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Abstract—Direct current (DC) microgrids can be considered as
cyber-physical systems due to implementation of measurement de-
vices, communication network, and control layers. Consequently,
dc microgrids are also vulnerable to cyber-attacks. False-data
injection attacks (FDIAs) are a common type of cyber-attacks,
which try to inject false data into the system in order to cause
the defective behavior. This article proposes a method based on
model predictive control (MPC) and artificial neural networks
(ANNs) to detect and mitigate the FDIA in dc microgrids that are
formed by parallel dc–dc converters. The proposed MPC/ANN-
based strategy shows how MPC and ANNs can be coordinated to
provide a secure control layer to detect and remove the FDIAs
in the dc microgrid. In the proposed strategy, an ANN plays the
role of the estimator to implement in the cyber-attack detection
and mitigation strategy. The proposed method is examined under
different conditions, physical events and cyber disturbances (i.e.
load changing and communication delay, and time-varying attack),
and the results of the MPC-based scheme is compared with conven-
tional proportional-integral controllers. The obtained results show
the effectiveness of the proposed strategy to detect and mitigate the
attack in dc microgrids.

Index Terms—Artificial neural network (ANN), cyber-physical
dc microgrid, false-data injection attack (FDIA), model predictive
control (MPC).

I. INTRODUCTION

D IRECT current (DC) microgrids offer more advantages
when compared to ac microgrids, e.g., higher reliability,

more efficiency, less complex control, and also easier interface
with electronic loads, energy storage systems, and renewable en-
ergy resources because of their natural dc behavior [1], [2]. Dis-
tributed generators are connected to the microgrids commonly
by controllable converters [3]. To control the dc microgrids,
three control layers are implemented in a hierarchical control
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structure, i.e., primary, secondary, and tertiary control layer [4],
[5]. The primary controller aims to achieve equal current sharing
between units, while the secondary control application is used
to restore the voltage of the dc bus to the desired reference
value [6]–[8]. Also, the tertiary controller can be implemented
to manage the power flow between microgrids [9].

To implement the hierarchical control structure, it is necessary
to deploy a communication network to exchange data between
the primary, secondary, and tertiary controller. The existence
of the measurement devices, communication networks, and
also digital controllers, make the dc microgrids vulnerable to
cyber-attacks. There are various types of cyber-attacks, which
are able to attack dc microgrids and also smart grids, e.g.,
false-data injection attacks (FDIAs) [10], [11], denial of ser-
vice (DoS) [12], hijacking [13], deception [14], and replay at-
tacks [15]. FDIAs try to inject the false data into a system to alter
the state of the system while the DoS attacks attempt to make
the communication network completely unavailable [16]–[20].
In hijacking attacks, the attacker replaces the signals completely,
while replay attacks deceive the operators of the system by first
recording the data and reproducing it in the system [13], [15].
Recently, some research works have been done about FDIAs
in dc microgrids. For instance, Beg et al. [21] have proposed
a method to detect FDIAs in dc microgrids by identifying a
change in candidate properties that do not change over time
in cyber-physical dc microgrids. Also, Beg et al. [22] have
introduced a strategy to detect FDIAs and DoS attacks by signal
temporal logic for monitoring the output voltage and currents
against the defined specifications. Furthermore, in [18], a method
based on recurrent neural networks has been proposed to detect
FDIAs in dc microgrids, and Sahoo et al. [10] have worked on
FDIAs in dc microgrids based on a discordant element approach.

The above-mentioned works have tried to detect FDIAs in dc
microgrids, which are controlled by distributed consensus-based
algorithms. In contrast, this article studies the FDIAs in dc
microgrids that are controlled hierarchically and based on the
droop concept. To the best of authors’ knowledge, this article is
the pioneer to propose a unified secure model predictive control
(MPC)/artificial neural network (ANN)-based framework to de-
tect and mitigiate cyber-attacks in dc microgrids. By exploiting
the fast operation feature of model predictive controller and
nonlinear mapping capability of ANNs, we can simultaneously
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TABLE I
NOMENCLATURE

detect and mitigate the cyber-attack. This article focuses on
detecting and removing the FDIAs in the dc microgrids to have
a secure operation under this type of attack. Also, to have a more
efficient evaluation, the proposed strategy is tested under cyber
and physical disturbances, i.e., load changes and communication
delays. Furthermore, to show the effectiveness of the proposed
strategy, the proposed method is examined under a time-varying
FDIA. In the case of a time-varying attack, the attacker tries
to inject false data into the system, which is variable with
time. In this article, a secure control layer is introduced based
on MPC approach to detect and also mitigate the FDIAs. To
implement the MPC, an estimator based on ANNs is used to
produce the reference value for the predictive based controller.
In addition, the results of the MPC-based scheme are compared
with conventional PI controllers. The obtained results prove
the authenticity and effectiveness of the proposed cyber-attack
detection and mitigation strategy for dc microgrids.

