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The full phase space dynamics 
of a magnetically levitated 
electromagnetic vibration 
harvester
Tobias Willemoes Jensen, Andrea R. Insinga, Johan Christian Ehlers & Rasmus Bjørk*

We consider the motion of an electromagnetic vibrational energy harvester (EMVEH) as function of 
the initial position and velocity and show that this displays a classical chaotic dynamical behavior. The 
EMVEH considered consists of three coaxial cylindrical permanent magnets and two coaxial coils. The 
polarities of the three magnets are chosen in such a way that the central magnet floats, with its lateral 
motion being prevented by enclosion in a hollow plastic tube. The motion of the floating magnet, 
caused by e.g. environmental vibrations, induces a current in the coils allowing electrical energy to be 
harvested. We analyze the behavior of the system using a numerical model employing experimentally 
verified expressions of the force between the magnets and the damping force between the floating 
magnet and the coils. We map out the phase space of the motion of the system with and without 
gravity, and show that this displays a fractal-like behavior and that certain driving frequencies and 
initial conditions allow a large power to be harvested, and that more stable states than two exists. 
Finally, we show that at leasts fifth order polynomial approximation is necessary to approximate the 
magnet-magnet force and correctly predict the system behavior.

Remote microelectronic devices with a low power consumption have the potential to be supplied with energy 
harvested from the surrounding environment, saving expensive battery replacements for these devices. A direct 
sources of ambient energy is vibrations, where multiple concepts for harvesting this source of energy have been 
 suggested1,2. Here we consider an electromagnetic vibration harvester (EMVEH), which generates power by 
vibrating a magnet past a set of coils. Specifically, we consider the EMVEH where a middle magnet is levitated 
by placing it between two coaxial cylindrical permanent magnets and enclosing it in a  tube2,3, to prevent it from 
flipping. This middle magnet can then be vibrated through a set of coils, inducing an electromotive force. Such 
a design is illustrated in Fig. 1. The middle magnet experiences a non-linear restoring force and the system 
can be considered as a one-dimensional non-linear  oscillator3–5. Such EMVEH harvesters prototypes are very 
simple to make, as all that is needed are off-the-shelf components such as permanent magnets, coils (typically 
available from audio equipment suppliers), acrylic tube and simple 3D-printed parts. Such harvesters can also 
be miniaturized although this involves more specialized production  techniques6.

In the harvester the energy is extracted through coils placed around the tube, where the changing mag-
netic flux through the coils induces an electromotive force according to Faraday’s law. The magnetic field gener-
ated by the coils when they are excited by the induced electromotive force opposes the relative motion between 
the levitated magnet and the coils. Therefore, the effect of this interaction is to exert a damping force on the 
floating magnet.

The magnet-magnet restoring force, also termed the magneto-elastic force, present in the EMVEH is highly 
non-linear when the floating and fixed magnets are close to each other. A large number of mathematical expres-
sions for both the magnet-magnet force and the induced electromotive force between the floating magnet and 
the coils have been  derived7. However, the magnet-magnet force is often approximated by a linear and a cubic 
term, kz + βz3 , which makes the governing equation of motion resemble the Duffing  equation3,8–10, although 
with a position-dependent dampening term. Such an approximation generally allows for an analytical solution 
for e.g. the produced power to be  obtained11. However, the influence of this expression on the dynamics and 
stability of the system has not been studied in detail.
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Furthermore, there is a large gap in knowledge with regards on how to harvest the maximum amount of 
power from a vibration source using an EMVEH. It has been shown that energy harvesters with a non-linear 
restoring force are superior compared to those with a linear one due to the wider range of frequencies that can 
excite the oscillator to a resonant  state12. While reasonable power densities, with a maximum of 8 mW/cm313, has 
been  demonstrated7, the non-linear force present in EMVEHs introduces frequency regions with multiple stable 
solutions, which creates situations where the harvester can jump between regions of low and high  excitation14,15, 
with an order of magnitude difference in power production between these states. However, the driving frequency 
which causes these different states to appear is not a parameter that can be controlled for an EMVEH in a real-
world application. Instead, the initial conditions in the EMVEH, i.e. the initial position and velocity of the floating 
magnet, can be controlled but their influence on the harvested power is not known.

Our hypothesis is that by understanding this influence, the harvested power and the frequency harvesting 
range can be optimized, which is needed for EMVEHs to be truly useful for a broad range of applications. To 
investigate this, we here present an analysis of an EMVEH system using a numerical model based on experi-
mentally validated expressions for the magnet-magnet restoring force and the induced electromotive  force16. We 
explore the full dynamics of the system to investigate how the initial conditions of the floating magnet influence 
the harvested power and compare this to the standard approach of approximating the magnet-magnet force with 
a polynomial expression. Further, we also explore the effect of gravity on the system.

