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Key Points: 

 Development of a surrogate modeling framework for electrokinetic bioremediation from a 

multidimensional multiphysics process-based model 

 The surrogate model predicts well (R2>0.90) the outputs of the reactive transport model 

including EK transport and biogeochemical reactions  

 The surrogate modeling framework allows computationally efficient model exploration, 

sensitivity analysis, and uncertainty quantification  
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Abstract 

Advanced reactive transport models of fluid flow and solute transport in subsurface porous media 

are instrumental for the assessment of contaminant environmental fate and for the design of in situ 

remediation interventions. However, the increasing complexity of process-based reactive transport 

simulators often leads to long runtimes, which poses severe restrictions for tasks that require 

numerous model evaluations. To overcome this limitation, we demonstrate how machine learning 

surrogate models, trained on the outputs of a limited number of process-based reactive transport 

simulations, can predict the evolution of complex subsurface systems. We focus on electrokinetic 

enhanced bioremediation of chlorinated solvents in low-permeability porous media, which is an in 

situ remediation technology entailing a suite of complex and coupled physical, chemical and 

biological processes. A process-based, multicomponent reactive transport model, capable of 

describing the key mechanisms of electrokinetic flow and transport, is setup in a two-dimensional 

domain. The model accounts for electromigration and electroosmosis, the electrostatic interactions 

between charged species, the chemistry of the pore water solution, the microbially-mediated 

degradation of the organic compounds, and the dynamics of different degraders. We develop a 

response surface surrogate framework using an artificial neural network as approximation function 

and we show that the surrogate model has the capability and the flexibility to capture the complex 

dynamics of electrokinetic remediation in subsurface porous media and allows computationally 

efficient model exploration, sensitivity analysis and uncertainty quantification.   
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1. Introduction 

Multiphysics reactive transport models are essential tools in many fields of science and 

engineering (Prommer et al., 2019; Steefel et al., 2015). Process-based reactive transport 

simulators coupling flow and transport processes to complex networks of equilibrium and 

kinetically controlled biogeochemical reactions (e.g., Appelo & Rolle, 2010; Mayer et al., 2002; 

Nardi et al., 2014; Rolle et al., 2018) are instrumental to describe multispecies and multicomponent 

transport in natural subsurface systems as well as in engineering applications. Despite advances in 

computational power and the increasing accessibility of large high-performance-computing 

clusters that allow for model parallelization and scalability, there are still significant limitations 

regarding the use of complex process-based models which frequently require either a significant 

amount of computational time or a large number of processors for each model evaluation (Damiani 

et al., 2020; Sohrabi et al., 2019; Su et al., 2017). For instance, tasks such as parameter calibration, 

sensitivity analysis, optimization and uncertainty analysis can require hundreds or thousands 

model evaluations, thus leading to prohibitive resources requirement in terms of time and 

infrastructure for advanced reactive transport codes.  

To overcome this issue, one solution is to develop surrogate models (also called metamodels) from 

the process-based models, which are able to predict the relations between inputs and outputs, with 

the advantage of providing results very quickly, almost in real-time (Forrester et al., 2008). The 

largest computational time required to develop surrogate models is indeed in the evaluation of a 

finite number of process-based simulations that are used for the training of the surrogate, which 

however are only a fraction of the number of simulations required for any of the tasks described 

above. Surrogate models have been successfully developed for several applications in 

environmental sciences and water resources (Asher et al., 2015; Razavi et al., 2012; Tahmasebi et 

al., 2020). Applications on flow and transport problems have been recently investigated to predict 

contaminant transport and source location (Mo et al., 2019; Wang et al., 2020; X. Yu et al., 2020) 

as well as optimal well location and pumping schedule for pump-and-treat operations (Yan & 

Minsker, 2006; Yin & Tsai, 2020). Other implementations also included models for the multiphase 

transport of dense non-aqueous phase liquids (Jiang & Na, 2020; Luo et al., 2020; Ouyang et al., 

2017). However, to the best of our knowledge, applications of surrogate models to complex 

reactive transport problems involving both physical flow and transport processes as well as 

comprehensive networks of biogeochemical reactions for natural transport and engineered in situ 

remediation of contaminated groundwater are still lacking.  

In this study we focus on electrokinetic bioremediation (EK-Bio), which is an emerging in situ 

remediation technology promoting biological degradation of organic contaminants in low-

permeability porous media through enhanced amendment delivery by the application of a DC 

current electric field in the subsurface. Modelling of such system is particularly challenging as it 

involves the multidimensional solution of fluid flow, electrokinetic transport considering the 

Coulombic interactions between the different charged species, and a wide range of geochemical 

and biological reactions. We consider a two-dimensional process-based model entailing a cathode-

anode doublet for electrokinetically enhanced distribution of amendments stimulating in situ 

biodegradation of chlorinated ethenes. We develop a response surface surrogate framework and 

we show how an approximation function, trained on a limited set of simulations performed with 

the complex process-based reactive transport simulator, allows preforming model exploration, 

sensitivity analysis and uncertainty analysis almost in real time, while accounting for all the input-

output relations of the original process-based model. 
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2. Modeling approach 

2.1. Conceptual model of EK-Bio 

Electrokinetic remediation (EK) consists in the application of an electric potential field in the 

subsurface to enhance transport processes and represents one of the few promising approaches to 

cleanup groundwater contamination in impervious, low-permeability formations. During EK, the 

following mechanisms drive the transport processes as a result of the induced electric potential 

gradient (Chowdhury et al., 2017; Lima et al., 2017; Reddy & Cameselle, 2009; Reynolds et al., 

2008): (i) electromigration, resulting in the transport of charged species towards the electrode of 

opposite polarity and (ii) electroosmosis, consisting in the movement of pore water as a result of 

the movement of the excess of charges in the diffuse double layer of soil particles.  

In this study, we consider an application of electrokinetically-enhanced bioremediation (EK-Bio) 

of chlorinated ethenes in a low-permeability groundwater flow system. Lactate (𝐶3𝑂5𝐻3
−), a 

negatively charged substrate, is electrokinetically delivered from a cathodic electrode to promote 

the biodegradation of the chlorinated contaminants initially present in the subsurface. The delivery 

of lactate stimulates the microbial activity of indigenous organohalide-respiring bacteria (OHRB), 

which are able to sequentially degrade tetrachloroethylene (PCE), the chlorinated compound 

initially present in the domain, to trichloroethylene (TCE) and dichloroethylene (DCE) (Buttet et 

al., 2018; Murray et al., 2019; S. Yu et al., 2005). Specialized OHRB (KB-1), able to perform 

complete dehalogenation of chlorinated solvents including the conversion of DCE to vinyl chloride 

(VC) and subsequently to the non-toxic ethene, are distributed with the electroosmotic flow from 

the anode to the cathode. Figure 1a,b schematically illustrates an EK-Bio system, including the 

main EK process, the recirculation system to buffer electrolysis reactions preventing extreme pH 

conditions at the electrodes, and the biodegradation of the chlorinated contaminants in which the 

parent compound (PCE) is initially present in the domain both as dissolved species and as 

segregated NAPL (Non-Aqueous Phase Liquid) phase. This type of EK technique has been 

previously tested in laboratory experiments (Mao et al., 2012) and in a pilot-scale field application 

in Skuldelev, Denmark (NIRAS, 2011) for which  a process-based model of EK-Bio has been 

recently proposed to elucidate the system dynamics (Sprocati et al., 2020).  