Briefly, in this article, it will be shown that how a coordination
between the ANN and the MPC can be made to provide a secure
dc microgrid and improve the cyber-security of the dc microgrid.
Therefore, this article introduces a method based on the ANN
and also MPC to detect and mitigate FDIAs, simultaneously. It is
important to note that, the implemented ANN has a feedforward-
based structure, which can reduce the complexity when it is
compared with other complex architectures of the ANNs. Also,
the historical values of data are used in the input layer of the

ANN. It is important to note that, the proposed strategy will be
examined under different cyber and physical disturbances, e.g.,
constant FDIA, time-varying FDIA, load changes, and also the
communication delay.

The rest of this article is organized as follows. Section II
presents an introduction to the ANN. Section III introduces
the model predictive based control approaches, and Section IV
describes the dc microgrids and the effect of FDIAs on them.
Section V presents the proposed method, and VI illustrates the
results. In addition, Section VII provides a discussion and also
future works. Finally, discussions and conclusions are stated in
Section VIII. It is important to note that, the parameters which
are used in this article are defined by Table I.

II. INTRODUCTION TO ANNS

ANNs as a powerful estimation and prediction tools are used
in a wide range of applications, e.g., detection of stator interturn
faults [23], detection of cyber-attacks in dc microgrids [18],
power-sharing [24], sensorless control of dc microgrid [25],
and sensorless voltage estimation for total harmonic distortion
calculation [26]. Basically, ANNs have an input layer, hidden
layers, and one output layer and the layers consist of neurons to
help to propagate data from a layer to another layer to produce
the outputs of the neural network. Fig. 1 shows the structure
of a neural network. Inputs of each neuron are signals, which
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Fig. 1. Basic structure of a neural network with n inputs and m outputs. xi

and yj are the ith input and jth output, respectively.

are calculated by multiplying a connection weight to the output
of the neurons from the previews layer. The output of the kth
neuron, which is placed in the ith layer is calculated as follows:

βk
i = fi

((
Qi−1∑
e=1

wi
e,k × βe

i−1

)
+ bki

)
. (1)

If the input layer and output layer of a neural network be
considered as the first and last layer, and the neural network
has l layers, the mathematical description of the jth output is as
follows:

yj = fl(fl−1(Zl−2Wl−2,l−1 +Bl−1)Wl−1,l + bjl ). (2)

Also,Wx−1,x,Bx, andZx (1 ≤ x ≤ 2) are defined as follows:

Wx−1,x =

⎡
⎢⎣

wx
1,1 · · · wx

1,Qx

...
. . .

...
wx

Qx−1,1
· · · wx

Qx−1,Qx

⎤
⎥⎦ (3)

Bx =
[
b1x · · · bQx

x

]
(4)

Zx =
[
β1
x · · · βQx

x

]
. (5)

To use the ANN, which is built with l layers, a dataset, which
is structured by the gathered inputs and outputs data should
be prepared. Then, the structured dataset should be used in a
training manner as an optimization problem to calculate the
optimized values of weights and biases of all neurons. Finally,
the neural network with optimized values of biases and weights
factors can be implemented in the system.

III. BASIC CONCEPTS OF MPC

MPC is a type of controller that has gained the attention of
researchers in many power engineering applications, e.g., in con-
trol of power converters [27], load frequency control [28], and
stabilization of dc microgrids [29]. MPC can be implemented
as a reference tracking application by calculating the proper
future values of the inputs for the plant. This section introduces
the basic concepts and mathematical equations [30], [31] of
the MPC. Fig. 2 shows the basic way to implement MPC as
a reference tracking application.

The model predictive controller uses an observer to estimate
the unmeasured values to help predict the future state of the
system to adjust the inputs of the plant. The state of the observer

Fig. 2. Implementation of a model predictive controller in a reference tracking
application.

can be written as follows:{
x(z + 1) = Ax(z) +Bue(z)
y(z) = Cx(z).