A modeling approach to investigating the phase space of an EMVEH is warranted for three reasons. For the 
first, we use experimentally verified expressions for the magnet-magnet force and the dampening force from the 
coils, ensuring a fully realistic model. Secondly, a model allows us to ignore mechanical friction in the device, for 
which no general description exists that can be used to generalize the found results. Thirdly, using a modeling 
approach, we can conduct a large parameter space survey, which would be impossible using an experimental 
approach. In this work more than 7 million numerical experiments have been conducted, an impossible number 
to realize experimentally.

Theory and modelling
In this study we model the dynamics of an EMVEH, with specific focus on the harvested power as function 
of the initial conditions of the harvester. In order to compute the harvested power, it is necessary to describe 
the dynamic behavior of the floating magnet which is governed by Newton’s second law. The model for this is 
described in the following sections.

The model presented in similar to many of the existing models presented in Ref.7 and includes the same phys-
ics as these. However, the novel part of this work is not a new model, but an exploration of the chaotic behavior 
that the model gives rise to, the number of steady operating states for an EMVEH harvester and the produced 
power in these states.

The dynamical system. We will denote with z, ż , and z̈ the position, velocity and acceleration of the float-
ing magnet, respectively. For now we will assume that the only moving part of the device is the floating magnet. 
Newton’s second law is then expressed as

where mfloat is the mass of the floating magnet, Fe is the force due to the interaction of the floating magnet with 
the coils, Fm is the force due to the interaction of the floating magnet with the fixed magnets, and Fg is the gravi-
tational force. As shown in Eq. (1), the magnet-coil force Fe depends on the position of the floating magnet and 
its velocity, the magnet-magnet force Fm depends only on the position, and the gravitational force is constant: 
Fg = −mg , where g = 9.8 m/s2 denotes the gravitational acceleration. As will be discussed in the "Mechanical 

(1)mfloatz̈ = Fe(ż, z)+ Fm(z)+ Fg
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Figure 1.  Schematic drawing of the considered EMVEH device. The two blue magnets in each end of the tube 
are fixed and have their magnetisation, Mfixed , pointing in the same direction. The green magnet in the middle is 
free to move and has its magnetisation, Mfloat , pointing in the opposite direction. Each of the two coils coloured 
in red is coupled to an external resistive load. The radius, r, and the height, h, of the different components are 
also indicated.
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friction" section, the effect of mechanical friction is not included. The expressions of the two terms Fm and Fe 
will be presented in the "Magnet-magnet force" section and the "Magnet-coil force"  section, respectively. In the 
"Driving force"  section we will introduce the effect of the external driving vibrations.

Magnet-magnet force. In this section we consider the interaction between the floating magnet and the 
two fixed magnets. The force between two coaxial cylindrical uniformly-magnetized magnets has previously 
been obtained through a Fourier  approach16–19. This approach consists of employing the Fourier transform to 
evaluate over the reciprocal space the integral of the dipole-dipole interaction energy density between the mag-
nets using a specific shape function. The force between one of the fixed magnets and the floating magnet is 
directed along the z-axis and is given  by16

Here Mfloat and Mfixed are the remanent magnetisations of the floating and fixed magnet respectively, z12 is the 
relative distance between the floating and fixed magnet and Jd(z12) is the dipolar coupling integral:

Here J1 is the Bessel function of first kind, q is the reciprocal space variable, rfloat and rfixed are the radii of the 
magnets, and τfloat and τfixed are the height-to-radius ratios of the magnets, τ = h/r . This force expression is 
similar to other expressions presented in Ref.7.

As shown in Fig. 1, we here consider a system with two fixed magnets. The relative orientation between the 
floating magnet and each of the fixed magnets is such that the mutual force is repulsive in both cases. Therefore, 
the combined effect of the two interactions is to create a non-linear restoring force acting on the middle magnet. 
Its stable equilibrium position is thus the middle point between the two fixed magnets, corresponding to z = 0 . 
Since the two fixed magnets are separated by a distance dfixed , the relative distances between the floating magnet 
and each of the fixed magnets are z12 = dfixed/2± z , respectively. In conclusion, the net magneto-elastic or 
magnet-magnet force acting on the floating magnet is the sum of the two terms:

The reason for the minus sign in the second term on the right-hand side of the previous equation is that the signs 
of the force exerted by the two fixed magnets is opposite. Clearly, the magneto-elastic force is conservative since 
it is the derivative of the associated magnetostatic potential energy.

We have implicitly assumed that the magnetization is uniform within each magnet and independent of the 
magnetic field experienced by the magnets. However, we emphasize that this procedure for computing the force 
expression has been experimentally  validated16, and that these two assumptions have been verified to be realistic 
enough for the system under consideration.