In this study, we simulate the complex processes occurring during EK-Bio in a simplified geometry 

consisting of a 2D horizontal domain (5 m × 3 m) with two electrodes (one cathode and one anode), 

placed at three meters distance from each other.  
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Figure 1. Schematic of EK-Bio for a system consisting of two electrodes. (a) illustration of the 

key elements of the EK setup, (b) details of EK transport and biodegradation processes, (c) plan 

view showing the 2D model domain with indication of the governing transport mechanisms and 

(d) simulated electric potential gradients in the domain with indication of the electric potential 

streamlines. 

 

During EK treatment, the electric field is applied for a certain time to ensure delivery of both the 

electron donor and the bioaugmented degraders, KB-1 (Figure 1). After mixing the delivered 

electron donor (lactate), the electron acceptors (chlorinated compounds) and the degrading 

microorganisms, the electric field is turned off and biodegradation reactions can proceed.   

 

2.1.1. Electrokinetic transport processes  

The flux of charged species in a porous medium can be described with the Nernst-Planck equation 

(Alt-Epping et al., 2015; Rasouli et al., 2015; Rolle et al., 2018; Steefel & Tournassat, 2020; 

Tournassat & Steefel, 2019; Wu et al., 2020), which accounts for the contribution of diffusion, 

migration, and electroosmosis: 
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𝑱𝑖
𝑇𝑜𝑡 = −𝑛𝐷𝑖∇𝑐𝑖⏟    

𝑱
𝑖
𝐷𝑖𝑓

−𝑛𝐷𝑖
𝑧𝑖𝐹

𝑅𝑇
𝑐𝑖∇Φ⏟        

𝑱
𝑖
𝑀𝑖𝑔

+𝑛 𝒗𝒆𝒐𝑐𝑖⏟      
𝑱𝑖
𝐴𝑑𝑣

 
(1) 

where 𝑛 is the accessible porosity, 𝐷𝑖 = 𝐷𝑖
𝑎𝑞𝜏 is the pore diffusion/dispersion coefficient in which 

𝐷𝑖
𝑎𝑞

 is the aqueous diffusion coefficient of the species 𝑖, 𝜏 the tortuosity, 𝑐𝑖 the molar 

concentration, ∇𝑐𝑖 the concentration gradient, 𝑧𝑖 the charge, 𝐹 the Faraday constant, 𝑅 the gas 

constant, 𝑇 the temperature, ∇Φ the electric potential gradient and 𝒗𝒆𝒐 the average velocity 

resulting from electroosmotic flow, calculated as 𝒗𝑒𝑜 = −𝑘𝑒𝑜∇Φ/𝑛 where  𝑘𝑒𝑜 represents the 

electroosmotic permeability (Alizadeh et al., 2021; Yustres et al., 2020). The terms 𝑱𝑖
𝑇𝑜𝑡, 𝑱𝑖

𝐷𝑖𝑓
, 𝑱𝑖
𝑀𝑖𝑔

 

and 𝑱𝑖
𝐸𝑜 represent the total, diffusive, migration and electroosmotic fluxes, respectively.  

The mass balance  allows deriving the governing equations of multicomponent ionic transport 

(e.g., Muniruzzaman & Rolle, 2015, 2017; Rolle et al., 2013): 

 

 

𝜕(𝑛𝑐𝑖)

𝜕𝑡
+ ∇ ⋅ 𝑱𝑖

𝑇𝑜𝑡 = 𝑟𝑖 (2) 

in which 𝑟𝑖 is the source/sink term. 

The Poisson’s equation regulates the charge interactions in the system (Newman & Thomas-Alyea, 

2004): 

 

 
∇2Φ = −

𝐹

𝜀
∑𝑧𝑖𝑐𝑖

𝑁

𝑖=1

= −
𝜌𝑒
𝜀

 (3) 

where 𝜀 is the dielectric constant of the porous medium, N is the number of charged species in 

solution and 𝜌𝑒 is the charge density of the solution. At the continuum scale the overall charge 

density of the solution is zero and Eq. (3) is equivalent to the electroneutrality condition.  

As a flux of electrons corresponds to a flux of current, the current density is defined as: 

 

 
𝑰 = 𝐹∑𝑧𝑖𝑱𝑖

𝑇𝑜𝑡

𝑁

𝑖=1

= −𝐹∑𝑧𝑖𝑛𝐷𝑖∇𝑐𝑖

𝑁

𝑖=1

− (𝐹2∑𝑧𝑖
2
𝑛𝐷𝑖
𝑅𝑇

𝑐𝑖

𝑁

𝑖=1

)∇Φ + 𝐹𝑛𝒗𝒆𝒐∑𝑧𝑖𝑐𝑖

𝑁

𝑖=1

 (4) 

therefore, the current balance in the system reads as: 

 

 
𝐹∑𝑧𝑖

𝜕(𝑛𝑐𝑖)

𝜕𝑡

𝑁

𝑖=1

+ ∇ ⋅ (𝐹∑𝑧𝑖

𝑁

𝑖=1

𝑱𝑖
𝑇𝑜𝑡) = 𝐹∑𝑧𝑖𝑟𝑖

𝑁

𝑖=1

 (5) 

Equations (1)-(5) represent the Poisson-Nernst-Planck equations that account for solute transport, 

electric field distribution, charge balance, Coulombic interactions and current conservation.  

 

2.1.2. Biogeochemical reactions network 

The process-based model used in this study accounts for fast, equilibrium reactions for aqueous 

speciation and kinetically-controlled reactions for contaminant biodegradation and microbial 

population dynamics. In the proposed conceptual model, lactate is used as electron donor by both 
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indigenous OHRB and bioaugmented OHRB (KB-1) (Duhamel & Edwards, 2007; Sprocati et al., 

2020) to degrade PCE to TCE, DCE, VC and ethene. The general microbially-mediated redox 

reaction for the first step of PCE degradation to TCE using lactate as electron donor reads as: 

 

 

1

6
𝐶3𝑂5𝐻3

− + 𝐶2𝐶𝑙4 + 𝐻2𝑂 → 𝐶2𝐻𝐶𝑙3 + 𝐶𝑙
− +

4

3
𝐻+ +

1

2
𝐻𝐶𝑂3

− (6) 

Similar reactions describe the other steps of reductive dehalogenation, coupling the oxidation of 

lactate to the reduction of TCE, DCE, and VC.  

The rate of all reductive dehalogenation reactions is defined according to a double Monod kinetics 

including competitive inhibition of the chlorinated ethenes (Murray et al., 2020; Zhou et al., 2006):  

 

 

𝑑𝑐𝐸𝐴,𝑖
𝑑𝑡

= −𝜂 𝜅𝑚𝑎𝑥,𝐸𝐴𝑖,𝑋𝑘 (
𝑐𝐸𝐷

𝑐𝐸𝐷 + 𝐾𝑠,𝐸𝐷
)

(

 
 𝑐𝐸𝐴𝑖

𝑐𝐸𝐴𝑖 + 𝐾𝑠,𝐸𝐴𝑖 (1 + ∑
𝑐𝐸𝐴𝑗
𝐾𝑖𝑛ℎ𝑗

𝑛
𝑗=1 )

)

 
 
𝑋𝑘 (7) 

In Eq. (7), 𝑐𝐸𝐷 is the molar concentration of lactate, 𝑐𝐸𝐴,𝑖 is the molar concentration of the 𝑖-th 

electron acceptor (EA), 𝐾𝑠,𝐸𝐴𝑖 is the half-saturation of the 𝑖-th EA whereas 𝐾𝑖𝑛ℎ𝑗  is the inhibition 

constant of the 𝑗-th EA which accounts for all the other chlorinated compounds except for the 𝑖-th 

EA and 𝐾𝑠,𝐸𝐷 is the half-saturation constant of lactate. The term 𝜂 is a generic coefficient that 

accounts for variability of the biodegradation rate (e.g., under different conditions and/or between 

field and laboratory settings). 𝜅𝑚𝑎𝑥,𝐸𝐴𝑖,𝑋𝑘 is the maximum specific degradation rate of the 𝑖-th 

electron acceptor caused by the 𝑘-th bacterial consortium present with 𝑋𝑘 molar concentration. 

