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MEMS inductor fabrication and emerging
applications in power electronics and
neurotechnologies
Hoa Thanh Le1, Rubaiyet I. Haque2, Ziwei Ouyang3, Seung Woo Lee 4, Shelley I. Fried 4,5, Ding Zhao 6,7,
Min Qiu6,7 and Anpan Han 2

Abstract
MEMS inductors are used in a wide range of applications in micro- and nanotechnology, including RF MEMS, sensors,
power electronics, and Bio-MEMS. Fabrication technologies set the boundary conditions for inductor design and their
electrical and mechanical performance. This review provides a comprehensive overview of state-of-the-art MEMS
technologies for inductor fabrication, presents recent advances in 3D additive fabrication technologies, and discusses
the challenges and opportunities of MEMS inductors for two emerging applications, namely, integrated power
electronics and neurotechnologies. Among the four top-down MEMS fabrication approaches, 3D surface
micromachining and through-substrate-via (TSV) fabrication technology have been intensively studied to fabricate 3D
inductors such as solenoid and toroid in-substrate TSV inductors. While 3D inductors are preferred for their high-
quality factor, high power density, and low parasitic capacitance, in-substrate TSV inductors offer an additional unique
advantage for 3D system integration and efficient thermal dissipation. These features make in-substrate TSV inductors
promising to achieve the ultimate goal of monolithically integrated power converters. From another perspective, 3D
bottom-up additive techniques such as ice lithography have great potential for fabricating inductors with geometries
and specifications that are very challenging to achieve with established MEMS technologies. Finally, we discuss
inspiring and emerging research opportunities for MEMS inductors.

Introduction
Transistors, capacitors, resistors, and inductors are the

four fundamental components of electrical circuits. The
importance of each component to science, engineering
and society is paramount. In this review, we focus on
inductors such as solenoid, toroidal, and spiral inductors,
coils, and transformers. For the first time, we review
microelectromechanical systems (MEMS) inductor fabri-
cation technologies, which serve as the foundation of our
literature search. We analyze and process the literature to

give the reader a comprehensive overview of MEMS
inductor fabrication technologies and emerging applica-
tions. In “MEMS fabrication of inductors” section, we
group MEMS inductors into four categories and present
the technical terminology used for MEMS inductor fab-
rication. In the same section, we review four different
fabrication technologies and highlight their advantages for
their target applications.
Most reported microinductors were made with estab-

lished top-down or subtractive MEMS microfabrication
and nanofabrication methods such as lithography, etch-
ing, electroplating, and thin-film deposition processes.
Owing to important and creative MEMS fabrication
technology innovations, additive microfabrication, and
nanofabrication methods have emerged over the past 10
years. In “Emerging 3D nanofabrication technologies”
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section, we review important emerging nanoscale fabri-
cation methods that have been used for MEMS inductor
fabrication or hold promise for becoming new versatile
tools for microinductor and nanoinductor production. An
overview section maps the emerging technologies, and
four promising technologies are presented.
In addition to reviewing inductor fabrication technolo-

gies, our literature study and analysis categorize MEMS
inductor applications into four groups: radio frequency
(RF) MEMS, wireless and sensors, power electronics, and
biomedical MEMS (Fig. 1). RF MEMS and power elec-
tronics applications of MEMS inductors account for over
300 studies. Excellent reviews on RF applications exist1,2.
However, there are no reviews on the three other appli-
cations. Thus, we reasoned that it is important to review
the power electronics applications, as presented in “Power
electronics applications” section. The number of studies
on power inductors for power converters has increased
steadily following the rapid growth of exciting smart
electronic devices, wearables, light-emitting diode (LED)
lighting, and the Internet of things (IoT).
In the last 10 years, the usage of MEMS inductors for

biomedical applications has been explored, and we
observed an increasing number of publications. In “Bio-
medical and neurotechnology applications” section, we
review a subset of the biomedical applications, which is an
emerging field of neurotechnology. Neurotechnology
research is substantially supported by the BRAIN Initia-
tive, which focuses on the development of cutting-edge
neurotechnologies for science and medicine. Here, we
review electrifying new developments in magnetic

stimulation of the brain using MEMS coils, which might
outperform the well-established electrical stimulation. We
discuss important challenges and research opportunities
addressing societal challenges.

MEMS fabrication of inductors
Overview
MEMS inductors consist of three parts: (i) conductive

windings, (ii) insulators, and (iii) a core. First, conductive
windings are used to carry currents, thus producing
magnetic flux. They are made of electrically conductive
metals, e.g., copper (Cu), and are fabricated by deposition
techniques such as electrodeposition or sputtering. Sec-
ond, insulators are used to provide electrical isolation
between adjacent conductor windings and between
windings and the underlying substrate. Here, insulators
are dielectric thin films such as silicon oxide (SiO2), alu-
minum oxide (Al2O3), or silicon nitride (SiN). The
selection of dielectric materials and deposition techniques
is performed carefully based on the required isolation
level and processing temperature. Third, MEMS inductor
cores refer to the material in the magnetic flux path.
Inductor cores can be made of either nonmagnetic
materials such as air (Fig. 2d, e) or magnetic materials that
come in a variety of shapes, such as magnetic thin films
(Fig. 2a, b) and bar shapes (Fig. 2c). Innovatively, magnetic
cores are also placed around the windings.
MEMS inductors are categorized into four groups based

on the shape of the conductor windings and their position
relative to the substrate: (i) 2D on-substrate inductors, (ii)
3D on-substrate inductors, (iii) 2D in-substrate inductors,
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and (iv) 3D in-substrate inductors. Figure 2 shows 3D
illustrations of the MEMS inductors of these four groups,
including 2D on-substrate spiral and racetrack inductors
(Fig. 2a, b), a 3D on-substrate solenoidal inductor (Fig.
2c), a 2D in-substrate spiral inductor (Fig. 2d), and a 3D
in-substrate toroidal inductor (Fig. 2e). Table 1 sum-
marizes these fabrication technologies, applications,
merits, and limitations corresponding to inductors in
these four inductor groups.
The four inductor categories are realized by different

fabrication technologies, which play an essential role in
MEMS inductor technology development. They deter-
mine an inductor’s physical dimensions and construction
materials; therefore, the fabrication process greatly influ-
ences the inductor properties. The generic properties of
MEMS inductors are the quality factor, inductance den-
sity, and operating frequency. Furthermore, there are
important parameters for MEMS inductors, such as the
EMI, breakdown voltage, leakage current, and parasitic
capacitance.
We classify inductor fabrication technologies into four

categories: 2D micromachining, 3D micromachining,
through-substrate via (TSV)-based technology, and other
technologies such as wire bonding, 3D printing, and self-
assembly approaches. Figure 3 summarizes the development
of MEMS inductor fabrication technologies since 1990.
2D and 3D micromachining technologies were used in

the early 1990s and have been studied intensively since
then. In the last 10 years, TSV technology has received
tremendous attention and has become an emerging

technology for 3D MEMS inductor fabrication and inte-
gration. Advances in TSV technology have enabled a new
category of compact, robust, high-quality TSV inductors
that find themselves particularly useful in power conver-
sion applications. Wire bonding, stress-activated self-
assembly processes, and 3D printing have also been
reported.
Next, we review these four fabrication approaches and

conclude with our view on future development trends of
MEMS inductor fabrication technology.

