
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 02, 2024

Optimal Scheduling of Electric Vehicles for Ancillary Service Provision with Real
Driving Data.

Tsagkaroulis, Panagiotis; Thingvad, Andreas; Marinelli, Mattia; Suzuki, Kenta

Published in:
Proceedings of 56

th
 International Universities Power Engineering Conference

Link to article, DOI:
10.1109/UPEC50034.2021.9548153

Publication date:
2021

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Tsagkaroulis, P., Thingvad, A., Marinelli, M., & Suzuki, K. (2021). Optimal Scheduling of Electric Vehicles for
Ancillary Service Provision with Real Driving Data. In Proceedings of 56

th
 International Universities Power

Engineering Conference IEEE. https://doi.org/10.1109/UPEC50034.2021.9548153

https://doi.org/10.1109/UPEC50034.2021.9548153
https://orbit.dtu.dk/en/publications/780cd961-b1b9-47b4-98f7-1534dd611be8
https://doi.org/10.1109/UPEC50034.2021.9548153


Optimal Scheduling of Electric Vehicles for
Ancillary Service Provision with Real Driving Data

Panagiotis Tsagkaroulis
Nordic RSC

Energinet
Copenhagen, Denmark

pts@energinet.dk

Andreas Thingvad and Mattia Marinelli
Department of Electrical Engineering

Technical University of Denmark
Roskilde, Denmark

{athing,matm}@elektro.dtu.dk

Kenta Suzuki
Nissan Research Center
Nissan Motor Co., Ltd.

Yokosuka, Kanagawa, Japan
ke-suzuki@mail.nissan.co.jp

Abstract—Electric Vehicles (EV)s can with the right charger
and aggregated in large numbers be considered as a large
storage unit. If the chargers have bidirectional power convert-
ers, EVs connected to the grid, could provide Vehicle-to-Grid
(V2G) ancillary services. The annual earnings from delivering
frequency-controlled normal operation reserve in Denmark is
calculated, based on individual user profiles. The individual
earnings are strongly dependant on the driving time, distance
and parking time at different locations which determine the
availability of each EV to provide ancillary services. The specific
user behaviour is based on a set of telematics data acquired from
7,163 Nissan LEAFs in the United States, with information about
every driving and charging sessions during one year. The profit
of the individual EV, spreads from 51 to 1654 AC/year. A data set
of one year of system frequency measurements from the Nordic
grid is used to calculate the impact of the service provision on
the State of charge (SOC).

Index Terms—Ancillary service provision, Frequency Control,
Electric Vehicles, Vehicle to Grid

I. INTRODUCTION

The global number of electric vehicles (EV)s has grown
exponentially, since 2010 and reached a global level of 2.1
million EV sales in 2019, and a total stock of 7.2 million
[1]. In Denmark, the number of EVs has similarly increased,
reaching a total of more than 15,000 (0.7% of the total car
fleet) in 2020 [2]. The electrification of the transportation
sector will bring both challenges and opportunities to the
power system, in terms of additional grid loading, such as
simultaneous charging when EV owners return home from
their last trip [3], but also as to make the EV an active
asset in supporting a stable, economic power system based
on renewable energy [4].

The relative significance of the charging control to the
revenue from providing frequency regulation, has been ex-
plored in [5], and showed that by widening the range of the
departure battery level, could increase the revenue. Frequency-
controlled normal operation reserve (FCR-N) is an automatic
regulation supplied by production or consumption units, in
response to grid frequency deviations. FCR-N is activated for
all system frequency deviations within a range of ±100 mHz.
In conjunction with a rapid frequency change to 49.9/50.1 Hz,
the power response should be fully implemented within 150
seconds [6]. The service can only be provided by a Balance
Responsible Party (BRP) with a minimum bid size of 0.3 MW

with the same power for up- and down regulation. All accepted
bids, receive an availability payment according to the ’pay-as-
bid’ mechanism [7].

The revenue from FCR-N depends on many parameters
such as the capacity of the battery, the frequency energy
content but also the electricity prices [8], the plug-in time
[9] and the availability to provide FCR-N. By analyzing the
individual profiles of EV users and using individual energy
deadlines, an additional time for service provision can be
allocated, resulting in higher yearly revenue [4].

The rest of the paper is structured as follows: Section II
includes the methodology. First the analysis of the provided
driving data set, from Nissan [12], is made. In continuation, a
description of the system frequency in Denmark follows and
afterwards, the energy model of the battery is formulated. The
aim of this study is to evaluate the yearly revenue and profit for
each EV owner for delivering FCR-N in Denmark. In Section
III the maximum potential revenue is found with the proposed
model that calculates the optimal the charging and service
provision schedule. To that end, Section IV demonstrates the
results and Section V the conclusion of this paper.