The dynamics of both indigenous (𝑋𝑖𝑛𝑑) and bioaugmented biomass (𝑋𝐾𝐵−1) is modeled 

considering a growth and a linear decay term: 

 

 

𝑑𝑋𝑘
𝑑𝑡

= −𝑌
𝑑𝑐𝐸𝐴,𝑖
𝑑𝑡

− 𝑏𝑘𝑋𝑘 (8) 

where 𝑌 is the bacterial yield. The indigenous biomass is considered attached to the solid matrix, 

whereas the bioaugmented organisms are transported by the electroosmotic flow.  

We considered that the parent compound PCE is also present as non-aqueous phase liquid (NAPL) 

at the beginning of the simulation. The dissolution of PCE from the NAPL phase to the aqueous 

phase, in which the biological reactions occurs, is described with a linear mass transfer expression  

(e.g., Ramsburg et al., 2011) 
 

 

 

𝑑𝑐𝑃𝐶𝐸
𝑑𝑡

= 𝜔𝑃𝐶𝐸(𝑆𝑃𝐶𝐸 − 𝑐𝑃𝐶𝐸) (9) 

where ω𝑃𝐶𝐸 is the mass-transfer rate coefficient of PCE and 𝑆𝑃𝐶𝐸 is the aqueous solubility.  

In addition to the kinetic degradation reactions, Eq. (6)-(9), we also considered equilibrium 

aqueous speciation reactions in the pore water with equilibrium constants according to the database 

phreeqc.dat.  
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2.1.3. Process-based numerical model 

The EK-Bio system was simulated with the code NP-Phreeqc-EK (Sprocati et al., 2019), which is 

a MATLAB implementation specifically developed for electrokinetic applications that couples the 

flow and transport software COMSOL Multiphysics with the geochemical code PhreeqcRM 

(Muniruzzaman & Rolle, 2019; Parkhurst & Wissmeier, 2015). NP-Phreeqc-EK is based on a 

sequential non-iterative approach: flow and transport equations are solved with COMSOL 

Multiphysics for short time steps, after which the concentrations, evaluated for each mesh point, 

are passed to PhreeqcRM, which performs the equilibrium and kinetic reactions calculations, 

considering each mesh point as an independent cell. At the end of the reaction step, the resulting 

concentrations from PhreeqcRM are set as initial values in COMSOL Multiphysics for the 

subsequent flow and transport time step. Such communication is repeated until the end of the 

defined simulation time. NP-Phreeqc-EK is optimized for multi-processing, using both the 

OpenMP features of PhreeqcRM and multithreading options available in COMSOL Multiphysics.  

In the considered system we included 17 species (9 of which are charged) with the diffusion 

coefficients at 15 °C listed in Table S1. Overall, the biogeochemical model accounted for 7 

kinetically-controlled reactions and 6 equilibrium reactions (Table S3). The model domain was 

discretized into 7290 elements resulting in 67770 degrees of freedom. The total simulation time 

was 360 days, subdivided in 180 coupling time steps between the flow and transport simulator and 

the geochemical code. The simulations were performed in a High-Performance Computing (HCP) 

cluster, running up to five process-based models in parallel in four nodes. Overall, using max 7.5 

Gb of RAM and 4 cores, each model simulation took approximately 11 hours. For each process-

based simulation the reactive steps performed by PhreeqcRM took from 2 to 5 seconds whereas 

the transport steps performed by Comsol had a variable duration ranging from 30 to 300 seconds. 

In this study the solution of multicomponent ionic transport was the bottleneck of the process-

based simulations due to the nonlinearity of the coupled transport equations and the number of 

mesh elements. In cases in which the reaction step is the bottleneck, different approaches have 

been proposed to integrate machine learning surrogates in the reaction step to speed up the process-

based models (Hennig & Kühn, 2021; Jatnieks et al., 2016; Leal et al., 2020; De Lucia & Kühn, 

2021).  

To compare the outputs of the process-based model, we evaluated different metrics, which provide 

information on both the distribution of the species in the domain and the extent of the degradation.  

The first metric used to evaluate the performance of the EK-Bio system is the relative area (𝑅𝐴) 
of reactant delivery. RA is used to assess the amendments’ distribution in the domain and its values 

range from 0 (no distribution) to 1 (complete distribution in the whole domain): 

 

 
𝑅𝐴𝑖(𝑡) =

1

𝐴𝑇𝑜𝑡
∫𝐻(𝑐𝑖(𝒙, 𝑡) − 𝑐𝑖,𝑙𝑖𝑚)𝑑𝛺
𝛺

  (10) 

where 𝐴𝑇𝑜𝑡 is the total area of the considered domain Ω, 𝐻 is the Heaviside step function and 𝑐𝑖,𝑙𝑖𝑚 

indicates a threshold concentration above which the species 𝑖 is considered to be distributed in a 

significant amount. The relative area was evaluated for both lactate and KB-1, as the effective 

distribution of these two amendments is necessary for the degradation of the chlorinated ethenes 

in the system. In this work, 𝑐𝐿𝑎𝑐,𝑙𝑖𝑚 was set to 2.16 mM to account for the amount of lactate 

necessary to convert 1 mM of PCE to ethene and 𝑐𝐾𝐵−1,𝑙𝑖𝑚 was set to 1×108 cells/L.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

The second metric is the relative mass (𝑅𝑀) of the contaminants in the domain and quantifies the 

effectiveness of EK-enhanced biodegradation by accounting for the relative mass of a species 𝑖 
with respect to the total mass of a reference species 𝑗 (Sprocati et al., 2020): 

 

 
𝑅𝑀𝑖(𝑡) =

1

𝑀𝑇𝑜𝑡,𝑗
∫𝑐𝑖(𝒙, 𝑡) 𝑑Ω
Ω

 (11) 

In Eq. (11), 𝑀𝑇𝑜𝑡,𝑗 is the total initial mass of a reference species 𝑗, which in this study is the total 

initial mass of PCE in the domain, both as NAPL and as dissolved species. We evaluated the 

relative mass for all chlorinated parent compounds and metabolic products, including PCE NAPL, 

PCE, TCE, DCE, VC and ethene.  

 

2.2. Surrogate modeling approach 

The proposed surrogate modeling approach was implemented considering a data-driven model, 

also referred as an approximation function, that used as inputs for the training the outputs of 

multiple runs of the process-based model (Razavi et al., 2012). With this method, also defined as 

a response surface approach, the modeling framework begins with the definition of the explanatory 

(input) variables of the approximation function (Figure 2).  

 

 
Figure 2. Schematic overview of the proposed modeling framework including the process-based 

reactive transport model and the data-driven surrogate model.  

 

The explanatory variables are selected based on their relevance for the problem and their number 

should be as low as necessary to limit the model runs of the process-based simulations. To define 

realistic values of the variables for the problem, variable ranges and validity conditions are then 

defined for each variable. Subsequently, combinations of explanatory variables are sampled with 

a design of experiments (DOE) procedure to obtain a simulation plan, consisting of several design 

sites. Each design site consists of a unique combination of the explanatory variables and the 
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number of sites determines the number of process-based simulations executed. During the DOE, 

the design sites are also divided into training, validation, and test sites, which are then used during 

the development of the approximation function. The multiphysics simulations are executed with 

NP-Phreeqc-EK, which performs process-based simulations for each design site. Once all the 

process-based simulations are evaluated and the results collected in an output dataset, the 

approximation function is trained using the training set and cross-validation is implemented using 

the validation set to avoid overfitting and increasing generalization performances. After training 

and testing the model performances with the test set, the approximation function is used as a 

surrogate of the process-based model to explore relations between inputs and outputs, to perform 

global sensitivity analysis and to assess output uncertainty based on uncertainties on input 

variables. 

