–2014 were used in this study.

2.3.2. APHRODITE

APHRODITE’s water resources project, in cooperation with the Research Institute
for Humanity and Nature (RIHN) of Japan, has compiled a gridded daily product from
1951 to 2015 at a relatively high spatial resolution (0.25◦ and 0.5◦), across the entirety of
Asia. The dataset is primarily generated by an improved angular distance-weighting
(ADW) method using a dense network of 5000–12,000 rain gauges throughout Asia
(http://aphrodite.st.hirosaki-u.ac.jp/) (accessed 20 June 2021) [30]. The interpolation of
rain-gauge data to gridded dataset was employed to indicate the ratio of daily precipitation
to daily climatology by using a Sphere map scheme that takes into account the daily varia-
tion weighting based on the precipitation distribution. For this study, APHRO_MA_V1101
daily precipitation data for 1981–2014 were evaluated at a 0.25◦ spatial resolution.

2.3.3. CHIRPS

Developed by the UC Santa Barbara Climate Hazards Group, CHIRPS is >35 year old
quasi-global rainfall dataset obtained from a combined gauge, satellite, and (re)analysis
approach. Its daily datasets span from 1981 to near-present, with a very high spatial
resolution (0.05◦ and 0.25◦) and coverage (50◦ S–50◦ N, 180◦ W–180◦ E; http://chc.ucsb.
edu/data/chirps) (accessed 20 June 2021). CHIRPS uses infrared cold cloud duration (CCD)
data calibrated with TRMM data to generate the pentadal precipitation estimate, by which
the disaggregated data for daily CCD is generated by using the coupled forecast system
data with a simple proportional method [31]. In this study, CHIRPS daily precipitation
data from 1981 to 2014 were evaluated at a 0.05◦ resolution.

To analyze the extreme precipitation indices for the QTP region, all three gridded
datasets were compared to the observational dataset. Table 1 presents a summary of the
three gridded precipitation products used in the present study.

Table 1. Overview of the three gridded precipitation datasets analyzed.

Datasets Time-Span Resolution Data Source(s) References

CMFD 1979–2018 0.1◦/3 h Gauge, satellite
reanalysis [28]

APHRODITE
(APHRO_MA_V1101) 1951–2015 0.25◦/daily Gauge [30]

CHIRPS 1981–present 0.05◦/daily Gauge, satellite
reanalysis [31]

http://data.tpdc.ac.cn
http://aphrodite.st.hirosaki-u.ac.jp/
http://chc.ucsb.edu/data/chirps
http://chc.ucsb.edu/data/chirps
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2.4. Methodology
2.4.1. Extraction of the Gridded Data

To obtain the gridded data from the weather stations, netCDF Operators (NCO), a
suite of programs known as ’operators’ were used for data interpolation into a specified
coordinate point (http://nco.sourceforge.net/) (accessed 20 June 2021). The operators
were primarily designed to aid manipulation and analysis of gridded and unstructured
data. Data were extracted by using the nearest neighbor algorithm and implemented in the
netCDF Kitchen Sink operator.

2.4.2. Index Calculations

A total of 12 extreme precipitation indices were used in this study, as recommended
by the Expert Team on Climate Change Detection and Indices [32–34], and they were
subsequently categorized into three groups: fixed threshold, station-related threshold,
and non-threshold indices [35]. For fixed threshold indices, the number of precipitation
occurrences for each index is calculated by a fixed threshold; for example, CWD and
R20mm indicate the number of days when precipitation exceeds 1 and 20 mm, respectively.
However, for station-related threshold indices, the precipitation values for each site will
be different. For instance, the 95th and 99th percentile values of annual precipitation
for each station that will vary differently. The non-threshold indices are the last group
of extreme indices. There is no need to adopt any thresholds to the data to calculate
these indices. Extreme indices such as Rx1day, Rx5day, SDII and PRCPTOT are classified
into this group. All 12 indices were calculated by using the ClimPACT2 software (https:
//github.com/ARCCSS-extremes/climpact2/) (accessed 20 June 2021), and the details
of these extreme precipitation indices are displayed in Table 2. As the four datasets with
different temporal resolutions, extreme precipitation indices were computed by arithmetic
average method with 101 stations in time series, respectively.

2.4.3. Statistical Analysis

To evaluate the performance of gridded precipitation products in estimating extreme
rainfall indices, a point-to-pixel evaluation was carried out at each rain-gauge station in
the QTP. Four commonly used metrics, correlation coefficient (CC), root mean square error
(RMSE), mean absolute error (MAE), and Kling–Gupa efficiency (KGE score) were adopted
for extreme precipitation assessment (Table 3). In addition, three widely used categorical
indexes, probability of detection (POD), false alarm ratio (FAR), and critical success index
(CSI) were also applied for extreme precipitation event detection.

Based on the formula, the gridded datasets and rain-gauge data are represented by
Gi and Oi, respectively, where i is the index of the station or gridded precipitation data,
and n is the total number of stations or gridded precipitation data, CV is the coefficient of
variation, and bars on variables means the average values. H means precipitation event
that was detected to occur and observed to occur, and M means precipitation event that
was not detected to occur but still observed to occur, F means precipitation event that was
detected to occur but not observed to occur.

http://nco.sourceforge.net/
https://github.com/ARCCSS-extremes/climpact2/
https://github.com/ARCCSS-extremes/climpact2/
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Table 2. Precipitation indices used in this study.

Index Descriptive Name Definition Unit

Fixed threshold indices CDD Consecutive dry days Maximum number of consecutive dry days
(when precipitation < 1.0 mm) day

CWD Consecutive wet days Maximum annual number of consecutive wet
days (when precipitation > 1.0 mm) day

R10mm Number of heavy rain days Number of days when precipitation > 10 mm day

R20mm Number of very heavy rain days Number of days when precipitation > 20 mm day

Station-related
threshold indices R95p Total annual precipitation from

heavy rain days
Annual sum of daily precipitation > 95th

percentile mm

R99p Total annual precipitation from
very heavy rain days

Annual sum of daily precipitation > 99th
percentile mm

R95pTOT Contribution from very wet days 100*R95p/PRCPTOT %

R99pTOT Contribution from extremely wet
days 100*R99p/PRCPTOT %

Non-threshold indices PRCPTOT Annual total wet day
precipitation Sum of daily precipitation > 1.0 mm mm

Rx1day Maximum 1-day precipitation Maximum 1-day precipitation total mm

Rx5day Maximum 5-day precipitation Maximum 5-day precipitation total mm

SDII Daily precipitation n intensity
Annual total precipitation divided by the

number of wet days (when total
PR > 1.0 mm)

mm/day

Table 3. Statistical metrics used in the study.