Magnet-coil force. In this section we consider the interaction between the floating magnet and the coils. As 
shown in Fig. 1 we consider two n-turns coils belonging to two different electrical circuits, as this will result in 
the maximum induced power. We will initially focus on one turn of one of the two coils (e.g. the i th turn of the 
upper coil). The considerations that are valid for the upper coil can be analogously applied to the identical lower 
coil. We will denote with zi the relative distance between the floating magnet and the i th turn. Since all the turns 
of both the coils are fixed, the relative velocities between the floating magnet and all the turns are the same, and 
will be denoted by ż = dzi

dt  , ∀i.
When the floating magnet moves towards or away from one of the coils, the magnetic field generated by the 

magnet induces an electromotive force Ei in the coil’s turn. The electromotive force causes a current I which 
gives rise to a magnetic field generated by the coil. The magnetic field from the coil exerts a force on the magnet 
which oppose the relative motion between them. We will denote with Fi the force exerted by one coil’s turn on 
the floating magnet.

From an energy perspective, the instantaneous power P(c)i  induced in the turn, which of course is the pur-
pose of the device, is equal to the associated rate of decrease P(m)

i  in the kinetic energy of the floating magnet. 
Therefore, the effect of this interaction on the movement of the floating magnet is equivalent to that of a damping 
force in the sense that it always reduces its velocity relatively to the coil.

The excitation power of the coil’s turn is equal to the product between the current and the electromotive 
force: P(c)i = EiI , where it is noted that the current I is the same for all the turns of the same coil since they are 
connected in series. We denote by R = Rcoil + Rload the total resistance of each of the two coils’ circuits, i.e. the 
inner resistance of one coil plus the corresponding external load. As we discuss at the end of this section, in this 
work we follow previous  publications20–24 in neglecting the self-inductance of the coils’ circuit and the mutual 
inductance between the two coils. Therefore, the current is equal to I = E/R , where the total electromotive force 
is the sum of the individual contributions from all the turns: E =

∑n
i Ei . The power subtracted from the magnet’s 

kinetic energy by the interaction with one turn is given by the product of the corresponding force Fi and the 
velocity of the magnet: P(m)

i = −Fiż . We can thus express the energy conservation law for this interaction as:

(2)F12(z12) = 4πµ0MfloatMfixedrfloatrfixed
∂Jd

∂z12

(3)Jd(z12) =

∫ ∞

0

J1(q)J1

(

q rfixed
rfloat

)

q
sinh(τfloatq) sinh

(

rfixed

rfloat
τ fixedq

)

e
−z12q
rfloat dq

(4)Fm(z) = F12(dfixed/2+ z)− F12(dfixed/2− z)

(5)P
(c)
i = EiI = Ei

E

R
= −Fiż = P

(m)
i
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Solving the previous equation with respect to the force we obtain:

The electromotive force can be found from Faraday’s law of  induction25:

where φi = φi(zi) is the flux through the i th coil’s turn, which is a function of the relative distance zi between the 
magnet and the turn. Plugging Eq. (7) into Eq. (6) for both the single turn and for E we obtain:

The total force acting on the floating magnet is obtained by adding the individual contributions from all the 
turns of each coil. Denoting by ζi the position of the i th turn, the relative distance between the floating magnet 
and the turn is written as: zi = ζi − z . The total force from one of the coils (e.g. the upper coil) is thus given by:

Thus the damping force is a function of both position and velocity of the floating magnet relative to the coil. 
In particular, the force is proportional to the velocity of the floating magnet: F↑e (ż, z) = −żc↑(z) . The propor-
tionality factor c↑ , which can thus be thought of as a damping coefficient, depends on the position of the floating 
magnet according to:

In order to determine the actual damping force, the derivative of the flux through each coil’s turn must be 
determined. By using again the principle of Fourier transform, an experimentally verified analytical expression 
for the flux through a single turn of a coil (i.e. a ring) can be  obtained16. It should be noted that two different 
expressions appear depending on whether the magnet is inside or outside the ring, where in the former case, the 
magnetisation, M, contributes to the flux, φ , in addition to the demagnetising field H. The analytical expressions 
for the flux derivative dφdzi  from a single-turn coil  are16: 

 where rcoil is the radius of the coil.
As shown in Fig. 1, the prototype under consideration includes two identical n-turns coils symmetrically 

placed around the point z = 0 . Denoting by dcoil the distance between the midpoints of two coils, by hcoil the 
height of the coils, and by δ = hcoil/(n− 1) the distance between turns, the position of the i th turn of the upper 
coil is ζi↑ = dcoil/2− hcoil/2+ (i − 1)δ , for i = 1, . . . , n . Similarly, the position of the i th turn of the lower coil 
is ζi↓ = −ζi↑ . The total force acting on the floating magnet is simply the sum of the forces from each coil:

As for the magnet-magnet force, some approximations have been assumed in order to derive the magnet-
coil force expression. In particular, the thickness of the wire is neglected, and all the turns are assumed to have 
the same radius rcoil , while in reality a coil typically have a few radial layers. Moreover, the coil is modelled as a 
series of parallel circles rather than a helix. Finally, as in previous  works21–24, here we only consider the inductive 
coupling between the floating magnet and all the coils, thus neglecting the self-inductance L of each of the coils’ 
circuit and the mutual inductance Lmutual between them. In order to include self-inductance effects, the current 
in each coil would have to be considered as an additional degree of freedom governed by a separate equation 
coupled with Eq. (1). 