The selection of explanatory variables considered physical parameters dependent on the actual 

field condition such as tortuosity (τ), electroosmotic coefficient (𝑘𝑒𝑜) and mass-transfer coefficient 

(𝜔𝑃𝐶𝐸), as well as operational parameters which can be controlled during the implementation of 

the in situ remediation technology. The latter include the electric potential applied at the anode 

(𝑉𝑎𝑛) and the time of application of electric potential (𝑡𝐸𝐾). In addition, we also accounted for the 

differences in reaction rates of dehalogenation reactions with respect to the values obtained from 

laboratory tests (η).  

Explanatory variables ranges have been selected based on literature values. The six explanatory 

variables and the ranges used for the surrogate model are listed in Table 1. The same table also 

includes values of the variables which are constant for all simulations and the values of the 

variables which have been used to perform a base case scenario. The values of all the other kinetic 

parameters are provided in Table S2.   

 

Table 1. Explanatory variables and parameters used as input for the surrogate model.  

Ranges of explanatory variables           

Variable name Symbol Units Min Max Base case 

Tortuosity 𝜏 - 0.20 0.75 0.60 

Electroosmotic coeff. 𝑘𝑒𝑜 m2/(V s) 5.00×10-10 1.00×10-8 2.00×10-9 

Reaction rate factor 𝜂 - 0.30 2 1.0 

Log of NAPL mass transfer coeff. log10(𝜔𝑃𝐶𝐸) 
 

1/s -7 -5.3 -6.3 

Electric potential at the anode 𝑉𝑎𝑛 V 60 360 110 

Time of EK active phase  𝑡𝐸𝐾 days 60 180 120 

Fixed parameters for all simulations      

Variable name  Units Values  

Temperature  °C 15  

Porosity  - 0.5  

Distance between electrodes   m 3  

Electric potential at the cathode  V 0  

Initial PCE in the domain (uniform)  mM 1.24  

PCE NAPL in the domain (uniform)  mM 2  

Conc. Lactate injected  mM 18  

Conc. Bacteria injected   mM 2.60×10-3  

Initial concentration (HCO3
-)  mM 10  

Initial concentration (Ca2+)  mM 5  
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Regarding the validity conditions for the surrogate model, we considered electromigration of 

lactate from the cathode to the anode as the main electrokinetic transport process; thus, the 

electromigration velocity for lactate is always larger than the electroosmotic velocity: 

 

 
𝑣𝑀𝑖𝑔 = 𝜏𝐷𝑖

𝑎𝑞 𝑧𝑖𝐹

𝑅𝑇
∇Φ > 𝑣𝐸𝑜 = 𝑘𝑒𝑜∇Φ/𝑛  (12) 

After definition of ranges and validity conditions for the explanatory variables, a design of 

experiments is performed with the optimal Latin hypercube sampling algorithm (Jin et al., 2005; 

Morris & Mitchell, 1995; Park, 1994). Such method has been selected as it provides uniform spread 

of design points across the design space (Forrester et al., 2008) and for the property of generating 

points that are never projected into each other when projected from a space of dimension 𝑘 to a 

𝑘 − 1 space (Crombecq et al., 2011; Van Dam et al., 2007; Morris & Mitchell, 1995). In this study, 

the approximation function is trained on a simulation plan 𝑿𝑻𝑹 = [𝒙𝑇𝑅,1 𝒙𝑇𝑅,2…  𝒙𝑇𝑅,𝑛]
𝑇
 of 𝑛 

training points (design sites), in which 𝒙𝑇𝑅,𝑖 = [𝑥𝑖
(1) 𝑥𝑖

(2)… 𝑥𝑖
(𝑘)] represents the vector of 

explanatory variables used for the 𝑖th process-based simulation on a k-dimensional input space. To 

calculate the number of 𝑛 training points for the surrogate model, some authors suggest to use at 

least 𝑛 = 10𝑘 points (Alwosheel et al., 2018; Loeppky et al., 2009). Given 𝑘 = 6 in our case, to 

include a margin in the design of training points we decided to select 𝑛 = 100. After considering 

the physical validity criterion about electrokinetic velocities in Eq. (12), only 𝑛 = 87 design sites 

were retained for the training procedure. Indeed, the training set for the approximation function 

contained a number of observations equal to  𝑛𝑇𝑅 = 𝑛 × 𝑁𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠, where 𝑁𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 is the 

number of recorded time steps generated in every design site by the process-based model (93 in 

this study). Therefore, the final training dataset had 8091 observations and 7 input variables when 

including also the time.  

In addition to the training set, we also evaluated additional sets for validation (𝑿𝑽𝑨), included to 

avoid overfitting during training of the approximation function (Eason & Cremaschi, 2014), and a 

test set (𝑿𝑻𝑬), used to compare the performance of the surrogate model on a set of process-based 

simulations that were not used for training or validation. Both the validation and test sets have 

been sampled using a random combination of explanatory variables inside the validity ranges and 

each accounted for approximately the 20% of the total number of training points. In this study, the 

validation set included 14 design sites and the test set 15 design sites.  

Data-driven surrogate models have been typically made using different approximation functions 

for regression problems including polynomial, Kriging, radial basis function, support vector 

machine, Gaussian process, random trees and random forests (Asher et al., 2015; Razavi et al., 

2012; Tahmasebi et al., 2020). In recent years, also Artificial Neural Networks (ANN) of different 

sizes and complexities have been increasingly used in the environmental and water resources field 

(Mo et al., 2019; Prasianakis et al., 2020; Taormina et al., 2012). Their widespread use has been 

facilitated by the development of advanced computational algorithms (Haghighat & Juanes, 2021; 

Pedregosa et al., 2011) allowing improvements in the design and the control during training  ANN 

are also referred as deep neural networks (DNN) with architectures ranging from the simpler multi-

layer perceptron (MLP), to convolutional neural networks (CNN) and recurrent neural networks 

(RNN).  
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Here, we chose as approximation function a neural network using a stack of MLP, which are 

commonly applied architectures for regression analysis in machine learning problems (Géron, 

2019; Maier et al., 2010) and have already been used to develop surrogate models for transport 

problems in porous media (Behzadian et al., 2009; Hou et al., 2017; Johnson & Rogers, 2000; 

Razavi et al., 2012; Yan & Minsker, 2006, 2011). The modeling of integral quantities can also be 

performed with other approximation functions (Razavi et al., 2012) but here we restricted the scope 

of the investigation to artificial neural networks. To obtain a simple network structure, we used 

MLPs with dense layers, in which all neurons in a layer are connected to every neuron in the 

previous layer. For every dense layer, the outputs are calculated as: 

 

 
ℎ𝑾,𝒃(𝑿) = 𝜙(𝑿𝑾+ 𝒃) (13) 

where ℎ𝑾,𝒃 is the output value, 𝑾 is the weight matrix containing all the connection weights except 

the ones from the bias neuron, 𝒃 is the bias vector and contains all the connection weights between 

the bias neuron and the artificial neurons and 𝜙 is the activation function, which in this study is 

the Rectified Linear Unit function, 𝑅𝑒𝐿𝑈(𝑧)  =  𝑚𝑎𝑥(0, 𝑧). 