Statistics Formula Value Range Perfect Value

Correlation coefficient (CC) CC =
∑(Gi−G)(Oi−O)√

∑(Gi−G)
2

∑(Oi−G)
2

[−1, 1] 1

Root mean square error (RMSE) RMSE =

√
1
n

n
∑

i=1
(Oi − Gi)

2 [0, +∞) 0

Mean absolute error (MAE)

KGE score

MAE = 1
n

n
∑

i=1
|Pi −Oi|

1−√
(CC− 1)2 + (x− 1)2 + (y− 1)2

where x = G/O , y =CVG/CVO

[0, +∞)

(−∞,1]

0

1

The probability of
detection (POD)

The ratio false alarm (FAR)

Critical success index (CSI)

POD = H
H+M

FAR = F
H+F

CSI = H
H+M+F

[0, 1]

[0, 1]

[0, 1]

1

0

1

3. Results
3.1. Spatial Evaluation

Initial result analyses were performed to examine the alignment between the indices
of extreme rainfall and the gauge-based data, of which Taylor diagrams corresponding to
the 12 matched groups are presented below.

3.1.1. Fixed Threshold Indices

Figure 2 presents the performance of the four datasets—gauges (OBS), CMFD, APHRODITE,
and CHIRPS—in capturing the fixed threshold indices consecutive dry days (daily precipi-
tation < 1 mm, CDD), consecutive wet days (daily precipitation ≥ 1 mm, CWD), number of
days with precipitation≥ 10 mm (R10mm), and number of days with precipitation ≥ 20 mm
(R20mm).
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Figure 2. Mean spatial distribution of fixed threshold indices from 1981 to 2014: CDD, CWD, R10mm, and R20mm.

Generally, the three gridded products showed variable spatial distribution, and over-
estimated CDD (Figure 2a–d) with correlation coefficients of 0.85, 0.78, and 0.37, RMSE
values of 27.55, 31.86, and 56.56 days, MAE values of 16.69, 20.68, and 54.12 days, and KGE
scores of 0.82, 0.77, and 0.30 for CMFD, APHRODITE, and CHIRPS, respectively (Figure 3a,
Figure 4, Appendix A Table A2). Spatial patterns of CC for CDD are shown in Figure 5a–c,
and the findings suggested that CMFD was the most accurate dataset examined. Spatial
patterns of RMSE and MAE for CDD are shown in Figures 6a–c and 7a–c. The RMSE and
MAE values of CHIRPS were significantly larger than that of the other indices, and with
lower accuracy in the southern and northern parts of QTP for all three datasets.
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CWD analyses indicated that all three products failed to accurately capture this pattern
(Figure 2e–h, Figure 5d–f). In general, CMFD and APHRODITE overestimated CWD over
the entire QTP, whereas CHIRPS underestimated this index. The correlation coefficients
were 0.67, 0.64, and 0.38, RMSE values were 4.04, 5.67, and 3.52 days, MAE values were
2.87, 6.07, and 3.17 days, and KGE scores were 0.53, 0.21, and 0.31 for CMFD, APHRODITE,
and CHIRPS, respectively (Figure 3b, Figure 4, Appendix A Table A2). Spatial patterns
of RMSE and MAE for CWD are displayed in Figures 6d–f and 7d–f. Contrary to CC, the
RMSE and MAE values of CHIRPS were the lowest among the three datasets.

Analysis of R10mm suggested that the three products were of equal performance
(Figure 2i–l). Both CMFD and APHRODITE slightly underestimated R10mm across all
stations, whereas CHIRPS tended to overestimate this index. The correlation coefficients
were 0.94, 0.85, and 0.72, RMSE values were 3.07, 3.99, and 7.26 days, MAE values were
2.69, 5.79, and 5.99 days, and KGE scores were 0.81, 0.49, and 0.54 for CMFD, APHRODITE,
and CHIRPS, respectively (Figure 3c, Figure 4, Appendix A Table A2). CC spatial patterns
for R10mm are shown in Figure 5g–i, and spatial patterns of RMSE and MAE values are
shown in Figures 6g–i and 7g–i. Observed errors were larger in Bomi-chuanxi (II) and
Dawang-chayu (VI) based on APHRODITE and CHIRPS.
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Figure 6. RMSE for gauge-based fixed threshold indices CDD, CWD, R10mm, and R20mm, as
derived from CMFD, APHRODITE, and CHIRPS for the period 1981–2014.

The R20mm findings suggested that the spatial values derived from the three gridded
products were in accordance with OBS data (Figure 2m–p). Correlation coefficients were
0.90, 0.75, and 0.57, RMSE values were 1.44, 1.25, and 4.42 days, MAE values were 1.19,
2.32, and 3.55 days, and KGE scores were 0.59, 0.36, and 0.22 for CMFD, APHRODITE, and
CHIRPS, respectively (Figure 3d, Figure 4, Appendix A Table A2). Spatial patterns of CC,
RMSE and MAE are displayed in Figure 5j–l, Figures 6j–l and 7j–l, respectively. CMFD and
APHRODITE performed similarly well when assessing this index.

3.1.2. Station-Related Threshold Indices

The mean spatial distribution of four station-related threshold indices including
the annual sum of daily precipitation >95th percentile (R95p), >99th percentile (R99p),
contribution from very wet days (R95pTOT), and contribution from extremely wet days
(R99pTOT) are displayed in Figure 8. Spatial agreement analysis further revealed that the
four indices were in accordance with OBS data; however, CMFD and APHRODITE slightly
underestimated these indices in most of the QTP, and CHIRPS indices were overestimated
for the entirety of the region analyzed.
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Figure 7. MAE for gauge-based fixed threshold indices CDD, CWD, R10mm, and R20mm, as derived
from CMFD, APHRODITE, and CHIRPS for the period 1981–2014.