2D surface micromachining
The first fabrication technology for MEMS inductor

fabrication is 2D surface micromachining (Fig. 4). The
development of surface micromachined inductors dates
back to the early 1990s, with a number of foundational
studies by Allen et al.3,4 on meander magnetic core
inductors, Sullivan et al.5 on racetrack inductors, and Sato
et al.6 on strip line inductors. They are widely used in
many applications because of their compact size, process
simplicity, and CMOS compatibility. Tremendous efforts
have been invested towards design optimization7 and
building physical models for 2D planar inductors8,9, pro-
viding a comprehensive understanding of how physical
parameters and high-frequency eddy currents affect
inductor performance. Here, we focus on fabrication
advances in winding deposition technology and methods
to enhance the electrical isolation between a winding and
the substrate to minimize unwanted parasitic capacitance
and substrate losses.
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Fig. 2 3D illustrations of four categories of MEMS inductor. Category (i): 2D on-substrate inductors such as spiral inductors (a) and racetrack
inductors (b). Category (ii): 3D on-substrate solenoidal inductors with a magnetic bar core (c). Category (iii): 2D in-substrate spiral inductor (d).
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First, developments in winding technology have been
driven towards the creation of compact, thick, high-
aspect-ratio windings. Resist mold electrodeposition is a
powerful method for fabricating 2D planar inductor
windings; thus, high-aspect-ratio lithography processes
are necessary. Anthony et al.10 studied high-aspect-ratio
THB-151N resist molds for Cu electrodeposition. An
aspect ratio of 1:17 was achieved, resulting in the suc-
cessful fabrication of 80-µm-thick, 25-µm-wide, and 5-
µm-spacing spiral inductor windings. They showed that
the direct current (DC) resistance of 80-µm-thick winding
inductors is 42% lower than that of 50-µm-thick winding
inductors. In addition, inductors with a 5-µm spacing also
have 25% smaller footprints than inductors with a 15-µm

spacing. Similar studies on other high-aspect-ratio resist
molds can also be found11,12.
Second, another notable improvement in the 2D

micromachining process is the fabrication approaches
followed to increase winding-substrate isolation to reduce
unwanted parasitic capacitance and substrate losses13.
There are two approaches. The first approach is to fab-
ricate inductors on a thick isolation layer. A common
method to fabricate thick buried oxide islands is to etch
deep trenches into Si substrates followed by a SiO2

deposition step either by PECVD14,15 or thermal oxida-
tion16. For example, the quality factor increased from 3.5
at 4.6 GHz to 7 at 7 GHz for inductors fabricated on 2-
µm-thick and 20-µm-thick oxide layers, respectively16.
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The second approach is to induce an air gap between the
winding conductors and substrate, resulting in suspended
windings17–24. This is carried out by removing materials
under the winding conductors, for example, by using
sacrificial layers25 or by etching the substrate under the
inductor windings18. In general, the quality factor and
operating frequency increase as a result.
Another approach is to integrate magnetic thin films

that act as a shield to reduce eddy currents generated in
the underlying substrate. In addition, a magnetic thin-film
core is a key feature to achieve a high inductance density,
which is desired in applications such as switched-mode
power supplies (SMPSs)6. A similar design of windings
and thin-film cores can be seen in racetrack inductors26.
Figure 4c shows an elegant fabrication process of the

racetrack inductor27. The process has four steps: (i)
depositing the bottom magnetic thin film, (ii) depositing
the 1st insulator layer and Cu windings, (iii) depositing
the 2nd insulator layer, and (vi) depositing the top mag-
netic thin film. Similar fabrication approaches can be
found for other racetrack power inductors28,29. Although
the winding structures are similar in most racetrack
inductors, innovative variations exist in magnetic thin-
film technology. For example, because racetrack inductors
are mainly used for power conversion, developments have
focused on discovering new magnetic materials and new
core structures for high permeability and low core losses.
Recent developments in magnetic materials are sum-
marized in references30,31.

3D surface micromachining
The second fabrication technology is 3D surface

micromachining technology, which has been developed

for fabricating 3D inductors such as solenoid and toroidal
inductors. There are three groups of on-substrate 3D
micromachined inductors: low-profile air-core inductors
(Fig. 5a), low-profile magnetic-core inductors (Fig. 5b),
and tall-profile inductors (Fig. 5c).
3D micromachined processes for low-profile inductors

typically involve several resist-mold electroplating and
sacrificial layers to construct multiple levels of con-
ductors. Zia et al.32 reported a 110-µm-tall domed-shaped
solenoidal inductor for RF applications, as shown in Fig.
5a. The key aspect is the 3D patterning of Cu windings on
dome-shaped resist molds created by resist reflowing. The
fabricated 110-µm-tall inductor has an inductance of 2.5
nH with a quality factor of 25 at 33 GHz. Small-
inductance and low-profile 3D micromachined air-core
solenoidal inductors are used for RF applications30,33. In
some cases34,35, suspending inductor windings improves
the high-frequency quality factor and frequency of 3D
micromachined solenoidal inductors. The underlying
substrate material is etched to produce an air gap between
the windings and substrate, thus reducing unwanted
parasitic capacitance and substrate effects. A similar
approach is also found in the 2D micromachining pro-
cessing of 2D inductors, as mentioned above.
For high-frequency power conversion, a higher induc-

tance density is needed. Two approaches exist: either
integrate the magnetic core between the 3D windings36,37

or increase the inductor height, because the inductance of
the solenoidal and toroidal inductors is proportional to
the core cross-sectional area. For the first approach, an
example of a low-profile 3D magnetic-core inductor is
shown in Fig. 5b. Michael et al.37 reported 150-µm-tall
solenoid inductors embedded with a sputtered
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Ni Cu Cu
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2 mm
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 m
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250 µm
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( : 100 µm)
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insulating film
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resist mold

cb

Dielectric
polymer (ALX)