Prior to training, all inputs and outputs have been normalized with respect to their minimum and 

maximum values in the training set, so that their values range from 0 to 1. To simplify the network 

structure, all hidden layers have been set to have the same number of neurons. The MLP is then 

trained with a stochastic gradient descent optimizer (Chollet, 2015) with momentum 0.9, learning 

rate 0.46 and mean squared error (MSE) as loss function. Early stopping with 10 steps is performed 

to prevent overfitting (Caruana et al., 2001). For the development of the ANN we used TensorFlow 

with a Keras interface (Chollet, 2015), using a GPU with CUDA to improve model performance 

(Sanders & Kandrot, 2010).  

A randomized search algorithm using cross-validation (Bergstra & Bengio, 2012; Pedregosa et al., 

2011) has been used to select optimal hyperparameters such as (i) the number of hidden layers, (ii) 

the number of neurons per hidden layer and (iii) the learning rate. The randomized approach 

consisted in generating random combinations of the hyperparameters, training the model with 

backpropagation and evaluating performances against the validation set. The configuration of 

parameters which provide the lowest MSE on the validation set is then used as architecture of the 

neural network. For this work, the final artificial neural network was composed of 7 hidden layers 

of 485 neurons each, with an input dimension of 7 (explanatory variables and time t) and an output 

with size of 8: 1) Relative Area of Lactate, 2) Relative Area of KB-1, 3) Relative Mass of PCE 

NAPL, 4) Relative Mass of PCE, 5) Relative Mass of TCE, 6) Relative Mass of DCE, 7) Relative 

Mass of VC and 8) Relative Mass of ethene. The randomized cross-validation required the training 

of 50 different models (10 different parameter combinations and 5-fold stratified cross validation) 

with a maximum number of epochs for each model set to 300. The selected model had a final MSE 

of the averages of all the scaled outputs of 4.95×10-5 for training, 1.686×10-3 for the validation and 

1.516×10-3 for the test sets with. The total training time was 64 minutes to train all 50 models. 
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2.3. Surrogate model analysis  

The proposed surrogate framework allowed us to perform detailed analysis of the dynamics and 

performances of the EK-Bio remediation systems. Specifically, we performed extensive model 

exploration, sensitivity analysis and uncertainty quantification. 

We started exploring the surrogate model by using a single design site and showing the comparison 

with a process-based simulation which can be considered a first base case scenario. Subsequently, 

we used the surrogate model to provide partial dependence plots in the form of surface plots, as 

they allow to visualize values of the output variable on a continuous surface representing a two-

dimensional input space. For such task, a grid of 100×100 points was generated considering two 

inputs quantities, 𝜏 and 𝑘𝑒𝑜, assuming all the other input variables as in the base case scenario. 

These two input quantities were selected for analysis as they represent the main unknowns 

regarding the transport during in situ electrokinetic remediation and should be experimentally 

determined for every field site. In this work we also performed Monte Carlo simulations 

considering random distributions of inputs to evaluate a correlation matrix between inputs and 

outputs. The aim was to obtain a simple overview on the relations between the variables involved 

in the defined problem, across all parameter’s ranges. The correlation matrix was evaluated with 

the Pearson 𝑟 correlation, which indicates the degree of linearity between two variables. For this 

task, we performed 1×105 evaluations of the surrogate model with random combinations of inputs 

at two specific times.   

Global sensitivity analysis methods allow the evaluation of changes in the output of a model from 

different sources of uncertainty from model inputs (Iooss & Lemaître, 2015; Saltelli et al., 2000). 

In this work we used the Sobol’ indices method (Formaggia et al., 2013; Saltelli et al., 2010; 

Sobol’, 2001), sampling the combination of the input variables using the method described by 

Saltelli et al. (2010). The ranges for the sampling was the same range used during the design of 

experiment whereas to comply with the validity condition we assigned a value of zero to all output 

values which did not satisfy the validity conditions. For every output variable, we evaluated 

separate indices (Iooss & Lemaître, 2015; Saltelli et al., 2010): (i) the first order Sobol' index 𝑆𝑖, 
accounting for the contribution of a single parameter 𝑖 to the output variance, (ii) the second‐order 

Sobol index 𝑆𝑖𝑗 to quantify the output variance explained by the interactions between the input 

variables 𝑖 and 𝑗, and (iii) the total Sobol index 𝑆𝑇𝑖 accounting for the effect on the output variance 

of the first, second and higher‐order effects. The evaluation of 𝑆𝑖, 𝑆𝑖𝑗 and 𝑆𝑇𝑖 required 𝑁(2𝑘 + 2) 

model evaluations, where N is the initial size of Monte Carlo sampling (set to 104) and 𝑘 is the 

number of input variables (6, as the time was fixed).  

Finally, we used the surrogate model to quantify uncertainty, considered here as the combined 

effect of probabilistic distributions of independent input values on the output metrics over the time 

of the simulation. To evaluate the uncertainties, we performed Monte Carlo simulations randomly 

selecting combinations of input parameters sampled from normal distributions with mean and 

standard deviation reported in Table S4. Here, we considered 100 time steps from 0 to 360 days 

and for each instant we calculated 1×104 input combinations. Subsequently, for each time step we 

selected the 10th, 50th and 90th percentiles of each output variable. With the evaluation of the 

percentiles, it was possible to define the lower and upper confidence intervals (respectively the 

10th and 90th percentiles) and the median value (50th percentile) for each output variable.  
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3. Results and discussion 

3.1. Process-based simulations and surrogate model performance 

In the considered EK-Bio setup, upon application of an electric potential between the electrodes 

at 𝑡 = 0, lactate is delivered in the domain from the cathode. The transport of such electron donor 

is the result of the larger electromigration velocity of lactate that is higher than the electroosmotic 

velocity, which occurs in the opposite direction. In fact, electroosmosis results in a flow of water 

from the anode to the cathode and it is the main transport mechanism of the non-charged species, 

such as the chlorinated compounds and the KB-1 degraders. When lactate is delivered in the system 

it is consumed by the immobile indigenous OHRB and the mobile, bioaugmented OHRB (KB-1). 

These microorganisms use lactate as electron donor to transform the parent compound PCE into 

the degradation products TCE and DCE. The subsequent degradation steps of DCE to VC and 

ethene are performed only by the KB-1, provided their effective distribution and contact with 

lactate and the chlorinated ethenes.  

Figure 3a-l shows the distribution of the electrokinetically delivered amendments, as well as the 

main contaminant (PCE) present in the system and the final metabolic product (ethene) of 

reductive dehalogenation. The plots show results at different times considering the parameters of 

the base case scenario reported in Table 1 with an active EK phase (i.e., voltage applied at the 

electrodes) during the first 120 days. Specifically, Figure 3a,e,i illustrates the spatial distribution 

of lactate after 60, 120 and 360 days. The concentration of lactate is lower in the right part of the 

domain due to its consumption as electron donor during reductive dehalogenation carried out by 

both indigenous and bioaugmented microorganisms. Moreover, the concentration of lactate in the 

domain (around 10 mM) is lower than the injection concentration (18 mM) as a result of charge 

interactions, which limit the maximum concentration of charged reactants that can be transported 

in the domain by electromigration (Sprocati et al., 2021; Sprocati & Rolle, 2020).  
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Figure 3. Process-based simulation of EK-Bio for the base case scenario: (a-i) spatial distribution 

of selected species at 60, 120 and 360 days. Comparison of process-based and surrogate models: 

(m) relative area and (n) relative mass.  