(6)Fi = −Ei
E

Rż

(7)Ei = −
dφi

dt
= −

dzi

dt

dφi

dzi
= −ż
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dzi
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1

R

dφi

dzi

n
∑

j=1

dφj

dzj

(9)F↑e (ż, z) =
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(12)Fe(ż, z) = F↑e (ż, z)+ F↓e (ż, z)

(13a)Lİ↓ + Lmutual İ
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 with

We recover our governing equation in the limit L → 0 , Lmutual → 0.
As for the magnet–magnet interaction, we emphasize that also the magnet-coil force expression has been 

experimentally  validated16.
The load resistance connected to each of the two coils must be chosen so that the maximum harvested power 

is achieved. To do so, the load resistance has to be equal to the internal resistance of the coil (ignoring the coil 
self-inductance)26: Rload = Rcoil . The modelled coils are based on the properties of a copper coil with n = 16 
turns, a wire radius of rwire = 0.13 mm, leading to a resistance given by:

where ρcopper = 1.68× 10−8 �m denotes the resistivity of copper. Therefore, the total resistance of each of the 
two circuits is R = 0.634 � . The geometrical parameters are also listed in Tab. 1.

Driving force. Of course the purpose of the EMVEH device is to harvest energy from environmental vibra-
tions. The model discussed so far does not include the coupling with environmental vibrations. In this section 
we introduce the coupling of the device with the external vibrations.

Traditionally, an oscillatory driving force of prescribed amplitude is included in Eq. (1) as an additional term 
which directly affects the dynamics of the floating magnet. However, in reality the vibrations act on the external 
part of the device and not directly on the floating magnet. Here we follow a more realistic  approach4, where the 
EMVEH is considered to be small relative to the vibrating structure to which it will be mounted. This makes it 
appropriate to describe the EMVEH device by a driving movement, as the fixed parts of the device (the coils and 
fixed magnets) are expected to completely follow the motion of the structure to which the device is attached. 
This means that the fixed magnets and coils all move with a fixed time-dependence, here termed Zdrive(t) . This 
means that the input arguments of the functions Fm(z) and Fe(ż, z) will be replaced according  to27: 

We assume here that the driving motion is given by 

 where A is the amplitude of the movement and ω = 2π f  is the angular frequency.
The final full equation governing the motion of the system is thus:

(14)Fe(ż, z) = −I↑

(

n
∑

i=1

dφ
↑
i

dzi

)

− I↓

(

n
∑

i=1

dφ
↓
i

dzi

)

(15)Rcoil = 2πnrcoilρcopper/(πr
2
wire) = 0.317 �

(16a)z → z − Zdrive

(16b)ż → ż − Żdrive

(17a)Zdrive(t) = A sin(ωt)

(17b)Żdrive(t) = −Aω cos(ωt)

Table 1.  A table of the parameters for the considered system.

Parameter Value

Floating magnet

Height, hfloat 1.6 cm

Radius, rfloat 1.5 cm

Mass, mfloat 22 g

Magnetisation, Mfloat 6.43 · 10
5 A m

Fixed magnets

Distance, center to center, dfixed 10.4 cm

Height, hfixed 0.5 cm

Radius, rfixed 1.5 cm

Magnetisation, Mfixed 6.84 · 10
5 A m

Coils

Distance, center to center, dcoil 2.5 cm

Height, hcoil 0.5 cm

Radius, rcoil 1.0 cm

Turns pr coil, n 16

Resistance pr coil, Rcoil 0.317 �

Driving system
Amplitude, A 0.5 cm

Frequency, f 0.1–20 Hz

External Load resistance, Rload 0.3173 �
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While Eq. (18) is used to mechanically evolve the system forward in time, the power harvested from the system 
is computed at every time step using Eq. (5) and thus there is a full coupling between the mechanical motion of 
the system and its electrical behavior.

The above equation is assumed to be non-stiff and is solved numerically using MATLAB’s ode45 with default 
tolerances of abstol = 10−3 and reltol = 10−6 . The computed solution is sampled with 500 points for each 
driving-period.

As stated above the model presented here has experimentally validated expressions for all interaction terms 
in the governing equation of motion. The resulting differential equation is then numerically integrated using a 
standard ODE approach. The numerical solution has been verified to precisely satisfy the equation of motion 
given as input, i.e. the ODE solution does not change with changing tolerance, and thus the resulting solution 
is fully validated.

Mechanical friction. Besides the effect of electromagnetic damping, studies of EMVEH devices may 
include mechanical friction between the floating magnet and the encasing tube and viscous friction experienced 
by the floating magnet as it moves through the air in the tube.