(6)

The state of the controller will be updated based on the
previews measurements of the plant as follows [30], [31]:

x(z|z) = xupd(z|z − 1) +Ne(z) (7)

where xupd(z|z − 1) is the updated x(z|z − 1) (the estimated
state based on previous control interval (k − 1)). Furthermore,
N is the constant Kalman gain matrix and e(z) is calculated as
follows [30], [31]:

e(z) = ymeas(z)− (Cxupd(z|z − 1)). (8)

In addition, in (7),xupd(z|z − 1) is determined as follows [30],
[31]:

xupd(z|z − 1) = x(z|z − 1) +B(ur(z − 1)− uo(z − 1)).
(9)

After the calculation and updating the state of the controller,
x(z|z) is used to obtain the optimal value of the manipulated
variable to be used between zth and (z + 1)th control intervals.
x(z + 1|z) can be predicted as follows [30], [31]:

x(z + 1|z) = Axupd(z|z − 1) +Buo(z) +Qe(z). (10)

The MPC-based controller tries to predict the future values
of the plant outputs by the observer and then use the predictive
values in the optimization process to calculate the optimal values
of the inputs to track the references by the plant outputs. So, it
is essential to predict the future values of the plant outputs to
have a successful control strategy. If assumed that the predicted
future of the output is without noise, the observer predicts the
first step of the future, and also the i step ahead of the future
(2 ≤ i ≤ p, where p is the prediction horizon) as follows [30],
[31]:

x(z + 1|z) = Ax(z|z) +Bu(z|z) (11)

x(z + i|z) = Ax(z + i− 1|z) +Bu(z + i− 1|z). (12)

Also, for 1 ≤ j ≤ p, the prediction of the future for the plant
is as follows [30], [31]:

y(z + j|z) = Cx(z + j|z). (13)

To calculate the manipulated variables, the MPC should solve
an optimization problem based on the prediction of the future
values. To define and solve an optimization problem, a cost
function and the constraints should be defined. The cost function
can be defined as follows:

J(Mz) = Jy(Mz) + Ju(Mz) + JΔu(Mz) + Jδ(Mz) (14)
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and [30], [31]

Jy(Mz) =

numy∑
j=1

p∑
i=1

(
λ
y
i,j

hy
j

[refj(z + i|z)− yj(z + i|z)]
)2

(15)

Ju(Mz) =

numu∑
j=1

p−1∑
i=0

(
λu
i,j

hu
j

[uj(z + i|z)− uj,t(z + i|z)]
)2

(16)

JΔu(Mz) =

numu∑
j=1

p−1∑
i=0

(
λΔu
i,j

hu
j

[uj(z + i|z)− uj(z + i− 1|z)]
)2

(17)

Jδ(Mz) = γδδ
2
z . (18)

It is important to note that, the decision of the optimization
problem can be defined as follows:

MT
z =

[
u(z|z)T · · · u(z + p− 1|z)T δz

]
. (19)

As mentioned before, each optimization problem can con-
tain some constraints. For 1 ≤ i ≤ p and 1 ≤ j ≤ numy , the
constraint on the output of the plan, manipulated variables and
movement of the inputs can be defined as follows [30], [31]:⎧⎨

⎩
yj,min(i)

hy
j

− δzR
y
j,min(i) ≤ yj(z+i|z)

hy
j

yj,max(i)

hy
j

+ δzR
y
j,max(i) ≥ yj(z+i|z)

hy
j

(20)

where Ry
j,min(i) and Ry

j,min(i) are implemented for the con-
straint softening. In addition, for 1 ≤ i ≤ p and 1 ≤ j ≤ numu,
the constraint on the manipulated variables and movement of
the inputs can be defined as follows [30], [31]:⎧⎨

⎩
uj,min(i)

hu
j

− δzR
y
j,min(i) ≤ uj(z+i|z)

hu
j

uj,max(i)
hu
j

+ δzR
u
j,max(i) ≥ uj(z+i|z)

hu
j

(21)

⎧⎨
⎩

Δuj,min(i)

hΔu
j

− δzR
y
j,min(i) ≤ uj(z+i|z)

hu
j

Δuj,max(i)

hΔu
j

+ δzR
Δu
j,max(i) ≥ Δuj(z+i|z)

hΔu
j

.
(22)

For the optimization of the cost function, the values of the
prediction are needed and they can calculated as follows [30],
[31]:

Y = Ωx(z) + Ψu(z − 1) + ΦΔU (23)

where [30], [31]

Y T =
[
y(z + 1) y(z + 2) · · · y(z + p)

]
(24)

ΩT =
[
CA CA2 · · · CAp

]
(25)

ΨT =

[
CB · · ·

p−1∑
d=0

CAdB

]
(26)

Φ =

⎡
⎢⎢⎢⎢⎣

CB 0 · · · 0
CAB + CB CB · · · 0

· · · · · · · · · · · ·
p−1∑
d=0

CAdB
p−2∑
d=0

CAdB · · · CB

⎤
⎥⎥⎥⎥⎦ (27)

Fig. 3. Physical and control structure of a dc microgrid with n dc sources.