 

Figure 3b,f,j shows the spatial distribution of the KB-1 degraders in the domain after 60, 120 and 

360 days, resulting from their transport by electroosmosis from the anode. The distribution of KB-

1 is less effective than the distribution of lactate due to the higher electromigration velocity of the 

charged electron donor with respect to the electroosmotic transport of the bioaugmented OHRB. 

PCE, initially uniformly present in the domain (Figure 3c), is consumed over time in the area 

between the electrodes, where both lactate and the degraders are present (Figure 3g,k). However, 

close to the edges of the domain, PCE is still present at the initial concentration due to the absence 

of mixing between electron donor and acceptors. Figure 3d,h indicate that ethene was not produced 

in the domain until late times due to the limited distribution of the OHRB, which are critical for 

complete degradation, and to the slower kinetics of the last dehalogenation  steps.  

The temporal evolution of the system in terms of amendment distribution (𝑅𝐴) and degradation 

efficiency (𝑅𝑀) is displayed in Figure 3m,n. Considering the entire domain, Figure 3m shows the 

relative area in which the amendments have been delivered and indicates that both lactate and KB-

1 are increasingly distributed in the domain over the initial EK phase of 120 days. Subsequently, 
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their distribution stabilizes due to the much smaller transport velocity by natural diffusion 

compared to the induced processes of electromigration and electroosmosis. The more effective 

distribution of lactate is indeed dependent on the higher transport velocity of this species due to 

electromigration with respect to electroosmosis, resulting in almost three times 𝑅𝐴𝑙𝑎𝑐 compared 

to 𝑅𝐴𝐾𝐵−1. The relative mass of the species in the system is shown in Figure 3n for all ethenes, 

showing that PCE initially present as NAPL decreases over time, due to its dissolution to PCE in 

the pore water and its subsequent biodegradation. At the same time, byproducts such as TCE and 

DCE increase as a consequence of biodegradation. Conversely, due to the limited distribution of 

the KB-1, conversion to ethene is less effective and can be appreciated only at late times. After the 

process-based model was run with the defined input dataset from the DOE procedure, the 

approximation function (MLP) and its hyperparameters were trained with a cross-validation 

procedure using both the training and the validation datasets. Surrogate model predictions were 

then compared with the results from a single run of the process-based model, using a combination 

of input parameters (Table 1) which were not part of the training or validation datasets. Figure 3m-

n shows that the predictions of the surrogate model are in very good agreement with the outcomes 

of the process-based model.  

Figure 4 shows the scatter plot comparing process-based and surrogate model outputs for all output 

variables differentiating between training, validation, and test data points.  

 

 
Figure 4. Scatter plots comparing outputs of the process-based model (x-axis) and predictions of 

the response surface surrogate (y-axes) for training (TR), validation (VA) and test (TE) sets. The 

red solid line represents the 1:1 line, indicating perfect prediction performances of the surrogate 

model.  

 

It is important to note that MLP are not exact predictors, thus model outputs do not pass exactly 

through the training points (Razavi et al., 2012). Nevertheless, the coefficient of determination R2 

of the scatter plots for the training set for all cases is larger than 0.99. The lower scores of R2 in 

the test sets are above 0.96 except for 𝑅𝐴𝐾𝐵−1 (R2 =0.92) and 𝑅𝑀𝑉𝐶 (R2 =0.93), indeed indicating 
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excellent prediction performances, limited overfitting and ability to generalize well to new 

combinations of input variables. Higher accuracy can be achieved either by improving the 

approximation function (changing different combinations of hyperparameters or changing the type 

of approximation function) or by providing more design sites to be used for training. The surrogate 

model is also able to maintain the underlying relations between the output variables such as the 

sum of the relative masses of the different species, which by definition in Eq. 11 must be equal to 

one. Such physical constraint, although not enforced in the surrogate framework, is predicted with 

sufficient consistency as shown in Figure S1 in Supporting  Information.  

 

3.2. Model exploration 

Surrogate models can be used to quickly explore the behavior of the system over a wide range of 

input combinations. Here we performed model exploration evaluating partial dependence plots of 

the output variables in the 𝜏 − 𝑘𝑒𝑜 space. These two input variables have been considered since 

the tortuosity (𝜏) directly controls the electromigration velocity of charged species (lactate), and 

the electroosmotic coefficient (𝑘𝑒𝑜) determines the electroosmotic velocity, which is the main 

transport mechanism of the KB-1 degraders and also impacts the transport of all the other species 

including lactate and the non-charged chlorinated ethenes. The partial dependence plots evaluated 

with the surrogate model are illustrated in Figure 5 at 𝑡 = 360 days.  

 
Figure 5. Partial dependence surface plots used for model exploration of the output variables 

depending on tortuosity 𝜏 (x-axes) and electroosmotic coefficient 𝑘𝑒𝑜 (y-axes). Cold colors 

represent low values of the computed efficiency metric (i.e., relative area and relative mass), warm 

colors indicate higher values. The model is evaluated after 360 days from the beginning of EK.  

 

Figure 5a shows that 𝑅𝐴𝑙𝑎𝑐 increases along a pattern perpendicular to the isolines in the plane 𝜏 −
𝑘𝑒𝑜 to reach the highest value in the bottom-right corner (high 𝜏 and low 𝑘𝑒𝑜), as a result of the 
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net migration velocity of lactate which is directly dependent on the tortuosity of the porous medium 

and inversely dependent on the electroosmotic velocity. Therefore, it is possible to estimate the 

average slope of the lines by considering the ratio 𝑘𝑒𝑜/𝜏 in Eq. (12). In practical terms, moving 

along the isolines corresponds to consider 𝜏 − 𝑘𝑒𝑜 points resulting in the same net velocity of 

lactate. Figure 5b illustrates that for KB-1, values of 𝑅𝐴𝐾𝐵−1 tend to increase differently with 

respect to the increase of 𝑅𝐴𝑙𝑎𝑐. The relative area of distribution of the degraders (𝑅𝐴𝐾𝐵−1) 
increases with the 𝑘𝑒𝑜 since the bioaugmented biomass is transported with the electroosmotic flow. 

However, as a certain amount of lactate must be present in the domain to sustain the growth of 

KB-1 that otherwise would decay according to Eq. (8), the trend of 𝑅𝐴𝐾𝐵−1 becomes oblique due 

to the dependency by 𝑅𝐴𝑙𝑎𝑐.  

With the insights from the surface plots of 𝑅𝐴𝑙𝑎𝑐 and 𝑅𝐴𝐾𝐵−1, it is possible to gain insight on the 

distribution and efficiency of in situ  biodegradation of the chlorinated ethenes. In particular, 

Figure 5c-f shows that the shape of 𝑅𝑀𝑃𝐶𝐸,𝑁𝐴𝑃𝐿, 𝑅𝑀𝑃𝐶𝐸, 𝑅𝑀𝑇𝐶𝐸 and 𝑅𝑀𝐷𝐶𝐸  follows a trend 

similar to 𝑅𝐴𝑙𝑎𝑐, as lactate controls the biodegradation for such contaminants. However, the trend 

for 𝑅𝑀𝑉𝐶  and 𝑅𝑀𝐸𝑡ℎ is more similar to the one of 𝑅𝐴𝐾𝐵−1, since the delivery of KB-1 controls 

the last steps of reductive dehalogenation. 

The trends displayed in Figure 5 indicate that poor performances are expected for low values of 𝜏 
and 𝑘𝑒𝑜 and higher performances are anticipated in the opposite situation. Note that such 

considerations are also dependent on the time at which the plots are evaluated and on the other 

input quantities. The sum of the relative masses of the different species is shown on the keo − τ 
space in Figure S2 in Supporting Information. Values of the sum of the relative masses very close 

to 1 indicate that the surrogate model is able to account for the conditions indicated in Eq. 11 

despite the absence of an explicit constraint and support good prediction performances of the 

surrogate.  