Nanolaminated
core

Process flow

Fig. 5 3D on-substrate inductors. a 3D air-core solenoidal inductor with dome-shaped windings32 (Copyright IEEE 2018). b 3D magnetic-core
solenoidal inductor with a profile of 150 µm37 (Copyright IEEE 2019). c 3D magnetic-core solenoidal inductor with a tall profile of 1 mm, fabricated by
a high-aspect-ratio SU-8 process for vertical windings38 (Copyright IOP 2015)
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nanolaminated magnetic core for high-frequency power
conversion. An inductance of up to 500 nH was achieved
with a stack of 20 layers alternating between an 80-nm-
thick Co–Zr–Ta magnetic layer and a 4-nm-thick Al2O3

layer. The second approach is to increase the inductor
cross-sectional area. For example, SU-8 technology was
utilized to fabricate 3D inductors with mm-tall, high-
aspect-ratio vertical conductors38,39. In these studies,
polymer-encapsulated vertical pillars were used as sup-
ports for subsequent Cu electroplating to form inductor
vertical conductors. Figure 5c illustrates a process
reported by Kim et al.38, which starts with the fabrication
of SU-8 support pillars followed by seed layer sputtering
and Cu electroplating to form the bottom and vertical
windings. Next, a premade laminated magnetic core is
inserted on an insulating film between vertical solenoidal
windings. SU-8 pellets are then cast on a substrate to
partially cover the Cu windings and magnetic core. Last,
an electroplating mold is lithographically patterned, fol-
lowed by top Cu winding electrodeposition. On-chip
solenoid inductors of 1-mm-tall, 200-µm-diameter ver-
tical vias were successfully demonstrated. Because of the
mm-tall profile, these inductors are suitable for high-
power applications where the device profile is not a lim-
iting factor. Alternatively, windings can be embedded into
the substrate to construct tall 3D inductors for high
inductance.

Through-substrate-via fabrication process
TSV technology was originally developed as a packaging

solution for the vertical integration of multiple chips in
the third dimension40,41. This packaging approach uses
chips, or so-called interposers, consisting of vertical
interconnections and redistribution layers (RDLs) on both
substrate sides to pass electrical signals between stacked

chips, thus substantially increasing the interconnection
density. TSV technology was adapted for MEMS inductor
fabrication in the mid-2000s, with studies on both 2D
spiral inductors42–44 and 3D solenoid inductors45.
In the last 10 years, substantial developments have

been made in all four aspects of TSV fabrication tech-
nology, including (i) TSV hole etching, (ii) dielectric
insulator deposition, (iii) TSV conductor deposition,
and (iv) substrate planarization and routing conductor
patterning.
First, TSV hole fabrication technologies can be cate-

gorized into four main methods: physical ablation (laser
drilling and sand blasting), lithographically based pro-
cesses (photosensitive glass substrate46), wet etching
(metal-assisted wet etching47), and plasma etching (deep
reactive ion etching (DRIE) Bosch Si etching, SiO2 dry
etching). Details on the advantages and disadvantages of
each method are presented in reference48. According to
reference48, DRIE Si etching using the Bosch process is by
far the most versatile technique, providing excellent
control over TSV dimensions, e.g., fine TSV spacings
(10–15 µm) and ultrahigh aspect ratios (AR= 50–100).
The second step is dielectric insulator deposition. The

dielectric constant, thickness, and conformality are
important properties that have a large influence on the
parasitic capacitance, breakdown voltage, and cross-talk
between TSVs. The insulator deposition technology needs
to be carefully considered. Deposition technologies
include plasma-enhanced vapor deposition (PECVD)
SiO2, atomic layer deposition (ALD) SiO2 and Al2O3, and
polymers such as SU-8, spin-coated or PVD-growth
polyimide (PI), polybenzoxazole (PBO), or benzocyclo-
butene (BCB). A summary of important characteristics
such as the conformality, processing temperature,
and dielectric properties of these materials and the
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Solenoid inductor

Spiral inductor
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Iout

Toroidal inductor

Arbitrary core shape

2nd coil

1st coil

Step 1: Through-silicon etching Step 3: Spray coating
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Si
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Step 4: Silicon core etchingStep 2: Copper electroplating

a

Cu-filled TSVs

Resist
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Silicon fixtureCu windings
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Fig. 6 A TSV-based process for fabricating a 3D in-substrate toroidal inductor57 (Copyright Springer Nature 2018). a Fabricated inductors,
including air-core toroidal inductors, a toroidal transformer, a solenoid inductor, a spiral inductor, and an inductor with an arbitrary “DTU” core shape.
b Four main steps for fabricating the toroidal inductor181 (Copyright IEEE 2018)
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corresponding deposition technologies are presented in
reference48.
The third step is vertical via conductor fabrication.

Electrodeposition is a widely used technology for TSV
fabrication, in addition to other methods such as the
magnetic assembly of microwires49. There are two
approaches for TSV electrodeposition: electroless elec-
troplating for hollow TSVs, top-down electroplating for
half-through TSVs, and bottom-up electroplating for
TSVs50. Electroless plating offers great conformality, but
it is time-consuming and requires a conformally coated
seed layer on the TSV sidewalls. It is often used for
fabricating hollow TSVs. Top-down electroplating is the
most developed technique for TSV fabrication. It is most
suited for fabricating 2D in-substrate inductors51–56. To
realize TSVs, extra steps of substrate back-lapping and
planarization are needed. Bottom-up electroplating
enables the fabrication of tall, high-aspect-ratio, solid
TSVs, at the cost of a long plating time. This technique is
best used in fabricating inductors with thick windings, as
required to handle high DC and AC currents, such as in
power electronic applications. For example, Wang
et al.43 demonstrated TSV spiral inductors with 200-µm-
wide TSVs that successfully carried up to 5A of DC
current with a DC resistance of 23 mΩ. Examples of 3D
TSV-based power inductors can be found in refer-
ences57,58. The last steps in the TSV fabrication process
are substrate planarization and routing conductor
patterning.
Next, we discuss a representative TSV-based fabrication

process for 3D in-substrate inductors for VHF power
conversion. Figure 6a shows SEM micrographs of fabri-
cated inductors and transformers, including toroidal
inductors, a toroidal transformer, a solenoid inductor, a
spiral inductor, and a “DTU” inductor with an arbitrary
core shape. These inductors have unique features, such as
in-substrate suspended windings that are held by five Si
fixtures. The windings are separated from the Si substrate
by an air gap of 300 µm, thus significantly reducing
unwanted substrate effects. As shown in Fig. 6b, there are