ΔUT =
[
Δu(z) Δu(z + 1) · · · Δu(z + p− 1)

]
.
(28)

Finally, based on the definition of the cost function and
considering the constraints, the predicted values of the future
outputs can be implemented into the cost function to obtain the
future values of the manipulated variables.

IV. CONVENTIONAL DC MICROGRIDS AND FDIAS

Fig. 3 shows an isolated dc microgrid, which has n parallel
dc–dc converters and uses primary and secondary control layers.

The voltage reference in the primary layer is obtained as
follows:

VREF = vrefJ1,n +ΔV −RIdc (29)

where

VREF =
[
vref1 vref2 · · · vrefn

]
(30)

ΔV =
[
ΔV1 ΔV2 · · · ΔVn

]
(31)

Idc =

⎡
⎢⎢⎢⎣
i1 0

...

0
. . . 0

... 0 in

⎤
⎥⎥⎥⎦ (32)

R =
[
RD1 RD2 · · · RDn

]
. (33)

The goal of the secondary control layer is to restore the dc-bus
voltage to the desired reference value and it will be shown how
FDIAs can affect the secondary control layer and destroy the
dc microgrid operation. FDIAs try to inject false data into the
system. The model of the FDIA is as follows:

xa = xr + xfd. (34)

As mentioned earlier, the purpose of the secondary control is to
converge the voltage of the dc bus to the desired reference value
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and in other hands

lim
t→∞Vdc(t) = Vref. (35)

In a nonattack situation, it can be considered that Vdc(t) =
V r

dc(t), whereV r
dc(t) is the real value of the dc-bus voltage, which

can be gathered by a measurement device. Therefore

lim
t→∞V r

dc(t) = Vref. (36)

However, if the dc-bus voltage is under an FDIA, the attacked
value goes through the secondary control layer and as a result{

V a
dc(t) = V r

dc(t) + V fd
dc (t)

lim
t→∞V a

dc(t) = Vref.
(37)

Therefore, (37) can be converted to

lim
t→∞V r

dc(t) = Vref − lim
t→∞V fd

dc (t). (38)

If the value of the false data is considered as a constant value
such as α (V fd

dc (t) = α), the following constraints should be
satisfied to keep the real converged voltage of the dc bus within
the allowed bounds:

Vref − α ≥ V min
dc (39)

Vref − α ≤ V max
dc . (40)

By unifying (39) and (40), the result will be

Vref − V max
dc ≤ α ≤ Vref − V min

dc . (41)

In other words, if the value of the false data satisfies (41), the
dc-bus voltage still will converge to a value within the allowance
bound. But, if α satisfies one of the following inequalities, the
operation of the dc microgrid can be failed:

α ≤ Vref − V max
dc (42)

α ≥ Vref − V min
dc . (43)

For more clarification, false data will be injected into a dc
microgrid. The reference of the dc-bus voltage is 125 V. To
show the effect of the FDIA on a dc microgrid, which has not
a secure control layer, two FDIAs start to inject false data with
value of −5 and −15, respectively. Fig. 4(a) shows the value of
the dc-bus voltage before and also during the first cyber-attack.
In addition, Fig. 4(b) depicts the value of the dc-bus voltage
before and during the second cyber-attack. Based on Fig. 4, by
increasing the domain of the false data, the deviation of the
dc-bus voltage from the reference value of that is increased.
Also, as it is shown by Fig. 4, the dc-bus voltage is converged
based on (38). Therefore, the attacker can increase or decrease
the domain of the dc-bus voltage by adjusting the value of the
false data.

V. PROPOSED SECURE CONTROL STRATEGY

In this article, a secure control layer based on ANNs and MPC
is considered to detect and mitigate the FDIAs in dc microgrids.
The purpose of using MPC is to inject data into the system
to remove the effect of the FDIA. For more clarification, Fig. 5

Fig. 4. Value of the dc-bus voltage before and during the FDIA: for (a) α =
−5, and (b) α = −15. (a) Value of the DC bus voltage before and during the
first FDIA (the value of the false data is −5). (b) Value of the DC bus voltage
before and during the second FDIA (the value of the false data is -15).

Fig. 5. Implementation of the MPC in the reference tracking application to
detect and mitigate the FDIA.

shows the implementation of the predictive controller to mitigate
the FDIA in the dc microgrid.