There are different models for mechanical friction forces between sliding  surfaces28. The Coulomb model is 
the simplest, with most other models being improvements of this. In the Coulomb model, the friction force is 
proportional to the normal force between the surfaces in contact with the proportionality factor being the friction 
coefficient. In a vertical setup, the only lateral force pressing the floating magnet against the surface is of magnetic 
origin. However, for perfectly cylindrical and coaxial magnets this force is zero. Therefore this force is only due 
to imperfections such as a small lateral displacement of the floating magnet, for which a full three-dimensional 
model would be necessary to predict this friction coefficient.

In fact, in all the studies of EMVEH devices that include mechanical friction, the force is parameter-
ized by determining one or more coefficient by means of fitting the simulation results with experimental 
 measurements29,30. However, this fitting procedure cannot be applied unless experimental data is already avail-
able. The main purpose of our study is to propose a model that can be used during the design optimization step 
and to explore the chaotic behavior of a EMVEH system. Therefore, fitting with experimental data is not a viable 
option at this stage and therefore mechanical friction is ignored in the following, as has also been the case in 
other studied EMVEH  systems20–22,24.

Studied system
We consider the EMVEH attached to a structure that is much larger than itself. We assume that the structure 
vibrates as a sine with a fixed amplitude A of 0.5 cm and with a frequency f in the range of 0.1–20 Hz. The maxi-
mum acceleration of the driving system thus ranges from 0.003 to 4.3 g.

We consider a EMVEH system with the specific parameters as given in table 1 unless otherwise noted. The 
parameters are chosen realistically, allowing a subsequent prototype to be constructed. In this work, we have 
chosen to study a single EMVEH system, to fully explore the dynamics of this system.

We consider the EMVEH mounted both horizontally and vertically. For the vertical system, i.e. when gravity 
is included, the equilibrium position of the floating magnet is shifted from z = 0 to zeq ≈ −1.2 cm, which means 
that the coils are no longer placed symmetric around the equilibrium position of the floating magnet.

Regarding the choice of coils for the studied system, we wish to note that the chosen coils have not been 
investigated to be the optimal coils for e.g. maximizing the harvested power. An additional parameter study would 
have to be conducted to choose the optimal coil and the optimal coil position, in order to harvest the maximum 
amount of power from the ambient vibrations. However, that is not the purpose of this manuscript. Here, our 
purpose is to choose “a” realistic coil, that allows power to be harvested and the dynamics of the system to be 
explored. As discussed previously, the load resistance is chosen to be equal to the internal resistance of the coils 
in order to maximize the harvested  power26. In the following we give the total induced power in the coils. The 
power that can be harvested is equal to half of this value, as the load resistance is equal to the coil resistance.

To show that the load resistance has to be equal to the value of the coil resistance, we in Fig. 2 show the 
induced power for the studied system, with the floating magnet started from a position of rest in the center of 
the tube, at 5 and 10 Hz respectively. As can clearly be seen from the figure, the induced power is maximized 
when the load resistance is equal to the coil resistance.

Convergence to a steady state. The dynamic behavior of the EMVEH starting from a set of initial con-
ditions will consist of a transient state and a steady state. It is only in the latter state that the amplitude of the 
oscillations and the energy extracted through the coils is of interest.

Here we search for periodicity in the solution z(t) over a wide range of driving frequencies f = 1/T , where 
T denotes the duration of a cycle of the driving oscillations. We will use the term cycle to refer to periods in the 
driving movement, as opposed to periods in the solution which still is referred to as periods. In fact, the duration 
of a period of the steady state solution is not necessarily equal to T, but might also span multiple  cycles31:

In Fig. 3 we illustrate several solutions for the same frequency, but for different initial conditions of the 
floating magnet. As can be noticed from the figure, in some cases the periodicity can be greater than one cycle.

(18)z̈ =
1

mfloat
Fe
(

ż − Żdrive, z − Zdrive
)

+
1

mfloat
Fm(z − Zdrive)− g

(19)z(t + nT) = z(t), ∀t
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In every simulation the number of cycles needed for the solution to be periodic is determined by comparing 
the solution for the last n cycles to the previous n cycles. If the mean difference over these n cycles for some value 
of n is below 0.1%, this number of cycles is chosen as representative for a steady state solution since it has repeated 
itself. When the tolerance has been met and the simulation is terminated, the amplitude within the converged 
number of cycles is computed together with the mean extracted power in this range as computed using Eq. (5). 
If the tolerance is not met within the maximum number of cycles the solution is not accepted since the system 
did not converge to the steady state regime.

The maximum number of cycles compared, the number of time steps per cycle and the maximum number 
of cycles computed vary between the different system behaviors explored. The specific values are given in the 
sections below.

Results
All data presented in the following sections, as well as all scripts for making the figures etc. are directly available 
from Ref.32.