four main steps in the fabrication process: (i) TSV hole
etching by DRIE and insulation layer deposition, including
ALD Al2O3 and PECVD SiO2. The inductor core shape is
defined by the fixture trench, as depicted in Fig. 6c. (ii)
TSV bottom-up electroplating and winding patterning.
(iii) Creation of a core-etching mask. (iv) Selective
removal of a silicon core via isotropic dry etching by
inductively coupled plasma (ICP) silicon etching, leaving
Si fixtures protected by a layer of Al2O3 deposited on the
fixture trench in step 1. More details of the process
parameters can be found in reference57. This process has a
unique ability to precisely remove an unwanted Si core to
boost the inductor performance. The hollow air core,
which can be fabricated in arbitrary core shapes, can be
subsequently filled by magnetic particle composites to
realize magnetic-core inductors with a higher inductance
density59. The process is CMOS-compatible and scalable
to a wide range of TSV diameters (30–50 µm) and sub-
strate thicknesses (280–500 µm). A similar approach was
also presented in recent studies on the in-substrate 3D
solenoidal inductor60.

Other processes: self-assembly processes and bonding
techniques
Self-assembly fabricates MEMS inductors by a post-

micromachining step to arrange out-of-plane 2D or 3D
inductor windings. An advantage of self-assembled
inductors is the simplicity in fabricating complex wind-
ing structures without the need for excessive multilayer
processing. Self-assembled inductor windings were ori-
ginally planar conductors that are later released and
assembled in a 3D fashion. Several mechanisms have been
reported for inductor self-assembly, such as the post
release folding process61 (Fig. 7b), plastic deformation
magnetic assembly (PDMA)62, and self-rolled-up mem-
brane (S-RUM)63 (Fig. 7a).
Taking the S-RUM process as an example, its self-

assembly mechanism is achieved by depositing a bilayer of
oppositely strained silicon nitride (SiNx). By etching an e-

Metal strip

E
b c

Connection pads

Cu wire

0001070110µm 300 µm

a

Fig. 7 Other processes. SEM images of microinductors fabricated by a a self-rolled-up membrane (S-RUM)63 (Copyright Elsevier 2002) and b the
surface micromachining and post release folding process61 (Copyright Springer Nature 2015). c Wire bonding68 (Copyright IOP 2010)
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beam-evaporated Ge sacrificial layer to release a stack of
multilayer thin films, the SiNx-Cu layers roll up, forming
3D tubular solenoidal inductors. An additional step to put
ferrofluid into a solenoidal core to enhance the induc-
tance density has also been demonstrated64. It has been
reported that S-RUM tubular inductors have a high
inductance density and reduced parasitic substrate effects.
Moreover, the Cu thickness is critical for controlling the
rolling step; therefore, thin Cu layers are preferred.
Inductors with Cu layer thicknesses from 100 to 250 nm
have been demonstrated. The same limitation applies to
other self-assembly mechanisms that are applicable only
for Cu thicknesses from hundreds of nanometers to a few
micrometers, which are ideal for low-current applications,
such as RFID65, RF applications66, and transformers for
power transfer67.
Bonding technologies such as wire bonding and flip-

chip bonding are also utilized for inductor fabrication.
Wire-bonded inductors use bonded wires to construct 3D
windings68,69 (Fig. 7c). The main advantages of this
approach are the process simplicity and feasibility and the
lower manufacturing costs compared to top-down
microfabrication processing. Chip-to-chip bonding tech-
niques such as flip-chip bonding could also be used to
realize complex inductor windings by bonding chips, such
as suspended spiral inductors70.

Emerging 3D nanofabrication technologies
“MEMS fabrication of inductors” section reviewed top-

down MEMS fabrication for inductor fabrication; in this
section, we focus on emerging bottom-up methods. The
trend of developing 3D structures using bottom-up fab-
rication methods has been stimulated by the global
demand for environmentally friendly maskless high-
resolution fabrication techniques along with the reduced
use of hazardous chemicals and materials. Direct ink
writing (DIW) is a simple and versatile additive manu-
facturing (AM) method to produce 3D structures with
dimensions above 1 µm. Here, a wide range of materials
can be printed by extruding printing materials through a
nozzle. In the last 10 years, techniques such as fluidic
forced microscopy (FluidFM), two-photon stereo-
lithography (TPS), focused electron beam-induced
deposition (FEBID), and ice lithography (IL) have
emerged as bottom-up AM methods for high-precision
three-dimensional manufacturing, enabling multilevel
device prototyping in one printing step. The smallest
structures made by these methods are 1 nm in size. Table
2 summarizes the main characteristics of the emerging
AM techniques. These techniques have the potential to be
employed as cost-effective and time-efficient ways of
developing 3D micro- and nanostructures, including 3D
microinductors.Ta
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Fluidic forced microscopy
FluidFM is a DIW method that takes advantage of the

spatial precision of atomic force microscopy (AFM) along
with the local ink delivery capability of microfluidics and
nanofluidics. Thanks to the advancement of miniaturiza-
tion technologies, AFM probes with integrated micro-
scopic channels inside the tip enable microscale and
nanoscale 3D printing via direct material delivery71,72.
The microchanneled cantilevers have a flexible design,
and the volumes they can handle are in the femtoliter to
picoliter range73. FluidFM allows accurate printing on
existing structures. The inks for the FluidFM deposition
method are often composed of particulate and polymeric
materials that are suspended or dissolved in a liquid sol-
vent and solidify upon extrusion. A wide variety of
materials, namely, polymeric, ceramic, metallic, hydrogel,
and biomaterials, can be printed using this technique71.
The viscosity of the printing materials is the most
important property to tune for DIW additive deposition.
The inks must exhibit pronounced shear-thinning beha-
vior. 3D structures can be fabricated via layer-by-layer
printing. In addition, the fabrication of metal structures
and electrochemical 3D deposition with FluidFM have
been reported74. Figure 8a shows a triple helix structure
made by FluidFM and illustrates the inductor fabrication
capabilities.