Based on Fig. 5, the purpose of the MPC is to follow the
reference (0) by y, which is considered as the output of the
plant. By using the MPC, y will converge to 0, then

lim
t→∞ y(t) = 0. (44)

In addition

y(t) = V r
dc(t) + V fd

dc (t) + u(t)− V̄ r
dc(t) (45)

and as a result

lim
t→∞(V

r
dc(t) + V fd

dc (t) + u(t)− V̄ r
dc(t)) = 0. (46)

In (45) and (46), V̄ r
dc(t) is the estimated value of the real

voltage of the dc bus. If the estimator works properly, it can
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be assumed that V̄ r
dc(t) = V r

dc(t) and (46) will be modified as
follows:

lim
t→∞(V

fd
dc (t) + u(t)) = 0 (47)

and it means that the output of the MPC-based controller re-
moves the false injected data in the system, and the real value of
the dc-bus voltage goes through the secondary controller. Also,
(47) can be converted as follows:

lim
t→∞−u(t) = lim

t→∞V fd
dc (t). (48)

Remark: Based on (47), the MPC-based controller produces
a value to inject into the system to mitigate the FDIA and based
on (48), −u(t) is converged to the value of the false injected
data and if −u(t) �= 0, an FDIA is in the dc microgrid.

The proposed method is operated properly if the estimator
can estimate the real voltage of the dc bus properly and, in other
words, V̄ r

dc(t) = V r
dc(t). To estimate the voltage of the dc bus, the

ANN is implemented. The input of the neural network is con-
sidered output voltages and currents of dc–dc converters. Also,
to have a more efficient and accurate ANN-based estimator, the
historical values of the inputs are also considered to use in the
input layer of the ANN and a cascaded architecture is considered
for the ANN. For example, if the dc microgrid consists of two
parallel dc–dc converters and X represents the inputs of the
ANN, X can be defined as follows:

X(t) = [i1(t), i1(t−Δt), . . ., i1(t− λΔt)

v1(t), v1(t−Δt), . . ., v1(t− λΔt)

i2(t), i2(t−Δt), . . ., i2(t− λΔt)

v2(t), v2(t−Δt), . . ., v2(t− λΔt)] (49)

whereλ is the input memory order. Furthermore, in the cascaded-
based structure of the ANN, each layer is connected to all of the
previous layers. It is important to note that the output of the
neural network is the real value of the dc-bus voltage, and the
estimation of that is called V̄ r

dc(t).
Fig. 6 shows the proposed method at a glance. First, in the

training phase, which happens offline, dataset of the inputs and
the output of the neural network are gathered, and the neural
network is trained to reach the well-tuned neural networks.
After the training phase, the fine-tuned neural network and also
the MPC-based controller are implemented online in the attack
detection and mitigation proposed strategy.

Briefly, if the system is under the attack, the attacker tries to
inject a false data into the system and as a result, the value of
the dc-bus voltage, which is sent to the secondary controller,
is not equal to the estimated value of that. In other words, the
value of the voltage, which is sent to the secondary controller
and also the output of the ANN can be different. The MPC is
used to inject a faithful data to mitigate the effect of the false
data and converge the appeared difference between the gathered
dc voltage and also the estimated voltage to zero.

Fig. 6. Implementation of the ANN in training and online phases.

VI. RESULTS

The proposed detection and mitigation strategy is examined
under six different scenarios on a detailed simulated dc mi-
crogrid. For the Scenarios 1–5, the simulated dc microgrid
is structured by two parallel dc–dc buck converters and the
line resistances of the dc microgrid are as follows. RD = 4,
R1 = 0.95 Ω, R1 = 0.9 Ω. Also, the dc voltage reference is
125 V. Furthermore, RD is considered 4. Also, for Scenario 6,
the number of parallel dc–dc converters is 6. To use the neural
network in the attack detection and mitigation, a neural network
is considered with one input layer, one hidden layer, and one
output layer. The input and hidden layers have 8 and 10 neurons,
respectively. Also, the output layer has one neuron, and the
output of that is the estimated value of the dc-bus voltage. The
neural network is trained offline, and then, it is implemented
online during the operation. To train the neural network, the
simulation was run to gather data. The duration of the simulation
to gather data is considered 10 s, and the sampling time is 10μs,
and as a result, 106 samples of the inputs are gathered. It is
important to note that for extracting the dynamic of the system
by using the gathered data, several load changes are considered
during the gathering data in the offline training phase. Also, the
time delay is considered one. As will be shown later, the neural
network with a time-delay of one works properly. Then, to avoid
the complexity and reduce the computational burden of this
application, time delay of one is used in the proposed strategy,
and it is avoided to increase the time delay. Also, because the
false data are arbitrary data, no inequity constraint is considered
for the optimization process in the MPC application.