Index results for R95p are displayed in Figure 9a, Figure 10, and Appendix A Table A2.
Correlation coefficients were 0.88, 0.77, and 0.46, RMSE values of 37.19, 40.63, and 73.47 mm,
MAE values of 25.87, 35.05, and 59.56 mm, and KGE scores of 0.87, 0.72, and 0.46 for CMFD,
APHRODITE, and CHIRPS, respectively. Spatial patterns of CC for R95p are shown in
Figure 11a–c, indicating that CMFD had consistently maintained the highest levels of
accuracy, followed by APHRODITE and CHIRPS. Spatial patterns of RMSE and MAE are
shown in Figures 12a–c and 13a–c, indicating that the RMSE and MAE values of CMFD
were the smallest, followed by those of APHRODITE and CHIRPS.

Results for the indexes of R99p, R95PTOT, and R99PTOT are displayed in Figure 8b–d,
indicating that the three products could not be used to depict the indices accurately.
Correlation coefficients for R99p, R95PTOT, and R99PTOT were <0.73, 0.73, 0.64, for CMFD,
APHRODITE, and CHIRPS, respectively (Figure 9d–l). CMFD and APHRODITE accounted
for 70% of the total stations where the CC values were lower than 0.7. Additionally, CC
values of the 101 stations were all lower than 0.7 for CHIRPS. Spatial patterns of RMSE
and MAE values for R99p, R95PTOT, and R99PTOT are shown in Figures 10d–l and 11d–l,
indicating again that CMFD was the most accurate, followed by APHRODITE and CHIRPS;
errors for all three datasets peaked for the Zangnan (IX), Dawang-chayu (VI) and Qinlian-
Qinghai Lake (I) of the QTP.
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Figure 9. Taylor diagrams indicating correlation coefficients, standard deviation, and RMSE of
R95p, R99p, R95pTOT, and R99pTOT indices from 1981 to 2014. (A) CMFD, (B) APHRODITE, and
(C) CHIRPS. The radial coordinate (y axis) represents the magnitude of standard deviation, concentric
semicircles represent RMSE, and the angular coordinate represents the correlation coefficient.
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Figure 10. Boxplots of the mean absolute error (MAE) for gauge-based station threshold indices
R95p, R99p, R95pTOT, and R99pTOT, as derived from CMFD, APHRODITE, and CHIRPS at 101 rain
gauges. Five lines from bottom to top for one box represent minimum value, 25th percentile, 50th
percentile, 75th percentile, and maximum value, respectively. The quadrate inside the box represents
the mean values. The asterisks represent several possible alternative values.
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Figure 11. Correlations between gauge-based station threshold indices R95p, R99p, R95pTOT, and
R99pTOT, as derived from CMFD, APHRODITE, and CHIRPS for the period 1981–2014.

3.1.3. Non-Threshold Indices

The mean spatial distribution of the four non-threshold indices, including total precip-
itation (PRCPTOT), maximum annual one day precipitation (Rx1day), maximum annual
5-day precipitation (Rx5day), and simple daily intensity index (SDII), are displayed in
Figure 14.

Analysis of PRCPTOT revealed the variability among the three gridded products
(Figure 14a–d). Both CMFD and APHRODITE datasets underestimated PRCPTOT at
stations 85 and 86, respectively, with an average underestimation of 15.92 and 55.42 mm,
respectively. CHIRPS overestimated this index for 70 of the 101 stations with an average
value of 93.76 mm. Correlation coefficients were 0.98, 0.95, and 0.78, RMSE values were
50.2, 68.53, and 167.17 mm, MAE values were 25.41, 60.28, and 108.33 mm, and KGE scores
were 0.97, 0.87, and 0.75 for CMFD, APHRODITE, and CHIRPS, respectively (Figure 15a,
Figure 16 and Appendix A Table A2). Spatial patterns of CC, RMSE and MAE for PRCPTOT
can be seen in Figure 17a–c, Figures 18a–c and 19a–c, respectively, demonstrating that all
three gridded products predicted this index well. RMSE and MAE values of CHIRPS were
larger than that of the other two datasets, and the accuracy of all three datasets was lowest
in the Zangnan (IX) and Dawang-chayu (VI) of the QTP.



Remote Sens. 2021, 13, 3010 15 of 28Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 29 
 

 

 

Figure 12. RMSE for gauge-based station threshold indices R95p, R99p, R95pTOT, and R99pTOT as 

derived from CMFD, APHRODITE, and CHIRPS for the period 1981–2014. 

Figure 12. RMSE for gauge-based station threshold indices R95p, R99p, R95pTOT, and R99pTOT as
derived from CMFD, APHRODITE, and CHIRPS for the period 1981–2014.

Analysis of Rx1day highlighted the different patterns of each gridded product (Figure 14e–h).
In general, CMFD and APHRODITE underestimated Rx1day over the entire QTP by an
average amount of 3.23 and 10.35 mm, respectively; whereas CHIRPS overestimated the
index by an average value of 16.90 mm. Correlation coefficients were 0.88, 0.77, and 0.51,
RMSE values were 6.37, 5.60, and 18.34 mm, MAE values were 5.08, 10.38, and 17.71 mm,
KGE scores were 0.53, 0.21, and 0.31 for CMFD, APHRODITE, and CHIRPS, respectively
(Figure 15b, Figure 16 and Appendix A Table A2). Spatial patterns of CC are shown in
Figure 17d–f, indicating that CMFD outperformed the other indices. Spatial patterns of
RMSE and MAE for Rx1day are shown in Figures 18d–f and 19d–f and are identical to
the patterns of CCs. The overall accuracy was lowest in the Qilian-qinghai Lake (I) and
Bomi-chuanxi (II) of the QTP for all three products.

The spatial patterns of Rx5day are displayed in Figure 14i–l, indicating results that
are similar to Rx1day, whereas CMFD and APHRODITE underestimated index values by
3.56 and 13.98 mm, respectively, and CHIRPS overestimated them by 17.97 mm. Correlation
coefficients were 0.95, 0.87, and 0.61, RMSE values were 8.99, 9.77, and 27.40 mm, MAE
values were 6.14, 14.43, and 21.19 mm, KGE scores were 0.92, 0.72, and 0.56 for CMFD,
APHRODITE, and CHIRPS, respectively (Figure 15c, Figure 16 and Appendix A Table A2).
Spatial patterns of CC for Rx5day are displayed in Figure 17g–i, RMSE and MAE patterns
are displayed in Figures 18g–i and 19g–i .
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Figure 13. MAE for gauge-based station threshold indices R95p, R99p, R95pTOT, and R99pTOT as
derived from CMFD, APHRODITE, and CHIRPS for the period 1981–2014.