Hysteresis behavior. There are multiple ways to explore the state space of solutions of the system. One way 
is to explore the response of the system, when the driving frequency in gradually increased or decreased slowly 
enough for the system to relax to the steady state regime. In other words, the steady state solution calculated for 
a given frequency is used as initial conditions for the new frequency and the system is initially started from an 
initial position of zero and an initial velocity of zero. There is thus only one initial condition to the whole set of 
frequencies considered, contrary to the behavior explored in subsequent sections. Investigating the behavior of 
EMVEHs is traditionally done in this kind of  experiment3.

Here we consider a maximum number of cycles compared to be 200, and the calculation is stopped after 2000 
cycles. The number of time steps per cycle is 1000. Performing this analysis on the system considered here, we 
calculate the amplitudes of the floating magnet and induced power as shown in Fig. 4, where points are from low 
to high frequencies, and circles are reverse. Note that it is the absolute amplitude of the floating magnet oscillation 
as seen from a rest frame that is shown, i.e. the amplitude is not relative to the moving system.

Opposed to a linear equation, this system does not have a clearly defined resonance frequency. This phenom-
enon is sometimes called a foldover effect, since the bell-shaped peak normally seem for a linear oscillator folds 
 over15, thus exhibiting multiple solutions. As shown in Fig. 4, as the driving frequency is increased the amplitude 
of the floating magnet initially increases quickly before reaching a plateau, for both systems with and without 
gravity. For driving frequencies greater than 15 Hz the oscillating amplitude of the free magnet is larger than the 
distance between the fixed magnets. In reality, under these conditions the driving oscillation would cause the 
floating magnet to physically hit the fixed magnets. These results are thus unphysical and will be disregarded.

When the driving frequency is slowly reduced from 20 Hz, the system does not immediately return on the 
same set of steady-state solutions that were found for increasing frequency. Instead, the solutions initially fol-
low a different curve characterized by smaller amplitude of oscillations. This hysteresis behavior, i.e. that the 
state of the system depend not only on the current external conditions but also on its history, is well-known for 
 EMVEHs3,24,30, confirming the model presented here. It is important to note that there are two known states of 
the system: a high power and a low power state, and the system transitions between these at a fixed frequency. 
It is also worth noting that for the case with gravity the hysteresis region is smaller than for the case with no 
gravity, and in the latter case it is almost impossible to produce any power on the decreasing frequency branch.
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Figure 2.  The induced power as function of the load resistance for the studied system starting from rest and a 
driving frequency of either 5 or 10 Hz for a horizontal system. The resistance of the coils have been indicated.
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From the point of view of bifurcation theory, this kind of behavior is known as the previously described foldo-
ver effect, which is also exhibited by the much simpler Duffing equation. Foldover is characterized by two bifurca-
tion points which delimit the region where multiple equilibrium solutions are possible. Outside of this interval 
of the driving frequency axis only one stable solution exist. Inside the interval we observe two stable solutions, 
and the theory  predicts15,31 the existence of an additional unstable solution within this interval, which our con-
vergence criteria prevents us from observing. These are the features of two supercritical pitchfork  bifurcations31.

Moreover as discussed in the "Convergence to a steady state" section, we observe periodic solutions with 
different periods, which is the signature of period-doubling bifurcations. Finally, in certain regimes chaotic 
behavior can be observed, as will be discussed subsequently. All these kinds of bifurcations are present for the 
case of the Duffing  equation31, and are therefore expected also for the dynamical system considered in this work 
which can be thought of as a similar but more general case of the Duffing equation.

Steady state solution dependence on the initial conditions. The full state space of the system is 
explored by calculating the steady-state solution as function of the starting position and velocity of the floating 
magnet. We have computed the amplitude of the resulting oscillation and the induced power for 128 different 
initial velocities ranging from − 100 to 100 cm/s, and 128 different initial positions ranging from − 4 to 4 cm. The 
range of initial positions were chosen to be slightly smaller than the distance between the two fixed magnets. The 
number of cycles compared to find the steady state solution is 50, and the calculation is stopped after 1000 cycles. 
The number of time steps per cycle is 500. The reduced numbers with respect to the values used in Sec. 4.1 are to 
decrease the computation time of the model.

Figure 3.  An illustration of the steady state behavior of the system with gravity at the same frequency of 8.22 
Hz but different starting positions of the floating magnet as stated on the graphs. The initial velocity is − 7.09 
cm/s in all cases. The movement is shown in a reference frame at rest, thus the fixed magnets also move.
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We consider the range of driving frequencies from 0.1 to 20 Hz in 300 steps. The resulting state space plot, 
shown in a video with increasing frequency, is available as part of the supplementary material for this article. In 
Fig. 5 the state space plot of the resulting amplitude of the floating magnet is shown for a fixed driving frequency 
of 8.22 Hz in a higher resolution, 1800 different initial velocities ranging from − 108 to 108 cm/s, and 1000 dif-
ferent initial positions ranging from − 4 cm to 4 cm.