Two-photon stereolithography
Two-photon stereolithography (TPS) implements a

two-photon polymerization approach for patterning75. It
uses high-intensity femtosecond laser pulse scanning
through a photopolymer or photoresist in a layer-by-layer
fashion to create microstructures and nanostructures in a
single fabrication step. TPS utilizes the two-photon
absorption of near-infrared (NIR) light to excite

photosensitive materials. The total energy from two
photons is resonant with the energy difference between
the ground state and excited state. The TPS photo-
polymer is transparent in the NIR region; thus, the lasers
penetrate deep into the materials and directly induce
polymerization inside only the focal volume. The non-
linear two-photon process allows subwavelength fabrica-
tion, which is not possible by diffraction-limited
stereolithography. Thus, TPS enables the fabrication of
structures with dimensions below 100 nm76.
For selected TPS processes, negative-tone photoresists

are used as photosensitive materials. Their solubility
decreases with exposure to the dose of photons due to
the cross-linking of monomers or oligomers in the
photoresist. Free-radical-based or cation-based inter-
mediates are applied to excite cross-linking, which can
be initiated, respectively, by a photoinitiator or a pho-
toacid generator75. Different polymeric materials and
their composites, depending on the desired functional-
ities, are used for TPS. For example, to develop con-
ductive structures, carbon nanotube (CNT)-based
polymer composites have been employed77. Further-
more, Ag and Au salt and photoresist composites have
been reported for metal deposition78. TPS has many
applications, e.g., the development of microfluidics79,
sensors80, actuators81, microbots82, and biomedical
devices83. Ha et al.84 reported 3D microcoils (Fig. 8b)
employing TPS using a dual-stage femtosecond laser
scanning process. The coil was made of a hybrid material
consisting of a polymer and a “metal-coatable polymer”.
Electroless plating of silver was performed to achieve
selective metallization of the metal-coatable polymer
microstructure. The 3D microcoil with five turns, a
diameter of 200 μm and a height of 60 μm can be
operated at 25.4 GHz.

20 µm Acc.V
10.0 kV 3.0 1000x SE 13.3

Spot magn Det WD

a b c

50 µm

200 µm

Fig. 8 Microcoils and nanocoils made by emerging 3D nanofabrication technologies. SEM images of coil-like 3D microstructures: a Metallic 3D
triple helix structure, printed with FluidFM74 (Copyright Wiley 2016). b 3D microcoil with a diameter of 200 μm, a height of 60 μm and five turns,
printed using TPS84 (Copyright Leibert 2019). c 3D Moebius strip with a triangular cross section and individual wire dimensions of approximately
25 nm, fabricated by FEBID87 (Copyright AIP 2019)
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Focused electron beam induced deposition (FEBID)
Based on electron-gas interactions, FEBID is a direct-

write approach for the fabrication of 2D and 3D nanos-
tructures. During FEBID, an electron beam (e-beam) is
scanned over a sample in the presence of precursor gases
to deposit patterns of materials onto a substrate85. Scan-
ning electron microscope (SEM), along with a gas injec-
tion system, is employed for the FEBID method, and
organic precursor gases are used as the printing materials.
In FEBID, the material deposition (growth) process
depends on several precursor-specific aspects, namely, the
vapor pressure of the precursor, the adsorption char-
acteristics of the precursor molecules, and their stability
under adsorption. Under continuous e-beam exposure,
the surface physisorbed or chemisorbed precursor mole-
cules are dissociated. The low-energy secondary electrons
and backscattered electrons generated by the primary
electrons trigger the electron-induced dissociation pro-
cess86,87. FEBID is particularly appropriate for microscale
and nanoscale structure manufacturing since precursor
molecules are small and e-beams can be focused onto
spots with diameters varying from micrometers down to
the angstrom level88. As examples, SEM images of a 3D
magnetic double-loop nanospiral and Moebius strip with
a triangular cross section and individual wire dimensions
of approximately 25 nm are illustrated in Fig. 8c.
Taking advantage of the organometallic precursors

designed for chemical vapor deposition, FEBID deposits
metallic, superconducting alloys and intermetallic com-
pounds and metamaterials87,89, such as silver (Ag), gold
(Au), platinum (Pt), iron (Fe), tungsten (W), cobalt (Co),
and ferrocobalt (Co3Fe) alloys. It enables a high degree of
miniaturization that opens the way for a wide variety of
applications. A purity of the as-deposited Au, Co, Fe, Si of
94–100%, Ag of ~75% and W of 66% has been reported
for FEBID90. However, due to incomplete dissociation of
the precursors, deposition from standard precursors, such
as tungsten hexacarbonyl (W(CO)6), copper (II) hexa-
fluoroacetylacetonate hydrate (Cu(hfac)2), and dimethyl-
(1,1,1-trifluoro-2,4-pentandionato) gold (III) (Me2Au
(tfac)), could result in deposition with a high carbon
content. Therefore, a postdeposition purification process
is developed to reduce contaminants by annealing in a
reducing 98% N2 and 2% H2 atmosphere at elevated
temperatures. For example, the purity of as-deposited
ruthenium (Ru) was increased from 23 to 83% after
postdeposition annealing at 300 °C.

Ice lithography
IL is a direct-write technique that uses electron-solid

interaction principles for nanoscale and microscale fab-
rication91. During the IL process, organic precursor gas is
condensed at cryogenic temperatures on the substrate
under a vacuum to create an organic ice resist layer, and

then a high-energy focused e-beam is used for cross-
linking. Figure 9a summarizes the IL process. The e-beam
cross-link condenses organic ice to form a large molecule
network92,93. Thereafter, excess materials are removed by
an evaporation step. Layer-by-layer deposition enables the
printing of 3D structures. For the IL process, the focused
electron energy is efficiently injected into the organic ice
layer. Thus, in comparison to FEBID, IL is 1000 times
faster92. Moreover, also true for FEBID, the IL process can
be applied to substrates with complex geometries. A wide
variety of precursors can be patterned by employing IL,
considering the formation of an ice resist at cryogenic
temperatures. In the case of highly impure and con-
taminated deposits, similar to FEBID, postdeposition
purification processes can be added.
IL can pattern metals; here, the “lift-off” approaches were

adapted to dissolve the ice layer94. For example, the manu-
facturing of a rectangular metallic cap on the pyramidal tip
of a standard atomic force microscope cantilever is pre-
sented (Fig. 9b). Moreover, Au-Ti wires (0.5-μm wide and
300-μm long) with bonding pads are demonstrated on a
microcantilever94 (Fig. 9c). An IL-patterned metallic layer on
fragile support structures, where conventional techniques
cannot be performed. A palladium (Pd) metallic triangular-
shaped pattern with features below 10 nm on a fragile free-
standing Si3N2 membrane (Fig. 9d) has also been presented.
Elsukova et al.95 reported the use of a transmission electron
microscope as a source of e-beam, which minimizes the
influence of instrumental limitations, and showed that the
onset dose of organic ice resists correlates with the inverse
molecular weight of the organic compound. Continuous
parallel lines down to 4.5 nm have been fabricated using a
0.4 pA beam current with frozen octane (C8H18), as pre-
sented in Fig. 9d. Furthermore, a 3D Ag-layered pyramidal
structure (Fig. 9f) has been reported, where a water ice resist,
which acts as a positive-tone resist, was utilized for pat-
terning96. Ice lithography is a suitable candidate for devel-
oping ultraminiaturized microscale and nanoscale inductors
in 2D and 3D forms for a wide range of applications due to
its ability to produce fine features in fewer steps. We are
currently developing IL to fabricate microinductors.