Spatial distribution of SDII can be seen in Figure 14m–p, indicating that both CMFD
and APHRODITE yielded slightly underestimated results by an average of 0.82 and
1.61 mm/day, respectively. CHIRPS showed a pattern of strong overestimation for SDII,
by an average value of 3.87 mm/day. Correlation coefficients were 0.89, 0.80, and 0.58,
RMSE values were 0.62, 0.62, and 2.75 mm, MAE values were 0.85, 1.62, and 3.80 mm,
KGE scores were 0.82, 0.67, and 0.46 for CMFD, APHRODITE, and CHIRPS, respectively
(Figure 15d, Figure 16 and Appendix A Table A2). Spatial patterns of CC, RMSE, and
MAE for SDII indicated that CMFD and APHRODITE outperformed CHIRPS (Figure 17j–l,
Figures 18j–l and 19j–l).

3.2. Temporal Evaluation

The second overarching question addressed was the temporal agreement between
the three gridded and OBS datasets across the entire study area. Accordingly, annual time
series were generated for each of the four datasets over the study area. Figure 20 shows the
mean annual rainfall indices for all 101 rain-gauge stations in the QTP.
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Figure 15. Taylor diagrams indicating correlation coefficients, standard deviation, and RMSE of
PRCPTOT, Rx1day, Rx5day, and SDII indices from 1981 to 2014. (A) CMFD, (B) APHRODITE, and
(C) CHIRPS. The radial coordinate (y axis) represents the magnitude of standard deviation, concentric
semicircles represent RMSE, and the angular coordinate represents the correlation coefficient.
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Figure 16. Boxplots of the mean absolute error (MAE) for gauge-based non-threshold indices
PRCPTOT, Rx1day, Rx5day, and SDII, as derived from CMFD, APHRODITE, and CHIRPS at 101 rain
gauges. Five lines from bottom to top for one box represent minimum value, 25th percentile, 50th
percentile, 75th percentile, and maximum value, respectively. The quadrate inside the box represents
the mean values. The asterisks represent several possible alternative values.
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Figure 17. Correlations between gauge-based non-threshold indices PRCPTOT, Rx1day, Rx5day, and
SDII, as derived from CMFD, APHRODITE, and CHIRPS from 1981 to 2014.

CMFD produced the most accurate results for PRCPTOT, while both CMFD and
APHRODITE overestimated the CWD, and underestimated R10mm, R20mm, Rx1day,
Rx5day, PRCPTOT, and SDII. CHIRPS underestimated CWD and overestimated the extreme
rainfall indices for R10mm, R20mm, Rx1day, Rx5day, PRCPTOT, and SDII.

The values of CC and RMSE for the time series of the three gridded datasets are shown
in Table 4. Spatial analysis revealed that the strongest correlations were with PRCPTOT, at
CC values of 0.96, 0.93, and 0.78, for CMFD, APHRODITE, and CHIRPS, respectively. CC
of CMFD were >0.70 for 10 of the 12 indices of extreme rainfall examined; while 8 of the
12 indices of APHRODITE, and only 2 of the 12 indices of CHIRPS met the same criterions.
The RMSE values of CMFD were the smallest for all indices except CWD, where those of
CHIRPS were the highest among the three datasets, suggesting that CMFD is a superior
time-series evaluation metric for extreme rainfall in the QTP.

3.3. Detection Capabilities and Precipitation Intensities Analysis

The results of three gridded products in detecting general rain events (with daily
precipitation amount < 20 mm) and heavy and extreme rain events (with daily precipita-
tion amount ≥ 20 mm) are shown in Figure 21 and Appendix A Table A3. Overall, the
performance of CMFD is better than that of APHRODITE and CHIRPS. For general rain
events, both CMFD and APHRODITE performed similarly well, with high POD values
of 0.93, and 0.95, and low FAR values of 0.31, and 0.38, respectively (Figure 21a–c). It
indicated that CMFD and APHRODITE detected general rain events well among the three
products. In addition, CSI represented similar results with POD. For heavy and extreme
rain events, POD and CSI values were much lower, POD values were at 0.49, 0.17, and
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0.10, and CSI values were at 0.42, 0.15, and 0.03 for CMFD, APHRODITE, and CHIRPS,
respectively (Figure 21d–f). Low POD and CSI values and High FAR values indicated
that the abilities of three gridded products to detect the heavy and extreme precipitation
thresholds were still low and need to be improved.
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Table 4. Time series of annual extreme rainfall indices based on CMFD, APHRODITE, and CHIRPS. datasets from 1981
to 2014.

Index Unit
CC RMSE

CMFD APHRODITE CHIRPS CMFD APHRODITE CHIRPS

CDD day 0.85 0.77 0.36 28.84 34.16 69.41
CWD day 0.69 0.50 0.37 4.50 10.15 4.36

R10mm day 0.94 0.85 0.72 3.72 7.54 8.24
R20mm day 0.90 0.74 0.58 1.82 3.44 5.06

R95p mm 0.89 0.77 0.46 37.24 51.16 82.90
R99p mm 0.73 0.62 0.16 27.61 30.48 54.10

R95pTOT % 0.73 0.57 0.13 7.66 9.55 15.01
R99pTOT % 0.63 0.54 0.06 5.80 6.12 10.45
PRCPTOT mm 0.96 0.93 0.78 49.50 95.95 178.78

Rx1day mm 0.88 0.77 0.46 7.37 13.41 25.85
Rx5day mm 0.95 0.87 0.61 9.61 19.89 29.97

SDII mm/day 0.90 0.80 0.54 1.05 1.83 4.84
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4. Discussion

In this study, a point-to-pixel validation method was conducted by comparing the
gridded precipitation products and rain-gauge observations. Among the three products,
CMFD generally outperformed the APHRODITE and CHIRPS datasets, which may be
attributed to the GLDAS dataset and meteorological observations which were applied to
generate the precipitation data [28]. Results also suggested that the CHIRPS dataset tended
to overestimate precipitation compared to the rain-gauge stations in the QTP. Our findings
are consistent with the results of previous studies by Liu, et al. [9], Wu, et al. [10], and
Tan, et al. [11] for CHIRPS and APHRODITE in the QTP. It was reported that APHRODITE
and CHIRPS in the QTP with POD values of 0.90 and 0.38, FAR values of 0.34 and 0.58,
and CSI values of 0.63 and 0.28, respectively [11]. In this study, POD values were 0.95 and
0.34, FAR values were 0.38 and 0.50, and CSI values were 0.60 and 0.25 for APHRODITE
and CHIRPS, respectively.