Further model exploration was performed with Monte Carlo simulations that allow the evaluation 

of the correlation matrix between input and output variables. The results of a set of 105 simulations 

are shown Figure 6 for two correlation matrices at different times (120 and 360 days), generated 

by sampling randomly the distribution of the input parameters.  
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Figure 6. Correlation matrices between model input and output variables at (a) 120 days and (b) 

360 days from the start of the simulation.  

Figure 6 indicates that there is no correlation between the generated random input variables except 

for 𝜏 − 𝑘𝑒𝑜 as a result of the condition imposed by Eq. (12). For both 𝑡 = 120 d and 𝑡 = 360 d, an 

increase in 𝜏 results in an increase in 𝑅𝐴𝑙𝑎𝑐 and 𝑅𝐴𝐾𝐵−1, with the simultaneous decrease of PCE, 

and increase of degradation products. Considering the effects of 𝑘𝑒𝑜, an increase of such variable 

causes the 𝑅𝐴𝑙𝑎𝑐 to decrease, whereas it contributes to increase transport of the KB-1 degraders. 

The implications of the electroosmotic flow on the chlorinated ethenes are not trivial, as such flow 

appears to support the release of PCE, with a consequent delay in the effects of the degradation 

reactions. An increase in the electric potential gradient accounted for by 𝑉𝑎𝑛 appears to provide a 

more effective distribution of the amendments and consequently a higher rate of contaminant 

biodegradation, with similar effects also observed for the duration of the active electrokinetic 

phase, 𝑡𝐸𝐾. Faster reaction rates, represented by higher 𝜂 values, result in enhanced degradation of 

the chlorinated ethenes with positive correlations also for the bacteria population in the domain. 

Finally, an increase in the mass transfer coefficient of PCE, 𝑙𝑜𝑔10(𝜔𝑃𝐶𝐸), results in a decrease of 

PCE NAPL and a consequent increase of PCE in the aqueous phase. Comparing such effects at 

120 days and 360 days, the effects of mass-transfer limitations appear to affect the system only at 

early times when dissolution from the NAPL to the aqueous phase is active. Overall, the correlation 

matrices provide an overview of the relations between inputs and outputs and can assist in 

identifying and understanding simple dependencies of complex systems with a great effectiveness 

for linear trends.  

 

3.3. Sensitivity analysis 

The global sensitivity analysis using the Sobol method was performed for all output metrics after 

360 days from the start of the simulation. Figure 7 shows the results of the sensitivity analysis by 

displaying the Sobol first and second-order and total indices for each output variable.  
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Figure 7. Results of the sensitivity analysis for each individual output variable. Sobol first-order 

and total sensitivity indices indicating parameter importance (a-h). Correlation matrix of the 

Sobol second-order indices of indicating mutual interactions (j-p). 

Figure 7a shows that both first order and total indices provide similar results and indicates that the 

most sensitive variables for lactate distribution, 𝑅𝐴𝐿𝑎𝑐, are the tortuosity (𝜏) and the electroosmotic 

coefficient (𝑘𝑒𝑜), followed by the applied voltage (𝑉𝑎𝑛) and the time of active application of the 

electric field, 𝑡𝐸𝐾. Such results indicate that the transport of lactate in the system is more influenced 

by the specific properties of the porous medium rather than by the reactions occurring in the 
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system. Indeed, this consideration applies in the present case as lactate is delivered in excess with 

respect to the amount necessary to perform reductive dehalogenation. 

Regarding the distribution of KB-1, Figure 7b highlights that there are significant differences 

between the first and total indices and therefore strong nonlinearities control the behavior of 

𝑅𝐴𝐾𝐵−1. Here, 𝜏 and the biodegradation rate (η) appear to have the largest importance, followed 

by 𝑘𝑒𝑜 and 𝑉𝑎𝑛. In this case, the higher importance of η suggests that the rate at which reactions 

occur influences the extent and concentration of KB-1 in the system. 

The relative mass of PCE as NAPL after 360 days (Figure 7c) shows high total sensitivity indices 

for 𝜏 and 𝑘𝑒𝑜 which indicates that multiple phenomena control the mass of PCE as NAPL in the 

system. Indeed, after 360 days the mass of PCE NAPL does not seem to strongly depend on the 

mass-transfer coefficient 𝑙𝑜𝑔10(𝜔𝑃𝐶𝐸) which has the lowest sensitivity since, as indicated also by 

the correlation matrices discussed above, interphase mass transfer does not impact significantly 

the system at late times.  

The dissolved chlorinated ethenes PCE (Figure 7d) and TCE (Figure 7e) have similar trends with 

the mass in the system mainly dependent on 𝜏, 𝑘𝑒𝑜 and η. The sensitivity of DCE (Figure 7f) shows 

a different tendency, with a higher dependence on 𝑘𝑒𝑜 and to a lesser extent on 𝜏 and η. VC (Figure 

7g) and ethene (Figure 7h) show similar trends, with high dependence on η and slightly lower on 

𝜏, 𝑘𝑒𝑜 and 𝑉𝑎𝑛. 

Effects from high-order variance can be identified considering the second-order indices in Figure 

7i-p, which highlight the relations between different input variables to the outputs. In particular, 

for all output variables both 𝜏 and 𝑘𝑒𝑜 appear to be strongly related, and this is particularly 

noticeable for 𝑅𝐴𝐿𝑎𝑐 (Figure 7i). However, considering 𝑅𝐴𝐾𝐵−1, it appears that 𝜂 contributes with 

non-linear interactions with 𝜏 and 𝑉𝑎𝑛. Similar considerations can also be derived for the 

chlorinated ethenes and products in Figure 7k-p, which highlight a stronger second-order 

dependence of 𝜂 with 𝜏, 𝑘𝑒𝑜 and 𝑉𝑎𝑛. 

The relations presented in Figure 7 provide an overview of the global sensitivity of the considered 

explanatory variables at 360 days. In the perspective of full-scale EK remediation applications, 

sensitivity analysis can help highlighting which operating parameters control the variables of 

interest and which properties of the system should be more accurately analyzed to improve model 

predictions. In this case, the highest sensitivity was observed for 𝜏 and 𝑘𝑒𝑜, suggesting that such 

parameters should be better characterized than the mass-transfer coefficient 𝑙𝑜𝑔10(𝜔𝑃𝐶𝐸), which 

demonstrated weak sensitivities for all the output variables.  
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3.4. Uncertainty quantification   

The uncertainty analysis was performed considering the frequency distributions of the input values 

and analyzing the impact of such distributions on the output metrics quantifying the capability of 

the EK-Bio system to effectively distribute the amendments in the low-permeability formation and 

to promote in situ biodegradation of the chlorinated compounds. Figure 8a-f shows the frequency 

distributions of 1×104 parameter combinations of the six input variables which have been sampled 

from Gaussian distributions with ranges reflecting the variability of physical values and 

operational conditions.  

 

 
 

Figure 8. Results of the uncertainty analysis. Frequency distribution of the input variables 

subdivided in 100 equally spaced bins defined for each variable range (a-f). Temporal evolution 
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of the output variables with median (solid line) and uncertainty intervals (10th and 90th 

percentiles) (g-n).  