II. METHODOLOGY

The following subsection presents the principal findings of
the current investigation, in the driving data gathered from
EVs in the US. The purpose is to explore the resemblance
between the driving behavior in US compared to Denmark
and validate the relevance of the US data set in this study.

A. Analysis of Driving and Charging Behavior

The anonymized data from Nissan, consisted of 7,163
Nissan 24 kWh LEAFs, show the daily behaviour of each
EV individually during 2015 - 2016. Each EV profile vector
consists of data for a whole year with a 15-minute time
resolution, which designates whether the EV is on a trip or
parked at the household, the workplace or some other location,
along with the driving distance and the charging requirements.
The driving distance of each trip is expressed in km, while the
charging pattern, consists of power measurements expressed in
kWh for the time periods that the EV is parked throughout the
day. The locations were obtained based on the GPS telematics
data of each EV. Knowing when the EV is in motion, charging
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or parked a different set of useful patterns can be derived.
Fig.1 is a representation of the distribution of the average
driving distance per day for all the vehicles. The average
distance is slightly higher compared to Denmark, where the
average driving distance is 45 km/day for passenger cars [10].
The national Danish Travel Survey is based on conventional
vehicles in Denmark but it is found that the driving distances
are similar [9]. It is therefore assumed that EVs in Denmark
will have a similar driving behaviour.

Fig. 1. Distribution of average driving distance per day.

The average yearly driving time is 228 hours/year in U.S,
giving an average utilization of 2.6%, which is comparable
to driving time in conventional cars in Denmark [10]. The
driving distance of each EV is used to calculate its energy
requirements. The driving destination of each trip, determine
the availability of each vehicle. If an EV is being driven, it is
not available for grid services, thus the fraction of the cars that
are driving at the same time determines the number of cars it
would require to cover the national demand. Additionally it is
assumed that V2G chargers only are installed at the household
which limits the locations from which the EV can deliver
FCR-N.

B. System Frequency in Denmark

The frequency of the Nordic power system has been anal-
ysed to determine the effect on the SOC of the EVs delivering
FCR-N. The data set consists of frequency measurements
every 10 s during 2016. For a frequency value ft at time t, the
normalized response yt of the service provided is calculated
as:

yt =
(ft − 50)

0.1
, if 49.9 Hz ≤ ft ≤ 50.1 Hz (1)

The power required is found by multiplying the normalized
response with the contracted power capacity at each hour. P cap

is constant over the hour.

Pt = P cap · yt + P base (2)

If the frequency on average is above or below 50 Hz,
there will be an energy exchange with the grid. This energy
content or bias Ebias is calculated each 15 minutes (same time

resolution as the EV data) as the integral of the normalised
response [11].

Ebias
τ =

1

Nk

τ ·N∑
t=N ·(τ−1)+1

yt · ts (3)

The sample rate is ts = 10 s, N = 90 is the number of
samples in each 15 minute period and Nk = 3600 s/h. Ebias is
in p.u. and is multiplied with Pcap to find the energy content in
kWh. The energy content is negative when energy is supplied
to the grid and positive when energy is received.

C. Formulation of Energy Model of the Battery

The V2G charger has a rated charging/discharging power
of ±10 kW, measured at the grid connection on the AC side.
The energy consumed from or delivered to the grid Egrid

τ at
period ’τ ’, on the AC side is calculated as the sum of the
allocated charging power and the energy content scaled with
the FCR-N capacity:

Egrid
τ = Echarge

τ + P cap
τ · Ebias

τ (4)

There is a conversion loss associated with charging and
discharging, which is found by assuming a fixed efficiency of
η = 0.9 in both directions [15]. When the EV is charging it
receives less power than it is received from the grid and when
it is discharging the power extracted from the battery is higher
compared to the power received from the grid. The following
expression shows the calculation of the energy received each
15 minutes from the battery Ebat.

Ebat
τ =

{
Egrid
τ · η if Egrid

τ > 0

Egrid
τ · 1

η if Egrid
τ < 0

(5)

Fig. 2 shows the SOC of the battery during a time span
of three days, for five real EV profiles, which have been
simulated with a battery capacity of 40 kWh. The SOC of the
battery is affected by the driving consumption during a trip and
by the energy content of the frequency grid while connected
and delivering FCR-N. The calculation is made, taking the
conversion losses of the power converter into consideration.
Due to the high variance of Ebias and the effect of the
conversion losses. For an EV that delivers FCR-N for many
hours consecutively, without charging, the high variance will
cause violation of the SOC limits. As in can be seen, the
SOC ranges outside of the physical constraints (20 - 90%
SOC). In a real situation, the violation of the limits would
have caused the depletion or saturation of the EV’s battery and
a failed delivery of FCR-N. To deal with the high variance,
an allocation of power for correction of the SOC is essential.