Several studies have also indicated that the application of gridded precipitation prod-
ucts on the QTP have some profound uncertainties and shortcomings compared to other
regions. This could be partly because of the small number of rain-gauge stations on the
QTP of which the data were merged to generate the gridded precipitation products [36,37].
In addition, climate conditions and topography may have a considerable influence on
the spatial distribution of precipitation in QTP [36]. Previous studies have revealed that
altitude affects precipitation; particularly, in complex mountainous terrain, the precipi-
tation distribution is greatly affected by topographic elevation [38,39]. This may be one
of the reasons for the poor performance of gridded precipitation products in the QTP.
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Therefore, the downscaling technique focusing on topography can be employed to increase
the accuracy of small-scale satellite precipitation.

5. Conclusions

This study aimed to examine the capability of three gridded precipitation products
namely, CMFD, APHRODITE, and CHIRPS, for the detection of spatiotemporal patterning
of extreme precipitation events over the QTP. We adopted a point-to-pixel approach and
four accuracy indices, CC, RMSE, MAE and KGE, to evaluate the performance of the
datasets by comparing to 101 rain-gauge stations throughout the region, and the major
conclusions are summarized as follows:

Firstly, based on the results of fixed threshold indices, CDD, CWD, R10mm, and
R20mm, CMFD could capture the spatial distribution of R10mm most accurately, while
none of the three products were able to accurately depict CWD. Results of R10mm and
R20mm suggested that all products depicted similar spatial patterns as OBS data, although
CMFD maintained the highest CC and KGE scores and lowest RMSE and MAE values.

Secondly, analysis based on the station-related threshold indices, R95p, R99p, R95pTOT,
and R99pTOT, revealed that CMFD and APHRODITE underestimated whereas CHIRPS
overestimated these indices across the QTP. Results of R95p indicated that CMFD had
the most accurate spatial error metrics; however, R99p, R95pTOT, and R99pTOT results
indicated that none of the three gridded products could accurately capture these indices.

Thirdly, analysis based on the non-threshold indices, PRCPTOT, Rx1day, Rx5day, and
SDII, revealed that all datasets showed a strong performance for PRCPTOT, CMFD and
APHRODITE slightly underestimated the remaining three indices over the QTP, while
CHIRPS values were severely overestimated.

Fourthly, the analysis of temporal patterning of extreme precipitation revealed that
CMFD and APHRODITE tended to slightly underestimate most extreme precipitation
indices, while CHIRPS strongly overestimated most indices. Our results further suggested
that CMFD outperformed the other datasets at capturing most extreme precipitation indices
over the QTP.

Finally, in rain occurrence, both CMFD and APHRODITE had the strong ability to
detect general rain events correctly, with a high POD (0.93,0.95) and a low FAR (0.31,0.38),
respectively, and CSI represented similar results with the POD. All of three gridded prod-
ucts had a weak ability in detecting heavy and extreme rain events.

This study demonstrated that CMFD had the greatest application potential for the
climatological and risk analyses of extreme precipitation events over the QTP. Future
development of high-resolution precipitation data will enhance the utility of the satellite-
based products; CHIRPS is still the most ideal dataset for flood or drought monitoring.
Future work should focus on developing an integrated hydrological research model that
could accurately analyze regional climate comparisons for satellite and gauge-station
derived observational data on an hourly basis.
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Appendix A

See Tables A1–A3.

Table A1. Geographical locations and elevations of gauging stations used in the present study.

NO. Station-ID Long (◦N) Lat (◦E) Altitude
(m) NO. Station-ID Long (◦N) Lat (◦E) Altitude

(m)