It is important to note that, to train the ANN, the training
dataset is divided into the following three sets, i.e, training, val-
idation, and testing. Also, the percentage of training, validation,
and testing dataset are 70%, 15%, and 15%, respectively. Also,
for the training phase, the number of epochs was 1000. After the
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Fig. 7. MSE during the training. (a) Mean squared error (mse) of the ANN
for the microgrid with two DC/DC converters. (b) Mean squared error (mse) of
the ANN for the large scale DC microgrid.

training, the trained ANNs were implemented into the secure
control layer. Fig. 7 shows the mean squared error (MSE) during
the training. In addition, Fig. 8 depicts the error histogram with
20 bins for the training phase. It is important to note that, in Fig. 8,
the targets are the real values of the dc-bus voltage during the
training phase and outputs are the output of the ANN.

It is worth mentioning that, as it will be shown later, the
proposed strategy is tested under different scenarios (e.g., load
changing, time-varying FDIA, communication delay, and large
scale dc microgrid). As mentioned before, to use the ANNs,
they have been trained and the number of epochs was 1000.
Based on the mse during the training (see Fig. 7), the best
validation performances were 2.9542× 10−10 at epoch 1000
and 2.3324× 10−10 at epoch 1000 for the dc microgrid with
two and six dc–dc converters, respectively. In addition, based
on the error histogram of the ANNs for the dc microgrids (see
Fig. 8), it is indicated that the values of the most of the instances
for the errors are very closed to zero (based on the bins).

A. Case Study 1: Different FDIAs (Two Converters)

This scenario evaluates the performance of the proposed strat-
egy under FDIAs with different values of the false injected data.
In this scenario, a false data with a value of −25 is injected into
the system at t = 1 s. Then, the value of the false data is changed
to 25, −50, and 50 at t = 2 s, t = 3 s and t = 4 s, respectively.
Fig. 9(a) shows the dc-bus voltage (V r

dc) and also the estimated
value of the dc-bus voltage (V̄ r

dc) by the neural network. As can
be seen in Fig. 9(a), the false data are removed from the system
after a transient time. Also, the real value and also the estimated

Fig. 8. Error Histogram of the ANN. (a) Error Histogram of the ANN for the
DC microgid with two DC/DC converters. (b) Error Histogram of the ANN for
the large scale DC microgid.

value of the dc-bus voltage are fitted to each other. As a result, it
can be concluded that the neural network and model predictive
controller work properly, and they are successful to estimate
the dc-bus voltage and mitigate the FDIA with different values
of the false data. Furthermore, Fig. 9(b) illustrates the currents
of converters and based on Fig. 9(b), the current sharing is
done under the secure control proposed strategy. Also, Fig. 9(c)
depicts the real value of the false injected data (V fd

dc ) and the
estimated value of the false data (−u, where u is the output of
the model predictive controller). Based on Fig. 9(c), the proposed
strategy can calculate and remove the false data, properly. It is
important to note that, Fig. 9(d) shows the error of estimation.
Based on Fig. 9(d), the domain of the estimation error during
the transient state after the injection of the first, the second, and
the third false data is smaller than 0.5 mV and it is less than
1 mV during the transient state and after the injection of the last
false data. In addition, based on Fig. 9(d), the estimation error
during the steady state can be neglected and it is very close to
zero. Therefore, in the worst case, the estimation error is less that
1 mV and as a result (if the voltage is 125 V), it can be concluded
that, the domain of the percentage of the estimation error for the
worst case can be less than 0.0008 and it can show the very good
performance of the ANN.

B. Case Study 2: FDIA and Laod Changing (Two Converters)

The goal of this scenario is to test the proposed strategy under
load changing. To evaluate the proposed strategy, a load is added
at t = 1 s to the dc microgrid. Also, at t = 2 s, an attack starts
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Fig. 9. Case Study 1: Values of (a) dc-bus voltage and the estimated value of
that, (b) dc output currents, (c) real value and estimated value of the false data,
and (d) estimation error.

to inject a false data to the system and simultaneously, a load is
added to the system too. Finally, at t = 4 s, a load is added to
the microgrid while the system is under the attack. Fig. 10(a) is
related to the real and estimated values of the dc-bus voltage.
Based on Fig. 10(a), the proposed method can remove false data
even in the case of load changing. It is important to note that, at
t = 1 and t = 4 s, a little disturbance is on the dc-bus voltage,
but after a transient time, they are mitigated, and those are due
to the load changing. Fig. 10(b) shows the output currents of
converters. Also, Fig. 10(c) illustrates the false injected data
by the FDIA and the estimated value of that by the proposed

Fig. 10. Case Study 2: Values of (a) dc-bus voltage and the estimated value of
that, (b) dc output currents, (c) real value and estimated value of the false data,
and (d) estimation error.