Power electronics applications
Power supply in package (PwrSiP) and power supply on
chip (PwrSoC)
Power supplies play an essential role in all electronic

devices. For example, they convert alternating current
(AC) signals to direct current (DC) signals. In modern
devices where space is strictly limited, including con-
sumer electronic products, light-emitting diode (LED)
lighting, wearables, implantable electronics, and the
Internet of things (IoT), the miniaturization of power
supplies has become a prime interest for future power
supply generation. Monolithic integration is the ultimate
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solution to realize highly miniaturized power supplies
while achieving superior performance in efficiency and
power density. These integrated power supplies are the
so-called power supply in package (PwrSiP) and power
supply on chip (PwrSoC). Figure 10 illustrates a timeline
overview of the notable developments of PwrSoC and
PwrSiP.
In fact, in switched-mode power supplies (SMPSs),

which are the most widely used power supply tech-
nology today, passive components such as inductors
and transformers are essential, but they are often
the most lossy and bulky components. Switching at
higher frequencies allows using smaller inductors. For

example, it was predicted that the target switching
frequencies for PwrSiP and PwrSoC are at high fre-
quencies (1–30 MHz) and very high frequencies (above
30 MHz), respectively97. Previous reviews cover tech-
nology trends, specifications, target applications, and
enabling technologies for PwrSoC97,98. While other
aspects of PwrSoC technology have greatly advanced,
such as CMOS integration technologies for active
components (e.g., high band-gap GaN, SiC FETs), gate
drivers and controllers, and efficient topologies, inte-
grated passive technology and 3D packaging technology
remain technology gaps to overcome. Here, we discuss
these two topics: (i) MEMS power inductor technology
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Fig. 9 Ice lithography. a Schematic diagram of the process of ice lithography pattering. Example of ice lithography patterning, where the lift-off
process is used to melt the ice layer94. b Patterning of the Ti/Au layer on an AFM tip94. c An SEM image of a patterned Ti/Au wire on a
microcantilever. d A TEM image of a three-bladed pattern of palladium (Pd) metal patterns on a free-standing Si3N2 membrane94. e Patterned parallel
lines on octane95. f SEM images of a 3D pyramidal nanostructure, made of Ag layers, fabricated at room temperature using a water ice resist for
patterning96 (Copyright ACS 2012, 2018)
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for PwrSoC and (ii) MEMS–CMOS integration and
packaging technologies of SMPS in relation to MEMS
inductor fabrication.

MEMS inductors for PwrSiP and PwrSoC
First, MEMS inductors offer unique characteristics to

be used in PwrSiP and PwrSoC applications thanks to
the unique advantage of MEMS-CMOS integration. In
addition to fundamental properties such as the quality
factor and inductance, power MEMS inductors are
required to have a sufficient current handling capability

(100 mA to 3 A), low electromagnetic interference
(EMI), low parasitic capacitance, etc. We summarize
the electrical performance of state-of-the-art power
MEMS inductors in Fig. 11. First, Fig. 11a presents the
frequency-dependent quality factor versus the operat-
ing frequency. The presented inductor types have been
demonstrated for power electronic applications in the
frequency range of interest from 100 kHz to 30 MHz.
While other groups of MEMS inductors cover a wide
range of Q and frequency, 3D in-Si toroidal inductors
stand out, with both a high quality factor (Q) and high
frequency.
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In power applications, an inductor often carries a DC
current in addition to a high-frequency AC current.
Therefore, it is important to also account for DC per-
formance when evaluating the performance of the
power MEMS inductor. Figure 11b shows the induc-
tance density versus a figure of merit (FOM)59 for
previous MEMS power inductors. We introduce the
FOM to better scope the inductor efficiency at both DC
and AC frequencies. The FOM is calculated using (1).

FOM ¼
ffiffiffiffiffiffiffiffiffiffi
QDC�

p
QAC=V ¼

ffiffiffiffiffiffiffiffiffiffiffi
LDC

RDC
�

r
Qmax=V ð1Þ

where QDC is the low-frequency quality factor, Qmax is the
maximum quality factor, V is the total inductor volume,
LDC is the low-frequency inductance, and RDC is the DC
resistance. It is noted that the inductor substrate thickness
is chosen to be 350 µm unless otherwise mentioned. It is
shown in Fig. 11b that 3D in-Si toroidal inductors also
outperform 3D on-Si toroidal inductors with higher
inductance densities and FOMs, as shown in Fig. 11b.
On the other hand, on-Si inductors cover a wider range of
Q (3–19) and inductance density (25–110 nH/mm3).
While air-core MEMS inductors are useful for

switching at very high frequencies (VHFs) above
22 MHz, magnetic-core MEMS inductors are needed
for DC–DC power supplies below 22MHz to achieve
sufficient inductance. However, the advances in power
conversion technologies have outpaced the growth in
magnetics, and magnetic materials have become a key
limitation constraining the overall miniaturization due
to their excessive core losses at HF and VHF frequency
ranges. Fundamental understandings of the core losses
can be found in references31,99.
Developments in magnetic technology for power

MEMS inductors have focused on exploring novel mate-
rial combinations, optimizing core structures, and devel-
oping integration technology for magnetic materials.
Electroplated ferrites, such as Ni45Fe55

100, have been
intensively studied due to their ease of fabrication, high
permeability, and useful frequency range (MHz). Nano-
granular cobalt-based alloys have recently received much
attention due to their low core loss at high fre-
quencies26,101,102. Notable studies of MEMS inductors
with this material category include CoNiFe38, sputtered
Co–Zr–O26, Ta/Co91.5Zr4.0Ta4.5 (CZT)/SiO2

101, and
sputtered cobalt-based amorphous alloys102. This
approach often requires advanced deposition techniques
for nanolaminated thin-film structures. Alternating elec-
trodeposition and co-sputtering are the two most com-
mon deposition methods that have been demonstrated.
Another notable category of magnetic cores is compo-

site cores. Using microscale and nanoscale magnetic
particles that are electrically isolated, the eddy current

loss can be significantly reduced, thus extending nano-
composite materials to high-frequency applications.
Magnetic composites consist of magnetic particles that
are electrically isolated either by insulator shells or by
non-conducting media such as polymers. Casting or
screen printing has the advantage of forming a large-
volume magnetic core at low costs.