 

Figure 8g-l shows the uncertainty ranges of the output variables over time, obtained with 106 

surrogate model evaluations (104 parameter combinations × 100 time steps). The solid line 

indicates the median of all output simulations at each considered time step, whereas the shaded 

area represents the zone between the 10th and 90th percentile. The plots indicate that uncertainties 

in the predictions at the beginning of the simulation are small and increase with time, due to the 

increasing effect that different input variables have on the system over time. With the selected 

frequency distributions, Figure 8g shows that there is the potential of an adequate delivery of 

lactate by electromigration, with a relative area ranging from 0.55 to 0.70 from the time in which 

the electric field has been turned off. As discussed above, the delivery of KB-1 by electroosmosis 

is less efficient and the probability distribution of the relative area ranges from 0.15 to 0.30.  

Considering the contaminant mass removal, PCE in NAPL phase decreased significantly with a 

relative mass that went from 0.60 at t = 0 to less than 0.20 at t = 360 d (median values in Figure 

8c) and its dissolution to the aqueous phase (Figure 8d) resulted in high levels of PCE in the system 

until approximately 200 days from the start of the simulation, after which the relative mass of 

dissolved PCE decreased from approximately 0.40 to 0.20. During the same time, the degradation 

product TCE increased until 250 days reaching a relative mass of 0.20 (Figure 8e), before its trend 

shifted toward the dominance of its consumption and production of DCE. Such degradation 

product had the highest relative mass among all chlorinated ethenes, with values exceeding 0.35 

at the end of the simulation (Figure 8l). Figure 8m-n indicate that the relative mass of VC and 

ethene in the domain is not likely to be large in the considered timeframe, with values respectively 

in the range 0-0.05 and 0.03-0.20. The final product ethene in this case starts to be present in the 

system after approximately 200 days and its concentration increases until 360 days.  

With the considered input parameters, the biodegradation of chlorinated ethenes does not appear 

to be complete after 360 days and it is expected to continue in time, provided availability of 

substrate and specialized OHRB. The simulation uncertainties indicate that the confidence 

intervals tend to increase for all output variables with time since the combined uncertainty of input 

parameters propagates and becomes more significant. Note that the uncertainty analysis illustrated 

in Figure 8 presents only one of the possible scenarios of EK-Bio systems. The simulations 

performed with the surrogate model could be indeed quickly updated once new information 

becomes available. For instance, if additional investigations reveal changes in the probability 

distributions of the inputs, the surrogate model will allow to rapidly re-evaluate the uncertainties 

of the output metrics. 

The computational gains provided by the surrogate is significant and, depending on the number of 

simulations required, it is possible to evaluate uncertainties also in real-time. For instance, it took 

222 seconds to perform the 106 surrogate model evaluations (104
 parameter combinations), 

whereas using a lower number of parameter combinations (e.g., 100), would make the surrogate 

model run in less than 3 seconds. Table S5 presents a summary of the surrogate model 

performances based on the number of model evaluations. As a comparison, considering running 

twenty process-based models at the same time (four nodes each running five simulations), it would 

have taken 230 days just for the uncertainty analysis (104 model runs).    
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4. Conclusions 

In this work we presented a response surface surrogate framework to explore, assess and predict 

the performances of electrokinetic bioremediation, which was modeled based on complex process-

based simulations accounting for Nernst-Planck-based electrokinetic transport, Coulombic 

interactions, interphase mass-transfer, as well as equilibrium and kinetically controlled 

biogeochemical reactions.  

The surrogate model was set up using an artificial neural network with MLP and was trained with 

randomized cross-validation of hyperparameters. Such approximation function showed great 

flexibility with excellent prediction performances on training, validation, and test sets for most of 

the output variables. The use of the developed response surface surrogate for model exploration 

allowed us to analyze a wide range of input conditions. Computed correlation matrices provided 

information on the linearity and general trends of the variables, whereas global sensitivity analysis 

allowed identifying the effects and relative importance of selected input variables on the model’s 

output. Finally, the fast runtime of each simulation allowed us to perform uncertainty analysis 

based on Monte Carlo simulations to derive confidence intervals of the output variables based on 

frequency distributions of the key input parameters.  

Besides the greatly reduced computational time and the possibility to perform probabilistic 

assessment, the developed surrogate model also favored process understanding. In fact, the quick 

evaluation of a large number of different scenarios unveiled dependencies and relations among 

physical, chemical and biological properties as well as operational input parameters. Such relations 

would have been challenging to explore and would have probably remained hidden due to the 

computational costs of a fully coupled reactive transport model.  

The results of this study indicate that surrogate models can provide several benefits to the modeling 

of many environmental processes as they could become essential in (i) supporting quick model 

exploration, (ii) indicating the optimal set of operating conditions, (iii) identifying and excluding 

unfeasible and inefficient configurations, (iv) providing an overview of the importance and effect 

of different input variables on different output metrics, and (v) quantifying uncertainties on the 

outputs based on uncertainties in input quantities. Besides such benefits, there are also 

disadvantages associated with the use of surrogate models. For instance, a drawback of the 

surrogate modeling approach presented in this study is that it still requires process-based 

simulations to generate the data on which response surface models are then trained, and the 

generation of this data requires process understanding, reactive transport modeling skills, and may 

be time consuming. Moreover, as data-driven models are dependent on the data provided, if an 

assumption in the process-based model changes and if such variation was not accounted for in the 

input parameters of the model, there might be the need to repeat all the process-based simulations 

for training, validation and testing as the trained model cannot extrapolate well in case a new input 

is radically different from the training data. Other disadvantages common to many machine 

learning models include the difficult interpretation/explanation of data-driven models that are 

considered as “black boxes” and the absence of physics, which result in a model predicting well 

the quantities of interest but not explicitly including all the physical principles such as conservation 

of mass and energy considered in process-based models.    

An increasing use of surrogate models in the field of groundwater contamination and remediation 

would help lowering the technical barriers in the simulation and increase the trust in technologies 

that are currently considered very difficult to predict due to the complex interplay between several 
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physical and biogeochemical processes. In fact, complexity is a key feature of subsurface systems 

where inherently coupled flow, mass transfer processes, chemical and biological reactions control 

the fate of contaminants (Battistel et al., 2021; Fakhreddine et al., 2016; Guo et al., 2020; Li, 2019; 

Prommer et al., 2019; Rathi et al., 2017; Steefel et al., 2015; Stolze et al., 2019a, 2019b) and the 

efficiency of in situ remediation technologies (Ni et al., 2015; Piscopo et al., 2013; Sookhak Lari 

et al., 2019; Sprocati et al., 2020).  

Due to the large flexibility and relatively low resources needed to execute surrogate models, we 

envision an increasing use of such tools, appropriately tested and validated against comprehensive 

and fully coupled process-based models. Response surface surrogates can become important as a 

screening tool for decision making as well as during the design phase. Other uses could also 

involve the fast calibration of model parameters based on measured quantities in pilot and full-

scale implementations. In this context, surrogate models capable of accounting for complex non-

linear interactions can be used during calibration procedures involving for instance genetic 

algorithms, which are known to require several model evaluations. In addition, we envision the 

integration of such models with dynamic real-time data acquisition for continuous monitoring of 

system performances. Finally, surrogate models could become precious as digital twins during 

operational phases where they could be used for real-time simulation of the system dynamics and 

for optimizing the performances and duration of the selected remediation technology. 

Besides remediation applications, the proposed approach combining process-based, multi-physics 

and multicomponent reactive transport modeling with response surface surrogate modeling, could 

be adopted in other fields of subsurface research including radioactive waste confinement 

(Montes-H et al., 2005; Tournassat et al., 2015), CO2 storage (Celia et al., 2015; Gislason et al., 

2010; Saaltink et al., 2013), multiphase and unsaturated flow systems (Ahmadi et al., 2020; Molins 

& Mayer, 2007), as well as mining operations and risk assessments (Martens et al., 2021; 

Muniruzzaman et al., 2020; Sinclair & Thompson, 2015).  
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