strategy. Fig. 10(c) can prove that the proposed method can
estimate and mitigate the false injected data, precisely. Also,
Fig. 10(d) is related to the error of estimation. Based on
Fig. 10(d), the value of the estimation error is very close to zero
and in the worst case (during the transient state after t = 2 s),
the domain of the estimation error is smaller than 2 mV. So, in
the worst case, the domain of the estimation error is less than
2 mV and if the dc voltage is 125 V, it can be mentioned that, the
domain of the percentage of the estimation error for the worst
case can be less than 0.0016 and it can prove the very good
performance of the ANN during this scenario.
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Fig. 11. Case Study 3: Values of (a) dc-bus voltage and the estimated value of
that, (b) dc output currents, (c) real value and estimated value of the false data,
and (d) estimation error.

C. Case Study 3: Time-Varying FDIA (Two Converters)

In this scenario, the effectiveness of the neural network-based
model predictive controller under a time-varying FDIA is eval-
uated. In this scenario, loads are added to the dc microgrid at
t = 1 s, t = 2 s, and t = 4 s as in the case study 2. Also, the
time-varying attack is initialized in the dc microgrid at t = 1 s.
The time-varying false data are described as follows:

V fd
dc (t) = 10 [sin (2πt) + sin (4πt) + sin (6πt)]. (50)

Fig. 11(a) illustrates the dc-bus voltage and the estimated
value of that. Based on Fig. 11(a), the dc-bus voltage has a fluc-
tuation between 126.3 and 122.8 V because of the time-varying

FDIA. Considering that the reference value of the dc-bus voltage
is 125 V, it can be concluded that the dc-bus voltage deviation is
between −1.76% and 1.04%, and it is an acceptable deviation.
Furthermore, Fig. 11(b) shows the currents of the converters, and
it illustrates the successful current sharing in the dc microgrid.
Also, Fig. 11(c) depicts the injected false data and the estimated
value of that. As can be seen in Fig. 11(c), the proposed method
can estimate the false data properly, even in the case of the
time-varying FDIA. Furthermore, Fig. 11(d) illustrates the error
of estimation. Based on Fig. 11(d), the domain of the estimation
error is smaller than 1 mV and during the injection of the false
data, the values of the upper and the lower bounds for the dc-bus
voltage are 126.3 and 122.8 V. Therefore, in the worst case, the
domain of the percentage of the estimation error can be less than
0.0008144 and it can prove the effectiveness of the ANN even
it is under a time-varying FDIA.

D. Case Study 4: FDIA and Communication Delay (Two
Converters)

In this scenario, the proposed strategy is examined under a
communication delay. A delay of 3 ms is considered to send the
data from the secondary controller to the primary controller of
both units. Fig. 12(a) is related to the real and estimated values
of the dc-bus voltage and Fig. 12(b) depicts the output currents
of the converters. Fig. 12(a) shows that the ANN can estimate
the dc-bus voltage properly under the time delay. It is important
to note that in Fig. 12(a) and (b) fluctuations exists because
of the delay effect. Also, Fig. 12(c) illustrates the real and
estimated values of the false injected data. Based on Fig. 12(c),
the proposed strategy can calculate the value of the false data,
properly. In addition, Fig. 12(d) shows the error of estimation.
Based on Fig. 12(d), during the transient state and steady state,
the domain of the estimation error is smaller than 0.5 mV. If
the reference of the voltage is 125 V and the worst value of
the estimation error is less than 0.5 mV, the domain of the
percentage of the estimation error can be less than 0.0004 and it
can show the proper performance of the ANN even it is under a
communication delay.

E. Case Study 5: Comparison of the Proposed Strategy and PI
Controller (Two Converters)

In this scenario, the performance of the MPC based pro-
posed method is compared with a PI-based strategy. The model
predictive based controller is completely replaced by a tuned
PI controller. A false data with value of +100 is injected into
the system at t = 1 s. Fig. 13(a) shows the dc-bus voltage by
the proposed strategy and PI-based application, i.e., V mpc

dc and
V pi

dc , respectively. Based on Fig. 13(a), the minimum values
of V mpc

dc and V pi
dc are 118.1723 and 77.2855 V, respectively.

Therefore, because the reference for the dc-bus voltage is 125 V,
the maximum deviation by the proposed MPC based method and
the PI-based application are 5.46% and 38.17%, respectively. In
addition, Fig. 13(b) illustrates the estimated values of the false
data by the MPC- and PI-based methods. As it is shown by
Fig. 13(b), the PI-based approach can estimate the value of the
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Fig. 12. Case Study 4: Values of (a) dc-bus voltage and the estimated value of
that, (b) dc output currents, (c) real value and estimated value of the false data,
and (d) estimation error.

false data, but the MPC-based application is more successful
because of smaller overshoot and also faster response. Briefly,
the maximum deviation of the dc-bus voltage by the PI-based ap-
plication is very larger than MPC-based strategy. Also, because
of the less overshoot and faster response time of the MPC-based
method, the MPC is more successful rather than the PI controller.