A correction strategy of allocating P cap = ±7 kW for FCR-
N and reserving 3 kW for changing the scheduled baseline,
when the frequency leaves a specified dead band, is used, in
order to keep the SOC within the limits of 20- 90%. Value
of P base = 3 kW was chosen, as it is the minimum amount
of power for correcting the SOC while delivering FCR-N that
does not result in violation of the SOC limits [9]. The P base is



Fig. 2. Simulation result of five Nissan LEAFs, while providing FCR-N,
charging and driving for three days. The simulation assumes 40 kWh capacity.

applied when the accumulated energy balance of the battery
∆E is above 10 kWh or below -10 kWh [12].

Note, that the time frame is in quarters of an hour, thus the
Pbase applied every 15 minutes. The updated Egrid

τ is calculated
based on:

Egrid
τ = Echarge

τ + P cap
τ · Ebias

τ + Ebase
τ (6)

D. FCR-N capacity payment

It is considered that all FCR-N bids are accepted and
will receive the weighted average capacity payment for that
hour. The capacity payment for FCR-N (cτ ) in Denmark is
compensated with the price per MW per hour when the service
is made available. The service is only sold if the EV is
available at home during the full hour and the price is the same
for the whole hour, but the final yearly revenue is calculated
for each 15-minute.

Revenue =

365·24·4∑
τ=1

cτ · P cap
τ (7)

Fig. 3 shows the hourly average values of the FCR-N prices
for five consecutive years. In general the average capacity
payment is significantly higher during the night compared to
the morning hours. The prices for every day during 2019
are also presented as grey lines in Fig. 3. The following
simulations are calculated with the FCR-N prices of the
specific hours during 2019. The high variation during the day
is strongly correlated with the supply at each hour, and the
yearly average price is 30.34 AC/MWh.

The yearly cost derived from the energy losses, is calculated
with the hourly spot prices plus the average industrial tariff
γtariff, where the DSOtariff is equal to 0.0376 AC/kWh [13].

CostV 2G =

365·24·4∑
τ=0

(P cap
τ · Ebias

τ + Ebase
τ ) · (λτ + γtariff) (8)

III. OPTIMIZATION OF CHARGING AND SERVICE
SCHEDULE

In this section a method for calculating the best case
earnings for every car in an optimisation problem with full

Fig. 3. The average value of FCR-N price per hour, for 2016, 2017, 2018,
2019, 2020 and the daily prices during 2019.

knowledge of future driving consumption and future energy
content of the frequency is presented.

A. Problem description

The main objective of this optimization proposal is to
maximize the profit of each EV by minimizing its costs, while
respecting a set of constraints related to power limit of the
V2G charger while charging, discharging and providing FCR-
N (10), (11). It is assumed that the EV has access to the
V2G charger while it is located at the owner’s home (12).
Constraint (13) avoids charging and discharging at the same
time, where Sci,j, S

d
i,j can be either 1 or 0. To prevent the

EV from providing FCR-N (14), charging (15) or discharging
(16) while it is being driven, another set of constraints are
considered, where Scapi,j can be either 1 or 0. The SOC level
is calculated through the cumulated charging, discharging,
FCR-N energy and driving energy consumption (Edrive)(18).
Lastly, the SOC limits are set between 20% and 90% (19).
The prices for the capacity payment and the spot prices are
provided for each hour during 2019. For the examined case,
the average tariffs γtariff will be added on top of the price for
charging and discharging. The value of the P cap V2G charger
is ±10 kW and the value of the battery is Q = 40 kWh.
A constant charging and discharging efficiency, η = 0.9 is
considered for all loading levels. The time step (∆i) is one
hour since the prices are updated hourly. During this hour the
charging, discharging or the frequency service procurement
is considered constant. Moreover, the time horizon, I, of the
optimization is 8760 hours. Since ∆i is one hour, the power
for charging (P c) is constant during that hour and the same
applies for discharging (P d). The spot price (λi) for the market
at Nord Pool reflects the cost of energy in AC/kWh while the
capacity payment (ci) for FCR-N is in AC/kW per hour.