1 51,804 75.23 37.77 3090.10 52 56,021 95.78 34.13 4175.00
2 51,886 90.85 38.25 2944.80 53 56,029 97.02 33.02 3681.20
3 52,633 98.42 38.80 3367.00 54 56,033 98.22 34.92 4272.30
4 52,645 99.58 38.42 3320.00 55 56,034 97.13 33.80 4415.40
5 52,657 100.25 38.18 2787.40 56 56,038 98.10 32.98 4200.00
6 52,707 93.68 36.80 2767.00 57 56,043 100.25 34.47 3719.00
7 52,713 95.37 37.85 3173.20 58 56,046 99.65 33.75 3967.50
8 52,737 97.37 37.37 2981.50 59 56,065 101.60 34.73 3500.00
9 52,754 100.13 37.33 3301.50 60 56,067 101.48 33.43 3628.50
10 52,765 101.62 37.38 2850.00 61 56,074 102.08 34.00 3471.40
11 52,787 102.87 37.20 3045.10 62 56,079 102.97 33.58 3439.60
12 52,818 94.90 36.42 2807.60 63 56,080 102.90 35.00 2910.00
13 52,825 96.42 36.43 2790.40 64 56,106 93.78 31.88 4022.80
14 52,833 98.48 36.92 2950.00 65 56,109 93.78 31.48 3940.00
15 52,836 98.10 36.30 3191.10 66 56,116 95.60 31.42 3873.10
16 52,842 99.08 36.78 3087.60 67 56,125 96.48 32.20 3643.70
17 52,856 100.62 36.27 2835.00 68 56,128 96.60 31.22 3810.00
18 52,866 101.75 36.72 2295.20 69 56,137 97.17 31.15 3306.00
19 52,868 101.43 36.03 2237.10 70 56,144 98.58 31.80 3184.00
20 52,876 102.85 36.32 1813.90 71 56,146 100.00 31.62 3393.50
21 52,908 93.08 35.22 4612.20 72 56,151 100.75 32.93 3530.00
22 52,943 99.98 35.58 3323.20 73 56,152 100.33 32.28 3893.90
23 52,955 100.75 35.58 3120.00 74 56,167 101.12 30.98 2957.20
24 52,957 100.60 35.25 3148.20 75 56,172 102.23 31.90 2664.40
25 52,968 101.47 35.03 3662.80 76 56,173 102.55 32.80 3491.60
26 52,974 102.02 35.52 2491.40 77 56,178 102.35 31.00 2369.20
27 55,228 80.08 32.50 4278.60 78 56,182 103.57 32.65 2850.70
28 55,248 84.42 32.15 4414.90 79 56,202 93.28 30.67 4488.80
29 55,279 90.02 31.38 4700.00 80 56,223 95.83 30.75 3640.00
30 55,294 91.10 32.35 4800.00 81 56,227 95.77 29.87 2736.00
31 55,299 92.07 31.48 4507.00 82 56,228 96.92 30.05 3260.00
32 55,437 81.25 30.28 4900.00 83 56,247 99.10 30.00 2589.20
33 55,472 88.63 30.95 4672.00 84 56,251 100.32 30.93 3000.00
34 55,493 91.10 30.48 4200.00 85 56,257 100.27 30.00 3948.90
35 55,569 87.60 29.08 4000.00 86 56,307 92.58 29.15 3260.00
36 55,572 89.10 29.68 4000.00 87 56,312 94.33 29.67 2991.80
37 55,578 88.88 29.25 3836.00 88 56,317 94.22 29.22 2950.00
38 55,585 90.17 29.43 3809.40 89 56,331 97.83 29.67 3780.00
39 55,589 90.98 29.30 3555.30 90 56,342 98.60 29.68 3870.00
40 55,591 91.13 29.67 3648.90 91 56,357 100.30 29.05 3727.70
41 55,593 91.73 29.85 3804.30 92 56,374 101.97 30.05 2615.70
42 55,598 91.77 29.25 3551.70 93 56,434 97.47 28.65 2327.60
43 55,655 85.97 28.18 3810.00 94 56,444 98.92 28.48 3319.00
44 55,664 87.08 28.63 4300.00 95 56,459 101.27 27.93 2426.50
45 55,680 89.60 28.92 4040.00 96 56,462 101.50 29.00 2987.30
46 55,681 90.40 28.97 4431.70 97 56,533 98.67 27.75 1583.30
47 55,690 91.95 27.98 4280.30 98 56,543 99.70 27.83 3276.70
48 55,696 92.47 28.42 3860.00 99 56,548 99.28 27.17 2326.10
49 55,773 89.08 27.73 4300.00 100 56,565 101.52 27.43 2545.00
50 56,004 92.43 34.22 4533.10 101 56,651 100.22 26.87 2392.40
51 56,018 95.30 32.90 4066.40
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Table A2. Statistical metrics of annual extreme precipitation estimates derived from CMFD,
APHRODITE, and CHIRPS for the period 1981–2014 with reference to gauge observations.

Indices Datasets CC MAE RMSE KGE

CDD
CMFD 0.85 16.69 27.55 0.82

APHRODITE 0.78 20.68 31.86 0.77
CHIRPS 0.37 54.12 56.56 0.30

CWD
CMFD 0.67 2.87 4.04 0.53

APHRODITE 0.64 6.07 5.67 0.21
CHIRPS 0.38 3.17 3.52 0.31

R10mm
CMFD 0.94 2.69 3.07 0.81

APHRODITE 0.85 5.79 3.99 0.49
CHIRPS 0.72 5.99 7.26 0.54

R20mm
CMFD 0.90 1.19 1.44 0.59

APHRODITE 0.75 2.32 1.25 0.36
CHIRPS 0.57 3.55 4.42 0.22

R95p
CMFD 0.88 25.87 37.19 0.87

APHRODITE 0.77 35.05 40.63 0.72
CHIRPS 0.46 59.86 73.47 0.46

R95pT0T
CMFD 0.73 5.46 7.30 0.72

APHRODITE 0.58 6.94 9.04 0.56
CHIRPS 0.13 11.56 14.44 0.13

R99p
CMFD 0.73 16.72 26.06 0.73

APHRODITE 0.63 18.83 27.75 0.58
CHIRPS 0.19 35.54 49.64 0.20

R99pTOT
CMFD 0.64 3.39 5.63 0.53

APHRODITE 0.58 3.79 5.90 0.21
CHIRPS 0.08 6.95 10.14 0.31

PRCPTOT
CMFD 0.98 25.41 50.20 0.97

APHRODITE 0.95 60.28 68.53 0.87
CHIRPS 0.78 108.33 167.17 0.75

Rx1day
CMFD 0.88 5.08 6.37 0.53

APHRODITE 0.77 10.38 5.60 0.21
CHIRPS 0.51 17.71 18.34 0.31

Rx5day
CMFD 0.95 6.14 8.99 0.92

APHRODITE 0.87 14.43 9.77 0.72
CHIRPS 0.61 21.19 27.40 0.56

SDII
CMFD 0.89 0.85 0.62 0.82

APHRODITE 0.80 1.62 0.62 0.67
CHIRPS 0.58 3.80 4.11 0.46

Table A3. Mean categorical verification statistics: POD, FAR and CSI for detecting different rain events derived from CMFD,
APHRODITE, and CHIRPS for the period 1981–2014.