F. Case Study 6: Large Scale DC Microgrid (Six Converters)

In this scenario, the performance of the proposed method
is evaluated in a more complex dc microgrid with six dc–dc
converters. In this scenario, a false data with a value of +30
at t = 1 s is injected into the system. Fig. 14(a) shows the real
and estimated values of the dc-bus voltage, and it is shown that
the neural network estimates the dc-bus voltage, precisely. In
addition, Fig. 14(b) illustrates the output currents of converters.
Based on Fig. 14(a) and (b), the attack is removed success-
fully. Furthermore, Fig. 14(c) depicts the value of the false

Fig. 13. Case Study 5: The values of (a) dc-bus voltage, and (b) estimated
values of the false injected data by the MPC and the PI controller.

injected data and the estimated value of that. As it is shown,
the proposed strategy can estimate the value of the false data.
Furthermore, Fig. 14(d) is related to the error of estimation.
Based on Fig. 14(d), in the worst case and during the transient
state after t = 1 s, the domain of the estimation error is smaller
than 0.5 mV. So, if the dc-bus voltage is 125 V and the worst
value of the estimation error is less than 0.5 mV, the domain of
the percentage of the estimation error can be less than 0.0004.
Therefore, Fig. 14(d) can show the effectiveness of the ANN
even it is implemented in a large scale dc microgrid.

VII. DISCUSSION AND FUTURE WORK

This article introduced a method to detect and mitigate FDIAs
in dc microgrids. The proposed strategy tried to show that
how a positive and constructive cooperation between artificial
intelligence (AI) and the MPC can be made to increase the
cyber-security of the dc microgrid. In this article, the ANN as
a type of AI-based application was used to be implemented
in the proposed strategy. To have a more dynamic ANN, a
historical value of the input was considered to be implemented
into the ANN. In addition, a comparison between MPC and
a traditional PI controller was done. Based on the obtained
results, the MPC-based strategy was more successful due to
faster response and also smaller overshoot. So, the MPC was
more successful in transient and also steady state. It is important
to note that, MPC-based approach needs to solve an optimization
problem and it can increase the computational burden. It is worth
mentioning that, if the system has not a cyber-attack mitigation
strategy, as it has been shown before, by injecting the false
data into the system, the attacker can change the value of the
voltage of the dc bus. So, if the attacker is able to inject the
false data into the system, the attacker can change the value
of the dc-bus voltage to a value, which is out of the allowance
bounds. Therefore, the outage of the dc bus can be happen and
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Fig. 14. Case Study 6: Values of (a) dc-bus voltage and the estimated value of
that, (b) dc output currents, (c) real value and estimated value of the false data,
and (d) estimation error.

consequently, it may result to the outages of the dc sources,
which are connected to the attacked dc bus. Briefly, the attacker
can make a plan to inject a false data into the system to make
the dc microgrid shutdown and as a result, it is important to
have a strategy to detect and mitigate cyber-attacks for the dc
microgrids. In the future work, a method based on AI can be
introduced to mitigate other types of cyber-attacks.

VIII. CONCLUSION

In this article, a new method was proposed based on MPC to
detect and mitigate FDIAs in dc microgrids, which uses the ANN
to implement to produce the reference for the model predictive
based controller. The goal of this article is to show that how the

ANN and MPC can be coordinated to detect and mitigate FDIAs
in dc microgrids. To reduce the complexity of the proposed
strategy, a simple structure of the ANNs was used. Therefore,
the implemented ANN had a feedforward-based architecture.
Also, to improve the performance of the ANN, the historical
value of the data was considered as the inputs of the ANN. The
function of the model predictive based controller is to inject the
proper data to counteract the effect of the cyber-attacks in the
system. Finally, the performance of the proposed strategy was
evaluated under the normal operation, the load changing events,
the communication delay, as well as under the time-varying
attack by performing simulations in MATLAB/Simulink soft-
ware environment. The obtained results show the effectiveness
of the proposed strategy for secure cyber-attack detection and
mitigation. By using the proposed MPC/ANN-based strategy,
successful cooperation between MPC and ANN is achieved to
detect and remove FDIAs in dc microgrids. To conclude this
article, it is important to note that, by adjusting and modifying
the proposed framework, it can be applied to provide a secure
operation for other types of cyber-physical systems.
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