Packaging technology for PwrSoC
For PwrSoC research, packaging technology plays a

crucial role in improving the power density and efficiency
for efficient thermal dissipation and minimal unwanted
parasitics. For heat dissipation, high-thermal-conductivity
materials such as Al2O3 and AlN are used as substrates
and encapsulation materials. MEMS packaging technol-
ogies are adopted for PwrSoC integration as an alternative
for common packaging architectures such as leaded-
frame power modules and PCB-embedded power mod-
ules. There are 2D/2.5D packaging architectures that use
wire bonding103 or flip-chip bonding techniques104. On
the other hand, 3D packaging architectures refer to the
vertical stacking of ICs using TSV-based Si interposers.
Vertical stacking using TSV interconnections reduces the
electrical path, thus minimizing the parasitics between
vertically stacked chips. In addition, TSV-based packaging
technology provides efficient thermal dissipation due to
spreading effects over a thermally conductive substrate105,
thus enhancing the power density and efficiency of
PwrSoC. Important challenges are MEMS-CMOS inte-
gration of passive components such as inductors, TSV
process optimization to maximize the current-carrying
capability, and TSV insulator technology optimization to
achieve CMOS compatibility and high-voltage isolation
while keeping the TSV substrate thermal resistance low.
Low-temperature ALD-enabled dielectrics, such as Al2O3

and AlN, are promising alternatives for dielectrics
deposited by PECVD. Table 3 summarizes the key spe-
cifications of the power converters shown in Fig. 10,
including the converter efficiency and power density
corresponding to 2D, 2.5D, and 3D packaging
technologies.

Challenges and research opportunities for power
electronics
Power supply technology needs to keep up with the

rapid development pace of modern electronics with
respect to size reduction and performance improvement.
Integrated power supplies have the potential to become
an ideal solution. However, to increase the integration
level, we envision the further development of four aspects.
First, further developments are needed to optimize the

winding design and magnetic materials. We believe that
inductors constructed by using 3D windings and TSV
windings have great potential for the MHz switching
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frequency. 3D solenoid and toroidal windings have been
shown to have better performance in terms of the induc-
tance density and power density. Although these winding
structures have been intensively studied, accurate models of
winding losses are still needed to minimize losses due to
eddy-current effects, especially the proximity effect.
Second, magnetic materials and deposition technologies

are essential for power MEMS inductors. In addition to
the deposition methods studied intensively, such as elec-
troplating and sputtering, atomic layer deposition (ALD)
is an emerging deposition method for fabricating nano-
laminated magnetic thin films. ALD provides unique
advantages, depositing alternating thin-film systems with
superior flexibility and controllability over the film
thickness, quality, and uniformity. The challenge is the
limited variety of available magnetic materials that can be
deposited by ALD. Superparamagnetic particles could
also be interesting to investigate due to their extremely
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low eddy current loss regarding core losses. However,
developing fabrication technology for the particle-based
magnetic core is a challenge.
Third, packaging technology is another essential aspect

of efficiently downsizing power supplies. We envision that
the use of TSV-based interposer technology is a promis-
ing approach towards 3D integration of the power supply.
Several intermediate steps are to be carried out towards
monolithically integrated PwrSoC, including passive
interposers, active interposers, and active-passive inter-
posers. Several integrated power supplies have been
demonstrated using passive interposers, such as inductive
interposers106,107 and capacitive interposers108.
Finally, MEMS–CMOS integration is a crucial tech-

nology for PwrSoC integration. This technology would
enable the monolithic integration of MEMS passive
components (e.g., inductors and capacitors) and active
components on the same substrate. A CMOS-compatible
technology for a power MEMS inductor is needed.

Biomedical and neurotechnology applications
MEMS inductors and magnetic devices also find impor-

tant applications in the field of biomedical devices and sys-
tems, including microfluidics (nanobead trapping109,110,
magnetic sensing111,112 and biotarget sorting113), nuclear
magnetic resonance (NMR) spectroscopy114,115, implantable
biomedical devices116–118, magnetic stimulation, and exci-
tation (excitable cells119 and neurostimulation116). There are
review papers covering the first three application categories,
such as microfluidics120, magnetic sensing111,121, NMR122,
wireless power transfer for implantable medical devices123,
and NMR technologies for biomedical applications124.
However, there is no review on the last application category.
In this section, we focus on an exciting and growing area of
microinductor research and application: neurotechnology.
Since the nervous system uses electrical signals to per-

form information transmission and to control the sensory
organs, external electromagnetic fields can modulate
neural activity. In 1985, Barker et al.125 demonstrated the
stimulation of neurons using localized transcranial mag-
netic stimulation (TMS). Over the last 20 years, TMS,
which uses rapidly fluctuating magnetic fields, has
emerged as a noninvasive and painless technique to
modulate brain function126,127 and brain mapping and to
explore the excitability of different brain regions. Fur-
thermore, TMS has been employed for the detection and
monitoring of neurodegenerative diseases128 and for
clinical therapy129 due to its ability to dampen neuronal
hyperexcitability, decrease neuroinflammation, alter
blood-brain-barrier permeability and promote neuronal
survival.
The magnetic flux created due to dynamic current flow

through the coil generates its own electric field130. This
electric field induces changes in transmembrane currents,

eventually leading to the depolarization or hyperpolar-
ization of neurons, making them, respectively, more or
less excitable131. Depending on the frequency, duration,
and intensity of stimulation, the effects of TMS can be
varied132. Low-frequency and high-frequency stimulation
patterns can, respectively, exert dampening of neural
activity and excitatory effects on brain activity133. Single-
pulse and paired-pulse TMS are used to examine the
functionality of the brain, whereas repetitive TMS is uti-
lized to induce long-lasting changes in brain activity
beyond the stimulation period, as summarized in Fig. 12a.
Chronic prosthetic applications require deeper brain
activation with accurate focusing of specific neural targets.