Datasets POD FAR CSI

General rain events (with daily
precipitation amount < 20 mm)

CMFD 0.931 0.308 0.657
APHRODITE 0.950 0.381 0.599

CHIRPS 0.336 0.496 0.250

Heavy and extreme rain events (with
daily precipitation amount ≥ 20mm)

CMFD 0.489 0.293 0.416
APHRODITE 0.173 0.289 0.152

CHIRPS 0.097 0.919 0.032



Remote Sens. 2021, 13, 3010 27 of 28

References
1. Cao, L.; Pan, S. Changes in precipitation extremes over the “Three-River Headwaters” region, hinterland of the Tibetan Plateau,

during 1960–2012. Quat. Int. 2014, 321, 105–115. [CrossRef]
2. Katsanos, D.; Retalis, A.; Tymvios, F.; Michaelides, S. Analysis of precipitation extremes based on satellite (CHIRPS) and in situ

dataset over Cyprus. Nat. Hazards 2016, 83, 53–63. [CrossRef]
3. Cui, P.; Dang, C.; Cheng, Z.; Scott, K.M. Debris flows resulting from glacial-lake outburst floods in Tibet, China. Phys. Geogr. 2010,

31, 508–527. [CrossRef]
4. Wang, S.; Che, Y.; Xinggang, M. Integrated risk assessment of glacier lake outburst flood (GLOF) disaster over the Qinghai–Tibetan

Plateau (QTP). Landslides 2020, 17, 2849–2863. [CrossRef]
5. Xu, Z.; Wu, Z.; He, H.; Wu, X.; Zhou, J.; Zhang, Y.; Guo, X. Evaluating the accuracy of MSWEP V2.1 and its performance for

drought monitoring over mainland China. Atmos. Res. 2019, 226, 17–31. [CrossRef]
6. Alexander, L.V.; Bador, M.; Roca, R.; Contractor, S.; Donat, M.G. Intercomparison of annual precipitation indices and extremes

over global land areas from in situ, space-based and reanalysis products. Environ. Res. Lett. 2020, 15, 055002. [CrossRef]
7. Ward, P.J.; Blauhut, V.; Bloemendaal, N.; Daniell, J.E.; de Ruiter, M.C.; Duncan, M.J.; Emberson, R.; Jenkins, S.; Kirschbaum,

D.; Kunz, M.; et al. Review article: Natural hazard risk assessments at the global scale. Nat. Hazards Earth Syst. Sci. 2020, 20,
1069–1096. [CrossRef]

8. Bai, L.; Shi, C.; Li, L.; Yang, Y.; Wu, J. Accuracy of CHIRPS Satellite-Rainfall Products over Mainland China. Remote. Sens. 2018,
10, 362. [CrossRef]

9. Liu, J.; Shangguan, D.; Liu, S.; Ding, Y.; Wang, S.; Wang, X. Evaluation and comparison of CHIRPS and MSWEP dai-ly-precipitation
products in the Qinghai-Tibet Plateau during the period of 1981–2015. Atmos. Res. 2019, 230, 104634. [CrossRef]

10. Wu, Y.; Guo, L.; Zheng, H.; Zhang, B.; Li, M. Hydroclimate assessment of gridded precipitation products for the Tibetan Plateau.
Sci. Total. Environ. 2019, 660, 1555–1564. [CrossRef]

11. Tan, X.; Ma, Z.; He, K.; Han, X.; Ji, Q.; He, Y. Evaluations on gridded precipitation products spanning more than half a century
over the Tibetan Plateau and its surroundings. J. Hydrol. 2020, 582, 124455. [CrossRef]

12. Zhang, S.; Wang, D.; Qin, Z.; Zheng, Y.; Guo, J. Assessment of the GPM and TRMM Precipitation Products Using the Rain Gauge
Network over the Tibetan Plateau. J. Meteorol. Res. 2018, 32, 324–336. [CrossRef]

13. Wang, X.; Ding, Y.; Zhao, C.; Wang, J. Similarities and improvements of GPM IMERG upon TRMM 3B42 precipitation product
under complex topographic and climatic conditions over Hexi region, Northeastern Tibetan Plateau. Atmos. Res. 2019, 218,
347–363. [CrossRef]

14. Guo, J.; Zhai, P.; Wu, L.; Cribb, M.; Li, Z.; Ma, Z.; Wang, F.; Chu, D.; Wang, P.; Zhang, J. Diurnal variation and the influential
factors of precipitation from surface and satellite measurements in Tibet. Int. J. Clim. 2013, 34, 2940–2956. [CrossRef]

15. Mei, Y.; Nikolopoulos, E.I.; Anagnostou, E.N.; Borga, M. Evaluating satellite precipitation error propagation in runoff simulations
of mountainous basins. J. Hydrometeorol. 2016, 17, 1407–1423. [CrossRef]

16. Derin, Y.; Yilmaz, K.K. Evaluation of Multiple Satellite-Based Precipitation Products over Complex Topography. J. Hydrometeorol.
2014, 15, 1498–1516. [CrossRef]

17. Bhuiyan, M.; Nikolopoulos, E.I.; Anagnostou, E.N. Machine learning-based blending of satellite and reanalysis precipitation
datasets: A multiregional tropical complex terrain evaluation. J. Hydrometeorol. 2019, 20, 2147–2161. [CrossRef]

18. Huang, X.; Wang, D.; Liu, Y.; Feng, Z.; Wang, D. Evaluation of extreme precipitation based on satellite retrievals over China. Front.
Earth Sci. 2017, 12, 846–861. [CrossRef]

19. Timmermans, B.; Wehner, M.; Cooley, D.; O’Brien, T.; Krishnan, H. An evaluation of the consistency of extremes in gridded
precipitation data sets. Clim. Dyn. 2019, 52, 6651–6670. [CrossRef]

20. Cavalcante, R.B.L.; Ferreira, D.B.D.S.; Pontes, P.R.; Tedeschi, R.G.; da Costa, C.P.W.; de Souza, E. Evaluation of extreme rainfall
indices from CHIRPS precipitation estimates over the Brazilian Amazonia. Atmos. Res. 2020, 238, 104879. [CrossRef]

21. Harrison, L.; Funk, C.; Peterson, P. Identifying changing precipitation extremes in Sub-Saharan Africa with gauge and satellite
products. Environ. Res. Lett. 2019, 14, 085007. [CrossRef]

22. Supari; Tangang, F.; Juneng, L.; Cruz, F.; Chung, J.X.; Ngai, S.T.; Salimun, E.; Mohd, M.S.F.; Santisirisomboon, J.; Singhruck, P.
Multi-model projections of precipitation extremes in Southeast Asia based on CORDEX-Southeast Asia simulations. Environ. Res.
2020, 184, 109350. [CrossRef]

23. Zhou, B.; Xu, Y.; Wu, J.; Dong, S.; Shi, Y. Changes in temperature and precipitation extreme indices over China: Analysis of a
high-resolution grid dataset. Int. J. Clim. 2015, 36, 1051–1066. [CrossRef]