B. Formulation

The objective function of the optimization problem contains
the cost of the energy for charging and the revenue for
discharging and FCR-N payment. The sign of the revenue
sources are negative and for this reason the objective function
should be minimised, which is subject to a set of equality
and inequality constraints, described in subsection III-A. The



15-min values for Edrive and Ebias are aggregated to hourly
values. The investment cost for the charger is not taken into
consideration.

min

I∑
i=0

J∑
j=0

λi · P c
i,j − λi · P d

i,j − ci · P
cap
i,j (9)

s.t.
P cap
i,j + P c

i,j + P d
i,j ≤ Pmax ∀ i ∈ I, j ∈ J (10)

P ci,j , P
d
i,j , P

cap
i,j ≥ 0 ∀ i ∈ I, j ∈ J (11)

P cap
i,j · σi,j = 0, P d

i,j · σi,j = 0 ∀ i ∈ I, j ∈ J (12)

Sc
i,j + Sd

i,j ≤ 1 ∀ i ∈ I, j ∈ J (13)

Scap
i,j · E

drive
i,j = 0,

Scap
i,j · Pmin ≤ Scap

i,j · P
cap
i,j ≤ S

cap
i,j · Pmax ∀ i ∈ I, j ∈ J

(14)

Sc
i,j · Edrive

i,j = 0,

Sc
i,j · Pmin ≤ Sci,j · P c

i,j ≤ Sc
i,j · Pmax ∀ i ∈ I, j ∈ J

(15)

Sd
i,j · Edrive

i,j = 0,

Sd
i,j · Pmin ≤ Sd

i,j · P d
i,j ≤ Sd

i,j · Pmax ∀ i ∈ I, j ∈ J
(16)

σi,j , S
c
i,j , S

d
i,j , S

cap
i,j ∈ {0, 1} ∀ i ∈ I, j ∈ J (17)

SOCi+1,j = SOCi,j + [Edrive
i,j

+P cap
i,j · E

bias
i,j + P c

i,j · η − P d
i,j ·

1

η
]

1

Q
∀ i ∈ I, j ∈ J

(18)

SOCi,j ≤ SOCi,j=0...J ≤ SOCi,j ∀ i ∈ I, j ∈ J (19)

Where, ’σ’ is vector that indicates the availability of the
EV for FCR-N provision. It equals 1 when the EV is parked
at the owner’s home and 0 when the EV is on a trip or parked
somewhere else.

IV. RESULTS

A. Driving and Charging Behaviour

The driving behavior is different throughout work days
(Monday- Friday) and weekend days (Saturday-Sunday). Fig.
4 shows the fraction of the 7,163 EVs that are driving, at the
same time on a workday (Monday-Friday) and Fig. 5 for a
weekend day (Saturday-Sunday), based on one year of data.
New Year’s day, Christmas day, Thanksgiving’s and the day
after, are included in the weekend days as they are public
holidays.

Fig. 6 shows the fraction of the 7,163 EVs that are charging,
at the same time on a work day and Fig. 7 for a weekend day.
From the graphs, it can be observed that the EV driving and
charging pattern are different throughout the week days and
weekends. The share of EVs that are driving on weekends
is noticeably lower, especially during morning and evening
hours, without any remarkable peaks. Additionally, the frac-
tion of EVs that are charging during evening hours in the
weekdays is higher compared to weekends. Despite the fact
that the data is from EVs with 24 kWh battery capacity, the
charging peak is considerably lower for all the EVs charging

Fig. 4. Fraction of 7,163 EVs that are driving with different confidence
intervals during 257 work days (Monday-Friday).

Fig. 5. Fraction of 7,163 EVs that are driving with different confidence
intervals, during 108 weekend days (Saturday-Sunday).

concurrently and that is a sign that the owners do not charge
their vehicle every day, as long as they don’t have to drive a
very long distance the next day [14]. Hence, it is reasonable to
conclude that this is a good sign in regard to grid congestion.

Fig. 6. Fraction of EVs that are charging on work days with different
confidence intervals.

B. Heuristic Model

The fraction of all the EVs that are parked at different
location described as ’Home’, ’Work’ or ’Other’ is illustrated
in Fig. 8, for a weighted average day including both weekdays
and weekends in a year. The share of EVs at home drops below
50% in the middle of the day and rises up steadily from the



Fig. 7. Fraction of EVs that are charging on weekends, with different
confidence intervals.

afternoon, while the number of vehicles at work rises during
the day and steadily declines during night, since the people
are at work, during these hours. It is also worth mentioning
that although the availability of vehicles at home is more than
70% during morning and night hours, only a small percentage
is charging as it is shown in Fig.6 and 7. Additionally,
a significant fraction of EVs, which is approximately 40%
during the midday, is located in some other unknown location.
The remainder EVs needed to reach 100% are being driven,
as it is demonstrated in Fig.4.