As can be seen from the figure, due to the non-linearity of the equation of motion the state space plot exhibits 
features that are typical for chaotic dynamical  systems33. In particular, the boundary between regions leading 
to different steady-state solutions may be fractal. In these regimes, a small change in the initial conditions may 
correspond to a strikingly different steady state behavior. The phase diagram for this system displays significantly 
more features and a more fractal-like nature compared to the previously computed phase diagrams for the Duff-
ing  equation15,33. Figure 6 shows the state space plot for a different driving frequency, i.e. 10.4 Hz. The chaotic 
structure is even more evident for this choice of frequency.

When gravity is not included, i.e. right panels in Figs. 5 and 6, the basin of attraction corresponding to dif-
ferent steady state solutions are less finely intertwined than they are when gravity is included. This is likely due 
to the coils being asymmetrical placed with respect to the equilibrium position of floating magnet when gravity 
is included.

What should also be observed from the state space plots is that for most of the frequencies shown, more 
than two steady state solutions exists. This means that more states than the classically known “high power” and 
“low power” states from frequency response experiments, as shown in Fig. 4, exists. It is interesting to explore 
the properties of these additional states, which the system does not access in the traditional frequency response 
experiments.

The properties of these states can be investigated by plotting the amplitude of the floating magnet and the 
power induced as function of the frequency for all initial conditions considered. This is shown in Fig. 7 for 32 
different initial velocities ranging from − 100 to 100 cm/s, and 32 different initial positions ranging from − 4 to 
4 cm. The number of initial conditions have been reduced from 128 × 128 to 32 × 32 in order not to clutter the 
figure. Visualizing the state space in this way, one can see that compared to Fig. 4 at higher frequencies than 7 
Hz there are multiple steady states that cannot be found through a simple ramping of the driving frequency. In 
other words only a small part of the phase space shown in Figs. 5 and 6 are explored in Fig. 4, while Fig. 7 shows 
this full phase space. These previously unreachable steady state solutions show vastly different amplitudes and 
corresponding induced powers. Note for example around 6–8 Hz there are two branches with vastly different 
amplitudes of steady states possible. In the “lower” branch the steady state amplitude is around 2 cm—a situation 
which results in almost no energy harvested, while in the “upper” branch the amplitude is around 7 cm, result-
ing in a much larger harvested power. It is also worth noting that for the system with gravity, a higher induced 
power state than the traditional high power state is possible between 8 and 12 Hz, with a gain in induced power 
around 5%.
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Figure 4.  The frequency response of the system in terms of amplitude and induced power, with and without 
gravity. Note that the amplitude is that as seen from a rest frame. The dots shows the system as it starts at rest, 
and then slowly ramp up the frequency, giving time at each step for steady state to settle. The circles shows the 
reverse, where the system starts at 20 Hz, and then slowly ramps down. Only data for systems that reached 
steady state is shown.
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Polynomial approximation of the magnet force. In literature the restoring magnetic force is often 
approximated by a polynomial  expression3,7–9. In this section we investigate the consequences of this approxima-
tion for the system considered here, by calculating the amplitude and induced power both for the true force and 
for various polynomial approximations fitted to the true force.

When fitting a polynomial to the true magnet force, we consider only the middle region of the system, as indi-
cated in Fig. 8 by the vertical dashed lines. This restriction is applied because when fitting for the whole interval 
the result is dominated by the exponential ends of the true force curve, which leads to an unphysical negative 
slope of the polynomial approximation around the middle-point of the curve. The chosen range of fitting is the 
largest range for which the resulting 3rd degree polynomial is monotonic.

In Fig. 8 we show the polynomials of increasing order which best fit the true magnetic force in the interval 
discussed above. It should be emphasised that the result shown in Fig. 8 corresponds to the specific system con-
sidered. For system with other dimensions, the exponential-like behavior of the true force can mean that espe-
cially polynomials of low degree cannot accurately approximate the true force curve. Note that in a Duffing-like 
equation the conservative force would be expressed as αx + βx3 , i.e. as the 3rd-order polynomia considered here.

In Fig. 9 the frequency response of the system compared to the true force, Fm , is shown. The frequency 
response is computed in the same manner as in Section “Hysteresis behavior”, i.e. increasing or decreasing the 
driving frequency by small steps and letting the system relax to the steady state regime before proceeding to 
the following frequency step. The number of cycles considered are the same as in Secton “Hysteresis behavior”.

From a practical point of view these results show that even using a relatively low order polynomial, 5th degree 
and higher, the overall dynamical behaviour of the system is captured and the discontinuous jump is correctly 
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Figure 5.  The amplitude of the floating magnet for 8.22 Hz with and without gravity for a range of initial 
positions and initial speeds and b) the corresponding induced power in the coils. Note that the color pink, which 
does not appear in the color scale, corresponds to systems that have not converged to a steady state solution.
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predicted, as a previous investigation have also  shown23. Note that the Duffing-type equation does not accurately 
predict the behavior of the EMVEH. Of course this conclusion is only true for the specific system studied and it 
should be remarked that e.g. if the fixed magnets are moved much further apart the force curve will be harder to 
approximate with a polynomial function, leading to inaccurately calculated values. It is also seen that the results 
computed with the polynomial approximations are more accurate at lower frequencies since the resulting oscil-
lation amplitude is smaller for this frequency range.