Micromagnetic stimulation (μMS)
μMS uses an implanted MEMS microcoil to produce a

magnetic field. Unlike TMS, which uses a relatively large
coil, e.g., often 50–100mm in diameter, that is positioned
above the scalp (Fig. 12a) and typically targets large
regions in the superficial cortex (e.g., several centimeters
or more in diameter), the use of MEMS allows coils to be
implanted into the brain and may facilitate confined
activation of narrow regions of the brain or even a single
neuron. Bonmassar et al. reported, for the first time in
2012134, that the electric currents flowing through the
commercially available microcoil inductor generated
adequate time-varying magnetic fields and, in the process,
could induce electric currents in a focal area to elicit
neuronal activity. This development raises new possibi-
lities of using a micromagnetic stimulation inductor as
neural prosthetics, which would allow implantation near
the areas of interest to stimulate deeper brain targets with
higher spatial selectivity. Figure 13 summarizes the
timeline of development and the applications of non-
invasive micromagnetic stimulation of brain activation.
For example, Lee et al.135 used a commercial solenoid coil

(0.5mm in diameter) to stimulate subthalamic nucleus
(STN) neurons, i.e., the primary target of deep brain sti-
mulation for the treatment of Parkinson’s disease. A similar
approach was reported by Minusa et al.136, where microcoil
magnetic stimulation using the same solenoid coil was
employed for activation of the auditory cortex of anesthe-
tized mice. The results show that µMS can selectively target
local neural networks and modulate their activities in vivo.
Unfortunately, because commercial microcoils are not
designed for implantation into the cortex, tissue damage
during implantation is a serious problem135. Therefore,
dedicated MEMS coil implants are needed.
In 2016, the first MEMS microcoil-based neural pros-

thetics were reported116. The coil had a half turn because
it was fabricated using the 2D lithography method. The
width and length of the implant were 100 μm and 2mm,
respectively. The implant was tested in living mouse
subjects. Despite generating a weaker electric field than
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that of large TMS coils, the field was confined to a much
smaller region, and therefore, the spatial gradient of the
field was strong enough to activate neurons in both
in vitro and in vivo experiments. The implant was inserted
into the mouse whisker motor cortex, and depending on
the stimulation frequency, the whiskers exhibited move-
ments in response to microcoil stimulation (Fig. 12b).
Although this inductor is thin and small, there is still
room for improvement in terms of its magnetic field
strength and selectivity. A study showed that the coil
design (e.g., shape and number of turns) influenced the
selectivity and strength of the microcoil137. Several
microcoil designs, namely, rectangular, V-shaped and W-
shaped designs, were studied numerically and experi-
mentally in vitro using coronal brain slices from the
mouse primary visual cortex. The results show that both
the V-shaped and W-shaped designs can reliably activate
neurons. The W-shaped coil design provides higher
selectivity, whereas the V-shaped coil design renders a
higher strength of stimulation. Moreover, when compared
to the single-turn coil design, the multiturn coil exhibits
enhanced strength of stimulation and thus reduces the
activation thresholds. The findings present guidelines for
the development of next-generation microcoil-based
neural prostheses.

Challenges and research opportunities for
neurotechnologies
Since its first manifestation in the mid-1980s, the TMS

method has evolved to overcome some of the issues
associated with electric brain stimulation138, such as pain
links to the stimulation process and tissue damage.
However, the noninvasive nature of TMS limits its spe-
cificity and focality. This makes deeper brain area acti-
vation difficult without affecting greater regions than the
targeted location. Since divergent magnetic stimulation
could increase the risk of seizures and other side
effects139, design optimization of the appropriate coil has
become increasingly important, and challenging to
improve the focality for brain stimulation140. The multi-
channel TMS approach141, where multiple independent
coils are simultaneously operated with altered magnitudes
of current to produce a magnetic field profile in demand,
has also been developed to overcome issues. Although the
multichannel approach shows promise, the energy and
thermal dissipation still need to be addressed. Another
drawback of the TMS is variability, which contributes to
uncertainty and inefficiency. Often, the results of the TMS
are inconsistent. A study showed that a particular
sequence of pulse patterns could produce different
responses for different persons140.
Progress in µMS employing microcoil implants allows for

ultrafocused intracortical stimulation and focal cortical
responses around coil implants. Compared to TMS,

micromagnetic stimulation coils can be positioned in close
proximity to the target region, which helps to improve the
spatial control of the elicited activity. Additionally, compared
to recently developed implantable neural stimulators pow-
ered by using inductive coupling coils142, magnetic trans-
ducers143,144, and ultrasound transducers145,146, microcoil
implants have important advantages. For example, regard-
less of the method of wireless power transmission, since
most wireless stimulators generally deliver direct electric
stimulation to targeted neurons via implanted electrodes,
there are several limitations, such as limited control of the
electric fields (e.g., spatially symmetric electric fields) and
decreased performance associated with tissue inflammation
(e.g., glial scarring). In contrast, microcoil implants can
produce spatially asymmetric electric fields around the coils,
thereby selectively targeting specific neurons while avoiding
passing axons. This enhanced selectivity suggests that coil
implants can provide better stimulation resolution than
electrode-based implants. Additionally, since the magnetic
field has high permeability to biological materials, the effi-
cacy of magnetic stimulation from the coil implants will not
be diminished even by severe tissue encapsulation. Thus,
microcoil implants have the potential to improve the effec-
tiveness and reliability of implantable neural stimulators.
Since magnetic fields can also pass through non-

magnetic insulating materials, microcoils can be fully
encapsulated using a wide range of flexible biocompatible
materials, e.g., Parylene147, liquid crystal polymer148, and
hydrogel149; this will help to reduce the inflammatory
tissue reactions that can arise in response to chronic
implantation in the cortex. This encapsulation also
enables the μMS coils to be electrically isolated from the
adjacent tissue and may also reduce the amount of heat
transfer. However, regarding the mechanisms underlying
µMS induction, e.g., modulation of the activity of single
neurons or cortical neural networks, we have a very lim-
ited understanding150,151.
For neural prosthetic implants with ultrafine stimulation

resolution, we envision opportunities and challenges in four
areas. First, since a 3D microcoil requires dimensions similar
to those of neuron cells (20 µm), there are significant fab-
rication challenges in fabricating multiturn inductors with
conductors approximately 1 µm in diameter and in per-
forming magnetic core integration to achieve a high
inductance density. Second, unlike the RF and power elec-
tronics applications, inductors for neural stimulations must
induce large electrical field gradients with low power con-
sumption. Hence, the inductor designs are very different and
have only marginally been explored. Third, for medical
applications in artificial vision, an array of millions of
inductors is needed, and the array must be implanted in the
visual cortex with a complex topology. The challenge is to
make individualized, flexible, multiplexed, and durable
implants. Fourth, since there are 30 million blind people
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around the world and most patients cannot afford expensive
implants, the final challenge is to provide accessible
technology.
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