Fig. 8. Fraction of EVs when located at home, work or other location, both
work days and weekends in a year.

Fig. 9 shows the percentage of all the vehicles that are avail-
able with a certain confidence to provide services to the grid,
during weekdays, when they are located at home. The fact
that a large fraction of the EVs are parked at home during the
working hours shows that even by just having V2G chargers
installed at the household it would be possible to deliver FCR-
N from EVs in these hours. Energinet continuously procures
23 MW of FCR-N for Eastern Denmark (DK-2). If a group
of EVs had V2G chargers at home and could deliver FCR-N
with P cap = 7 kW with a minimum availability of 30%, it
means that the full regulation requirement could be supplied
by 10,952 EVs.

The SOC of each of the 7,163 EVs is calculated as they
were delivering FCR-N every hour that they were parked at
home and not charging. The SOC is affected by the driving
consumption, charging, conversion losses and energy content.

Fig. 9. Share of 7,163 EVs that are available at home to provide FCR-N with
confidence intervals, work days.

In Fig.10 is depicted the resulted SOC of the EV that each 15
minutes during the year has the maximum and minimum SOC
as well as the 1st and 99th percentile. Each point might be a
different EV, since the results were sorted from the lowest to
the highest value each 15 minutes. The energy ranges between
20 - 90% corresponding to [8 - 36] kWh for a 40 kWh battery,
with a few outliers. The control strategy, tries to maintain it
within ±10 kWh but if the regulation period is followed by
a long trip, it will charge to a higher level to accommodate
that consumption. This shows that it is a realistic charging and
regulation strategy for an EV with that battery size, however
the variance is high.

Fig. 10. State of Charge of the battery for all 7,163 EVs, for every day of
the year.

Fig. 11. Distribution of the yearly revenue and profit when EV is located at
home, for 7,163 EVs.



The yearly capacity payment for the different EVs is
calculated for the case where FCR-N is delivered with 7 kW
all full hours that the EV is at the household, and shown in Fig.
11. The average yearly revenue of all the EVs is 1193 AC/year.
After subtracting the electricity cost for conversion losses, the
profit is 1090 AC/year. The distribution of the revenue ranges
between 56 - 1824 AC/year, depending on the availability.

C. Optimization results
The yearly revenue from a random fraction of 1000 EVs are

shown in Fig. 12. The heuristic method resulted in earnings
from FCR-N spread between 367 - 1782 AC/year, with an
average value of 1194 AC/year. By optimizing the charging and
service provision schedule of the same EVs it was possible to
increase the average yearly revenue by 334 AC to 1528 AC. The
individual EVs are then spread between 475 - 2278 AC/year.
For the heuristic method P cap was fixed at ±7 kW due to the
3 kW allocated for P base. The optimisation on the other hand
chose P cap for every hour to avoid violating the hard SOC
constraints.

Fig. 12. Comparison of the distributed yearly revenue, when the charging and
service provision schedule is optimized and the base case, for 1000 EVs.

The EV is delivering FCR-N during the hours it is at
home, and discharges when the spot price is high and charges
when the spot price is low, considering that the model is
economically feasible. The SOC of the battery varies a lot,
as an effect of the energy content. However, it remains within
the chosen limits, [20% - 90%]. In the simulated scenario the
driving consumption but also the time of the upcoming trip
are known. However, in a real life scenario, the EV owner
can leave at any time. Considering this, the EV’s battery
might not have enough energy to accommodate the needs of
an upcoming long trip. Therefore, it is of great importance
to have a large set of historic driving data to rely on, when
estimating the precision of the plug-in and plug-out time.

The income of the most profitable EVs is highly dependant
on the availability hours to provide FCR-N, when they are
parked at home, compared to the least profitable. Therefore
the availability hours for the highest revenue EV are 8572,
compared to only 296 hours, for the EV with the least.

V. CONCLUSION

In this study the EV driving and charging behaviour of a
large EV fleet is analysed, by performing a statistical analysis

on the examined data set. Based on the driving and charging
data the possible earnings from FCR-N provision of the
individual car is investigated. This is calculated with a heuris-
tic method which serves as a benchmark for the presented
optimisation model. The optimization model is proposed for
scheduling both FCR-N provision and charging, to calculate
the income of each EV owners, assuming full knowledge
on the prices in the day-ahead market. The model assumes
full knowledge of the future system frequency behaviour and
charging and driving patterns of the EV owners so it describes
the best case earnings. The optimization results show that there
is a high margin in increasing each EV’s individual revenue
and it is strongly dependant upon the availability of the EV.
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