Discussion. As highlighted by our investigation, it is important to include the effect of gravity since the shift 
of the equilibrium position from the middle point breaks the symmetry, and this may lead to radically differ-
ent dynamics. Thus the same harvester operated in vertical and horizontal position will provide quite different 
power.

As discussed in the "Magnet-coil force" and "Mechanical friction" sections in this work we did not consider 
the effect of the mechanical friction on the behavior of the system, nor the self- and mutual inductances of the 
coils. Including both of these effect and studying their impact on the state space of the system is of interest in 
a future study. Regarding experimental validation of the results, it would be extremely prohibitive to conduct 
the large number of simulations performed in this study. For example in Figs. 5 and 6 alone more than 7.2 mil-
lion numerical experiments were conducted, which would be impossible to replicate experimentally. However, 
selected experiments at the different phase regions discovered could be performed to experimentally confirm 
the modelling results.
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Figure 6.  The amplitude of the floating magnet for 10.4 Hz with and without gravity for a range of initial 
positions and initial speeds and b) the corresponding induced power in the coils. Note that the color pink, which 
does not appear in the color scale, corresponds to systems that have not converged to a steady state solution.
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Figure 7.  The amplitude and the induced power for 32 x 32 different initial conditions in position and velocity, 
as described in the text, with and without gravity. Only data for systems that reached steady state is shown.
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Another important point to consider is the stability of the steady state solutions. As shown in Fig. 5 and 
Fig. 6 in certain situations the system is extremely sensitive to small changes in the initial conditions. In this 
regime, a small perturbation, which is not unlikely under real operating conditions, might cause the system to 
undergo a transition to a drastically different behavior. Such transitions could have a negative effect such as a 
reduction of the harvested power or even damage to the device resulting from collisions between the magnets. 
There are several possible strategies to avoid such faults in the system. The most straightforward approach is to 
operate the device in conditions that are not too sensitive to small perturbations. These correspond to the most 
homogeneous regions of the state space plots shown in Figs. 5 and 6. Additionally, safe operating conditions 
include frequency ranges where only one stable solution is likely to occur, e.g. in this particular design between 
4 and 6 Hz. Finally, the system could be equipped with an intelligent control system, where the restoring force 
or the damping through the coils could be changed in order to keep the magnet oscillating with a high, stable 
amplitude. However, it should also be remarked that in experimental systems the fully chaotic phase space found 
here will tend to collapse to a few steady state solutions because most typically friction will make the very narrow 
phase space branches unstable.

It is also worth mentioning that for non-linear dynamical systems such as the one investigated here, many of 
the simplifications normally satisfied by linear systems do not apply. In particular, the resulting motion depends 
on the amplitude of the driving oscillations in a non-trivial way. Moreover, the superposition principle is not 
applicable. The lack of this property means that when the driving oscillation is described by a superposition of 
oscillations with different frequencies, the resulting oscillation of the levitated magnet is not necessarily given 
by a superposition of the solutions individually associated with each of the driving frequencies.

As shown in the results section, the power produced by the investigated device is on the order of mW. While 
this is enough to power certain Internet-of-Things (IoT) device, it is still worth remarking that the output power 
of the investigated device is not optimized in this study, as it is the dynamics of the harvester that is instead 
investigated. The output power could potentially be improved by in a number of ways. The most straightforward 
improvements would be larger and/or more coils and stronger magnets in the harvester. However, we also remark 
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that the geometry of the device is not optimized and different dimensions of e.g. the length of the tube could 
potentially lead to a larger power being harvested.

Conclusion
Here we have investigated the dynamics of a floating magnet vibration energy harvester device with a nonlinear 
restoring force and a position-dependent coil damping force using a numerical model. Experimentally veri-
fied expressions for the magnet-magnet interactions and magnet-coil interaction were used in the model for 
the force expressions. Moreover, the effect of external vibrations is included as a periodic motion of the whole 
device rather than being approximated by a predefined periodic driving force with constant amplitude acting 
on the floating magnet.

We show that the EMVEH state space exhibits features that are typical for chaotic dynamical systems. How-
ever, the state is more complicated than for the Duffing equation, which have previously been used to approximate 
EMVEH systems. We also showed that for a given frequency, there exists more than the two states known from 
traditional frequency response experiments. These additional states mostly have a induced power between the 
known high power and low power states, but states can exists with a higher induced power than these, as was 
specifically seen in the EMVEH subjected to gravity studied here.

The consequences of approximating the restoring magnetic force by a polynomial function of increasing order 
was also investigated. It was shown that at high frequencies a high polynomial order is needed to accurately 
predict the motion of the floating magnet.

Data availability
All data shown in this manuscript are available at Ref.32. A movie showing the phase space as function of fre-
quency is available as supplementary material.
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