24. Miao, C.; Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Duan, Q. Evaluation of the PERSIANN-CDR Daily Rainfall Estimates in
Capturing the Behavior of Extreme Precipitation Events over China. J. Hydrometeorol. 2015, 16, 1387–1396. [CrossRef]

25. Zhao, G.; Zhai, J.; Tian, P.; Zhang, L.; Mu, X.; An, Z.; Han, M. Variations in extreme precipitation on the Loess Plateau using
a high-resolution dataset and their linkages with atmospheric circulation indices. Theor. Appl. Clim. 2017, 133, 1235–1247.
[CrossRef]

26. Xi, Y.; Miao, C.; Wu, J.; Duan, Q.; Lei, X.; Li, H. Spatiotemporal Changes in Extreme Temperature and Precipitation Events in the
Three-Rivers Headwater Region, China. J. Geophys. Res. Atmos. 2018, 123, 5827–5844. [CrossRef]

27. Ren, Z.; Zhao, P.; Zhang, Q.; Zhang, Z.; Cao, L.; Yang, Y. Quality control procedures for hourly precipitation data from automatic
weather stations in China (in Chinese). Meteorol. Mon. 2010, 36, 123–132.

http://doi.org/10.1016/j.quaint.2013.12.041
http://doi.org/10.1007/s11069-016-2335-8
http://doi.org/10.2747/0272-3646.31.6.508
http://doi.org/10.1007/s10346-020-01443-1
http://doi.org/10.1016/j.atmosres.2019.04.008
http://doi.org/10.1088/1748-9326/ab79e2
http://doi.org/10.5194/nhess-20-1069-2020
http://doi.org/10.3390/rs10030362
http://doi.org/10.1016/j.atmosres.2019.104634
http://doi.org/10.1016/j.scitotenv.2019.01.119
http://doi.org/10.1016/j.jhydrol.2019.124455
http://doi.org/10.1007/s13351-018-7067-0
http://doi.org/10.1016/j.atmosres.2018.12.011
http://doi.org/10.1002/joc.3886
http://doi.org/10.1175/JHM-D-15-0081.1
http://doi.org/10.1175/JHM-D-13-0191.1
http://doi.org/10.1175/JHM-D-19-0073.1
http://doi.org/10.1007/s11707-017-0643-2
http://doi.org/10.1007/s00382-018-4537-0
http://doi.org/10.1016/j.atmosres.2020.104879
http://doi.org/10.1088/1748-9326/ab2cae
http://doi.org/10.1016/j.envres.2020.109350
http://doi.org/10.1002/joc.4400
http://doi.org/10.1175/JHM-D-14-0174.1
http://doi.org/10.1007/s00704-017-2251-1
http://doi.org/10.1029/2017JD028226


Remote Sens. 2021, 13, 3010 28 of 28

28. He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process
studies over China. Sci. Data 2020, 7, 1–11. [CrossRef]

29. Liu, Y.; Xu, J.; Lu, X.; Nie, L. Assessment of glacier- and snowmelt-driven streamflow in the arid middle Tianshan Mountains of
China. Hydrol. Process. 2020, 34, 2750–2762. [CrossRef]

30. Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing a Long-Term Daily
Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415.
[CrossRef]

31. Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The
climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2,
1–21. [CrossRef] [PubMed]

32. Zhang, X.; Alexander, L.; Hegerl, G.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes
in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 851–870. [CrossRef]

33. Karl, T.R.; Nicholls, N.; Ghazi, A. CLIVAR/GCOS/WMO Workshop on Indices and Indicators for Climate Extremes Workshop
Summary BT-Weather and Climate Extremes: Changes, Variations and a Perspective from the Insurance Industry. In Weather and
Climate Extremes; Springer: Dordrecht, The Netherlands, 1999; pp. 3–7.

34. Peterson, T.C.; Manton, M.J. Monitoring Changes in Climate Extremes: A Tale of International Collaboration. Bull. Am. Meteorol.
Soc. 2008, 89, 1266–1271. [CrossRef]

35. Wang, H.; Shao, Z.; Gao, T.; Zou, T.; Liu, J.; Yuan, H. Extreme precipitation event over the Yellow Sea western coast: Is there a
trend? Quat. Int. 2017, 441, 1–17. [CrossRef]

36. Yong, B.; Liu, D.; Gourley, J.J.; Tian, Y.; Huffman, G.J.; Ren, L.; Hong, Y. Global View of Real-Time Trmm Multisatellite Pre-
cipitation Analysis: Implications for Its Successor Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2015, 96,
283–296. [CrossRef]

37. Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.;
Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol.
Earth Syst. Sci. 2017, 21, 6201–6217. [CrossRef]

38. Kumari, M.; Singh, C.K.; Bakimchandra, O.; Basistha, A. Geographically weighted regression based quantification of rainfall-
topography relationship and rainfall gradient in Central Himalayas. Int. J. Climatol. 2017, 37, 1299–1309. [CrossRef]

39. Hughes, M.; Hall, A.; Fovell, R.G. Blocking in areas of complex topography, and its influence on rainfall distribution. J. Atmos. Sci.
2013, 66, 508–518. [CrossRef]

http://doi.org/10.1038/s41597-020-0369-y
http://doi.org/10.1002/hyp.13760
http://doi.org/10.1175/BAMS-D-11-00122.1
http://doi.org/10.1038/sdata.2015.66
http://www.ncbi.nlm.nih.gov/pubmed/26646728
http://doi.org/10.1002/wcc.147
http://doi.org/10.1175/2008BAMS2501.1
http://doi.org/10.1016/j.quaint.2016.08.014
http://doi.org/10.1175/BAMS-D-14-00017.1
http://doi.org/10.5194/hess-21-6201-2017
http://doi.org/10.1002/joc.4777
http://doi.org/10.1175/2008JAS2689.1

	Introduction 
	Data and Methods 
	Study Area 
	On-Site Meteorological Data 
	Gridded Precipitation Datasets 
	CMFD 
	APHRODITE 
	CHIRPS 

	Methodology 
	Extraction of the Gridded Data 
	Index Calculations 
	Statistical Analysis 


	Results 
	Spatial Evaluation 
	Fixed Threshold Indices 
	Station-Related Threshold Indices 
	Non-Threshold Indices 

	Temporal Evaluation 
	Detection Capabilities and Precipitation Intensities Analysis 

	Discussion 
	Conclusions 
	
	References

